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Cachexia is a life threatening syndrome associated with
several diseases, such as end-stage heart failure, end-stage
renal disease, chronic obstructive pulmonary disease,
chronic inflammation (i.e. rheumatoid arthritis), acquired
immune deficiency syndrome, and cancer.1,2 Cachexia is
found in 31–87% of cancer patients especially in advanced
disease stages.3 It is characterized by progressive weight
loss, metabolic alterations, fatigue, and persistent reduc-
tion of body cell mass in response to a malignant tu-
mour.2,4–6 The incidence of cachexia in cancer patients is
dependent on the type and site of the tumour. While pa-
tients with non-Hodgkin’s lymphoma, breast cancer, and
sarcomas show low incidences, rates up to 83% in pancre-
atic cancer patients, and over 85% in patients with gastric
cancer have been found. Additionally, around 60% of
small-cell and non-small-cell lung cancer patients develop
cachexia.7–9 Cancer cachexia affects the function of several
organs such as muscle, adipose tissue, liver, brain, immune
system, and heart, collectively decreasing patients’ quality
of life and worsening their prognosis. Therefore, cachexia
must be considered as a true multi-organ syndrome.10

Because cancer cachexia leads to a decrease in physical
performance and quality of life,11 and is associated with
poor survival (accounting for more than 20% of cancer
deaths,7,12–15) it is of major clinical relevance. Even more
so since cachectic patients show lower response rates to
chemotherapy7 and a reduced tolerance to anticancer
treatment.16 Despite its importance, weight loss in cancer
patients is rarely recognized, assessed,17 or treated
actively.18,19 Thus, cancer cachexia represents an impor-
tant underappreciated clinical syndrome.

Muscle wasting is a major constituent
of cancer cachexia

Cancer cachexia involves similar losses of muscle and adipose
tissue and on a simplistic way, one could assume that this as-
sures survival of the general organism. However, this re-
sponse differs from starvation induced cachexia where the
majority of weight loss is from adipose rather than muscle tis-
sue.5,20,21 In cancer cachexia, skeletal muscle wasting cannot
be reversed by nutritional intervention arguing for cancer-
specific signals that are involved in its pathogenesis. The loss
of muscle mass is accompanied by decreased strength, which
is responsible for most of the cancer cachexia-associated
symptoms, and increased mortality and morbidity of pa-
tients.22,23 Wasting not only involves skeletal but also chest,
diaphragm, and cardiac muscle leading to fatigue and respira-
tory complications.3 In fact, the majority of cancer deaths are
related to respiratory24 or cardiac failure.25 Therefore, treat-
ments capable to slow down, stop or even reverse muscle
wasting in cancer cachexia may be beneficial for cancer pa-
tients in terms of physical independence, quality of life, toler-
ance to and sensitivity to anticancer treatments, and possibly
reduce morbidity and mortality. However, despite its clinical
importance and the foreseen impact for patients, the patho-
physiology of cachexia-associated muscle wasting is still
poorly understood preventing the development of specific
therapies. Because maintenance of skeletal muscle mass
and function is assured by a well-regulated balance of protein
synthesis and degradation, a disturbed protein homeostasis
with increased degradation and or decreased synthesis is a
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major contributor to muscle wasting in cancer.26 Increased
protein degradation is caused by an elevated activity of mus-
cular protein degrading systems predominantly the ubiquitin-
proteasome system (UPS), which plays an important role in
cancer patients experiencing weight loss.8

