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SOLUTION OF OPTIMIZATION PROBLEMS  
WITH FRACTIONAL-LINEAR OBJECTIVE  
FUNCTIONS AND ADDITIONAL LINEAR CONSTRAINTS  
ON PERMUTATIONS 
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The statement of a problem of Euclidean combinatorial optimization with a fractional-linear 
objective function on a common set of permutations and with additional linear constraints is 
formulated. A problem with a fractional-linear objective function is transformed into that with a 
linear objective function. An approach is proposed to the solution of such problems, and a method 
of combinatorial truncation of solutions of problems of combinatorial type with fractional-linear 
objective functions on permutations is developed. 
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STATEMENT OF THE PROBLEM 

Let it be required to determine a pair <F( **),tt )> such that 
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under a condition 
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and additional linear constraints 
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where Jr = {1, 2,…, r}, m
mkk Rtttttt ∈= + )...,,,...,,,( 121 , xj = tj ∀ j ∈ Jk, m, k, n, and r are natural numbers, 

ij
α , bi, 

cj, dj, c0, and d0 are real numbers ∀j∈Jm, ∀i∈Jr, )(GE nk  is the total set of permutations [1], km ≥ , and G is a 

multiset consisting of k real numbers g1, g2, ... , gk [1] arranged in nondecreasing order. We call ( )*tF  the extremum 

and t* the extremal of the problem. Assume that the condition 0
1
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> 0 is satisfied for any point t = 

 (t1,…, tm) that belongs to the domain of problem (1)–(3). 
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To solve problem (1)–(3), we pass to a problem with a linear objective function and additional linear 
constraints by using the mappings ϕ  
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We denote zt =)(ϕ , ),...,,( 21 mtttt = , )  ,...,,( 10 mzzyz = , and ϕ ( )(GE nk ) = E′ , zj = yj ∀ j∈ kJ . As a result of 

transformations (4), problem (1)-(3) is reduced to the determination of a pair <Ф ( *z  ), *z > such that we have  
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under a condition 
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and additional linear constraints 

 ∑
=

∈∀≤−
m

j
rijij Jiybz

1
0 ,    0α  (7) 

where ,),...,,,...,,( 1
110

+
+ ∈= m

mkk Rzzzzyz  .  
kjj

Jjzy ∈∀=  

METHODS AND ALGORITHMS OF SOLVING PROBLEMS WITH FRACTIONAL-LINEAR OBJECTIVE 
FUNCTIONS ON PERMUTATIONS 

In [2, 3], truncation methods are described for problems of Euclidean combinatorial optimization with linear 
objective functions and additional linear constraints on combinatorial sets E (permutable and polypermutable sets, sets 
of arrangements and polyarrangements, etc.) with the property 

 E = vert conv E .  (8) 
 

For a problem of the form (5)–(7), this property is also true, i.e., we have  

 E′= vert conv E′  = vert )(GQ
kn
′ , (9) 

where the polyhedron ( )GQkn
'  is the convex envelope E′conv  of the set E′ . This convex envelope is obtained in [4] 

as the solution of the system of linear constraints 
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y0 > 0,  yj ≥ 0 ∀ j ∈Jk, kitjkj JiJtjtjJ ∈∀∈∀≠∀≠∈   ,,  ,    , ααα . 

We call the i-th union of system (10) the totality of inequalities (10) in which i has the same value. Thus, to solve 
problem (1)–(3), its form (5)–(7) can be used for which it makes sense to use the combinatorial truncation method [2, 3]. 



 331

A program realization of combinatorial truncation methods for problems with linear objective functions and 
results of numerical experiments are described in [5]. Based on the analysis of data obtained as a result of 
investigations pursued, the algorithms constructed on the basis of these methods [2, 3] can lead to the accumulation of 
a large amount of truncation constraints. Therefore, in the truncation method proposed to solve partially combinatorial 
problems with homographic objective functions on a common set of permutations, the method of truncation of 
insignificant constraints is used together with the method of sequential addition of constraints (MSAC) [1]. The former 
method decreases the dimension of the problem being solved at each step, and the latter substantially influences the 
number of constraints in the initial system in solving auxiliary problems of linear programming. 

The truncation method for a partially combinatorial problem with a homographic objective function on a set of 
permutations is described below. 

