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AN APPROACH TO SOLVING DISCRETE VECTOR

OPTIMIZATION PROBLEMS

OVER A COMBINATORIAL SET OF

PERMUTATIONS
1

N. V. Semenova, L. N. Kolechkina, and A. N. Nagirna UDC 519.8

Complex discrete multicriteria problems over a combinatorial set of permutations are analyzed. Some

properties of an admissible domain for a combinatorial multicriteria problem embedded into an

arithmetic Euclidian space are considered. Optimality conditions are obtained for different types of

effective solutions. A new approach to solving the problems formulated is constructed and

substantiated.

Keywords: multi-objective optimization, combinatorial set, set of permutations, Pareto-optimal

solution.

INTRODUCTION

At the present time, publications of many foreign and domestic scientists are devoted to the construction of efficient

methods for solution and investigation of various aspects of the theory of multicriteria optimization problems including

discrete ones [1–8].

Interest in the investigation of discrete multicriteria optimization models is conditioned by their wide application for solving

important problems of economy, designing complicated systems, making decisions under uncertainty , etc. In solving various

economic problems, including designing and distributing objects, planning experiments, and controlling data processing processes,

various optimization problems over combinatorial sets play an important role. To date, essential results are obtained in the field of

investigation of various classes of combinatorial models and development of new methods of their solution.

As is well known, the majority of combinatorial optimization problems can be reduced to problems of integer

programming, but this is not always justified since the possibility of taking into account combinatorial properties of a

problem [2] is lost in this case.

As is shown in [9–11], the convex envelope of a set of permutations is a common permutable polyhedron whose set of

vertices is equal to the set of permutations. This property of a permutable polyhedron allows one to reduce the solution of a

problem defined on a discrete combinatorial set to the solution of the problem over a continuous feasible set.

Based on the interrelation (established by the authors) between multicriteria problems over combinatorial sets and

optimization problems over a continuous feasible set, the possibility arises to apply classical methods of continuous

optimization to the solution of vector combinatorial problems over various combinatorial sets and also to develop new

original solution methods using properties of combinatorial sets and their convex envelopes.

At present, there are many methods of solution of multicriteria problems, but none of them can be applied (in its

general form) to combinatorial problems over permutations and, hence, the development of special methods and approaches

to the solution of multicriteria problems over a combinatorial set of permutations is sufficiently important.

In this article, some characteristics of the construction of an admissible domain are established and also several

theorems on the properties of different forms of efficient solutions of the problems being considered are formulated and

proved. A possible approach is proposed to the solution of vector combinatorial-type problems over permutations.
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1. PROBLEM STATEMENT. BASIC CONCEPTS AND DEFINITIONS

To state the problem, we use the concept of a multiset A that is specified by its base S A( ) and the multiplicity of its

elements k a( ) [9–11].

Let a multiset A a a aq�{ }

1 2

, , ,� , its base S A e e ek( ) , , ,�{ }

1 2

� , where e R j N kj k� � � �

1

1{ }, ,� , and the

multiplicity of elements k e rj j( ) � , j N k� , r r r q
k1 2

� � � �� , be given.

By an ordered n-sample from the multiset A we understand a collection

a a a ai i in
� ( , , , )

1 2

� , (1)

where a A i N j N i ii j n n s tj
� � � � � �, , , if s t s N t Nn n� � � � �, .

Definition 1 [9–11]. A set E A( ) whose elements are n-samples of the form (1) from the multiset A is called an

Euclidean combinatorial set if, for its arbitrary elements a a a an� � � � �
( , , , )

1 2

� and a a a an� � � �� �� ��
( , , , )

1 2

� , the conditions

( ) ( : )a a j N a an j j
� � � � � � � � � ��

are satisfied. In other words, two elements of the set E A( ) are different from one another

if, in addition to other distinctions, they have different arrangements of symbols that form them.

A set P Ank ( ) of permutations with repetitions among n real numbers including k different numbers is called a general

set of permutations, i.e., a set of ordered n-samples of the form (1) from the multiset A under the condition n q k� 	 .

When n k q� � , we have a set of permutations without repetitions. We denote it by Pn . It is obvious that we have

P A P An nn( ) ( )� . We denote by P A( ) a set of permutations in the case when the kind of permutations is not concretely

specified. Let us consider multicriteria combinatorial problems of the form

Z P A a a P Ank nk( , ( )) : max ( ) | ( )
 
{ }�

that consist of maximizing a vector criterion 
 ( )a on an Euclidean combinatorial set of permutations P Ank ( ) , where


 
( ) ( ( )a a�
1

, 

2

( ),a � …, 
l a( )) , 
i lE A R i N: ( ) ,� �

1

.

