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ABSTRACT
Nanocomposites of diphenylalanine (FF) and carbon based materials provide an opportunity to 
overcome drawbacks associated with using FF micro- and nanostructures in nanobiotechnology 
applications, in particular their poor structural stability in liquid solutions. In this study, 
FF/graphene oxide (GO) composites were found to self-assemble into layered micro- and 
nanostructures, which exhibited improved thermal and aqueous stability. Dependent on the FF/
GO ratio, the solubility of these structures was reduced to 35.65% after 30 min as compared to 
92.4% for pure FF samples. Such functional nanocomposites may extend the use of FF structures 
to e.g. biosensing, electrochemical, electromechanical or electronic applications.

1.  Introduction

The combination of materials into nanocomposites 
provides unique design possibilities, potentially leading 
to, for example, high performance biomimetic materi-
als comprising biopolymers and nanomaterials at the 
nanometer scale [1, 2]. Whereas carbon based nano-
materials such as carbon nanotubes (CNTs) can modify 
mechanical, thermal, and electrical properties [3–5] of 
a nanocomposite [6, 7], the biocompatibility and bio-
degradability of biopolymers can unlock biomedical 
applications for e.g. tissue engineering [8].

Due to their ability to hierarchically self-assemble 
from functional molecular units into micro- and 
nanostructures, peptides are ideal candidates for 

nanoarchitectonics-based material design [9, 10]. Tuning 
the preparation conditions allows tailored self-organized 
formations such as fibers, rods, tubes, ribbons, and crys-
tals to be obtained [11–13]. In particular, bioinspired 
peptide nanostructures such as diphenylalanine (FF) 
micro- and nanotubes have been actively researched 
for nanotechnology and biomedical applications [14–
17]. FF nanotubes are known for their high mechan-
ical strength, piezoelectric properties, and excellent 
functionalization capabilities, making them attractive 
materials for biosensing, tissue engineering, and energy 
harvesting applications [14–16, 18]. The instability of FF 
nanotubes in solution is a major limitation to realizing 
FF nanotube-based biosensors or drug delivery systems 
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[19, 20] and routes to overcome this barrier that main-
tain their properties are required.

Carbon based nanomaterials such as CNTs, graphene, 
and graphene oxide (GO) have been widely used in 
nanocomposites because of their nanoscale dimensions 
and their respective mechanical, electrical, and chemi-
cal functionalization properties [3–6, 21], and in some 
cases have been combined with peptides. Montenegro 
et al. [22] reported improved stability in aqueous solu-
tion and electrical conductivity of a dual composite of 
single walled CNTs and self-assembling cyclic peptide 
nanotubes and Yuan et al. [23] developed a nanocom-
posite of multi-walled CNTs covered by FF peptides, 
which was subsequently used to coat an electrode for 
high-sensitivity ethanol biosensing. Additionally, Chen 
et al. [24] reported the functionalization of CNTs by 
aromatic molecules as a template for the immobilization 
of biological molecules. Furthermore, layered compos-
ite structures of electrostatically interacting amyloid 
fibers and graphene have been shown to have a tunable 
shape memory effect attributed to the increased elastic 
strength provided by the reinforcing amyloid fibers [25]. 
With regards to GO, it has previously been combined 
with piezoelectric materials ZnO and poly(vinylidene 
fluoride) to produce piezoelectric composite materials 
with increased functionality [26, 27] and has been used 
in applications requiring a high degree of biocompati-
bility, such as intracellular probing of living cells [28], 
DNA biosensing [29], glucose biosensing [30], and drug 
delivery [31]. Notably, Han et al. [32] fabricated reduced 
graphene oxide-coated peptide nanowires via self- 
assembly. Given the abilities of GO to form piezoelectric 
composites and to function in biological applications, it 
is a promising material for carbon-based/FF nanotube 
composites.

