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ABSTRACT

Most transcription factors (TFs) belong to protein
families that share a common DNA binding domain
and have very similar DNA binding preferences. How-
ever, many paralogous TFs (i.e. members of the same
TF family) perform different regulatory functions and
interact with different genomic regions in the cell.
A potential mechanism for achieving this differen-
tial in vivo specificity is through interactions with
protein co-factors. Computational tools for study-
ing the genomic binding profiles of paralogous TFs
and identifying their putative co-factors are currently
lacking. Here, we present an interactive web imple-
mentation of COUGER, a classification-based frame-
work for identifying protein co-factors that might pro-
vide specificity to paralogous TFs. COUGER takes
as input two sets of genomic regions bound by par-
alogous TFs, and it identifies a small set of puta-
tive co-factors that best distinguish the two sets of
sequences. To achieve this task, COUGER uses a
classification approach, with features that reflect the
DNA-binding specificities of the putative co-factors.
The identified co-factors are presented in a user-
friendly output page, together with information that
allows the user to understand and to explore the con-
tributions of individual co-factor features. COUGER
can be run as a stand-alone tool or through a web
interface: http://couger.oit.duke.edu.

INTRODUCTION

Most eukaryotic transcription factors (TFs) are members
of protein families that share a common deoxyribonucleic
acid (DNA) binding domain and have highly similar DNA
binding preferences. However, individual TF family mem-
bers (i.e. paralogous TFs) often have different functions
and bind to different genomic regions in vivo, as observed
from chromatin immunoprecipitation assays followed by

microarray analysis or high-throughput sequencing (ChIP-
chip or ChIP-seq) (1,2). Despite the large amount of in vivo
ChIP-seq data currently available, especially through the
ENCODE project (3), computational tools for analyzing
differences between the genomic binding profiles of paralo-
gous TFs are still lacking.

Several mechanisms can contribute to differential in vivo
DNA binding of paralogous TFs. First, some pairs of par-
alogous TFs exhibit subtle differences in DNA binding
specificity––either for the core binding site (4) or for the
binding site flanks (1)––and such differences can explain,
at least in part, how each TF selects its unique targets. Sec-
ond, paralogous TFs may interact with different protein co-
factors that modulate their DNA binding specificity (5), or
they may respond differently to certain chromatin environ-
ments. Third, some paralogous TFs are expressed in differ-
ent cells or at different stages during cellular differentiation
or during the cell cycle; in such cases, the precise chromatin
environment in the cell where each paralogous TF is ex-
pressed will dictate where the TF binds in the genome. Here,
we focus on paralogous TFs that are present in the cell at
the same time, have highly similar DNA binding specifici-
ties, but still show significant differences in their in vivo ge-
nomic binding profiles, as measured by ChIP-seq. For such
paralogous TFs, interactions with different sets of protein
co-factors are a likely mechanism for achieving differential
in vivo specificity.

We present an extensive web implementation of our
recently published algorithm COUGER (co-factors as-
sociated with uniquely-bound genomic regions) (6), a
classification-based framework for identifying protein co-
factors that might provide specificity to paralogous TFs.
COUGER can be applied to any two sets of genomic re-
gions bound by paralogous TFs (e.g. regions derived from
ChIP-seq experiments). The framework uses state-of-the-
art classification algorithms (support vector machines and
random forest) with features that reflect the DNA-binding
specificities of putative co-factors. A custom feature selec-
tion procedure is used to obtain a small subset of non-
redundant putative co-factors that are most important for
distinguishing between genomic regions bound by the con-
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sidered pair of paralogous TFs. The identified co-factors are
presented in a user-friendly output page, together with in-
formation about the importance of each co-factor feature,
and the classification accuracy. Users can run COUGER
through a web interface: http://couger.oit.duke.edu , or as
a stand-alone Python software tool (available for download
on the COUGER website).

