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Abstract

Mendelian disorders are often caused by mutations in genes that are not lethal but induce functional distortions leading to
diseases. Here we study the extent of gene duplicates that might compensate genes causing monogenic diseases. We
provide evidence for pervasive functional redundancy of human monogenic disease genes (MDs) by duplicates by
manifesting 1) genes involved in human genetic disorders are enriched in duplicates and 2) duplicated disease genes tend
to have higher functional similarities with their closest paralogs in contrast to duplicated non-disease genes of similar age.
We propose that functional compensation by duplication of genes masks the phenotypic effects of deleterious mutations
and reduces the probability of purging the defective genes from the human population; this functional compensation could
be further enhanced by higher purification selection between disease genes and their duplicates as well as their
orthologous counterpart compared to non-disease genes. However, due to the intrinsic expression stochasticity among
individuals, the deleterious mutations could still be present as genetic diseases in some subpopulations where the duplicate
copies are expressed at low abundances. Consequently the defective genes are linked to genetic disorders while they
continue propagating within the population. Our results provide insight into the molecular basis underlying the spreading
of duplicated disease genes.
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Introduction

Elucidating the molecular basis of human genetic disorders is

one of the most important tasks in medical biology. The

availability of the human genome sequence [1,2] has facilitated

the identification of individual disease genes, e.g. in family

pedigree analyses [3] as well as genome-wide association studies

(GWAS) [4,5]. Exploring the characteristics of known disease

genes and differences from non-disease genes using bioinformatics

methods in recent studies has provided, for example, knowledge of

their function [6], evolutionary origin [7,8], selective constraints

[9–11] and network properties in the protein-protein interaction

(PPI) network [12–14], and insights into the genetics underpinning

human inherited disorders, facilitating in silico identification of

novel disease genes [9,11].

However, recent studies have revealed some controversial

findings related to duplicated genes and no clear explanation has

been given so far. For example, the accepted hypothesis was that

disease genes tend to be singletons with fewer paralogs [15] since

duplication can lead to functional redundancy [16–18] and

thereby mask the effect of deleterious mutations [15,19]; however,

disease genes were found surprisingly enriched in duplicates [8].

Moreover, the molecular mechanism by which the duplication

statuses of disease genes contribute to their increased presence in

the human genome is still unclear. Recently, it has been proposed

that the presence of duplicates permits the accumulation of

disease-causing mutations, the emergence of disease genes thus

would be more likely to associate with duplicates [8]. Here we

argue that this line of reasoning does not necessarily predict the

enrichment of disease genes in duplicates even when the

compensational capacity between duplicates is considered. For

example, in duplicates (i.e. more recent ones) whose functional

redundancy is resilient enough to mask some disease-causing

mutations in one of the copies, the proportion of disease genes

would be lower compared with that of overall singletons; however,

for duplicates (i.e. older ones) whose compensation capacity is

partial or no longer effective, they would be purged from the

human genome at the same rate as singletons; combined together,

the overall proportion of disease genes in duplicates would still be

lower. Summarizing recent literature, we realized that the

duplication-functional redundancy theory alone is perhaps insuf-

ficient in explaining the observed enrichment of disease genes in

duplicates, and the contribution of additional factors should be

explored and taken into consideration.

In this work, we sought to provide a clear illustration on the

evolutionary forces governing the propagation of disease genes in

the human population by surveying exhaustively the characteris-

tics of disease genes and comparing those with non-disease genes.
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We focused on monogenic disease genes (MDs) that have a clear

association with and contribution to human genetic disorders, and

tried to address the following questions. First, can the enrichment

of disease genes in duplicates first revealed by Dickerson et al [8]

be reproduced in an updated dataset and what are the

contributions of multiple paralogs in multi-gene families? Second,

if disease genes indeed tend to have functional backups, is this

supported by evidence showing a higher functional similarity

between paralogs of disease genes than paralogs of non-disease

genes? A key factor being, if the functional divergence of disease

genes is greater than that of non-disease genes, a lower or

comparable proportion of disease genes in duplicates would be

expected, mimicking a behavior that of singletons. Due to the

divergence of the functional redundancy of duplicated genes [20]

stratification of the genes according to their duplication age was

necessary, otherwise resulting in false conclusions as shown in [21].