In this work, layered FF/GO nanocomposite mate-
rials were investigated to establish whether the main 
limitation associated with FF micro- and nanotubes, 
i.e. their relatively poor stability in solution, could be 
overcome. Additionally, the morphological, structural, 
and thermal modifications resulting from the addition of 
GO were characterized using scanning electron micros-
copy (SEM), atomic force microscopy (AFM), Raman 
spectroscopy, and thermogravimetric analysis (TGA). 
In this study, the possibility of improving the aqueous 
stability of FF micro- and nanotubes through addition 
of GO was examined using in situ optical microscopy 
of FF and composite FF/GO structures when immersed 
in water.

2.  Materials and methods

2.1.  Sample preparation

Solutions of GO with platelet thickness 0.7–1.2  nm 
(Cheap Tubes, USA) and DI water with concentra-
tions of 2 mg ml−1, 0.2 mg ml−1, and 0.02 mg ml−1 were 

prepared by serial dilution. A stock FF solution of 
100 mg ml−1 FF (Bachem, UK) in hexafluoroisopropanol 
(Sigma Aldrich, Ireland) was then diluted to 2 mg ml−1 
with each of the GO/DI water solutions to give solu-
tions containing GO:FF concentrations of 1:100, 1:10, 
1:2, and 1:1 (Table 1). Solutions consisting solely of FF 
(2 mg ml−1) and GO (2 mg ml−1) were also prepared. For 
Raman, TGA, and stability investigations, samples were 
prepared by depositing 30 μl of each solution onto glass 
coverslips and drying under ambient conditions (21°C, 
humidity ~ 30%) for 24 h. For AFM measurements, 10 
μl was deposited onto glass cover slips prior to drying 
under the same conditions.

2.2.  Sample characterization

SEM: Samples were imaged using a Hitachi S-4300 
(Japan) field emission scanning electron microscope.

AFM: AFM measurements were performed in con-
tact mode using an atomic force microscope (MFP-3D 
Asylum Research, USA) and cantilevers (MikroMasch, 
HQ:DPE-XSC11 lever C, Bulgaria) with a nominal 
spring constant of 7 N m−1.

Raman spectroscopy: Raman spectra were collected 
at room temperature using a Raman micro-spectrometer 
based on an inverted microscope (Olympus, Japan) as 
outlined in previous reports [33–37]. A green Ar-ion 
laser light source at a wavelength of 532 nm was used as 
the excitation wavelength. Signals were collected using 
backscattering geometry onto an electron multiplying 
charge coupled device via a monochromator. The reso-
lution of the spectrometer was 0.5 cm−1. The diameter of 
the beam spot was ∼15 μm and the power was less than 
3 mW in order to avoid sample degeneration caused by 
laser heating. The Raman spectrum acquisition time set 
to 100 s using Andor SOLIS software (http://www.andor.
com/scientific-software).

TGA: TGA was carried out using a TA Instruments 
Q500 (USA) series at a ramp rate of 10°C from 25°C up 
to 800°C under an air flow of 100 ml min−1.

Aqueous stability study: Each sample was solvated 
with DI water to study aqueous stability. The samples 
were imaged at the same location at time intervals of 
60 s over 35 min using an optical microscope (Nikon, 
Japan). The microscope illumination was switched off 
between each image acquisition to minimize thermal 
effects.

Table 1. Ratios and weights of solutions used for sample 
preparation.

Sample name

Ratio

Weight FF [mg] Weight GO [mg]FF GO
100:1 100 1 4 0.04
10:1 10 1 4 0.4
2:1 2 1 4 2
FF 100 0 4 0
GO 0 100 0 4

http://www.andor.com/scientific-software
http://www.andor.com/scientific-software
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The optical images were analyzed using ImageJ image 
processing and analysis software [38]. The images were 
converted to binary images using an automatic thresh-
old level based on iterative intermeans. This algorithm 
divides the image into object and background by tak-
ing an initial threshold and computes the averages of 
the pixels at or below the threshold. Subsequently, the 
threshold is incremented and the process is repeated 
until the threshold is larger than the average of all pix-
els [39]. The histogram of the distribution of gray values 
in the resulting binary image, indicates the number of 
white and black points, where white points correspond 
to the amount of visible substrate surface and black to 
the area covered by tubes. By assessing the coverage prior 
to immersing in water it was possible to estimate the 

percentage loss in coverage, relating to the amount of 
tubes which are dissolved.

