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Abstract

Interferon-b is an established treatment for patients with multiple sclerosis (MS) but its mechanisms of action are not well
understood. Viral infections are a known trigger of MS relapses. Toll-like receptors (TLRs) are key components of the innate
immune system, which sense conserved structures of viruses and other pathogens. Effects of interferon-b on mRNA levels of
all known human TLRs (TLR1-10) and the TLR adaptor molecule MyD88 were analyzed in peripheral blood mononuclear cells
(PBMCs) of healthy donors by quantitative real-time PCR and by transcriptome analysis in PBMCs of 25 interferon-b-treated
patients with relapsing-remitting MS. Regulation of TLR protein expression by interferon-b was investigated by flow
cytometry of leukocyte subsets of healthy subjects and of untreated, interferon-b-, or glatiramer acetate-treated patients
with MS. Interferon-b specifically upregulated mRNA expression of TLR3, TLR7, and MyD88 and downregulated TLR9 mRNA
in PBMCs of healthy donors as well as in PBMCs of patients with MS. Plasmacytoid dendritic cells (pDCs) were identified as
the major cell type responding to interferon-b with increased expression of TLR7 and MyD88 protein. In line with this,
expression of TLR7 protein was increased in pDCs of interferon-b-treated, but not untreated or glatiramer acetate-treated
patients with MS. Interferon-b-induced upregulation of TLR7 in pDCs is of functional relevance since pre-treatment of
PBMCs with interferon-b resulted in a strongly increased production of interferon-a upon stimulation with the TLR7 agonist
loxoribine. Flow cytometry confirmed pDCs as the cellular source of interferon-a production induced by activation of TLR7.
Thus, upregulation of TLR7 in pDCs and a consequently increased activation of pDCs by TLR7 ligands represents a novel
immunoregulatory mechanism of interferon-b. We hypothesize that this mechanism could contribute to a reduction of
virus-triggered relapses in patients with MS.
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Introduction

Interferons were originally described as a family of antiviral

proteins, owing to their capacity to interfere with viral replication

[1]. Based on several pivotal clinical trials, interferon-b, a type I

interferon, was approved as the first disease-modifying therapy for

multiple sclerosis (MS), a chronic inflammatory CNS disease, in

the 1990ies [2–4]. While interferon-b consistently reduces relapse

rates by about one third and decreases disease activity as measured

by magnetic resonance imaging in patients with relapsing-

remitting MS (RRMS), the mechanisms of action underlying

these effects are not well understood [5].

Toll-like receptors (TLRs) are pattern-recognition receptors,

which recognize conserved structures of microbial pathogens,

referred to as pathogen-associated molecular patterns [6,7]. They
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are key components of the innate immune system whose activation

orchestrates inflammatory responses and primes antigen-specific

adaptive immunity. In humans, 10 functional TLRs (TLR1-10)

have been identified so far. All TLRs are transmembrane proteins

that can roughly be divided into cell surface-associated TLRs

(TLR1, TLR2, TLR4-6) primarily sensing microbial membrane

components, and TLRs located in intracellular vesicles (TLR3,

TLR7-9) detecting viral or bacterial nucleic acids [6]. Except for

TLR3, all TLRs recruit the Toll/interleukin-1 receptor (TIR)

domain-containing adaptor molecule myeloid differentiation

primary response gene 88 (MyD88) for activation of a complex

intracellular signaling cascade [6].

Here, we hypothesized that one mechanism of action of

interferon-b in MS may be related to regulation of TLRs. We

thus performed a comprehensive study on the impact of

interferon-b on mRNA expression levels of TLR1-10 and

MyD88 in peripheral blood mononuclear cells (PBMCs) of healthy

donors and of interferon-b-treated patients with RRMS. We

observed an upregulation of TLR3, TLR7, and MyD88 and a

downregulation of TLR9 by interferon-b in PBMCs of healthy

donors as well as in PBMCs of patients with RRMS. Plasmacytoid

dendritic cells (pDCs) were identified as the main cell type

upregulating TLR7 and MyD88 protein in response to interferon-

b and TLR7 was increased in pDCs of interferon-b-treated

patients with MS. As a functional consequence, upregulation of

TLR7 was accompanied by an enhanced production of interferon-

a upon TLR7 stimulation. These results suggest that upregulation

of the virus-detecting immune receptor TLR7 in pDCs and a

subsequently enhanced activation of pDCs by TLR7 ligands may

be a novel immunoregulatory mechanism of interferon-b in

patients with MS.

