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Energy efficiency trade-offs drive nucleotide usage
in transcribed regions
Wei-Hua Chen1,2,w, Guanting Lu1, Peer Bork2,3, Songnian Hu1 & Martin J. Lercher4

Efficient nutrient usage is a trait under universal selection. A substantial part of

cellular resources is spent on making nucleotides. We thus expect preferential use of

cheaper nucleotides especially in transcribed sequences, which are often amplified

thousand-fold compared with genomic sequences. To test this hypothesis, we derive a

mutation-selection-drift equilibrium model for nucleotide skews (strand-specific usage of ‘A’

versus ‘T’ and ‘G’ versus ‘C’), which explains nucleotide skews across 1,550 prokaryotic

genomes as a consequence of selection on efficient resource usage. Transcription-related

selection generally favours the cheaper nucleotides ‘U’ and ‘C’ at synonymous sites. However,

the information encoded in mRNA is further amplified through translation. Due to unexpected

trade-offs in the codon table, cheaper nucleotides encode on average energetically more

expensive amino acids. These trade-offs apply to both strand-specific nucleotide usage and

GC content, causing a universal bias towards the more expensive nucleotides ‘A’ and ‘G’ at

non-synonymous coding sites.
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B
iochemical energy in the form of adenosine triphosphate
(ATP) is a central cellular currency. While some environ-
ments provide energy in excess that needs to be dissipated

in energy-spilling reactions1, most organisms are likely under
strong selection for efficient energy usage; many microbes even
live under extreme energy limitation2. Universal resource-saving
measures have been observed to shape various genomic aspects;
for example, highly expressed proteins are shorter3,4 and use
cheaper amino acids5–8 than lowly expressed proteins, and
microbes preferentially use cheaper amino acids in excreted
proteins9.

Prokaryotes spend a substantial fraction of their production
capacities on making nucleotides—about 13% of Escherichia coli
glucose consumption is channelled into making nucleotides (see
the ‘Methods’ section). The synthesis of the five nucleotides
adenine, cytosine, guanine, thymine and uracil (A, C, G, T and U,
respectively) requires different amounts of energy and nitrogen:
de novo production costs are A4U/T, G4C and GþC4AþT/
U (see the ‘Methods’ section)10. We expect selection to favour the
use of the cheaper over the more expensive nucleotides.

Resource availability varies strongly across environments. That
genome composition is under environmental influence is
illustrated by a systematic variation of GC content11 and
synonymous codon usage12 across metagenomics data sets from
different sources, and by the observation that obligatory
pathogens or symbionts tend to be GC poor13. While these
previous observations were hypothesized to result from
mutational biases11 and host/symbiont competition13,
respectively, they may well be a consequence of variable
strength of selection on efficient resource usage.

RNA transcripts are often amplified many thousand folds
compared with genomic DNA; E. coli, for example, spends six
times as much cellular resources on making RNA than on making
DNA (see the ‘Methods’ section). We thus hypothesized that
selection for cheaper nucleotides should be most easily detected
by comparing transcribed with non-transcribed DNA. Moreover,
the fact that usually only one strand is transcribed provides a
natural control for GC content when contrasting the transcribed
with the complementary untranscribed strand; this approach is
equivalent to considering the nucleotide ‘skews’ of A versus T and
G versus C in transcribed sequences. We predict that transcribed
sequences should preferentially use the cheaper nucleotides T/U
and C over their respective complementary nucleotides on the
strand that corresponds to the RNA produced (that is, the ‘sense’
stand).

Nucleotide skews have also been observed in non-transcribed
DNA. No single satisfactory explanation of skews and their
diversity exists14; prokaryotic skews were predominantly
attributed to mutational biases associated with the mechanics of
leading and lagging strand replication15,16. To quantify any
selection on nucleotide usage associated with transcription, we
thus need to disentangle replication-associated mutational skew
contributions from the contributions caused by transcription-
associated selection.

Here, we derive a mutation-selection-drift model for nucleotide
skews and apply it to different types of sites across 1,550
prokaryotic genomes. At fourfold-degenerate sites on coding
strands, selection favours cheaper nucleotides, as predicted. At
non-synonymous (NS) sites, cheaper nucleotides tend to encode
more expensive amino acids; here, selection on amino acid cost
prevails, resulting in a strong preference for more expensive
nucleotides. We thus provide a unified model for the evolutionary
causes of site-type-specific nucleotide skews in prokaryotes. The
observed patterns are consistent with strong and ubiquitous
selection due to the energetic cost of nucleotides and amino acids,
but cannot be explained by mutational biases.

Results
Strand identity and the definition of nucleotide skews. There
are two different relevant definitions of strand identity: the
mutational effects of replication depend on the strand’s position
relative to the origin of replication (leading versus lagging), while
the effects of transcription-associated selection depend on the
local direction of transcription (Supplementary Fig. 1). We define
AT skew, gAT, as the fraction of A minus the fraction of T among
all AT basepairs at the strand and type of site considered; like-
wise, GC skew, gGC, is the fraction of G minus the fraction of C
among all GC basepairs. Thus, if g is the site-type-specific skew
on one strand, then � g is the skew on the complementary DNA.
In the absence of systematic biases, we expect g¼ 0. The
hypothesis of synthesis cost-driven nucleotide usage bias predicts
negative AT and GC skews on sense strands, as A and G are more
expensive than T/U and C, respectively (see the ‘Methods’ sec-
tion, Supplementary Data 1)10.

A mutation-selection-drift model for nucleotide skews. We
initially focus on fourfold-synonymous (4s) sites of protein-
coding genes, where nucleotides can change without compro-
mising the protein function. We assume that GC and AT
basepairs are at equilibrium, and only consider mutations that
convert A2T and G2C.