Third, what are the evolutionary factors acting on human disease

genes within and/or across species that could contribute further to

the functional compensation of duplicated disease genes? And

finally, what are the molecular mechanisms underlying the

spreading of disease genes as duplicates or singletons in the

human population? In other words, how could the functional

redundancy between duplicates actually increase their likelihood

of being disease genes?

Results

Disease genes are enriched in duplicated genes
Initially, we investigated the duplications of human disease

genes. Here, we considered three widely used approaches to detect

duplicated genes in the human genome, including those based on

simple homology (FASTA), gene family evolution (TreeFam) and

orthology (eggNOG v3) (see Methods) which resulted in similar

conclusions for all methods (Figures S1 and S2). As shown in

Figure 1, we found that 55% monogenic disease genes (MDs) were

duplicates, a significantly higher fraction than in non-disease genes

(NDs; p = 261028; Fisher’s Exact Test); similarly, we found 23%

of the duplicates are also MDs, compared to 18% in singletons

(Figure 1B; see also Dataset S1). Since duplicates are often found

Author Summary

Duplicated genes, as opposed to singletons, are genes that
have additional copies in a genome due to evolutionary
mechanisms such as whole genome duplication, homol-
ogous recombination or retrotransposition events. Dupli-
cates can have similar functions and thus mask the
phenotypic consequences when one copy is mutated.
Conversely, the corresponding phenotypes would mani-
fest themselves when mutations occur in singletons, since
functional compensation is rare among non-duplicated
genes. It would thus be expected that the primary source
of monogenic diseases, diseases caused by mutations
within a single gene, is singletons. However, the opposite
was found to be true. Additionally, we found the
functional similarity of duplicated disease genes to be
greater than that of duplicated non-disease genes of an
equivalent duplication age. So how could the stronger
functional compensation among duplicates increase their
likelihood to associate with diseases? We propose that due
to functional compensation in duplicates, disease-causing
mutations are less likely to be removed from a human
population in large scale since the phenotypes are
masked; however, the functional compensation could be
lost in a subpopulation, perhaps due to intrinsic variation
in gene expression, and therefore lead to diseases. As a
result, the duplicated disease genes are linked to genetic
diseases, yet they continue to spread within the human
population.

Figure 1. Duplicated genes are enriched in monogenic disease genes. A) percentages of duplicates in monogenic disease genes (MD) and
non-disease genes (ND). B) percentages of monogenic disease genes as function of number of duplicates in human; 0 indicates that genes are
singletons. Here duplicates were defined using TreeFam. P-value shown in panel A was calculated using Fisher’s Exact Test; level of significance:
*** ,0.001, ** ,0.01, * ,0.05. Numbers shown within the bars are gene counts (subset/total).
doi:10.1371/journal.pcbi.1003073.g001

Frequent Redundancy for Duplicated Disease Genes

PLOS Computational Biology | www.ploscompbiol.org 2 May 2013 | Volume 9 | Issue 5 | e1003073



to be functionally compensating [16], our results suggest disease

genes are enriched in functional backups. Strikingly, we found that

the number of paralogs in the same gene family did not have a

significant impact on gene disease status (Figures 1B, S1B and

S2B), suggesting non-additive functional compensation from

multiple gene family members.

Functional redundancy in duplicated disease genes
We next sought to find additional evidence for functional

redundancy in duplicated disease genes by comparing with

duplicated non-disease genes. Since the functional redundancy

between duplicates decreases over time [20], it is essential to

compare duplicates of a similar age. We therefore first divided

duplication pairs (gene-closest paralog) into distinct groups

according to their duplication age, and then divided them into

disease gene containing pairs, if at least one gene in a pair is

disease-related (MD-pairs), and non-disease gene containing pairs

otherwise (ND-pairs) (see Methods).

Evidence from unbiased datasets. We first of all analyzed

the differential expression patterns and sequence divergences

between duplicated genes, which are widely believed to be

important indicators of functional similarities [22].