Materials and Methods

Ethics statement
The study was approved by the institutional review boards of

Charité - Universitätsmedizin Berlin (EA1/182/10) and Universi-

tät Rostock (II HV 27/2003). Written informed consent was

obtained from all healthy donors and patients participating in the

study.

Cell separation, cell culture, and stimulation assays
Approximately 30 ml of peripheral venous blood were collected

from patients treated at the Department of Neurology or

NeuroCure Clinical Research Center, Charité - Universitätsme-

dizin Berlin, with a diagnosis of a clinically isolated syndrome

(CIS) suggestive of MS or early RRMS (disease duration #2

years), according to the McDonald 2005 criteria [8]. Samples were

processed within 1 hour and PBMCs were isolated by ficoll density

gradient centrifugation. PBMCs were frozen immediately by using

freezing medium containing 10% dimethyl sulfoxide and a

standard freezing container with isopropyl alcohol. Subsequently,

cells were thawed and used for flow cytometry analysis. PBMCs

from healthy donors were generated likewise and used directly

after isolation for in vitro stimulation assays. Freshly isolated

PBMCs from healthy donors were cultured in RPMI 1640

medium supplemented with 10% FCS and 1% penicillin/

streptomycin at a density of 26106 cells/ml in the absence or

presence of 10, 100, or 1000 U/ml interferon-b-1b (BetaferonH,

Bayer Pharma AG, Berlin, Germany) dissolved in NaCl solution

(5,4 mg/ml). For RNA extraction cells were harvested after 6, 24,

and 48 hours of treatment and for FACS analysis after 16 or

24 hours of treatment.

RNA isolation and cDNA synthesis
Total RNA was extracted from PBMCs using the RNeasy Mini

Kit (Qiagen, Hilden, Germany). Genomic DNA was eliminated by

on-column DNase digestion (RNase-Free DNase Set, Qiagen).

RNA concentrations were determined with a BioMateTM 3

spectrophotometer and analyzed by VISIONlite software

(Thermo Fisher Scientific, Waltham, USA). 1 mg of total RNA

of each sample was reverse transcribed into cDNA using Moloney

Murine Leukemia Virus Reverse Transcriptase (Promega, Madi-

son, USA) according to the manufacturer’s protocol.

Quantitative real-time polymerase chain reaction
Gene expression was analyzed by quantitative real-time

polymerase chain reaction (qRT-PCR) using SYBRH Green-based

RT2 qPCR Primer Assays (SABiosciences/Qiagen) for TLR1-10

and MyD88. Myxovirus-resistance protein (MX1) and hypoxan-

thine-guanine phosphoribosyltransferase (HPRT) served as posi-

tive control and housekeeping gene, respectively. qRT-PCR was

performed using a 7500 Fast Real-Time PCR System (Applied

Biosystems, Foster City, USA). PCR reactions were performed in

duplicates, and results were expressed as the average of relative

gene expression normalized for HPRT mRNA expression for each

study subject and fold change of expression calculated by the

22DDCt method [9]. Set-up experiments confirmed that mRNA

expression levels of the housekeeping gene HPRT were not

modulated by interferon-b treatment (data not shown).

Flow cytometry
Cell surface phenotyping of PBMCs and intracellular expression

of TLR7 and MyD88 protein was measured by flow cytometry.

To detect pDCs (CD142CD123+CD303+) and monocytes

(CD14+), PBMCs were stained with anti-CD14 Pacific Blue

antibody (Ab) (clone M5E5, BioLegend, San Diego, USA), anti-

CD123 PerCP-Cy5.5 Ab (clone 6H6, eBioscience, San Diego,

USA), and anti-CD303 APC Ab (clone AC144, Miltenyi Biotec,

Bergisch Gladbach, Germany). To identify myeloid dendritic cells

(mDCs, CD142CD123lowCD1c+CD11chigh), PBMCs were

stained with anti-CD14 Pacific Blue Ab, anti-CD123 PerCP-

Cy5.5 Ab, anti-CD1c PE (clone L161, BioLegend), and anti-

CD11c APC Ab (clone 3.9, BioLegend). To mark CD19+ B cells,

CD4+, and CD8+ T cells, PBMCs were stained with anti-CD19

APC Ab (clone HIB19, eBioscience), anti-CD4 PerCP-Cy5.5 Ab

(clone RPA-T4, BD Biosciences, Heidelberg, Germany), and anti-

CD8 Pacific Blue Ab (clone RPA-T8, BD Biosciences). For

intracellular staining cells were fixed, permeabilized using the BD

Cytofix/CytopermTM Kit (BD Biosciences), and stained with anti-

TLR7 Alexa488 Ab (clone 66H3, Dendritics, Lyon, France) or

anti-MyD88 Alexa488 Ab (clone 4d6, Imgenex). An Alexa488-

conjugated isotype (Imgenex) was used as a negative control.

