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cis-Encoded antisense RNAs (asRNAs) are widespread along bacterial transcriptomes. However, the role of most of
these RNAs remains unknown, and there is an ongoing discussion as to what extent these transcripts are the result
of transcriptional noise. We show, by comparative transcriptomics of 20 bacterial species and one chloroplast, that
the number of asRNAs is exponentially dependent on the genomic AT content and that expression of asRNA at low
levels exerts little impact in terms of energy consumption. A transcription model simulating mRNA and asRNA pro-
duction indicates that the asRNA regulatory effect is only observed above certain expression thresholds, substan-
tially higher than physiological transcript levels. These predictions were verified experimentally by overexpressing
nine different asRNAs in Mycoplasma pneumoniae. Our results suggest that most of the antisense transcripts found
in bacteria are the consequence of transcriptional noise, arising at spurious promoters throughout the genome.
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INTRODUCTION

The catalog of bacteria-encoded RNAs has recently undergone a vast
expansion. The canonical mRNAs and known noncoding RNAs [ribo-
somal RNAs (rRNAs), transfer RNA (tRNAs), transfermRNA (tmRNA),
and others] are now accompanied by a handful of new transcript cate-
gories. Small, non–protein-codingRNAs or sRNAs are one of these new
categories. The numbers of initially reported sRNAs ranged from dozens
to hundreds in different species (1, 2). These include cis-encoded sRNAs,
which overlap functionally defined genes, either in sense or antisense
(thus named asRNAs), and trans-encoded sRNAs, which are separated
from their target genes. These sRNAs span awide range of lengths: from
dozens of to a few thousand base pairs (2). However, recent improve-
ments in techniques for analysis of transcription have revealed that
noncoding transcription in prokaryotes is pervasive through the ge-
nome (3–5). Still, only few sRNAs have been functionally characterized
(6–8), most of which correspond to the category of trans-encoded sRNAs.
Examples of these are the ones associated with bacterial virulence (9–11).
The most common mechanism of action of sRNAs is via complemen-
tary base pairing with coding sequences (fig. S1A). RNA duplex forma-
tion between sRNA and mRNA can change mRNA stability, inducing
degradation or stabilization of the duplex. This duplex may as well in-
duce or repress mRNA translation by affecting the ribosome binding
site (2, 12). Another asRNA regulatorymechanism is transcriptional in-
terference, occurring if two RNA polymerases transcribing in conver-
gent directions collide (13). Other types of RNAhaving a regulatory role
by “nonstandard”mechanisms should not be disregarded. For instance,
if therewas aDicer-likemechanism in bacteria as it occurs in eukaryotes
(14), low abundant RNAs could exert a strong influence on comple-
mentary, more abundant, mRNAs. In this respect, we have the CRISPR
(clustered regularly interspaced short palindromic repeats)/Cas system
in bacteria, where crRNAs (CRISPR RNAs), even if not abundant, tar-
get the enzyme against foreign DNA (15) and/or RNA sequences (16).

There is an ongoing discussion in both eukaryotes and prokaryotes
as to what extent this plethora of sRNAs provides a crucial layer of
transcriptional and translational regulation, or if a large part of them
are the result of transcriptional noise, arising from spurious promoters
(17, 18). Bacterial promoters are characterized by low information
content, and their major landmark is the Pribnow motif that has the
consensus sequence “5′-TANAAT-3′” (19). Other features include (i)
the −35 box, although this has been shown not to be essential (espe-
cially in Firmicutes) and can be replaced by other elements (20), and
(ii) low melting energies, which ultimately depend on the AT com-
position of the promoter region. Such low information content implies
that promoters could easily arise by randommutations in bacterial ge-
nomes, especially given the presumptive bias toward G/C nucleotides
mutating to A/T (21). If sRNAs are the product of transcriptional noise
due to spurious 5′-TANAAT-3′ boxes, we predict that the number of
sRNAs in bacteria will strongly correlate to the AT content of their
genomes in an exponential manner (fig. S2A). Because of the stochastic
nature of transcription and the short half-life of RNAs in bacteria, low
levels of random production of asRNA from these spurious Pribnow
boxes would not affect the levels of the sense mRNA (fig. S1B).
RESULTS

