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Abstract 

Microglial cells are the pathologic sensor of the brain, and any pathologic event triggers 

microglial activation, which involves migration of these cells to a lesion site. 

Employing different migration assays, we show that ligands for toll-like receptor (TLR) 

2 stimulate random motility, while TLR7 ligands are chemoattractants. The subtype 

specificity of the TLR ligands was verified by using different TLR-deficient (TLRKO) 

mause lines. PI3K and Rac inhibition impairs both TLR2- and TLR7-stimulated 

microglial migration. In contrast, Akt phosphorylation is only required for the TLR2-, 

but not for the TLR7-stimulated pathway. rnterestingly, P2Y12 receptor signaling is 

involved in the TLR2 activation-induced microglial migration but not TLR7. 

Furthermore, TLR7 mRNA exr,ression is down-regulated by TLR2 and TLR7 activation. 

We conclude that TLRs control the migratory behavior of microglia in a distinct 
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lntroduction 

Microglia are considered as the immune cells of the central nervaus system (CNS) and 

are activated in any type of pathologic context (David and Kroner, 2011; Hanisch and 

Kettenmann, 2007). Various mediators including cytokines, chemokines, and a so 

agonists of toll-like receptors (TLR) trigger microglial actival!ion (Farber and 

Kettenmann, 2006; Rosenherger et al., 2014). Microglia express all mown members of 

the TLR family identified to date (Hanke and Kielian, 2011). They constitutively 

express TLR2 (Kielian et al., 2002; Laflamme et al., 2003; Olson and Miller, 2004; 

Rasley et al., 2002; Zekki et al., 2002) and are capable of recognizing numerous TLR2 

ligands, including lipoproteins anä the synthetic lipoprotein analogue Pam3CSK4 

(synthetic triacylated lipoprotein), as well as Pam2CSK4 (synthetic diacylated 

lipoprotein) and TA (lipoteichoic acid) (Chien et al., 2005; Ebert et al., 2005; Jung et 

al., 2005; Kielia et al., 2002; Olson and Miller, 2004; Omueti et al., 2005). Wehave 

recently found that TLR2 plays an important role for mediating interaction between 

microglia and glioma cells. Versican is an endogenaus ligand released from glioma, 

which activates TLR2 on microglia and converts these cells into a pro-tumorigenic 

phenotype (Shin et al., 2009). Recent studies demonstrated that TLR7, which recognizes 

viral single-stranded RNA, can play an important role in both activation of innate 
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immune responses and pathogenesis of autoimmune diseases (Butchi et al., 2010; 

Desire et al., 2005; Lewis et al., 2008; Town et al., 2009). These immune responses are 

not only elicited by GU-rich viral single-stranded RNA but also by synthetic chemieals 

that include imidazoquinoline compounds such as imiquimod and resiquim0d as well as 

guanosine analogues such as loxoribine (Diebold et al., 2004; Heilet al., 2004; Hemmi 

et al., 2002). TLR signaling does not only lead to the release of neurotoxic molecules 

such as inflammatory cytok:ines and reactive oxygen species (Boje and Arora, 1992; 

Lehnardt et al., 2008), but also influences other cellular functions such as proliferation 

and cell migration. In pancreatic cells, activation of TLR7 has been reported to inhibit 

proliferation and migration (Zou et al., 2015), while TLR2 agonists stimulate human 

neutrophil migrationvia actwation of mitogen-activated protein kinases (Aomatsu et al., 

2008). In microglia, motility is controlled by a variety of substances such as ATP 

(Davalos et al., 2005), which is also a chemoattractant for microglial cells (Honda et al., 

2001), bradyk:inin (Ifuku et al., 2007), galanin (Ifuku et al., 2011), or morphine (Horvath 

and DeLeo, 2009; Takayama and Ueda, 2005). The direct effect of TLR agonists on 

microglial migration has not been investigated so far. 

In the present study, we investigated the TLR agonist-induced increase in microglial 

migration and its underlying signaling cascade. We show that primary cultured 
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microglial cells display enhanced random migration in response to the TLR2 agonists 

Pam3CSK4 and Pam2CSK4, whereas the TLR7 agonists imiquimod and loxoribine 

induce microglial chemotaxis but not random migration. We also found that activation 

of TLR2 and TLR7 trigger distinct intracellular pathways. Our results suggest that each 

TLR ligand may have a distinct role under various pathological and physiological 

conditions. 
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Material and Methods 

Cell culture 

Primary microglia cultures were prepared from the cerebral cortex and midbrain of 

newborn male and female C57BL/6 and TLRKO mice (PO-P3), as described r.reviously 

(Prinz et al., 1999). In brief, the forebrain was carefully freed of blood vessels and 

meninges. Cortical tissue was trypsinized for 2 min, dissociated with a fire-polished 

pipette and washed twice. Mixed glial cells were cultured for 9-12 days in Dulbecco's 

modified Eagle's medium (DMEM) supplemented with 10 % fetal calf serum and 

antibiotics, with medium changes every third day. Microglial cells were then separated 

from the underlying astrocytic monoiayer by gentle shaking of the flasks for 1 h at 

37 °C in a shaker-incubator (100 r.p.m.). Cultures usually contained >95% microglia as 

detected by staining ith isolectin B4 (Griffonia simplicifolia). Cells were maintained at 

37 oc in a 5 % co2 humidified atmosphere. 

