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Abstract

MOCAT is a highly configurable, modular pipeline for fast, standardized processing of single or paired-end sequencing data
generated by the Illumina platform. The pipeline uses state-of-the-art programs to quality control, map, and assemble reads
from metagenomic samples sequenced at a depth of several billion base pairs, and predict protein-coding genes on
assembled metagenomes. Mapping against reference databases allows for read extraction or removal, as well as abundance
calculations. Relevant statistics for each processing step can be summarized into multi-sheet Excel documents and
queryable SQL databases. MOCAT runs on UNIX machines and integrates seamlessly with the SGE and PBS queuing systems,
commonly used to process large datasets. The open source code and modular architecture allow users to modify or
exchange the programs that are utilized in the various processing steps. Individual processing steps and parameters were
benchmarked and tested on artificial, real, and simulated metagenomes resulting in an improvement of selected quality
metrics. MOCAT can be freely downloaded at http://www.bork.embl.de/mocat/.
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Introduction

The emerging field of metagenomics has enabled researchers to

study the structure, dynamics, and functionality of uncultured

microbial communities. Processing the vast amounts of metage-

nomics data usually involves quality-controlling raw sequence

reads, aligning them to reference databases, and assembling them

into longer contigs prior to predicting genes. Several packages are

available for processing and analyzing metagenomics data, either

as web- and cloud-based services or stand-alone computational

pipelines [1–7]. But currently none of them supports the assembly

and gene prediction of metagenomics data produced by the

Illumina platform.

As exemplified by recent clinical, large-scale, and on-going

studies (e.g., the Human and Earth Microbiome Projects), the

usage of high throughput sequencing (HTS) data can be

anticipated to further increase considerably in both terms of data

volume and scope of application [8–11]. Thus, there is an

imminent need for applications providing standardized methods

for processing of HTS data in the form of pipelines [12] to

facilitate comparative downstream analyses.

To address these issues, we have developed MOCAT, a

metagenomics assembly and gene prediction toolkit for both small

and large-scale processing of metagenomic data produced by the

Illumina sequencing technology.

Results and Discussion

The main pipeline is divided into five major steps: (i) quality

trimming and filtering of raw reads, (ii) optional mapping to

remove, extract, and/or quantify reads matching a reference

database, (iii) assembly, (iv) assembly revision, and (v) gene

prediction (Figure 1). Statistics from each step are summarized

into multi-sheet Excel documents, as well as queryable SQLite

databases. Full details of output files and statistics produced in

each processing step are given in Table S7.

The individual processing steps in MOCAT were benchmarked

using three different data sets: 124 published human gut

metagenomic samples [8], a mock community produced by the

Human Microbiome Project (HMP) with 22 species from 19

genera [9], and a simulated metagenome with 100 strains from 85

species [13]. By using this combination of host associated,

artificial, and simulated metagenomes with different taxonomical

resolution, we show that MOCAT can efficiently process a variety

of metagenomic samples, ranging in both size (0.5–16.6 Gbp),

origin and composition owing to new developments in each of the

five major steps.

i) Quality Trimming and Filtering of Raw Reads
Read quality trimming and filtering can greatly improve the

length and accuracy of metagenomic assemblies [13]. Therefore,
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in the first processing step, raw reads below specified quality

and length cutoffs are trimmed or removed using either the

FastX program (http://hannonlab.cshl.edu/fastx_toolkit/) or the

DynamicTrim algorithm in the SolexaQA package [14]. The

supported FastX program removes bases from the 39 end below

a user-defined threshold, whereas the DynamicTrim algorithm

in the SolexaQA package keeps the longest contiguous read

segment in which all quality scores are above the user-defined

threshold [14]. After quality trimming and filtering our three

test datasets, 57–79% of the reads remained as high quality

reads (Table S1).

Additionally, to reduce base composition-biases that commonly

occur in HTS data [15], the frequency of each base at each

position over all reads is calculated, and bases that exceed two

standard deviations of the average base frequency within a sample

are trimmed from the 59 end of all reads. Using our test data set of

124 published human gut microbial samples, on average, the

fraction of reads that could be mapped to assemblies was 1%

higher when using 59 trimmed reads, compared to non-trimmed

reads (Table S2).

