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Abstract 

The molecular characteristics of enhancers are increasingly well defined, and single-gene 

studies have proposed many different mechanisms to explain how these regulatory DNA 

sequences act to stimulate the transcription of their target genes. However, which of these 

mechanisms are general modes of enhancer action remains unknown. Important new insights 

have been driven by recent developments in high-throughput sequencing, massively parallel 

reporter gene monitoring and CRISPR-Cas9 technologies. The opportunities presented by 

these approaches pave the way for the efficient translation of sequence variants affecting 

enhancers into effective medical treatments. 
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Introduction: Enhancers are important contributors to human disease 

Enhancers are DNA sequences that are capable of activating transcription of a target gene 

when linked in cis to the promoter (i.e. on the same DNA molecule), and do so independently 

of their orientation with respect to the target gene [1]. Enhancers are now thought to be 

widespread in mammalian genomes, with estimates ranging from 50 thousand to 500 

thousand total enhancers in human cells [2, 3]. Importantly, many genome sequence variants 

that have been linked to human disease overlap putative enhancers [4, 5]. Therefore, 

mutations which alter the behaviour of enhancers, and lead to abnormal gene expression 

patterns rather than malfunctioning gene products, might be a dominant cause of human 

disease.  

In spite of their importance, the mechanisms by which enhancers activate the expression of 

their target genes are poorly understood, and most of our knowledge is derived from 

painstaking studies of single genes. In the first half of this review, we summarise the various 

proposed models of enhancer action. In the second half, we outline recently developed high-

throughput methods for assaying enhancer function and highlight areas of opportunity where 

the application of these strategies could yield the greatest advances in understanding gene 

regulation in health and disease. 

Mechanisms of enhancer action 

Transactivation by enhancer-bound transcription factors 

In the transactivation model, RNA polymerase (pol) II binds to the promoter along with other 

components of the pre-initiation complex (PIC; Box 1). Transcription is then stimulated by 

direct physical interactions with transcription factors (TFs) bound to the enhancer (Fig. 1A). 

TF “effector domains” activate the target gene in a number of ways, e.g. by stabilising the 

PIC, increasing the rate of productive initiation by RNA pol II or by enhancing the rate of 

transcriptional elongation [6]. Protein structural studies have been invaluable for unpicking 

the interactions between effector domains and the basal transcriptional machinery (especially 

the Mediator complex; Box 1).  

Metazoan enhancers generally comprise a cluster of binding sites for different TFs [7], which 

can be separated from their target genes by large distances of up to 1 Mb [8]. Much of the 
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research into TF effector domain function has focused on single TFs bound directly to gene 

promoters, so it is unclear how far the principles established in these pioneer studies will 

apply to transactivation by distal TF clusters (Fig. 1A). For example, binding sites for the TFs 

YY1 and NF-E2 have been shown to be necessary for full activity of the human β-globin 

locus control region (LCR; a multi-enhancer element that is able to activate expression of 

nearby genes independent of its chromosomal position). Each TF is capable of activating 

transcription when bound directly to promoters, yet binding sites for either TF alone have no 

activity from more distal positions, indicating that cooperativity between different TFs may 

be particularly important at distant enhancers [9, 10].  

Genomic distance between TF binding sites and their target promoters clearly has a strong 

influence on TF effector domain function, although only a handful of studies have examined 

these effects directly [11–14]. For example, the E2F1 transactivation domain can stimulate 

transcription from the mouse dihydrofolate reductase promoter in vivo but the effect is 

completely abrogated by relocation of the E2F binding site from 66 to 441 bp upstream of the 

promoter [12]. Similarly, transcriptional activation by the VP16 effector domain can be 

strongly reduced by an insertion of only 54 bp between the promoter and the effector binding 

site [11]. Importantly, different effector domains display contrasting abilities to activate 

transcription from distal versus proximal positions [15], and individual TFs generally favour 

either promoter-proximal or promoter-distal binding positions in vivo [16]. This suggests that 

TFs bound at distal enhancers might not activate their target genes by the same mechanisms 

as TFs bound at promoters (Fig. 1A). Effector domains are very poorly conserved across the 

hundreds of  metazoan TFs, which further complicates identification of families of related 

effector domains that might function similarly [6]. 

 

 

Box 1: Transcriptional initiation and the pre-initiation complex 

When added to naked DNA in vitro, RNA pol II initiates transcription in an essentially 

random manner and requires the presence of other co-factors for specific and directional 

initiation at promoters [17]. These additional protein complexes are the general transcription 

factors (GTFs) TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH. The GTFs, together with 

RNA pol II, form a pre-initiation complex (PIC) which is capable of locating and binding to 
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promoters [18]. DNA is then unwound by the helicase activity of TFIIH. RNA pol II 

undergoes several rounds of abortive initiation, producing short 8-10 nucleotide transcripts, 

before escaping from the promoter, breaking most of its contacts with the GTFs, and 

transitioning to elongation [19]. 