Using gene expression profiles in 36 human normal tissues

obtained from [23], we found that the co-expressions between

MDs and their closest paralogs are in general higher than that of

non-disease genes of similar duplication age (Figure 2A; duplica-

tion age delineated by the total branch length from the node

representing where the duplication event happened on the species

tree to the leaf node of human; see Methods); this is also true when

ages are omitted (Figure 2B). Additionally, we found the co-

expressions tend to decrease with increasing duplication age,

consistent with previous studies [20]. The same results can be

obtained using the expression data from [24] (Figure S3).

Similarly, we found that the protein sequence identities of MD-

pairs are higher than that of ND-pairs of similar age. Similar to the

co-expression results, the sequence identity in general correlates

negatively with the divergent time, as shown in Figure 2C. Thus in

both datasets we obtained consistent results indicating higher

functional similarities between monogenic disease genes and their

closest paralogs than for ND paralog pairs. Since all genes in the

two datasets are either present (e.g. protein sequences) or have an

equal possibility to be present (e.g. gene expression data from

microarrays), we considered the two datasets unbiased.

Additional evidence from biased/incomplete

datasets. We then compared the characteristics between MD-

with ND-pairs using two additional datasets, namely Gene

Ontology (GO) and human physical protein-protein interactions

(PPIs). GO annotations are known to be biased towards highly

expressed and more conserved genes [25]; the same would also

apply to the PPI data. Additionally, current GO annotation and

human PPI network only cover limited numbers of genes;

consequently, only ,37% duplication pairs were annotated by

GO, and ,36% by PPIs. We thus considered the two datasets

biased.

We obtained GO annotations for human gene products from

Ensembl Biomart and used the Bioconductor package GOSem-

Sim [26] to measure semantic similarities between GO terms

associated with duplicate genes (see Methods). In light of recent

discussions on possible biases in GO and wrong interpretations of

the results due to the biases [27,28], we tested whether disease and

non-disease genes were equally represented in the GO annota-

tions. We found MD genes were significantly better annotated by

GO and associated with more GO terms (p = 2.36610232,

Wilcoxon Rank Sum Test; Figure S4); the GOSemSim value

measured on a pair of duplicated genes is inversely correlated with

the maximum number of GO terms of individual genes associated

with in a pair (Pearson’s correlation: p = 1.12610235, R = 20.27).

We therefore adopted a normalized version of GOSemSim as an

approximation for functional redundancy. As shown in Figure 3,

we found disease genes tend to have similar functions with their

closest paralogs compared with that of non-disease genes of similar

age (Figure 3A); the same results could be obtained when age was

omitted (Figure 3B).

Similarly, by calculating the percentage of shared PPI partners

between duplicates, we found disease genes also tend to have

higher functional similarity with their duplicates than non-disease

genes (Figure S5). Thus all the datasets generated consistent

results, thereby providing extensive evidence for the pervasive

functional redundancy by duplicates for human monogenic disease

genes.

Higher purifying selections on duplicated disease genes
Previous studies suggested that disease genes were under

purifying selections compared with non-disease genes, by measur-

ing the numbers of nonsynonymous substitutions per nonsynon-

ymous site (dN) between human-mouse orthologs [11]. We

confirmed these observations in our dataset using one-to-one

orthologs between human and mouse, as well as those between

human and macaque; the results are shown in Figure 4A and 4B,

respectively. Furthermore, we found the selective constraints on

disease duplicates are higher than on disease singletons (genes that

do not have homologs in the human genome), as shown in

Figure 4C and 4D.

The higher purifying selection on duplicated disease genes can

also be observed within the human genome; as shown in Figure 4E,

we found that MD- pairs always have lower dN values than ND-

pairs of similar age.

Discussion

In summary, we have made two interesting observations

regarding disease genes in duplicates. First, we have shown that

human monogenic disease genes tend to frequently have

functionally redundant paralogs, by comparing their characteris-

tics to that of non-disease genes, stratifying both categories

according to duplication age. Second, duplicates tend to harbor

more disease genes than singletons, confirming the observation by

an earlier study [8], but contradicting theoretical expectations.