To investigate these hypotheses, we annotated sRNAs de novo in the
genomes of Buchnera aphidicola, Mycoplasma hyopneumoniae, and
Mycoplasma mycoides subspecies capri (tables S1 to S3 and fig. S3) in a
similar way as we did with Mycoplasma pneumoniae (22). We also
considered the sRNAs annotated using deep sequencing data in 17 other
bacterial genomes and a chloroplast genome (table S4). These 21 genomes
span an AT content ranging from 28 to 80%, and their genome sizes
range from416 kb (B. aphidicolaCc) to 9.02Mb (Streptomyces avermitilis).
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Investigating the number of canonical Pribnow boxes in these genomes,
we found an exponential dependency of the number of boxes on theAT
content, qualitatively similar to our theoretical expectations (fig. S2A).
Moreover, comparison of the number of these boxes upstream of open
reading frames (ORFs) and sRNAs showed that the proportion of
sRNAs with Pribnow boxes is similar to or higher than the proportion
of ORFs having them (fig. S2B). This supports the hypothesis that an in-
crease in AT content also results in an increase in spurious Pribnow boxes.

We found that the number of sRNAs normalized by genome size
versus the AT content in the studied bacterial species has a clear expo-
nential dependency (Fig. 1A), similar to that of the number of TANAAT
motifs randomly expected given a certain AT% (fig. S2A). The expo-
nential trend observed for the sRNAs is conserved, omitting the species
whose sRNAs were de novo annotated (R2 = 0.814), indicating that it is
not an artifact of the method used to identify them (see fig. S3 andMa-
terials andMethods). In contrast to the observed sRNA trend, the num-
ber of coding genes normalized by genome size shows no dependency
on AT content, and this trend is invariant with respect to genome size
(Fig. 1B). We tested whether the AT dependency held true for both
asRNAs and trans-encoded sRNAs. asRNAs follow an exponential de-
pendency on theATcontent (fig. S4A),whereas trans-encoded sRNAsbe-
have similarly to coding genes and are uncorrelated to the AT content of
the intergenic regions (even when considering a minimal size larger than
that of an average asRNA; fig. S4B). These results support the transcrip-
tional noise hypothesis, and that randommutations in coding genes could
result in spurious antisense 5′-TANAAT-3′ boxes, in a manner related
to the genomeAT content, which could drive the expression of asRNAs.
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Regarding expression levels, it has been shown that essential ORFs
show higher mRNA levels, suggesting that elements with essential roles
are more transcribed (23). Therefore, we compared transcript levels of
ORFs and asRNAs in eight of the bacteria in our study. In all cases, average
asRNA levels were lower than average mRNA levels (fig. S5A). This could
indicate that at least a majority of the asRNAs could be nonessential. In-
deed, a recent study on the essentiality of theM. pneumoniae genome re-
vealed that only 5% of all sRNAs are essential (23). We also compared the
expression of each asRNA to its overlapping mRNA. asRNA-mRNA
expression ratios are presented in fig. S5B. These ratios are below
1 in most of the cases (fig. S5B). For three of the species in our study
(M. pneumoniae, M. mycoides, and Bacillus subtilis), we compared
asRNA levels at exponential and stationary growthphases (fig. S5C).Most
of the asRNAs remain unchanged, excluding the effect of the growth phase
atwhere thebacteriawere analyzed.Additionally, asRNAand trans-encoded
sRNA levels were compared in five species (B. aphidicola,Mycoplasma
genitalium,M. pneumoniae,M.mycoides, andM. hyopneumoniae), and
we found that asRNA expression is significantly lower than trans-encoded
sRNA levels in all cases (Welch’s two-sample t test, P < 0.05).