Let u be the mutation rate from C to G on the leading strand
(predominantly caused by replication), and v the corresponding
mutation rate from G to C, each measured per site and per
generation. At 4s sites, we need to combine mutational biases
with selection on nucleotide usage. Let s be the fitness difference
between alleles G and C at a given site. Mutation rates are likely
much lower than the inverse effective population size, 1/Ne, for
most prokaryotes17, and thus most sites are fixed at one
nucleotide18. A standard population genetics model18 (see see
the ‘Methods’ section for details) then predicts the skew on the
leading strand as:

gleadðSÞ ¼
eSu� v
eSuþ v

; ð1Þ

where S¼ 2Nes with effective population size Ne. On the lagging
strand, u and v switch places, and thus

glag Sð Þ ¼ eSv� u
eSvþ u

¼ � gleadð� SÞ: ð2Þ

For non-transcribed sites, we assume that S¼ 0, and we
obtain¼ m , with the relative skew in mutation rates m ¼ u� v

uþ v.
Thus, the skew expected due to mutational biases alone equals the
relative difference in mutation rates. The same equations hold for
AT skew if we interpret u as the mutation rate from T to A on the
leading strand, v as the reverse mutation rate from A to T, and s
as the selection coefficient favouring A over T in transcribed
sequences. Supplementary Figure 2 shows the dependence of g on
S for different values of m.

If the scaled selection coefficient is small (So1), selection on
individual sites is weak and correspondingly hard to detect.
However, when pooling many genomic sites, as done for the
calculations of g, we gain the statistical power to detect even
relatively small values of S.

We assume that the mutational bias m of non-transcribed DNA
is constant within any given genome, although it may vary
between genomes, for example, due to differences in repair
enzymes. An interaction between transcription and replication
(caused, for example, by collisions between the replication and
transcription machineries) may lead to an amplification of the
mutational bias in transcribed sequences, quantified by an
amplification factor t; we assume that t is a global, species-
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independent constant determined by basic cell biology. This
assumption of a species-independent amplification factor is
supported by a strong linear relationship between estimates of
mutational bias for non-transcribed and transcribed sequences
(see below). In a first approximation, we also assume that the
scaled selection coefficient S is a genome-wide constant
independent of transcription rate (see below for an analysis that
explicitly considers transcription rates).

Selection at 4s sites across prokaryotes. To test our hypothesis of
global selection on nucleotide usage in transcribed DNA, we
applied this mutation-selection equilibrium model to 1,550 fully
sequenced prokaryotic genomes. To ensure that our results are
not biased by an uneven representation of different phylogenetic
clades in public databases, we repeated all analyses on a subset of
344 phylogenetically evenly distributed genomes19, with
essentially identical results (Supplementary Figs 3–5 and
Supplementary Data 2). For each genome, we estimated the
mutational bias caused by replication, mio, as the skew calculated
across non-transcribed (interoperonic) regions (Fig. 1; see the
‘Methods’ section). In agreement with earlier observations20, we
find that mutational biases at AT sites on the leading strand are
skewed towards T, while those at GC sites are skewed towards G
in most prokaryotic genomes: 559 (36.1%) of the 1,550 genomes
examined show a higher mutation rate from A to T than vice
versa, and 1,456 genomes (94.0%) show a higher mutation rate
from C to G than vice versa (Fig. 1).

Contrasting skews across all leading-strand 4s sites (glead) and
across all lagging-strand 4s sites (glag) in each genome
(Supplementary Data 3 and Supplementary Figs 6–8), we

calculated amplified mutational biases for transcribed sequences,
m4s (see see the ‘Methods’ section):

m4s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ glead
1� glead

� 1� glag

1þ glag

q
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ glead
1� glead

� 1� glag

1þ glag

q
þ 1

: ð3Þ

As expected from the assumption of a species-independent
amplification of mutational biases in transcribed sequences, we
found that the two measures of replication-associated mutational
biases derived from non-transcribed and from 4s sites are highly
correlated (AT skew: Fig. 2a, Pearson’s r¼ 0.781, Po10� 15 after
controlling for phylogenetic relatedness using independent
contrasts21; GC skew: Fig. 2b, R¼ 0.900, Po10� 15; see
Supplementary Figs 6–8 for the raw skews). From these
correlations, we determined the global amplification factors
tAT¼ 1.62 (95% confidence interval¼ 1.54–1.71) and
tGC¼ 1.47(95% confidence interval (CI)¼ 1.44–1.49).

We then used these global amplification factors to approximate
the replication-associated mutational bias at 4s sites, m4s, for each
genome from the interoperonic estimate. This allowed us to
estimate the transcription-associated scaled selection coefficient
S¼ 2Nes independently from operons encoded on leading and
lagging strands, by solving equations (1) and (2) for S:

Slead ¼ log
1� m4s

1þ m4s
� 1þ glead

1� glead

� �
ð4Þ

Slag ¼ log
1þm4s

1�m4s
�

1þ glag

1� glag

 !
: ð5Þ

These two estimates are again highly correlated (AT skew: Fig. 2c,
r¼ 0.768, Po10� 15; GC skew: Fig. 2d, r¼ 0.840, Po10� 15).
The correlations between the independent estimates for S from 4s
sites on leading and lagging strands are much stronger than those
of the raw observed skews at these sites (r¼ 0.502 and 0.392 for
AT and GC skews, respectively), thus supporting the validity of
our model.

As expected from the hypothesis of preferential usage of
cheaper nucleotides in transcribed sequences, we find that S is
predominantly negative: in the vast majority of the 1,550 studied
prokaryotes, the cheaper bases T/U and C are favoured by natural
selection relative to their respective complementary bases A and
G (Fig. 1; AT skew: So0 for 1,421 genomes (91.7%); GC skew:
So0 for 1,108 genomes (71.5%); Po10� 15 from binomial test in
each case, also when considering only the subset of phylogeneti-
cally evenly distributed species, see the ‘Methods’ section).