1. Pass from problem (1)–(3) with fractional-linear objective function to the problem with linear objective function 
(5)–(7) with the help of transformations (4). 

2. Relax problem (5)–(7), namely, replace condition (6) by the condition 

 E y yyy k ′∈= conv),...,,( 10 ,  (11) 

where conv E′  is specified by system (10). 
3. Write problem (5), (7), (11) by the MSAC in the following form: determine the pair 
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for τ = 0, where 1
10 ,,, +∈= m

m Rzzyz )( τττ K , 
kjj

Jjzy ∈∀=  ττ , and a domain 1
0

+⊂ mRD  is specified by the 

system S that contains constraints (7) and (10); when τ = 1, we form a system S1 of linear constraints (S1 ⊂ S) that 
contains a substantially smaller number of constraints than S and specifies a domain D1 such that D1 ⊃ D0. The system 
S1 includes constraints (7) and also, for example, the following constraints taken from system (10): 
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We note that the arbitrariness in choosing the system S1 allows one to form it in each specific case so that the 
solution of its auxiliary problem be closest to the solution of the initial one. As is obvious, the number of variables in 
the left sides of some constraints of the system of constraints (10) varies from one to k. We add to the system S1 the 
inequalities of the first and (k-1)th unions of (10) and two equalities, one of which is formed by inequalities of the 
zeroth and kth unions and the other equality is given in (10); moreover, additional linear constraints (7) are also added. 

4. Solve linear programming problem (LPP) (12) on the domain Dτ for the current value of the index τ (τ ≥ 1) by 
the simplex method (modified or dual). 

5. We determine a point ),...,,(
10

ττττ
k

yyyy =  with the help of the obtained point ),...,,...,,(
10

τττττ
mk

zzzyz = , 

where 
kjj

Jjzy ∈∀=  ττ , and check the satisfaction of all the constraints of system (10) in it, i.e., the satisfaction of 

the condition 0Dy ∈τ . If the point satisfies all the constraints, then go to item 8. 
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6. Form the system Sτ+1 by addition of the inequality of system (10) that is not true at the point τy  to the system of 
constraints Sτ. 

7. Increase τ by unity: replace the domain Dτ described by the system Sτ by the domain Dτ+1: Sτ+1, Dτ ⊃Dτ+1, and go 
to item 4. 

8. Check whether the solution ),...,,( 10
ττττ
kyyyy =  satisfies condition (6). If the result is positive, then problem (5)–

(7) is solved (problem (1)–(3) is also solved); STOP. Otherwise, go to item 9. 
9. Find the nodes adjacent to ),...,,...,,( 10

τττττ
mk zzzyz =  for the polyhedron described by the system Sτ . 

10. Determine the half-space whose boundary passes through these nodes adjacent to τz  and such that the point τz  
does not belong to it, i.e., we construct the truncation that does not contain the found point in the form of the linear inequality 
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11. Form the system Sτ+1 that describes the domain Dτ +1 by adding truncation (14) to the system Sτ . 
12. Increase τ by unity. 
13. Check the constraints of the system Sτ and find inactive constraints that can be truncated. 
14. Form the system Sτ+1 by truncating inactive constraints from Sτ; go to item 4. 
To efficiently check the condition of item 5 of the combinatorial truncation method, we will prove the theorem given 

below. 
THEOREM 1. Let we have 1
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Then the satisfaction of the constraint  

 011 )...(... yggyy ii ++≥++   (16) 

that belongs to a union i of inequalities of system (10) implies the satisfaction of all the other constraints of the union і of 
inequalities of this system at the point ),...,,( 10 kyyyy = , where і∈Jk–1. 