MATERIALS AND METHODS

Classification algorithms

COUGER uses support vector machine (SVM) (7) and ran-
dom forest (RF) (8), two state-of-the-art classification al-
gorithms with free software packages: LIBSVM (9) and
Random Jungle (10). Both algorithms are highly accurate,
can successfully handle high-dimensional data and are ro-
bust on data with highly correlated features. SVM is a non-
probabilistic binary linear classifier with great performance
on both linear and nonlinear classification problems. RF is
an ensemble of multiple classification trees, which explicitly
computes a measure of the importance of each variable for
the classification task. We trained SVMs with both linear
and radial basis function kernels (SVMlin and SVMrbf , re-
spectively) (9), and RF with the unscaled permutation im-
portance (RFpi). The latter measure represents the average
decrease in classification accuracy when the values of the
respective variable are randomly permuted (10). We use dif-
ferent classifiers in order to assess the reliability of the re-
sults and their independence of particular techniques. In ad-
dition, each method has specific strengths and weaknesses
(SVMrbf usually yields better performance than SVMlin,
while results obtained with SVMlin are more interpretable).

Classes and features

COUGER performs binary classification. The two classes
are the DNA sequences under the ChIP-seq peaks for two
paralogous TFs (TF1 and TF2), which the user can specify
either in FASTA format or, for convenience, directly with
ChIP-seq peak coordinates in ENCODE narrowPeak for-
mat, ENCODE broadPeak format, or even BED format.
TF1- and TF2-specific sequences are defined by excluding
the ChIP-seq peaks that overlap any peak of the other TF
(Figure 1, Step 1). In order to avoid a potential classification
bias toward one of the two classes, an equal number of DNA
sequences from each set is selected. Then, in the case of nar-
rowPeak input files, which we strongly recommend, each se-
quence is trimmed to ±100 bp on each side of the ChIP-
seq peak summit. If possible, COUGER considers only the
close vicinity of the TF1 and TF2 ChIP-seq peak summits
because our goal is to identify co-factors that bind together
with TF1 or TF2. We note that for high-quality ChIP-seq
data, the TF-DNA binding events are thought to occur, in
general, within 50 bp of the peak summit.

Features reflecting the binding specificity of putative co-
factors are computed from: (i) high-throughput in vitro TF-
DNA binding data from universal protein-binding microar-
ray (PBM) assays (11,12), or (ii) from large collections of
DNA binding motifs (i.e. position weight matrices, PWMs)
(13,14) (Figure 1, Step 2). From each universal PBM data
set we use the enrichment scores (E-scores) for all possible

Figure 1. The COUGER framework. Step 1 represents the derivation of
the two classes (TF1- and TF2-specific) and is omitted in the case of
FASTA input files. In step 2, all features are computed for the two classes,
from PBM or PWM data. Step 3 illustrates the custom feature selection
procedure. The circles represent the number of features that are consid-
ered in each iteration; the darker circles correspond to the sets of features
that are used in classification. In step 4, classifiers are learned on the train-
ing set and then predictions are made on the test set. Steps 3 and 4 are
repeated five times, according to the 5-fold CV setting.

8-mers. The E-score is a modified form of the Wilcoxon–
Mann Whitney statistic and ranges from −0.5 (least fa-
vored sequence) to +0.5 (most favored sequence). For a
given PBM data set or PWM, and a given DNA sequence,
COUGER uses two features: ‘MAX’ (the maximum score
over all the k-mers in that sequence) and ‘TOP3AVG’ (the
average score over the top 3 highest-scoring k-mers in that
sequence––this takes into account the fact that TF binding
sites may occur in clusters); see (6) and Supplementary Fig-
ure S1 for more details on computing the features.

Feature selection

One of the most important steps of our classification ap-
proach is feature selection, because we expect only a small
number of TFs to be potential co-factors and interact with
the considered paralogous TFs. Prior to classification, the
input set of sequences is randomly divided into a training
set (consisting of 80% of the data) and a test set (consist-
ing of the remaining 20% of the data). Only sequences in
the training set are used during feature selection, to en-
sure the complete independence of the test set, which is
used only to evaluate the performance of our classification
models. COUGER performs feature selection using a com-
bined procedure consisting of RF recursive feature elimi-
nation (RF-FS) and minimum redundancy maximum rel-
evance feature selection (mRMR) (15). This procedure is
illustrated in Figure 1, Step 3, which depicts the case of us-
ing 858 features derived from PBM data for 429 TFs. After
the feature selection step, classification is performed on five
feature sets: (i) all features, (ii) under 100 features selected
by RF-FS, (iii) under 10 features selected by RF-FS, (iv)
the first five features selected by mRMR and (v) the first 10
features selected by mRMR.