Agarose spot assay 

The agarase spot assay was performed as described before in (Wiggins and Rappoport, 

2010). 0.1 g of low-melting pointagarase (Promega Corporation, Madison, Wl, USA) 

was placed into a 100-mL beaker and diluted into 20 mL sterile PBS to make a 0.5 % 
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agarase solution. This was heated in micrawave until boiling, swirled to facilitate 

complete dissolution, and then taken off the microwave. When the temperature cooled 

to 40 °C, 90 111 of agarase solution was pipetted into a 1.5 mL Eppendorf tube 

containing 10 111 of PBS with or without the TLR agonist. Ten-micraliter SJ)Ots of 

agarase were pipetted onto a 35 mm diameter glass-bottomed cell culture dish (MatTek 

Corporation, MA, USA) and allowed to cool for 10 min at 4 °C. Four spots per dish 

were pipetted, three containing the TLR agonist and one containing only PBS. 

Micraglial cells were plated into the dish (3-5 x 105 cells in 2 ml DMEM) and then 

incubated at 37 oc in 5 % C02 to allow the cells to adhere and migrate. After 6 h, 

micraglial cells under the spot ere counted. The values are the average obtained fram 

six dishes. When inhibitors (LY294002; 25 and 50 !lM, Wortmannin; 0.1 and 1 !lM, 

ET1864; 50 !lM, Aktinhibitor IV; 1 and 10 !lM) were added, cells were pre-treated for 

30 min before plated into the dish. 

Microchemotaxis assay 

TLRs agonist-induced chemotaxiswas tested using a 48-well micrachemotaxis Boyden 

chamber (Neuraprabe, Bethesda, MD, USA). Upper and lower wells were separated by 

a polycarbonate filter (8 !lffi pore size; Poretics, Livermore, CA, USA). Micraglial cells 
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(2-4 x 104 cells) in 50 111 of serum-free DMEM medium were added to the upper 

compartment, while the lower wells contained the TLRs agonist in serum-free DMEM 

medium. Serum-free DMEM medium was used as a control. Cells were pre-treated with 

the PI3K (LY294002; 25 !lM) and Rac inhibitors (EHT1864; 1-100 !lM) for 30 min 

before added to the upper compartment. The chamber was incubated at 37 °C and 5 % 

C02 for 6 h. Cells remaining on the upper surface of the membrane were removed by 

wiping, and cells in the lower compartment were fixed in methanol for 10 min and 

subjected to Diff-Quik stain (Median Grifols Diagnostics AG, Düdingen, Switzerland). 

The rate of microglial migration was oalculated by counting cells in four random fields 

of each well using a 20 x bright-fieltl objective. For each condition 2-4 fields in 4-8 

wells were analyzed. Under control conditions, there were -40-80 cells per field, and 

the number of cells in each field was normalized to the average in control condition 

(100%). 

Wound-healing scratch assay 

The scratch assay was performedas described previously (Jeon et al., 2012; Kar1stetter 

et al., 2014). Briefly, microglial cells were seeded at a density of 5 x 104 cells/dish in 

the glass-bottomed cell culture dish, and incubated at 37 °C, 5 % C02 for 48 h. A 
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scratch wound was created with a 10 111 pipette tip on the cell monolayer. Thereafter, the 

cells were stimulated with TLRs agonist or PBS as a control for 6 h, and preincubated 

with Rac inhibitor EHT1864 (50 !lM) for 30 minutes. The number of migrating cells 

was quantified by counting all cells in a cell-free zone area. The number of migrated 

cells was normalized to the average in control condition (100%). A minimum of five 

individual cultures was used to calculate the mean migratory capacity at each condition. 

Western blot analysis 

Western blotting was performed using the whole cell lysates. Before collection, cells 

were washed with cold PBS. RIPA uffer (radioimmunoprecipitation assay buffer) was 

used as lysis buffer that contained 1% NP-40, 0.5% sodium deoxycholate and 0.1% 

SDS dissolved in 1% TBS buffer. Protease inhibitor cocktail (Rache, Grenzach-Wyhlen, 

Germany) and phosphatase inhibitor mixture (Sigma-Aldrich, Darmstadt, Germany) 

was added to the RIPA buffer before cell lysis. Cells were homogenized by a syringe 

needle, followed by centrifugation at 15,000 rpm for 10 minutes to remove insoluble 

cell debris. Protein concentration was measured by the BCA protein assay kit (Thermo 

Fisher Scientific, Pittsburgh, PA, USA), and a total of 20 !lg protein was separated by 

10% SDS-PAGE and electrophoretically transferred onto PVDF membranes (Bio-Rad 

9 



ACCEPTED MANUSCRIPT 

Laboratories, Hercules, CA, USA). After protein transfer, PVDF membrane were 

blocked with Tris-buffered saline (TBS) containing 5% BSA for 1 h at room 

temperature. Membranes were then incubated at 4 °C overnight with the antibodies 

against phospho-AKT (S-473) and Akt purchased from Cell Signaling (Danvers, MA, 

USA). Membranes were then washed after the treatments with primary antibodies and 

incubated with anti-rabbit IgG secondary antibody (Cell Signaling) at room temperature 

for 2 h. Signals from the transferred protein onto thß PVDF membrane were then 

visualized by ECL Prime Western Blotting Detection Reagent (GE Healthcare, 

Buckinghamshire, UK) using ChemiDoc XRS system. Quantification of the images was 

performed by the Image J software. 

qPCR for TLRs mRNA expression in microglia 

Primary neonatal microglia were seeded at 106 cells perdishin a 6 well plate. After 24h, 

the cells were stimulated with Pam2CSK4 (300ng/ml), Pam3CSK4 (300ng/ml), 

imiquimod (Sf.lg/ml), loxoribine (lmM) or LPS (lOOng/ml) for 24h. Subsequently cell 

lysates were collected and RNA extracted, followed by cDNA synthesis and 

quantitative PCR expression. The TLR2 and TLR7 primers were purchased from 
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QIAGEN (Hilden, Germany). For the qPCR cycle used see Thermo Scientific Maxima 

SYBR Green/ROX qPCR Master Mix product information. 

