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Summary  

The Doa10 quality control ubiquitin (Ub) ligase labels proteins with uniform lysine 48-

linked poly-Ub (K48-pUB) chains for proteasomal degradation. Processing of Doa10 

substrates requires the activity of two Ub conjugating enzymes. Here we show that 

the non-canonical conjugating enzyme Ubc6 attaches single Ub molecules not only 

to lysines but also to hydroxylated amino acids. These Ub moieties serve as primers 

for subsequent poly-ubiquitylation by Ubc7. We propose that the evolutionary 

conserved propensity of Ubc6 to mount Ub on diverse amino acids augments the 

ubiquitylation sites within a substrate and thereby increases the target range of 

Doa10. Our work provides new insights on how the consecutive activity of two 

specialized conjugating enzymes facilitates the attachment of poly-Ub to very 

heterogeneous client molecules. Such stepwise ubiquitylation reactions most likely 

represent a more general cellular phenomenon that extends the versatility, yet 

sustains the specificity of the Ub conjugation system.  

Introduction 

An enzymatic cascade involving three types of enzymes promotes the conjugation of 

ubiquitin (Ub) to proteins: Initially, Ub activating enzyme (E1) forms a labile thio-ester 

bond with the carboxy-terminus of Ub, which is then transferred to a thiol group at the 

active site of an Ub conjugating enzyme (E2). Finally, Ub ligases (E3 enzymes) 

recruit client proteins to the vicinity of the E2 and facilitate the conjugation of Ub via 

its carboxy-terminal glycine to acceptor site(s) within the substrate (Hershko and 

Ciechanover, 1998; Metzger et al., 2014; Ye and Rape, 2009). In most cases, Ub is 

ligated to ε-amino groups of lysine side chains in the target protein. However, non-
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canonical Ub conjugation at the amino-terminus (α-amino groups), thiol groups of 

cysteines and hydroxyl groups of serine and threonine residues have also been 

reported (McDowell and Philpott, 2016). Regardless of the initial Ub conjugation site, 

additional Ub moieties are then consecutively added through one of seven internal 

lysine residues or through the amino-terminus of Ub to form Ub polymers. The type 

of Ub-Ub linkage within a poly-Ub chain determines the cellular fate of the Ub-

conjugated protein (Komander and Rape, 2012). For example, lysine 48-linked poly-

Ub (K48-pUb) chains mediate recognition by the 26S proteasome, thereby targeting 

client proteins for degradation. In most cases, the type of Ub-Ub linkage is 

determined by the activity of the E2 enzyme (Ye and Rape, 2009). Yeast express 11 

Ub conjugating enzymes with highly conserved catalytic domain, which is variable in 

size and enzymatic properties. The number of mammalian E2s in is considerably 

larger.  

Mechanistically, the poly-ubiquitylation reaction can be divided into two distinct steps: 

The initial attachment of primary Ub to an acceptor site within the E3-bound substrate 

(priming), followed by consecutive additions of Ub molecules to primary Ub moieties 

(elongation). Since the mounting of the initial Ub is a pre-requisite for subsequent 

chain elongation, the availability of primary Ub conjugation sites is a critical 

determinant for poly-ubiquitylation. Given the large diversity of potential substrates, 

the requirements for an E2 that primes a target protein for ubiquitylation are most 

likely different from those of an E2 that catalyzes repeated cycles of a specific type of 

Ub-Ub linkage during chain elongation. Consequently, conjugating enzymes of the 

priming type must be able to identify promiscuous Ub ligation sites in large set of 

heterogeneous peptide environments, whereas the elongating enzymes should 

merely synthesize homogenous poly-Ub chains on a primary Ub. Indeed, several in 
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vitro studies suggest that individual Ub conjugating enzymes of the same E3 ligase 

complex assume distinct functions in the course of poly-Ub chain formation (Fletcher 

et al., 2015; Rodrigo-Brenni and Morgan, 2007; Wu et al., 2010).  

Yeast Doa10 is a protein quality control (PQC) RING-finger-type Ub ligase that 

resides in the endoplasmic reticulum and the nuclear membrane (Deng and 

Hochstrasser, 2006; Swanson et al., 2001). Client proteins of Doa10 are decorated 

with K48-pUb chains and delivered to the 26S proteasome for degradation. Genetic 

data imply that Doa10 requires two distinct E2 enzymes, termed Ubc6 and Ubc7, for 

efficient substrate processing (Chen et al., 1993). In vitro, Ubc7 rapidly catalyzes 

K48-pUb, whereas the catalytic properties of Ubc6 remain mostly obscure (Bagola et 

al., 2013; Xu et al., 2009). Overexpression of Ubc6 in yeast impairs the degradation 

of a target protein to an extent similar to that observed in UBC6-deleted cells (Lenk et 

al., 2002; Sommer and Jentsch, 1993), suggesting that a balanced activity of these 

E2s is required for efficient substrate processing.  

In light of the apparent dual E2 requirement for Doa10-mediated degradation, we set 

out to investigate the individual roles of Ubc6 and Ubc7.  Here we show that Ubc6 

and Ubc7 operate in tandem in the ubiquitylation of Doa10 substrates: Initially, Ubc6 

attaches low molecular weight Ub moieties to proteins that are then elongated by 

Ubc7 to form K48-pUb chains. Notably, Ubc6, like its human orthologue UBE2J2 

(Wang et al., 2009), not only mounts Ub via an isopeptide bond on lysine side chains 

but also ligates Ub to serine and possibly threonine residues via an oxy-ester bond. 

We propose that these properties of Ubc6 increase the availability of poly-

ubiquitylation sites in target proteins and consequently ensure productive poly-Ub 

conjugation of Doa10 substrates. Tandem E2 activities, operating with a single E3 Ub 

ligase, probably contribute to efficient substrates ubiquitylation in other cellular 
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processes, and hence represent a common functional adaptation of the Ub 

conjugation system to target highly diverse protein populations (Fletcher et al., 2015; 

Rodrigo-Brenni and Morgan, 2007; Wu et al., 2010). 

Results 

Distinct roles for Ubc6 and Ubc7 in the in vivo ubiquitylation of a Doa10 substrate 

Degradation of Doa10 substrates, such as Vma12-DegAB (Alfassy et al., 2013), is 

impaired to a similar extent in yeast cells devoid of the Ub conjugating enzymes 

Ubc6 or Ubc7 or the Ub ligase Doa10 (Figure 1A). Evidently, each of the E2 

enzymes is absolutely required for this process, suggesting a cooperative mode of 

action. To assess the distinct functions of Ubc6 and Ubc7 in substrate ubiquitylation, 

we isolated Vma12-DegAB from cells and determined its ubiquitylation pattern. We 

find that in wild type yeast cells Vma12-DegAB is profoundly poly-ubiquitylated, 

whereas in strains deleted for UBC6 (ubc6Δ) or DOA10 (doa10Δ) Vma12-DegAB 

ubiquitylation is barely detectable (Figure 1B). The protein is still ubiquitylated in 

cells lacking Ubc7, (ubc7Δ), albeit to a substantially lower extent. Apparently, Ubc6 is 

capable of attaching Ub even in the absence of Ubc7 but it is insufficient to initiate 

degradation. Consistently, a ubiquitylated species that migrates on gels at a position 

corresponding to mono-ubiquitylated Vma12-DegAB also accumulates in ubc7Δ cells 

(Figure 1B; arrowheads). We next monitored the ubiquitylation pattern of Vma12-

DegABDD, a variant where two adjacent leucine residues at the carboxy-terminus are 

replaced with aspartic acid residues. The resulting protein is conjugated to Ub but is 

not subjected to proteasomal degradation (Furth et al., 2011) resulting in an elevated 

steady state level of the poly-ubiquitylated mutant protein (Alfassy et al., 2013). 
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Hence, monitoring Vma12-DegABDD poly-ubiquitylation enables comparative 

exploration of Ub conjugation by the Doa10 pathway, which is uncoupled from 

subsequent proteasomal degradation. Consequently, we find mono-ubiquitylated 

Vma12-DegABDD in ubc7∆ cells and to a lesser extent, in wild type cells (Figure 1C). 