For GC skew, the observed distribution is consistent with the
proposal of a substitution model that incorporates an avoidance
of C in transcribed sequences22. The proposed avoidance of C was
interpreted as a response to the different cellular concentrations
of the nucleotides: ATP44GTP4UTP4CTP; this argument
cannot be extended to explain the observed dearth of A versus T,
and we thus conclude that the need for an additional ‘avoidance’
term in the substitution model22 was caused by selection for
efficient energy usage.

Using tRNA adaptation index (tAI)23,24 as a proxy for gene
expression level, we found that T/U and C become more strongly
favoured with increasing expression level (Fig. 3a), as expected
due to the stronger amplification of more highly expressed
sequences and a resulting stronger selection for cheaper
nucleotides.

Selection trade-off at NS sites. So far, we have only considered
the nucleotide skews caused by two of the three fundamental
processes covered by the central dogma of cell biology: replication
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and transcription. How does the third fundamental process,
translation, affect nucleotide usage in transcribed sequences? The
20 amino acids differ in the amount of energy needed for their de
novo production (see the ‘Methods’ section and Supplementary
Data 4)5. An avoidance of energetically expensive amino acids has
in fact been put forward as the likely explanation for unusual
nucleotide skews observed in one clade of prokaryotes25. Is there
a systematic relationship between the cost of amino acids and the
cost of the nucleotides that encode them; and do the
corresponding selection pressures work in unison or oppose
each other?

Calculating the average cost of amino acids encoded by
genomes of different GC content and different skews, we find an

unexpected trade-off intrinsic to the codon table. RNA produc-
tion costs increase with increasing skews and GC% (see the
‘Methods’ section); conversely, the energy cost of amino acid
synthesis decreases both with increasing nucleotide skews and
with increasing GC content (Fig. 4). The effects of AT and GC
skews are independent (Supplementary Fig. 9). Thus, usage of
more costly RNA nucleotides results in energetically cheaper
amino acids.

Energy cost varies much more between amino acids than
between nucleotides; while the energy needed for the de novo
production of two RNA nucleotides differs on average by 4.6 ATP
units in E. coli, the cost difference among amino acids is on
average 13.2 ATP units (see the ‘Methods’ section). Moreover,
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each mRNA template will be translated multiple times, amplify-
ing any selection on amino acid usage further: in total, E. coli
spends 47.3% of its production capacities on amino acids, but
only 11.3% on RNA nucleotides (see the ‘Methods’ section). Thus,
we expect that selection due to translation, which favours
expensive nucleotides that encode cheaper amino acids, should
dominate the opposing selection for cheap nucleotides at NS sites.

Energy-efficient amino acid usage is of course not the only
translation-related selection pressure: many amino acids will be
evolutionarily conserved due to selection on protein function. If
this selection is unbiased in terms of nucleotide usage, then the
simplest way to incorporate selection on protein function into the
model is to assume that a certain fraction f of amino acid
positions evolves neutrally, while the remaining sites are fixed due
to selection on protein function26 and hence do not contribute to
skews. The model can then account for selection on protein
function by upscaling the observed skew accordingly when
estimating the evolutionary forces acting on NS sites (g-f� 1g in
equations (4) and (5)). To obtain a genome-independent estimate
of the fraction of free sites, we identify the value of f that
maximizes the agreement between the mutational bias acting on
4s sites, m4s¼ tmio, and that estimated at NS sites, mNS. We expect
the fraction of free sites f to be similar between AT positions and
GC positions. This is indeed the case: we obtain fAT¼ 0.311 (95%
CI¼ 0.298–0.324) and fGC¼ 0.348 (95% CI¼ 0.342–0.355; see
the ‘Methods’ section and Supplementary Figs 6–8).

Selection pressures related to transcription (SRNA) and
translation (SAA) are independent, and the scaled selection
coefficients are thus additive. Hence, we have S¼ SRNAþ SAA at
the NS sites, and S¼ SRNA at the 4s sites. Using the mutational
bias derived from interoperonic sites, tmio, and the transcription-
associated scaled selection coefficient derived from 4s sites, SRNA,
we can use equations (4) and (5) to derive estimates for
translation-associated selection on leading and lagging strands
for each genome. We find that the two estimates are very similar,
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further supporting the validity of our model (AT skew: Fig. 2e,
r¼ 0.899, Po10� 15 after controlling for phylogenetic related-
ness; GC skew: Fig. 2f, r¼ 0.820, Po10� 15).

As expected from the trade-off between amino acid and
nucleotide synthesis costs, we find that selection related to
translation strongly favours the more costly nucleotides A and G:
SAA derived from AT skews is positive for 1,532 (98.8 %) of the
examined genomes, while SAA derived from GC skew is positive
for 1,435 (92.6%) of genomes (Fig. 1; Po10� 15 in each case from
binomial tests, also when considering only the subset of
phylogenetically evenly distributed species).

That selection specific to NS sites is indeed related to
translation, and is also supported by an analysis of tAI : the
translation-associated selection coefficient SAA of more highly
expressed genes increasingly favours more costly nucleotides
(Fig. 3b), likely driven by increased avoidance of expensive amino
acids8. In addition to increased skew-related selection favouring
A over T/U and G over C, highly expressed genes also tend to
have higher GC content (Fig. 3c), resulting in a further reduction
of the energetic costs of translation (Fig. 3d).