Proof. If condition (15) is true, then, for all the inequalities 

 01 )...(...
1

yggyy ia i
++≥++α , (17) 

αj∈Jk ∀j∈Ji  that form the union under an arbitrary number і, the following inequalities are true at the point z : 

 iyyyy
i

++≥++ ...... 11 αα . (18) 

Conditions (16) and (18) imply the fulfillment of condition (17) at the point z, which is what had to be proved. 
Thus, it follows from the theorem that, to check condition (11) by the combinatorial truncation method, it suffices to 

check the satisfaction for (k–1) constraints, i.e., for one constraint from each union of system (10).  
Let us consider the process of finding an adjacent node by the combinatorial truncation method. 
According to the linear programming theory, based on the simplex-table that determines some node *z  of the 

polyhedron of solutions, to obtain a node adjacent to it, one should take a nonbasic variable jz  (in the corresponding linear 

programming problem) whose vector jP  has at least one positive component and choose the tth row of the simplex-table 

from the condition 
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where ijα  are the coefficients of unknowns jz  in a row і and ib  is the free term in the corresponding constraint of linear 

programming problem (5), (7), (10) (see, for example, [6]), add the vector jP  instead of tP to the basis, and, as a result, to 

obtain the simplex-table for some node adjacent to *z . 
We now construct truncations [3]. We denote by J the totality of numbers of nonbasic variables for which we can 

specify relations (19) and by I the set of numbers of basic variables. Based on the latter simplex-table of the LPP, we write 
the constraint determined by a basic variable (by a number i) as follows: 

ijijii bzzz =+++ ++ γγββ αα )(,)1(, ...
1

, 

where i∈I, β = ⎢I ⎢, γ = ⎢J ⎢, I∪J= 1+mJ , β + γ = m+1, Jj ∈τ  γτ J∈∀ .  

Let ),...,,,( ***
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*
mk zzzz K=  be an optimal solution of linear programming problem (5), (7), (10). Let us use the well-

known theorem [2] that assumes the following form in the notations introduced above: if jτ (jτ ∈ J ∀τ ∈ Jγ, γ = ⎜J⎜) are the 
numbers of nonbasic variables in the solution ),...,,,( ***
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mk zzzz K=  of the problem of linear programming (5), (7), (10) 
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is satisfied as the equality by all the nodes of the allowable domain that are adjacent to *z  and the point *z  does not satisfy 
inequality (20). According to this theorem, we construct truncation (14) in the form (20). 

Let us consider the algorithm of the truncation method and its substantiation. 
The algorithm A1 of the described combinatorial truncation method for solution of problem (1)–(3) uses the algorithm 

A2, which realizes the MSAC for an auxiliary problem, and a procedure of truncation of insignificant constraints, which is 
represented in the form of the algorithm A3. 

At the input of the algorithm A1, the following items must be specified: the space dimension m that is determined by the 
number of unknowns in a problem, the number k of elements of the multiset G, the number r of additional constraints, the 
elements of the multiset G, and coefficients of the objective function and constraints (which are introduced or randomly 
generated). At the output of this algorithm, the following items must be specified: a point t* that is the solution of the 

problem being solved, the value F*(t) of the objective function of the problem at this point, and also auxiliary parameters 
that characterize the functioning of the algorithm on the whole, namely, the number q of added constraints, number p of 
truncated constraints, number s of truncations, and operating time T of the algorithm. 

Algorithm A1. We first put s = 0, i.e., assign zero to the integer variable s that specifies the number of truncations in the 
problem being solved. 

Step 1. Specify the parameters for formation of problem data as follows: introduce m, k, r, and the following data for 
problem (1)–(3): 

(1) the multiset G whose elements form the total set of permutations )(GE nk that appear in the problem; 

(2) the coefficients of the objective function cj and dj ∀j∈ 0
mJ  and coefficients of additional constraints ijα and bi 

∀і∈Jr. 
Step 2. Form (specify) the objective function 
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and additional linear constraints 
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m
mkk Rtttttt ∈= + ),...,,...,,,( 121 ,   xj = tj ∀ j∈Jk.  

Step 3. Using the mapping  ϕ  that is specified by relation (4), pass from problem (21), (22) on the set )(GE nk  to the 

linear programming problem with the objective function 
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where τ =1 at this step. 
The constraints 
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and additional linear constraints 
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are added to the system 1S  that determines the domain 1D , where ,),...,,,...,,( 1
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Step 4. Call the algorithm A2 that realizes the MSAC for auxiliary linear programming problems. At the input of the 

algorithm, we have linear programming problem (23) on the domain Dτ . At the output of the algorithm we have (1) the 
solution in the form of a point ),...,,...,,( 10

τττττ
mk zzzyz = , where kjj Jjzy ∈∀=  ττ , from which a point 
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yyyy = is determined; here, the coordinates are arranged in nondecreasing order; (2) the value of the 

parameter q that determines the number of constraints added according to the MSAC; (3) the varying domain Dτ specified by 
the system of constraints Sτ . 