Drugs and reagents 

Pam3CSK4, Pam2CSK4, imiquimod, and loxoribine were purchased from InvivoGen 

(San Diego, CA, USA). LY294002 was obtained from Cell Signaling. Wortmannin was 

purchased from Sigma-Aldrich. EHT1863 was provided by Tocris Bioscience (Bristol, 

UK). Akt inhibitor IV was purchased from Calbiochem (San Diego, CA, USA). 

Ticagrelor was purchased from Cayman Chemical (Hamburg, Germany). 

Statistics 

Results are expressed as the mean ± SEM. Statistical analyses of the results were 

evaluated usin Dunnett's or Tukey's multiple comparison test after one-way ANOVA. 

Value of p<0.05 were considered statistically significant. 
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Results 

TLR2 and TLR7 activation increase microglial migratory activity 

To test the effects of the TLR2 agonists Pam3CSK4 and Pam2CSK4 and the TLR7 

agonists imiquimod and loxoribine on micraglial migratory activity, we analyzed the 

accumulation of cells in an agarase spot containing either PBS (as contral) or a TLR 

agonist. The spots were placed on glass Petri dishes, and micraglial cells in suspension 

were subsequently added. After 6 h incubation time, micraglial cells that had migrated 

into the agarase spot were quantified (Fig. 1A). Pam3CSK4 did not significantly 

increase the number of accumulated micraglial cells at 10 ng/ml, but at 100 and 300 

ng/ml, while Pam2CSK4 increased cell numbers already at 10 and also at 100 and 300 

ng/ml (Fig. 1B and Table 1). Likewise, imiquimod increased numbers of accumulated 

micraglial cells at 1, 3, and 5 !lg/ml. loxoribine increased accumulation of micraglial 

cells at 0.1, 0.5, and 1 mM (Fig. 1C, Table 1). 

To determine the specificity of the subtype-specific ligands, we cultured micraglia fram 

TLR1 knack out (KO), TLR6KO, TLR2KO, and TLR7KO mice and tested the impact 

of Pam3CSK4, Pam2CSK4, imiquimod, and loxoribine on micraglial migration. 

Pam3CSK4 augmented the migration of micraglia derived fram TLR1KO and TLR6KO 

mice, but did not significantly increase the migration of TLR2KO micraglia (Fig. 2A, B 
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and C, Tab1e 1). Simi1arly, imiquimod and 1oxoribine did not induce migration of 

microg1ia from TLR7KO mice (Fig. 2D, Tab1e 1). 

As a second approach to eva1uate microg1ia1 migratory activity induced by TLR2 and 

TLR7 agonists, we used the Boyden Chamber assay. We obtained simi1ar results as 

observed with the agarase spot assay. As shown in Fig. 3, TLR2 and TLR7 agonists 

significant1y increased migration of microg1ia in a conce tration-dependent manner 

(Tab1e 1). Neither Pam3CSK4 nor Pam2CSK4 stimu1ated migration of microg1ia from 

TLR2KO mice, and neither imiquimod nor 1ox(l)ribine increased migration of cells from 

TLR7KO mice, substantiating the findings obtained with the agarase spot assay (Fig. 

3C and Tab1e 1). 

TLR7 agonists induce microglial chemotaxis, while TLR2 agonists increase random 

motility 

To distinguish between chemotaxis, i. e. a directed migration, and non-directed moti1ity, 

we added the TLR agonists named above either with or without gradient to the agarase 

spot assay or the Boyden chamber. In the agarase spot assay, the respective 1igand was 

present either on1y in the spot or in spot and supernatant, whi1e in the Boyden chamber 

it was present in the upper, in the 1ower, or in both compartments. In these and the 
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subsequent studies we used 300 ng/ml of Pam3CSK4 and Pam2CSK4, 5 !lg/ml of 

imiquimod, and 1 mM of loxoribine. Pam3CSK4 and Pam2CSK4 increased microglial 

motility in the agarase spot assay in the absence and presence of a gradient at a similar 

magnitude (Fig. 4A) as it was observed in the Boyden chamber (Fig. 4B). In contrast, 

imiquimod and loxoribine did only increase motility when a gradient was present, but 

not in the absence of a gradient. 

To confirm these data we employed another test, namely the wound-healing scratch 

assay, which detects changes in motility, but not chemotaxis. Microglial cultures were 

scratched to generate a cell-free zone and were subsequently treated with either TLR2 

or TLR7 agonists for 6 h. Treatment with 300 ng/ml Pam3CSK4 and Pam2CSK4 

resulted in a larger accumulation of cells in the previously cell-free zone, leading to a 

373.7 ± 31.3% anä 568.4 ± 45.7% increase, respectively. Treatment with imiquimod and 

loxoribine did not affect the number of cells in the scratched zone (Fig. 5). These 

findings substantiate that both Pam3CSK4 and Pam2CSK4 increase random migration, 

while imiquimod and loxoribine stimulate migration along a gradient. 

PI3K inhibition impairs microglial migration stimulated via TLR2 and TLR7 

In this series of experiments, we assessed the role of PI3K in microglial migration 
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induced by TLR2 and TLR7 agonists through the use of two PI3K inhibitors, namely 

LY294002 and Wortmannin. LY294002 is a synthetic selective PI3K inhibitor that binds 

to the catalytic domain of the kinase. Wortmannin serves as a bacteria-der,ived 

semiselective PI3K inhibitor that binds to the ATP-binding domain of the kinase 

(Nakanishi et al., 1992; Vlahos et al., 1994). As shown in Fig. 6A, the Pam3CSK4- and 

Pam2CSK4-induced migration was strongly suppressed by the pretreatment of 

microglial cells with LY294002 or Wortmannin in the agarase spot assay. Similar results 

were obtained with imiquimod and loxoribine. Fretreatment with LY294002 or 

Wortmannin impaired the motility increase induced by the two TLR7 agonists (Fig. 6B). 