The overexpression of Ub lacking lysine 48 (UbR48) substantially diminishes the 

amount of poly-ubiquitylated Vma12-DegABDD and increases low molecular weight 

ubiquitylated species, including mono-ubiquitylated Vma12-DegABDD. Similar 

expression of Ub lacking lysine 11 (UbR11) only marginally affects ubiquitylation 

(Figure 1D). To figure if K48-linked Ub also contributes to the buildup of poly-Ub in 

ubc7Δ cells, we tested Vma12-DegAB ubiquitylation profile in ubc7Δ cells 

overexpressing either wild type Ub or UbR48. The ubc7Δ cells also expressed 

defective Rpt4 and thus were also inhibited for proteasomal degradation (Meusser 

and Sommer, 2004). As shown in Figure S1A, Vma12-DegAB ubiquitylation is 

markedly inhibited in ubc7Δ cells or in wild type cells overexpressing UbR48 while the 

expression of UbR48 in ubc7Δ cells does not cause a further significant reduction. In 

agreement with these findings, mass spectrometric analysis of Vma12-DegAB 

isolated from wild type yeast cells detected lysine 48-linked Ub but no lysine 63- or 

lysine 11-linked forms (Figure S1B). Furthermore, Vma12-DegAB purified from 

UBC6- or UBC7-deleted strains contains substantially less K48-pUb (Figure S1B). 

Together, these findings indicate that Ubc6-mediated ubiquitylation alone cannot 

induce significant proteasomal degradation and that Ubc7-mediated K48-pUb chain 

formation on substrates strongly depends on Ubc6.  
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Distinct in vitro activities of Ubc6 and Ubc7  

The mutual requirement for Ubc6 and Ubc7 during K48-pUb chain formation on 

Vma12-DegAB implies that they fulfill distinct functions. Based on our preliminary 

ubiquitylation assays, we speculated that Ubc6-conjugated Ub moieties are 

necessary to target subsequent poly-ubiquitylation by Ubc7. To test this hypothesis, 

we employed an in vitro ubiquitylation assay that measures the activity of the E2 

enzymes. The assay contained various compositions of the following components: 

The catalytically important RING-finger domain of Doa10 (Doa10R) (Cohen et al., 

2015), Ubc7, the cytosolic domain of the Ubc7 activator Cue1 (Cue1∆TM) (Bazirgan 

and Hampton, 2008), the cytosolic part of Ubc6 (Ubc6∆TM) and Ub (Figure S2A). 

The ubiquitylation reaction was initiated by the addition of an Ub activating enzyme 

(E1) and ATP. The in vitro assay results show that in the presence of Cue1∆TM, 

Ubc7 readily assembles unanchored Ub chains in a time dependent manner (Figure 

2A (Bagola et al., 2013)) but does not mount Ub on Doa10R. In contrast, Ubc6∆TM 

promotes the attachment of single Ub moieties to itself and to Doa10R, but barely to 

free Ub (Figure 2B). Most importantly, Doa10R is poly-ubiquitylated only when both 

Ubc6∆TM and Ubc7/Cue1∆TM are present in the reaction (Figure 2C and Figure 

S2B).  

Self-ubiquitylation is a common property of E3 RING finger domains, when incubated 

in in vitro ubiquitylation reactions with their cognate E2 enzymes (Lorick et al., 1999). 

Consequently, E3 self-ubiquitylation assays have served to characterize catalytic 

properties of E2 enzymes (Kim et al., 2007; Lorick et al., 1999). Consequently, we 

further employed the Doa10 RING domain to investigate the apparently distinct roles 

of Ubc6 and Ubc7 in the formation of poly-Ub chains. We find that Ubc6∆TM 

promotes self- and Doa10R mono-ubiquitylation of wild type Ub as well as UbR11, 
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UbR48, and UbR63 (Figure S2C). In contrast, further Doa10R poly-ubiquitylation by 

Ubc7 is abrogated when wild type Ub is replaced by UbR48 but not by UbR11 or UbR63. 

These results confirm the absolute requirement for lysine 48 for Ub chain elongation 

(Figure 2D). The results are consistent with a tandem mode of action where initial 

mono-Ub conjugation by Ubc6∆TM primes Doa10R for subsequent Ubc7 catalyzed 

K48-pUb chain formation  

In vitro studies of Anaphase Promoting Complex (APC) mutants suggest that 

individual E2 enzymes that function in discrete steps of the poly-ubiquitylation 

reaction are differently activated by the APC11 RING subunit of this E3 ligase 

complex (Brown et al., 2014). Three of the amino acids in the APC11 RING domain 

that define one E2 interaction site are also conserved in the Doa10 RING-domain 

(Figure 3A, red circles). We therefore tested, if these amino acids affect functional 

interactions of Ubc6 and Ubc7 with the Doa10 RING domain. To this end, bacterially 

expressed Doa10 RING variants, harboring amino acid substitutions in the respective 

positions, were purified. We then tested Ubc6 and Ubc7-mediated ubiquitylation in 

the presence of the various Doa10 constructs (Figures 3B and 3C). The substitution 

of isoleucine 41 with alanine (Doa10RA41) abolishes both the mono-ubiquitylation by 

Ubc6 and the formation of free poly-Ub chains by Ubc7, while the replacement of 

arginine 43 with alanine (Doa10RA43) primarily affects the Ubc7 activity (Figures 3B 

and 3C). In contrast, alanine at position 73 (Doa10RA73) selectively inhibits Ubc6 

activity, while the synthesis of unanchored Ub chains by Ubc7 is barely affected 

(Figures 3B and 3C). Poly-ubiquitylation of the three Doa10R variants is 

substantially decreased in the presence of both E2 enzymes, most likely because 

each mutant limits at least one E2 (Figure 3D). Thus, in agreement with their distinct 

roles in the in vitro ubiquitylation reaction, both Ubc6 and Ubc7 functionally interact 
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through the same binding interface with Doa10R, albeit in a different fashion. Circular 

dichroism spectral analysis of the Doa10 mutants did not detect any structural 

perturbations (Figure S3) thus excluding the possibility that Doa10 structural 

perturbation, rather than disruption of specific amino acid interactions, affected E2 

activities. Of note, in vitro auto-ubiquitylation of Ubc6 is does not require stimulation 

by Doa10R. Similar E3-independent ubiquitylation reactions were also reported for 

other E2 enzymes and thus appear to represent a common phenomenon (David et 

al., 2010).  

Ubc7 forms K48-pUb chains on primary Ub moieties attached by Ubc6 

To ascertain that initial attachment of Ub by Ubc6 triggers subsequent poly-

ubiquitylation by Ubc7, we reconstituted the distinct E2 reactions in tandem. 

Accordingly, Doa10R was incubated with E1, ATP/Mg2+, Ubc6∆TM and either UbR48 

or UbR63, after which Ubc6∆TM was removed and Ubc7/Cue1∆TM and excess of wild 

type Ub were added. As shown in Figure 4A, chain extension by Ubc7 occurs only 

on Doa10R that is initially conjugated to UbR63 but to UbR48. Ubc7 by itself is capable 

of synthesizing unanchored Ub chains under all tested conditions, demonstrating that 

it is catalytically active in the assays (Figure S4A). Next, we wanted to confirm that 

Ubc7 directly synthesizes Ub chains on Ub moieties that are conjugated to a 

substrate. To this end, we purified Doa10R, which was mono-ubiquitylated in vitro by 

Ubc6 (Doa10R-Ub), and incubated it with Ubc7/Cue1∆TM and UbR48. The 

employment of UbR48, allows only a single Ub to be ligated to Doa10R-Ub resulting in 

the formation of a Doa10R-di-Ub (Doa10R-Ub2) product. Indeed, significant amounts 

of Doa10R-Ub are readily converted to a di-ubiquitylated form in an ATP-dependent 

manner, whereas prolonged incubation with Ubc6 does not increase the portion of 
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Doa10R-Ub2 (Figure 4B). Mass spectrometry analysis of the Doa10R-Ub2 adduct 

confirmed that the only Doa10R-Ub2, generated by Ubc7/Cue1∆TM, contains lysine 

48-linked Ub, as previously reported (Bagola et al., 2013) (Figures 4C and S4B). 