We estimated the energy consumed by the cells in transcribing these
asRNAs inM.pneumoniae, considering thenumber of noncodingRNAs,
their length, and their transcription rate, compared to those of mRNAs,
tRNAs, and rRNAs (seeMaterials andMethods).M. pneumoniae spends
~5000 adenosine triphosphate (ATP) units per cell per second in tran-
scribingmRNAs, tRNAs, and rRNAs (24). This amount is proportional
to the transcription rate of these molecules, their length, and their copy
number in the cell. Taking into account these parameters for sRNAs,
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Fig. 1. Different genomic features show distinct dependency on the genomic AT content. The number of features was divided by the genome
size for normalization and represented versus the genomic AT content. The following genomes are represented: Atu, Agrobacterium tumefaciens; Bcc,
Buchnera aphidicola (str Cc); Bsu, Bacillus subtilis; Cgl, Corynebacterium glutamicum; Chl, chloroplast (Arabidopsis thaliana); Cje, Campylobacter jejuni; Eco,
Escherichia coli; Hpy, Helicobacter pylori; Mge, Mycoplasma genitalium; Mhy, Mycoplasma hyopneumoniae; Mmy, Mycoplasma mycoides; Mpn,
Mycoplasma pneumoniae; Mtu, Mycobacterium tuberculosis; Pau, Pseudomonas aeruginosa; Sav, Streptomyces avermitilis; Sco, Streptomyces coelicolor;
Sme, Sinorhizobiummeliloti; Sth, Salmonella typhimurium; Sve, Streptomyces venezuelae; Syn, Synechocystis spp., Vch, Vibrio cholerae. (A) Number of total
sRNAs in different bacteria. Total sRNAs have an exponential dependency on the AT content (R2 = 0.88) and do not correlate with genome size. (B) Genome
compaction (that is, number of ORFs normalized by genome size) versus AT content. Genome compaction in the different bacterial genomes analyzed shows
no dependency on the AT content. Instead, the number of ORFs in bacterial genomes correlates with the genome size (R = 0.99).
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we estimate thatM. pneumoniae spends 2.94% of the energy of RNA
transcription in synthesizing sRNAs, equivalent to ~147 ATP units
per cell per second. This number represents 0.24% of the total ATP
generated per cell per second (24). Thus, according to our calculations,
the energetic impact of spurious transcription is not high even in
bacteria with a large number of asRNAs.

asRNAs have been proposed to play a role in transcription regu-
lation complementing the role of transcription factors (25). Should
this be the case, we would expect a negative dependency with the num-
ber of transcription factors in the different bacteria analyzed here.
The number of transcription factors, as reported in the P2TF database
(26), shows a linear trendwith genome size as previously described (27)
(fig. S6A). However, this trend does not exist for asRNAs (fig. S6B). To
determine if there is a negative dependency between transcription
factors and asRNAs, we considered groups of genomes with approxi-
mately similar AT content and different numbers of transcription factors.
We found no negative relationship between the number of transcription
factors and the number of asRNAs per genome having similar AT con-
tent (>60%) (fig. S6C). For bacteria with high AT content, there is a
positive correlation, contrary to what we would expect (R = 0.94). This
can be explained by the fact that for this group, larger genomes present
both more transcription factors andmore asRNAs. Indeed, for bacteria
with similar AT content, the number of asRNAs correlates with the
number of genes, indicative of genome size (fig. S6D).

As we indicated in fig. S1B, asRNAs expressed at low levels could
barely encounter its sense mRNA, given the stochastic nature of tran-
scription. Therefore, no effect onmRNAhalf-life or translation would
be expected. To see if this is the case, we constructed a mathematical
model of transcription and translation of a gene in the bacterium M.
pneumoniae. We modeled three possible effects of the asRNA: (i) the
binding of the asRNA to the mRNA induces degradation of the du-
plex, (ii) the binding of the asRNA to the mRNA induces degradation
of the mRNA, and (iii) the binding of the asRNA to themRNA is stable
but prevents translation (fig. S1A). In all cases, binding of the mRNA to
the ribosome prevents degradation of the mRNA. Parameters for this
model were determined from experimental data (see Materials and
Methods). Other possible effects, such as transcriptional interference,
were not considered as the low transcription rates in M. pneumoniae
deem the collision of transcribing polymerases to be very unlikely.
We scanned the parameter space of the mRNA and the asRNA tran-
scription rates, from typical wild-type levels to ~100-fold overexpres-
sion (Fig. 2 and fig. S7). We found that for the three cases modeled,
the region with low concentrations of both asRNA and mRNA shows
no changes with respect to the control simulations. This can be ex-
plained by the fact that in this region, RNA copy numbers are below
1 per cell, and thus the chance of an mRNA and an asRNA to occur
simultaneously at the same cell is negligible (fig. S1B). Remarkably,most
of the RNAs in different bacteria are present at concentrations that yield
no asRNA effect (28), although some exceptions have been described,
showing that some asRNAs canhave a regulatory role (29–31) (Fig. 2A).
Thismathematical model can be a valuable resource to identify putative
functional asRNAs in a given organism according to their expression
levels. By determining the concentrations of all asRNAs inM. pneumo-
niae, we can determine a list of potential functional asRNA candidates.
In this bacterium, asRNAs are insufficiently expressed to trigger an ef-
fect in their overlappingmRNAs, according to our simulations. It has to
be noted, though, that the values of decay rates used in these simulations
represent the average values determined forM. pneumoniae. Individual
Lloréns-Rico et al. Sci. Adv. 2016; 2 : e1501363 4 March 2016
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Fig. 2. Simulation of the effect of the asRNAs, assuming that the asRNA-
mRNApairing causes duplex degradation. Parameters for the simulations
are detailed in the SupplementaryMaterials. Each point of the heat maps rep-
resents the average change in the protein concentration for 100 simula-
tions of 1000 min each, for specific parameters of asRNA and mRNA
transcription rates. The remaining parameters remain constant for all
the simulations. The axes represent the mRNA and asRNA concentration
in the control experiments for the corresponding transcription rates
scanned. (A) Changes in the mRNA concentration after 1000 min of simu-
lation. Blue circles represent experimental data from the overexpression of
asRNAs inM. pneumoniae, whereas green circles represent data from studies
in Gram-negative bacteria (29–31). The green ellipse delimits the region of
the concentrations of most transcripts in E. coli (28). (B) Changes in the pro-
tein concentration after 1000min of simulation. Blue circles represent exper-
imental data from the overexpression of asRNAs in M. pneumoniae.
3 of 9