These results were confirmed by using the Boyden chamber. Pam3CSK4, Pam2CSK4, 

imiquimod, and loxoribine increased migration ofmicroglia by 195.6 ± 17.2%, 253.4 ± 

10%, 428.6 ± 31.1% and 247.3 ± 17.7%, respectively. These increases in migration 

were completely blocked by LY294002 and Wortmannin (Fig. 6C), suggesting that 

PI3~ was involved in the increase in microglial migration induced by TLR2 and TLR7 

activation. 

Rac activation is required for microglial migration induced by TLR2 and TLR7 

agonists 
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To determine whether Rac activation downstream of the respective TLR is also involved 

in migration control, we investigated the effects of a Rac inhibitor on TLR 

agonist-induced migration using the agarase spot assay. Microglial cells were incubated 

with the Rac inhibitor EHT1864 (50 !lM) for 30 min before treatment with the 

respective TLR ligand. Pam3CSK-, Pam2CSK4-, imiquimod-, and loxoribine-induced 

microglial motility was inhibited by EHT1864 (Fig. 7 A). We confirmed these results for 

the TLR7 agonists using the Boyden chamber and in addition tested different 

concentrations of EHT1864. Imiquimod- and loxoribine-induced microglial chemotaxis 

was blocked by 50 and 100 !lM EHT1864, while 1 !lM had no effect, and 10 !lM led to 

a partial blockade (Fig. 7B). 11ie effects of the Rac inhibitor on microglial motility 

induced by TLR2 activation were also tested in the wound-healing scratch assay. As 

shown by representative images in Fig. 7C and by quantification from three independent 

experiments in Fig. 7D, EHT1864 strongly suppressed the increase in Pam3CSK4- and 

Pam2CSK4-induced microglial motility from 352.2 ± 41.2% and 377.8 ± 29.4% of 

control to 88.8 ± 10.3% and 111.1 ± 21.4% in the presence of EHT1864. These results 

suggest that a functional Rac signaling is a prerequisite for TLR2 and TLR7-induced 

microglial migration. 
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The Akt pathway is involved in TLR-2, but not in TLR7-triggered migration 

Pretreatment with Aktinhibitor IV significantly inhibited the TLR2-induced migration 

of microglia (Fig. 7E). However, imiquimod- and loxoribine-induced microglial 

motility was not affected by Akt inhibitor IV in the agarase spot assay (Fig. 7F), 

indicating that Akt activation is required for TLR2-, but not TLR7-stirnulated migration. 

The results outlined above indicate that Akt phosphorylation controls Pam3CSK4- and 

Pam2CSK4-induced microglial migration. We therefore investigated whether TLR2 

ligands trigger Akt phosphorylation by Western blot analysis of microgliallysates using 

a phosphor-specific Akt antibody following Pam3CSK4 and Pam2CSK4 stimulation. 

For these experiments, we exposed microglia to 300 ng/ml Pam3CSK4 or Pam2CSK4 

for 0, 5, 15, 30, and 60 in, anä subsequently assessed pAkt and total Akt expression. 

Pam3CSK4 and Pam2CSK4 induced a significant increase in Akt phosphorylation after 

15 min, and t e phosphorylation levels peaked at 30 min (Fig. 8A). Total Akt levels 

remained unchanged during the entire 60 min period. To determine whether 

Pam3CSK4- and Pam2CSK4-mediated Akt phosphorylation is dependent on PI3K, we 

again used the PI3K inhibitor LY294002. Both 25 and 50 !lM of LY294002 significantly 

inhibited Akt phosphorylation triggered by Pam3CSK4 and Pam2CSK4 (Fig. 8B). To 

confirm that Pam3CSK- and Pam2CSK4-mediated Akt phosphorylation is 
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TLR2-dependent, we used microglial cells from TLR2KO mice. Pam3CSK4 and 

Pam2CSK4 had no effect on Akt phosphorylation in microglia lacking TLR2 (Fig. 8C). 

As a positive control, 100 !lM ATP significantly increased phosphorylation of A'kt:. 

These results indicate that Pam3CSK4 and Pam2CSK4 increase phosphory,lation of Akt 

in a PI3K- and TLR2-dependent manner. 

Involvement ofthe P2Y12 pathway in TLR2, but not TLR7 agonists-induced 

microglial migration 

It is well established that ATP-induced microglial membrane ruffling and chemotaxis 

are mediated by Gi/o-protein coupled P2Y12 receptor (Honda et al., 2001; Sasaki et al., 

2003) and P2Y12 receptor stimulation results in activation of the PI3K pathway and 

subsequent increase [n microglial migration (Irino et al., 2008; Ohsawa et al., 2007; Wu 

et al., 2007). To determine whether P2Y12 activation is required for microglial 

migration by induced by TLR2 and TLR7 agonists, we investigated the effects of the 

P2Y12 receptor inhibitor ticagrelor in the agarase spot assay. As shown in Figure 9A, 

ticagrelor inhibited the increase in Pam3CSK4- and Pam2CSK4-induced microglial 

migration. In contrast, imiquimod- and loxoribine-induced microglial chemotaxiswas 
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not affected by ticagrelor (Fig. 9B). These results indicate that P2Yl2 receptor are 

involved in the TLR2, but not TLR7 mediated increase in microglial migration. 