Consistently, neither K63- nor K11- linked Ub-Ub adducts are detected in the MS-

analyzed Doa10R-Ub2 samples. Doa10R-Ub2 in reactions without ATP or without 

Ubc7/Cue1∆TM most likely represent double-mono-ubiquitylated Doa10R. Indeed, 

no Ub-Ub adducts were detected in these Doa10R-Ub2 species. We thus confirm that 

Ubc7 extends the initial Ubc6-conjugated Ub by forming sequential Ub-K48 linkages. 

Notably, the cytoplasmic domain of UBE2J2, a human homologue of Ubc6, also 

promotes mono-ubiquitylation of Doa10, demonstrating that the catalytic properties of 

these enzymes are highly conserved in evolution (Figure S5).  

Next, we sought to verify the tandem ubiquitylation mechanism by Ubc6 and Ubc7 in 

intact yeast cells. To this end, we adopted an approach previously employed to study 

the role of mono-Ub in vesicular trafficking (Haglund et al., 2003; Ramanathan et al., 

2013). We reasoned that if mono-ubiquitylation by Ubc6 creates the poly-Ub site for 

Ubc7, then fusing Ub provides an intrinsic primary Ub site and thus facilitate 

substrate poly-ubiquitylation in the absence of Ubc6. Consequently, we expressed a 

chimeric protein between of UbV76 and the amino-terminus of catalytically inactive 

Ubc6S87 (UbV76-Ubc6S87). The mutation in the carboxy-terminal di-glycine motif of Ub 

was designed to prevent internal cleavage of the fusion protein by Ub hydrolases 

(Butt et al., 1988; Johnson et al., 1992). Since the enzymatic activity of Ubc6 is 

required for Doa10-mediated ubiquitylation, the active site Ubc6S87, is a stable protein 

(Figure S4C and (Swanson et al., 2001; Walter et al., 2001)). As anticipated, the Ub-

E2 fusion protein, UbV76-Ubc6S87, is rapidly degraded in wild type and in ubc6∆ cells 

but not in Ubc7∆ or Doa10∆ cells (Figures 4D and S4D). This confirms that Doa10-
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mediated poly-ubiquitylation by Ubc7 merely requires a primary Ub acceptor that is 

inherently provided in UbV76-Ubc6S87. The fact that a the hybrid protein UbR48,V76-

Ubc6S87 is not degraded, once again demonstrates the requirement for of lysine 48 of 

Ub as an internal acceptor site in Ub  for Ubc7-mediated poly-ubiquitylation (Figures 

4E and S4E). Altogether, these in vivo findings indicate that the attachment of Ub to 

an otherwise non-degradable Doa10 substrate is essential and sufficient for poly-

ubiquitylation by Ubc7 and subsequent proteasomal degradation.  

Ubc6 targets amino acids other than lysines as acceptor sites for Ub conjugation  

Results from reconstitution experiments in cell lysates demonstrate that the human 

orthologue of Ubc6, UBE2J2, is capable of attaching Ub to the ε-amino groups of 

lysine residues via an isopeptide bond as well as to hydroxyl groups of serines and 

threonines via a pH-sensitive oxy-ester bond (Wang et al., 2009). To test whether 

Ubc6 similarly forms Ub-ester bonds, we examined the susceptibility of Ubc6 

conjugates to high pH treatment. We observe a substantial reduction of mono-

ubiquitylated Ubc6∆TM, when NaOH is added after completion of the in vitro 

reactions (Figure 5A, compare lanes 5 and 6 and lanes 7 and 8). Analysis of the 

reaction products by mass spectrometry confirms the presence of a serine-Ub ester 

by a peptide species with a molecular mass corresponding to two penultimate di-

glycine residues on serine 196 of Ubc6∆TM (Figures 5B and 5C). Furthermore, 

substituting serine 196 with alanine substantially decreases the amount of auto-

ubiquitylated Ubc6∆TM, both in vitro (Figure 5A, compare lanes 3 and 4) and in vivo 

(Figure 5D). In agreement with our in vitro data (Figures 3C and 5A), the in vivo 

auto-ubiquitylation of Ubc6 is detectable in cells devoid of Doa10, indicating that the 

E3 enzyme is not obligatory for the stimulation of Ubc6 activity. Together, these 
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results demonstrate that Ubc6 can conjugate Ub to lysine as well as to serine and 

possibly threonine residues.  

We further investigated, whether Ubc6 shows a bias towards lysine or 

serine/threonine ubiquitylation sites. To this end we conducted in vitro self-

ubiquitylation assays where we measured the kinetics of pH-sensitive and pH-

insensitive mono-Ub formation on Ubc6. The results presented in Figure S6 confirm 

the accumulation of both NaOH-sensitive and -insensitive Ub-Ubc6 conjugates at 

short time points, indicating that Ubc6 does not display an apparent preference for 

the modification of lysines or serine/threonine acceptor sites. However, Ubc6 

appears to be highly promiscuous in target site selection and therefore we observe 

differences in Ub conjugation kinetics at later time points. This indicates distinct 

accessibility of individual Ub acceptor sites or differences in the stability of the oxy-

ester and isopeptide bonds in the assay (Figure S6). Concordantly, the rate of 

degradation of Ubc6A196 in yeast is similar to that of the wild type protein and its 

expression does not affect the degradation of other Doa10 substrates (Figures S6B 

and S6C). Apparently, serine 196 is not a crucial or a favorable poly- ubiquitylation 

site in vivo. Obviously, it is also not required for Ubc6 activity.  

The tail-anchored protein Sbh2 (Figures 6A) becomes unstable in cells lacking its 

binding partner Ssh1 (Habeck et al., 2015). Turnover of Sbh2 under these conditions 

strongly depends on Doa10 and Ubc7 activities, whereas the disruption of UBC6 only 

moderately affects proteolysis (Figures 6B and S7A; (Habeck et al., 2015)). This 

implies that a large proportion of Sbh2 is degraded independently of Ubc6. In 

contrast, the turnover of an Sbh2 variant, Sbh2∆4K, that lacks four adjacent lysine 

residues in its cytosolic domain (Figure 6A, red dots), strongly relies on Ubc6 

function (Figures 6C and S7A). Intriguingly, a protein composed of un-cleavable Ub, 
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fused to the amino-terminus of Sbh2∆4K (UbV76-Sbh2∆4K), is degraded in ubc6∆ 

cells, indicating that the amino-terminal Ub bypasses the requirement for Ubc6 

(Figures 6D and S7B). These findings further support a critical role of Ubc6-

mediated priming for efficient ubiquitylation of Doa10 substrate proteins. We also find 

a good correlation between the turnover of FLAG-Sbh2 and FLAG-Sbh2∆4K and 

their ubiquitylation levels (Figures 6E and S7C): FLAG-Sbh2 is ubiquitylated to a 

comparable extent in wild type and ubc6∆ cells, while FLAG-Sbh2∆4K ubiquitylation 

is significantly reduced in ubc6∆ cells. Importantly, ubiquitylation of FLAG-Sbh2∆4K 

is sensitive while that of FLAG-Sbh2 is resistant to high pH treatment (Figure 6F, 

compare lanes 2 and 3 with lanes 5 and 6, Figure S7D). These in vivo observations 

support our hypothesis that, when appropriate lysine residues are available, Ubc7 

can directly poly-ubiquitylate selected substrates. On the other hand, Ubc6 is less 

stringent in selecting suitable Ub conjugation sites and readily attaches Ub to amino 

acids other than lysines. This unique property of Ubc6 turns critical for the poly-

ubiquitylation and subsequent proteasomal degradation of proteins such as 

Sbh2∆4K, where lysine side chains are not readily available.  