What are possible explanations for these observations? A

possible scenario is that a disease gene and its duplicate are

simultaneously required for certain functions; for example, they

might be involved in the same protein complex. In this case, the

two genes would be highly co-expressed and evolve similarly.

However this is unlikely because the so-called ‘‘balance hypoth-

esis’’ – both underexpression and overexpression of protein

complex subunits would lower fitness of the host organism –

[29] predicts that 1) duplicates are rarely involved in protein

complexes and 2) the two duplicates from a common ancestor are

rarely retained by the same complex unless all other members of

the complex are also duplicated and the extra copies are also

retained; otherwise the protein complex is imbalanced and

evolutionarily deleterious [29]. We found that the first held true

in MDs as well as NDs in human using a protein complex dataset

from [30], and comparing them with non-disease genes. Disease

genes and their closest paralogs are significantly less likely to be

involved in the same complexes (p = 0.0002, Odds Ratio = 0.57;

Fisher’s Exact Test). These results are consistent with a previous

study in which only one gene out of a pair of duplicates was found

Frequent Redundancy for Duplicated Disease Genes
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to be associated with diseases [8]. A previous study suggested that

duplicates associated with whole genome duplications (WGDs) are

dosage balanced [31] and thus might not abide by the balance

hypothesis. However, we found that pairs of WGD duplicates do

not have a high likelihood to be in the same complexes compared

with pairs of duplicates associated with small scale duplicates

Figure 2. Evidence for functional redundancy in duplicated disease genes. Comparing with duplicated non-disease genes (ND) of similar
duplication age (represented by branch length, see Methods), monogenic disease genes (MD) tend have A) higher co-expression co-efficient (p-
value = 1.6961023, Hypergeometric Distribution test), C) higher sequence similarity (p-value = 1.6661023, Hypergeometric Distribution test). Results
in A) can be repeated using another set of gene expression data (Figure S3). P-values shown in the boxplots (B and D) were calculated using two-
sample Wilcoxon Rank Sum Test; see Materials and Methods for more details regarding the statistical tests. Numbers shown next the boxplots are the
numbers of valid samples (after removing samples with missing values).
doi:10.1371/journal.pcbi.1003073.g002

Figure 3. Evidence for pervasive functional redundancy in duplicated disease genes based on Gene Ontology annotations.
Compared with duplicated non-disease genes (ND) of similar duplication age (represented by branch length, see Methods), monogenic disease genes
(MD) tend to have A) higher functional similarity according to Gene Ontology annotations with their most recent duplications (MRDs; p-
value = 7.7761025, Hypergeometric Distribution test); B) the same are also true when duplication ages are omitted (Wilcoxon Rank Sum Test).
doi:10.1371/journal.pcbi.1003073.g003

Frequent Redundancy for Duplicated Disease Genes

PLOS Computational Biology | www.ploscompbiol.org 4 May 2013 | Volume 9 | Issue 5 | e1003073



(SSDs) (p = 0.22, Fisher’s Exact Test); similar results could be

obtained (p = 0.63; Fisher’s Exact Test) using protein complex data

from a genome-wide experimental survey on soluble proteins in

human [32]. Thus, WGD is not a confounding factor for our

observation.

So how could functional redundancy actually promote the

enrichment of disease genes in duplicates? Here we propose a new

model. We argue that functional compensation by duplication of genes

would help mask the phenotypic effects of deleterious mutations, as

previously suggested, and reduce the probability of purging the defect

genes from the human population. The functional compensation could

be further enhanced by the higher purifying selection on duplicated

disease genes within and between species. However, due to the intrinsic

expression stochasticity among individuals [33,34], the deleterious

mutations could present as genetic diseases in subpopulations where

the duplicate copies express in low abundances. In other words, the

corresponding genes would manifest as disease genes, while the mutant

allele would remain in the population instead of being removed. This

model is illustrated in more details in Figure 5. Consequently,

duplicates would be enriched in disease genes; the enrichment is weak,

albeit significant, due to the complexity of gene regulation in the

human genome.

Materials and Methods

Human genes and sequences
We obtained 21,731protein coding genes and the corre-

sponding protein and coding sequences (CDS) from Ensembl

[35] version 59. In cases one gene coding for multiple proteins,

the longest protein and the corresponding CDS is chosen as

representative.