Transcription is regulated not only by the activity of promoter-bound GTFs but also by DNA-

binding transactivating factors that regulate development, cell lineage commitment or 

respond to stimuli. These factors stimulate RNA pol II transcription above basal levels, but 

only in the presence of the Mediator complex [20]. Mediator was originally isolated from 

yeast and was shown to be required for activation of an in vitro transcription system by 

GCN4 and GAL4 transcription factors [20]. Subsequent work has revealed that mammalian 

Mediator consists of 26 subunits plus an additional complex of four proteins including the 

kinase CDK8 [21]. The range of Mediator’s known activities currently include stabilising 

TFIID binding to DNA, recruiting TFIIE and TFIIF to the pre-initiation complex, stimulating 

TFIIH mediated phosphorylation of the RNA pol II C-terminal domain and promoting 

processive elongation [22]. Mediator has therefore been proposed as the primary integrator of 

activating signals from enhancers [21].  

 

Hit-and-run mechanisms: opening chromatin 

Transcription factors interact with a wide array of co-factors and co-activators in addition to 

the basal transcriptional machinery. Many TFs are known to interact with chromatin 

remodelling complexes and/or histone modifying enzymes such as p300 [6, 23, 24]. The hit-

and-run model proposes that looping interactions between enhancers and genes allow 

enhancer-bound chromatin modifying enzymes to deposit activating histone marks and/or 

remodel nucleosomes at target promoters, thereby establishing an open chromatin state that 

promotes PIC formation (Fig. 1B). Most models for TF transactivation generally postulate a 

direct or indirect interaction between enhancer-bound proteins and RNA pol II during at least 

one part of the transcription cycle. In contrast in the “hit-and-run” model, enhancer-promoter 

pairing occurs prior to promoter activation, possibly transiently. 

Three studies have targeted epigenetic modifications to specific enhancer regions by fusing 

histone modifying enzymes to DNA binding factors. The hit-and-run model predicts that 



6 

 

tethering a chromatin modifying enzyme at a distal enhancer should result in chromatin re-

organization at target promoters. Recruitment of the histone acetyltransferase p300 to a β-

globin enhancer led to acetylation of H3K27 at the haemoglobin epsilon and gamma genes 

(~11 and 30kb distant from the enhancer, respectively) [25]. Two other studies targeted a 

repressive chromatin remodeller, LSD1 (which demethylates H3K4), to enhancer regions. 

Whilst both reported repression of transcription at nearby genes, the first did not study 

histone modification levels at target gene promoters [26] and the second found no change in 

either H3K4me2 or H3K27ac at a target promoter [27]. In all three studies, chromatin was 

much more efficiently modified at the enhancer sequence itself (where the modifying enzyme 

was tethered). This makes it difficult to unambiguously attribute epigenetic changes at target 

gene promoters to direct, long-range activities of the enzyme tethered to distal enhancer 

regions. Alternatively, opening of chromatin at the enhancer might regulate TF recruitment 

and transcriptional transactivation upstream of epigenetic changes at the target gene 

promoter. 

Other activation pathways could also function through a hit-and-run mechanism. Distal 

enhancers are occupied by both chromatin remodelling enzymes capable of destabilising 

nucleosomes [28, 29] and by Tet family proteins, which can hydroxylate methylated DNA 

[30]. Therefore, transient enhancer-promoter interactions might allow remodellers to create 

nucleosome-free regions at target promoters, or allow Tet proteins to remove repressive DNA 

methylation at promoter CpG islands.  

Hit-and-run mechanisms: Polycomb eviction from promoters by distal enhancers 

Rather than depositing activating histone marks at a target promoter, hit-and-run enhancers 

could also function by removing repressive marks. The Polycomb eviction model posits that 

distal enhancer elements remove repressive Polycomb protein complexes from the promoters 

of developmental genes [31]. Polycomb complexes are present at the α-globin gene in early 

development and are normally cleared from the promoter prior to transcriptional activation in 

mature erythroid cells. Mature cells lacking a key α-globin enhancer display elevated 

Polycomb occupancy at the α-globin gene, indicating that the enhancer element could be 

involved in removal of Polycomb proteins from α-globin during normal development [31]. A 

similar mechanism might operate for the neural gene Meis2, where a tissue specific enhancer 

necessary for midbrain expression of Meis2 interacts with the Polycomb-repressed Meis2 

promoter. This interaction is formed just before Polycomb is lost from the promoter and 
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Meis2 begins to be expressed, suggesting that the enhancer-promoter loop might actively 

clear Polycomb complexes from the Meis2 promoter [32]. 