http://advances.sciencemag.org/


R E S EARCH ART I C L E

D
o

transcripts with decay rates that differ significantly from the average
should be analyzed on a case-by-case basis. With the adequate param-
eters, the model could be extended to other bacteria, given that the
action mechanism of asRNAs is known beforehand.

To verify these results, we overexpressed nine asRNAs in the bacte-
riumM. pneumoniae (up to sixfold; Fig. 2 and table S5). These asRNAs
were selected such that they overlap different regions of their corre-
sponding mRNA partners (5′ end, 3′ end, or center), to test different
possible action mechanisms. Additionally, asRNAs with different ex-
pression levels were chosen. Shotgun proteomics of the clones re-
vealed no significant changes in the protein levels of the overlapping
genes (Fig. 3A and table S6). Also, RNA-seq (RNA sequencing) re-
vealed no significant changes in the mRNA levels (Fig. 3B and table
S7). Thus, our simulations and our experimental data do not support
the hypothesis that asRNAs have a general regulatory role in bacteria
Lloréns-Rico et al. Sci. Adv. 2016; 2 : e1501363 4 March 2016
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replacing the function of transcription factors. Only in those excep-
tions in which both asRNA and mRNA are expressed over a certain
threshold can a regulatory behavior be expected.

Our findings support the idea that most of the asRNAs are a conse-
quence of transcriptional noise, rather than of tightly regulated events.
The distribution of asRNAs in bacteria with distinct AT content and
the lack of capability of replacing transcription factors support this
idea. Probably, the bias towardATmutations in bacteria (21) generates
spurious promoter sequences that are able to trigger transcription.
However, spurious expression of asRNAs is not incompatible, with
some being functional, as described elsewhere (1, 2, 6–8, 12). Indeed,
asRNAs claimed to be functional are expressed at much higher rates
than the average (28–31). Despite the observed general trend, we should
not ignore that, in some bacteria, there are proteins [such as RNA chap-
eroneHfq (32)] that help to stabilize asRNAs or the duplexes they form
with mRNAs. In such cases, even low expressed asRNAs may exert a
regulatory function. Nevertheless, this protein is not conserved
throughout the bacteria in our study, and although it is conserved in
some species, it is not essential. Therefore, we cannot expect such a
mechanism to be general but rather an adaptation for specific cases.
This suggests that asRNAs may accumulate in bacterial genomes be-
cause of transcriptional noise and a lack of negative selection, probably
due to the low energy needed for their transcription and the absence of
deleterious effects. Some of these asRNAs may afterward gain a
function. Additionally, pervasive noncoding transcription may as well
have unspecific functional roles, such as buffering the RNA polymerase
levels inside the bacterial cell. Our results are likely to be valid through-
out the bacterial kingdom, and according to a recent study (33), they
may also apply to eukaryotes.
 on M
arch 15, 2016
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MATERIALS AND METHODS

Bacterial strains and growth conditions
M. hyopneumoniae. Culture samples from M. hyopneumoniae

were obtained from batch fermentation in exponential growth. Culture
(50 ml) was centrifuged for 3 min at 9000g in a cooled centrifuge (2° to
8°C). Supernatant was removed and the cell pellet was stabilized using
RNAlater (Ambion). Stabilized cell pellets were stored at 2° to 8°C until
RNA extraction.

B. aphidicola. Cedar aphids were collected from a population
maintained in the facilities of the Institut Cavanilles de Biodiversitat
i Biologia Evolutiva (ICBiBE) at the University of Valencia (Paterna,
Valencia, Spain) (34).

