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Abstract 

Mutations in several genes cause non-autoimmune diabetes, but numerous patients still have 

unclear genetic defects, hampering our understanding of the development of the disease and 

preventing pathogenesis-oriented treatment. We used whole-genome sequencing with linkage 

analysis to study a consanguineous family with early-onset antibody-negative diabetes and 

identified a novel deletion in PCBD1 (pterin-4 alpha-carbinolamine dehydratase/dimerization 

cofactor of hepatocyte nuclear factor-1 alpha), a gene that was recently proposed as a likely cause 

of diabetes. A subsequent reevaluation of patients with mild neonatal hyperphenylalaninemia due to 

mutations in PCBD1 from the BIODEF database identified three additional patients who had 

developed HNF1A-like diabetes in puberty, indicating early β-cell failure. We found that Pcbd1 is 

expressed in the developing pancreas of both mouse and Xenopus embryos from early specification 

onward showing colocalization with insulin. Importantly, a morpholino-mediated knockdown in 

Xenopus revealed that pcbd1 activity is required for the proper establishment of early pancreatic 

fate within the endoderm. We provide the first genetic evidence that PCBD1 mutations can cause 

early-onset non-autoimmune diabetes with features similar to dominantly inherited HNF1A-

diabetes. This condition responds to and can be treated with oral drugs instead of insulin, which is 

important clinical information for these patients. Finally, patients at risk can be detected through a 

newborn screening for phenylketonuria. 
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Main Text 

Diabetes is classified into type 1 diabetes (T1D) caused by autoimmune β-cell destruction, 

type 2 diabetes (T2D), caused by relative insulin deficiency in face of insulin resistance, gestational 

diabetes and other specific types, including monogenic diabetes (1). T2D is a polygenic disease 

with over 60 susceptibility loci and numerous risk variants co-located with genes, causing 

monogenic diabetes (2). Monogenic diabetes is defined by neonatal, childhood or a post-pubertal 

age of onset, variable clinical presentation, a lack of autoimmunity and acanthosis nigricans as well 

as uncommon obesity and ketoacidosis outside the neonatal period. It affects ~1% of diabetes 

patients (1, 3). Intrestingly, monogenic cases are often accompanied by endogenous insulin 

production and lack of insulin resistance. Heterozygous GCK, HNF1A and HNF4A mutations are 

the most common cause, although more than twenty other genes have been described (3, 4). 

However, the disease-causing variants in numerous families remain obscure. Identifying novel 

genes would provide insights into pathogenesis and suggest new treatment strategies for rare 

monogenic diabetes as well as common polygenic T1D and T2D. 

We sought to identify additional genes by combining linkage analysis with the whole-

genome sequencing of a consanguineous family 1 (Fig. 1A and Table 1) with non-autoimmune 

diabetes and no pathogenic mutations in HNF1A, HNF1B, HNF4A, INS, ABCC8 or KCNJ11 genes. 

Our institutional review boards approved the studies and written consent was obtained from the 

participants or their guardians. To pinpoint suggestive linkage regions, we performed a haplotype 

mapping and parametric linkage analysis of seven members of family 1 (Fig. 1A, red borders) using 

HumanCytoSNP-12 v2.1 Chip (Illumina), MERLIN software, assuming recessive inheritance, 

complete penetrance, and a disease allele frequency of 0.001. We obtained 24 genomic regions with 

positive logarithm of odds (LOD) scores, including 13 regions on 10 chromosomes with maximal 

LOD score of 1.3 (Supplementary Fig. 1). We next performed a whole-genome sequencing of five 

individuals from family 1 (Fig. 1A, asterisks) on the Complete Genomics platform (Mountain View, 

California, USA). The Complete Genomics pipeline was used for read mapping and allele calling. 
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On average, both alleles were called for ~96% genomic and ~98% exonic positions, whereas ~97% 

and ~99% of the called ones were covered by at least 10 reads, respectively (Supplementary Table 

1). We found ~4 million small variations (small indels and SNPs) per individual genome including 

more than 23,000 variants in each exome. 