MOCAT also supports the FastQC package, for evaluating raw

read quality statistics (http://www.bioinformatics.bbsrc.ac.uk/

projects/fastqc).

ii) Mapping, and Removal or Extraction of Reads
Matching a Reference Database

In the second step, reads can be mapped to reference sequences

in order to extract or remove reads from the original data set as

well as to calculate base or read coverages. For example, reads

from a human fecal metagenomic sample can be mapped to the

provided human genome database (hg19, Genome Reference

Consortium Human Reference 37) to remove reads of human

origin using SOAPAligner2 [16], or reads containing adapters

used for sequencing library construction can be removed using

Usearch [17]. Reads can also be mapped to any other custom

reference database to calculate base and insert coverage of

reference sequences to estimate taxonomic and/or functional

composition of a sample, for example.

Here, we estimated the taxonomic composition of the simulated

metagenome by mapping reads to the set of original reference

genomes (Table S2 in [13] and Table S3) and calculating genome

size-normalized base and read coverages. The Pearson and

Spearman correlation coefficients between the observed and

expected composition of the simulated metagenome were 0.95

and 0.90, respectively, for both base and read counts (Figure 2),

and only 80 out of more than 30 Million reads were not aligned.

However, the observed abundances of genomes with very high

sequence identity may deviate from the expected abundances due

to reads mapping to both the genome of origin and other highly

similar genomes.

When estimating taxonomic composition of the HMP mock

community, reads were mapped to reference sequences of the

community (Table S4). By first removing quality filtered and

trimmed reads matching known Illumina adapter sequences

(Table S5), the percentage of bases and reads mapping to the

reference genomes increased from 94.3% to 97.3%, and 95.0% to

97.6%, respectively, indicating the usefulness of a pre-screening

step. The taxonomic composition estimated here is similar to the

values calculated by the HMP consortium (Pearson correlation

coefficient of 0.75 and 0.83 for bases and reads mapping,

respectively, Figure 3), and also to estimates of 16S sequences

using 454 sequencing presented in (Figure S14, [18]). Experimen-

tal errors, not applicable to estimates of computationally simulated

metagenomes, may explain the lower correlation in the mock

community, compared to the simulated metagenome.

iii) Assembly
In the assembly step, a new version (1.06) of SOAPdenovo [19]

is used. For paired-end sequences, the insert size of each

sequencing library is estimated at run-time by mapping reads to

either reference marker genes [20] prior to assembly, or assembled

contigs prior to scaffolding. Similarly, Kmer sizes used for

assemblies are calculated at run-time for each individual

metagenome. Empirical tests on a large number of samples show

that estimating a Kmer size for each sample as the closest odd

number larger or equal to half the average read length may not

yield the best possible assembly, but balances assembly throughput

and accuracy.

The accuracy of metagenomic assemblies was assessed using

data from the simulated metagenome and the mock community.

We used the percentage of predicted complete genes aligning to

the reference sequences of origin, as a proxy for correctly

assembled scaftigs (contigs that were extended and linked using

the paired-end information of sequencing reads). For the simulated

Figure 1. The MOCAT data processing pipeline. Metagenomic
samples are collected and sequenced. The raw sequence reads are
given as input to the pipeline, which are processed by modular steps
resulting in metagenome assemblies and predicted genes. Arrows
extending to the right from boxes, indicate input to various
downstream analyses. Statistics from each step are summarized into
multi-sheet Excel documents, as well as queryable SQLite databases.
doi:10.1371/journal.pone.0047656.g001
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metagenome this value was 95.2% (12,385 complete genes

predicted), and for the mock community 89.3% of the complete

genes aligned (1,042 complete genes predicted). The lower number

of predicted complete genes in the mock community may be

explained by the relatively low number of high quality reads used

in the assembly for this metagenome.