M. pneumoniae. M. pneumoniae was grown in 50 ml of modified
Hayflick medium supplemented with glucose at 37°C as previously de-
scribed (35). To select mycoplasma cells expressing the sRNAs, the me-
dium was supplemented with tetracycline (2 mg ml−1).

M. mycoides. M.mycoides JCVI syn1.0 (36) was grown in 50ml of
SP4 medium containing 17% fetal bovine serum at 37°C and harvested
during the mid-log phase as previously described (37).

RNA extraction
M. hyopneumoniae. RNAwas extracted fromabacterial pellet sta-

bilized with RNAlater (Ambion) using the Quick-RNA MiniPrep
(Zymo Research) following the manufacturer’s protocol.

B. aphidicola. Thebacteriomes of 200 adultwingless parthenogenetic
insects were dissected under a Wild Heerbrugg Plan 1× microscope and
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Fig. 3. Effect of theoverexpressionof asRNAs in their overlappinggenes,
measured by RNA-seq and shotgun proteomics. (A) Protein levels of the
genes overlapping each asRNA under control conditions and in the strains
transformed with the antisense constructs. Error bars represent the SD of the
samples. Two of the proteins, MPN056 andMPN305, were not detected in any
of the strains ofM. pneumoniae. (B)mRNA levels of thegenes overlapping each
asRNA under control (wild-type) conditions and in the strains overexpressing
the antisense transcripts. Error bars represent the SD of the samples.
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preserved on RNAlater (Ambion) at −80°C until its use. The bacteriome
sample was defrosted and washed with phosphate-buffered saline (PBS)
[137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 2 mM KH2PO4

(pH 7.2)], and total RNA was purified using the TRI Reagent Solution
Kit (Ambion).

M. pneumoniae. After growingM. pneumoniae strains for 6 hours
at 37°C, cells were washed twice with PBS and lysed with 700 ml of Qiazol
buffer. Then, samples were lysed with 700 ml of Qiazol buffer. RNA ex-
tractions were performed by using the miRNeasy Mini Kit (Qiagen)
following the instructions of the manufacturer.

M. mycoides. Cells were centrifuged from culture medium and
washed twice in Hepes-buffered saline containing 20% sucrose. Cell
pellets were stabilized with RNAprotect (Qiagen) until extraction
with UltraClean RNA isolation kits (MO BIO).

Library preparation and RNA sequencing
M. hyopneumoniae. rRNAwas removed using the Ribo-Zero Kit

(Epicentre). rRNA-depleted RNA was fragmented with an average
length of 100 to 200 base pairs (bp) and converted to double-stranded
complementary DNA (cDNA). Library preparation was done using a
protocol based on the “dUTP (deoxyuridine triphosphate) method,”
to generate strand-specific mRNA-seq libraries including barcoding
(38, 39). The Illumina stranded TruSeq RNA-seq library preparation
kit was used. Sequencing of the library was done using the Illumina
HiSeq: single-end reads, one lane, 50 cycles, two samples per lane.
The sequencing data produced were processed, removing low-
quality sequence reads. Furthermore, the sequence data in FastQ
format were additionally filtered and trimmed on the basis of Phred
quality scores.

B. aphidicola. The samples were mRNA-enriched using the
MicrobExpress Kit (Ambion) and the Ribo-Zero Magnetic Kit
(Epicentre) to remove rRNA of bacterial and eukaryote origin, re-
spectively, following the manufacturer’s protocol. Library preparation
was done with the SOLiD Total RNA-Seq Kit (Life Technologies), and
sequencing was performed with an ECC Module on a 5500 XL Ge-
netic Analyzer (Life Technologies) at the sequencing facility of the
University of Valencia.

M. pneumoniae. Libraries for RNA-seq were prepared following
directional RNA-seq library preparation and sequencing as previously
described (23).

M. mycoides. cDNA libraries were constructed with ScriptSeq
Complete Gold Kits (Epicentre) and were sequenced on an Illumina
HiSeq instrument.

Data analysis
Reads from all RNA-seq experiments detailed above were mapped
to their corresponding reference genomes using MAQ (40). All
reads were treated as single-end reads. For paired-end sequencing
reads, only fragment 1 was considered, and read 2 was considered a
technical replicate. After mapping, only reads mapping to a unique
position in the reference genome were used. Pileups were obtained
using custom-designed software and visualized on the Integrative
Genomics Viewer [IGV (41)] for manual annotation of sRNAs.
An example of this manual annotation using IGV can be found
in fig. S3.