Fc receptors were blocked with FcR Blocking Reagent (Miltenyi

Biotec) before cell surface and intracellular staining. 56105 viable

cells (healthy donor samples) and 36105 cells (patient samples)

were acquired using a BD FACSCantoII cytometer (BD Biosci-

ences, San Jose, USA) and analyzed using FlowJo9 software (Tree

Star, Ashland, USA). All patient samples were coded and

examiners were blinded to the patients’ treatment status. Results

were expressed as mean fluorescence intensity (MFI) with the level

of expression calculated as delta (D) MFI = MFITLR7 or MyD88 –

MFIisotype.

Analysis of cytokine production upon TLR7 stimulation
PBMCs (26106 cells/ml) were cultured for 12 hours with or

without 1000 U/ml interferon-b, followed by stimulation with the
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TLR7 ligand loxoribine (0,1 mM, InVivoGen) for an additional

6 hours. Supernatants were harvested and stored at 280uC.

Protein expression of interferon-a, tumor necrosis factor-a,

interferon-c-induced protein 10, macrophage inflammatory pro-

tein-1a, interleukin (IL) -6, IL-8, IL-10, IL-23, and IL-27 was

determined in cell culture supernatants by using the multianalyte

detection system FlowCytomixTM (eBioscience) according to the

manufacturer’s instructions. pDCs were analyzed for intracellular

interferon-a production by flow cytometry staining with an anti-

interferon-a FITC Ab (Miltenyi Biotec). Brefeldin A (5 mg/ml) was

added to PBMCs for the final 3 hours of stimulation.

Gene expression profiling with microarray analysis
Experimental details of the gene expression microarray analysis

were previously described [10]. Briefly, 25 Caucasian individuals

from a previously published cohort of patients treated with

interferon-b-1b [10,11] were included in this study (16 females, 9

males; mean age 39.6 years). They were diagnosed with RRMS

according to the McDonald 2001 criteria [12] and started on a

therapy with 250 mg interferon-b-1b administered subcutaneously

every other day. 15 ml peripheral venous EDTA blood was

obtained from each patient before and one month after initiation

of therapy. The samples were always withdrawn prior to the

interferon-b injection. PBMCs were isolated using Ficoll within

one hour after blood withdrawal. Ficoll-isolated PBMCs were then

lysed in RLT buffer (RNeasy kit) and stored at 280uC. Total

RNA was later extracted from each sample using the RNeasy kit.

Afterwards, samples of 7 mg total RNA were processed, labelled,

and hybridized to Affymetrix HG-U133 A and B oligonucleotide

arrays (Affymetrix, Santa Clara, USA). The arrays were scanned

at 3 mm resolution with a Hewlett Packard GeneArray Scanner

G2500A (Affymetrix).

Microarray data pre-processing and analysis
For experimental details and published data regarding the

affymetrix data array please see above (‘‘Gene expression profiling

with microarray analysis’’). The raw Affymetrix microarray data

were pre-processed by applying the MAS5.0 algorithm with a

custom chip definition file (CDF). The custom CDF (http://www.

xlab.unimo.it/GA_CDF/, version 2.1.0) was based on the

information contained in the databases GeneAnnot (version 1.9)

and GeneCards (version 2.41) [13]. Compared to the original

CDF from Affymetrix, the custom CDF defines a set of probe sets,

in which each probe set consists of all specific probes for one

particular gene. This ensures a one-to-one correspondence

between genes and custom probe sets. Data were normalized

separately for the chip types A and B with a loess normalization

using the package affy in the R software environment. Raw and

pre-processed data are publicly available in MIAME format

together with the patients’ clinical data in the Gene Expression

Omnibus (GEO) database (accession number GSE24427). Using

these data we compared PBMC transcript levels of TLR1-10,

MyD88, and MX1 after one month of interferon-b-1b treatment

with pre-treatment levels.

Statistics
For in vitro experiments significance of differences was assessed

by paired t-test or one-way ANOVA with Tukey’s post test.

Differences of protein expression in untreated, interferon-b- or

glatiramer acetate-treated patients were analyzed by Mann

Whitney U test. P-values ,0.05 were considered significant.

Differences of gene expression determined by microarray before

and during interferon-b therapy were analyzed by Wilcoxon

signed-rank test at the a= 0.01 significance level.