There are many different principles of decision-making in such situations. Let us consider some of the most traditional

principles connected with the selection of sets of vectors that are Pareto unimproved or optimal, Slater optimal, and Smale

optimal from the entire set Y y a a P ank� � �{ }
 ( ) | ( ) . Thus, by a solution of a problem Z P Ank( , ( ))
 , we understand the

determination of elements of one of the following sets: the set of Pareto-optimal (efficient) solutions P ( , ( ))
 P Ank , the set

of Slater optimal (weakly efficient) solutions Sl ( , ( ))
 P Ank , and the set of Smale optimal (strictly efficient) solutions

Sm ( , ( ))
 P Ank . We denote the problems of searching for elements from the sets P ( , ( ))
 P Ank , Sl ( , ( ))
 P Ank , or

Sm ( , ( ))
 P Ank by Z P AnkP

( , ( ))
 , Z P AnkSl

( , ( ))
 , and Z P AnkSm

( , ( ))
 , respectively. According to [3, 7, 8], for any

a P Ank� ( ) , the following statements are true:

a P A y P A y ank nk� � � 	 ��Sl { }( , ( )) ( ) | ( ) ( )
 
 
 , (2)

a P A y P A y a y ank nk� � � 
 � ��P { }( , ( )) ( ) | ( ) ( ), ( ) ( )
 
 
 
 
 , (3)

a P A y P A y a y ank nk� � � 
 � ��Sm { }( , ( )) ( ) | ( ) ( ),
 
 
 . (4)

It is obvious that we have

Sm P Sl( , ( )) ( , ( )) ( , ( ))
 
 
P A P A P Ank nk nk� � . (5)

The finiteness of the admissible domain of permutations P Ank ( ) provides the nonemptiness of the set P ( , ( ))
 P Ank

and its external stability [8], � � � � 
y P A a P A a ynk nk( ) ( , ( )) : ( ) ( )P 
 
 
 . In the case of an infinite set A, the question

of the existence of elements of the set P ( , ( ))
 P Ank requires a special investigation.

2. PROPERTIES OF A SET OF FEASIBLE SOLUTIONS

We will consider elements of a set of permutations with repetitions as points of an arithmetic Euclidean space R
n

.

Let a vector a of the form (1) be an element of an Euclidean combinatorial set E A( ) . A mapping

� �: ( ) ( )E A E A R
n

� � is called an embedding of the set E A( ) into the arithmetic Euclidean space if � specifies a one-one

mapping E A R
n

� ( ) � according to the following rule: for a � ( , , ) ( )a a E Ai in1

� � , x a� � ( ) , x x x E An� �( , , ) ( )

1

� � , we

have x aj i j
� � �j N n .
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As is shown in [9, 10], the convex envelope of a set of permutations is a permutable polyhedron

Ï A P Ank nk( ) ( )�conv whose set of vertices is equal to the set P Ank ( ) of permutations, vert Ï A P Ank nk( ) ( )� .

Without loss of generality, we order the elements of the multiset A in nondecreasing order,

a a an1 2

� � �� , (6)

and the elements of its base in increasing order, e e ek1 2

� � �� . Then the convex envelope of the general set of

permutations P Ank ( ) is a general permutable polyhedron Ï Ank ( ) that is described by the following system of linear

inequalities:

j

n

j

j

n

j

j

i

j

i

j

x a

x a
j

� �

� �

� �

� �

�




�

�

�

�

�

�

�

1 1

1 1

,

,�

� j nN� , � j ta j t� � � , � �j t N i, , � �
�

i N n 1

, and P A Ï Ank nk( ) ( )� vert .

The system of constraints (7), (8) of the general permutable polyhedron Ï Ank ( ) can be written in the form of the

following equivalent system:

i

i

i

i t n

i

n

i

i

n

i

t

t

x a N

x a

� �

� �

� �

� �


 � �

�

�

�

�

�

�

1

1 1

9

10

| |

; ( )

, ( )

�

�

�

�

�

where | |�t is the number of elements of the set of indices � defined as | |�t t� , t �{ }1 2, ,� .

In mapping a set of permutations P Ank ( ) into an Euclidean space R
n

, we can formulate the problem Z F X( , ) of

maximization of some vector criterion F x( ) on a set X ; in this case, to each point a P Ank� ( ) corresponds a point x X� such

that we have F x a( ) ( )� 
 and

Z F X F x x X( , ) : max ( ) |{ }� ,

where F x f x f x f xl( ) ( ( ), ( ), , ( ))�
1 2

� , f xi ( ) corresponds to a functional 
i a( ) , f R Ri

n
: �

1

, i N l� , and X is a

nonempty set that belongs to R
n

and is defined as follows: X Ï Ank� vert ( ) , Ï A P Ank nk( ) ( )�conv . By the

correspondence of a vector function F to a vector of functionals 
 we understand the relationship


 ( ) ( ( )) ( )a F a a P Ank� � �� .

The problem Z F X( , ) can also contain additional linear constraints forming a convex polyhedral set D R
n

� of the

form D x R Bx d
n

� � �{ }| , where d R
m

� and B R
m n

�

�

. Thus, the feasible set is of the form

X Ï A Dnk� �vert ( ) .

As a rule, the introduction of additional constraints complicates the problem but reduces the admissible domain,

which should be taken into account in constructing solutions.