The interplay between transcriptionally active chromatin domains (marked by H3K27ac) and 

repressive chromatin domains (marked by H3K27me3) is particularly important for the 

regulation of the Hox gene clusters [33]. The four mammalian Hox clusters each comprise 9-

11 genes encoding key TFs crucial for development of the body plan. Within each cluster, 

these genes are expressed sequentially (i.e. reflecting their genomic organization) both in 

space (along body axes) and in time (during development), a phenomenon termed 

collinearity. Collinear expression of Hox genes along the anterior to posterior body axis is 

accompanied by a progressive shift in the boundary between an active chromatin domain and 

a repressive domain [34]. Collinear expression of Hoxd genes along the developing limb 

requires the action of distal enhancer sequences located on both sides of the Hoxd cluster [35, 

36], and involves both a shift in boundary and a switch from repressive to active domain (and 

vice versa [36]). The distal enhancers are presumably involved in clearing Polycomb from the 

repressive domain, although whether their involvement is direct or indirect, and whether it is 

separable from their gene activating roles remains to be determined. 

Exactly how enhancers might clear Polycomb proteins from gene promoters is also unclear. 

Interestingly, the H3K27 demethylase JMJD3 is recruited to fibroblast enhancers by P53 

following DNA damage [37]. If demethylases such as JMJD3 can remove H3K27me3 marks 

at promoters by looping interactions from distal binding positions, this might provide a 

possible mechanism to disrupt Polycomb inhibition at target genes [38]. 

The pause-release model 

After initiation, RNA pol II “pauses” just downstream of the promoter to different extents, 

and is released from the paused state into productive elongation through the action of P-

TEFb, among other factors (reviewed in [39]). One recent paper has described “anti-pause” 

enhancers in HEK293 cells and suggested that they can control the transition of RNA pol II 

from the paused to the elongating state from distal positions [40]. The authors identify a 

protein-protein interaction between the histone demethylase JMJD6 and BRD4, a known 

regulator of RNA pol II pause-release via P-TEFb. Knock-down of either interacting partner 

increases RNA pol II promoter-proximal pausing and decreases transcription of a subset of 

genes. BRD4 and JMJD6 co-bound to intergenic “anti-pause” enhancers and several anti-
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pause enhancers were found to contact promoters over a distance of 5-10kb [40]. BRD4 has 

been localized to enhancers genome-wide in a number of systems [41–43], suggesting that 

distal enhancers may be general regulators of RNA pol II pausing. 

Other interacting partners of the pausing complex P-TEFb also bind to distal enhancers, 

lending further support to the pause-release model of enhancer function. The effector domain 

of the transcription factor MYC can recruit Cyclin T1, a component of P-TEFb and key 

pausing regulator [44]. MYC binds to both promoters and distal enhancers [45], and therefore 

could conceivably act to regulate RNA pol II pausing from a distance. Another P-TEFb 

partner Elongin 3 (Ell3) binds enhancers in mouse embryonic stem cells (mESCs) and affects 

both RNA pol II occupancy and transcription of nearby genes [46]. Long-range pause-release 

enhancers might also be involved in the response of endothelial cells to VEGF treatment [47].  

The RNA pol II transfer model 

Enhancers can directly recruit RNA pol II and other components of the PIC [48–50]. 

Genome-wide ChIP-seq experiments have confirmed RNA pol II presence at enhancers in a 

variety of tissues, often prior to activation of target genes [51–53], and it has been proposed 

that enhancer-bound RNA pol II might be directly transferred to target promoters to activate 

their expression (Fig. 1D and [50]). Treatment with a pause-release inhibitor of pTEFB 

(flavopiridol) decreases occupancy of RNA pol II at the PSA gene, but increases occupancy 

at the upstream enhancer [54]. This suggests that blocking pause-release might prevent 

transfer of the polymerase from enhancer to promoter. Similarly, placement of an insulator 

element (a sequence capable of blocking enhancer activation) between an enhancer and its 

target promoter [55], or binding of a zinc-finger binding domain to the promoter (thus 

blocking RNA pol II elongation) [56], can also increase RNA pol II occupancy at an 

enhancer whilst decreasing promoter occupancy. RNA pol II transfer has also been observed 

between the β-globin LCR and β-globin gene in vitro [50]. Although RNA pol II transfer is 

consistent with the genome-wide presence of RNA pol II at distal enhancer elements, it so far 

lacks support as a general mechanism of enhancer function.  