The effect of using variable Kmer sizes, rather than a fixed

kmer, in the assembly step, was evaluated using the 124 gut

metagenomes. Estimating Kmer sizes at run-time for each

individual metagenome, rather than using a fixed Kmer size

across all samples, improved the number and frequency of

complete gene calls as well as overall average gene length (column

1 in Table 1).

iv) Assembly Revision
In the assembly revision step, a feature independent of the

utilized assembly packages, MOCAT can revise existing paired-

end read assemblies by aligning the reads to assembled scaftigs

Figure 2. Relative abundance of each reference genome present in the simulated metagenome. The observed abundances by mapping
reads to reference genomes and the expected abundance correlate with a Pearson correlation coefficient of 0.95 (base and read counts). Circles
represent genomes with multiple strains from one species and squares represent genomes with only one strain within the species. All, but one, of the
observations deviating from the diagonal are strains from the same species. These strains are either over- or under represented because reads are
mapped to other closely related strains in addition to the strain of origin. Highlighted by dashed lines, are two examples where a high sequence
similarity between strains (99.9% and 98.7% for the Synechococcus elongatus and Escherichia coli strains, respectively) can result in deviations from
expected abundances.
doi:10.1371/journal.pone.0047656.g002

Figure 3. Relative abundance of each genus present in the even HMP mock community. The estimated abundances using qPCR and by
mapping reads to reference genomes correlate with a Pearson correlation coefficient of 0.75 (base counts) and 0.83 (read counts).
doi:10.1371/journal.pone.0047656.g003
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using the gap-tolerant BWA aligner [21] to correct for base errors

and short indels, and the fast SOAPaligner2 to resolve chimeric

regions. Performing assembly revision on the 124 human fecal

metagenomes further improved gene prediction metrics (column 2

in Table 1).

v) Gene Prediction
Finally, protein coding genes on the metagenomes are predicted

using either the default component Prodigal [22] or MetaGene-

Mark [23]. An in depth comparison of the gene prediction

software is beyond the scope of this article. However, each

software have been benchmarked by the respective authors

(http://prodigal.ornl.gov/results.php and [23]). An independent

comparison determined that MetaGeneMark had a higher

precision and Prodigal a higher recall rate (http://genome.jgi.

doe.gov/programs/metagenomes/benchmarks.jsf).

Conclusions
The functionality and versatility of the pipeline has been

demonstrated using an artificial mock community metagenome, a

simulated metagenome with 100 species, and 124 human gut

metagenomes. Based on parameter exploration and data driven

parameter optimization at run-time, the MOCAT pipeline can

process metagenomes in a standardized and automated way while

improving the quality of assembly and gene prediction compared

to using default parameters for the supported programs. To date,

MOCAT has additionally been used to process and assemble

hundreds of host-associated and ocean metagenomes within the

scope of the MetaHIT [8] and TARA Oceans projects [24].

Implementation, Availability, and Requirements
MOCAT is implemented in Perl and installed by extracting the

package and executing one script, which downloads the default

external software used by the pipeline and sets up the software.

This reduces the otherwise tedious process of downloading all the

individual components, a common drawback of in-house pipelines

[12]. Optional components requiring a license, such as MetaGene-

Mark [23] for gene prediction, and Usearch [17] for removal or

extraction of reads by alignment to a FASTA-formatted sequence

file, require a manual download.

A new project is quickly setup requiring only single- or paired-

end FastQ formatted sequencing reads files [25] for each sample in

a separate directory. The use of a project-specific configuration

file, with suggested default settings, offers users to run all

processing steps up to gene prediction without additional setup,

while allowing experienced users to modify parameters and

programs used in MOCAT. All of the settings are described in

the MOCAT documentation.

A queuing system enables processing of a large number of

samples in parallel. If present, MOCAT seamlessly integrates all

processing steps with the SGE and PBS queuing systems.

However, if no queuing system is available, MOCAT processes

samples serially on the machine it was executed.

MOCAT runs on 64-bit UNIX systems and can be freely

downloaded at http://www.bork.embl.de/mocat/. Perl version

5.8.8 or above is required. MOCAT is also available in a

Virtual Machine package, which could be used to run MOCAT

on a PC or a cloud based system. The open source code and

modular architecture allow users to modify or exchange the

programs that are utilized in the various processing steps. There

are no minimum hardware requirements for the pipeline itself

to run, however, requirements for analyzing metagenomic

datasets vary depending on the number of samples to process

in parallel and the sequencing depth of each sample. To aid in

determining whether local computational resources are ade-

quate, we provide in Table S6 and S8 the maximum resources

required to process the datasets in this article. We recommend

at least 16 GB of RAM to process smaller metagenomes and

64 GB of RAM to process medium sized metagenomes, but

these requirements may vary depending on project settings and

systems used. The hard disk space requirements depend on the

size and number of metagenomes to analyze, but we

recommend at least 500 GB of hard disk space.