RF-FS is an iterative process in which a random forest is
grown at each step and a subset of variables are discarded.
We recursively eliminate half of the features (with the small-
est importance) until <100 or <10 features remain. Then we
apply a normalized variant of the mRMR algorithm, called
NMIFS (normalized mutual information feature selection)
(16), to the set of features from the RF-FS iteration in which
their number was below 100. The NMIFS technique ranks
the features by considering both the relevance/importance
for distinguishing between classes, and the redundancy be-
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tween pairs of features. The method is based on mutual in-
formation (MI) and works best with discrete-valued fea-
tures (17). For this reason, we derived a discretization
approach that computes the 20-quantiles (separately for
‘MAX’ features and ‘TOP3AVG’ features) and maps the
features to 20 integer values. This procedure also allows us
to avoid the MI’s bias toward features with larger sets of
possible values. We note that we tested several discretization
approaches, as well as several feature selection algorithms
(15,16,18–20), and we found that NMIFS with discretized
features achieved the highest classification accuracy (data
not shown).

Performance evaluation

We evaluate the performance of our classification models
using a 5-fold cross-validation (CV) approach. In each of
the five runs, COUGER performs three procedures on the
training data: feature selection, grid search over the param-
eter space and training of the classifier(s). Then, the test
data is used for prediction and evaluation. For each set of
features and each type of classifier, COUGER computes
median values for accuracy, sensitivity, specificity and pre-
cision, which are reported in separate files. In addition, it
shows the classification accuracy (the fraction of true pos-
itives and true negatives in the test set) in a user-friendly
format (Figure 2 A) .

Server design

COUGER web runs under Apache2 (httpd.apache.org)
with mod wsgi on Debian 7.0 ‘Wheezy’ (www.debian.org).
It was developed using the Django web framework (www.
djangoproject.com), which is written in Python (www.
python.org) and thus allowed direct integration with the
COUGER source code. Input data is validated using
Django forms module features. Also, part of the web func-
tions are implemented with JavaScript and jQuery (jquery.
com).

Input

COUGER takes as input two sets of genomic regions bound
by (paralogous) TFs. Each set is specified in a separate,
uncompressed file. Users can submit these files either in
ENCODE narrowPeak format, ENCODE broadPeak for-
mat, BED format or in FASTA format. If the user provides
FASTA files, COUGER will consider that the classes are
predetermined and will start with Step 2 (Figure 1), so only
the nucleotide sequences will be read (we note that in the ab-
sence of genomic coordinates, it is much harder and time-
consuming to identify the overlapping sequences between
the two sets). For all other input formats, COUGER will
start with Step 1 (Figure 1), removing from each set the se-
quences that have an overlap with any sequence from the
other set. The resulting sets of sequences are reported by
COUGER in FASTA format, and can be used to rerun the
algorithms using different settings, such as different feature
sets. Moreover, if narrowPeak files are uploaded, COUGER
will focus the search for putative co-factor binding sites by

Figure 2. COUGER sample output. The results correspond to TFs c-Fos
(henceforth referred to as Fos) and JunD, with PBM-derived features. (A)
Median classification accuracies for Fos versus JunD (left), and options
for interactive selection (right). The accuracies are presented in a heatmap
manner, where green corresponds to the minimum value and red to the
maximum. (B) Heatmap showing the features values. Each row represents
a DNA sequence in one of the two classes. Each column represents a se-
lected feature from ‘RF-FS under 100’ (i.e. Random Forest feature selec-
tion run to select <100 features). (C) A set of selected features (sorted by
their score), together with their correlation (i.e. the Pearson correlation
coefficient) with the class label. The first class, in this example Fos, is con-
sidered class ‘0’. The second class, in this example JunD, is considered class
‘1’. Thus, a negative correlation for a particular feature suggests that the
feature is important for TF1, while a negative correlation suggests that the
feature is important for TF2. The name of each feature contains the name
of PBM file used to generate that feature, as well as ‘MAX’ or ‘TOP3AVG’,
which specifies whether the feature represents the score of the best site in
each sequence or an average over the top three sites, respectively.

trimming the peaks to ±100 bases centered at the peak sum-
mit, which will reduce the running time and improve the re-
sults. Thus, narrowPeak is the recommended format for the
input sets of sequence.