3. OPTIMALITY CONDITIONS AND SOME PROPERTIES

OF SETS OF EFFICIENT SOLUTIONS

We denote the solution sets of the problem Z F X( , ) as follows: P ( , )F X is the set of Pareto-optimal (efficient)

solutions, Sl ( , )F X is the set of Slater optimal (weakly efficient) solutions, and Sm ( , )F X is the set of Smale optimal

(strictly efficient) solutions. For any x X� , the following statements that are of the form (2)–(5) and are written as applied to

the problem Z F X( , ) are true:

x F X y X F y F x� � � 	 ��Sl { }( , ) | ( ) ( ) , (11)

x F X y X F y F x F y F x� � � 
 � ��P { }( , ) | ( ) ( ), ( ) ( ) , (12)

x F X y X y x F y F x� � � � 
 ��Sm { }( , ) | , ( ) ( ) , (13)

Sm P Sl( , ) ( , ) ( , )F X F X F X� � . (14)
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Since the admissible domain X is bounded, the set P ( , )F X is not empty and is externally stable.

THEOREM 1. The elements of the sets Sm ( , )F X of strictly efficient, P ( , )F X of Pareto-optimal, and Sl ( , )F X of

weakly efficient solutions of a multicriteria combinatorial problem over permutations of the form Z F X( , ) are located at the

vertices of a permutable polyhedron Ï Ank ( ) .

Proof. Taking into account relationships (14) between the introduced sets of efficient solutions and also according to

[9, 10], the fact that the set of feasible solutions X is a subset of the set of vertices of the general permutable polyhedron

Ï Ank ( ) , i.e., P Ank ( ) � vert Ï Ank ( ) , we arrive at the conclusion that the chain of inclusions Sm P( , ) ( , )F X F X� �

Sl vert( , ) ( )F X Ï Ank� takes place. The theorem is proved.

Let functions f xi ( ) , i N l� , of the vector criterion F x( ) be linear, i.e., we have f x c xi i( ) ,� � �, c Ri

n
� , i N l� . The

important properties of the admissible domain X , sets of efficient solutions of different kinds mentioned in Theorem 1, and

also the linearity of functions of the vector criterion allow one to reduce the solution of the problem Z F X( , ) to the solution

of the problem Z F G( , ) over the continuous feasible set G Ï A Dnk� �( ) .

Let C R
n l

�

�

be a matrix, and let ci be its row vector, i N l� . We represent the polyhedron Ï Ank ( ) in the form

Ï A x R x i Nnk

n

i i p( ) | , ,� � � � � �{ }� � by reducing all the inequalities to one form (� ) and denote it by Ï. We will analyze

the problem Z F X( , ) taking into account the properties of the cone K x R
n

� �{ |Cx 
 0} of promising directions [3] of the

problem Z F X( , ) and convex closed cones 0

�

Ï y( )� � � � � �{ }x R x i N y
n

i| , , ( )� 0 , where N y( ) �{ }i N yp i i� � � �| ,� � ,

that can be constructed for all points y Ï�vert . It is obvious that we have N y( ) �� and X y Ï y� �

�

0 ( ) . We denote by

K x R Cx
n

0

0� � �{ }| the kernel of a mapping C R R
n l

: � and by int { }K x R Cx
n

� � 	| 0 the interior of the cone K . It

follows from formulas (11–(13) that, � �x X , the following statements are true:

x C X x K X� � � � ��Sl int( , ) ( ) , (15)

x C X x K K X� � � � ��P ( , ) ( \ )

0

, (16)

x C X x K X x� � � � ��Sm { }( , ) ( ) \ . (17)

The theorems formulated below are true.

THEOREM 2. P vert P( , ) ( , )F G Ï F X� � , Sl vert Sl( , ) ( , )F G Ï F X� � , and Sm vert Sm( , ) ( , )F G Ï F X� � .

Proof. Since we have vert Ï D G� � , we obtain P vert( , )F G Ï D� � � � � �P vert P( , ) ( , )F G Ï D F X . The

relationships Sl Sl vert( , ) ( , )F X F Ï D� � � Sl vert( , )F G Ï D� � and Sm( , )F X � �Sm vert( , )F D Ï � Sm ( , )F G

�vert Ï are similarly proved.

THEOREM 3. If the feasible set X of the problem Z F X( , ) does not contain constraints describing a convex

polyhedral set D or Ï D� , i.e., we have X Ï� vert , then, � �x R
n

, the following statements are true:

x� Sl Sl vert( , ) ( , )F X x F Ï Ï� � � , x F X x F Ï Ï� � � �P P vert( , ) ( , ) ,

x� Sm Sm vert( , ) ( , )F X x F Ï Ï� � � .

Proof. With allowance made for the conditions of Theorem 3, it follows from Theorem 2 that, � �x R
n

, the

statements x F Ï Ï x F X� � � �Sl vert Sl( , ) ( , ) , x F Ï Ï x F X� � � �P vert P( , ) ( , ) , and x F Ï� �Sm ( , ) vert Ï

� Sm ( , )F X are true. Let us prove the inverse implications. Let x F X�Sl ( , ) , whence it follows by Theorem 1 that we

have x Ï�vert . Proving by contradiction, we assume that x F Ï�Sl ( , ) . Taking into account the linearity of functions

f x i Ni l( ), � , of the vector criterion F x( ) , we obtain by Theorem 1 from [5] that the condition int K Ï x� ��

�

0 ( ) is true,

i.e., some boundary points of the set Ï are within the cone ( )x K� int and, hence, there is a point x Ï
1

�vert belonging to

this cone. By virtue of formula (12), the latter means that x F X�Sl ( , ) and contradicts the condition of the theorem. The

other statements of this theorem are similarly proved. The proof is completed.