TLR7 but not TLR2 expression is regulated by TLR2 and TLR7 activation 

To determine the effects of the TLR activation on the expression of TLR2 and TLR7 in 

microglia, mause primary microglial cell cultures were treated with normal medium (as 

control) or TLR agonists (Pam3CSK4, Pam2CSK3, imiquimod, loxoribine and LPS) for 

24 hours. We subsequently performed quantitative PCR (qPCR) and found that the 

TLRs agonists did not significantly alter tlie TLR2 mRNA expression (Fig. 10). The 

TLR7 mRNA expression, however, was significantly downregulated by TLR2 and 

TLR7 agonists, indicating that ({'LR2 and TLR7 activation results in downregulation of 

microglial TLR7, but not TLR2 (Fig. 10). 
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Discussion 

Parenchymal microglia are the main cell type that contributes to CNS innate immune 

signaling and express the complete repertoire of identified TLRs as well as several 

inflammasome-related molecules, which tagether endow the cell with potent 

inflammatory capacity. As the resident immune cells of the brain, microglia serve as 

sensors of events occurring within their environment and provide the first line of 

defense against invading microbes. Upon recognition of pathogens, activated microglia 

migrate rapidly to the sites of tissue darnage and eKpress genes related to inflammation 

such as pro-inflammatory cytokines and radicals (Hua et al., 2007). 

We used three different methods to demonstrate the effect on TLR2 and TLR7 agonists 

on microglial migratory activity. Moreover, we distinguished between a general increase 

in motility by using the agarase spot assay and the Boyden chamber without gradient 

and the wound-healing scratch assay and directed chemotaxis by using the agarase spot 

assaJ and the Boyden chamber with gradient. We found that the TLR2 agonists 

Pam3CSK4 or Pam2CSK4 increased microglial motile activity, but not chemotaxis. 

This finding is similar to the behavior of human neutrophils in which TLR2 activation 

induces random migration (Aomatsu et al., 2008). In contrast, the TLR7 agonists 

imiquimod and loxoribine stimulated directed migration towards their respective 
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gradients. Thus, the two receptor systems control distinct migratory behavior of 

microglia, namely directed migration, i. e. chemotaxis by TLR7, and a general motility 

increase induced by TLR2, independently of a gradient. 

Another difference between TLR2 and TLR7 induced migration is the involvement of 

the purinergic signaling. We found that Pam3CSK4- and Pam2CSK4-intluced microglial 

migrationwas significantly inhibited by ticagrelor, a P2Yl2 antagonist (Fig. 9A). These 

findings indicated that TLR2 activation enhance microglial migration through activation 

of P2Yl2 receptor signaling. It is well established that P2Yl2 receptors control 

microglial migration (Honda et al., 2001; Ohsawa et al., 2007). How TLR2 activation 

induces the activation of P2Yl2 remains speculative. We did also not distinguish 

whether the intracellular pathways which we inhibited were directly down-stream of 

TLR2 or P2YT 2. In contrast, ticagrelor had no effect on imiquimod- and 

loxoribine-induced microglial chemotaxis (Fig. 9B), suggesting that the microglial 

chemotaxis by TLR7 activation is not dependent on P2Y12 receptor signaling pathway. 

Typically, TLR2 forms heterodimers with either TLRl or TLR6 (Shioi et al., 2000). 

Since we found no influence of deleting either TLRl or TLR6 on Pam3CSK4- and 

Pam2CSK4-induced microglial migration, we assume that these agonist can bind to 

both TLRl/2 and TLR2/6. Previous studies have shown that Pam3CSK4 is a strong 
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TLR1/2 agonist but at higher concentrations (> 100 ng/ml) exhibited some activity 

toward TLR2/6 and Pam2CSK4 exhibited comparable activities toward both the 

TLR1/2 and TLR2/6 pairs (Omueti et al., 2005). 

Our experiments show that microglial migratory activity induced by activation of both 

TLR2/P2Y12 and TLR7 were completely inhibited by LY294002 and Wortmannin, 

suggesting that activation of PI3K is involved in both responses. PI3Ka are lipid kinases 

that phosphorylate phosphoinositides, generating second messengers further involved in 

the regulation of a variety of cellular processes such as proliferation, survival, and cell 

migration (Cao et al., 2013; Ha et al., 2008; Kanna et al., 2015). The mechanism for 

TLR-mediated activation of the PI3K pathway has been explored and a direct linkage of 

TLRs mediated by phosphorylated tyrosine residues activates PI3K. P2Y12 receptor is 

known tobe coupled to activation of PI3K (Czajkowski et al., 2004). Phosphorylation 

of tyrosine residues at the C terminus of TLR2 was required for recruitment of 

PI3~-p85 subunit and subsequent activation by Racl (Karlstetter et al., 2014). Recent 

evidence suggests that there is a cross talk between TLR signaling and the PI3K/Akt 

pathway (Irino et al., 2008; Li et al., 2000b). The stimulation of TLRs activates the 

PI3K/Akt pathway, which has been shown to prevent cardiac myocyte apoptosis and 

protect the myocardium from ischemia-reperfusion injury (Brazil et al., 2004; Ohsawa 
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et al., 2007). 