In the case of a BED-like format, the user may choose the
reference genome among five different versions of the hu-
man genome, four versions of the mouse genome and three
versions of the fly genome. We note that the user can specify
other genomes or genome versions in the downloadable ver-
sion of our framework. The web version of COUGER also
enforces a restriction of maximum N sequences per class,
due to time and resources constraints (N is a threshold set
by the user, and can vary between 300 and 1000). If the num-
ber of unique targets exceeds the threshold, then COUGER
will run using only the top N sequences. These limitations
do not apply to the stand-alone version of our framework.
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COUGER also requires a set of features that reflect
the DNA binding specificities of putative co-factors. The
current version of the web server offers six choices of
such features for human and mouse data: ‘PBM data
from UniPROBE’ (i.e. PBM 8-mer E-scores for 429 mam-
malian TFs from the UniPROBE database (12)), ‘PWMs
from UniPROBE’ (i.e. PWMs derived from PBM data in
UniPROBE (12)), ‘PWMs from TRANSFAC’ (i.e. 1226
PWMs from the TRANSFAC database (13)), ‘PWMs from
HT-SELEX data’ (i.e. 239 PWMs for human or mouse TFs,
derived from HT-SELEX data of Jolma et al. (14)), ‘PWMs
from JASPAR CORE vertebrata’ (i.e. 205 PWMs from the
JASPAR database (21)) and ‘PWMs from UniPROBE &
HT-SELEX & JASPAR CORE vertebrata’ (all 876 PWMs
from the three databases).

COUGER also offers three choices for Drosophila
melanogaster data: PWMs from TRANSFAC’ (i.e. 1226
PWMs from TRANSFAC database (13)), ‘PWMs from
JASPAR CORE insecta’ (i.e. 131 PWMs from JASPAR
database (21)) and ‘PWMs from TRANSFAC and JASPAR
CORE insecta’ (all 1357 PWMs from the two databases).

Output

After submission and validation, the user is redirected to a
status page, where job details and the running log are pro-
vided. When the job is completed, the results replace the
status page, and an e-mail is sent to the user if an email ad-
dress was provided. The results can be viewed online, or can
be downloaded as a zip file (which is recommended, because
the results may be deleted after 48 h).

The median classification accuracies (before and after
feature selection) are displayed in a heatmap-like color
coded table with values for each type of algorithm and each
set of features (Figure 2 A). The user can interact with the
results page to view more detailed information: the varia-
tion in classification accuracy over the CV runs (the infor-
mation is displayed in three boxplots, one for each classifier:
SVM-lin, SVM-rbf and RF-pi); the accuracies for individ-
ual CV runs; a heatmap showing all the features selected
by RF-FS and their values for the sequences in each of the
two classes (Figure 2 B); the ranking of all the features in
main feature sets (RF-FS (under 100), RF-FS (under 10)
and NMIFS) (Figure 2 B and C).

ENCODE ChIP-seq datasets

We tested COUGER on 20 pairs of paralogous TFs (Ta-
ble 1) with ChIP-Seq data from ENCODE (3) in the K562
cell line, processed using a uniform pipeline. Briefly, we ap-
plied the IDR framework (22) together with the MACS (23)
peak caller (version 2.0.10), for which the size of the shift
was previously estimated by SPP (24) (see Supporting Ma-
terials and Methods). Next, we analyzed the results and fil-
tered out the TFs with IDR scores that did not follow the
restrictions recommended by ENCODE (25) (see Support-
ing Material for details). Using the peak calling pipeline, we
identified high-quality ChIP-seq data (in terms of data re-
producibility) for 20 pairs of paralogous TF (Table 1).