3.  Results and discussion

3.1.  Morphology

To investigate the formation of FF:GO nanocompos-
ites and to assess their size and shapes, the prepared 
samples have been imaged using SEM (Figure 1) and 
AFM (Figure 2). FF in the absence of GO forms a typical 
network of micro- and nanotubes of varying diameter 
(2–15 μm) and length (Figure 1(a)). Addition of GO to 
the sample solution appears to impact the morphology 
of structures; however, self-assembly into tubes persists. 

Figure 1. SEM images of samples (a) FF, (b) 100:1, (c) 10:1 and (d) 2:1.

Figure 2. AFM height images of samples (a) FF, (b) 100:1, (c) 10:1 and (d) 2:1 with three-dimensional illustrations as insets. (e) Cross 
section profiles of samples FF, 100:1, 10:1 and 2:1 extracted as indicated in (a–d) by white dashed lines (x- and y- offsets applied).
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and 1033 cm−1 bands are reduced compared to those 
detected for FF and the amide I band at 1688 cm−1 asso-
ciated with CO stretching [48] is absent. For 10:1 there 
are further notable changes to the Raman spectra. The 
aromatic band at 1205 cm−1 associated with CH in-plane 
bending of the aromatic ring [49] is also absent. The 
amide III bands at 1290 cm−1 (relating to CN stretch and 
NH in-plane bending) are not visible in the spectra for 
either nanocomposite sample. This could be a result of 
the relatively higher intensity of the disorder-induced 
D band of GO, which is in the same frequency range 
[45, 49].

The presence of the respective characteristic Raman 
bands indicate that the corresponding molecules are 
present in the volume of material excited by the laser. 
The disruption to the CH band at 1205 cm−1 indicates the 
possible disruption to the FF structure by the presence 
of GO, by interaction with the aromatic rings. FF mol-
ecules are most likely to interact by hydrogen bonding 
at the NH and not at the CO sites, determined by the 
frequencies of the amide III and amide I bands [47]. The 
shifting of these bands could indicate the disruption of 
the structure of the FF nanotube. Furthermore, the shift 
of the amide bands with addition of GO becomes more 
pronounced with increasing concentration. Previously, 

Tubes on sample 100:1 appear thinner than on FF with 
diameters between 1–5 μm (Figure 1(b)). As depicted in 
Figure 1(c), increasing the amount of GO to 10:1 leads 
to peptide bundles (diameter ~50 μm) as well as smaller 
individual tubes (diameter ~ tens of nm). On sample 
2:1, a GO layer is covering the peptide tubes and the 
substrate (Figure 1(d)). The diameters of the tubes vary 
significantly, ranging from 500 nm to 20 μm.

In order to further investigate the morphology 
of single tubes and explore the role of GO, AFM was 
employed. Apart from the size of the tubes, also the 
shape changes with increasing GO content (Figure 2). 
As visible in AFM height images (Figure 2(a)–(d)) and 
corresponding cross section profiles (Figure 2(d)), the FF 
tube exhibits a flat surface and pronounced edges, con-
sistent with other reports [18]; however, with increasing 
GO content, the shape changes and becomes increas-
ingly round. Furthermore, GO aggregates are observed 
on the substrate of sample 10:1 and, more pronounced, 
on sample 2:1, whereas the substrates of the FF and 100:1 
sample do not exhibit such deposition. These observa-
tions indicate that GO is predominately located on the 
tube surface, as reported elsewhere [32], with the degree 
of coating depending on the GO content. As the basal 
plane of GO is reported to be more hydrophobic than 
the hydrophilic edges [40], noncovalent assembly of 
peptides with hydrophobic and aromatic residues are 
expected [32, 41–44]. Han et al. [32] reported that pep-
tide nanotube core reduced graphene oxide shell nanow-
ire assembly occurred only when the peptide nanotubes 
and reduced graphene oxide sheets had opposite charge, 
suggesting a dominant role of electrostatics in the for-
mation of those structures.