Results

Interferon-b upregulates TLR3, TLR7, and MyD88 mRNA,
but downregulates TLR6 and TLR9 mRNA in human
mononuclear blood cells

To comprehensively analyze the effects of interferon-b on all

known human TLRs (TLR1-10) and the TLR adaptor molecule

MyD88, PBMCs from healthy donors were stimulated with

1000 U/ml interferon-b for 6 hours. Changes in mRNA expres-

sion levels were subsequently measured by qRT-PCR. The well-

established interferon-b response gene MX1 [14] served as

positive control and was strongly (66.2-fold) induced by interfer-

on-b treatment, proving biological activity of the employed

interferon-b preparation (Fig. 1). Compared to control conditions,

interferon-b caused a significant increase of TLR3 (4.7-fold),

TLR7 (7.4-fold), and MyD88 (2.1-fold) mRNA expression as well

as a significant decrease of TLR6 (2.4-fold) and TLR9 (2.8-fold)

mRNA expression in human PBMCs. While TLR5 mRNA was

not detectable in human PBMCs, TLR1, TLR2, TLR4, TLR8,

and TLR10 mRNA were expressed but not significantly regulated

by interferon-b during the observed time period.

Dose- and time-dependent modulation of TLR expression
in human peripheral blood mononuclear cells by
interferon-b

To further characterize regulation of TLR expression by

interferon-b a kinetic and dose-response study was performed for

the targets significantly modulated by interferon-b as well as for

TLR10. In PBMCs from healthy donors stimulated with 1000 U/

ml interferon-b for 6, 24, and 48 hours the maximal response for

TLR7 and MX1 mRNA was observed between 6 and 24 hours,

while maximum mRNA levels of TLR3 and MyD88 were

detectable after 6 and 24 hours as well as after 24 and 48 hours,

respectively (Fig. 2A). The lowest expression levels of TLR6 and

TLR9 mRNA were observed after 6 and 24 hours and after

Figure 1. Differential regulation of TLR mRNA expression in
human PBMCs by interferon-b. PBMCs from healthy donors were
incubated with 1000 U/ml interferon-b. Untreated cells served as
control. After 6 hours of treatment RNA was isolated and qRT-PCR
performed with primers for TLR1-10, MyD88, and MX1. Results
(mean6SD) from n = 3 independent experiments with PBMCs from
different healthy donors are shown as fold-change to unstimulated
controls. The dotted line marks the expression level in unstimulated
control PBMCs, which was set to 1. Statistical significance of differences
was assessed by paired t-test. *p,0.05; **p,0.01; n.d., not detectable.
doi:10.1371/journal.pone.0070626.g001
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6 hours, respectively. The regulatory effects of interferon-b were

still detectable after 48 hours for MyD88 and TLR9 mRNA levels.

Expression of TLR10 after 6, 24, and 48 hours of interferon-b
stimulation was not significantly changed compared to unstimu-

lated conditions. Treatment of PBMCs with various doses of

interferon-b (0, 10, 100, or 1000 U/ml) resulted in a dose-response

effect, with the strongest regulation observed at the highest

concentration of interferon-b (Fig. 2B).

Interferon-b induces TLR7 and MyD88 protein expression
in plasmacytoid dendritic cells

Having established that interferon-b modulates TLR and

MyD88 mRNA expression in PBMCs we were interested to know

which leukocyte subsets are responsible for this effect and whether

the observed changes in mRNA expression are translated into

changes at the protein level. Therefore, we studied regulation of

TLR7 and MyD88 expression by interferon-b in different

leukocyte subsets by flow cytometry. Following incubation of

PBMCs with 1000 U/ml interferon-b for 24 hours, a significant

increase of TLR7 protein was observed specifically in pDCs (MFI

6 SD unstimulated vs. 1000 U/ml interferon-b, 384.76100.0 vs.

894.76159.6), but not in the other leukocyte subsets (monocytes,

mDCs, B cells, CD4+ T cells, CD8+ T cells) investigated (Fig. 3A,

B). Likewise, treatment with interferon-b resulted in a significant

upregulation of MyD88 (443.06131.7 vs. 730.06203.2) exclu-

sively in pDCs. Different technical approaches such as direct

analysis after stimulation or analysis after storage at 280uC for 7

days and subsequent thawing did not result in significantly

different outcomes regarding TLR7 and MyD88 expression in

pDCs in response to interferon-b (Fig. S1).

We also evaluated whether interferon-b treatment affects cell

numbers of different leukocyte subsets in vitro by determining the

percentage of each leukocyte subset among all live cells.