Although we report here results for data processed with
the IDR pipeline, which is the current standard for the EN-

Figure 3. COUGER classification performance for 20 pairs of TFs, with
features derived from PWM data (from UniPROBE, HT-SELEX and JAS-
PAR CORE vertebrata). The values correspond to the best result from all
three classifiers (SVMlin, SVMrbf and RFpi) and all four sets of features
derived by the FS procedure (under 100 and under 10 features selected by
RF-FS, and first 5 and 10 features selected by NMIFS). The solid lines rep-
resent the results in normal settings. The dashed lines represent the results
for randomized classes.

CODE project (25), COUGER has no requirements or lim-
itations regarding the peak finding methodology. We rec-
ommend, however, a uniform and careful processing of the
input data because it is important that the ChIP data for
both TF1 and TF2 is comparable and of high quality. Large
differences in data quality between TFs will likely result in
one of the two paralogous TFs being the dominant signal
when comparing the unique peaks of the two factors.

RESULTS

Classification performance

We ran COUGER on 20 pairs of TFs (Table 1), using fea-
tures derived either from PBM data from UniPROBE, or
the joint set of PWMs from UniPROBE, HT-SELEX and
JASPAR CORE vertebrata. The classification performance
for PWM features is presented in Figure 3. After feature
selection, the classification accuracy varies between 71.9
and 99.5% depending on the pair of paralogous TFs, with
no correlation between classification performance and the
number of sequences in the training set (detailed results are
presented in Supplementary Tables S1 and S2). COUGER
performed well with both PBM-derived and PWM-derived
features (Figure 4, accuracy and precision, and Supplemen-
tary Figure S2, sensitivity and specificity) and returned sim-
ilar sets of putative co-factors, which is not surprising given
the high overlap between the TFs represented in the two
data sets. In general, we recommend running COUGER
with both options, as some TFs have data in only one of
the two types of feature sets.

We note that for c-Myc and Mxi1, we obtained a classifi-
cation accuracy of up to 93.5% (Supplementary Table S1),
compared to our previously reported accuracy of 88.4% (6).
The increased performance is due to improvements in the
COUGER framework, mainly in the feature selection steps.
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Table 1. Pairs of paralogous TF with high-quality ChIP-seq data for the K562 cell line in ENCODE

TF1 TF2 # seqs TF1 TF2 # seqs

NFYA NFYB 70 FOS JUNB 1842
CJUN JUND 90 ELF1 ETS1 1962
MAX MXI1 382 ELF1 GABPA 1976

MAFF MAFK 506 FOS JUND 2032
CMYC MXI1 538 JUNB JUND 2194
CMYC MAX* 586 CMYC MAX** 2598

SP1 SP2 736 ETS1 GABPA 3516
GATA1 GATA2 802 CFOS CJUN 5186

E2F4 E2F6 1002 CEBPB CEBPD 7000
ATF1 ATF3 1682 BHLHE40 TAL1 7152

The pairs of factors are sorted by the ‘# seqs’ column, which contains the number of sequences selected by COUGER for both classes (TF1- and TF2-
specific). There are two pairs with the same TFs: CMYC and MAX. The pair marked with * corresponds to a ChIP-seq data set using an IgG control. The
pair marked with ** corresponds to a ChIP-seq data set using a standard control.

Figure 4. COUGER classification performance (accuracy and precision)
for 20 pairs of TFs, with PBM and PWM features. The values correspond
to the best result from all three classifiers (SVMlin, SVMrbf and RFpi) and
all four sets of features derived by the FS procedure. The horizontal lines
represent the median value over all pairs of TFs, for PBM or PWM fea-
tures.

To determine whether the accuracy on the tested TF pairs
is significant, we randomized the classes for all pairs of TFs
and ran COUGER on the randomized sets (see Support-
ing Materials and Methods). As expected, the classification
accuracy for randomized data varied between 44.44 and
53.94%, with a median of 49.75% (Supplementary Tables
S3 and S4), which demonstrates that the high accuracies on
real TF binding data are not due to chance. We note that the
median variation of randomized accuracies for five different
class-label shuffling is 3.7% (Supplementary Table S5).

Importantly, the COUGER output page is highly interac-
tive and allows users to visualize details of the classification
results, as well as details regarding the co-factor features
that enabled a successful classification. This is in contrast to
many implementations of classification algorithms, which
provide an accuracy measure but no indication of what fea-
tures drive the classification. Through its user-friendly and
interactive design, the COUGER web tool makes it easy for
users to understand and explore the contribution of individ-
ual features.