To filter out noise and define the regions corresponding to
sRNAs, we first determined the expression levels of all ORFs in the
different bacteria analyzed. Expression levels were calculated using a
Lloréns-Rico et al. Sci. Adv. 2016; 2 : e1501363 4 March 2016
custom-made script to determine the CPKM (counts per kilobase per
million counts) values, a measure that is similar to RPKM (reads per
kilobase per million mapped reads) for single-end reads. For each ge-
nome, we used the expression values of genes with known function.
The lower 0.05 quantile of this distribution was chosen as a threshold
to determine expression of new nonannotated features. trans-Encoded
sRNAs and asRNAs above this threshold were manually identified
and annotated.

Regarding the published data from other bacterial species, whenever
the sRNA annotation was available, we mapped the noncoding tran-
scripts to the genome to determine how many of them overlapped a
gene in antisense and how many corresponded to trans-encoded
sRNAs. To do so, we used the reference annotations from the National
Center for Biotechnology Information to define ORFs. Partial or total
overlap was considered, and for bacteria with more than one replicon,
only features in the largest replicon were considered. In some cases, the
numbers of asRNAs and trans-encoded sRNAs differ from the numbers
reported in the different publications. This is due to the usage of differ-
ent annotation versions, the inclusion or exclusion of untranslated re-
gions, and the consideration of all the replicons in the different
publications.

Calculation of the energy cost of noncoding
RNA transcription
To determine the energy cost of transcribing noncoding RNAs, we
estimated the relative cost compared to the transcription of mRNAs,
rRNAs, and tRNAs. The cost of transcription was assumed to be
proportional to the average length of the RNAs multiplied by their
transcription rates. In M. pneumoniae, there are 738 ORFs, 3 rRNAs,
and 37 tRNAs. The average length of each of these groups is 981.38,
1516, and 77.91 bp, respectively. Transcription rates for each group
were estimated from an equilibrium situation, as follows

dm
dt

¼ am � km m½ �

where [m] is the mRNA concentration, am is the transcription rate,
and km is the decay rate. In equilibrium

dm
dt

¼ 0

am ¼ km½m�

RNA concentrations in exponential growth were estimated using
the copy numbers previously reported (42) and extrapolating to all
RNAs in the cell according to experimental RNA-seq data. RNA decay
rates were experimentally determined using novobiocin, a DNA gyr-
ase inhibitor, which releases the RNA polymerase from the chromo-
some (Junier et al., under review). After the treatment with this
inhibitor, RNA from the cells was extracted at different time points
and RNA concentrations were determined (Junier et al., under re-
view). RNA decay in the cell population was thus modeled following
an exponential decay, as follows

dm
dt

¼ am � km m½ �
5 of 9
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After the treatment
am ¼ 0

dm
dt

¼ �km m½ �

Solving this, we fitted our experimental data to the following expo-
nential decay

½m�t ¼ ½m�0 ⋅ e�kmt

and obtained the degradation rate values, km. Averages for mRNAs
and asRNAs not overlapping other transcripts were used to ensure
that no other factors participate in the degradation. However, we com-
pared the transcription and decay rates determined experimentally be-
tween genes overlapped by asRNAs and genes not overlapped by any
other transcript, and strikingly, we found no statistically significant
differences in transcription rates (P = 0.29, Mann-Whitney U test)
or decay rates (P = 0.053, Mann-Whitney U test).

Transcription rates were estimated to be, on average, 0.016, 0.966,
and 0.061molecules/min for mRNAs, rRNAs, and tRNAs, respective-
ly. An estimate of the energy that the cell spends in transcribing these
molecules can be obtained bymultiplying their number by their length
and their transcription rate. Multiplying these values, we obtained an
estimate of 16,157.37 [arbitrary units (a.u.)]. Following the same logic
for sRNAs, inM. pneumoniae, there are 251 sRNAs, with an average
length of 270.597 bp and a transcription rate of 0.007 molecules/min.
Multiplying these values, we obtained an estimate of 475.43 (a.u.),
equivalent to 2.94% of the energy spent in transcribing mRNAs,
tRNAs, and rRNAs together.

Previous studies report that the energy spent in transcribing total
RNA (referring to mRNAs, tRNAs, and rRNAs), in terms of number
of ATPs required, is ~5000 units of ATP per second per cell (24). This
implies that, according to our calculations, the number of ATPs re-
quired for sRNA transcription would be ~147 units per cell per second.
This number, compared with the total ATP produced by the cell
[~60,000 units per second in mid-exponential growth (24)], results in
only 0.24% of the cell’s generated energy.