To distinguish relevant single nucleotide polymorphisms (SNPs) and small indels from other 

variations, we used CGA Tools, ANNOVAR and custom scripts. We first removed intergenic 

variants and anticipated recessive inheritance (Supplementary Fig.2). Therefore, homozygous 

variants were required to be present in index case III-2, heterozygous in II-1, II-2 and I-4, but not in 

I-3, who is not related to I-4. Since monogenic diabetes is uncommon, we predicted the disease-

causing variant to be rare and likely not yet identified. Thus, we removed all the variants present in 

dbSNP137, 1000 Genomes, NHLBI Exome Sequencing Project, 69 sequenced individuals from the 

Complete Genomics and our in-house database of non-diabetic individuals. We focused on non-

synonymous variants, splice site mutations, and small indels within protein-coding regions. We 

further selected conserved alterations, as defined by PhastCons, and variants predicted to be 

deleterious by at least two tools: SIFT, Polyphen-2 or MutationTaster. This reasoning left 6 genes 

(Supplementary Table 4), from which we selected PCBD1, encoding pterin-4 alpha-carbinolamine 

dehydratase also known as dimerization cofactor of hepatocyte nuclear factor 1 alpha (DCoH) (5) 

for further analysis. Our decision was based on the strong expression of PCBD1 in pancreatic islets 

(T1DBase and (6)), mouse pancreatic progenitors (7), and its interaction with HNF1A and HNF1B 

transcription factors, essential for proper pancreatic β-cell function (5, 8, 9). Moreover, PCBD1 lay 

within the suggestive linkage region (Fig. 1C) and was the only gene containing a frameshift 

deletion. Subsequently, we validated the deletion in all diabetic members of family 1 by Sanger 

sequencing (Fig. 1B), using exon-intron spanning primers (Supplementary Table 2). 

PCBD1 is a bifunctional protein that acts as an enzyme in the regeneration of cofactor 

tetrahydrobiopterin (BH4) (10), crucial for the function of aromatic amino acid hydroxylases, and as 

a dimerization cofactor of transcription factors HNF1A and HNF1B (5), important in liver and 
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pancreas development and function. The enzymatic function of PCBD1 is defective in newborns 

with mild transient hyperphenylalaninemia (HPA) and high urinary levels of primapterin caused by 

recessive mutations (11, 12). Recently, a PCBD1 defect was suggested to cause hypomagnesemia 

and diabetes (13). The novel homozygous deletion c.46del in family 1 results in a premature stop 

codon p.[(Lys16Cys*5)];[(Lys16Cys*5)] that abolishes the transcription factor-binding and 

enzymatic functions of PCBD1 (Fig. 1G). 

Since III-2 developed diabetes in puberty, we reevaluated patients with neonatal 

hyperphenylalaninemia caused by PCBD1 who appeared in the BIODEF database (14). Three out 

of 7 children from 6 families, exhibiting  3 different biallelic PCBD1 defects 

p.[(Glu87*)];[(Glu87*)], p.[(Glu97Lys)];[(Gln98*)], and p.[(Gln98*)];[(Gln98*)], had already 

developed antibody-negative diabetes with normal pancreatic morphology (Fig. 1, D-F and Table 

1). Taken together, our analyses of seven independent families provide strong genetic evidence that 

mutations in PCBD1 cause puberty-onset diabetes. 

We tested the in vitro effects of a transient Pcbd1 knockdown in glucose-sensitive mouse 

insulinoma cells using siRNA and found no obvious defects in insulin production or glucose-

stimulated insulin secretion after an 80% inactivation of Pcbd1 (data not shown). Endocrine 

pancreas dysfunction may arise not only from β-cell inability to produce and/or secrete insulin, but 

also due to impaired β-cell development, proliferation and adaptation during fetal, neonatal, and 

pubertal age. To address whether Pcbd1 controls early pancreas development and/or pancreatic β-

cell fate specification, we first examined its expression pattern in the developing pancreas of both 

mouse and Xenopus embryos. In the mouse embryo, Pcbd1 transcript has been reported in the 

foregut endoderm, which contains liver and pancreas progenitors at embryonic stage (E) 8.5, and in 