Identification of putative co-factors

Importantly, for several (TF1, TF2) pairs we have found
evidence in the literature supporting our hypothesis that
factors identified by COUGER interact with TF1 or TF2
and thus may contribute to their in vivo DNA binding
differences. For example, in the case of Fos and JunD

with PBM features (Figure 2), we found support for sev-
eral putative co-factors. Both Fos and JunD are basic
leucine zipper (bZip) proteins from the AP-1 subfamily. Fos
binds DNA as a heterodimer with c-Jun and other mem-
bers of the AP-1 subfamily, while JunD can homodimer-
ize and, interestingly, it can interact with TFs from the
ATF/CREB subfamily, another branch of the bZip family.
As shown in Figure 2, COUGER found that features re-
flecting the specificity of the ATF/CREB subfamily (such
as ‘Atf1 3026 contig8mers v1 MAX’) are strongly associ-
ated with JunD-unique sequences, consistent with a direct
interaction between JunD and ATF/CREB factors. GATA
factors, also found to be important for distinguishing Fos-
from JunD-unique targets, have been previously reported to
interact with proteins from the AP-1 subfamily (26,27); the
exact identity of the GATA co-factor that might interact
specifically with JunD remains to be determined. TF Sfpi1,
associated with JunD-unique targets, is known to interact
directly with JunD (28). TF Meis1 was also found to be as-
sociated with JunD-unique sequences. Meis1 is not known
to interact directly with JunD. However, it has very similar
sequence preferences to Tgif2, a factor that has been shown
to interact specifically with JunD (29). In the Fos-unique
sequences, the most important features reflect the general
specificity of Fos:Jun complexes, which might indicate that
at those targets Fos binds together with AP-1 proteins other
than JunD.

In a comparison of c-Fos versus c-Jun unique targets, we
found E2F factors associated with c-Fos targets, consistent
with the previously reported roles of c-Fos and E2Fs in the
same signaling cascade that links Ras activity to cyclin A
transcription (30). In the same comparison, TF Mitf was
associated with c-Jun, consistent with their direct interac-
tion and synergistic effects on gene regulation (31,32).

In a comparison of Atf1 versus Atf3, Myc/Max/Mad
TFs were found enriched in Atf3-unique targets; a poten-
tial interaction between Atf3 and Max has been reported
previously in the ENCODE project and is under further in-
vestigation.

Among the tested TF pairs, we sometimes see TF1
and/or TF2 among the factors most relevant for the clas-
sification. This could indicate that one TF is present at a
higher concentration, binds with higher affinity overall, or
has higher quality data. Importantly, COUGER allows the
user to remove these TFs from the set of putative co-factors
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(using an option in the input page) and re-run the classifi-
cation framework. We note that even after eliminating TF1
and TF2 from the set of features, the classification accu-
racy remains very high. To illustrate this, in Supplemen-
tary Figures S3 and S4 we show our results for TFs c-Myc
versus Mxi1, before and after removing features reflecting
the specificity of these two factors. Importantly, we see that
the predictions accuracy, as well as the selected putative co-
factors (namely, Rfx proteins) remained the same (Supple-
mentary Figures S3 and S4).

Classification between replicate experiments

Our peak calling preprocessing pipeline allowed us to de-
termine high confidence peaks for each TF (which allowed
us to compare paralogous TFs), as well as self-consistent
peaks for each replicate (which allowed us to compare repli-
cate experiments performed for the same TF). Therefore, as
a control, we also ran COUGER on the 31 pairs of repli-
cate experiments. The classification accuracy for pairs of
replicates ranged between 52.3 and 94.2%, with a median
of 76.9% (Supplementary Table S6 and Supplementary Fig-
ure S5). This was far from the expected random classifica-
tion result, which was obtained for the randomized classes
of pairs of paralogous TFs. Randomizing the data for the
replicate pairs results in an expected accuracy level (47.05–
53.84%, with a median of 50%; Supplementary Table S7).