A similar calculation was performed in Escherichia coli. The genome
of E. coli codes for 4067 genes, with an average length of 907.09 bp, and
1005 asRNAs (43). Because of the lack of a complete annotation of these
asRNAs, we used the average length of the sRNAs in M. pneumoniae.
The approximate transcription rate used was ~0.0602 to 0.602 mole-
cules/min (44). Assuming that both genes and asRNAs are transcribed
at 0.602molecules/min, the energy E. coli spends in antisense transcrip-
tion is 6.7% of that spent in sense transcription. If we consider that tran-
scription of asRNAs occurs at a lower rate of 0.0602molecules/min, this
percentage decreases to 0.67% of energy spent in antisense transcription.

Mathematical modeling of the effect of the asRNAs
Three putative effects of the asRNAs were considered: in case 1, the
binding of the asRNA to the correspondingmRNA induces degradation
of the duplex. In case 2, the binding of the asRNA to themRNA induces
degradation of the mRNA, but not of the asRNA. In case 3, the mRNA
and the asRNA bind reversibly to form a stable duplex, preventing
translation of the mRNA. In the three cases, binding to the ribosome
protects the mRNA from the effect of the asRNA. The three cases were
modeled as follows
Lloréns-Rico et al. Sci. Adv. 2016; 2 : e1501363 4 March 2016
Case 1

dm
dt

¼ am þ ap mrib
� �� b m½ � rib½ � � km m½ � � kon m½ � s½ �

ds
dt

¼ as � ks s½ � � g m½ � s½ �
drib
dt

¼ ap mrib
� �� b m½ � rib½ �

dmrib

dt
¼ b m½ � rib½ � � ap mrib

� �

dp
dt

¼ ap mrib
� �� kp p½ �

Case 2

dm
dt

¼ am þ ap mrib
� �� b m½ � rib½ � � km m½ � � kon m½ � s½ �

ds
dt

¼ as � ks s½ �
drib
dt

¼ ap mrib
� �� b m½ � rib½ �

dmrib

dt
¼ b m½ � rib½ � � ap mrib

� �

dp
dt

¼ ap mrib
� �� kp p½ �

Case 3

dm
dt

¼ am þ ap mrib
� �� b m½ � rib½ � � km m½ � � kon m½ � s½ � þ koff dup½ �

ds
dt

¼ as � ks s½ � � kon m½ � s½ � þ koff dup½ �

drib
dt

¼ ap mrib
� �� b m½ � rib½ �

dmrib

dt
¼ b m½ � rib½ � � ap mrib

� �

dp
dt

¼ ap mrib
� �� kp p½ �

ddup
dt

¼ kon m½ � s½ � � koff dup½ � � kdup dup½ �

In the equations above, [m] stands for the mRNA concentration,
[s] for the asRNA concentration, and [p] for the protein concentra-
tion. [rib] stands for the ribosome concentration, [dup] for the du-
plex concentration, and [mrib] for the mRNA-ribosome complex
concentration. The values of all the parameters of the model are
summarized in table S8, and most of them were determined specif-
ically for M. pneumoniae. RNA decay rates were determined exper-
imentally (see the previous section; Junier et al., under review). Using
the experimental decay rates and assuming an equilibrium situation
(see the previous section), we determined experimental transcription
rates for all RNAs in M. pneumoniae. RNA concentrations used in
the calculations had been previously reported (42). All simulations
were run for a time of 1000 min using Matlab. An SBML (Systems
6 of 9
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Biology Markup Language) version of each of the models was gen-
erated using COPASI (COmplex PAthway SImulator) (45) and has
been submitted to the BioModels database (46).

DNA manipulations and transformation of M. pneumoniae
Different sRNAs encoded by the M. pneumoniae genome were am-
plified by polymerase chain reaction (PCR) using primers described
in table S9. All 5′ primers included sequence of the constitutive promoter
(P438) that drove the overexpression of sRNAs. PCR fragments were
inserted into the pMTnTetM438 minitransposon (47) by Gibson
Assembly. Transformation of theM. pneumoniaeM129 strain was per-
formed as previously described (35), and clones were selected by supple-
menting the medium with tetracycline (2 mg ml−1) at 37°C in 5% CO2.

Proteomics data acquisition and analysis
M. pneumoniae strainM129 was grown for 6 hours at 37°C. The me-
diumwas then removed, and cells were washed twice with PBS. Total
protein extract was obtained by breaking the cells with 200 ml of lysis
buffer [4% SDS, 0.1M dithiothreitol (DTT), and 0.1MHepes]. Total
protein extracts of two biological replicates were analyzed by mass
spectrometry (MS).