Tracking model for enhancer function 

An alternative process by which RNA pol II could be delivered from enhancer to promoter 

involves RNA pol II “tracking”. In this model, RNA pol II binds to the enhancer and 
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traverses intervening DNA until it reaches the promoter (Fig. 1E; reviewed in [57, 58]). This 

mechanism has been proposed for activation of the embryonic ε-globin gene at the human β-

globin locus [59] and for activation of the PSA gene in response to hormone [60]. Unstable 

RNA transcripts have been detected from the intervening region between some enhancer-

promoter pairs, suggesting that the tracking RNA pol II is transcriptionally active [61–63]. 

Transcription of the target gene is attenuated by insertion of an RNA pol II terminator 

between the hGH LCR and the hGH promoter [63], or insertion of another gene between the 

β-globin gene and its LCR [64], lending further support to a possible pol II tracking model at 

these loci. Tracking and looping may not be mutually exclusive, as looping interactions 

between enhancer and promoter have been detected alongside RNA pol II tracking [60]. 

An intermediate between looping and RNA pol II tracking is the “facilitated tracking” model, 

in which activating proteins bind to an enhancer and are delivered to a target promoter via a 

loop that gradually expands from the enhancer to the promoter [65]. This model has been 

used to explain the crosslinking of enhancer-bound TFs to regions between an enhancer and 

promoter prior to activation [66]. Interestingly, a similar model has recently been proposed 

for the formation of topologically associated domains, large chromatin regions that 

preferentially contact themselves [67, 68]. In the loop extrusion model, chromatin loops are 

randomly formed and enlarged across the genome, but are constrained by boundary elements 

[69]. If an enhancer were positioned at such a boundary element, it could employ loop 

extrusion to “scan” surrounding chromatin for a cognate promoter (or vice versa). Whether 

enhancers are preferentially positioned at TAD boundaries is an open question, as some 

studies have reported an enrichment for H3K4me1 (a histone mark predictive of enhancers) 

at TAD boundaries [70, 71], whilst others have not [67]. 

Tracking is currently disfavoured as a general model due to the large genomic separations 

that have been observed between many enhancers and their target promoters [8]. 

Nevertheless, many enhancers are found close enough to their target genes to make use of a 

tracking mechanism, which might therefore still represent a major enhancer mechanism [58]. 

Activation of target promoters by eRNAs 

Some enhancers are divergently transcribed to produce enhancer RNAs (eRNAs) [51]. By 

targeting specific eRNAs for degradation (e.g. through siRNA treatment), several studies 

have reported that eRNA depletion reduces the transcription of nearby genes [72–79]. Levels 
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of repressive histone marks (e.g. H3K9me3 or H3K27me3) and/or total histone levels did not 

increase after siRNA treatment, suggesting that the observed effect on transcription at nearby 

genes was not a consequence of reduced transcription or decreased accessibility of chromatin 

at the enhancer element, but was instead indicative of direct functional roles for the eRNA 

transcripts themselves. Experiments so far support two possible cis-mechanisms. In the first, 

eRNAs interact directly with promoter bound components (Fig. 2A), and either recruit 

activating factors like Mediator [74] (similar to the transactivation model) or displace 

suppressive factors such as NELF [77] (similar to the pause-release model). In the second, 

eRNAs function as a “trap”, serving to increase the affinity of TFs with dual DNA/RNA 

binding ability for actively transcribed enhancer sequences (Fig. 2B and [80]). 

One important consideration is to distinguish eRNAs that act in cis, on local chromatin only 

(Fig. 2A,B), from trans-acting eRNAs that can act via free diffusion (Fig. 2C). Cis and trans 

mechanisms can be distinguished using DNA- and RNA-binding fusion proteins, which 

tether RNAs containing a specific stem-loop structure to genomic locations containing their 

DNA-binding motif [72, 75]. When expressed from a plasmid, a cis-acting eRNA will only 

activate its target genes in the presence of a tethering protein, whereas if activation occurs in 

the absence of tethering, the eRNA likely acts in trans. The eRNA upstream of the MyoD 

gene is a good example, as it can increase transcription of MyoD when overexpressed from a 

plasmid [76]. Similarly, the yeast GAL10 lncRNA activates the neighbouring GAL1 gene 

even when moved to a distant genomic location [81]. Where trans mechanisms are dominant, 

non-coding transcripts are likely to be more stable [82] and might be better referred to as 

lncRNAs rather than eRNAs. 

If expression from a plasmid is not sufficient for activation, the eRNAs in question must 

somehow remain localized at their sites of transcription. However, when the local 

concentration of eRNAs was increased locally on chromatin through depletion of the 

Integrator RNA-processing complex that interferes with eRNA termination, the transcription 

of nearby genes was reduced rather than increased [83]. It is therefore unclear whether 

transcription itself is the only anchor required to retain eRNAs at their locus of origin, or 

whether an additional mechanism is necessary for localization of eRNAs.  