All other gene annotations such as HGNC symbols, NCBI gene

IDs and accession numbers were mapped to Ensembl gene

identifiers to facilitate data integration. We downloaded the

mapping data using Ensembl BioMart.

Disease genes
We collected human disease genes from OMIM [36] and two

recent literatures [37,38]. In each of the sources disease genes were

divided into two categories, MDs – those associated with

monogenic diseases, and PDs – those associated with polygenic

diseases. We assigned genes associated with both types of diseases

into the MD group; please note that changing this definition, for

example by assigning this type of genes into the PD group did not

change our main conclusions (see Dataset S1).

Figure 4. Higher purifying selections on duplicated disease genes. Compared with non-disease genes (NDs), disease genes tend to have
lower dN values with their mouse- (A) and Macaca- (B) one-to-one orthologs. Furthermore, compared with disease singletons (singlet genes or
singletons refer to those that do not share significant protein sequence similarities with other human genes), duplicated disease genes tend to have
lower dN values with their mouse- (C) and Macaca- (D) orthologs. The higher selective constraints on duplicated disease genes can be also seen
within the human genome; for example, compared with duplicated non-disease genes (ND) of similar duplication age, disease genes tend to have
lower dN values with their closest paralogs within human (E; p-value = 461027, Hypergeometric Distribution test). However the same isn’t true when
age is omitted (F), highlighting the importance of dividing gene pairs according to their duplication age. P-values shown in the boxplots (A,D and F)
were calculated using two-sample Wilcoxon Rank Sum Test. A similar plot showing no outliers is also available in Figure S6.
doi:10.1371/journal.pcbi.1003073.g004
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All other genes that are not included in any of the three sources

are considered non-disease genes (NDs).

Duplicated genes
We used three approaches to find duplicated genes in the

human genome, including methods based simple homology search

(FASTA), gene family evolution (TreeFam [39]) and orthology

(eggNOG3 [40] using euNOG).

Using the homology-based method, if two human genes had a

bitscore higher than 80 in a FASTA [41] search at protein level,

and the aligned region covers at least 50% of the shorter protein,

they are considered as duplicates; please consult ref [21] for more

information about the chosen cutoffs. Changing the cutoffs, for

example by increasing the required proportion of the aligned

regions for homology detection did not affect our results; see

Figure S1 for more details.

In the latter two methods, if a gene family or an orthologous

group contains two or more human genes, these genes are

duplicates. The numbers of duplicated genes identified by the

three methods are 14,014, 14,084 and 11,853, respectively.

Dating duplication events on species tree
We downloaded all gene families as well as their corresponding

phylogenetic trees from TreeFam [39] ver8.0. We excluded gene

families that do not contain human genes, or contain genes from less

than four different species, resulting in a set of 9,643 gene families.

For each pair of duplicates in a gene family, we dated the (putative)

duplication event by comparing the topology of the corresponding

gene tree with that of a species tree. To compare with the TreeFam

gene trees, we used a species tree downloaded from Ensembl (http://

www.ensembl.org/info/docs/compara; see also Figure S8).

As shown in Figure S7, to date a duplication event of a pair of

duplicated genes (A2 and A3 in this case; see Figure S7A), we first

located their last common ancestor (LCA) on the gene tree, and

collected all the genes that are descendent to this LCA (Figure

S7A; in this case A_rat, A_mouse, A2_human and A3_human)

and their corresponding species (in this case human, mouse and

rat); then we mapped these species on to the species tree (Figure

S7B) and located the corresponding LCA; the age (divergent time)

of the duplication event was then defined as the total branch

length from this LCA to human on the species tree.

The trees shown in Figures S7 and S8 were visualized and

prepared using online tools, iTol [42] and EvolView [43].

Identifying duplicates associated with whole genome
duplications (WGDs)

Two rounds of whole genome duplication (WGDs) occurred

during early chordate evolution [44,45]. Duplicated genes for which

their duplication events can be dated back to that time are thus

likely to associated with WGDs. Using similar criteria to [31], we

were able to identify in total 6,560 genes with their most recent

duplication (MRD) ages dated after the split of human and Ciona

intestinalis (Ascidian), and before the split of human and fishes

including Takifugu rubripes (see also Figure S8); we found this number

of WGD associated duplicates remarkably similar to that of [31]

although different methods and numbers of species were used.