Stimulation of PBMCs with interferon-b for 24 hours significantly

increased the percentage of pDCs in the whole live cell population

(Fig. 3C, D). Except for a slight but significant increase of B cells

and a minor but significant decrease of CD4+ T cells no

quantitative changes were observed in any other leukocyte subset.

Figure 2. Dose- and time-dependent expression of TLR mRNA in PBMCs in response to interferon-b. (A) PBMCs from healthy donors
were incubated with 1000 U/ml interferon-b. Control cells were left untreated. After 6, 24, and 48 hours RNA was isolated and qRT-PCR performed
with primers for the indicated genes. (B) PBMCs were stimulated with 0, 10, 100, or 1000 U/ml interferon-b. After 6 hours (TLR6, TLR9, TLR10) or
24 hours (TLR3, TLR7, MyD88, MX1) RNA was isolated and qRT-PCR analysis performed. Results (mean6SD) from n = 3 independent experiments with
PBMCs from different healthy donors are shown as fold-change to unstimulated controls. Statistical significance was assessed by one-way ANOVA
with Tukey’s post test. IFN-b, interferon-b; *p,0.05; **p,0.01; ***p,0.001.
doi:10.1371/journal.pone.0070626.g002
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Regulation of TLR mRNA expression in interferon-b-
treated patients with MS in vivo parallels the effects
observed in vitro

To investigate whether regulation of TLRs in vitro is paralleled

by similar changes in interferon-b-treated patients with MS we

analyzed a data set from 25 patients with RRMS before and one

month after start of treatment with interferon-b-1b [10,11] for

gene expression levels of TLR1-10, MyD88, and MX1. Interfer-

on-b therapy was associated with a significant (p,0.01) upregula-

tion of TLR3, TLR7, MyD88, and MX1 mRNA as well as a

significant downregulation of TLR9 mRNA (Fig. 4). Furthermore,

TLR10 mRNA was significantly downregulated in PBMCs of

patients with RRMS after one month of therapy with interferon-b.

In contrast to the observed downregulation of TLR6 mRNA by

interferon-b in PBMCs in vitro, no influence of interferon-b on

TLR6 expression was detected in patients with RRMS in vivo.

Figure 3. Interferon-b upregulates TLR7 and MyD88 protein expression in plasmacytoid dendritic cells in vitro. (A, B, C, D) PBMCs
were either incubated with 1000 U/ml interferon-b or left untreated. (A) After 24 hours cells were stained with antibodies to TLR7 and MyD88 as well
as isotype controls and analyzed by flow cytometry. Mean fluorescence intensity (MFI) was determined. Results are presented as mean6SD (MFITLR7 or

MyD88 – MFIisotype) from n = 3 healthy donors for each cell type and TLR. (B) Representative dot plots and histogram plots of TLR7 and MyD88
expression in pDCs. (C) Percentages of each cell population of all live cells are depicted with each dot representing one healthy donor. (D)
Representative dot plots display the gating strategy for pDCs. Statistical significance was assessed by paired t-test. IFN-b, interferon-b; *p,0.05;
**p,0.01.
doi:10.1371/journal.pone.0070626.g003
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Increased expression of TLR7 protein in plasmacytoid
dendritic cells of interferon-b-treated patients with MS

We next investigated whether changes of interferon-b-induced

mRNA expression in PBMCs of patients with MS may also be

detectable at the protein level. Since the in vitro studies had

demonstrated an upregulation of TLR7 and MyD88 protein

expression by interferon-b in pDCs, we determined the expression

levels of these proteins in pDCs of 9 untreated, 7 interferon-b-, and

7 glatiramer acetate-treated patients with a clinically isolated

syndrome (CIS) or RRMS (see Table 1 for patient details) by flow

cytometry. TLR7 expression was significantly (p = 0.039) higher in

pDCs of patients treated with interferon-b than in untreated

patients (Fig. 5). Elevated TLR7 expression in pDCs of interferon-

b-treated as compared to glatiramer acetate-treated patients

almost reached statistical significance (p = 0.053) as well. A trend

for elevated expression levels under interferon-b treatment was

also observed for MyD88 (p = 0.11, untreated vs. interferon-b;

p = 0.32, interferon-b vs. glatiramer acetate). Nevertheless, it

should be noted that the mean age in the glatiramer acetate-

treated patient group was higher than in the other two groups

(interferon-b, 30.1 years; glatiramer-acetate, 44.3 years; untreated,

37 years); thus, an impact of age cannot be ruled out at this point.