E10.5 liver and ventral and dorsal pancreatic buds (7). We found an abundant expression of Pcbd1 

in the embryonic pancreas at E12.5 and E14.5 (Fig. 2, A-D). Interestingly, Pcbd1 accumulated in 

endocrine progenitors, that had started to delaminate from E-cadherin-positive pancreatic 

epithelium and expressed insulin (Fig. 2, A’ and C’). At E14.5, Pcbd1 expression was maintained in 
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endocrine progenitors and visible throughout the pancreatic epithelium (Fig. 2D). To analyze 

whether this pcbd1 expression pattern was conserved in Xenopus endoderm, we performed RT-

qPCR on microdissected endoderm cells. Fate map experiments in Xenopus have previously shown 

that pancreatic progenitors arise from anterior endoderm (AE), while posterior (PE) endoderm 

forms mainly intestine (15). We found that pcbd1 along with the pancreatic genes pdx1 and ptf1a 

mark future pancreatic endoderm, being expressed at higher levels in AE than in PE from the 

gastrula stage onward (Fig. 2E and data not shown). The pcbd1 binding partners, hnf1a and hnf1b 

displayed similar expression profiles, whereas the close homolog pcbd2 was almost absent from AE 

cells (Fig. 2E). Furthermore, an in situ hybridization in Xenopus embryos showed pcbd1 expression 

in pancreatic rudiments, overlapping with the expression pattern of insulin (Fig. 2, F-I). Overall, 

these results indicate that Pcbd1 is expressed in the developing pancreas of both mouse and 

Xenopus embryos, suggesting a potential evolutionarily conserved function. 

Pcbd1 knockout mouse showed mild glucose intolerance (16), although no pancreas-specific 

function had yet been assigned to Pcbd1. To determine if Pcbd1 influences early pancreas fate 

specification, we undertook a loss-of-function approach in Xenopus. A specific morpholino 

oligonucleotide (pcbd1-MO) was designed to block pcbd1 pre-mRNA splicing. The injection of 

pcbd1-MO into AE cells of the eight-cell stage Xenopus embryos resulted in a dose-dependent 

downregulation of pcbd1 mRNA (Fig. 3A and data not shown), accompanied by a significant 

reduction in the expression of pancreatic progenitor genes pdx1, ptf1a, sox9, as well as insulin (Fig. 

3A). Moreover, hnf1a and hnf1b and the hnf1 target gene fibrinogen were downregulated upon 

pcbd1-MO injection, whereas pcbd2 mRNA levels remained unchanged (data not shown). In situ 

hybridization of pcbd1-MO injected Xenopus embryos corroborated these observations, showing a 

strong reduction or complete loss of ptf1a expression in both dorsal and ventral pancreatic buds, but 

not in the eye and hindbrain (Fig. 3B-D). Taken together, these results indicate that pcbd1 activity 

within the endoderm is required for the proper establishment of the pancreatic region in vertebrates. 
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We examined 8 patients with inherited biallelic PCBD1 mutations from 7 families: one case 

by whole-genome sequencing combined with linkage analysis, which identified a novel deletion in 

the PCBD1 gene and seven cases by recalling the patients from the BIODEF database (14). 

Interestingly, two diabetic patients (family 1, III-2 and family 3, II-2) had normal phenylalanine 

levels, suggesting that the enzymatic function of PCBD1 had been compensated for by PCBD2, as 

has been proposed for mouse (16). 

Insulin was the first option of treatment of PCBD1-diabetes, subsequently replaced by 

sulphonylureas or glinides. This brisk response to oral drugs resembles the patients with HNF1A-

diabetes (17). PCBD1-diabetes manifests earliest in puberty as no younger cases that were 

investigated were diabetic (Table 1). Remarkably, mid-adulthood-onset T2D developed in 4 out of 

7 families (families 1, 3, 4 and 6; Table 1 and Supplementary Table 5). We confirmed heterozygous 

PCBD1 defects in affected individuals of family 1 and 3. Therefore, it is likely that monoallelic 

variants in PCBD1 increase the risk of T2D, as has been shown for other monogenic diabetes genes 

(2). Moreover, it is suggestive that PCBD1 mutations increase T2D susceptibility specifically when 

combined with other risk factors such as excess weight and age. This is implied by the fact that only 

overweight/obese heterozygotes developed T2D, whereas none of those with a normal BMI did 

(Supplementary Table 5). Furthermore, the two overweight/obese parents who did not develop 

diabetes were 32 and 34 years old and thus had not yet reached the age of the onset of diabetes in 

the other heterozygotes. 