Mutational biases alone cannot explain the observed skews.
Could other, non-selective forces be responsible for the observed
differences in skews between transcribed and non-transcribed
regions? It has been suggested that nucleotide skews in tran-
scribed regions are due to transcription-associated mutational
biases27–31. During transcription, the nascent mRNA is paired
with the anti-sense strand, while the sense strand is unpaired
around the site of active transcription32. The time spent in the
unpaired state during lagging-strand replication is believed to
underlie the replication-associated mutational skews; thus, we
may expect a similar mutational skew on the sense strand in
transcribed regions. Lagging strands in non-transcribed regions
are mostly biased towards C and A. While sense strand-specific
substitutions are also biased towards C at GC sites, they are
predominantly biased towards T at AT sites (Fig. 1). Our
observations are thus incompatible with a hypothesis of
transcription-associated mutations due to single-strandedness.

Other transcription-associated mutational forces are of course
conceivable27–31. In particular, transcription-coupled repair
mechanisms28,30 might induce nucleotide biases that differ
from those caused by replication. However, any nucleotide bias
caused by transcription-associated mutation or repair should
affect all sites in a given transcribed region equally, and would be
unable to distinguish between 4s and NS sites. This, too, is
incompatible with our observations, which instead show strong,
systematic differences between 4s and NS sites (Fig. 1).

4s and NS sites differ from each other and from non-
transcribed sites in their flanking nucleotides, which could
potentially bias mutation rates33. It is thus conceivable that it is
not transcription per se, but the specific nucleotide context found
around 4s and NS sites that is responsible for the observed skews.
However, this ‘genomic context’ model is also unlikely to explain
the observed skews. First, genomic context-associated mutations
would be largely independent of transcription rate, and could
hence not account for the observed relationship between skews
and expression level (Supplementary Fig. 10).

As a second test whether genomic context could explain our
observations, we restricted our analyses to genomic sites with
‘complementary symmetric’ neighbours, that is, nucleotides x
that are flanked by the same two neighbours as their partner
on the complementary strand: CxG, GxC or TxA. By
construction, genomic context is identical on both strands
for these sites, and the genomic context hypothesis predicts
no transcription-associated effects. In contrast to this

expectation, our analysis restricted to the sites with comple-
mentary symmetric neighbours shows transcription-asso-
ciated selection coefficients that are very similar to those
shown in Fig. 1 (Supplementary Fig. 11). We thus conclude
that mutational effects are unlikely to explain the observed
nucleotide biases in transcribed regions.

Reduced selection in intracellular symbionts. The metabolic
pathways used to synthesize nucleotides and amino acids differ
between species, and are often environment-dependent. Such
metabolic differences likely contributed to the observed variation
in the strength of selection across species. One extreme example is
obligate intracellular pathogens or symbionts, species that spend
their entire life cycle inside the cells of other organisms—that is,
in extremely nutrient-rich environments. We would expect that
these intracellular species experience substantially weaker selec-
tion on efficient resource usage compared with free-living pro-
karyotes. This is indeed the case: when comparing a subset of 116
intracellular with 267 free-living species, we found that the
strength of selection is significantly reduced for the intracellular
species, both for nucleotide usage (AT skew: P¼ 1.7� 10� 4; GC
skew: P¼ 2.6� 10� 5; P values based on a general linear model
on phylogenetically independent contrasts21) and for amino acid
usage (AT skew: P¼ 0.000033; GC skew: P¼ 0.00116).

Discussion
From the perspective of efficient resource usage, every mutational
change to the genome sequence has fitness consequences. GC-
rich codons encode energetically cheaper amino acids34, while at
the same time GþC basepairs are more expensive than AþT/U
pairs (Fig. 4). This trade-off means that high-GC genomes spent
proportionally more energy on nucleotide production than low-
GC genomes, while the latter spent relatively more on amino acid
production. In this sense, GC content is an indicator of relative
investment into nucleotides and amino acids35. An increased
‘indifference’ towards amino acid costs in low-GC genomes is
consistent with the observation that AT-rich genomes do not
prefer specific amino acids over others to the same extent as GC-
rich genomes35.

Nucleotide usage in transcribed sequences has mostly been
discussed in terms of codon usage bias (CUB)36. Consistent with
our findings, most preferred codons end with T or C rather than
with A or G (Fisher’s exact test: odds ratio¼ 2.08, Po10� 15 for
T- over A-ending codons; odds ratio¼ 1.68, Po10� 15 for C-
over G-ending codons (see the ‘Methods’ section). The genomic
copy numbers of different tRNAs and their efficiency in
recognizing specific synonymous codons constrain the
substitution of synonymous nucleotides, and might thus
interfere with selection on nucleotide and/or amino acid costs.
However, almost all species possess a set of tRNAs capable of
recognizing the full set of synonymous codons (often with the
help of tRNA anticodon-modifying enzymes37). tRNA copy
numbers and codon usage are expected to co-evolve14,36,38,39

through the accumulation of small changes in both tRNA copy
numbers and codon usage in a correlated fashion. Selection on
efficient resource usage will put a directional selective pressure on
this co-evolution.

Our analysis demonstrates that selection on energetic effi-
ciency, shaped by a trade-off inherent in the codon table, is an
ubiquitous feature of prokaryotic genome evolution. The genomic
distribution of nucleotides is moulded through an interplay of
genomic forces acting on the three levels of the central dogma:
mutational biases associated with replication, and energy-driven
selection linked to transcription and translation. The same forces
likely also play a role in eukaryotic evolution, although their
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influence may be attenuated by the stronger role of neutral
evolution due to the typically smaller effective population sizes of
eukaryotes40.

Methods
Data. Genome sequences and annotations of all completely sequenced bacteria
(2,012 genomes as of January 2013) were downloaded from NCBI. In case a
genome contained multiple chromosomes, only the largest was chosen.