Many studies have reported a cross-talk between Rho-GTPases and PI3K (Fuhler et al., 

2008; Li et al., 2005; Servant et al., 2000). Rac is a member of the Rho family small 

GTP-binding proteins, which regulate the assembly of actin cytoskeletal structures 

associated with cell migration (Small et al., 1999), and is known to be a downstream 

signal of PI3K (Hall, 1998; Li et al., 2000a). Previous studies suggested that EHT1864 

is a Rac-specific inhibitor that can inhibit association of Rac with its effector Pak 

(p21-activated kinase) as well as a variety of downstream Rac signaling pathways 

(Desire et al., 2005). We now show that microglial migratory activity induced by TLR2 

and TLR7 was abolished by pretreatment with the Rac inhibitor EHT1864. This is 

consistent with the recent report by Shin et al. (2009) showing that downstream 

signaling of MyD88-mediated phagocytosis is dependent on PI3K and Rac activation 

during Borrelia infection. It has also been reported that TLR2 activates NF-kB via a 

Rac-regulated pathway (Karlstetter et al., 2014). 

e also provide evidence that the TLR2/P2Yl2 and TLR7 signaling pathways diverge 

in the context of migratory activity. While the TLR2 signaling pathway depends on Akt 

phosphorylation, the TLR7 pathway does not. The Akt pathway has been implicated in 

cellular signaling processes that control cell migration, growth, proliferation, and 
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apoptosis (Brazil et al., 2004). There is also evidence that Akt, a serine/threonine kinase, 

is activated downstream of PI3K in microglia (Irino et al., 2008). The results of the 

present study show that microglial migration induced by Pam3CSK4 and Pam2CSK4 is 

suppressed by the Akt inhibitor. PI3K inhibition also reduces ATP-induced migration 

and Akt phosphorylation, implicating that the PI3K/Akt pathway coultl in addition act 

down-stream of P2Yl2 receptor activation (Irino et al., 2008; Ohsawa et al., 2007). We 

also show that Pam3CSK4- and Pam2CSK4-induced Akt phosphorylation is dependent 

on TLR2 and PI3K, similar to the results shown for ADP (Irino et al., 2008). Thus 

TLR2/P2Yl2 and TLR7 signaling in icroglia diverge in their intracellular pathways 

which results in the control of'1ifferent microglial functions, namely chemotaxis and 

undirected motility. 

While our study used cultured microglial cells as a model, there is sufficient evidence 

that TLRs play an important role as a signaling systemindifferent brain diseases. TLR7, 

TLR8 and TLR9 can enhance microglial Aß uptake in the early stage of Alzheimer's 

disease (Gambuzza et al., 2014). In particular TLR2 has been identified to play a pivotal 

role in glial activation and neuroinflammation in neurodegenerative diseases (Hayward 

and Lee, 2014). In glioma, TLR2 and TLR4 mediate the communication between 

glioma cells and microglial cells. Indeed versican activating TLR2 converts microglia 
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into a pro-tumorigenic phenotype (Hambardzumyan et al., 2016). Several TLRs are 

involved in spinal cord injury, amyotrophic lateral sclerosis and neuropathic pain 

(Heiman et al., 2014). All these data indicate that TLRs play important roles in many 

brain diseases. 
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Figure Legeuds 

Fig. 1 Effect of TLR2 and TLR7 agonists on microglial migration in the agarose 

spot assay. 

The TLR2 agonists Pam3CSK4 and Pam2CSK4 and the TLR7 agonists imiquimod and 

loxoribine increase migratory activity in microglia_ (A), Microglia was plated on 35-mm 

cover slips with spots containing PBS or a TLR agonisL Agarose spot assay without 

TLR agonists shows low microglial invasion after 6 h incubation_ An agarase spot 

containing 300 ng/ml Pam3CSK4 and 300 ng/ml Pam2CSK4, 5 IJ.g/ml imiquimod and 1 

mM loxoribine showed significant invasion after 6 h_ Scale bar: 100 IJ.ffi- (B) (C), Cells 

migrated into the spots were counted, and the increase in migratory activity is displayed 

in re1ation to the PBS controL Bars represent the mean ± SEM from three independent 

experiments_ (*p<0-05 and **p<0-01 vs_ PBS, Dunnett's test, each group, n=8)_ 
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Fig. 2 TLR2- and TLR7-induced migratory activity of microglia deficient of the 

respective TLR. 

Microglial migration was determined after 6 h incubation in the agarase spot assay as 

described in the legend to Fig. 1. Pam3CSK3- or Pam2CSK4-induced migratio of 

TLRlKO (A) and TLR6KO (B) microglia was not affected, but impaiTed in TLR2KO 

cells (C). imiquimod and loxoribine did not induce migratory activity in TLR7KO 

microglia (D) (**p<O.Ol vs. PBS, Dunnett's test, each group, n=6). 

Fig. 3 TLR2 and TLR7 agonist-induced migratory activity analyzed in the Boyden 

Chamber. 

(A) Cells penetrating the filter into the Pam3CSK4-, Pam2CSK4-, imiquimod-, and 

loxoribine-filled lower chamber were stained by Diff-quick and were displayed in light 

microscopic images. Scale bar: 100 !lffi. (B) The relative increase in cell numbers 

compared to the PBS control is shown in a dose-dependent relationship for Pam3CSK4, 

Pam2CSK4, imiquimod and loxoribine at the indicated concentrations. *p<0.05, 

**p<O.Ol vs. control (Dunnett's test, each group, n=lO). (C) In TLR2KO microglia, 

Pam3CSK4 and Pam2CSK4 did not induce an increase in migratory activity, while 
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imiquimod- and loxoribine were ineffective in TLR7KO microglia (Dunnett's test, each 

group, n=8). 

Fig. 4 Analysis of migratory activity with or without gradient in the agarose spot 

assay and the Boyden chamber. 

(A) Migration assay with the agarase spot assay. Pam3CSK2J. (300 ng/ml), Pam2CSK4 

(300 ng/ml), imiquimod (5 !lg/ml), and loxoribine (1 mM) were either added to the spot 

alone (gradient) or in the spot and thß surrounding medium at the same concentration 

(no gradient). imiquimod and loxoribine only increased migratory activity in the 

presence of a gradient, i oontrast to the TLR2 agonists. The data represent mean ± 

SEM (n=4) **r,<O.O:l vs control, ##p<0.01 (one-way ANOVA followed by Tukey's test). 