Discussion 

In this study we demonstrate that efficient ubiquitylation and subsequent proteasomal 

degradation of Doa10 client proteins requires the successive activity of two highly 

specialized Ub conjugating enzymes (Figure 7). In the priming step, Ubc6 

conjugates low molecular weight Ub moieties to Doa10 substrates, after which Ubc7 

elongates the Ub-primer to form K48-pUb chains. These conclusions are based on 

the following observations: (a) In yeast cells, Doa10 substrates require both Ubc6 

and Ubc7 for efficient poly-ubiquitylation and degradation (Figure 1). (b) Both in vivo 
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and in vitro protein ubiquitylation assays indicate that high molecular weight poly-Ub-

substrate conjugates only form in the presence of both E2s. Ubc6 alone forms low 

molecular weight Ub-protein conjugates whereas in the absence of Ubc6, Ubc7 

rarely assembles Ub conjugates on Doa10 substrates (Figures 1 and 2). (c) The 

reconstitution of partial Ubc6 and Ubc7 ubiquitylation reactions in tandem and the 

use of Ub-lysine mutants, both in vivo and in vitro, indicate that Ubc7 extends the 

primary Ubc6-conjugated by forming lysine-48 linked poly-Ub chains (Figure 1 and 

Figure 4). (d) The tandem poly-ubiquitylation mechanism is confirmed in vivo by 

demonstrating that Ubc6 priming is not required for a hybrid Ub-Doa10 substrate that 

is efficiently poly-ubiquitylated by Ubc7 alone (Figures 4 and 6). We further show 

that for efficient poly-ubiquitylation, both E2 enzymes must functionally interact with 

the Doa10 RING domain (Figure 3). Poly-ubiquitylation processes involving the 

consecutive activity of distinct E2 enzymes were previously postulated from in vitro 

reconstitution studies on the APC and SCFβTrCP2 UB ligase complexes, on the auto-

ubiquitylation of the RING-finger ligase BRCA1, as well as on the function of TRIM21 

at the immune system (Christensen et al., 2007; Fletcher et al., 2015; Rodrigo-Brenni 

and Morgan, 2007; Wu et al., 2010). Still, to our knowledge this study is the first to 

show the biological relevance of such tandem ubiquitylation by demonstrating its 

requirement for the sequential activity of Ubc6 and Ubc7 during processing of Doa10 

PQC client proteins in yeast cells.  

In contrast to substrates of regulated protein turnover, polypeptides subjected to 

PQC exhibit a large variety in sequence composition and structural properties (Ravid 

and Hochstrasser, 2008). Accordingly, tandem ubiquitylation mechanisms may have 

evolved to facilitate Ub conjugation in highly diverse protein landscapes (Mattiroli and 

Sixma, 2014). For example, yeast Ubc6 is required for efficient degradation of Doa10 
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substrates (Chen et al., 1993). However, this enzyme, by itself, is unable to generate 

poly-Ub chains for the recognition by 26S proteasomes (Xu et al., 2009). 

Consequently, its detailed role in proteasomal degradation remained enigmatic. We 

now find that Ubc6 conjugates single Ub moieties to client proteins that then serve to 

initiate poly-ubiquitylation by Ubc7. The formation of non-canonical Ub conjugates by 

Ubc6 facilitates the establishment of multiple mono-Ub sites, which in turn increases 

the likelihood of productive poly-ubiquitylation. This becomes evident by the large 

proportion of Ubc6-generated primary Ub conjugates that are sensitive to high pH 

and thus represent ester bonds with hydroxyl group-containing amino acid side 

chains (Figure 5). Indeed, we detect serine-Ub conjugated species in mass 

spectrometric analysis. This unique ability of Ubc6 to target non-canonical Ub 

acceptor sites prompts the degradation of a substrate that does not harbor 

accessible lysine residues (Sbh2∆4K; Figure 6). The mammalian Ubc6 orthologue 

UBE2J2 can also prime proteins for Ubc7-mediated poly-ubiquitylation (Figure S5) 

and was shown in a reconstituted system to attach Ub to amino acids other than 

lysines (Wang et al., 2009). Intriguingly, ubiquitylation of the non-secreted 

immunoglobulin light chain NS-1, a natural ERAD substrate of the Hrd1 ligase in 

mammals, occurs on lysine as well as serine and threonine residues, although the 

E2(s) involved in this process are not known (Shimizu et al., 2010). Moreover, 

degradation of MHC class I molecules via Hrd1 and UBE2J1, an additional 

mammalian Ubc6 homologue, and turnover of T-cell Antigen Receptor α-Chain 

involves the ubiquitylation of non-lysine residues within the substrate (Burr et al., 

2013; Yu and Kopito, 1999). Finally, recent studies of the degradation of the yeast E3 

ligase Asi2 by the Doa10 pathway revealed NaOH-sensitive ubiquitylation of a lysine-

less version of the protein (Boban et al., 2015). These findings support the notion that 
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the modification of hydroxylated amino acids with Ub is a common event during 

ERAD and possibly also other degradative processes. 

Both, the flexibility in Ub conjugation sites selection and the inability to form Ub 

chains, may be attributed to the unique properties of the active site domains of Ubc6 

and its mammalian orthologues (Lester et al., 2000). The evolutionary conserved 

features of these proteins most likely reflects an important function in PQC systems 

that has possibly evolved to salvage degradation of polypeptides containing few or 

no accessible lysine residues and that therefore cannot be efficiently processed by 

canonical E2 enzymes.  

In contrast to Ubc6, Ubc7 is extremely proficient in forming lysine 48-linked Ub 

chains (Bagola et al., 2013) but is less capable to attach Ub to other proteins. The 

activity of Ubc7 is largely governed by binding to its partner protein Cue1, probably to 

prevent uncontrolled ubiquitylation and substrate degradation (Bagola et al., 2013; 

Bazirgan and Hampton, 2008; Biederer et al., 1997; Kostova et al., 2009; Metzger et 

al., 2013; Ravid and Hochstrasser, 2007). Both the requirement for preceding Ubc6-

mediated priming in the Doa10 ligase pathway and the unique E2 binding sites on 

the E3 RING finger domain constitute additional regulatory elements for the activity of 

Ubc7. This elaborate mechanism may prevent erroneous poly-ubiquitylation 

reactions by other E2 enzymes such as Mms2/Ubc13 that mounts Ub-chains linked 

through lysines other than K48 on mono-ubiquitylated proteins (Hoege et al., 2002). 

Remarkably, Ubc7 is capable of directly poly-ubiquitylating client proteins of the yeast 

Hrd1 Ub ligase (Bays et al., 2001; Hirsch et al., 2009). In this case, access of Ubc7 to 

appropriate conjugation sites may be facilitated by the partial unfolding of Hrd1 

substrates prior to their extraction from the endoplasmic reticulum. Furthermore, 

Ubc7 is activated differently by the RING domains of Hrd1 and Doa10 suggesting a 
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particular alignment of Ubc7 towards the Hrd1 ligase, which in turn may promote 

direct transfer of Ub to acceptor sites within the substrate (Cohen et al., 2015).  

Recent studies indicate that the functional engagement of multiple E2 enzymes with 

a single E3 ligase is not restricted to protein quality control (Christensen et al., 2007; 

Fletcher et al., 2015; Rodrigo-Brenni and Morgan, 2007; Wu et al., 2010). Obviously, 

all Ub conjugating enzymes display unique properties regarding their preferences to 

interact with individual Ub ligases and their capability to catalyze substrate-Ub or 

certain types of Ub-Ub linkages. In addition, some E2s are exclusively found at 

destined cellular locations. Our study now suggests that the subsequent activity of 

specialized conjugating enzymes in certain poly-ubiquitylation reactions most likely 

represents a functional adaptation to ensure the availability of poly-Ub sites and 

thereby contributes to the flexibility of the Ub system. 

Experimental Procedures 

Antibodies. 

Monoclonal antibodies against Ub (P4D1, sc-8017 Santa Cruz Biotechnology, 

dilution 1: 1,000), FLAG (F3169 Sigma, dilution 1: 1,000) and HA (H9658, Sigma-

Aldrich, dilution 1: 5,000) were commercially available. Polyclonal antibodies against 

Doa10 (1:30,000), Ubc6 (in vitro: 1:10;000; in vivo: 1: 2,000), Sec61 (1: 5,000), Ubc7 

(1: 10,000) and Sbh2 (1: 1,000) were described (Bagola et al., 2013; Finke et al., 

1996; Gauss et al., 2006; Neuber et al., 2005; Walter et al., 2001). A poly-clonal 

rabbit anti-Myc antibody was purchased from Cell Signaling Technology (71D10). 

Horseradish peroxidase-coupled secondary antibodies were diluted 1:10,000 (Sigma-

Aldrich, A9044 (anti-mouse), A0545 (anti-rabbit), P8651 (Protein A-Peroxidase)) and 
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used for enhanced chemiluminescence detection with a LI-COR Odyssey system. 

