creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Real-Time Data Offloading for
Super Resolution in Mobile Devices

20184 84

7| AR ZER

-
N

Real-Time Data Offloading for
Super Resolution in Mobile Devices

20184 84

7| A agere

5
Nk

Real-Time Data Offloading for Super

Resolution in Mobile Devices

B
gl
ran

{F
B

p—

o7 A&

=1
jLe

it

__O_l

_(H

1
2018 7

xr
Tor
Ho
oju
ald
M

]

o

-
N

ToH

o

2018 64

&1)
&L
&1

o8| 4

ﬁo uNO Jymo

Abstract

The rapid enhancement of camera performances in smartphones has allowed users
to take high quality pictures without high-end digital cameras. However, there still
remains a large gap between smartphone cameras and digital cameras when in comes
to zoom-in functionality. Most smartphones provide only digial zoom-in functionality,
where image quality degradation is inevitable when the user enlarges the image. Even
the high-end smartphones embedded with optical lens provide limited optical zoom-
in capabilities, leaving users with great inconvenience. While users can employ an
external optical lens to utilize the optical zoom-in functionality, having to carry around
an extra hardware incurs great overhead, not to mention its price.

Image Super Resolution (SR) can be a solution to overcome this limitation by
recovering the quality degradation caused by digital zoom-in. Image SR, a technique
to restore high frequency details from a Low Resolution (LR) image to obtain a High
Resolution (HR) image, has been a traditional field of research in computer vision. As
deep learning based, especially Convolutional Neural Network (CNN) based, methods
have shown to outperform traditional methods, and have been actively researched in
recent years.

In this paper, we exploit deep learning based image SR to replace the optical zoom-
in functionality in smartphones without embedded optical lenses. As there are several
resource constraints in smartphones (e.g., computing power, energy, memory), chal-
lenges occur when aiming to provide a real-time performance relying solely based
on local execution. To tackle the challenge, we propose a server offloading based ap-
proach to provide higher frame rate. Through a prototype implementation on Android
and extensive experiments in real world environments, we show that our proposed

system can provide at least 10 fps.

keywords: Mobile computing, server offloading, deep learning, image super
resolution

student number: 2016-28963

ii

Contents

Abstract
Contents

List of Tables
List of Figures

1 Introduction

2 Preliminaries
2.1 Image Super Resolution (SR)
2.2 Mobile deep learning frameworko
2.2.1 Local execution based framework
2.2.2 Server offloading based framework
2.3 What is different about SR in smartphones?
23.1 Latency e
2.3.2 Resourceconstraints

2.4 Localorserver? e

3 Implementation
3.1 SR model implementation

3.2 Prototype implementation on Android

ii

ii

iv

~N 9 O O & i b BB

=]

4 Evaluation

4.1 SR model performance

4.2 Inference time measured on smartphone and server

43 LatencyanalysiS.

4.3.1 Offloading latency

4.3.2 Overall latency breakdown

5 Discussion

5.1 Perceptual quality of generated images

5.2 Managing high data rate
6 Conclusion

Abstract (In Korean)

AR 2

iii

11
11
12
13
14
17

19
19
20

22

28

31

4.1

4.2

4.3

4.4
4.5

List of Tables

Mean PSNR (dB) of bicubic interpolation and implemented ESPCN
on benchmark datasets 12

Mean PSNR (dB) of bicubic interpolation and implemented ESPCN

on smartphone pictureso e 12
Specs of server and smartphones. 13
Inference time (ms) on server and smartphones. 14
Overall latency breakdown on Galaxy S8 (upscale factor=2). 18
._:Ix 1 ok]

v

3.1

32

4.1

4.2

4.3

4.4

4.5

List of Figures

The original ESPCN architecture in paper (a) and our modified archi-
tecture (b).

Overall implementation architecture on Android.

Experiment topology.
Network latency for different Wi-Fi links.
Network latency for different upscale factor, where the input LR frame
sizeis 320x240.
Network latency for different input LR frame size, where the upscale
factoris 2. L.

Overall operational flow and latency components.

15

Chapter 1

Introduction

As the performances of cameras in smartphones developed rapidly, users can now
take high quality pictures without high-end digital cameras. However, in case of the
zoom-in functionality, there is still a large gap between smartphone cameras and digital
cameras. As opposed to optical zoom-in, most smartphones provide only digial zoom-
in functionality: when the user enlarges certain area of the image to take a closer view,
the image is just cropped and resized to fit into the screen, leading to image quality
degradation. This limitation of digital zoom-in functionality remains a great annoyance
to users.