In short, the causal relationship between enhancer transcription and enhancer function is 

difficult to dissect. In some cases, transcripts are clearly dispensable for gene activation [84], 

in which case the presence of RNA pol II at the enhancer may be crucial for regulatory 
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function, or may simply be a by-product of open chromatin combined with physical 

proximity to RNA pol II at the target promoter. In other cases, the transcription of the 

enhancer may be important to maintain an open chromatin state whilst the transcripts 

themselves are dispensable [85]. Multiple mechanisms might be employed by a single 

element; for example, an enhancer whose DNA sequence alone can activate target gene 

transcription might also act as the promoter of a lncRNA that has additional activating effects 

in trans. 

Enhancers as regulators of chromatin architecture 

One alternative model is that enhancers function as tethering points and are recruited to 

nuclear regions with a high concentration of activating factors [86] (e.g. transcription 

factories or splicing speckles). Because enhancers are physically linked on the same 

chromosome, the recruitment of the enhancer could pull nearby genes into the same nuclear 

neighbourhood, thereby increasing the local concentration of the transcriptional or RNA-

processing machinery around the promoter.  

Since promoters might themselves be recruited to active neighbourhoods, this model allows 

for a functional equivalence between enhancers and promoters. Indeed, enhancers can replace 

promoters to drive stable transcription of a promoterless luciferase gene [54], and weak 

promoters can act as enhancers by activating transcription of luciferase in cis in an 

orientation-independent fashion [87]. It has recently been suggested that enhancers and 

promoters might be a single class of regulatory element with the activity of any given region 

determined by its local context [88], which would fit well with a model in which enhancers 

increase the retention of their target genes in “active” nuclear neighbourhoods. 

Distinguishing between models 

Many different mechanistic models have been proposed to explain the activation of 

promoters by distal regulatory enhancers acting at the level of DNA, RNA or both (Fig. 3). 

Although some models are very similar to one another, they all make different predictions 

about key aspects of enhancer function (Table 1). Further research will be crucial to 

disentangle which models are general and which are specific to a small number of genes and 

their enhancers. 
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One potential complication is that none of the proposed models are mutually exclusive. 

Individual enhancers composed of many different binding sites might recruit multiple 

different TFs and co-factors that each makes use of a different mechanism to activate the 

expression of the target promoter. Importantly, clusters of different TF binding sites 

(heterotypic clusters) are common in metazoan genomes [89–91] and can function as 

enhancers [92]. Synthetic enhancers that bind multiple different TFs generally drive higher 

levels of reporter expression than enhancers containing the same number of sites all bound by 

the same TF [93]. Different enhancer mechanisms affect different stages of the transcription 

cycle (Fig. 3), and enhancers that utilize multiple pathways by binding multiple different TFs 

could achieve synergistic activation of the target promoter [94]. Dissecting the contributing 

mechanisms of long-range regulation is a major current challenge in deciphering mechanisms 

of disease associated with non-coding genetic mutations. 
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Table 1: Putative mechanisms of distal enhancer action. 

Model Chief support Testable predictions 

Transactivation Structural studies of TF 

effector domains in complex 

with basal transcription 

machinery 

Amino acid substitutions in TFs or PIC components that are predicted to disrupt their 

interaction interface also abrogate enhancer activity from distal locations 

Hit-and-run Presence of chromatin 

modifying enzymes at 

enhancers genome-wide 

Enhancer-promoter contacts precede promoter activation; promoter activation is 

dependent on chromatin modifiers 

Pause-release Knock-down of enhancer 

bound proteins can lead to 

RNA pol II pausing at 

promoters 

Promoters with high or low levels of RNA pol II pausing respond to different enhancers; 

depleting pause-promoting factors (e.g. NELF) can eliminate the activating effect of 

certain enhancers 

RNA pol II 

transfer 

Observation of RNA pol II 

transfer in vitro 

Individual RNA pol II molecules bind to enhancers before binding to promoters in vivo; 

enhancers are spatially proximal prior to RNA pol II transfer; preventing enhancer-

promoter proximity should diminish transfer as a function of distance; RNA pol II 

retention at enhancers should prevent recruitment to promoters. 
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Model Chief support Testable predictions 

RNA pol II 

tracking 

Detection of unstable 

transcripts between enhancers 

and target genes 

Enhancers and promoters must be oriented in the same direction. Poly(A) sites inserted 

downstream of the enhancer block gene activation; enhancer-promoter pairs do not need 

to be spatially close for RNA pol II transfer to promoter, but time of transfer should 

depend on linear genomic distance between enhancer and promoter.  