Protein degradation is important for
skeletal muscle wasting in cancer

The UPS is the main protein degrading system in eukaryotic
cells.27 It mediates the degradation of misfolded and mutated
proteins as well as many proteins involved in the regulation
of development, differentiation, cell proliferation, signal
transduction, and apoptosis.28–30 Activation of the UPS in
skeletal muscle leads to degradation of structural and con-
tractile proteins, most notably myosin heavy chain,31,32

resulting in atrophy and decreased muscle function.33 Pro-
teins targeted for proteasomal degradation are ubiquitinated
by a hierarchical-ordered series of enzymes, including the
ubiquitin-activating enzyme E1, ubiquitin-conjugating en-
zyme E2, and the ubiquitin E3 ligases, which allow the
targeted proteins to be recognized by the 26S proteasome,
a multi-subunit protease complex composed of the 20S cata-
lytic core and 19S regulatory particles.28,29,34 Substrate spec-
ificity of the UPS is assured by E3 ligases and substrate
adaptor proteins.35,36 In many models of cachexia, including
cancer, UPS activation is thought to mediate muscle atro-
phy.37 During tumour cachexia, the UPS is up-regulated in
skeletal muscle with an increased expression of the E3 ligase
muscle-specific RING-finger 1 (MuRF1) and the substrate
adaptor protein FBXO32/Atrogin-1.38 In a rat model of ca-
chexia, induced by the Yoshida ascites hepatoma cells, UPS
up-regulation was associated with increased Fbxo32/
Atrogin-1 gene expression39 and increased protein
ubiquitination.39 This UPS activation in tumour-bearing mice
is mediated by an increased activity of the transcription
factor nuclear factor kB (NF-kB), which stimulates MuRF1 ex-
pression and muscle wasting.40

Communication between tumour and
host

It remains uncertain how tumour cells communicate with the
host to induce cancer cachexia. The often anatomically dis-
tant locations between the tumour and the wasting muscula-
ture are suggestive for a signal released into the hosts’
circulation by the tumour to cause muscle wasting in ca-
chexia. Especially, chronic inflammation with elevated levels
of circulating inflammatory cytokines is consistently observed
in cachectic cancer patients.40 Because chronic inflammation

affects the function of several tissues (i.e. skeletal muscle, fat,
brain, and liver) it is an important cause of cancer cachexia.41

Among the best studied inflammatory cytokines promoting
cachexia are tumour necrosis factor alpha (TNFα), interleu-
kin-6 (IL-6),42 interleukin-1 (IL-1), and interferon gamma.43

These cytokines are elevated in cancer44 and may together
trigger muscle wasting, probably by increasing NF-kB or by
causing the release of other cytokines.45,46 For example,
TNFα, initially named cachectin,47 promotes anorexia48 and
skeletal muscle wasting mainly through activation of the
NF-kB pathway.49 Therefore, it has been tested if TNFα block-
ade is beneficial to prevent cancer cachexia. Indeed, TNFα
blockade improved cachexia-associated fatigue in a small
group of cancer patients.50 However, in recent randomized
controlled clinical trials anti-TNFα therapies using either the
TNFα receptor–blocker etanercept in patients with incurable
malignancies51 or the TNFα-specific monoclonal antibody
infliximab in patients with metastatic non-small-cell lung can-
cer52 did not prevent or palliate weight loss or muscle atro-
phy. Instead, infliximab increased fatigue and adversely
affected patients’ quality of life.52 These data suggest that
targeting TNFα alone is not sufficient to prevent cachexia.
IL-6 and IL-1 are up-regulated in animal models of cancer ca-
chexia,53 and IL-6 levels correlate with weight loss in certain
human cancers.54 Interestingly, cancer cachexia can be atten-
uated in an adenocarcinoma mouse model treated with anti-
IL-6 antibodies.55 However, if this strategy prevents muscle
wasting in cancer patients needs to be shown.