COROLLARY. Under the conditions of Theorem 3, the following equalities are true:

P vert P( , ) ( , )F Ï Ï F X� � , Sl vert Sl( , ) ( , )F Ï Ï F X� � , Sm vert Sm( , ) ( , )F Ï Ï F X� � .

If the admissible domain of the problem Z F X( , ) is X Ï Ank� vert ( ) , then, for any point x Ï Ank�vert ( ) , the

necessary and sufficient optimality conditions obtained in [5] are true for all the above-mentioned kinds of efficient

solutions.

If the admissible domain X of the problem Z F X( , ) satisfies additional constraints specifying a convex polyhedron

D, i.e., we have X Ï D� �vert and Ï D Ï� � , then only sufficient optimality conditions of solutions are true.
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THEOREM 4. � � � � � �x Ï x F Ï D x F Xvert P P: ( , ) ( , ) , x F Ï� �Sl( , ) D x F X� �Sl ( , ) , and x�Sm ( , )F Ï

� � �D x F XSm ( , ) .

Proof. Since G Ï D� � , the following implication takes place � �x Ïvert : x F Ï D� � �P ( , ) x F�P ( ,

Ï D F G x P F X� � � �) ( , ) ( , )P , x� Sl Sl( , ) ( , )F Ï D x F X� � � , and x F Ï D� � �Sm ( , ) x F X�Sm ( , ) .

Thus, Theorems 1–4 establish an interrelation between the problem Z F X( , ) and the problem Z F G( , ) defined over a

continuous feasible set. This allows one to apply classical continuous optimization methods to the solution of vector

combinatorial problems over permutations and to develop new original solution methods on this basis, using properties of

combinatorial sets and their convex envelopes.

In establishing different kinds of solution efficiency, one should take into account that if the necessary optimality

conditions of a solution are satisfied, then its efficiency cannot be guaranteed but if these conditions are not satisfied, then

the corresponding solution is inefficient. If sufficient conditions are used, then a solution that satisfies them is efficient and,

otherwise, the question of efficiency of the solution remains open. But if necessary and sufficient conditions are used, then

the question is uniquely solved, namely, a solution is efficient if and only if it satisfies these conditions.

If the problem Z F X( , ) does not contain linear constraints forming a convex polyhedral set D R
n

� or if we have

Ï D� , i.e., X Ï� vert , then, taking into account the necessary and sufficient optimality conditions (Theorem 3), the process

of its solution is reduced to the search for efficient solutions of the problem Z F G( , ) over the continuous feasible set G Ï�

with the subsequent choice of only the solutions that are vertices of the permutable polyhedron Ï.

Analyzing Theorems 2 and 4, we obtain the following relationships between the problems Z F X( , ) and Z F G( , ) : if

we have x F G Ï� �R vert( , ) , then x F X�R ( , ) , and if we have x F G Ï� �R vert( , ) , then this does not imply that

x F X�R ( , ) , where R ( , )F X denotes the set P ( , )F X , Sm ( , )F X , or Sl ( , )F X .

4. A GENERAL APPROACH TO THE SOLUTION OF VECTOR PROBLEMS

OVER A COMBINATORIAL SET OF PERMUTATIONS

If a problem Z F X( , ) contains additional linear constraints, then the following approach to its solution is proposed.

1. Find efficient solutions of the problem Z F Ï( , ) .

2. Check their membership in the set D. If we have x F Ï D� �P ( , ) , then x F X�P ( , ) .

3. Consider feasible solutions x X� to the problem Z F X( , ) that are inefficient in the problem Z F Ï( , ) , i.e.,

x X F Ï D� �\ ( ( , ) )P , and check them for efficiency. To this end, use the necessary and sufficient conditions formulated in

[8, pp. 187 and 188].

Statement 1. A feasible solution x
0

is efficient if and only if it is an optimal solution of the following problem:

Z f X f x x X f x f x i N

i

l

i i i l

1

1

0

( , ) : max ( ) | , ( ) ( ),

�

�
� 
 �

�

�

�

�

�

 

!

�

"

�

.

If the solution x
0

is inefficient, then, as a result of solution of this problem, we found an efficient solution x
*

that is

more preferable than x
0

, i.e., we have F x F x( ) ( )

*




0

.

Continuing investigations and developing the results of [1, 4–6, 9–13], we propose an approach to the solution of the

problem Z F X( , ) on the basis of linear convolution (aggregation) of its partial criteria and the further reduction of the search

for solutions of the initial problem to the solution of a series of scalar (one-criterion) problems and the check of the obtained

solutions for optimality. The method of solution of one-criterion problems is based on the ideas of decomposition, Kelly’s

cutting-planes, and relaxation. Next, we consider a method whose realization takes into account the fact that the number of

constraints is sufficiently large. Then it is expedient to use a relaxation procedure or temporary rejection of some constraints

and the solution of a problem over a wider domain, i.e., under remained constraints.

At the initial stage of construction of the sought-for algorithm, we should determine the initial point. We will consider

a one-criterion problem without constraints that describe a polyhedron D and call them additional constraints.

