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INTRODUCTION 
 

The Cav1.2 L-type Ca2+ channel (LTCC) of 
cardiomyocytes is a complex multimeric molecu-
lar sarcolemmal ensemble1 and is mostly local-
ized in the transverse tubular system of cardio-
myocytes.2,3 Activation of LTCC generates a Ca2+ 
current (ICaL) through the sarcolemma large 
enough to be involved in the control of action 
potential duration4 and serves as a trigger for 
Ca2+ release from the sarcoplasmic reticulum 
during the excitation-contraction coupling (the 
“calcium-induced calcium release”).1,4-6 

The typical structure of LTCC in ventricular 
cardiomyocytes is a macromolecular multimeric 
complex consisting of a pore-forming unit α1C, an 
intracellular β (mostly β2) subunit and the dimer 
α2δ (�2�-1) subunit in a 1:1:1 ratio1, 7. The α1C 
subunit contains all the necessary structures to 
allow the channel to gate and confers the Ca2+ 
selectivity as well as the electrophysiological and 
pharmacological properties of the LTCC.7-10 The β 
and α2δ subunits seem to be involved in mem-
brane targeting of α1C and influence LTCC inacti-
vation.9-12 

It has been consistently reported that L-type 
Ca2+ channel activity can be modulated by the 
cytoskeleton.13 Recently, the giant cytoskeletal 
protein ahnak-1 (5890 amino acids) has emerged 
as an important modulator of β-adrenergic regula-
tion of the cardiac L-type Ca2+ channel (for a re-
cent review see 14). Haase et al.,15 and Hohaus et 
al.,16 provided evidence that ahnak-1 could have a 
physiological role in cardiac β-adrenergic signal-
ling via its interaction with the regulatory β-subunit 
of the L-type Ca2+ channel. Later on, we showed 
that intracellular perfusion of rat ventricular cardi-
omyocytes with small ahnak-1 fragments involved 
in high affinity (KD~50 nM) interaction of the 
ahnak-1 distal C-terminus (C2) with the β2-subunit 
induced an increase in ICaL density and slowed 
down its inactivation.17 That ahnak-1 C1 terminus-
derived fragments also modulate ICaL was further 
confirmed by Haase et al.,18 who demonstrated 
that the ahnak-1 polymorphism, I5483T (previous-
ly Ile5236Thr) interferes with β-adrenergic stimula-
tion of ICaL. The proximal ahnak-1 C terminus (C1) 
contains multiple interaction sites with the β-
subunit. Intracellular application of this mutated 
peptide to rat ventricular cardiomyocytes in-
creased ICaL by ~60% and slowed down its fast 
inactivation time constant together with a leftward 
shift of its availability curve. These effects were 
similar to those observed after β-adrenergic 
stimulation in control cardiomyocytes. The re-
sponse of ICaL of rat ventricular cardiomyocytes 
intracellularly perfused with the I5483T-ahnak-1 
fragment to β-adrenergic stimulation was greatly 

diminished. Interpretation of these data was that 
in rat ventricular cardiomyocytes ahnak-1 could 
serve as a “physiological brake” on ICaL when 
normally attached to the β-subunit. Relief of this 
inhibition during β-adrenergic stimulation or when 
ahnak-1-derived peptides are intracellularly ap-
plied increases ICaL and changes its inactivation 
time course.18 This interpretation has been recent-
ly challenged by our results with cardiomyocytes 
dissociated from mice that do not express ahnak-
1(KO) in which ICaL density was not increased as 
expected for an autoinhibitor.19,20 However, the 
lack of increase in ICaL density in KO cardiomyo-
cytes could be also related to a disruption of the 
cytoskeleton integrity13 and/or to a decrease in 
plasma membrane expression of L-type Ca2+ 
channels.21 The role of ahnak-1 as a modulator of 
ICaL is reinforced by experiments demonstrating 
that perfusion of KO ventricular cardiomyocytes 
with small fragments encompassing the amino 
acids of ahnak-1 C terminus involved in ICaL regu-
lation had no effect on this ionic current.19,20 