As mentioned earlier, NF-kB is a key regulator of inflamma-
tory responses and involved in muscle atrophy.40,56,57 In the
majority of cells, NF-kB exists in an inactive form in the
cytoplasm bound to the inhibitory protein IkB. When stimu-
lated with inflammatory cytokines (i.e. TNFα, IL-1, and IL-6),
NF-kB is activated by degradation of IkB proteins. This occurs
primarily via activation of IkB kinase, which phosphorylates
IkB. IkB phosphorylation leads to its ubiquitination and degra-
dation by the proteasome.58 This allows free NF-kB to trans-
locate to the nucleus and to stimulate the expression of its
target genes.59 Because NF-kB activation is important for
muscle atrophy, many approaches were undertaken to re-
duce its activity. In mouse muscles, miss-expression of IkB
to inhibit NF-kB reduced neurogenic atrophy in tumour-bear-
ing mice.40 In mice lacking IkB kinase-β, neurogenic atrophy
was also attenuated.56 Synthetic double-stranded
oligodeoxynucleotides, which block NF-kB binding to pro-
moter regions has been shown to inhibit cachexia in a mouse
tumour model.60 Importantly, proteasome inhibitors inter-
fere with the NF-kB pathway because they inhibit IkB degra-
dation, which in turn prevents NF-kB activation.61 Because
MuRF1 and FBXO32/Atrogin-1 are NF-kB target genes, pro-
teasome inhibition is expected to prevent muscle atrophy
by maintaining NF-kB in an inactive state, and thus
preventing up-regulation of MuRF-1 and FBXO32/Atrogin-1.
Indeed, the proteasome inhibitor MG132 was shown to
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attenuate immobilization-induced atrophy. Likewise, the pro-
teasome inhibitor bortezomib has been shown to reduce
neurogenic atrophy.62

Proteasome inhibition as strategy to
treat cancer cachexia

Several groups investigated if UPS inhibition is beneficial to
prevent muscle atrophy in different mouse models. For this
approach, mainly two-specific, potent and reversible protea-
some inhibitors, MG132 and bortezomib, were used. Both
compounds inhibit degradation of ubiquitin-conjugated IkBα
resulting in suppression of the NF-kB signalling pathway.63

In addition, bortezomib and MG132 reduce proteolysis in
skeletal muscle in vitro64,65 and prevented muscle mass loss
in an in vivo rat model of skeletal muscle wasting induced
by denervation and cast immobilization of the hind limb.62,66

MG132 was shown to preserve muscle and myofiber cross-
sectional area by down-regulating MuRF-1 and Fbxo32/
Atrogin-1 mRNA in a mouse model of hind limb-immobiliza-
tion resulting in a diminished rehabilitation period.67 In addi-
tion, an increased proteasome activity was found in a mouse
model for Laminin-deficient congenital muscular dystrophy
type 1A (MDC1A). Administration of MG132 increased
lifespan, enhanced locomotive activity and enlarged muscle
fibre diameter in MDC1A mice.68 Bortezomib had also bene-
ficial effects in the MDC1A mouse model and in MDC1A pa-
tient cells.69 To this end, it was feasible to assume that
proteasomal inhibition could be useful to block muscle
wasting in cancer cachexia. This hypothesis was subsequently
tested by Penna et al. who report their findings in this issue
of the Journal.70 Penna et al. investigated if bortezomib at-
tenuates skeletal muscle wasting in two different and well-
established animal models of tumour-induced muscle
wasting.70 Cancer cachexia was induced by intraperitoneal in-
jection of Yoshida AH-130 ascites hepatoma cells in rats and
by subcutaneous inoculation of C26 carcinoma cells in mice.
As expected, bortezomib reduced proteasome activity on
day 7 after transplantation of AH-130 tumour cells in the skel-
etal muscle, which was accompanied by a decreased NF-kB
DNA-binding activity indicating that animals were effectively
treated. However, bortezomib administration did not prevent
body weight loss and muscle wasting in the AH-130 host rats.
It also did not affect MuRF1 and Fbxo32/Atrogin-1 expres-
sion. Likewise, bortezomib did not prevent body and muscle
weight loss 12 days after tumour implantation in C26-bearing
mice. These data together with the published body of evi-
dence indicate that the pathophysiology of cancer cachexia
possibly involves additional NF-kB- and proteasome-indepen-
dent protein degrading systems, such as autophagy and
calpain proteases. For example, the autophagy pathway is ac-
tivated in atrophying muscle of cancer patients.71–73 In a