Statement 2. If, for the elements of the multiset A and coefficients c j Nj n, � , of the objective function of the

problem extr vertf x c x x Ï A

j

n

j j nk( ) | ( )� �

�

�

�

�

�

 

!

�

"

�
�

�

1

, conditions (6) and c c ci i in1 2

� � �� , i Nn n� , respectively, are

satisfied, then the maximum of the function f x( ) on the admissible set is attained at a point x xi

* *

( ,�

1

x xi in2

* *

, , )� �

vert Ï Ank ( ) that is specified as follows:

x a j Ni j nj

*

� � � , (18)
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and its minimum is accordingly attained at a point y y y yi i in
� ( , , , )

1 2

� , where

y a j Ni n j nj �
� � � #

� �
1

1

0{ }.

It should be noted that the total number p of linear inequalities entering into system (7), (8) that describes a

permutable polyhedron Ï Ank ( ) is very large. According to [9–11], we call the set of inequalities of system (7), (8) that have

the same value i of the upper summation limit the ith group of inequalities of this system. In particular, each ith group

contains Cn

i
inequalities. From this we obtain the total number of inequalities p C

i

n

n

i n
� �

�

�

0

2 . Since only k coordinates out

of n coordinates a j Nj n, � are different, some inequalities can be eliminated from the system of inequalities (7), (8). Taking

into account the truth of condition (6) for any j N i ni� �
� 1

, , the equality a aj j�
� 1

is fulfilled. In this case, the truth of

inequalities of the first group in system (7), (8) also implies the fulfillment of the inequalities of the second, third, …, in th

groups. In fact, since we have x aj 

1

, j N n� , for any i N n� , the condition

j

i

x ia
j

�

�



1

1� is true. Hence, from system (7),

(8) describing a permutable polyhedron, we can eliminate the inequalities of the second, third, ..., ith groups and the total

number of inequalities will be N n C

j i

n

n

j
� � �

� �

�
1

1

. If a collection of numbers ( , , , )a a an1 2

� possesses a property

a a j N Nj j n n i� � �
� � �1 1

\ , then, in system (7), (8), it suffices to retain only the inequalities of the first, second, …,

( )n j� th group.

At the first stage of solving a problem, it is important to correctly organize the choice of active inequality constraints.

To solve the problem Z F X( , ) at the initial stage, it is necessary to take into account only the part of constraints that

determine the domain X . Since the determination of efficient solutions of the problem Z F X( , ) is more important than the

construction of the entire set of constraints describing the admissible domain G, it is sufficient to construct only the

constraints of the set G that determine efficient solutions of this problem. The method considered here is intended for

obtaining such constraints.

We introduce the following denotations. We write the admissible domain of the problem Z F G( , ) in the form

G x R Hx g
n

� � �{ }| , g g g g q� ( , , , )

1 2

� , H R
q n

�

�

; here, H is a matrix used for the matrix-vector representation of

constraints of the form (7), (8) and linear inequalities describing a polyhedron D, where all the constraints are reduced to one

( � ) kind of inequalities. We denote by N q the set whose elements determine the numbers of constraints of system (7), (8)

and additional constraints describing a convex polyhedral set D N mq

n
: , , ,� �{ }1 2 2� .

We define sets G x R h x g i Ni

n

i i q� � � � � �{ }| , , and, for an arbitrary x R
s n
� , define sets N x

a s
( ) �

{ }i N h x gq i

s

i� � � �| , and N x j N h x g
n s

q j

s

j( ) | ,� � � � �{ }of active and inactive constraints, respectively, at the point

x
s
; h Ri

n
� , g Ri � , i N q� , are, respectively, the ith row vector of the matrix H and the ith component of the vector g.

Let us consider the following problem:

Z F G F x x G
s s

( , ) : max ( ) |{ }� , where G x R h x g i Q N
s n

i i s q� � � � � � �{ }| , , ,

Qs is the set of indices of the constraints describing the admissible domain of the problem Z F G
s

( , ) that is solved at

the sth step of the algorithm, Q N Rs q s� \ , and Rs is the set of numbers of the constraints that have not been included

in this problem at the sth step.

Definition 2. We call the quantity r x h x gi i i( ) ,� � � � , i N q� , a deviation of a point x R
n

� from the boundary of a

set Gi and the quantity r x( ) � max ( ) |{r xi i N q� } a deviation of a point x R
n

� from the boundary of the set G.

It is obvious that, for i N p� , we have

r x x ai

j

i

j

i

jj
( ) � �

� �

� �

1 1

� (19)

and, for i N Nq p� \ , we have

r x b x di i i( ) ,� � � � , (20)

where bi is the ith row vector of the matrix B, d Ri � .
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THEOREM 5. An efficient (Pareto-optimal, weakly efficient, and strictly efficient) solution x
0

of the problem

Z F G
s

( , ) is an efficient (in the same sense) solution of the problem Z F G( , ) if and only if the condition r x( ) � 0 is true.

Proof. The necessity of this statement is obvious since the feasible solution x
0

of the problem Z F G
s

( , ) is a feasible

solution of the problem Z F G( , ) if and only if the condition r x( ) � 0 is satisfied. The sufficiency of this statement follows

from the construction of the problem Z F G( , ) and the definition of r x( ) .

The main idea of the proposed method of solution of the problem Z F X( , ) is as follows.