Pre-treatment with interferon-b leads to enhanced
production of interferon-a upon TLR7 stimulation

Finally, we investigated whether the observed upregulation of

TLR7 in pDCs induced by interferon-b has a functional impact on

the innate immune response, as measured by the production of

cytokines (interferon-a, tumor necrosis factor-a, IL-6, IL-8, IL-10,

IL-23, IL-27) and chemokines (interferon-c-induced protein 10

and macrophage inflammatory protein-1a). To this end, we

induced upregulation of TLR7 by incubating PBMCs of healthy

donors with interferon-b and subsequently stimulated these cells

with the TLR7-specific ligand loxoribine. Analysis by bead-based

immunoassays revealed that the production of interferon-a was

strongly increased in cells pre-treated with interferon-b and

subsequently stimulated with loxoribine (p = 0.024; Fig. 6A). A

similar, almost significant (p = 0.06), effect was also observed for

tumor necrosis factor-a. In addition, macrophage inflammatory

protein-1a showed a trend for upregulation in loxoribine-treated

cells prestimulated with interferon-b (p = 0.11). Expression of the

other cytokines and chemokines analyzed did not appear to be

enhanced by successive stimulation with these two agents.

Treatment with interferon-b or loxoribine alone had no effects

on the release of interferon-a and tumor necrosis factor-a. Using

intracellular flow cytometry, pDCs were identified as the almost

exclusive cellular source of the enhanced release of interferon-a in

Figure 4. Regulation of TLR, MyD88, and MX1 mRNA expression in interferon-b-treated patients with MS. Expression levels of TLR1-10,
MyD88, and MX1 mRNA were determined in PBMCs of 25 patients with RRMS by Affymetrix microarray analysis immediately before and one month
after start of therapy with interferon-b-1b. Boxplots show medians, upper and lower quartiles as well as outliers, and graphically display the spread
(interquartile range) of the pre-processed microarray data. Statistical significance of gene expression changes in response to therapy was assessed by
Wilcoxon signed-rank test. p-values ,0.01 are indicated.
doi:10.1371/journal.pone.0070626.g004
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response to the combined treatment with interferon-b and

loxoribine (Fig. 6B, C).

Discussion

Since interferon-b has genuine antiviral properties [15] and

TLRs play a prominent role in antiviral immunity [6] we

hypothesized that interferon-b may be involved in the regulation

of TLRs, which could be one mechanism underlying the beneficial

effects of interferon-b in MS. Indeed, we herein show that

interferon-b specifically and differentially modulates TLR mRNA

expression in PBMCs of healthy donors and has almost identical

effects on the expression of TLR mRNA in PBMCs of interferon-

b-treated patients with RRMS. In keeping with its antiviral

properties, the TLRs most strongly and consistently regulated by

interferon-b (TLR3, TLR7, and TLR9) contribute to innate

immunity against viruses. Located on the membrane of intracel-

lular vesicles, in particular endolysosomes, these TLRs recognize

viral double-stranded RNA (TLR3), viral single-stranded RNA

(TLR7), or virus- or bacteria-derived DNA (TLR9) [6]. It

therefore seems likely that the observed changes of TLR3,

TLR7, TLR9, and MyD88 mRNA expression are part of the

antiviral defence program induced by interferon-b.

Flow cytometric studies on the effects of interferon-b on TLR

protein expression and on the leukocyte subsets primarily

responding to interferon-b demonstrated that interferon-b upre-

gulates TLR7 and MyD88 protein specifically in pDCs. Again,

these in vitro observations correlated with results obtained in

interferon-b-treated patients with MS whose pDCs displayed a

higher expression level of TLR7 than pDCs of untreated patients.

Since patients treated with glatiramer acetate, an alternative MS

therapeutic, did not exhibit a comparable increase of TLR7 in

pDCs, this effect appears to be specific for interferon-b. While it is

known that interferon-a upregulates TLR7 and MyD88 expres-

sion in naive B cells [16] and that interferon-b increases the

expression of functionally active TLR7 and MyD88 in human

mDCs [17,18], upregulation of TLR7 and MyD88 protein in

pDCs by interferon-b in pDCs of healthy donors in vitro and

increased levels of TLR7 in pDCs of interferon-b-treated patients

in vivo is a novel finding that, to the best of our knowledge, has not

Figure 5. Increased TLR7 and MyD88 protein expression in plasmacytoid dendritic cells of interferon-b-treated patients with MS.
Expression of TLR7 and MyD88 in pDCs of 9 untreated, 7 interferon-b-, and 7 glatiramer acetate-treated patients with CIS/RRMS was analyzed by flow
cytometry. Results are expressed as MFITLR7 or MyD88 – MFIisotype with each dot representing one individual. Empty symbols represent female and filled
symbols male individuals. Statistical significance of differences was assessed by Mann Whitney U test. GA, glatiramer acetate; *p,0.05.
doi:10.1371/journal.pone.0070626.g005

Table 1. Demographic and clinical details of patients shown in Figure 5.