We investigated two major mechanisms of diabetes: the production and secretion of insulin 

in insulinoma cells and the early regulation of pancreatic and β-cell specification in vertebrates. As 

PCBD1 has been described to enhance HNF1A activity on some promoters (5), we examined 

whether a transient inactivation of PCBD1 decreases insulin production and secretion in vitro, but 

failed to see any relevant effect (data not shown). Previous studies have shown that Pcbd1 is 

abundantly expressed throughout embryonic development in both Xenopus and mammalian 

embryos (18, 19). Interestingly, we found that PCBD1 is expressed in mouse pancreatic progenitors 



9  

(7) and delaminating endocrine cells from very early stages onward (Fig. 2, A-D). This 

spatiotemporal expression of pcbd1 is also conserved in Xenopus embryos (Fig. 2, G and I), 

suggesting conserved regulatory functions. In line with this, Xenopus pcbd1 morphants exhibited a 

reduced expression of endodermal and pancreatic transcription factors, indicating defects in early 

pancreas specification. Notably, both dorsal and ventral pancreatic rudiments fail to be established 

in pcbd1-depleted embryos, as judged by the absence of Ptf1a expression (Fig. 3, B-D). Altogether, 

these findings suggest an early role of pcbd1 in establishing the pancreatic progenitor pool during 

embryogenesis, which might lead to a reduced pancreatic β-cell mass in the adult. The human 

PCBD1-diabetes phenotype with developing insulin-deficiency in the face of somatic growth and 

weight gain is in line with the notion that an intrinsic program established early in development, is 

critical in determining the final size of the pancreas and is not subject to growth compensation (20). 

Transcription factor HNF1B regulates early pancreatic development in mouse and human 

and is stabilized by PCBD1 (5, 21). A lack of PCBD1 might impair the HNF1B-mediated 

establishment of pancreatic cell fate during embryogenesis. In Xenopus embryos, this hypothesis is 

supported by a reduced expression of hnf1b and its direct target genes, such as fibrinogen, upon 

pcbd1-MO injection. However, a Pcbd1 knockout mouse shows a relatively mild phenotype 

compared to Xenopus pcbd1 morphant or human HNF1A and HNF1B loss-of-function phenotypes 

(8, 9). These differences might be due to a partial functional redundancy between Pcbd1 and the 

close homologue Pcbd2 in the mouse (16), which does not seem sufficient to prevent diabetes. In 

line with this, pcbd2 is expressed at low levels in the endoderm and is almost undetectable in the 

pancreatic territory of Xenopus embryos (Fig. 2E). Further experiments are required to dissect the 

mechanisms underlying the Pcbd1 loss of function phenotype and Pcbd2’s role in its development. 

Recent observations have suggested that a gradual loss of transcription factors Pdx1, Nkx6.1 

and MafA, crucial for early pancreas development, leads to a destabilized adult β-cell state and an 

exhaustion of function, possibly contributing to the pathogenesis of T2D (22). The HNF1 family of 

transcription factors also controls both aspects. HNF1B is required to set up the early pancreatic 
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transcriptional program (21) and HNF1A maintains a proper transcriptional network in mature β-

cells (23). Thus, their binding partner PCBD1 might have different effects on the pancreas at 

different time points. Finally, PCBD1 mutations probably cause hyperphenylalaninemia and 

diabetes by affecting not one particular pathway but several genetic, metabolic and signaling 

programs in different tissues, as shown for HNF1A gene (24). Future studies will aim to fully 

understand how PCBD1 regulates β-cell functions and the mechanisms leading to diabetes. 

In summary, we provide the first genetic evidence that PCBD1 mutations can cause early-

onset monogenic diabetes. We recommend a monitoring of neonatal hyperphenylalaninemia 

patients and their relatives with PCBD1 mutations in puberty and later in life for an occurrence of 

diabetes. We suggest screening HNF1A-like diabetes cases without mutations in HNF1A and 

HNF4A genes for recessive alterations in PCBD1, since they can be treated with oral antidiabetic 

drugs. Larger numbers of PCBD1-diabetes patients will be needed to determine how commonly 

insulin can be replaced with sulfonylureas, as larger studies of individuals with HNF1A, KCNJ11 

and ABCC8 defects show that this treatment is successful in most but not all the cases. 
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Table 1. Clinical characteristics of patients with biallelic PCBD1 mutations investigated in present study. 