small cohort, lung cancer patients presented increased levels
of the autophagy mediators BCL2/adenovirus E1B 19 kDa
interacting protein 3 and light chain 3B, and the transcription
factor FOXO1, which promotes autophagy.71 Similarly, in an-
other study performed on esophageal cancer patients vs.
weight-stable non-cancerous control patients, autophagy
was identified as the main promoter of skeletal muscle prote-
olysis.74 Also calpain proteases have been proposed to initi-
ate protein degradation during cachexia;75,76 however,
limited information concerning their role in muscle wasting
is available.39 Of note, in contrast to the data of Penna et al.,
the proteasome inhibitor MG132 was found to attenuate
weight loss and muscle atrophy, and increased spontaneous
activity and survival time in a C26-tumour-induced cancer ca-
chexia mouse model.77 Together with other studies in which
treatment with MG132 was shown to be effective in
preventing muscle dystrophy,78 disuse-induced atrophy,67

and immobilization-mediated skeletal muscle atrophy,79

these data indicate that MG132 could be useful to prevent
cancer cachexia. However, MG132 also inhibits cathepsin
and calpain proteases,80 which might partially explain its
favourable treatment effects and the differences between
MG132 and bortezomib used by Penna et al.. Therefore,
the individual contribution of specific protein degrading sys-
tems and proteases in cancer cachexia as well as the effect
of their inhibition as treatment option needs to be defined.
In addition, MG132 also reduced the tumour burden with a
reduction in tumour volume and weight.77 Because tumours
seem to interact with the host by factors that induce muscle
wasting a reduction in tumour size will also lead to their de-
crease, which may result in less wasting. Therefore, it is diffi-
cult to decide if proteasome inhibition by MG132 in muscle
or in the tumour or both together reduced the occurrence
of cancer cachexia in this mouse model. A side-by-side com-
parison of bortezomib and MG132 in C26-bearing mice could
show if this accounts for the differences of both studies.

In addition, despite the large body of evidence supporting
the UPS as a major driver of muscle atrophy in animal models
investigations of UPS components or activity in patient mate-
rial are non-conclusive. Studies including patients with critical
illness, following bed rest, limb immobilization, COPD, and
ageing have demonstrated both increased and decreased ex-
pression of MuRF1 and FBXO32/Atrogin-1.81–84 Of note, there
is no convincing evidence for increased UPS-mediated prote-
olysis in skeletal muscle biopsies of cachectic cancer pa-
tients.71,85 Investigations of UPS activity in biopsies of the
quadriceps muscle have shown similar levels to healthy con-
trols in patients with lung cancer and weight loss below
10%.85 Another study in lung cancer patients with low weight
loss found no changes in UPS components.86 In contrast, in
gastric cancer patients with average weight loss of 5%, in-
creased UPS activity was measured compared with con-
trols.87 These data implicate that there are certain forms of
muscle atrophy and forms of cancer cachexia, respectively,
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where UPS-mediated proteolysis is not the main pathway in
the disease process and proteasome inhibition will therefore
not be able to attenuate the atrophy response. This hypoth-
esis is strengthened by data from non-cancer patients and an-
imal models. For example, the UPS is activated in muscle of
patients with intensive care unit-acquired weakness81 and
mice with polymicrobial sepsis.88,89 Accordingly, mice ex-
posed to endotoxin, a cell wall component of gram-negative
bacteria, display enhanced proteolytic activity in the
diaphragm leading to a reduction in muscle mass, force,
and protein content. However, proteasome inhibition of
endotoxin-treated mice did not prevent reductions in dia-
phragm-specific force generation indicating that inhibition
of proteasome-mediated proteolysis alone does not prevent
endotoxin-induced reductions in diaphragm force genera-
tion.90 These data indicate that proteasome inhibition is not
effective in each and every model of muscle atrophy.

In general, bortezomib is well tolerated by patients. Never-
theless, it is associated with some toxicity, such as nausea, di-
arrhoea, fatigue, and generalized weakness. Indeed,
proteasome inhibition is a double-edged sword as the protea-
some mediates degradation of a multitude of proteins
involved in critical biological processes and its inhibition pos-
sibly promotes protein accumulation that may cause
proteotoxic effects. Penna et al. described that bortezomib
exerted a transient toxicity, which led to a reduced food in-
take in their animals.70 Because food deprivation increases
MuRF1 and Fbxo32/Atrogin-1 expression and causes muscle
atrophy,89 this side effect is important for data interpreta-
tion. Even if bortezomib would have inhibited cachexia, the
treatment-associated reduced food intake could have
counteracted this effect.