Fluorescently labeled secondary antibodies (IRDye®800CW anti-rabbit, LI-COR) 

were diluted 1: 20,000 and visualized with a LI-COR Odyssey system.  

Yeast strains and plasmids. 

All yeast strains were haploid decedents of DF5 (genotype: MATa/alpha trp1-

1(am)/trp1-1(am) his3-∆200/his3-∆200 ura3-52/ura3-52 lys2-801/lys2-801 leu2-3,-

112/ leu2-3,-112) that were generated following standard protocols for transformation 

or crossing. They are listed in Table S1. Plasmids listed in Table S2 were generated 

by amplifying fragments of yeast genomic DNA by polymerase chain reaction (PCR) 

using PfuUltra (Stratagene) or Expand (Sigma-Aldrich) polymerase with appropriate 

oligonucleotides and transferring them into the given vectors by cloning via restriction 

sites or by the use of the Transfer PCR technique (Erijman et al., 2014). Constructs 

containing point mutations were generated using the QuikChange site directed 

mutagenesis kit (Aligent Technologies) following the manufacturer’s instructions. The 

identity of all plasmids was verified by sequencing.  

Preparation of recombinant proteins. 

GST fusion proteins were expressed and purified following a recently published 

protocol (Bagola et al., 2013). Doa10R variants were further purified on a Superdex 

75 size exclusion column (GE Healthcare) in a 20 mM HEPES buffer (pH 7.5). 

Human Uba1 (Ub activating enzyme; E1) and FLAG-Ub were obtained as described 

elsewhere (Berndsen et al., 2013; Berndsen and Wolberger, 2011). For purification of 

His-tagged proteins E.coli M15 cells were transformed with the appropriate plasmids 

and cultivated in LB-media at 37 °C to an optical density of 0.8. Protein expression 

was induced by addition of 0.5 mM IPTG for 4 hours. Cells were pelleted and lyzed in 
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a French Press system (AVESTIN) in buffer containing 50 mM NaHPO4 (pH 7.5), 300 

mM NaCl, 15 mM imidazole and protease inhibitor (cOmplete™, EDTA-free, Roche). 

TALON® Resin (Clontech) was added and the samples were incubated at 4 °C for 

2.5 hours to isolate His-tagged proteins. For the elution of the proteins imidazole was 

added to a concentration of 300 mM. Proteins were concentrated and stored at -80 

°C.  

In vitro ubiquitylation assay. 

A Coomassie-stained gel showing the purified proteins for the in vitro ubiquitylation 

assay is given in Supplementary Figure S1A. Equal amounts (3.5 µM) of Ubc6∆TM 

variants, Ubc7/Cue1∆TM, Doa10R variants were incubated with 7.5 µM Ub and 150 

nM Uba1 (E1) in a buffer containing 50 mM HEPES (pH 7.5), 2.5 mM Magnesium 

acetate and 0.5 mM Dithiothreitol (DTT). The reaction was started by the addition of 

ATP to a concentration of 4 mM and incubated for 20 min at 30 °C. Reactions were 

stopped by adding sample buffer containing DTT and analyzed by SDS-PAGE and 

immunoblotting. Aliquots representing time point 0 were removed before the addition 

of ATP. UbR11, UbR48 and UbR63 were purchased from Boston Biochem. UbC20 was 

labeled with Alexa488 as described recently (Bagola et al., 2013).  

Immunoprecipitation of Doa10R. 

Doa10R was isolated from in vitro ubiquitylation reactions by adding 15 volumes IP 

buffer (50 mM Tris (pH 7.5), 150 mM NaCl, 5 mM EDTA, 1 % Triton, 0.1 % SDS) and 

a mixture of anti-Doa10 antibody and protein A Sepharose (GE Healthcare). After 

incubation at 4 °C overnight the resin was washed, proteins were eluted with DTT 

containing sample buffer and analyzed by SDS-PAGE and immunoblotting. 
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Purification of mono-ubiquitylated Doa10R. 

200 µM Doa10R was incubated with 200 µM Ubc6∆TM-His6, 600 µM Ub, 0.5 µM E1 

and 10 mM ATP in a final volume of 2.5 mL reaction buffer (50 mM HEPES (pH 7.5), 

6.5 mM Magnesium acetate and 0.5 mM DTT) for 16 h at 30 °C. The reaction was 

diluted to 10 ml with buffer containing 50 mM NaHPO4 (pH 7.5), 300 mM NaCl, 15 

mM imidazole and incubated with 500 µL TALON® Resin (Clontech) for 1 h at room 

temperature to remove Ubc6∆TM-His6. Doa10R-Ub was then purified from the 

supernatant by size exclusion chromatography on a Superdex 75 column (GE 

Healthcare). Of note, this Doa10R-Ub preparation still contained minor amounts of 

Ubc6∆TM-His6 and Doa10R. Residual Ubc6∆TM-His6 in the sample was inactivated 

by the addition of 20 mM N-ethylmaleimide (NEM) and incubation for 1 h at room 

temperature. NEM was then removed by dialysis against 20 mM HEPES buffer. In 

vitro ubiquitylation experiments with Doa10R-Ub were performed as described 

above. 

Sample preparation for mass spectrometry 

Proteins separated by SDS-PAGE were processed for mass spectrometric analysis 

as described (Shevchenko et al., 2006). Briefly, gel pieces were washed with 50 % 

ethanol in 50 mM ammonium bicarbonate (ABC) and 50 mM ABC in an alternating 

fashion. Disulfide bonds were reduced by the addition of 2.5 pmol Tris-(2-

carboxyethyl) phosphine (TCEP) and alkylated by adding 12.5 pmol chloroacetamide 

both for 30 min at room temperature followed by a 10 h digest with 5 µg sequencing 

grade Trypsin (Promega). Peptides were extracted with extraction buffer (80 % 

acetonitrile, 20 mM acetic acid) and subsequently dried in a Speed-Vac (Savant). 

Purification on C18 stage-tips (Rappsilber et al., 2007) was done in 20 mM acetic 
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acid to preserve Ub-ester bonds. The eluted peptides were dried in a Speed-Vac and 

dissolved in 3 % acetonitrile, 20 mM acetic acid.  

Liquid chromatography tandem mass spectroscopy (LC-MS/MS) 

Samples were measured with an LTQ orbitrap VELOS mass spectrometer (Thermo) 

connected to a Proxeon nano-LC system (Thermo). 5 µl of the sample were loaded 

on a nano-LC column (0.074 mm x 250 mm, 3 µm Reprosil C18, Dr Maisch GmbH) 

and separated by a 155 min gradient (4 to 76 % acetonitrile) a flow rate of 0.25 

µl/min, ionized on a proxeon ion source and sprayed directly into the mass 

spectrometer. MS acquisition was done at a resolution of 60’000 with a scan range 

from 200 to 1700 m/z in FTMS mode selecting the top 20 peaks for CID 

fragmentation. MS/MS scans were measured in IT mode with an isolation width of 2 

m/z and a normalized collision energy of 40 eV. Dynamic exclusion was set to 60 s. 

For data analysis the MaxQuant software package version 1.5.2.8 (Cox and Mann, 

2008) was used with Carbamidomethylation set as a fixed and oxidized methionine 

and acetylated amino-termini as variable modifications. A monoisotopic mass-shift of 

114.042927 Da corresponding to the addition of a double-glycine (tryptic carboxy-

terminal fragment of Ub) was set as a variable modification on lysine, serine, 

threonine and cysteine residues. An FDR of 0.01 was applied for peptides and 

proteins and the search was performed using the S. cerevisiae (S288c) Uniprot 

database (August 2014). 

Ubiquitin chain quantification 

The proteins were isolated from gels and digested into peptides as described above. 

Purified material was supplemented with a mixture of heavy-labeled reference 

peptides (500 fmol each; Table S3) for the quantification of the different Ub linkage 
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types. The samples were loaded onto a 15 cm reverse phase column (3 µm Reprosil 

C18-beads, Dr. Maisch GmbH, packed in house) and eluted with a 1 h 4% to 76% 

Acetonitrile gradient. The separated peptides were ionized and directly infused into a 

Q-TRAP 5500 (ABSciex) mass-spectrometer and the linkage specific peptides were 

monitored as described elsewhere (Mirzaei et al., 2010). Peak areas were integrated 

using the MultiQuant 2.0 software package (ABSciex). For further analysis and 

statistical tests the R-Software package (www.r-project.org) was used.  