3.2.  Molecular interactions

FF/GO nanocomposites have been characterized by 
Raman spectroscopy to establish whether the molecu-
lar structure of the FF tubes has been altered with the 
addition of GO. Figure 3(a) shows the Raman spec-
tra for native phase FF tubes, GO only and FF/GO 
nanocomposites.

Graphitic materials exhibit a highly dispersive band 
in the 1200–1400 cm−1 region, known as the disorder- 
induced D band and the graphitic mode (G) band at 
higher frequencies (~1590 cm−1), due to the stretching 
of sp2 atoms in the rings and chains [45, 46]. The sam-
ple containing only GO exhibits two distinct bands at 
1350 and 1597 cm−1, in agreement with the literature. 
The major Raman peaks associated with FF tubes are 
also exhibited in the FF only spectrum. The bands at 
1002 and 1033 cm−1, 1184 and 1205 cm−1, and 1583 and 
1603 cm−1 correspond to aromatic vibrations. Amide III 
(CN) bands are at 1249 and 1287 cm−1 and the amide I 
band (CO) appears at 1687 cm−1 [47].

The spectrum captured on composite samples exhib-
its FF and GO modes. For 100:1 tubes, the aromatic 1002 

Figure 3. (a) Raman spectra of FF, GO and composite samples 
100:1 and 10:1. (b) TGA thermogram of FF, GO, and samples 
100:1, 10:1 and 2:1.
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can be observed at 169.4°C in agreement with an initial 
release of phenylalanine from FF tubes reported in the 
literature [54]. There is a rapid loss in weight between 
223.3°C and 310.5°C, from –11.9% to –70.7%, and the 
thermal decomposition appears to be complete with 
95.8% loss at ~ 652.4°C.

The thermal behavior changes upon addition of GO 
to the FF structure. Sample 100:1 exhibits a slower deg-
radation, with an onset at 185.0°C and two step-wise 
weight loss events commonly observed for nanocompos-
ite materials [55]. The major weight loss event is compa-
rable to the native FF tubes, occurring at 235.4°C, and 
the final weight loss was observed at –59.2%. The sample 
prepared with a ratio of 10:1 displays a similar degrada-
tion profile with less overall weight loss. Thermal decom-
position is complete at 255°C, with a final loss 52% of at 
800°C. Sample 2:1 adopts a similar profile to the native 
GO thermogram and displays a gradual loss of moisture 
between 10.0 and 178.9°C. Thermal degradation is com-
plete at 597°C with an overall weight loss of –40.9%. The 
GO thermogram displays the characteristic behavior for 
GO, exhibiting loss of a large amount of H2O molecules 
and oxygen-functional groups from the basal plane, 
with an overall weight loss of 17% up to 800°C [56]. In 

it was demonstrated that wrapping of collagen struc-
tures with CNTs shifts the vibrational characteristics of 
the sample, which causes shifts in the spectra [50–52]. 
Therefore, these results indicate molecular interactions 
between the FF and GO components; however, loca-
tion and level of the interaction between the FF and GO 
remain to be determined.

During Raman measurements, local light induced 
bleaching behavior was observed for sample 2:1, a phe-
nomenon associated with sample damage which is not 
observed for GO or FF in their native states as both are 
thermally stable structures. Therefore, combining GO 
and FF appears to lead to significant changes to the ther-
mal properties of composite FF/GO structures.

3.3.  Thermal stability

The alteration of thermal properties in FF/GO com-
posites as observed during Raman spectroscopy was 
further investigated using TGA. The thermogram for 
native FF tubes (Figure 3(b)) shows an initial weight 
decrease (~11.9%) over a temperature range of 10.0–
49.4°C, which is likely to result from initial evaporation 
of water molecules [53]. A major decrease in weight 

Figure 4. Optical images showing aqueous stability of FF/GO nanocomposites after 0 min, 5 min, and 30 min for (a) FF, (b) 100:1,  
(c) 10:1, and (d) 2:1 samples.
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with broad nanotechnology applications such as energy 
storage and photovoltaics [57–60].
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