However, it is not known whether the ahnak-1 
modulator role is altered or not in pathological 
states. It has been reported that in remodelled 
post myocardial infarcted (PMI) hearts, ICaL densi-
ty is decreased or not affected7. More consistently 
its inactivation time course is reported to be slow-
er in PMI cardiomyocytes.7,22 It has been also 
reported that the transverse tubular system (T-
system) is remodelled in failing hearts23-25 a fact 
that could partially account for the observed 
changes in ICaL because most of the Cav 1.2 
channels are expressed in the T-system. Because 
ahnak-1 and the Cav 1.2 channels co-localize in 
the T-system,15-16 the modulator activity of ahnak-1 
on Cav 1.2 channels could be altered in remod-
elled PMI cardiomyocytes. It was thus the aim of 
the present investigation, to characterize the well-
documented modulator activity of the I5483T pol-
ymorphism18 on Cav 1.2 channels of cardiomyo-
cytes isolated from PMI rat ventricles.22 Since the 
genetic variant I5483T of ahnak-1 is functional and 
may cause individual differences in ICaL response 
upon physiological challenges or therapeutic 
interventions, it is important to address the issue 
whether the interaction of ahnak-1 with the cardi-
ac Ca2+ channel could be altered in pathological 
states. 
 
METHOD 
 
I5483T polymorphism  

The synthetic ahnak-1 peptides, either wild-
type (GGLPGIGVQGLE; from here on GIG) or 
mutated (GGLPGTGVQGLE, from here on GTG), 
corresponding to amino acid positions 5478-5489 
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of ahnak-1 were purchased from Biosyntan GmbH 
(Berlin-Buch, Germany; see 18 for details). 

Myocardial infarction model in rats  
 
Male Wistar rats weighing 180-230 g were 

submitted to left anterior coronary ligation accord-
ing to Aimond et al.22 In brief, rats were anaesthe-
tized with an intraperitoneal mixture of ketamine 
(150 mg/kg) and chlorpromazine (15 mg/kg) be-
fore being intubated and ventilated. After median-
left thoracotomy and opening of the pericardium, 
the left coronary artery was occluded with a 7-0 
silk suture at the apex. Successful occlusion was 
recognized by pallor of anterior left ventricular 
free wall and by the occurrence of immediate 
regional dyskinesia. Sham-operated rats were 
submitted to the same treatment except the coro-
nary artery ligation. Data concerning heart and 
haemodynamic status of sham-operated and PMI 
Wistar rats used in this study have been previous-
ly published.22,26 Typically in PMI rats, left ventri-
cles were markedly dilated under M-mode echo-
cardiography and heart weight/body weight was 
increased by ~ 40% despite large infarcted area 
while end-diastolic pressure demonstrated a sig-
nificant increase. 

 
Isolation of adult ventricular cardiomyocytes 
  

Single ventricular cells from young (2-month-
old), sham-operated and PMI rat hearts (4 months 
after surgery, 6-month-old) were dispersed by an 
enzymatic method similar to that previously de-
scribed.17 Isolated myocytes were kept in this 
physiological solution (Ca2+=1 mmol/l) at room 
temperature (21E - 23EC) and used within 6-8 
hours. 

 
Patch-clamp recordings 

 
For recording the L-type Ca-current (ICaL), the 

whole cell variant of the patch-clamp method was 
used. K+-currents were blocked by Cs (intracellu-
lar and extracellular; see below), respectively. The 
fast inward Na+ current was blocked with tetro-
dotoxin (TTX) at a concentration of 50 μmol/L. The 
composition of the standard extracellular solution 
was (mmol/L): NaCl, 117; CsCl, 20; CaCl2, 2; 
MgCl2,1.8; glucose, 10; HEPES, 10; pH was ad-
justed to 7.4 at 21EC. The pipette ("intracellular") 
solution contained (mmol/l): CsCl, 130; Na2-GTP, 
0.4; Na2-ATP, 5; Na2-creatinphosphate, 
5;ethyleneglycol-bis-(β-aminoethyl ether) 
N,N,N',N'-tetraacetic acid (EGTA), 11; CaCl2 4.7 
(free Ca2+ ~ 120 nmol/l); HEPES, 10; pH was 
adjusted to 7.2 with CsOH.  

For routine monitoring of currents, cells were 
clamped by 300-ms voltage-clamp pulses to 0 mV 
from a holding potential of -80 mV at a frequency 
of 0.25 Hz. Current amplitude was estimated as 
the difference between peak inward current and 
the current level at the end of the 200-ms pulse. 
Cells intracellularly perfused with GIG or GTG (10 
μmol/L) were let to stabilize for at least 5 minutes 
after patch rupture before beginning the experi-
ment. Current-to-voltage relationships (I/V) and 
availability curves (f4 vs Vm) were determined by 
standard double-pulse protocols17. Availability 
curves of ICaL were fitted from -80 to 0 mV by a 
Bolztmann distribution of the type: f4 = 1/1 + exp 
[(Vm-Vf)/s], where Vf is the potential for half inacti-
vation and s the slope factor. Pulse generation, 
data acquisition and on-line analysis were done, 
using computer facilities and ACQUIS1 software 
(version 2.0, CNRS License, France). 