Methods

Data Sources
Data for the simulated metagenome is publically available at

http://www.bork.embl.de/,mende/simulated_data/[13]. This

dataset consisted of simulated paired-end raw reads and 193

reference sequences (chromosomes and plasmids) from 100

genomes used to simulate this metagenome (Table S3). Metage-

nomic data for the even HMP mock community were downloaded

from http://www.ncbi.nlm.nih.gov/bioproject/48475, and the

references sequences were downloaded from the NCBI database

(Table S4), with the exception of Candida albicans, which was

downloaded from http://www.candidagenome.org/download/

sequence/C_albicans_SC5314/Assembly21/current/. Metadata

for the mock community was downloaded from http://www.

hmpdacc.org/HMMC/. Datasets for the simulated metagenome

and the mock community can optionally be downloaded auto-

matically when installing the MOCAT pipeline.

Raw reads for the 124 human gut microbiomes were

downloaded from the EBI homepage (accession number

ERA000116, http://ftp.sra.ebi.ac.uk/vol1/ERA000/ERA000116/

fastq/).

Table 1. Progressive improvement of gene prediction metrics in 124 human gut metagenomes.

Quality metric Improvement compared to fixed kmer = 23 (%)

No assembly revision Revised assembly

Number of complete genes 8.1 10.2

Number of complete genes/Mbp 4.6 18.5

Average gene length 1.7 1.8

Gene prediction metrics are improved when using an automated kmer size in SOAPdenovo and with assembly revision (correction of base errors, short indels, and
chimeric contigs), compared to a fixed kmer size of = 23 in SOAPdenovo and no assembly revision. The Kmer size is estimated as the closest odd number greater than
half the average read length for a sample. Numbers reported are in percent improvement of the respective quality metric. The calculated Kmer for each sample is given
in Table S8.
doi:10.1371/journal.pone.0047656.t001
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Data Processing and Software Settings
The three datasets were processed by the read_trim_ filter step in

MOCAT with length cut off set to 30 and quality cut off set to 20,

using solexaqa for the mock community and the simulated

metagenome, and fastx for the 124 gut metagenomes.

Estimated taxonomic compositions for the simulated metagen-

ome and the mock community were calculated in three steps. First,

quality trimmed and filtered reads from the mock community were

screened against a FASTA-file with Illumina adapter sequences

(Table S5), using the screen_fastafile option and e-value set to 0.01.

Second, screened reads from the mock community and quality

trimmed and filtered reads from the simulated metagenome were

mapped and filtered against the custom-made reference databases

with chromosome and plasmid sequences from the 22 mock

genomes (Table S4) and 100 genomes from the simulated

metagenome (Table S2 in [13] and Table S3), respectively. This

was done by executing the screen and filter commands with length

cutoff set to 30, percentage identity set to 90 and paired_end_filter-

ing set to yes for the simulated metagenome and set to no for the

mock community. Finally, the taxonomic composition was

estimated using the calculate_coverage command.

Assembly and gene prediction, on the simulated metagenome

and mock community, were performed using the assembly

(SOAPdenovo version 1.06) and gene_prediction (MetaGeneMark)

options. Quality trimmed and filtered reads from the simulated

metagenome, and adapter-screened reads from the mock com-

munity, were assembled into scaftigs 60 bp or longer. Predicted

complete genes were aligned to their respective metagenomes

using blastall v2.2.26 [26] (program blastn, 95% sequence identity,

alignment length . = 90%, and e-value 0.1) and only the best hit

selected.

The 124 human gut microbiomes were processed with and

without 59 trimming. 59 trimmed reads were assembled using

SOAPdenovo 1.05, using both the Kmer determined by MOCAT

and a fixed Kmer size set to 23. These assemblies were revised

using SOAPdenovo 1.06 using the assembly_revision options, and

genes were predicted, with MetaGeneMark as selected software, on

scaftigs from both assemblies and revised assemblies. The non 59

trimmed and 59 trimmed reads were mapped to the assembled

scaftigs using the screen option using length cutoff 30 and quality

cutoff 15.

Complete commands for processing the simulated metagenome

and mock community in MOCAT are bundled with the

installation of the pipeline.
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