Patients: Treatment
(number of patients)

CIS/RRMS (number of
patients)

Female/Male (number of
patients)

Age (years)
mean ± SD

EDSS median
(range)

Type of interferon-b
treatment (number of
patients)

No treatment (9) 8/1 6/3 37610.6 1 (0–2.5) None

Glatiramer acetate (7) 3/4 4/3 44.3610.4 2 (1–4) None

Interferon-b (7) 5/2 5/2 30.165.6 1.5 (0–3) Interferon-b-1a i.m. (2)
Interferon-b-1a s.c. (3)
Interferon-b-1b s.c. (2)

CIS, clinically isolated syndrome; RRMS, relapsing-remitting multiple sclerosis; EDSS, expanded disability status scale; i.m., intramuscular; s.c., subcutaneous.
doi:10.1371/journal.pone.0070626.t001
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been reported before. Of note, since whole populations of PBMCs

were stimulated in our experiments, we cannot discard the

possibility that the interferon-b-induced upregulation of TLR7

and MyD88 in pDCs might be indirect. Further studies with

purified PBMC subsets will be required to analyse the involvement

and exact function of distinct cell populations in this context. Also,

the immune cell populations responsible for regulation of TLR3

and TLR9 expression in response to interferon-b in our

experiments were not identified. TLR9 is known to be expressed

in pDCs and B cells, and TLR3 expression was observed in NK

and T cells as well as in DCs [21–26]. Therefore, these cells might

up- or downregulate the respective receptors in response to

interferon-b. Finally, animal models of MS may aid in the

elucidation of functional aspects of the interaction of interferon-b
and TLRs [19,20].

Although pDCs account for less than 1% of all circulating

mononuclear blood cells (see Fig. 3C), they represent the principal

PBMC subset involved in antiviral innate immunity and are

capable of releasing large amounts of type I interferon in response

to TLR activation [27,28]. We therefore investigated whether

upregulation of TLR7 in pDCs by interferon-b may further

sensitize these cells to the activation of this receptor by its specific

ligands. Indeed, subsequent stimulation of interferon-b-treated

PBMCs with the TLR7 agonist loxoribine resulted in a strongly

enhanced production of interferon-a as well as a less pronounced

increase of tumor necrosis factor-a. Flow cytometry unambigu-

ously confirmed that pDCs were the main cell type responsible for

the increased release of interferon-a following TLR7 activation

after interferon-b pre-treatment. The fact that loxoribine treat-

ment alone did not induce the release of interferon-a from PBMCs

suggests that interferon-b may serve as an important co-factor for

TLR7 activation in human pDCs, which is similar to the

interferon-b-induced sensitization to the TLR7 agonist 3M-001

previously described in human mDCs [18]. Production of

interferon-a by human dendritic cells upon TLR7 ligation

therefore appears to be tightly controlled and to depend on a

further signal, such as interferon-b, in addition to TLR7

stimulation. Altogether, our findings strongly suggest that

upregulation of TLR7 by interferon-b is functionally relevant, as

it is associated with an increased sensitivity towards TLR7

activation, thereby leading to an increased production of specific

cytokines which may result in an amplified innate immune

response. Interestingly, pDCs were reported to accumulate in

white matter lesions and leptomeninges of patients with MS and

numbers of pDCs were increased in the cerebrospinal fluid of

untreated MS patients during relapse [29,30], indicating that

pDCs could on the one hand play a role in MS and on the other

could thus represent a relevant target for interferon-b therapy.

The question arises how these findings may be related to the

beneficial effects, i.e. relapse reduction, by interferon-b in patients

with MS. There is strong and consistent evidence for an increased

risk of MS relapses around the time of viral infections [31,32]. It

therefore seems conceivable that upregulation of TLR7 in pDCs

by interferon-b and a subsequently enhanced antiviral innate

immune response may reduce the risk of virus-triggered MS

relapses. As one example in accordance with this hypothesis, there

is a temporal relationship between infections with influenza A

virus and MS relapses [33], and single-stranded RNA derived

from influenza A virus is a known TLR7 ligand [34]. One could

therefore speculate that an enhanced immune response against

influenza A virus in patients with MS treated with interferon-b
could reduce the risk of influenza A virus-triggered relapses. In

accordance with the concept of an interferon-b-induced enhanced

antiviral state several further genes involved in antiviral detection

and defence mechanisms such as OAS1-3, GBP1, IFIT1, DDX58,

IRF7 and RSAD2 were found to be upregulated after interferon-b
treatment in a former analysis of our array data set [10,35–39].