 
Statistical evaluation  

 
Results were analysed by the Students' “t”-test 

and are expressed as means and standard errors 
of means. The criterion for significance was 
p<0.05. 
 
RESULTS 
 

Characteristics of L-type Ca2+ currents from 
control young, sham and PMI cardiomyocytes are 
shown in Table 1. As can be seen ICaL density was 
significantly (p<0.05) increased in sham and PMI 
cardiomyocytes. Inactivation time course of ICaL 
was barely affected except for the slow inactiva-
tion time constant of ICaL in PMI cardiomyocytes in 
which it was significantly greater. Potentials for 
half inactivation (V0.5) and slope factors of availa-
bility curves were not significantly different. Under 
control condition, isoproterenol (ISO, 1 μmol/L) 
increased ICaL by about 100% in the three popula-
tions of cardiomyocytes together with a ~5 mV 
leftward shift of V0.5 (Table 1). In each case, a 
small but significant increase in the fast inactiva-
tion time constant of ICaL was observed. 

Intracellular perfusion of cardiomyocytes from  
young (N=8), sham (N=7) and PMI (N=9) hearts 
with 10 μmol/L GIG (the wild-type peptide) had no 
effect on basal ICaL nor on its response to 1 μmol/L 
isoproterenol (data not shown). However, when 
cardiomyocytes were intracellularly perfused with 
10 μmol/L GTG, basal ICaL was significantly in-
creased in the three cell populations (Table 1). 
Nevertheless, it is to note that while in young car-
diomyocytes basal ICaL was increased by ~81% 
(compare with 18), in sham and PMI cardiomyo-
cytes ICaL was increased by 52% and 32% respec-
tively (Table 1). As previously reported18 the  fast 
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inactivation time constant of ICaL in young cardio-
myocytes was slightly increased; however, there 
were no significant effects of GTG on the inactiva-
tion time course of ICaL of sham and PMI cardi-
oyocytes.  In agreement with our previous re-
sults18,  ISO (1 μmol/L) barely (~ 11%) increased 
ICaL in cardiomyocytes from young hearts (Table 
1). 

However, in sham and PMI cardiomyocytes 
ISO was able to increase ICaL by ~33% and 78% 
respectively (Table 1). Figure 1 summarizes these 
results. In these cells, the behaviour of ICaL inacti-
vation time course under β-adrenergic stimulation 
was not different from control cells. 
Full washout of ISO effects on ICaL usually re-
quired 4 to 5 min regardless of cardiomyocytes 
condition, i.e. whether they come from young, 
sham or PMI hearts. The same was true for GTG 
(intracellularly) -perfused cardiomyocytes fromy-
oung and sham hearts. However, in PMI cardio-
myocytes intracellularly perfused with GTG, more 
than 10 min were needed for a full washout of ISO 
effects on ICaL. Figure 2 illustrates an example of 
ISO effects and recovery in two PMI cardiomyo-
cytes, one in control condition and the other in-
tracellularly perfused with GTG. 
 
DISCUSSION 
 

The present study confirms and extends our 
previous results18 on the role of ahnak-1 C1-
terminus in β-adrenergic regulation of cardiac L-
type Ca2+ channels and suggest that cardiac 
remodelling after infarction could modify this 
modulator role of ahnak-1 on the Cav 1.2 channel. 

Ahnak-1 C-terminus interacts with the β2-
subunit of the cardiac Cav 1.2 Ca2+ channel via 
multipoint attachment sites.16 The roles of some of 
these sites in the modulation of Cav 1.2 Ca2+ 
channel have been demonstrated. We have 
shown that targeting the high affinity interaction 
sites located in the ahnak-1 C2-terminus (aa 5535-
5890) increased ICaL amplitude and slowed down 
its inactivation time course.17,19 Our group also 
demonstrated that the ahnak-1 C1-terminus (aa 
4889-5535) contains several amino acid se-
quences able to modulate ICaL inactivation.20 In-
terestingly, the genetic variant of a short amino 
acid sequence in the C1-terminus (I5483T) is able 
to mimic the β-adrenergic response of ICaL. Cardi-
omyocytes from young rat hearts intracellularly 
perfused with the peptide fragment correspond-
ing to this polymorphism (GTG) show an in-
creased ICaL density that was barely further in-
creased by the well-known β-adrenergic agonist 
isoproterenol.18 The increase in ICaL by the intra-

cellular GTG fragment was not affected by acetyl-
choline clearly indicating that it had no action on 
the β-adrenergic intracellular signalling cascade. 
The present results confirm these previous find-
ings of the GTG action in cardiomyocytes from 
young rat hearts: in GTG-perfused cardiomyo-
cytes basal ICaL density was increased by ~ 81% 
with respect to control cells and ISO was hardly 
effective (~ 11%) in increasing further ICaL.  