Loop extrusion Chromatin extrusion model 

can predict effects of CTCF 

site manipulation 

Enhancer-promoter interactions are dependent on the activity of a chromatin 

translocating “motor”; one partner of each enhancer-promoter pair must be positioned 

near a properly oriented CTCF site. 

Polycomb 

eviction 

Enhancer deletion can lead to 

Polycomb presence at target 

promoters 

Some enhancers only activate Polycomb repressed promoters; Polycomb clearance 

precedes promoter activation; enhancer function is dependent on the catalytic activity of 

histone demethylases/de-ubiquitinases 

cis-acting eRNA Tethering of eRNAs at target 

promoters can lead to 

activation 

eRNA target genes are dependent on the genomic location of the eRNA; promoter 

activation is dependent on eRNA, but not DNA sequence 

Relocation 

model 

Parsimonious explanation of 

enhancer, insulator and 

silencer functions 

Enhancer function is dependent on nuclear localization, and could be disrupted by 

altering tethering to nuclear landmarks 
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New assays for enhancer function 

Generalizing the mechanisms of enhancer function will require a shift from detailed, single-

gene studies, to high-throughput, massively parallel assays able to test predictions at 

hundreds or thousands of genes/enhancers at once. Technologies capable of driving this shift 

have emerged over the past five years, and have the potential to dramatically improve our 

understanding of distal enhancer function. 

High-throughput reporter assays 

One recently developed class of technique are high-throughput reporter assays that can 

measure the activity of hundreds to thousands of putative enhancer elements in a single 

experiment (Table 2; reviewed in [95–97]). These techniques can be categorized according to 

three different variables. 

First, some methods are designed to test synthetic DNA fragments of defined sequence [98], 

whereas other methods test fragments isolated from source genomic DNA [99]. Although 

synthetic approaches allow for very precise variation of the position, orientation and spacing 

of TF binding sites within enhancers, they are more expensive and limit the size of the 

fragment that can be tested. 

Second, high-throughput reporter assays can vary in the reporter used. In some cases, the 

enhancer drives expression of a unique barcode [100], which has the advantage of allowing 

the measurement of the same enhancer coupled to multiple different barcodes, but generally 

requires fragment synthesis (see above). Alternatively, the enhancer can drive its own 

transcription, allowing the identity of active enhancer elements to be determined directly by 

sequencing the RNAs produced [99]. This approach can be less expensive and less time-

consuming, but it is generally less quantitative and cannot exclude that the enhancer sequence 

affects RNA-stability. Another solution is to FACS-sort cells based on expression of a 

fluorescent reporter, and measure the enrichment of each enhancer sequence in the high-

fluorescence compared to the low-fluorescence population. FACS-based methods can be 

highly quantitative [101], but they can only be applied to cell types that are amenable to 

sorting. 
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Third and finally, many techniques test the activity of enhancers during transient transfection. 

This is the simplest and highest-throughput approach, but non-integrated plasmids may not 

replicate the full complexity of gene regulation on chromosomes. For this reason, some 

groups developed approaches where the reporter/enhancer construct is integrated into the 

genome either at random locations [102] or at a predefined “neutral” location [103]. Random 

integration is problematic, as the influence of the local chromatin structure at the integration 

site may be orders of magnitude greater than the influence of the enhancer sequence on the 

transcription of the reporter gene [104]. Integration at a defined genomic location addresses 

these issues, but remains difficult to achieve with great efficiency, and therefore limits the 

number of sequences that can be assayed in parallel. 

The application of these high-throughput reporter assays has already yielded a number of 

important insights: 

1. TF consensus motifs can be used to predict enhancer variants that affect expression 

[100, 101, 105]; 

2. Multiple binding sites for the same TF generally increase activity, and for some TFs 

single binding sites are insufficient for enhancer activity [93, 106]; 

3. The activity of identical TF binding sites can be highly dependent on local sequence 

context [106]; 

4. The activity of TF binding site clusters can be influenced by both spacing and 

orientation [93, 101, 105]; 

Massively parallel reporter assays have therefore made significant contributions to our 

understanding of how enhancers are constructed from constituent TF binding sites. However, 

creative approaches to reporter design that combine these approaches with other novel 

technologies will be required to fully exploit their potential and to dissect mechanistic 

questions about how exactly those TFs regulate the expression of target genes.  
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Table 2: High-throughput strategies for assaying enhancer activity 

Technique Source of tested sequences Expression readout Cellular location Refs 

Synthetic saturation mutagenesis Programmable microarray Barcode sequence reads in vitro [107] 

Massively parallel reporter assay 

(MPRA) 

Programmable microarray Barcode sequence reads Episomal [93, 

105, 

106] 