The genomic coordinates of 2,135 replication origins for 1,712 reference
genomes were obtained from the DoriC41 database using a PERL web crawler. In
case a genome contained multiple replication origins, the first entry in the database
was chosen (see Supplementary Data 6 for a list of replication origins used in this
study).

Operon predictions were downloaded from DOOR42. Because the predictions
only cover coding regions, we added other annotated regions including tRNAs and
rRNAs from the GFF (General Feature Format) annotations downloaded from
NCBI, so that we could extract interoperonic regions, which are presumably non-
transcribed. In total, 1,550 genomes were covered by all three data sets
(Supplementary Data 3).

The energetic cost (measured as the number of consumed high-energy
phosphate bonds contained in ATP and GTP molecules in de novo synthesis) for
the 20 amino acids in E. coli was obtained from ref. 5 (Supplementary Data 4).
Synthesis costs in other studied prokaryotes correlate strongly with these values6;
using alternative costs does not change our qualitative conclusions (Supplementary
Data 4 and Supplementary Fig. 13).

The relative costs for the de novo synthesis of the four nucleotides have been
reported as G4A, C4T, G4C and A4T10; see also the calculations for E. coli in
Supplementary Data 1.

Habitat information of completely sequenced genomes (Supplementary Data 3)
was obtained from the NCBI BioProject resource43, Integrated Microbial
Genome44 and Genomes Online Database45.

We manually compiled a list of intracellular bacteria (Supplementary Data 7) by
searching in public resources, including NCBI PubMed (http://
www.ncbi.nlm.nih.gov/pubmed/), Wikipedia (http://en.wikipedia.org/wiki/
Intracellular_parasite) and MicrobeWiki (http://microbewiki.kenyon.edu/). The list
also contains additional genomes o750 kb in size; this cutoff was chosen because
some bacteria of slightly larger size, such as Mycoplasma pneumoniae (genome size
of 816 kb (ref. 46) are known to be able to grow outside of a host.

Extracting sequences from interoperonic regions. To obtain regions that are
presumably only subject to replication (that is, that are non-transcribed and
contain few conserved sites), we extracted interoperonic sequences longer than
100 bp after removing 60 bp adjacent to the 5’-end of genes/operons25. If an
interoperonic region was located in the second half of the genome (blue dashed line
in Supplementary Fig. 1), its sequence was reverse-complemented.

Strand assignment of protein-coding genes. The division of a genome into
leading and lagging strands is shown in Supplementary Fig. 1. Coding genes located
on the first half of the plus strand (blue solid line) and on the second half of the
complementary strand (purple solid line) were assigned to the leading strand, as
their transcription proceeds in the same direction as the replication fork; the
remaining genes were assigned to the lagging strand. DNA sequences of protein-
coding genes were extracted from the genome sequences based on the genomic
coordinates given in the NCBI annotation files. If a gene was located on the minus
(complementary) strand (the purple line), its sequence was reverse-complemented.

Assignment of 4s and NS sites. Coding sequences on each strand were first split
into codons. START and STOP codons were excluded. The three nucleotides in
each codon were then classified into 4s, NS and other sites according to the codon
table (Supplementary Data 8).

Observed skews. AT and GC skews were calculated for each of the five site
categories (interoperonic regions, NS and 4s sites on leading strands; NS and 4s
sites on lagging strands). These are referred to as ‘observed skews’, and are denoted
as gAT (for AT skew) and gGC (for GC skew):

gAT ¼
A�T
AþT

and gGC ¼
G�C
GþC

ð6Þ

Where A, T, G, And C denote the numbers of the corresponding nucleotides in the
class of sites considered (see Supplementary Data 3 for the data).

Expression groups through tAI. tAI23,24 was used as a proxy for gene expression
level. For each protein-coding gene in a given genome, tAI is defined as the average
of tRNA availability values over all its codons. The availability of tRNAs for a
codon considers not only the copy number of perfectly matched anticodons in the
corresponding genome, but also that of imperfectly matched anticodons; the
contribution of the imperfectly matched anticodons will be weighted accordingly.

For more details on the definition of tAI see refs 23,24. For each of the selected
1,550 genomes, we obtained a list of tRNA genes using the tRNAscan-SE47

programme on the genome sequences. The tRNA genes were sorted into 61 groups
according to their anticodons. We then used the R scripts for tAI calculation
written by dos Reis et al.23,24 (obtained from http://people.cryst.bbk.ac.uk/
Bfdosr01/tAI/, without modifications) to calculate tAI scores for all protein-
coding genes in this genome. Higher tAI scores indicate higher expression levels.

Within each genome, coding genes on each strand (leading/lagging) were
ranked according to their tAI scores from low to high and then divided into five
equal-sized bins (quantiles), denoted Q1–Q5; Q1 contains the genes with the
lowest, and Q5 contains the genes with the highest tAI scores. We then calculated
skews at 4s and NS sites separately for each bin/quantile (see Supplementary Data 9
for the results).

Levels of selection on nucleotide skew. Our model is rooted in the central
dogma of genetics, that is, the information flow for protein-coding genes from
genome to RNA to protein. One notable consequence of the central dogma is the
single-stranded amplification of coding regions in transcription, with each resulting
mRNA template amplified again single-strandedly by translation. Any selection
responsible for skews in coding regions will be amplified accordingly.

If energy consumption is a fitness-relevant trait (which is likely the case for
most prokaryotes), then cheaper nucleotides should generally be favoured by
selection. For protein-coding nucleotides, the strength of this selection should be
proportional to the number of mRNA copies that are produced during one cell
cycle. For the same reason, cheaper amino acids should be favoured by translation,
again in proportion to the number of protein copies produced.