A different picture emerged in the experiments 
using cardiomyocytes from sham and PMI rat 
hearts. Both sham and PMI cardiomyocytes 
showed, under control conditions, ICaL densities 
that were significantly greater than ICaL from 
young cardiomyocytes a fact that is indicative of 
the myocardial remodelling that occurs with age 
and especially after ischemia.7,22 Interestingly, the 
response of ICaL to β-adrenergic stimulation of 
these cardiomyocytes was not changed. Howev-
er, the response of ICaL to intracellular GTG in 
sham and PMI cardiomyocytes was different from 
young cardiomyocytes. In sham and PMI cardio-
myocytes basal ICaL was increased by intracellular 
GTG by 51% and 32%, respectively. More “strik-
ingly”, ISO was able to further increase ICaL by 
33% and 78% in sham and PMI cardiomyocytes, 
respectively in clear contrast to the almost lack of 
effect of β-adrenergic stimulation in young cardi-
omyocytes in the presence of GTG. One possible 
explanation for this finding is that remodelling 
affects the interaction between ahnak-1 and the 
β2-subunit of the Cav 1.2 Ca2+ channel. It has 
been shown that ahnak-1 is mainly expressed in 
the sarcolemma including the transverse tubular 
system.15,16 The Cav 1.2 Ca2+ channel complex is 
mainly localized in the T-system.3 Partial loss of 
the T-system, T-tubule disorganization and altera-
tions in the crosstalk between Cav 1.2 Ca2+ chan-
nels and ryanodine receptors of the sarcoplasmic 
reticulum due to T-tubule remodelling have been 
reported in failing hearts.23-25,27,28 It is then con-
ceivable that in failing hearts (such as PMI hearts) 
interaction of ahnak-1 with the β subunit of the Cav 
1.2 channel is modified thus accounting for the 
differential results we found in young, sham and 
PMI cardiomyocytes in which a lower effect of 
GTG on basal ICaL (PMI cardiomyocytes) corre-
sponds to a higher response of ICaL to β-
adrenergic stimulation (see Figure 1). It is to note 
here that GTG-perfused PMI cardiomyocytes also 
showed longer washout times of ISO effect. How-
ever, at this moment, the precise mechanism of 
how T-tubule remodelling could affect ahnak-1 
interaction with the β subunit of the Cav 1.2 Ca2+ 
channel remains to be elucidated. This proposal 
does not exclude other speculative explanations 
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such as “internalization” of ahnak-1 during ische-
mia (Morano et al., unpublished results) and/or re-
expression of species-specific isoforms of β sub-
units (and/or α1C subunit) that could occur upon 
myocardial remodelling thus modifying the  inter-
actions  with  ahnak-1. 

Taken together, our data highlight the im-
portance of ahnak-1 for cardiac Ca2+ channel 
function. Although it is still difficult to extrapolate 
the present findings to the clinical setting, we 
should emphasize two important things demon-
strated by our results. First, disruption of ahnak-1 - 
Ca2+ channel interaction (by the intracellularly-
perfused ahnak-1 fragments) results in an in-
crease in Ca2+ current and a slowing down of its 
inactivation, i.e. a “gain of function”. Second, the 
action of these peptides mimics the situation in 
remodelled hearts in which the interaction be-
tween the two molecular partners (ahnak-1 and  
Ca2+ channels) is disrupted due to remodelling of 
the T-tubular system.23-25 The resulting “gain of 
function” causes a delayed cardiomyocyte re-
polarization (long QT) and, more important, intra-
cellular Ca2+ overload, two factors that increase 
the risk of arrhythmias. That lethal arrhythmias 
could occur by a slower Ca2+ channel inactivation 
has recently been shown for Timothy’s syn-
drome29. Besides contributing to a better under-
standing of the extremely complex process of 
ventricular remodelling after ischemia (an im-
portant clinical condition), our study identifies new 
players (and potential new therapeutic targets) 
contributing to the ultimate cause of ventricular 
remodelling, the intracellular Ca2+ overload. 
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