1. Reduce the multicriteria problem Z F G( , ) to a one-criterion problem Z f G( , ) by the linear convolution method.

Put s � 0 .

2. Choose the constraints of the initial system that determines a domain G G
s
� , solve the problem Z f G

s
( , ) with the

help of the simplex-method, and find an optimal solution x
s
.

3. If the obtained optimal solution is a permutation, i.e., a vertex of a permutable polyhedron Ï, then check the fulfillment

of constraints that have not been taken into account at the found point x
s
. Obviously, such constraints can be only those describing

a convex polyhedral set D. If the solution x
s

does not satisfy these (additional) constraints, then add the most violated constraint on

the polyhedral set D to the constraints of the admissible domain of the problem Z f G
s

( , ) . If the solution x
s

satisfies the

mentioned constraints, then it is an efficient solution of the problem Z F G( , ) and, hence, of the problem Z F X( , ) .

4. If the obtained solution x
s

is not a permutation, construct a cutting passing through adjacent vertices and cutting off

a vertex that is not (a) feasible (permutation). Add this cutting to the constraints of the problem Z f G
s

( , ) .

5. Compare the value of f x
s

( ) with the value of the objective function that is found at the previous step. If it decreases,

then eliminate inactive (insignificant) constraints at the point x
s
. If the value of f x

s
( ) does not change, then do not eliminate any

constraints. With the changed admissible domain of the problem Z f G
s

( , ) , pass to item 2 to solve this problem.

The circumstance that any constraint is not eliminated if f x
s

( ) remains equal to the previous value guarantees the

solution of only a finite number of problems of the form Z f G
s

( , ) .

The general idea of the proposed method consists of successive addition of the problem constraints that describe its

domain of feasible solutions. A realization of the method in the form of an algorithm is described below.

To check the membership of a point in a set of permutations P Ank ( ) , it makes sense to use the theorems [9, 10]

formulated below.

THEOREM 6. If x x x xn� ( , , , )

1 2

� is a point whose coordinates are ordered as follows: x x j N
j j n� �� � �

�

�
1

1

and the following constraint is satisfied:

x x x a a a
i i� � �

1 2

1 2

� � � 
 � � �� �

that belongs to the ith group of inequalities of system (7), (8), then all the other inequalities of the ith group of this

system are also satisfied at the point x.

THEOREM 7. A point x x x xn� ( , , , )

1 2

� is a vertex of a permutable polyhedron Ï Ank ( ) if and only if the

following conditions are satisfied:

{ } { } { } { }� � � � � � �
1

1

1

2

2

2

1

1

1

1

1

� � � � �

�

�

�

, , , , ,� � �

n

n

n n

n

n

nN ,

t

i

t

i

t nx a i N
t

i

� �

� �
� � �

1 1

�
.

During the realization of the algorithm for solving the problem Z F X( , ) , the above theorems allow one to minimize

the time required to check the found point for the satisfaction of combinatorial constraints and to reduce the number of

constraints in the initial system.

The proposed algorithm can be used to solve the problem Z F G( , ) without taking into account all its constraints.

We pass to the presentation of the algorithm.

5. ALGORITHM OF SOLUTION OF MULTICRITERIA

COMBINATORIAL PROBLEMS OVER PERMUTATIONS

Initial step

Put s � 0. Reduce the multicriteria combinatorial problem Z F G( , ) to a one-criterion problem with the help of linear

convolution as follows: we specify nonnegative weight coefficients � j lj N, � , that determine the degree of significance of

each criterion and maximize the linear combination of objective functions, i.e., solve the problem

Z f G
s

( , ) : {max f x c x

i

l

i i( ) ,� � �

�

�

1

� | � i 
 0 , i N l� ,

i

l

i

�

�
�

1

1� , x G
s

� }.

447



If any coefficient � i �1 and all the other � j � 0, i j� , i j N l, � , then consider a one-criterion problem with the ith

objective function. During the first execution of this step, we put G R
s n
� and f �$.

Main part

1. Choose an arbitrary initial point x
s

as an element of the general set of permutations or, according to Statement 2,

order coefficients � i i lc i N% �, , of the objective function f x c x

i

l

i i( ) ,� � �

�

�

1

� and compute the value of f f x
s

� ( ) .

2. Describe the constraints that correspond to the point x
s

and determine a vertex of a general permutable polyhedron

Ï Ank ( ) , x Ï A
s

nk

s
� ( ) , Ï A Ï A

nk

s

nk( ) ( )� . Put Q Ns p� .

3. Find deviations r x i R N Qi

s

s q s( ) \� � � by formulas (19), (20).

4. Choose r x r x i R
s

i

s

s( ) max ( ) |� �{ } and a number i Rs s� for which the maximum is obtained.

5. Check the inequality r x
s

( ) � 0 . If the inequality r x
s

( ) 	 0 is true, then pass to the following item of the algorithm

and, otherwise, find an efficient solution of the problem Z F X( , ) . To find the next efficient solution, pass to the initial step

of the algorithm after assigning other weight coefficients � j , � j 
 0 , j N l� , and

j

l

i

�

�
�

1

1� .