For example, if in the coding region a G mutates to C, then this mutation will be
favoured by selection on energy consumption. If this happens at a 4s site, the
encoded amino acid will not change. However, if the same mutation happens at a
NS site, it may be removed by translation-associated selection even if protein
function is not affected, as the encoded amino acid may change to an energetically
more costly alternative.

All three fundamental processes of the central dogma—replication,
transcription and translation—contribute to biased substitutions. Non-transcribed
(interoperonic) regions are only subject to replication; skews at 4s sites in coding
regions are affected by both replication and transcription; and skews at NS sites are
affected by all three processes. In the next section, we will model this interaction in
the presence of genetic drift in finite prokaryotic populations.

A mutation-selection-drift model for nucleotide skews. We assume that GC
sites and AT sites are at an equilibrium, and only consider the mutations that
convert A2T and G2C. The model is written up for GC skews; for the ana-
logous model for AT skews, just replace GC with AT.

Let u be the mutation rate from C to G on the leading strand (caused by
replication), and v the corresponding mutation rate from G to C, each measured
per individual per generation. At transcribed sites, we need to combine mutational
biases with selection on nucleotide and amino acid usage.

Consider a single genomic site that can be either C or G. Let s be the fitness
difference between alleles G and C at that site; if only energetic cost affects fitness,
then s corresponds to the total cost savings associated with a G allele relative to a C
allele. Note that s incorporates selection on nucleotide usage (at all transcribed
sites), as well as selection on amino acid usage (at 2s and 1s sites): s¼ sRNAþ sAA.

In a finite population, random sampling introduces stochastic fluctuations in
allele frequencies, and we thus consider the equilibrium distribution of allele
frequencies f(p) for the C allele40,48:

f pð Þ pe� SppV � 1 1� pð ÞU� 1 ð7Þ
Here, S¼ 2Nes, V¼ 2Nev, U¼ 2Neu, with the effective population size Ne

(refs 49,50). Mutation rates in prokaryotes are generally very small17, and are likely
less than the inverse effective population size, 1/Ne; thus, we have UþVoo1. In
this situation, the allele frequency distribution is bimodal, such that the population
will be either G or C at each site. The expected allele frequency P at a given site is
then the probability of being C rather than G18:

P ¼ e� SV
e� SV þU

ð8Þ

The derivation of equation (8) used the fixation probability of newly arisen
mutants50 with so1, F Sð Þ ¼ 2S

N 1� e� Sð Þ. The number of newly arisen C mutants that
will eventually be fixed is NuPF � Sð Þ, while the number of newly arisen G mutants
that will ultimately be fixed is Nvð1�PÞF Sð Þ; at equilibrium, these two rates are
equal, leading to equation (8) (ref. 18).

Let c be the fraction of sites that contain C on the leading strand; g¼ 1—c is the
fraction of sites that contain G. P in equation (8) is the probability that a given site
is C. Thus, if we consider a large number of sites that are either G or C, then P¼ c.
The GC skew is defined as the fraction of G minus the fraction of C, that is,
g¼ g� c¼ 1–2c; inserting equation (8), we obtain for the skew on the leading
strand:

gðSÞ ¼ eSU �V
eSU þV

ð9Þ
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For the lagging strand, we need to reverse the roles of u and v, and we hence obtain

glag Sð Þ ¼ eSV �U
eSV þU

¼ � gð� SÞ ð10Þ

Note, that only ratios of mutation rates enter these equations. Thus, instead of the
scaled mutation rates U and V, we can simply use the raw mutation rates u and v.

We define the relative skew in mutation rates as

m :¼ U �V
U þV

¼ u� v
uþ v

ð11Þ

For non-transcribed sites, we assume that S¼ 0, and equation (9) reduces to

g ¼ m ð12Þ

Deriving the parameters from data. Let us define the ratio of the two mutation
rates l:¼ u

v ¼
1þ m
1� m. We can write

g ¼ l� e� S

lþ e� S
ð13Þ

and, solving for S, we obtain

S ¼ � log l
1� g
1þ g

� �
¼ log

1� m
1þ m

� 1þ g
1� g

� �
ð14Þ

We obtain a corresponding equation for the lagging strand:

S ¼ log l
1þ glag

1� glag

 !
¼ log

1þ m
1� m

�
1þ glag

1� glag

 !
ð15Þ

Combining (14) and (15) to eliminate l allows us to relate the scaled selection
coefficient S directly to the skews:

S ¼ 1
2

log
1þ g
1� g

�
1þ glag

1� glag

 !
ð16Þ

Conversely, eliminating S from equations (14) and (15), we obtain

m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g
1� g �

1� glag

1þ glag

q
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g
1� g �

1� glag

1þ glag

q
þ 1

ð17Þ

Transcription may influence the mutation rates u and v, so that the values in
transcribed regions may differ from those of interoperonic regions; we call them
u0 and v0 to distinguish them from the values at untranscribed sites. We assume
that this influence is determined by basic cellular biology, and hence that m0 ¼ tm
for some species-independent t (which may depend on expression level). Replacing
the mutational bias at transcribed sites with the scaled estimate from interoperonic
regions, m0 ¼ tm ¼ tgio, we can use the observed skews at 4s sites to estimate the
scaled selection coefficient S¼ SRNA (quantifying selection on nucleotide usage)
separately for leading and lagging strands using equations (14) and (15).

In the same way, we can use equations (14) and (15) to estimate the scaled
selection coefficient S¼ SRNAþ SAA at NS sites. NS sites differ from 4s sites
predominantly in strong negative selection against some deleterious codon
changes. Let us assume that we can classify sites into effectively neutral sites (those
where an amino acid change is approximately selectively neutral) and fixed sites
(where strong negative selection effectively prevents changes)26. If f is the fraction
of effectively neutral sites, then the observed skew g across all NS sites should be
smaller by this fraction compared with the skew predicted by the model. Taking
this into account, we replace the observed skew gNS by gNS/ffree in the model
equations for NS sites. Comparing the model-predicted m’ at NS sites with the value
obtained from 4s sites, we can estimate the fraction of ‘free’ sites f. Using this value,
we can then estimate the scaled selection coefficient S¼ SRNAþ SAA at NS sites.
Subtracting the scaled selection coefficient SRNA for selection on nucleotide usage
obtained from 4s sites, we obtain an estimate of selection on amino acid usage only:
SAA ¼ S� SRNA.