Massively parallel functional dissection 

(MPFD) 

Polymerase cycling assembly Barcode sequence reads Episomal [98] 

FACS-based approach Programmable microarray Enrichment of barcodes in 

FACS-sorted population 

Episomal [101] 

Cis-regulatory element analysis by 

sequencing (CRE-seq) 

Programmable microarray Barcode sequence reads Episomal [100] 

Self-transcribing active regulatory 

region sequencing (STARR-seq) 

Fragmented genomic DNA Enhancer drives its own 

expression and is sequenced 

directly 

Episomal [99] 

Enhancer-FACS-seq (eFS-seq) Individually cloned Enrichment of cis-regulatory 

element in FACS-sorted 

population 

Site-specific 

genomic 

integration 

[108] 

Thousands of reporters integrated in 

parallel (TRIP) 

Same sequence - used to test 

local chromatin effects 

Barcode sequence reads Random genomic 

integration 

[104] 
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Technique Source of tested sequences Expression readout Cellular location Refs 

Functional identification of regulatory 

elements within accessible chromatin 

(FIREWACh) 

Enzymatically accessible, 

nucleosome-free genomic DNA 

Enrichment of cis-regulatory 

element in FACS-sorted 

population 

Random genomic 

integration 

[102] 

Site-specific integration FACS followed 

by sequencing (SIF-seq) 

Fragmented bacterial artificial 

chromosomes (BACs) 

Enrichment of cis-regulatory 

element in FACS-sorted 

population 

Site-specific 

genomic 

integration 

[103] 

Capture STARR-seq (CapStarr-seq) Captured natural variants from 

patient population 

Enhancer drives its own 

expression and is sequenced 

directly 

Episomal [109] 

in situ saturating mutagenesis CRISPR/Cas9 mediated random 

mutagenesis of endogenous 

element 

Enrichment of cis-regulatory 

element in FACS-sorted 

population 

Endogenous 

location 

[110] 
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High-throughput activator bypass assays 

Another useful technique for studying TF effector domains is the activator bypass assay 

[111], where an effector domain is artificially recruited to a normally “inert” DNA sequence. 

The effect of this recruitment on the activity of a reporter gene can then quantified and 

separated from local chromatin effects. Studies utilising this technique have been particularly 

important for our understanding of transactivation [11, 12]. 

Steady improvements in cloning technology have improved the scalability of these assays. 

One recent study coupled the approach with massively parallel luciferase assays. TFs were 

recruited to reporter plasmids using a GAL4 DNA-binding domain, which allowed the effect 

of 474 different Drosophila TFs to be measured in multiple sequence contexts [112]. Local 

sequence context was found to be extremely important for TF function, and the authors were 

able to show that TFs can be functionally grouped according to their context-dependency. 

Activator bypass studies have generally examined the recruitment of TFs to promoter-

proximal sites, and have not studied effects on distal enhancers. As the techniques have 

become more affordable, it is now easier to address long-range effects. One study in yeast 

fused 223 chromatin regulator proteins to an engineered zinc-finger binding domain and 

individually recruited them to a genomically integrated reporter gene [113]. Interestingly, 

they found that some chromatin regulators have very different effects depending on whether 

they are tethered upstream or downstream of the reporter. Clearly, there is still a great deal of 

scope for the use of activator bypass strategies to dissect the effects of local chromatin 

environment and genomic distance on the regulation of endogenous genes. 

Applications for CRISPR-Cas9 

The key principle of CRISPR-Cas9 technology is that a single guide RNA (sgRNA) 

complementary to a given genomic region can target Cas9 nuclease to that location and 

induce a DNA double strand break. CRISPR-Cas9 has been used to screen large numbers of 

putative enhancers for activity in their endogenous context [114]. The first high-throughput 

reporter assays measured the effect of all possible nucleotide substitutions on an enhancer in 

vitro [107], but tiling libraries of sgRNAs can now be used to perform saturating mutagenesis 

directly on endogenous enhancers in vivo [110]. Instead of random mutagenesis, multiplex 

homology-directed repair can be used to replace an endogenous sequence with thousands of 
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synthetically designed variants [115]. In the future, this approach could be used to test the 

effect of systematically deleting, inverting or moving single TF binding sites on endogenous 

enhancers. 

The development of catalytically inactive Cas9 (dCas9) has begun to transform CRISPR into 

a general technology for recruiting molecules of interest to endogenous genomic loci in vivo, 

as dCas9 fusion proteins can be targeted to specific loci without inducing double strand 

breaks. Fusing dCas9 to fluorescent proteins has been successfully used to advance imaging 

of transcription [116] and the positions of specific DNA loci [117]. The technology can be 

further improved by extending the sgRNA so that it protrudes from the Cas9 complex and 

exposes one or more RNA hairpins, which can then be bound by fluorescent proteins fused to 

RNA-binding proteins, allowing multi-colour imaging of different loci [118]. These 

approaches are compatible with live-cell imaging, and may therefore provide the temporal 

resolution necessary to distinguish hit-and-run mechanisms for enhancer action from the 

more widely accepted transactivation model. 