6. Add the obtained constraint whose number is i Rs s� to the constraints of the problem Z f G
s

( , ) , i.e., form the

feasible set of the subproblem Z f G
s

( , ) as follows:

G G x R h x g
s s n

i is s

�

� � � � � �

1

{ }| , . (21)

7. If the following inequality is true:

f x f
s

( ) � , (22)

then determine a set N x Q
n s

s( ) � , replace the set Qs by Q N xs

n s
\ ( ) , and put f f x

s
� ( ) , s s� � 1.

8. Solve the problem

Z f G f x c x x G
s

i

l

i i

s
( , ) : max ( ) , |� � � �

�

�

�

�

�

 

!

�

"

�
�

�

1

�

by the dual simplex-method. If this problem has no solution, then the problem Z F G( , ) is also undecidable. Otherwise,

we obtain an optimal solution x
s

of this problem. If it is not an element of the general set of permutations P Ank ( ) ,

then pass to item 8. Otherwise, put Q Ns p� and pass to item 3 of the algorithm.

9. Find the vertices of the permutable polyhedron that are adjacent to the point x
s

and construct the cutting that passes

through these vertices, is of the form

� � �h x gi i, , (23)

and is such that the obtained point x
s

does not satisfy it. Form the system of constraints describing the set G
s

by

formula (21) and pass to item 7.

Comment 1 (on item 7 of the algorithm). If x
s

is an element of the general set of permutations P Ank ( ) , then all the

constraints on the polyhedron Ï Ank ( ) except for those determining the point x
s

should be assigned to the set N x
n s

( ) of

inactive constraints that are eliminated from the set Qs.

Comment 2 (to item 9 of the algorithm). Let us consider the determination of an adjacent vertex and construction of a

cutting in more detail.

According to the theory of linear programming [15], based on the simplex table that determines some vertex x
s

of the

polyhedron of solutions, a vertex adjacent to it can be obtained as a result of choosing a nonbasic variable x j in the linear

programming problem in which the jth vector Pj has at least one positive component and choosing the tth string of the

simplex table under the condition

g

h

g

h

t

ij i h

i

ij

j

ij

� �

	

min

: 0

& , (24)

where hij are coefficients multiplying unknowns x j in the ith row and g i is a free term in the corresponding

constraints of the linear programming problem Z f G( , ) . Then the vector Pj should be introduced into the basis instead

of Pt to obtain the simplex table for some vertex adjacent to x
s
.
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Construction of cuttings [11]. We denote by J the collection of numbers of nonbasic variables for which relationship

(24) can be specified and by I the set of numbers of basic variables. Based on the latter simplex table of the linear

programming problem, we write the following constraint that is determined by a basic variable (with a number i):

x h x h x gi i j i j i� � � �
� �, ( ) , ( )� � � �1

1

� ,

where i I� , � � | |I , � � | |J , I J N n# �
� 1

, � �� � �n 1, and j J N� ��� � � .

Let x x xn

* * *

( , , )�
1

� be an optimal solution (of the linear programming problem) to which corresponds the last

simplex table. As is well known [15], if j j J N� � �( )� � � are numbers of nonbasic variables in the solution of the linear

programming problem Z f G
s

( , ) and the value of & j is computed by formula (24), all the vertices of the admissible domain

that are adjacent to x
*

satisfy the inequality

x x x
j

j

j

j

j

j

1

1

2

2

1

& & &

� � � 
�

�

� (25)

as the equality, and the point x
*

does not satisfy inequality (25).

According to the aforesaid, we construct cutting (23) in the form (25). The hyperplane forming the boundary of

cutting (25) passes through adjacent vertices to the point x
*

being cut. The constructed hyperplane intersects facets of the

admissible domain G
s

only at its vertices. Thus, new vertices are not created in the domain and the number of vertices of the

domain is decremented by one.

THEOREM 8. The algorithm halts after solving a finite number of subproblems Z f G
s

( , ) and produces an efficient

solution of the problem Z F X( , ) or constructs a set of constraints that is such that the current subproblem Z f G
s

( , ) is

undecidable.

Proof. Since X is a finite set, it has a finite number of subsets. With the step-by-step decrease in the value of the

objective function f x c x

i

l

i i( ) max ,� � �

�

�

1

� , any subset cannot be repeated. Since any constraint is not rejected if we have

f x f
s

( ) � and at least one or two constraints are added, the values of f x
s

( ) can remain constant only during a finite number

of iterations. Thus, the procedure comes to an end after a finite number of steps.

We note that the method of solution of a problem over permutations does not answer the question whether the

solution found is strictly efficient. This can be checked using relationship (17).

6. MATHEMATICAL MODELS OF SOME APPLIED PROBLEMS

Problem 1 (maximization of information rate and mapping quality). Let us consider a system that accumulates

information obtained from object domains (portals) and transfers it to personal computers (servers, workstations, terminals,

etc.). We have m object domains A i Ni m, � , in each of which a definite number of information units ai

k
of the kth form,

k N p� , a Ai

k
� , are accumulated, i.e., ai

k
is an element of a multiset A a as�{ }

1

, ,� , s mp� . This information is distributed

among n personal computers B j , j N n� , on each of which no less than b j

k
information units of the kth form from some

object domain are allocated. The transmission rate of the information unit of the kth type from Ai , i N m� , of a definite

object domain on personal computers B j , j N n� , equals 	 ij

k
, and the quality coefficient of representation of the information

unit of the kth type from a definite object domain Ai , i N m� , equals dij

k
under the condition of its quality representation on

personal computers B j , j N n� .