Random skews if there were no mutation and selection. To show the dis-
tributions of skews if there were no mutation and selection, we generated B1,200
random genomes with GC-contents ranging from 20 to 80%; for each genome, we
generated about 1 million non-STOP codons using equal numbers of A and T, as
well as G and C, and calculated the skews at 4s and NS sites. Any remaining skews
are due to the nucleotide composition of the stop codons. The median values for
AT skews are 0 at 4s sites and 0.018 at NS sites; for GC skews they are 0 and 0.081,
respectively (see Fig. 3).

The energy trade-off encoded in the codon table. To explore the relationship of
the costs between nucleotides used in codons and the encoded amino acids, we
performed a simulation study. We generated random coding sequences with given
GC content (ranging from 10 to 90%) and equal AT and GC skews (ranging from
� 0.8 to 0.8). For each combination of the two parameters (GC content and skew),
1 million valid codons (excluding STOP codons) were generated, and the average
cost of the encoded amino acids was calculated according to the bacterial codon

table. The resulting values were used to generate Fig. 4, and can be found in
Supplementary Data 10. Note that AT and GC skews contribute to the trade-offs
independently, that is, the trade-offs still exist when the simulation was run using
only AT skews (with GC skews set to 0) or only GC skews (with AT skews set to 0);
see Supplementary Fig. 9 for the plots and Supplementary Data 11 and 12 for the
data (please refer https://github.com/evolgeniusteam/nucleotideSkews/wiki for the
source codes used for the simulations). The AA costs used here are from E. coli5,
and might be slightly different in other species. Note that costs were calculated
under the assumption that amino acids are synthesized from scratch; this is not
always the case in vivo.

Estimate of energy investments in E. coli metabolism. We obtained the gen-
ome-scale metabolic network of E. coli from Orth et al.51. This metabolic network
model represents the most comprehensive and detailed knowledge about any
genome-scale metabolic system. Using the sybil constraint-based analysis library52

for R, we performed flux-balance calculations in a glucose-limited aerobic minimal
medium with the standard wild-type biomass reaction51. In this environment,
glucose provides the only energy source. Similar results were obtained in the
corresponding aerobic growth medium. We set the ‘maintenance ATP
requirement’ to 0.

Estimation of maximal ATP production per molecule of glucose. To estimate
how many molecules of ATP can be produced per molecule of glucose, we set a
lower bound for the ATP-ADP reaction to 1 and minimized glucose uptake. We
found that in this model, one molecule of glucose allows the production of 23.5
units of energy in the form of ATP; identical results were found for GTP.

RNA nucleotide production costs. We next set the production of each RNA
nucleotide (metabolites ade, csn, gua, ura in the iJO1366 model) in turn to Z1 and
again minimized glucose uptake; the resulting solution gives the number of glucose
molecules that need to be taken up to produce one RNA nucleotide molecule
(Supplementary Data 1). To convert this estimate into an estimate of energy
expenditure, we multiplied the result by the number of ATP energy units that can
be produced per glucose molecule, 23.5.

Amino acid production costs. We used the same strategy to estimate the cost of
de novo production of each of the 20 canonical amino acids (data not shown).

Nitrogen consumption of nucleotides. We calculated the number of nitrogen
molecules required for the de novo synthesis of each of nucleotides using the
genome-wide metabolic model of E. coli. The syntheses of one A, C, G and U
require 5, 3, 5 and 4 molecules of nitrogen, respectively.

Proportion of total cellular investment channelled into nucleotide and amino
acid production. To estimate the amount of glucose needed to produce one unit of
the full E. coli biomass, we set the lower bound of the biomass reaction to 1 and
again minimized glucose consumption. We then repeated this procedure, but this
time restricting the biomass reaction to its RNA nucleotide components and its
amino acid components, respectively. We estimated the fraction of total cellular
investment channelled into RNA nucleotides and amino acids, respectively, as the
ratio between the glucose consumption for the respective biomass components and
the glucose consumption for the full biomass.

The R codes and the genome-wide metabolic model of E. coli are available for
download at: https://github.com/evolgeniusteam/nucleotideSkews/wiki.

Identification of preferred codons. To check if the CUB in the 1,550 prokaryotic
genomes could be affected by the preferred usage of cheaper nucleotides, we
identified CUBs for each genome using a method previously described by
Hershberg and Petrov53. Briefly, for each protein-coding gene in each genome a Nc
value was calculated as the measure of the overall codon bias of the gene using the
ENCprime program54; Nc ranges from 20 (the most biased) to 61 (the least biased).
For each gene the frequency of each valid codon was also calculated. Then for each
codon a Spearman’s correlation was calculated between its frequencies across all
coding genes in a specific genome and the Nc values of the corresponding coding
genes. A preferred codon would be then selected for each codon family (a codon
family contains all codons that code for the same amino acid) if it has the strongest
and significant negative correlation value among all codons within this codon
family, and a Spearman’s P valueo0.05 per n, where n is the number of codons in
this codon family. A Java implementation of this method is available at https://
github.com/evolgeniusteam/nucleotideSkews/wiki; see Supplementary Data 13 for
the preferred codons for selected genomes used in this study. In this study we
limited our analyses to 4s codons.