Patient Number ECRC 7,  
Family 1, III-2 

BIODEF§ 319, 
Family 2, II-1 

BIODEF§ 344, 
Family 3, II-2 

BIODEF§ 273, 
Family 3, II-1 

BIODEF§ 272, 
Family 4, II-1 

BIODEF§ 329,  
Family 5 

BIODEF§ 701, 
Family 6 

BIODEF§ 620, 
Family 7 

Sex F F F M M M F F 
Present age, 
years 20 17 21 20 20 18 1 4 

Ethnicity Turkish Caucasian Ashkenazi 
Jewish 

Ashkenazi 
Jewish Caucasian Turkish Caucasian Caucasian 

Consanguinity Yes No No No No Yes No No 
Nucleotide 
aberration* c.[(46del)]; [(46del)] c.[(289G>A)]; 

[(292C>T)] 
c.[(259G>T)]; 
[(259G>T)] 

c.[(259G>T)]; 
[(259G>T)] 

c.[(292C>T)]; 
[(292C>T)] 

c.[(79G>T;263G>A)]; 
[(79G>T;263G>A)] 

c.[(292C>T)]; 
[(292C>T)] 

c.[(292C>T)]; 
[(213_215del)] 

Protein 
alteration 

p.[(Leu16Cysfs*5)]; 
[(Leu16Cysfs*5)] 

p.[(Glu97Lys)]; 
[(Gln98*)] 

p.[(Glu87*)]; 
[(Glu87*)] 

p.[(Glu87*)]; 
[(Glu87*)] 

p.[(Gln98*)]; 
[(Gln98*)] 

p.[(Glu27*;Asp88Gln)]; 
[(Glu27*;Asp88Gln)] 

p.[(Gln98*)]; 
[(Gln98*)] 

p.[(Asn71del)]; 
[(Gln98*)] 

Variation ID† Novel 
(CM981485); 
rs121913015 
(CM981486) 

rs104894172 
(CM930575) 

rs104894172 
(CM930575) 

rs121913015 
(CM981486) 

CM981482; rs115117837 
(CM981484) 

rs121913015 
(CM981486) 

rs121913015 
(CM981486); 
Novel 

Diabetes Yes Yes Yes No Yes No No No 
Onset, years 14 15 12 - 18 - - - 

Symptoms Glucosuria, polyuria Polyuria, 
polydipsia Glucosuria - Polyuria, 

polydipsia - - - 

IBGL, mg/dl 275 270 262 - 414 - 69 89 
Initial BMI, (z-
score) 23.4 (+2.1) 20.2 (+0.4) 21.3 (+1.4) - 20.1 (-0.4) 26.3 (+0.9) 16.5 (+0.1) 17.3 (+1.1) 

Initial HbA1c, % 
(mmol/mol) 7.8 (62) 6.5 (48) <6.1 (43) - 14.6 (136) 4.9 (30) 4.3 (23) 4.9 (30) 

β-cell 
autoantibodies Negative Negative Negative N.D. Negative N.D. N.D. N.D. 

Pancreas 
morphology‡ Normal N.D. N.D. N.D. Normal Normal N.D. N.D. 

Treatment Insulin, meglitinide Insulin, 
sulphonylurea 

Insulin, 
sulphonylurea, 
lifestyle 

- Insulin, 
sulfonylurea - - - 

Family history 
Father, mother and 
maternal 
grandmother T2D 

Both parents 
healthy 

Mother healthy, 
father T2D, 
obesity 

Mother healthy, 
father T2D, 
obesity 

Both parents 
healthy, maternal 
grandparents T2D 

Both parents healthy 
Both parents 
healthy, maternal 
grandfather T2D 

Both parents 
healthy 

HPA status No Yes No Yes Yes Yes Yes Yes 
Reference Unpublished 10, 12 11 11 11, 12 10, 12 Unpublished Unpublished 
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HPA – hyperphenylalaninemia during neonatal period, BMI – body mass index (kg/m²), IBGL – initial blood glucose levels, HbAc1 – glycated hemoglobin, T2D 
– type 2 diabetes mellitus, N.D. – not done 
*Positions refer to Consensus CDS database accession number 31217.1. RefSeq number for human PCBD1 mRNA is NM_000281.2. 
†dbSNP and/or HGMD (in brackets) database accession numbers 
‡Determined by abdominal ultrasound 
§BIODEF database  
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Figure Titles and Legends 
 
Figure 1. Mutations in PCBD1 cause early-onset diabetes. 