Cycloheximide decay assay. 

Yeast cells in log-phase were re-suspended in SD-media and cycloheximide (Sigma; 

final concentration 100 µg ml-1) was added. Aliquots were removed at indicated time 

points and NaN3 was added to a concentration of 10 mM. Total cell lysates were 

prepared from the samples and analyzed by SDS-PAGE and immunoblotting. For 

quantification of protein turnover, immunoblots were incubated with fluorescently 

labeled secondary antibodies and analyzed on a LI-COR Odyssey system. 

In vivo ubiquitylation of Vma12-DegAB and FLAG-Sbh2. 

Ubiquitylation of Vma12-DegAB in cells was determined as previously described 

(Furth et al., 2011). FLAG-Sbh2 variants were isolated from yeast cells 

overexpressing Myc-tagged Ub. Cells in exponential growth phase were harvested 

and lysed with glass beads in buffer containing 6 M urea, 50 mM Tris pH 7.5, 150 

mM NaCl, 1 % SDS, 1 mM PMSF and 20 mM NEM. The lysate was diluted with 9 

volumes of IP dilution buffer (55 mM Tris pH 7.5, 165 mM NaCl, 5.5 mM EDTA, 1.1 

% Triton, 1 mM PMSF and 20 mM NEM) and cleared from cell debris by 

centrifugation (20,000 x g, 10 min, 4 °C). 50 µL ANTI-FLAG®M2 Affinity Gel (Sigma-

Aldrich) was added and incubated overnight at 4 °C. After washing, the beads were 
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treated with SDS-PAGE sample buffer for 15 min at 42 °C. The supernatant was 

collected and 100 mM DTT and, where indicated, NaOH (final concentration 150 

mM) or water were added and heated for another 15 min at 65 °C. Samples were 

separated on SDS-PAGE and analyzed by immunoblotting. 
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Figure legends 

Figure 1. Distinct activities of Ubc6 and Ubc7 in the ubiquitylation of Doa10 

substrates. (A) Degradation of Vma12-DegAB was monitored in the given yeast 

strains by a cycloheximide decay assay and immunoblotting with anti-FLAG 

antibodies. An immunoblot using antibodies against Glucose-6-phosphate 

Dehydrogenase (G6PD) serves as loading control. wt – wild type. The topology of 

Vma12-DegAB is shown in a cartoon. C’ refers to the carboxy-terminus of the 

protein. (B-D) Vma12-DegAB (B) or Vma12-DegABDD (C and D) were isolated from 

lysates of the given yeast strains by FLAG affinity precipitation and analyzed by 

immunoblotting using anti-Ub and anti-FLAG antibodies. Where indicated the given 

Ub variants were overexpressed from plasmids. Arrowheads indicate the position of 

mono-ubiquitylated species. The numbers on the right refer to the migration of 

standard proteins of known molecular weight in kDa. 

Figure 2. In vitro ubiquitylation by Ubc6 and Ubc7. (A-C) Immunoblot analysis of 

in vitro ubiquitylation time course experiments containing Doa10R and 

Ubc7/Cue1∆TM (A), Doa10R and Ubc6∆TM (B) or Doa10R, Ubc6∆TM and 

Ubc7/Cue1∆TM (C). Ub blots depict overall Ub levels, containing free unanchored Ub 
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chains as well as conjugates to Doa10R and Ubc6∆TM. Cross-reacting signals of 

antibodies are indicated with asterisks. (D) In vitro ubiquitylation reactions of 

Doa10R, Ubc6∆TM and Ubc7/Cue1∆TM with different Ub variants (Ub, UbR48, UbR63 

and UbR11). A control (lane 1) was incubated with catalytically inactive Ubc6 

(Ubc6S87∆TM). Samples were analyzed by SDS-PAGE and immunoblotting with the 

indicated antibodies. wt – wild type. 

Figure 3. Mutations in Doa10R differently affect Ubc6 and Ubc7 activity. (A) 

Clustal Omega (Sievers et al., 2011) sequence alignment of the Doa10 RING domain 

with human and yeast APC11. Identical residues are highlighted in yellow. Residues 

mutated to alanine are marked with red dots. (B-D) In vitro ubiquitylation reactions 

containing Doa10R variants (wt Doa10R, Doa10RA41, Doa10RA43, Doa10RA73) with 

Ubc7/Cue1∆TM (B), Ubc6∆TM (C) or both E2 enzymes (D). The stimulation of Ubc7 

by Doa10R variants was determined by quantifying the formation of unanchored Ub 

chains and normalized to the activity of Ubc7 in absence of Doa10R (B, lower panel). 

Error bars represent standard deviation of three independent experiments. All 

Doa10R variants were analyzed by circular dichroism spectroscopy to ensure proper 

folding (Figure S3).  

Figure 4. Ubc7 attaches K48-pUb directly to mono-Ub on Doa10R. (A) Doa10R 

was incubated with UbR48 or UbR63 in the presence of Ubc6∆TM-His6 or Ubc6S87∆TM-

His6 as indicated. The Ubc6 variants were removed by TALON® resin and Ub with 

Ubc7/Cue1∆TM were added to the reaction. The samples were then analyzed by 

immunoblotting with the given antibodies. Unspecific signals due to cross-reacting 

antibodies are labeled with asterisks. Ub blots to determine Ubc7 activity are shown 

in Figure S4A. (B) Doa10R was incubated with Ubc6∆TM in presence of Ub and a 
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mono-ubiquitylated form Doa10R-Ub was purified. Subsequently, Doa10R-Ub was 

supplied with UbR48 and Ubc7/Cue1∆TM or Ubc6∆TM and the reaction products 

analyzed by immunoblotting with the given antibodies. Of note, purified Doa10R-Ub 

contained minor amounts of double mono-ubiquitylated Doa10R, unmodified Doa10R 

and inactivated Ubc6∆TM. (C) Di-ubiquitylated forms of Doa10R (Doa10R-Ub2) from 

(B) were isolated from SDS gels and the amount of lysine 48-linked Ub (UbK48) or 

total Ub in relation to standard peptides was determined by mass spectrometry. Lane 

numbering refers to the experiment in (B). Each probe was measured three times, 

with two transitions monitored for each peptide. The results were averaged and the 

standard deviation of mean is shown (see also Figure S4B). (D,E) Degradation of 

UbV76-Ubc6S87 (Ub-Ubc6S87) (D) or UbR48,V76-Ubc6S87 (UbR48-Ubc6S87) (E) was 

monitored by cycloheximide decay assays in the given yeast strains. Immunoblots 

with antibodies against glucose-6-phosphate dehydrogenase (G6PD) serve as 

loading controls. Quantification of immunoblot signals is shown in Figures S4D and 

S4E. The topology of un-cleavable Ub (UbV76) fused to Ubc6S87 is shown in a 

cartoon. C’ refers to the carboxy-terminus of the protein.  

Figure 5. Ubc6 targets amino acids containing hydroxyl groups. (A) In vitro 

ubiquitylation of Ubc6 variants (wt Ubc6∆TM, Ubc6A196∆TM) with fluorescently 

labeled ubiquitin. Where indicated, samples were treated with 100 mM NaOH to 

hydrolyze ester linkages (lane 4, 6, 8). Reactions lacking ATP serve as controls (lane 

1, 2). Samples were analyzed by immunoblotting or fluorescence scanning (Ub-

Alexa488). (B) Mass spectrometric analysis of the serine ubiquitylation site on 

Ubc6∆TM after incubation with Ub, E1 and ATP. Ubc6-Ub was isolated from 

Coomassie-stained gels and processed as described in the Methods section. The b- 

and y-fragmentation pattern of the tryptic peptide, spanning residues 194 to 206, 
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shows the formation of an ester bond between the serine side chain and the C-

terminus of ubiquitin. The ubiquitylated peptide was recorded at 949.99 m/z with a 

pep score of 254.72. Identified fragment ions are shown in the fragmentation legend. 

The modified serine 196 is included in both the b- and the y-series of fragment ions. 