Cas9 can also be fused directly to TFs, providing an effective way to increase the throughput 

of activator bypass assays, and allowing the recruitment of single effector domains [119] or 

combinations of effectors [120] to endogenous loci or integrated reporter genes. sgRNAs can 

be extended by fusion with endogenous lncRNAs, effectively tethering these RNAs to 

specific loci [121], providing a tool to help distinguish cis-acting and trans-acting eRNAs. 

Importantly, all CRISPR-Cas9 systems greatly advance our ability to examine genomic 

distance effects, as sgRNAs can be easily replaced to perform the same experimental 

manipulation at multiple different genomic locations. 

Further combining CRISPR-Cas9 based approaches with massively parallel reporter assays 

could enable even greater experimental throughput. For example, an sgRNA library could be 

used to tether a given TF at thousands of locations surrounding an integrated reporter gene. 

Loci that function as enhancers after the addition of a single TF could then be identified by 

sorting cells based on expression of the reporter and determining which sgRNAs were 

enriched in the high-expression population. Such combined approaches have enormous 

potential and could transform our understanding of how enhancers regulate the expression of 

their target genes over the next decade.  
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Conclusions 

Since the discovery of enhancers over 30 years ago, many models have been proposed to 

explain how enhancers activate transcription of their target genes. The lack of understanding 

about which of these are general models impedes the ability to predict how disease-linked 

non-coding sequence variants will affect the expression of surrounding genes. The proposed 

mechanisms of enhancer action make different predictions about the activities of proteins 

involved in transcription, and about the likely dynamics and specificity of enhancer-promoter 

interactions. New technologies including CRISPR-Cas9 tethering and live-cell imaging of 

chromatin dynamics will be critically important for testing these predictions, and will pave 

the way for new treatments based upon enhancer biology. 
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A number of mechanisms have been proposed to explain how enhancers activate transcription 

of their target genes. A: In the transactivation model, transcription factors (TFs) stimulate 

transcription through interactions with components of the RNA pol II pre-initiation complex 

(PIC) bound to the gene promoter. Transactivation is well established for TFs that bind 

directly to proximal promoter sequences (left) but poorly studied for TFs that bind to distal 

enhancers (right). B: In the “hit and run” model, TFs recruit co-activators to enhancer 

sequences. When the enhancer contacts its target gene, the co-activator is able to generate an 

open chromatin environment at the promoter. C: In the pause-release model, TFs or 

enhancer-bound co-activators contact target gene promoters and evict pausing factors, 

allowing RNA pol II to enter into productive transcript elongation. D: In the “polymerase 

transfer” model, RNA pol II bound to the enhancer is physically transferred to a target gene 

promoter. E: RNA pol II loaded at enhancers could locate their target promoters by 

transcribing through the intervening DNA sequence. The transcripts made during this process 

must either be degraded co-transcriptionally or cleaved once the promoter is reached. The 

polymerase could then re-initiate transcription from the gene promoter, or continue 

transcribing without re-initiation (which would require a distinct mechanism for capping the 

mRNA transcript). 
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Figure 2 

 

Transcripts produced from enhancers (eRNAs) might function through cis-acting 

mechanisms or through trans-acting mechanisms. A: Following enhancer-promoter looping, 

an eRNA could stimulate transcription by interacting directly with components of the RNA 

pol II pre-initiation complex (PIC). B: Alternatively, the RNA transcript might bind to an 

RNA- and DNA-binding TF, functioning as a “trap” to stabilize the interaction of the TF with 

its binding site within the enhancer. C: eRNAs could act in trans by freely diffusing from the 

enhancer, followed by recruitment to their target promoter.  
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Figure 3 
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Top: The regulatory information encoded in an enhancer is “read” by binding of TFs or 

transcriptional co-activators either directly to DNA (left), to transcribed eRNA (right) or to 

both (far right). Each of these possibilities has distinct implications for the activation of target 

promoters by the enhancer. Bottom: Enhancers can influence gene expression of target genes 

by affecting different stages of the transcription cycle. Thus far, studies have suggested that 

enhancers increase the rates of PIC recruitment, transition from paused state to elongation 

and elongation itself. Theoretically, enhancers could also affect later steps in the transcription 

cycle (such as polyadenylation and/or termination), although such effects are yet to be 

observed. 
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