(A) Pedigree of family 1 with proband III-2 having an early-onset diabetes due to homozygous 

mutation p.[(L16Cfs*5)];[(L16Cfs*5)]. Three of the tested relatives (I-4, II-1, II-2) have the same 

heterozygous mutation and diabetes. Here and in the following panels, individuals with adolescent-

onset diabetes are marked in black and with mid-adulthood-onset diabetes in grey. HPA stands for 

hyperphenylalaninemia. Red borders mark individuals used in linkage analysis and red asterisks 

mark individuals whose whole genome was sequenced. (B) Spherograms of direct-sequenced 

individuals of family 1 showing the homozygous mutation in the proband III-2 and heterozygous 

mutation in three family members with diabetes. (C) Linkage analysis of family 1 showing the 

PCBD1 mutation (arrow) in the chromosome 10 linkage region with expected maximal LOD score 

of 1.3. (D) Pedigree of family 2 with proband II-1 suffering with adolescent-onset diabetes and 

carrying a compound heterozygous mutation p.[(Gln97Lys)];[(Gln98*)]. Both parents who possess 

one diseased allele are healthy. (E) Pedigree of family 3 with both children bearing the biallelic 

p.[(Gln87*)];[(Gln87*)] mutation. Only II-2 developed adolescent-onset diabetes so far. Father, a 

heterozygous mutation carrier, developed diabetes later in life, whereas mother is healthy. (F) 

Pedigree of family 4. The proband II-1, possessing a homozygous p.[(Gln98*)];[(Gln98*)] 

mutation, developed diabetes early in life. His heterozygous parents are healthy. (G) Location of 

known disease-causing mutations in PCBD1 cDNA and protein. Mutations marked in red 

manifested as puberty-onset diabetes. Arrow marks the mutation first identified in our study. Blue 

lines show the positions of His62, His63 and His80 residues present in the active center of PCBD1 

enzyme.  

 

Figure 2. Pcbd1 in mouse and Xenopus embryonic pancreas.  

(A-D) Immunofluorescence analysis of Pcbd1, Pdx1, Insulin (Ins) and E-cadherin (Ecad) on E12.5 

(A, C) and E14.5 (B, D) 10 μm cryosections of mouse pancreas epithelium. Dashed boxes indicated 
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delaminating endocrine cells, which displayed strong nuclear and cytoplasmic Pcbd1 expression 

and coexpressed Ins (C’ and D) or Pdx1 (A’ and B). Bar, 50 μm. (E) Posterior endoderm (PE) and 

anterior endoderm (AE) explants were dissected at early gastrula stage, cultured until indicated 

stages and assayed for expression of the indicated genes by RT-qPCR analysis. At all stages 

analyzed pcbd1 expression mirrored that of anterior endodermal markers, such as foxa2, hnf1a and 

hnf1b, and of pancreatic transcription factors, such as pdx1 and ptf1a. Data were normalized to that 

of ODC and represented as fold changes compared to PE sample (set to 1). (F-I) Whole-mount in 

situ hybridization for pcbd1 in Xenopus embryos and dissected gut (performed as described 

previously (25)). Pcbd1 transcript was detected in dorsal pancreas (G, I), overlapping with insulin-

expression domain (F, H). Abbreviations: dp, dorsal pancreas; lv, liver; pa, pancreas, pn, 

pronephros. Bar, 1 mm. Error bars represent ± SD. Asterisks stand for p-values calculated using 

Student’s t-test: ns>0.05, *<0.05, **<0.01, ***<0.001. 

 

Figure 3. Pcbd1-morpholino-knockdown in Xenopus anterior endoderm explants 

(A) RT-qPCR analysis of pcbd1-MO-injected AE explants. Pcbd1-MO (10 ng) (GeneTools LCC, 

Philomath, USA) was injected into two vegetal dorsal blastomeres of 8-cell stage Xenopus embryos, 

AE explants were dissected at gastrula stage and assayed at tadpole stage for the indicated 

pancreatic and hepatic genes by RT-qPCR assay. Abbreviations, insulin (ins), fibrinogen (fgn). Data 

were normalized to that of ODC and represented as fold changes compared to AE uninjected 

control sample (set to 1). (B-D) Whole-mount in situ hybridization analysis of ptf1a in control and 

pcbd1-MO-injected Xenopus embryos. (B’, C’ and D’) Vibratome transverse sections through the 

ventral pancreatic (vp) rudiment stained for ptf1a. (B’’, C’’ and D’’) Vibratome transverse sections 

through the dorsal pancreatic (dp) rudiment stained for ptf1a. Dashed lines indicate the cross-

sectional planes. Bar, 1mm. Error bars represent ± SD. Asterisks stand for p-values calculated using 

Student’s t-test: ns>0.05, *<0.05, **<0.01, ***<0.001. 
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Recessive mutations in PCBD1 cause a new type of early-onset diabetes 

SUPPLEMENTARY DATA 
 
Supplementary Table 1. Statistics of whole-genome sequencing performance of family 1. 
 