Each fraction (with amounts ranging from 20 to 486 mg) was trypsin-
digested. Briefly, samples were dissolved in 6Murea, reducedwithDTT
(10mMat 37°C for 60min), and alkylated with iodoacetamide (20mM
at 25°C for 30min). Samples were diluted 10-fold with 0.2MNH4HCO3

before being digested at 37°C overnight with trypsin (with a protein/
enzyme ratio of 10:1). Peptides generated in the digestionwere desalted,
evaporated to dryness, and dissolved in 300 ml of 0.1% formic acid. An
aliquot of 2.5 ml of each fraction (amounts ranging from 0.17 to 4 mg)
was run on an LTQ-OrbitrapVelos (Thermo Fisher) fittedwith a nano-
spray source (Thermo Fisher) after a nanoLC separation in an EasyLC
system (Proxeon). Peptides were separated in a reversed-phase column,
75 mm×150mm (Nikkyo Technos Co. Ltd.), with a gradient of 5 to 35%
acetonitrile in 0.1% formic acid for 60 min at a flow of 0.3 ml/min. The
Orbitrap Velos was operated in positive ionmode with nanospray volt-
age set at 2.2 kV and source temperature at 325°C. The instrument was
externally calibrated using Ultramark 1621 for the Fourier transform
mass analyzer, and the background polysiloxane ion signal at m/z
(mass/charge ratio) 445.120025 was used as lock mass. The instrument
was operated in data-dependent acquisition mode, and full-MS scans
were acquired in all experiments over a mass range of m/z 350 to 2000
with detection in the Orbitrap mass analyzer set at a resolution setting
of 60,000. Fragment ion spectra produced via collision-induced dissoci-
ation were acquired in the ion trapmass analyzer. In each cycle of data-
dependent analysis, the top 20 most intense ions with multiple charged
ions above a threshold ion count of 5000 were selected for fragmenta-
tion at a normalized collision energy of 35% following each survey scan.
All data were acquired with Xcalibur 2.1 software. Total extract (20 mg)
was also digested and desalted, and 1 mg of the resulting peptides was
analyzed on an Orbitrap Velos Pro under the same conditions as the
fractions but with a longer gradient (120 min).

Protein identification was performed with Proteome Discoverer
software v.1.3 (Thermo Fisher) usingMASCOT v2.4.01 (Matrix Science)
as a search engine (48). Tandemmass spectrometry spectrawere searched
against a HomoConTrans19 database comprising all putative M. pneu-
moniae proteins longer than 19 (after in silico translation of theM. pneu-
moniae genome in the six putative frames) and a list of the common
contaminants (599 entries). We set a precursor ion mass tolerance of
Lloréns-Rico et al. Sci. Adv. 2016; 2 : e1501363 4 March 2016
15 parts per million at theMS1 level and a fragment ionmass tolerance
of 0.5 daltons.We allowed up to threemiscleavages for trypsin.Oxidation
of methionine and protein acetylation at the N terminus were defined as
variable modifications, whereas carbamidomethylation on cysteines was
set as a fixed modification. False discovery rates in peptide identifica-
tion were evaluated using a decoy database set to a maximum of 5%.

RNA-seq and shotgun proteomics data analysis
RNA-seq. Reads were mapped as explained above to obtain the

log2(CPKM) values. Data from the nine experiments were quantile-
normalized. Each experiment (one biological replicate and two techni-
cal replicates) was compared to the rest of the experiments, which were
thus used as internal controls. Comparison was performed twofold, by
calculating the fold changes in gene expression and performing a t test
between the samples and the internal controls. A multiple-test correc-
tion was applied to correct the P values of the t test.We considered only
those changeswith absolute fold changes larger than 0.8 and correctedP
values smaller than 0.05 as biologically significant.

Shotgun proteomics. To obtain reliable protein expression values,
only unique peptides (those uniquely mapping to a single protein) were
considered. The three largest areas from peptides of the same protein
(top three peptides) were averaged to obtain a single value for each pro-
tein. Areas were rescaled so that each experiment would have the same
expression baseline. Comparisonwas performed twofold, by calculating
the fold changes of the areas (in log2) and by performing a t test between
the samples (one biological replicate and two technical replicates for each
experiment) and the internal controls (the rest of the samples of the ex-
periment).Weapplied amultiple-test correction to theP values of the t test.
Again,we consideredonly those changeswith absolute fold changes larger
than 0.8 and corrected P values smaller than 0.05 as significant.
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