Gene expression profiles in normal tissues
We obtained the expression profiles of human genes in normal

tissues from two sources [23,24]; we were able to map 12,436 and

17,553 probe-sets to Ensembl 59 gene IDs for the two expression

datasets, respectively. Both datasets generated similar results.

Therefore we showed the results based on [23] in the main text;

results based on [24] are shown in Figure S3.

Gene ontology (GO) analyses
We downloaded GO annotations of human gene products from

Ensembl BioMart and GO term hierarchy file ‘gene_ontology_ext.

Figure 5. A model for the effect of functional compensation on the propagation of duplicated disease genes in the human
population. This model is based on two previous experimental studies. The first showed that genes with identical promoters could have very
different expression abundances in individual E. coli cells [33]. The second showed different C. elegans individuals carrying the defect gene could
demonstrate varying phenotypes ranging from wild type to stalled development on embryogenesis, depending on the expression abundance of a
duplicate gene [34]. We therefore propose that in cases where a duplicate (A1_human) exists (panel A), the functional impairment caused by
mutations on a disease gene (A2_human) could be compensated; however due to intrinsic expression stochasticity of the duplicate copy, some
individuals would appear to be normal while some others show reduced fitness (panel B). Consequently this gene A2 is linked to genetic disorders
while the deleterious mutations it carries continue to spread instead of being removed in the human population. On the other hand, if a disease gene
(B_human; panel C) is a singlet without any paralogs, its mutations then would be more likely to be purged from the population (panel D) since
compensation by non-duplicates via genetic interactions is relatively rare [16,17].
doi:10.1371/journal.pcbi.1003073.g005
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obo’ (format version 1.2; Feb 2012) from the Gene Ontology

database [46]. Genes (gene products) without GO annotations

were excluded from further analyses.

To compare functional redundancy based on semantic similar-

ity of GO terms between any given two genes, we used the

Bioconductor package GOSemSim [26]and restricted our analyses

on leaf-GO terms in ‘‘molecular function’’. Due to known biases

towards a better annotation for disease genes (see Results), we

adopted a normalized version of GOSemSim as the following

formula:

normalized GOSemSim~

GOSemSim � x{minz1ð Þ= max{minð Þ

where ‘x’ is the maximal number of GO terms associated with

individual genes in a duplication pair, ‘min’ is the minimal number

of GO terms associated with genes, ‘max’ is the maximal number

of GO terms associated with genes; ‘+1’ is used to avoid zeros.

Protein-protein interaction data
We collected the protein-protein interaction data from several

public databases, including STRING [47] (version 9,

score. = 0.7), HPRD [48] (June 29, 2010), DIP [49] (Feb 28,

2012), MINT [50](Feb 6, 2012), IntAct [51] (Feb 7, 2012), and

BioGRID [52] (version 3.1.82), and considered only physical

bindings. In addition, we also included one experimental dataset

[53] and one curated dataset from the literature [54]. In total, we

obtained 80,202 interactions among 12,839 gene products.

dN values
For each pair of duplicates in the human genome, we used a

KaKs_Calculator [55] tool to calculate the dN (the numbers of

nonsynonymous substitutions per nonsynonymous site).

We also downloaded dN values between human genes and their

homologs in mouse and macaque from Ensembl [35] BioMart; we

retained entries with ‘‘Homology Type’’ of ‘‘apparent_ortholog_

one2one’’ or ‘‘ortholog_one2one’’.