For users to utilize optical zoom-in functionality, users have two choices: either use
high priced models (e.g., Galaxy S9+, iPhone X) embedded with optical lens, or em-
ploy additional optical zoom lenses for smartphones. However, even such smartphones
embedded with optical lens only provide limited optical zoom in capabilities (x2), and
having to carry around additional hardware incurs significant inconvenience to the
users, not to mention the additional price for purchase (as high as hundreds of dollars).

Meanwhile, image Super Resolution (SR) can be a solution to recovering the qual-
ity of digital zoomed in pictures. Image SR, a technique to restore high frequency
details from a Low Resolution (LR) image to obtain a High Resolution (HR) image,

has been a traditional field of research in computer vision. However, deep learning

:
5

ol Mt

based, especially Convolutional Neural Network (CNN) based methods have recently
outperformed traditional methods, and have been actively researched recently.

Although there has been approaches to apply image SR in smartphones, such
works focused on restoring the image quality after the pictures are taken [1,2]. How-
ever, such approaches cannot be a fundamental solution, as users are still left with
images (degraded by the digital zoom-in) on the preview screen before taking pic-
tures. In this paper, we aim to enable the optical zoom-in functionality in smartphones
without optical lenses via deep learning based image SR techniques.

An important issue in designing our system is to determine where the deep learn-
ing model inference is executed. As there are several resource constraints in smart-
phones (e.g., computing power, energy, memory), challenges occur when using the
local device for deep learning model execution. While some of recent works on mo-
bile deep learning frameworks for continuous vision applications (e.g., image classi-
fication [3,4] or image segmentation [5]) that rely solely on local execution tackles
the challenge by either lowering frame rate (frame per second, or fps) or using a low
resolution image for input (e.g., 128x128), such compromises are not acceptable in
case of image super resolution, as both large input size and real-time performance
is required. As an alternative, we propose a server offloading based approach to pro-
vide higher frame rate. Through a prototype implementation on Android, we show that
about 10 fps can be provided using server offloading.

The major contributions of this paper are as follows:

* We propose an application of applying image super resolution in smartphone cam-
eras. To the best of our knowledge, there has been no literature dealing with the

real-time performance of SR on smartphones.

* We implement and train a deep learning based image super resolution model, and

verify that it applies well for real pictures taken from smartphone cameras.

* We compare the inference time of the deep learning based image super resolution

:
5

" T e Mt

model on smartphone and server and verify that server offloading is necessary for

providing real-time performance.

* We implement a prototype of our proposed application on Android and evaluate the

performance via real world experiment.

The rest of the paper is organized as follows. We summarize preliminary knowl-
edge and related work in Chapter 2. We discuss the overall implementation structure
and explain the operational flow in Chapter 3. Performance evaluation of the imple-
mented system is detailed in Chapter 4. We address practical issues of our application

in Chapter 5 and conclude the paper in Chapter 6.

Chapter 2

Preliminaries

2.1 Image Super Resolution (SR)

Image Super Resolution (SR) refers to the task of recovering high frequency details
from a Low-Resolution (LR) image to generate a High-Resolution (HR) image. Start-
ing from SRCNN [6], deep learning-based approaches have outperformed non-deep
learning-based approaches such as A+ [7], and various CNN-based architectures have
been proposed [8—10] afterwards to further enhance performance. Current state-of-the-
art is EDSR [11], the winner of the NTIRE Challenge 2017 [12].

Several recent work also deal with applying SR in mobile devices. [1] applies
non-deep learning based multi-frame SR for pictures taken from smartphone cameras.
Google proposed an application for smartphones to reduce internet traffic by down-
loading an x2 downsampled image and upscaling it in the smartphone via their pro-
posed deep learning based SR model RAISR! [2, 14]. Several Android applications
such as Camera Super Pixel [15] or TensorZoom [16] also provide similar functional-
ities. However, all of such approaches aim at applying SR as a post-processing (i.e.,
after the pictures have been taken); to the best of our knowledge, none of the existing

work has dealt with applying SR to preview frames in real time.

'RAISR has also been included in Pixel 2 smartphones [13].

2.2 Mobile deep learning framework

As deep learning has proved to be successful in various applications, employing deep
learning models on mobile device (e.g., smartphones, tablets)-based applications have
drawn a lot of attention in recent years. Existing works on mobile deep learning frame-
works can be divided into two branches depending on whether the deep learning model

inference is done on the local device or at the server.

2.2.1 Local execution based framework

Local execution based mobile deep learning frameworks do not get help from the oth-
ers; everything is handled on the device itself. As mobile devices are very short on
computational resources, executing deep learning model inference on mobile devices
require significant optimization to provide acceptable performance, especially in terms
of frame rate or latency. Optimization techniques are applied either at (i) deep learning
model level or or at (ii) code level. Deep learning model level optimization involves
making the model lightweight (in terms of model size and inference time) via vari-
ous techniques such as pruning, quantization, and distillation. Code level optimiza-
tion involves accelerating the computations during the model inference. Popular deep
learning frameworks (e.g., Caffe, Torch, and TensorFlow) provide their own mobile
versions (e.g. Caffe Android [17], Torch Android [18], and TensorFlow Android [19]),
while several other works also propose frameworks to accelerate deep learning model
inference [20-23].