It was previously shown that interferon-b inhibits TLR9

processing in pDCs, resulting in decreased activation of pDCs

by a TLR9 agonist [40]. The authors of this work proposed that

reduced activation of pDCs by viral pathogens in interferon-b-

treated patients with MS might thus affect the frequency of MS

exacerbations. However, our present data indicate that the

regulation of TLRs by interferon-b involves differential effects

on distinct TLRs including TLR3, TLR7, TLR9, and possibly

TLR10. Furthermore, our results indicate that interferon-b-

induced upregulation of TLR7 is associated with enhanced

activation of pDCs by a TLR7 agonist. The functional

consequences of the interferon-b-induced regulation of different

TLRs may thus differ and have to be taken into account for each

TLR separately.

Increasing evidence suggests that TLRs may also be activated

by host-derived molecules, such as endogenous nucleic acids

bound by autoantibodies, and this phenomenon is thought to play

a crucial role in the development and maintenance of autoimmune

diseases [7]. We have recently demonstrated that endogenous

single-stranded RNA such as miRNA is capable of activating

TLR7 in the CNS, thereby inducing inflammation and neuronal

injury [41]. It is currently unknown whether stimulation of TLRs

by endogenous molecules plays a role in MS, but if this should be

the case, modulation of TLRs by interferon-b may obviously

influence such interactions.

In summary, our work, including both studies on immune cells

from healthy donors and on patients with MS, implicates that

modulation of the innate immune response may be a relevant

mechanism of action of interferon-b in patients with MS and

suggests a role for the innate immune receptor TLR7 as an

important target in this context. We hypothesize that an enhanced

antiviral immune response associated with upregulation of TLR7

in pDCs by interferon-b may reduce the frequency of virus-

triggered MS relapses. Further studies on the functional conse-

quences of the specific and differential regulation of TLRs by

interferon-b may not only shed more light on the regulation of the

Figure 6. Interferon-b pre-treatment leads to strongly increased production of interferon-a upon TLR7 stimulation. (A) PBMCs from
healthy donors were either incubated with 1000 U/ml interferon-b or left untreated for 12 hours. Subsequently, TLR7 was stimulated with 0,1 mM
loxoribine for additional 6 hours. Amounts of cytokines and chemokines were determined in cell culture supernatants by bead-based immunoassays.
Results shown are mean6SD from n = 3 healthy donors. For assessment of statistical significance, the values of loxoribine-untreated cells were
subtracted from values of loxoribine-treated cells for both, cells with and without interferon-b pre-treatment, and the resulting differences compared
by paired t-test. * p,0,05. (B, C) Cells were treated as in (A), but brefeldin A was added for the final 3 hours of stimulation before the intracellular
expression of interferon-a was analyzed by flow cytometry. Representative dot plots showing (B) the percentage of CD303+ cells (pDCs) of all
interferon-a positive cells and (C) the percentage of pDCs positive for interferon-a for one donor representative of n = 4. IFN-a, interferon-a; TNF-a,
tumor necrosis factor-a; IFN-b, interferon-b; MIP-1a, macrophage inflammatory protein-1a, IP-10, interferon-c-induced protein 10; IL, interleukin, n.d.,
not detected.
doi:10.1371/journal.pone.0070626.g006
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innate immune response by interferon-b, but possibly also on

pathogenic mechanisms operating in MS.

Supporting Information

Figure S1 Different technical approaches such as direct
analysis after stimulation or analysis after freezing/
thawing do not result in a different outcome regarding
TLR7 and MyD88 expression in pDCs in response to
interferon-b. PBMCs from healthy donors were either incubated

with 1000 U/ml interferon-b or left untreated. After 24 hours cells

were either directly analyzed by flow cytometry or were frozen as

described in the Material and Methods section, stored for 7 days at

280uC, and subsequently thawed and analyzed by flow cytometry.

For flow cytometry PBMCs were stained with antibodies to

identify pDCs, TLR7, and MyD88 as well as isotype controls.

Mean fluorescence intensity (MFI) was determined and fold

change of MFI in interferon-b-treated to untreated was calculated.

Results are presented as mean6SD from n = 3 healthy donors for

pDCs. Analysis by paired t-tests showed no significant differences

between directly analyzed and frozen/thawed PBMC.
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