Statistical tests
In this study we applied three statistical tests to different types of

datasets. 1) Fisher’s Exact Test. We used it to test whether monogenic

disease genes (MDs) are more likely to be duplicates compared with

non-disease genes (NDs). Since genes can be divided into four groups

according to two kinds of classifications (association with diseases and

being duplicates), it is suitable to use Fisher’s test. 2) Wilcoxon Rank

Sum Test. We used this test to compare two sets of numerical values

(for example two sets of dN values for MD and ND genes respectively)

and access whether one tends to have higher values than the other; in

this study it was often associated with boxplots. 3) Hypergeometric

Distribution Test. To test whether duplicated MD genes tend to have

higher functional redundancy with their most recent duplicates than

that of ND genes of similar age, each of the two groups would be

further divided into more than 10 age groups. We found in all cases,

the majority of the MD groups had higher (or lower) mean values than

the ND groups of the same age (for example Figure 2A). To check

whether such observations were significantly different from random

expectation, we applied the Hypergeometric Distribution Test using

the following function in R: phyper(q, m, n, k), where m refers the

number of cases where the mean values of the MD groups are higher

(or lower) in the pool, n refers the number of cases where the mean

values of the MD groups are lower (or higher) in the pool, k refers the

number of cases randomly chosen from the pool of m + n, and q refers

to the number of cases out of k where the mean values of the MD

groups are higher (or lower). In this study we set m = n = k = the

number of valid age groups. All tests were performed using R (http://

www.r-project.org/).

Availability of the materials and methods
All raw data and R scripts used in this study are available in

Dataset S1 as an archive file; also included in this archive is a

detailed instruction for the readers to reproduce our main results,

including all the figures, supplementary figures, and statistical tests

except Figure 5, which was plotted manually.

Supporting Information

Figure S1 Similar to Figure 1, only the duplicated genes were

detected using FASTA. Here we also tested the impact of different

cutoffs of aligned regions required for homology detection on our

results; four cutoffs were tested: 50% (A,B), 60% (C,D), 70% (E,F)

and 80% (G,H). A,C,E,G: percentages of duplicates in monogenic

genes and non-disease genes. B,D,F,H: percentages of monogenic

disease genes as function of number of duplicates in human; 0

indicates that genes are singletons (have no homologs in human).

(EPS)

Figure S2 The same as Figure 1, only the duplicated genes were

detected using eggNOG3. A) percentages of duplicates in

monogenic genes and non-disease genes. B) percentages of

monogenic disease genes as function of number of duplicates in

human; 0 indicates that genes are singletons.

(EPS)

Figure S3 A) Comparing with non-disease genes (NDs) of similar

duplication age, monogenic disease genes (MDs) tend to have higher

coexpression with their closest paralogs. B) the same is true when

age is omitted. The expression data were obtained from [24].

(EPS)

Figure S4 The number of unique GO terms (Molecular Function)

as a function of branch length in MD- and ND- pairs. A) number of

GO terms associated with a pair of genes in each group as a function of

duplication age. B) the same as A) but the age was omitted.

(EPS)

Figure S5 Higher functional similarities in MD pairs comparing

with ND-pair using protein-protein interaction data. A) shared

protein interaction partners of MD pairs were compared with ND-

pairs of similar age. B) the same as A) but the age was omitted.

(EPS)

Figure S6 The same as Figure 4, only the outliers were removed

from the plots. Compared with non-disease genes (NDs), disease

genes tend to have lower dN values with their mouse- (A) and

Macaca- (B) one-to-one orthologs. Furthermore, compared with

disease singletons, duplicated disease genes tend to have lower dN

values with their mouse- (C) and Macaca- (D) orthologs. The

higher selective constraints on duplicated disease genes can be also

seen within the human genome; for example, compared with

duplicated non-disease genes (ND) of similar duplication age,

disease genes tend to have lower dN values with their closest

paralogs within human (E). However the same isn’t true when age

is omitted (F), highlighting the importance of dividing gene pairs

according to their duplication age.

(EPS)

Figure S7 Dating duplication events by comparing the topologies

of gene trees with a reference species tree. A) duplication event on a

gene tree. B) the corresponding event mapped to a species tree.

(EPS)
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Figure S8 The species tree used in this study. Highlighted in red

is the time period during which the two rounds of whole genome

duplications (WGDs) likely happened.

(EPS)

Dataset S1 This supplementary file is an archive contains all the

raw data and R scripts used in this study; also included in this

archive is a detailed instruction for the readers to reproduce our

main results, including all the figures, supplementary figures, and

statistical tests except Figure 5, which was plotted manually.

(ZIP)
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