Finally, caution is needed when interpreting animal models
of cancer cachexia to the true cachexia phenotype in patients.
Penna et al. used well-established models of cancer cachexia.
However, these models do have their limitations; the young
age and rapid progression of inoculated tumour cells are only
few of them. Furthermore, analysis 7 days after injection of
AH-130 cells and 12 days after C26 transplantation, respec-
tively, argues for an acute cachexia model. These points do
not reflect the clinical situation in tumour patients where ca-
chexia develops over a longer period in mainly older patients.
Further studies also need to consider that cancer cachexia is a
continuum with at least three stages of clinical relevance in-
cluding pre-cachexia, cachexia and refractory cachexia.91

Cancer cachexia is a multifactorial
syndrome

In conclusion, we need to realize that not a single cytokine or
signalling pathway is responsible for cancer cachexia; it is
rather caused by a multitude of factors and signalling

pathways that we only begin to understand. Therefore, it is
unlikely that treatments targeting only one aspect of the syn-
drome, such as the proteasome or individual cytokines, will ef-
fectively block its pathogenesis or progression. Cachexia itself
is a multifactorial syndrome that might phenotypically appear
similar. However, the appearance of a patient does not pro-
vide mechanistic information. The path towards the cachectic
phenotype is most likely different for various tumour types.
When the pathway responsible for the cachectic phenotype
is uncertain, it is difficult to develop or apply the right treat-
ment. The data from Penna et al. should encourage us to look
into proteasome- and NF-kB-independent signalling path-
ways involved in cancer cachexia and identify novel targets
to treat this syndrome. Further studies are needed to eluci-
date precise signalling pathways involved in cancer cachexia;
and first steps towards this direction are already being
taken.92,93 Some of the factors increased in cancer cachexia,
such as angiotensin II,94 and the transforming growth factor
beta family members myostatin95 and activin A,96 have al-
ready been identified. Especially, myostatin and activin A
are up-regulated in patients with various types of malignan-
cies (for a review, see97). Myostatin inhibits muscle growth
and its overexpression promotes it.98 Therefore, inhibition
of myostatin–activin A signalling is an attractive therapeutic
target for treatment of cancer-associated muscle wasting. In-
deed, blockade of activin receptor IIB (ActRIIB), the receptor
for activin A and myostatin and other transforming growth
factor beta family members, was sufficient to prevent
cachexia, increased muscle function and even prolonged sur-
vival in several cancer cachexia mouse models.99,100 This
study showed that inhibition of cachexia has direct impact
on cancer death.99 If myostatin inhibitors are beneficial as
therapies for cancer, associated muscle wasting is currently
being tested in clinical trials. Further mechanisms, which
are involved in the pathogenesis of cancer cachexia include
growth differentiation factor-15, macrophage inhibitory cyto-
kine-1,101,102 leukaemia inhibitory factor,103 Fn14,104 signal
transducer and activator of transcription 3,105 parathyroid
hormone-related protein,106 and histone deacetylases;107

and this list is steadily increasing.92,93 Future studies need
to be performed in a tumour-specific and disease stage-de-
pendent manner to answer the question why certain cancers
are more prone to cause cachexia than others, and to identify
tumour-specific differences in cachexia pathways. Informa-
tion gained by those studies will be useful to develop target
and disease stage-specific treatments. Although animal
models are useful in this regard they may or may not reflect
the situation in patients at advanced tumour stages, and we
need to appreciate this limitation cautiously. Results from
treatment studies on cachexia animal models that could not
be successfully confirmed in patients should encourage us
to intensify collaboration between clinicians and basic scien-
tists to promote patient-based research and to tackle this
life-threatening syndrome.
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