Step 5. Check condition (6) for the point ),...,,(
1

0
τ
α
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k
yyyy = . If condition (6) is true, then problem (5)–(7) is 

solved and initial problem (1)–(3), where )()( **** tFz =Φ , is also solved. The transformation *
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z
t j

j = , tj = xj kJj∈∀ , 

is performed that determines the solution of problem (1)–(3). The algorithm comes to an end. 
Step 6. Increase s by unity. 
Step 7. Find the nodes of the polyhedron Dτ specified by the system Sτ  that are adjacent to the node τz . 

Step 8. Determine truncation inequalities (20) for the point τz  in the form 
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where the quantity 
τ

j
Θ  is specified by relations of the form (19). 
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Step 9. Form the system Sτ+1 that specifies the domain Dτ+1 as follows: add inequality (26) to the system Sτ . Increase 
τ by unity (replace Dτ+1 by Dτ ). 

Step 10. Call the algorithm A3 that realizes the procedure of truncation of constraints. At the input of the algorithm, we 
have (1) the current system of constraints Sτ that specifies the domain of allowable solutions Dτ of problem (23); (2) the 

solution of the problem at different stages in the form of a point, namely, 1−τz  is the solution at the (τ – 1)th step of the 

algorithm or iz~  is the solution obtained after addition of the constraint with a number i. At the output of the algorithm, we 
have the system of constraints Sτ. 

Step 11. Go to step 4 of the algorithm. 
Algorithm A2. The method of sequential addition of constraints is used. At the input of the algorithm, the following items 

are specified: linear programming problem (23) that is specified on the domain Dτ  by the system Sτ , and the integer variable q 

= 0 that specifies the number of added constraints at the output. At the output of the algorithm, we have the solution in the form 

of a point ),...,,...,,( 10
τττττ
mk zzzyz =  and a new system of constraints Sτ that specifies a new domain τD . 

Step 1. Solve linear programming problem (23) on the domain τD  (for τ ≥ 1) by the (modified or dual) simplex-

method, where τ
τ Dz ∈  is the sought-for solution. 

Step 2. Form the point ),...,,(
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Step 3. At the point )( τ
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yyyy ,...,,~
10= , check the fulfillment of (k – 3) constraints of system (10) (by 

Theorem 1, one constraint is taken from each union). If all the constraints are satisfied at this point, then come to an end or, 
otherwise, go to the next step. 

Step 4. Increase q by unity. 
Step 5. Form the system Sτ+1 that specifies the domain Dτ+1, where Dτ ⊃ Dτ+1. To this end, add one inequality that 

belongs to system (10) and is not true at the point )( τ
α

τ
α
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to system (24), where y0 >0, yj ≥ 0 ∀ j ∈Jk, kitjkj JiJtjtjJ ∈∀∈∀≠∀≠∈   ,,  ,    , ααα . 

Step 6. Increase τ by unity, i.e., replace Dτ+1 by Dτ (Sτ+1 by Sτ ) and go to step 1. 
Note that the domain Dτ always contains the constraints of systems (24) and (25) and an inequality of the form (27) that 

is not true at the point that is the solution at the previous step of the algorithm A2. 
Algorithm A3. The procedure of truncation of inactive constraints is realized. 
At the input of the algorithm, we have (1) a system of constraints Sτ that specify the domain Dτ ; (2) the solution of the 

problem at different steps of the algorithm, namely, the last solution τz  and the solution iz  that is obtained after addition of 
the constraint with a number (i – 1).  

At the output of the algorithm, we have a modified system of constraints Sτ that specifies the domain Dτ in which 
inactive constraints are absent according to the conditions of the algorithm A3. 

After starting the algorithm, the integer variable that specifies the number of truncated constraints is initially equal to 
zero, p = 0. The variables q and s declared in the algorithms A1 and A2 determine, respectively, the number of the 
constraints added and the number of the truncations made. 
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Step 1. Compute ω = q + s. 
Step 2. Check the condition 
 ( ) δ>+1)( qi zp  ωJi∈∀   (28) 

for all the constraints of the system Sτ  that are added to the initial system S1. If the condition is not fulfilled for any 
constraint that is added earlier, then come to an end. Otherwise, go to the next step. 