It is necessary to determine a plan of transmitting and loading an amount xij

k
of information of the kth form, k N p� ,

from object domains Ai , i N m� , to personal computers B j , j N n� , so that the total transmission rates are maximal and the

total quality load factor is maximized.

Mathematical model. It is required to determine

f x x

k

p

i

m

j

n

ij

k

ij

k

1

1 1 1

( ) max�

� � �

� � �
	 , f x d x

k

p

i

m

j

n

ij

k

ij

k

2

1 1 1

( ) max�

� � �

� � �

under combinatorial conditions that take into account permutable properties of the domain of feasible solutions of the
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following problem:

x x x x x x x P A
n p

p

mp

p

s s� � �( , , , , , , ) ( , , ) ( )

11

1

1

1

1

1

� � � � 


and constraints on amounts of information of definite type that are loaded into each personal computer

i

m

ij

k

j

k
x b

�

�
�

1

,

j N n� , k N p� .

Problem 2 (computations on a supercomputer). Let us consider a cluster supercomputer that performs highly

intensive parallel computations using definite programs. We consider that the main characteristics of the cluster are its

processor throughput and main memory. To process their data, definite programs require appropriate main memory sizes and

computational speeds. These programs should be distributed among clusters so that the total performance and workload of

the cluster supercomputer are maximal and each program is executed on an individual cluster.

Mathematical model. Let a cluster supercomputer consist of m clusters Ai each of which is characterized by its main

memory size or its performance (clock frequency) ai , i N m� . It is required to simultaneously load n program complexes B j ,

j N n� , to be performed each of which is characterized by its main memory size or computational speed b j .

The performance pij

k
, i N m� , j N n� , of the cluster supercomputer is determined by the number of operations

performed per second by each processor of the corresponding clusters in executing the kth program of the jth program

complex.

We call occupied the ith cluster that is 100% loaded during the execution of the kth program of the jth program

complex. Then the workload is defined as the difference d dij

k

ij

ç
� �100 , where dij

ç
is the current cluster workload (in

percentage terms) during the execution of the kth program of the jth program complex on the ith cluster, i N m� , j N n� .

A variable xij

k
, k N p� , i N m� , j N n� , characterizes the main memory size required for the execution of the kth

program of the jth program complex on the ith cluster and can assume any value from a multiset A, where A a as�{ }

1

, ,� ,

s pmn� ; P As
 ( ) is the general set of permutations of all elements from the multiset A, where 
 is the number of different

elements in A. We note that some elements from A can be zero.

The mathematical model of the problem can be described as follows:

maximize the computer workload

f x d x

k

p

i

m

j

n

ij

k

ij

k

1

1 1 1

( ) max�

� � �

� � �

and its performance

f x p x

k

p

i

m

j

n

ij

k

ij

k

2

1 1 1

( ) max�

� � �

� � �

under constraints on the main memory sizes of loaded programs for each program complex and each cluster

i

m

k

p

ij

k

jx b

� �

� �
�

1 1

, j N n� ,

j

n

k

p

ij

k

ix a

� �

� �
�

1 1

, i N m� .

This model provides the maximal use of resources of the cluster supercomputer.

Example. Let an operating cluster supercomputer for parallel computations consist of three clusters with definite

characteristics (Table 1). It is necessary to simultaneously load three programs to be executed that require 80, 35, and 95 GB

of main memory.

Solution. The possible workload of clusters will be 80%, 60%, and 50%, respectively. We compose the model of the

problem in the form

max . . .F x x x
1 1 2 3

4 2 2 2 1 2� � � ,

max . . .F x x x
2 1 2 3

0 8 0 6 0 5� � � ,

x x x
1 2 3

100 150 70� � � � � .

Let us consider the set A �{ }35 80 95; ; . It is obvious that the permutation x x x x� �( , , ) ( , , )

1 2 3

95 80 35 is an optimal

solution of the problem with the partial criterion values equal to

max . . .F
1

4 2 95 2 2 80 1 2 35 617� % � % � % � , max . . . .F
2

0 8 95 0 6 80 0 5 35 141 5� % � % � % � .
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CONCLUSIONS

In the present article, complicated combinatorial multicriteria problems over a set of permutations are investigated.

Some properties of the admissible domain of a combinatorial multicriteria problem embedded into an arithmetic Euclidean

space are considered. A method of solution of the formulated problems is constructed and proved. The approach proposed

can be used for solution of multicriteria problems over combinatorial sets of permutations. A software implementation of this

approach gives the possibility to investigate and to find the elements of sets of Pareto-optimal solutions for multicriteria

combinatorial problems with allowance made for other combinatorial properties of the domain of feasible solutions.

The further development of this work will be directed toward the realization and adaptation of the proposed algorithm

and also toward the development of new methods for solution of vector combinatorial optimization problems.
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Number of

a cluster
Main memory, GB Performance, GFLOP/sec

Cluster workload for

the current period, %

1 100 4.2 20

2 150 2.2 40

3 70 1.2 50

TABLE 1
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