By investigating further the behavior for pairs of repli-
cates, we found that the putative co-factors selected by
COUGER are different between replicate experiments ver-
sus paralogous TFs (see Supplementary Table S8). The clas-
sification between replicate experiments is driven mostly by
Gata factors and by TFs that bind GC repeat regions (such
as Zfp161 and E2F). Indeed, the nucleotide frequencies, in
particular the GC content, play a major role in distinguish-
ing between sequences unique to only one replicate. Sup-
plementary Figure S6 shows the difference in GC% for all
20 pairs of paralogous TFs and 31 pairs of TF replicates.
This difference correlates very well with the classification
accuracy in the case of replicate experiments (Pearson cor-
relation coefficient 0.706), but not in the case of TF pairs
(Pearson correlation coefficient 0.217) (Supplementary Ta-
bles S9 and S10). The high classification accuracy for repli-
cate data sets could be due to experimental bias: recent stud-
ies have found strong biases in ChIP-seq data for regions
close to the TSS of highly expressed genes (33,34), which are
oftentimes enriched in CG dinucleotides. (Indeed, many of
the peaks unique to only one of the ChIP-seq replicates are
close to TSSs.) Given that control experiments and replicate
experiments reported in ENCODE were not performed at
the same time, it is currently not possible to correct for this
bias in the ChIP-seq data. We note, however, that for the
TF pairs in our analysis, even when the TFs shows relatively
large differences in GC-content, the identified putative co-
factors were not TFs that bound CG-repeats or high GC-
content sites, which suggests that the potential bias driv-
ing the classification between replicates is not influencing
COUGER’s ability to identify co-factors. In cases where
there is uncertainty regarding the quality of the replicate
experiments, we recommend running COUGER for TF1–
TF1 and TF2–TF2, in addition to TF1–TF2, and compar-

ing the sets of putative co-factors obtained for paralogous
TFs versus replicates.

DISCUSSION

The goal of the COUGER framework is to help users gen-
erate hypotheses regarding potential co-factors that might
provide in vivo specificity to paralogous TFs. These puta-
tive co-factors are selected from the set of TFs with known
binding specificities provided as features. COUGER can use
either PBM scores or PWM motifs for extensive sets of pro-
teins, both types of data reflecting protein-DNA interac-
tions.

We compared the use of PBM scores from UniPROBE
with that of PWMs from UniPROBE, and although the
results were similar, we note that each approach has its
own advantages and disadvantages. Using the PWMs de-
rived from PBM data has the advantage that one can easily
combine these PWMs with additional PWMs from other
databases (such as JASPAR and/or HT-SELEX), thus ex-
panding the number of tested putative co-factors. However,
PWMs represent only a summary of the PBM data, and
they make the assumption that individual positions within
TF binding sites contribute independently to the binding
affinity. This assumption is not always true, so in some cases
the PWMs may not accurately reflect TF binding specificity.
The PBM 8-mer data does not suffer from this drawback,
because it simply represents the binding preferences of a TF
for all possible 8-mers. But its disadvantage is that the num-
ber of eukaryotic factors with PBM data available is rela-
tively small compared to the number of TFs with known
PWMs, although we expect this situation to change as more
and more PBM data sets are being generated.

After a set of putative co-factors are identified, follow-up
studies should be performed to test: (i) whether the putative
co-factors (or factors with very similar specificities) are ex-
pressed in the cell type of interest; (ii) whether the identified
putative co-factors are bound in vivo to TF1- or TF2-unique
sequences; and (iii) whether the putative co-factors interact
physically with TF1 and TF2. Such follow-up studies are
necessary to test whether identified co-factors contribute to
the regulatory specificity of the paralogous TFs of interest.

We plan to implement several additional features in
COUGER. First, the current version of our web server
allows users to run the classification with either PBM
data from UniPROBE (12), or PWMs from TRANSFAC
(13), HT-SELEX data (14), JASPAR core (21) and/or
UniPROBE (12). We will include an option for the users to
upload a custom set of DNA motifs or PBM datasets. Fu-
ture work also includes adding features derived from ChIP-
seq data for putative co-factors, extending the web server to
other organisms, giving users the option to run only one of
the three classification algorithms included in our tool, and
adding more interactive options for feature analysis (such
as direct links from the co-factor features to databases with
more information on each co-factor).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online including
[1–6].
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