Step 3. Form the set D of the indices of the constraints for which condition (28) is true. 
Step 4. For all the constraints whose numbers belong to the set D, check the condition 
 ( ) ( ) ( )iii zpzFzF ~~ +′≥′ τ  ωJi∈∀ .  (29) 

If the condition is true for at least one constraint whose number belongs to the set D, then go to the next step or, 
otherwise, set p = 0 and come to an end. 

Step 5. Eliminate the indices from the set D that specify the constraints for which condition (29) is not true. 
Step 6. Form the system of constraints Sτ that contains no constraints whose indices do not belong to the set D. 
Step 7. Determine the number s of elements of the set D. STOP. 
We note that the parameter δ > 0 is used in the proposed algorithm A3, and the number of the truncated constraints 

depends on the value of this parameter. The experience of solution of examples of using a similar procedure [7, 8] shows that 
δ should be chosen over the range 10

–3
÷ 10

–2
. As is noted in [7, 8], the increase in δ leads to the accumulation of many 

constraints at every step of the algorithm. The decrease in the quantity δ can actually lead to the preservation of only active 
constraints, which also slows down the functioning of the algorithm. 

The algorithm A1 is general in the sense that it can be used for solution of partially combinatorial and completely 
combinatorial problems and also for conditional and unconditional optimization problems with homographic objective 
functions. Based on the algorithm A1, algorithms were constructed, their program realizations were developed, and numerical 
experiments were performed with an unconditional problem with a homographic objective function, with a completely 
combinatorial problem with additional linear constraints, and with problems of various kinds with linear objective functions 
and additional linear constraints. All the algorithms are realized in the Pascal language in the Delphi environment. 

NUMERICAL EXPERIMENTS AND EXAMPLES OF THE TRUNCATION METHOD 

Numerical experiments were performed to estimate the efficiency of the algorithms constructed on the basis of the 
described truncation method. The computations were performed on a PC with a Pentium II processor whose clock 
frequency equaled 233 MHZ. 

The numerical experiments were performed for problems of Euclidean combinatorial optimization on permutations with 
homographic objective functions, namely, (1) for an unconditional optimization problem; (2) for a completely combinatorial 
problem with additional linear constraints; (3) for partially combinatorial problems with additional linear constraints. 

To perform numerical experiments, elements of the multiset G that determine the total set of permutations )(GE nk  

were chosen as uniformly distributed random numbers on the intervals [1; 1000]: [1; 200], [1; 100], [1; 50], and [1; 10]. In 
the same manner, the coefficients of the objective function and additional constraints were chosen. In the numerical 
experiments, the number of elements of the multiset G varied from 10 to 23. In Tables 1-3, the following notations are used: 
m is the dimension of the space in which the problem is considered (for partially combinatorial problems), G is the multiset 
that specifies the total set of permutations )(GE nk , k is the number of elements in the multiset G, n is the number of 

different elements in the multiset G, b is an interval from which the elements of the multiset G are chosen, F is the objective 
function of the problem being solved, r is the number of additional constraints of the problem, q is the number of constraints 
added according to the MSAC, p is the number of constraints truncated according to the method of truncation of inactive 
constraints, s is the number of truncations, x* is the point (extremal) at which an extremum is reached, F(x*) is the value of 
the objective function at the point х* (extremum), T is the computation time, δ is the parameter with the help of which a 
truncated constraint is determined, and d is the number of constraints in the system at the moment of calling the procedure 
of truncation of inactive constraints. 
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T A B L E  1  

Results of Numerical Experiments for Completely Combinatorial Problems  
with the Parameters Enumerated 