(C) Schematic drawing of the chemical structure of the ubiquitin-ester bond to the 

serine side chain at position 196 of Ubc6. (D) Cell lysate was prepared from strains 

expressing either wt Ubc6 or Ubc6A196 and incubated with 150 mM NaOH, where 

indicated. Samples were probed for Ubc6 to detect mono-ubiquitylated species. 

Figure 6. Ubc6 conjugation sites are spatially flexible. (A) Sequence of Sbh2 

showing the position of lysine residues and the transmembrane domain. Lysine 

residues that were mutated to arginine residues (Sbh2∆4K) are marked with red dots. 

The topology of Sbh2 is presented in a cartoon. C’ refers to the carboxy-terminus of 

the protein. (B,C) Quantification of cycloheximide decay assays to monitor the 

turnover of Sbh2 (B) and Sbh2∆4K (C) in cells deleted for SSH1 (ssh1∆). The error 

bars represent standard deviation of 3 independent experiments. Representative 

immunoblots are shown in Figure S7A. (D) Degradation of FLAG-tagged Sbh2 or 

Sbh2Δ4K and their Ub fusions was monitored by cycloheximide decay assays in 

ubc6Δ yeast cells. Immunoblots with antibodies against G6PD serve as loading 

controls. Quantification of immunoblot signals is given in Figure S7B. The topology 

of un-cleavable Ub (UbV76) fused to Sbh2 is shown in a cartoon. C’ refers to the 

carboxy-terminus of the protein. (E) Immunoprecipitation of FLAG-Sbh2 and FLAG-

Sbh2∆4K from lysates derived of ∆ssh1 rpt4R yeast cells harboring deletions of the 

indicated genes. In all cells Myc-Ub was overexpressed. Immunoblots showing the 

input material are given in Figure S7C. (F) Immunoprecipitation of FLAG-Sbh2 and 

FLAG-Sbh2∆4K from ssh1∆ yeast cells overexpressing Myc-Ub. Samples were split 
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to two and, where indicated, NaOH was added to the sample buffer prior to loading 

on gels (lanes 4-6). Control precipitations from cell extracts that do not contain 

FLAG-tagged proteins are shown in lanes 1 and 4. Immunoblots showing the input 

material are given in Figure S7D.  

Figure 7. A model for the tandem activity of Ubc6 and Ubc7 at the Doa10 ligase. 

(A) In the initial step, Ubc6 attaches short Ub conjugates to lysine residues (K) but 

also to other amino acids like serine (S) or threonine (T) of Doa10 substrates 

(Priming). (B) These primary Ub molecules label polypeptides for subsequent 

conjugation of K48-pUb chains by Ubc7 (Elongation). (C) In some cases, when lysine 

residues are presented in an appropriate context, Ubc7 can directly add Ub to client 

molecules, which partly supersedes Ubc6 activity.  

Supplemental Figure legends 

Figure S1 related to Figure 1: (A) Vma12-DegAB was expressed from plasmids in 

rpt4R cells that were, where indicated, deleted for UBC7 or overexpressing UbR48. 

Vma12-DegAB was isolated by FLAG affinity precipitation from cells grown at 

permissive temperature and analyzed by immunoblotting using the given antibodies. 

Please note: Cells overexpressing UbR48 still contain residual amounts of wild type 

Ub, which facilitates the formation of oligo-Ub on substrates. Vma12-DegAB migrates 

slightly different on individual SDS-gel systems. (B) Vma12-DegAB was 

immunoprecipitated from given yeast strains and Ub-Ub linkages on the substrate 

were analyzed by mass spectrometry as described in “Experimental procedures”. 

The relative abundance of peptides originating from K11-, K48-, or K63-linked Ub in 

relation to the amount of labeled standard peptides is shown in bar graphs. Each 
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sample was measured three times, with two transitions monitored for each peptide. 

Mean values with the standard deviation of mean are given. A yeast strain containing 

no FLAG-tagged substrate served as loading control (ctrl). The amount of 

precipitated Vma12-DegAB is shown in an anti-FLAG immunoblot.  

Figure S2, related to Figure 2. (A) Representative gels showing the purified 

components for the in vitro ubiquitylation assay by Coomassie staining. Bands 

corresponding to E1 and UBE2J2∆TM are marked with an arrow. (B) 

Immunoprecipitation of Doa10R from ubiquitylation reactions containing FLAG-Ub 

and indicated components at time points 0 and 20 min. A control (lane 5) was 

incubated without Doa10 antibody. Precipitates were analyzed by SDS-PAGE and 

immunoblotting with specific antibodies for Doa10 and FLAG. (C) In vitro 

ubiquitylation reaction of Doa10R and Ubc6∆TM with different Ub variants (Ub, 

UbR48, UbR63 and UbR11). A control (lane 1) was incubated with catalytically inactive 

Ubc6 (Ubc6S87∆TM). Samples were analyzed by SDS-PAGE and immunoblotting 

using appropriate antibodies. wt – wild type. (B and C) Unspecific signals due to 

cross-reacting antibodies are labeled with asterisks.  

Figure S3, related to Figure 3. Circular dichroism spectrum of wild type (wt) 

Doa10R compared to spectra of the variants Doa10RA41, Doa10RA43 and Doa10RA73. 

Wavelength scans were performed at 20 °C (Roehm and Berg, 1997). 

Figure S4, related to Figure 4. (A) Immunoblots using anti Ub antibodies of the 

ubiquitylation reactions shown in Figure 4A. Left panel: reactions of the first 

incubation step and right panel: reactions of the second incubation step. Please note: 

Commercially available UbR48 and UbR63 already contained small amounts of di-Ub 
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(Bagola et al., 2013). Overall Ub conjugates catalyzed by Ubc7 are diminished when 

Doa10R was primed with UbR48 in the first reaction due to incorporation of residual 

UbR48 in poly-Ub chains. Additionally, Doa10R-Ub stimulates formation of 

unanchored Ub chains to higher extent as unmodified Doa10R, which matches 

previous observations (Buetow et al., 2015; Ranaweera and Yang, 2013). (B) 

Doa10R-Ub and Doa10R-Ub2 from reactions described in Figure 4B were isolated 

from Silver-stained gels as indicated in the left panel. These samples were analyzed 

by mass spectrometry for peptides representing defined Ub-Ub linkage types. 

Relative abundance of the K11, K48 and K63 Ub-Ub specific peptides to isotopically 

labeled standards are presented. The overall amount of Ub in relation to a standard 

is also given. Bar graphs represent the average of three measurements, with two 

transitions monitored for each peptide and error bars depicting the standard deviation 

of mean. (C) Cycloheximide decay assay showing turnover of Ubc6 and Ubc6S87. 

Immunoblots against G6PD serve as loading controls. (D,E) Quantification of 

cycloheximide decay assays presented in Figures 4D and 4E.  

Figure S5. In vitro ubiquitylation experiment of UBE2J2∆TM-HA3 with Doa10R, 

Ubc7/Cue1∆TM and fluorescently labeled Ub. Reactions were analyzed by SDS-

PAGE, immunoblotting and fluorescence scanning.  

Figure S6, related to Figure 5.  (A) In vitro mono-ubiquitylation of Ubc6. E1, Ub and 

ATP were pre-incubated for 30 min and Ubc6 was then added to the reaction. At the 

given time points aliquots were removed, samples were split and either 

supplemented with water or with 100 mM NaOH to hydrolyze oxy-ester bonds. 

Analysis of the reaction was done by immunoblotting. The quantification represents 

the relative amount of Ubc6-Ub in relation to the overall intensity of the Ubc6 signal. 
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The amount of Ub on hydroxylated amino acids was calculated by subtracting the 

intensity of NaOH-resistant Ubc6-Ub signals from total Ubc6-Ub. Error bars represent 

standard deviation of mean from three independent experiments. (B) Cycloheximide 

decay experiment to monitor turnover of Ubc6 variants (wt Ubc6∆TM, Ubc6S87∆TM, 

Ubc6A196∆TM). Experiments were performed in ubc6∆ strains, which were 

transformed with plasmids for the expression of the indicated Ubc6 variants. (C) 

Cycloheximide decay assay to monitor Sbh2 turnover in cells deleted for UBC6 and 

expressing the given Ubc6 variants (wt, Ubc6S87∆TM, Ubc6A196∆TM). (C,D) 

Immunoblots against Sec61 serve as loading controls 

Figure S7, related to Figure 6. (A) Representative immunoblots for cycloheximide 

decay assays to determine Sbh2 and Sbh2∆4K degradation in SSH1-deleted cells. 