(B) Like ise, migratory activity was tested in the Boyden chamber with the agonist 

either only in the upper or lower chamber or in equal concentrations in both chambers. 

ile Pam3CSK4 (300 ng/ml) and Pam2CSK4 (300 ng/ml) consistently stimulated 

microglial migration, imiquimod (5 !lg/ml) and loxoribine (1 mM) were only effective 

when being exclusively present in the lower chamber. The microglial suspension was 

added to the upper well. After incubation for 6 h, the number of cells migrating to the 

33 



ACCEPTED MANUSCRIPT 

lower well was determined. Data are expressed as mean ± SEM (n=8) of three 

independent experiments. **p<O.Ol vs control, ##p<O.Ol (one-way ANOVA followed 

by Tukey's test). 

Fig. 5 Only TLR2 agonists, but not the TLR7 agonists, stimulate microglial 

invasion in the scratch assay. 

(A) A scratch was implemented with a needle in a layer of microglial cells in the culture 

dish. Cell cultures were analyzed after incubation for 6 hr. Representative images at 6 h 

after scratching and treatment with Pam3CSK'4 (300 ng/ml), Pam2CSK4 (300 ng/ml), 

imiquimod (5 !lg/ml), or loxoribine (1 mM). Scale bar: 100 !lffi. (B) Number of cells in 

the scratched zone relative to the control. Data show mean ± SEM (n=8/group) 

**p<O.Ol vs control. one-way AN OVA followed by Tukey's test) 

Fig. 6 The increase in microglial migration induced by TLR2 and TLR7 agonists is 

mediated by activation of PI3K. 

(A) Using the agarase spot assay, migration was stimulated with Pam3CSK4 (300 

ng/ml) and Pam2CSK4 (300 ng/ml). The agonist-induced increase was inhibited by 
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pretreatment with the PI3K inhibitors LY294002 (25 and 50 !lM) or Wortmannin (0.1 

and 1 !lM). Results areexpressedas mean ±SEM from three independent experiments. 

*p<0.05, **p<0.01 vs PBS (Dunnett's test, each group, n=8). (B) The impact of these 

PI3K inhibitors was tested on the microglial migration with the agarase spot assay 

induced by imiquimod (5 !lg/ml) or loxoribine (1 mM). Results areexpressedas mean ± 

SEM from three independent experiments. *p<0.05, **p<0.01 vs PBS (Dunnett's test, 

each group, n=8) (C) Similar approach as described in A, B was performed using the 

Boyden chamber assay. TLR2 and TLR7 agonist-induced microglial chemotaxis was 

inhibited by pretreatment of LY294002 (25 !lM) or Wortmannin (1 !lM). Data are 

expressed as mean ± SEM of three independent experiments. **p<0.01 vs PBS 

(Dunnett's test, each group, n= lO). 

Fig. 7 Rac signaling is crucial for TLR2- and TLR7- induced migration, while Akt 

is required for TLR2-induced migration of microglia 

(A) Analysis of the effect of the Rac inhibitor EHT1864 (50 !lM, pretreatment for 30 

min) on microglial migration induced by Pam3CSK4 (300 ng/ml) and Pam2CSK4 (300 

ng/ml), and by imiquimod (5 !lg/ml) and loxoribine (1 mM) determined in the spot 

assay **p<0.01 vs PBS. Data are expressed as mean ± SEM of three independent 
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experiments. (Dunnett's test, each group, n=8). (B) A simi1ar set of experiments as 

described above was performed on imiquimod- (5 !lg/m1) and 1oxoribine-induced 

migration (1 mM) using different concentrations of EHT1864 (1, 10, 50 and 100 !lM). 

**p<0.01 vs PBS. Data areexpressedas mean ±SEM of three independent experiments. 

(Dunnett's test, each group, n=10). (C) Impact of 50 !lM EHT1864 on Pam3CSK4- (300 

ng/m1) and Pam2CSK4-induced migration (300 ng/m1) in the scratch assay. Microg1ia 

were preincubated for 30 min with Rac inhibitor, and cell cultures were ana1yzed after 6 

hr. Sca1e bar: 100 11m. (D) Images from the scratched areas were quantified 6 hr after 

treatment. Data are expressed as mean ± SEM of three independent experiments. 

**p<0.01 vs DMSO, ##p<O.Ol. (Tukey's test, each group, n=8). (E) Pam3CSK4- (300 

ng/m1) and Pam2CSK4-inducded migration (300 ng/m1) of microg1ia was inhibited by 

the Aktinhibitor IV (1 and 10 !lM, pretreatment for 30 min) in the spot assay. Data are 

expressed as mean ± SEM of three independent experiments. **p<0.01 vs PBS 

(Dunnett's test, each group, n=5). (F) Imiquimod- (5 !lg/m1) and 1oxoribine-induced 

microg1ia1 chemotaxis (1 mM) was not affected by Akt inhibitor IV (1 and 10 !lM, 

pretreatment for 30 min). Data are expressed as mean ± SEM of three independent 

experiments. **p<0.01 vs PBS (Dunnett's test, each group, n=5). 
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Fig. 8 Pam3CSK4 and Pam2CSK4 enhance Akt phosphorylation in a PI3K- and 

TLR2-dependent manner. 

(A) Western blot analysis of microglial lysates with anti-p-Akt and total Akt antibody 

after treating microglial cells with 300 ng/ml Pam3CSK4 or 300 ng/ml Pam2CSK4 for 

0, 5, 15, 30 and 60 min. Examples oftheblots areshownon the left. The graphs on the 

right present the average intensity ratio of the bands corresponding to p-Akt (ser473) 

and total Akt in each group relative to the value at 0 min. *p<0.05, **p<O.Ol vs 0 min 

(control). Data are expressed as mean ± SEM of three independent experiments. 