Testing our model on 344 non-redundant bacterial genomes. To exclude
potential biases resulting from an uneven phylogenetic distribution of the 1,550
genome sequences obtained from the NCBI database, we repeated our analyses on
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a subset of phylogenetically non-redundant bacterial genomes. This genome set
was manually curated by Wu et al.19. Out of the 364 genomes selected by Wu
et al.19, 344 overlapped with our study (Supplementary Data 2). Limiting our
analyses to the 344 genomes, we obtained essentially identical results
(Supplementary Figs 3–5).

Accounting for phylogenetic relatedness. When calculating statistical sig-
nificance across genomes, we need to account for the effects of phylogenetic
relatedness: two genomic properties may be correlated just because they co-occur
in phylogenetic clades because of their shared ancestry21. To control for the
confounding effect of phylogenetic relatedness, we first needed to establish a
phylogenetic tree (reflecting the signal of vertical inheritance) for the 1,550
genomes. For this, we followed the procedure described in ref. 55 with minor
modifications. Briefly, we identified 40 universally conserved marker genes
described in ref. 55 from each genome using fetchMG (http://vm-lux.embl.de/
Bmende/fetchMG/contact.html) and saved their protein sequences into 40 files,
one for each marker gene. We aligned the protein sequences in each file using
MUSCLE56 with parameter ‘-maxiters 100’, eliminated divergent and ambiguously
aligned regions from the resulting multi-sequence alignments (MSAs) using
Gblocks57 with parameters ‘-t¼ p -b3¼ 8 -b4¼ 2 -b5¼ h’ and concatenated all 40
MSAs. We then used RAxML58 to build a maximum likelihood tree with default
parameters. We visually validated the tree using Evolview48, confirming that
species from recognized clades largely clustered together. The identified marker
genes for the 1,550 genomes, the concatenated MSA, and the resulting phylogenetic
tree are available for download at https://github.com/evolgeniusteam/
nucleotideSkews/wiki; the phylogenetic tree with colour-strips representing major
taxonomic clades is shown in Supplementary Fig. 12. The maximum likelihood tree
was then re-rooted between archaea and bacteria, making both domains
monophyletic. The rooted tree was converted to an ultrametric tree using the
chronos() function in the ape59 package for the R environment (https://www.
r-project.org/) for scientific computing.

On the basis of this ultrametric tree, we used the caper R package (https://
cran.r-project.org/web/packages/caper/) to convert all parameters to independent
contrasts21 and performed the statistical tests on these.

The effects of lifestyles on nucleotide skews. Intracellular bacteria rely mostly
(if not completely) on their hosts for resources; we thus expect them to be under
weaker selection for efficient resource usage. We selected 128 intracellular species
(Supplementary Data 7; 116 of which overlapped with the 1,550 genomes used in
our study) and 734 free-living species (those with existing habitat assignment that
was other than ‘host-associated’ according to the NCBI BioProject43; see
Supplementary Data 3) for comparison. To ensure that estimates of scaled selection
coefficients on transcribed sequences (S) were independent between genomes, we
did not use a global amplification factor t for the mutational bias; instead, we re-
calculated the z values using estimates of mutational bias m’ directly obtained from
the transcribed sequences of each genome. We applied general linear models
(function glm() in R) to the phylogenetically independent contrasts21, relating the
scaled selection coefficients SRNA and SAA for AT and GC skews to lifestyle (a
binary factor, INTRA: intracellular or free-living), including genomic GC content
(GC) and genome size (L) as potential confounding factors, and accounting for
interactions between the predictors: S B INTRA�GC� L. We removed non-
significant terms until all terms (including interactions) were significant; each such
model reduction decreased the AIC (Akaike Information Criterion) value. For
SRNA(GC), all terms were statistically significant (Po0.05); for SAA (GC) we
removed the interaction between INTRA and L; and for SRNA(AT) and SAA (GC)
we removed the direct GC term, but kept the interactions involving GC.

The results show that all scaled selection coefficients are significantly weaker in
prokaryotes with an intracellular lifestyle, consistent with our expectation. The R
codes are available for download at https://github.com/evolgeniusteam/
nucleotideSkews/wiki.

The effects of flanking nucleotides on nucleotide skews. The frequencies of
specific nucleotide triplets around 4s sites (that is, the 4s site plus its two neigh-
bouring bases) are strongly correlated within genomes between leading and lagging
strands (Pearson’s r40.9, Po10� 15 in 93% genomes). Flanking nucleotides are
known to influence the rates of specific mutations33. Thus, mutational biases
associated with triplets predominantly found on transcribed protein-coding strands
could in principle offer an alternative explanation for the skew contributions that
we attributed to transcription-related selection. This alternative ‘genomic context’
model posits that it is not transcription per se, but the nucleotide context found
around 4s sites that is responsible for the characteristic skews found in transcribed
regions.

To directly test the influence of genomic context, we assembled a data set that
controls for the flanking nucleotides. We considered only nucleotides with
‘complementary symmetrical’ neighbours, that is, those sites x for which the
flanking nucleotides were identical to the flanking nucleotides of the paired base on
the complementary strand: CxG, GxC or TxA (for example, A flanked by G and
C—GAC—has the same genomic context as its paired base T—GTC). We then
repeated our calculations on this subset of sites with complementary symmetrical

neighbours. The genomic context model posits that all systematic within-genome
variation in skews is caused by mutational biases due to genomic context. Thus,
transcribed sites with the same flanking nucleotides on the leading strand should
show the same skew, regardless of whether transcription occurs from the leading or
from the lagging strand. Accordingly, the genomic context model predicts that
SRNA estimated for 4s sites with complementary symmetrical neighbours should
vanish.

The data is available in Supplementary Data 14, and the results are shown in
Supplementary Fig. 11.
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