Sample 
Fully called 

genomic 
positions, % 

% of fully called 
genomic positions 
covered at ≥10x 

Total 
genomic 
variants 

Fully called 
exonic 

positions, % 

% of fully called 
exonic positions 
covered at ≥10x 

Total 
exonic 

variants 
I-I 95.6 96.0 4,091,829 98.2 98.6 23,500 
I-II 95.7 96.6 4,141,813 98.1 98.4 23,915 
II-III 95.8 96.4 4,111,511 98.4 98.8 23,624 
II-II 95.8 96.8 4,138,100 98.2 98.6 23,760 
III-II 96.0 97.4 4,049,355 98.4 98.9 23,282 
 
Supplementary Table 2. PCR primers used to amplify PCBD1 exons for Sanger sequencing. 
 

Primer name Primer sequence Exon Annealing temperature 
PCBD1_1bF gatggtctcacgagggaaaca 1 60 PCBD1_1aR gcaggggactcgaaaagact 
PCBD1_2F cccagcctattgctcaaaga 2 58 PCBD1_2R ctggatgagtgtggtgtctga 
PCBD1_3F aggatgtcaagggggaaatg 3 58 PCBD1_3R aggcatgtgcaatctcagtg 
PCBD1_4F actggccagctgctattctg 4 58 PCBD1_4R ttggattgacctgtggaaaag 
 
Supplementary Table 3. Xenopus primers used for SyberGreen RT-qPCR. 
 
Gene Forward primer Reverse primer 
odc ttcgggtgattccttgccac gccattgtgaagactctctccaatc 
pcbd1 catgacaagggtggctctcc ctacatcactattggtaatgtgtttcct 
pcbd2 ctttaaccaggcatttggatt gtgtagtcagagttatctgaac 
hnf1a ccatggcaaaacttatggatttaga ggagatggggtactctgactg 
hnf1b gaagaaagagaagctttagtgg gactatatctcagcccttgc 
pdx1 gttccctcagctgcttatcg taccaaggggttgctgtagg 
ptf1a atggaaacggtcctggagca gaggatgagaaggagaagttg 
insulin aggcttcttctactaccctaag acaatccccctcttcattt 
sox9a caactaattgcgcactgggg tcttcagcaaaggcacccaa 
foxa2 taccaacatcaactccatgagc gtaacttcgccggtaagttttg 
prox1 ctgatatctcaccttattcgg tgggaggtgatgcatctgttg 
hex cctttccgcttgtgcagagg aacagcgcatctaatgggac 
fibrinogen aagatgactcagtgggcagc ttcaatgccgccttctcctt 
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Supplementary Table 4. Final set of homozygous mutations from whole-genome sequencing dataset of family 1 after selection of novel, protein affecting, 
conserved and damaging variants. 
 

Gene Chr Start End Reference Observed SIFT* PP2† MT‡ Linkage T1DB§ HI║ Vpa8.5¶ Dpa8.5# Rank 

RECK 9 36091226 36091226 G A T P D Yes Enriched 1.5 9.4 14.2 4 

GDF10 10 48426745 48426745 T C D D D Yes Low 0.8 2.1 0.4 5 

OGDHL 10 50953532 50953532 C T D D D Yes Moderate 0.5, 1.2, 4.5 16.9 15.7 3 

MYPN 10 69955261 69955261 C T D D D Yes Low 0.6 NE** NE** 6 

PCBD1 10 72645644 72645644 G - D NA D Yes Enriched 47.2 72.0 40.6 1 

CTSZ 20 57571717 57571717 G A D D D Yes Moderate 152.9 64.7 96.9 2 
 
*SIFT – SIFT prediction (T – tolerant, D - deleterious) 
†PP2 – Polyphen-2 prediction (P – possibly damaging, D – probably damaging, NA – not available) 
‡MT – MutationTaster prediction (D – disease-causing) 
§T1DB – expression in human islets present T1DBase (array data) 
║HI – RNAseq RPKM (Reads Per Kilobase of transcript per Million mapped reads) values in human islets (5) 
¶Vpa8.5 – RNAseq FPKM (Fragments Per Kilobase of transcript per Million mapped reads) values in mouse ventral pancreatic bud at E8.5 (6) 
#Dpa – 8.5 RNAseq FPKM (Fragments Per Kilobase of transcript per Million mapped reads) values in mouse dorsal pancreatic bud at E8.5 (6) 
**NE – not expressed 
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Supplementary Table 5. Characteristics of family members with heterozygous PCBD1 mutations. 
 