Experiment 
Number 

k n b r q p s d δ T 

1 10 7 [1;10] 6 7 0 0 42 0.001 46 sec. 
2 10 10 [1;10] 1 37 32 1 46 0.01 3 min 59 sec 
3 10 9 [1;100] 2 35 16 1 46 0.001 3 min 55 sec 
4 11 8 [1;1000] 1 29 14 3 46 0.01 3 min 29 sec 
5 12 10 [1;50] 11 17 0 7 46 0.001 1 min 8 sec 
6 12 8 [1;10] 2 24 14 2 46 0.01 5 min 23 sec 
7 12 8 [1;100] 7 6 0 5 46 0.001 50 sec 
8 13 8 [1;1000] 3 12 0 3 46 0.01 1 min 34 sec 
9 13 12 [1;100] 3 31 11 3 46 0.01 5 min 23 sec 
10 14 6 [1;10] 8 22 0 9 46 0.001 3 min 24 sec 
11 14 13 [1;50] 2 47 19 2 42 0.01 7 min 39 sec 
12 15 9 [1;100] 3 170 167 13 42 0.001 22 min 20 sec 
13 15 9 [1;10] 2 137 136 11 46 0.001 16 min 31 sec 
14 16 8 [1;50] 6 4 3 1 46 0.001 50 sec 
15 17 11 [1;1000] 12 31 17 11 46 0.001 7 min 11 sec 
16 17 10 [1;50] 2 184 184 13 52 0.01 24 min 49 sec 
17 18 15 [1;50] 1 6 5 13 58 0.01 54 sec 
18 19 6 [1;100] 22 46 38 7 62 0.001 42 min 57 sec 
19 19 12 [1;100] 2 128 127 16 42 0.001 18 min 48 sec 
20 19 15 [1;1000] 4 70 68 15 68 0.01 10 min 08 sec 
21 20 19 [1;100] 2 179 177 18 46 0.01 26 min 08 sec 
22 20 15 [1;50] 37 174 170 12 72 0.01 36 min 46 sec 
23 21 18 [1;100] 1 246 240 16 45 0.001 53 min 47 sec 

 
 

  
Fig. 1 

 
In Table 1, the results of computations are given for completely combinatorial problems with homographic objective 

functions on a set of permutations with additional linear constraints. The elements of the multiset G that form the total set of 
permutations were chosen as uniformly distributed random numbers on one of the intervals [1; 10], [1; 50], [1; 100], and [1; 
1000]. The numerical experiments were performed for the values of the parameter δ equal to 0.1, 0.01, 0.001, 0.0001, and 
0.00001. Note that, for the smallest value of δ = 0.0001, the constraints that must be truncated were practically absent and, 
for the largest value of δ = 0.1, practically all the added constraints were truncated. 
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TABLE 2 

Results of Numerical Experiments for Partially Combinatorial Problems  
with the Parameters Enumerated 

Experiment 
Number 

m k n b  r q p s d δ T 
 1  21 16 8 [1;100] 6 202 200 6 46 0.01 27 min 05 sec 
 2  20 19 7 [1;50] 4 182 178 9 46 0.01 23 min 10 sec 
 3  20 17 10 [1;10] 5 146 140 8 42 0.01 20 min 34 sec 
 4  19 13 11 [1;10] 6 98 94 8 42 0.001 15 min 33 sec 
 5  19 18 15 [1;10] 4 124 120 9 40 0.01 21 min 22 sec 
 6  18 15 10 [1;50] 6 120 116 8 44 0.001 18 min 12 sec 
 7  18 16 11 [1;10] 4 178 170 7 46 0.01 22 min 10 sec 
 8  17 11 10 [1;100] 7 106 102 5 40 0.01 19 min 25 sec 
 9  16 10 10 [1;50] 2 98 87 6 42 0.001 17 min 33 sec 
10  15 11 11 [1;50] 4 9 0 9 40 0.01 1 min 22 sec 
11  14 10 10 [1;10] 2 10 0 8 40 0.01 1 min 20 sec 
12  14 10 10 [1;10] 2 67 62 8 42 0.001 8 min 02 sec 

 
TABLE 3 

Results of Numerical Experiments for a Partially Combinatorial Problem, 
m = 21 and k = 16 

Experiment 
Number 

n b r q p s d δ T 

1 8 [1;10] 6 202 200 6 46 0.01 27 min 05 sec 
2 16 [1;50] 8 198 194 10 42   0.001 26 min 42 sec 
3 12 [1;10] 4 188 180 8 44   0.001 20 min 40 sec 
4 11 [1;10] 5 168 160 8 42 0.01 19 min 24 sec 
5 10 [1;10] 4 160 156 9 44 0.01 15 min 18 sec 
6 12 [1;100] 1 164 160 12 46 0.01 18 min 35 sec 
7 14 [1;50] 8 88 84 10 42   0.001 26 min 34 sec 
8 12 [1;10] 4 128 120 8 44   0.001 10 min 40 sec 
9 11 [1;100] 2 156 152 5 42 0.01 12 min 24 sec 