Quantification of several of such experiments is shown in Figures 6B and 6C. (B) 

Quantification of cycloheximide decay assays presented in Figure 6D. (C) Blots 

showing input material from FLAG-Sbh2 immunoprecipitation experiment in Figure 

6E. (D) Input material of the FLAG-Sbh2 pull down experiment in Figure 6F. Lanes 1 

and 4 show extracts derived from cells that do not contain FLAG-tagged proteins. 

Table S1. Yeast strains used in this work 

Table S2. Plasmids used in this work 

Table S3. Sequence and Q1 and Q2 masses of peptides and the related isotopically 

labeled standards used to determine the relative amount of Ub-Ub linkage types by 

mass spectrometry. 
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Supplemental Tables 

 

Table S1 

Yeast strain Relevant genotype Reference 

YTX949 prc1-1 (Bagola et al., 2013) 

YTX996 ∆ubc6::HIS3, prc1-1 This study 

YTX112 ∆ssh1::HIS3 This study 

YTX113 ∆ssh1::HIS3, ∆ubc7::LEU2 This study 

YTX131 ∆ssh1::HIS3, ∆ubc6::LEU2 This study 

YAW032 ∆ssh1::HIS3, ∆doa10::kanMX6 This study 

YTX127 ∆ssh1::HIS3, ∆sbh2::TRP1 This study 

YTX126 ∆ssh1::HIS3, ∆sbh2::TRP1, ∆ubc7::LEU2 This study 

YAW065 ∆ssh1::HIS3, ∆sbh2::TRP1, ∆ubc6::HIS3 This study 

YAW067 ∆ssh1::HIS3, ∆sbh2::TRP1, ∆doa10::kanMX6 This study 

YBM83 rpt4R (Meusser et al., 2004) 

YBM84 rpt4R, ∆ubc7::LEU2 (Meusser et al., 2004) 

TRy171 ∆doa10:HIS3  (Swanson et al., 2001) 

TRy1027 ∆ubc6::HIS3  This study 

TRy1031 ∆ubc6::HIS3 ∆ubc7::LEU2 This study 

TRy1186 ∆ubc7::LEU2  This study 

TRy1206 his3-∆200::pRS303::HIS  This study 

YAW072 ∆ssh1::HIS3, rpt4R This study 

YAW076 ∆ssh1::HIS3, ∆ubc6::HIS3, rpt4R This study 

YAW077 ∆ssh1::HIS3, ∆ubc7::LEU2, rpt4R This study 

YAW074 ∆ssh1::HIS3, ∆doa10::kanMX6, rpt4R This study 
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Table S2 

Plasmid Plasmid 
backbone Protein encoded by insert  Reference 

Bacterial expression plasmids 

pTX249 pGEX-6p1 Ubc7 (2-165) (Bagola et al., 2013) 

pTX327 pGEX-6p1 Doa10R (2-125) (Bagola et al., 2013) 

pTX352 pQE60 Ubc6∆TM-His6 (1-230) This study 

pTX401 pQE60 Ubc6S87∆TM-His6 This study 

pTX410 pGEX-6p1 Cue1∆TM-His6 (24-203) (Bagola et al., 2013) 

pAW039 pGEX-6p1 Ubc6∆TM (2-230) This study 

pAW128 pGEX-6p1 Ubc6A196∆TM This study 

pAW133 pGEX-6p1 UBE2J2∆TM (1-235) This study 

pMD008 pGEX-6p1 Yeast UbC20 S20C (Bagola et al., 2013) 

pTR1543 pET14 FLAG-Ub (Cohen et al., 2015) 

pAW101 pGEX-6p1 Doa10RA41 This study 

pAW102 pGEX-6p1 Doa10RA43 This study 

pAW103 pGEX-6p1 Doa10RA73 This study 

pTX481 pET21d Uba1-His6 (Berndsen and Wolberger, 2011) 

Yeast expression plasmids 

pAW123 pRS416 Sbh2 This study 

pAW125 pRS416 Sbh2R15 R23 R25 R28 This study 

pTR1646 pRS414 FLAG-Sbh2 This study 

pAW135 pRS414 FLAG-Sbh2R15 R23 R25 R28 This study 

pAW027 pRS416 Ubc6 This study 

pAW041 pRS416 Ubc6S87 This study 

pAW130 pRS416 Ubc6A196 This study 

pAW047 pRS424 Myc-Ub under CUP-Promoter This study 

pTR990 pRS317 Ub under CUP-Promoter Mark Hochstrasser 

pTR1173 Yep96 UbR11 under CUP-Promoter (Bagola et al., 2013) 

pTR1171 Yep96 UbR48 under CUP-Promoter (Bagola et al., 2013) 

pTR913 pRS414 Vma12-FLAG-DegAB (Alfassy et al., 2013) 

pTR1114 pRS414 Vma12-FLAG-DegABDD (Alfassy et al., 2013) 

pTR608 YCplac33 Ubc6 (Chen et al., 1993)  

pTR1341 YCplac33 Ubc6S87  This study 

pTR1650 YCplac33 UbV76-Ubc6S87  This study 

pTR1681 YCplac33 UbR48,V76-Ubc6S87  This study 

pTR1688 pRS414 UbV76-FLAG-Sbh2 This study 

pTR1694 pRS414 UbV76-FLAG-Sbh2 R15 R23 R25 R28  This study 
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Table S3 

Ub-Ub linkage Sequence Q1 mass Q2 mass Isotope 
UbK11 TLTG[K-GG]TITLEVESSDTIDNVK 796.1 

793.4 
796.1 
793.4 

986.5 
978.5 
1115.5 
1107.5 

K8 
K0 
K8 
K0 

UbK48 LIFAG[K-GG]QLEDGR   490.9 
487.6 
490.9 
487.6 

622.8 
617.8 
357.2 
347.2  

R10 
R0 
R10 
R0 

UbK63 TLSDYNIQ[K-GG]ESTLHLVLR   752.1 
748.7 
752.1 
748.7 

1020.5 
1015.5 
1077.6 
1067.6 

R10 
R0 
R10 
R0 

Ub total  EGIPPDQQR  525.3 
520.3 
525.3 
520.3 

750.4 
740.4  
653.3 
643.3 

R10 
R0 
R10 
R0 

References for Supplemental Tables 

Alfassy, O.S., Cohen, I., Reiss, Y., Tirosh, B., and Ravid, T. (2013). Placing a 
disrupted degradation motif at the C terminus of proteasome substrates attenuates 
degradation without impairing ubiquitylation. J Biol Chem 288, 12645-12653. 

Bagola, K., von Delbruck, M., Dittmar, G., Scheffner, M., Ziv, I., Glickman, M.H., 
Ciechanover, A., and Sommer, T. (2013). Ubiquitin binding by a CUE domain 
regulates ubiquitin chain formation by ERAD E3 ligases. Mol Cell 50, 528-539. 

Berndsen, C.E., and Wolberger, C. (2011). A spectrophotometric assay for 
conjugation of ubiquitin and ubiquitin-like proteins. Anal Biochem 418, 102-110. 

Chen, P., Johnson, P., Sommer, T., Jentsch, S., and Hochstrasser, M. (1993). 
Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the 
yeast MAT alpha 2 repressor. Cell 74, 357-369. 

Cohen, I., Wiener, R., Reiss, Y., and Ravid, T. (2015). Distinct activation of an E2 
ubiquitin-conjugating enzyme by its cognate E3 ligases. Proc Natl Acad Sci U S A 
112, E625-632. 

Meusser, B., and Sommer, T. (2004). Vpu-mediated degradation of CD4 
reconstituted in yeast reveals mechanistic differences to cellular ER-associated 
protein degradation. Mol Cell. 14, 247-258. 

Swanson, R., Locher, M., and Hochstrasser, M. (2001). A conserved ubiquitin ligase 
of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated 
and Matalpha2 repressor degradation. Genes Dev 15, 2660-2674. 
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