Family Relationship Protein alteration 
Present 
age, 
years 

Ethnicity 

Diabetes Weight 
range*(BMI, 
kg/m²) 

Diabetes, 
type 

Onset, 
years 

Recent 
HbA1c, % 
(mmol/mol) 

Treatment 

1 

Father p.[(Leu16Cysfs*5)];[(wt)] 49 Turkish Yes, T2D 45 6.2 (44.3) Lifestyle Obese (31.7) 
Mother p.[(Leu16Cysfs*5)];[(wt)] 48 Turkish Yes, T2D 40 6.9 (51.9) Metformin Overweight (29.6) 
Maternal 
grandmother p.[(Leu16Cysfs*5)];[(wt)] 69 Turkish Yes, T2D 48 6.9 (51.9) Metformin, 

then SU Overweight (28.5) 

2 Father p.[(Glu97Lys)];[(wt)] 47 Caucasian No N.A. N.A. N.A. Normal (< 25) 
Mother p.[(Gln98*)];[(wt)] 48 Caucasian No  N.A. N.A. N.A. Normal (< 25) 

3 
Father p.[(Glu87*)];[(wt)] Died at 

50  
Ashkenazi 
Jewish  Yes, T2D 35 N.A. Metformin, 

then SU Obese (>30) 

Mother p.[(Glu87*)];[(wt)] 55 Ashkenazi 
Jewish No N.A. N.A. N.A. Normal (< 25) 

4 Father p.[(Gln98*)];[(wt)] 36 Caucasian No N.A. N.A. N.A. Normal (< 25) 
Mother p.[(Gln98*)];[(wt)] 34 Caucasian No  N.A. N.A. N.A. Normal (< 25) 

5 Father p.[(Glu27*;Asp88Gln)];[(wt;wt)] 45 Turkish No  N.A. N.A. N.A. Normal (< 25) 
Mother p.[(Glu27*;Asp88Gln)];[(wt;wt)] 40 Turkish No  N.A. N.A. N.A. Normal (< 25) 

6 Father p.[(Gln98*)];[(wt)] 36 Caucasian No N.A. N.A. N.A. Normal (< 25) 
Mother p.[(Gln98*)];[(wt)] 34 Caucasian No N.A. N.A. N.A. Normal (< 25) 

7 Father p.[(Gln98*)];[(wt)] 34 Caucasian No N.A. N.A. N.A. Overweight (29.1) 
Mother p.[(Asn71del)];[(wt)] 32 Caucasian No N.A. N.A. N.A. Obese (31.2) 

 
BMI – body mass index (kg/m²), HbAc1 – glycated hemoglobin, T2D – type 2 diabetes mellitus, SU – sulfonylurea, N.A. – not available 
*Weight range (Normal – BMI < 25 kg/m², Overweight – BMI 25-30 kg/m², Obese – BMI > 30 kg/m²) 
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Supplementary Figure 1. Linkage analysis of family 1. 24 genomic regions have positive LOD score, 
including 13 regions reaching maximal expected LOD score of 1.3, in case of perfect recombination. 
 
 
 

 
 
 
Supplementary Figure 2. Filtering strategy employed to reduce all variants of family 1 down to a single 
candidate gene. 
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Web resources 

MERLIN http://www.sph.umich.edu/csg/abecasis/merlin/index.html 

ANNOVAR http://www.openbioinformatics.org/annovar/ 

Human Genome Reference http://www.ncbi.nlm.nih.gov/refseq/ 

CGA Tools http://cgatools.sourceforge.net 

dbSNP http://www.ncbi.nlm.nih.gov/SNP 

NHLBI Exome Sequencing Project (ESP) Exome Variant Server https://esp.gs.washington.edu/EVS 

1000 Genomes Project www.1000genomes.org 

69 sequenced individuals by Complete Genomics www.completegenomics.com/public-data/69-Genomes 

PhastCons scores http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/phastCons46way 

SIFT http://sift.jcvi.org 

PolyPhen-2 http://genetics.bwh.harvard.edu/pph2 

MutationTaster www.mutationtaster.org 

T1DBase http://www.t1dbase.org 

BIODEF http://www.biopku.org/biodef 

The Human Gene Mutation Database (HGMD) http://www.hgmd.org 
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