10 10 [1;50] 2 67 62 6 42    0.001 8 min 02 sec 
 
To analyze tabular data that contain the results of numerical experiments, the applied program "Expert of Curves" was 

used [9] that makes it possible to represent data with the help of various regression models. 
Analyzing Table 1, we can draw the conclusion that, for completely combinatorial problems with additional linear 

constraints, the minimum computation time equal to 46 seconds (for the set G with the number of elements equal to ten) and 
the maximum computation time equal to one hour was fixed. As is easily seen, the number of additional linear constraints 
and their arrangement is an important factor that influences the computation time and obtaining of solutions. The presence of 
additional constraints decreases the domain of allowable solutions of a problem. Therefore, in some problems with a 
homographic objective function and additional linear constraints, the computation time is smaller than in problems of the 
same dimension without additional constraints. It is relevant to note that the choice of the interval b of elements in the 
multiset G also influences the computation time. We can note that, for the examples with the same value of the parameters k, 
n, and r, the computation time increased with increasing the interval b. 

In Fig. 1, the regression dependence of the computation time T on the number of elements k  of the multiset G, i.e., on 

the problem dimension, is shown. Here, we have 432 ekdkckbkaT ++++= , where a = 85041.003, b = – 24550.031, 
c = 2606.136, d = –120.582, e = 2.062, and r = 0.858. The program "Expert of Curves" was used to obtain the plot. 

In Tables 2 and 3, the results of numerical experiments for partially combinatorial problems with fractional-linear 
objective functions and additional linear constraints on permutations are presented. The computations were performed for the 
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elements of the multiset G that were chosen as uniformly distributed random numbers on the interval [1; 10], [1; 50], or [1; 
100] and the coefficients of additional constraints were chosen in the interval [1; 5] or [1; 10]. 

The results of ten experiments for partially combinatorial problems with homographic objective functions and additional 
linear constraints on permutations are presented in Table 3. These computations were performed for elements of the multiset 
G that were chosen as uniformly distributed random numbers in the intervals [1; 10], [1; 50], and [1; 100]. 

Analyzing the results of numerical experiments presented in Table 2, we can draw the conclusion that, for partially 
combinatorial problems, the computation time is in the interval from 1 minute to 27 minutes. If the parameters k and n are in 
the intervals k ∈ [10;19] and n ∈ [7;18], then the minimum computation time is fixed for the smallest value of the parameter 
m = 14 that specifies the space dimension and the maximum computation time is fixed for the largest value of the parameter 
m = 21. 

We note that, when 20 ≤ k ≤ 30, some examples (that are randomly formed) were not solved because of the scantiness of 
program resources used for solving the LPP. For k ≥ 30, the part of such problems was sizable. For such values of k, 
problems were not solved since the algorithm was forced to come to an end when the time of its operation exceeds one hour 
30 minutes. 

The procedure of truncation of inactive constraints was used in problems with k ≥ 15. In Tables 1–3, the results of 
numerical experiments are given in which the value of the parameter δ, i.e., the candidate constraint determined for 
truncation, was equal to 0.1, 0.01, 0.001, 0.0001, and 0.00001. Note that, for the largest value of the parameter δ = 0.1, 
practically all the candidate constraints for truncation were determined that were added at the preceding steps and, for the 
smallest value of δ = 0.0001, such constraints were absent. In the first and second cases, this adversely affected the 
computation time. Therefore, in the majority of examples, the value 0.01 or 0.001 was assigned to δ. 

Thus, the algorithms based on the combinatorial truncation method for problems with homographic objective functions 
are efficient in the proposed program realization for the problems of the considered class when k < 30. In the particular case 
where the denominator is equal to unity, an algorithm can be used to solve linear problems on permutations. 

The program constructed on the basis of algorithms for the combinatorial truncation method considered above is 
universal for combinatorial problems on permutations with homographic and linear objective functions and additional linear 
constraints. 
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