(Dunnett's test, each group, n=4). (B) Western blot analysis of microglial lysate after 

treatment of microglial cells for 30 min with 300 ng/ml Pam3CSK4 or 300 ng/ml 

Pam2CSK4 in the presence or absence of LY294002 (pretreated for 30 min, 25 or 50 

!lM). **p<O.Ol vs 0 min (control). Data are expressed as mean ± SEM of three 

independent experiments. (Dunnett's test, each group, n=4). (C) Western blot of 

microglial lysate after treatment of TLR2KO microglia for 30 min with 300 ng/ml 

Pam3CSK4 or Pam2CSK or with 100 !lM ATP (positive control) for15 min. The 

quantification is shownon the left. p<O.Ol vs PBS (control). Data areexpressedas mean 
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±SEM of three independent experiments. (Tukey's test, each group, n=3) .. 

Fig.9 TLR2, but not TLR7 induced microglial migration depend on P2Y12 

receptor activity 

Using the agarase spot assay microglial migration was measured and compared to 

control values in PBS. (A) Pam3CSK4 (300 ng/ml, left graph) and Pam2CSK4 (300 

ng/ml, right graph) was applied alone and in the presence of ticacrelor (Tic, 10 !lM). As 

a control, ticacrelor was also applied without the agonist. 

(B) Similarly the impact of ticacrelor was tested on the TLR7 agonists imiquimod (5 

!lglml, left graph) and loxoribine (1 mM, right graph). 

Bars represent the mean ±SEM from five independent experiments, **p<O.Ol vs PBS, 

##p<O.Ol, Tukey's test, each group, n=l4). 

Fig. 10 TLR7 mRNA is downregulated by 24h stimulation with TLR2 and TLR7 

agonists. 

Primary microglia was stimulated with the TLR2 agonist Pam3CSK4 (300 ng/ml), and 

Pam2CSK4 (300 ng/ml), with the TLR7 agonists imiquimod (5 !lg/ml) and loxoribine 

(1 mM,) and TLR4 ligand LPS (100 ng/ml) for 24 h. RNA was extracted from cell 
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lysates and TLR2 (left graph) and TLR7 mRNA levels (right graph) were evaluated by 

quantitative PCR (qPCR). Results are expressed as the mean ± SEM from seven 

independent experiments. **p<O.Ol vs control (naive), Tukey's test, each group, n=7) 

Table 1 Agarose spot assay and Boyden Chamber. Summary of change (%) of 

microglial migration and chemotaxis responsive to the TLR2 and TLR7 agonist-treated 

cells when compared with controls. 
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Agarose spot assay Table 1 

Conc 10 ng/ml 100 ng/ml 300 ng/ml 

Strain WT TLR2-KO WT TLR2-KO WT TLR2-KO 

Pam3CSK4 122.2±4.8 96.6±9.5 186.8±13.5 95.6±9.1 254.3±20.6 111.6±4.1 

Pam2CSK4 143.2±1 0.4 95.1 ±6.9 217.5±16.7 93.8±0.8 256.4±23.7 93.1±1.8 

'" 
Conc 10 ng/ml 100 ng/ml 300 ng~ml 

Strain TLR1-KO TLR6-KO TLR1-KO TLR6-KO TLR1-KO TLR6-KO 

Pam3CSK4 110.9±11.6 108.7±14.8 216.1±18.1 236.9±18.1 232.9±34.2 283±9.4 

Pam2CSK4 149.4±11.6 173.3±17.8 249.7±13.2 257.7±12.7 285.1±18.9 301.6±15.6 

r 
Conc 1 fJQ/ml 3 fJQ/ml 5 fJg/ml 

Strain WT TLR7-KO WT TLR7-KO WT TLR7-KO 

imiquimod 277.9±19.1 88.1±16.7 356.9±13.9 104.8±4.8 422.4±31.6 94.4±7.8 

Conc 0.1 mM 0.5mM 1mM 

Strain WT TLR7-KO WT TLR7-KO WT TLR7-KO 

loxoribine 201.1±18.1 1 00.8±8.9 298.9±32.6 112.2±8.5 338.1±24.9 1 07.8±18.2 

Boyden chamber • 
Conc 1 ~ng/ml 

....... 100 ng/ml 300 ng/ml 

Strain WT TLR2-KO WT TLR2-KO WT TLR2-KO 

Pam3CSK4 107.9±47.9 1 06.4±7.0 162.7±8.6 1 05.8±9.4 185.2±5.1 105.8±7.4 

Pam2CSK4 133.8±4.3 99.5±11.2 182.6±8.9 1 03.9±6.8 244.3±11.5 102.9±5.7 

......... 

C<}nc 1 fJQ/ml 3 fJQ/ml 5 fJg/ml 

Strain WT TLR7-KO WT TLR7-KO WT TLR7-KO 

imiquimod 153.6±5.8 88.5±9.5 214.8±11.7 91.8±9.4 360.5±15.4 1 04.6±1 0.2 

Conc 0.1 mM 0.5mM 1mM 

Strain WT TLR7-KO WT TLR7-KO WT TLR7-KO 

loxoribine 124.2±9.8 1 00.5±8.7 218.7±16.2 100.3±13.9 255.2±11.8 99.7±8.8 
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Highlights 

TLR2 signaling controls random motility in cultured mause microglia 

TLR7 signaling controls chemotaxis 

Both pathways rely on PI3K and Rac activation 

Akt phosphorylation is only required for the TLR2 pathway 
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