Although such optimization techniques are shown to improve the performance sig-
nificantly, there are some unavoidable limitations: they either provide a low frame

rate (e.g., 1 fps) [3,4], or require a small input image size (e.g., 128x128) [5,24,25].

2.2.2 Server offloading based framework

Opposed to local execution based frameworks, server offloading based mobile deep
learning frameworks relies on the server for executing deep learning model inference.
Server offloading refers to passing the computationally-intensive task on to a dedicated
server with abundant resources, i.e., sending the data to be processed to the server and
receiving the processed results. Following the works [26] that have exploited server
offloading for continuous vision applications where computationally expensive image
processing task was offloaded to the server, several approaches propose deep learning
applications on mobile devices utilizing server offloading to provide higher frame rate
and lower latency [24,27,28]. While the biggest merit of server offloading based mo-
bile deep learning framework is that there is no need to worry about the computational
cost, meaning there is a high chance where state-of-the-art models can be employed
without much optimization, there are some costs that need to be paid: network latency,

network cost (e.g., LTE data), and possible server usage cost.

2.3 What is different about SR in smartphones?

2.3.1 Latency

While several recent works focus on the computational efficiency, the primary goal of
SR has been enhancing the quality of the generated HR image. As a result, the infer-
ence time of the state-of-the-art SR models are often far from real-time performance.
For instance, current state-of-the-art model EDSR [11] takes about 100 seconds for
x2 upscaling to 2K resolution frame. On the other hand, applying SR in smartphones
impose another important challenge: the system should run on real-time, so that users
can view the upscaled image from the camera with minimized delay. Large inference
time of the SR model can lead to unacceptable latency between the incoming LR frame
from the camera and the actual rendering on the smartphone screen, leading to unsat-

isfactory user experience.

2.3.2 Resource constraints

Furthermore, super resolution for mobile devices incurs challenge as mobile devices
are very short on resources (e.g., computing power, memory, and energy). To satisfy
the strict latency requirement, deep learning model should be carefully selected and
optimized. Even when offloading the data to the server, additional network usage cost
and energy consumption should be considered. Furthermore, a naive approach such as
applying SR on each incoming frame can lead to a very inefficient system: deciding

’when’ and "how’ to apply SR on frames becomes importance for system optimization.

2.4 Local or server?

A question remains when aiming to apply SR in smartphone cameras: where would
be perform the deep learning model inference? As mentioned earlier, relying solely on
local execution forces us to either gives up high frame rate (i.e., low latency), or large
input image size. For some tasks, such sacrifices may be acceptable (e.g., for image
classification small input image size may be acceptable). However, we need both the
large input image size and low latency for image super resolution, as they both directly
affect the user experience. In such a case, relying solely on local execution cannot
achieve the goal; the help from a powerful server is a must (we verify this statement
by the evaluation in Chapter 4 by showing that even the simplest four counvolutional
layered SR model takes about 500 ms in state-of-the-art smartphone). As a result, we
focus on server offloading to provide high frame rate and at the same time maintain a

large input image size.

Chapter 3

Implementation

3.1 SR model implementation

We implement ESPCN [8] in TensorFlow [29]. Distinguished from the previous ap-
proaches where the input LR frame is upscaled using bicubic interpolation and then
passed into the deep learning model, ESPCN takes in the LR frame itself without any
upscaling as input. Instead, ESPCN employs a sub-pixel convolutional layer, where
the number of channels in the last layer is 72 times the number of channels in the input
LR frame, which are then shuffled together to generate a r times upscaled HR frame.
As the input size of the deep learning model is remained the same as the LR frame
size, the amount of computation required reduces significantly, and it is reported in the
original paper that the inference time of ESPCN for x4 upscaling on 2K Full HD frame
is 29 ms on NVIDIA K2 GPU, capable of providing a real time performance.

Figure 3.1(a) depicts the architecture of ESPCN in the original paper. ESPCN is
consisted of 3 convolutional layers and a sub-pixel shuffling layer. Relu activation
is utilized except for the output layer, where tanh activation is used. Though it is
mentioned in the paper that using the tanh activation for the output layer shows a
better Peak Signal-to-Noise Ratio (PSNR) performance, we found it difficult to train

the model with tanh activation. Instead, we employed a 1x1 convolutional layer for

LR frame LR frame

| |
Conv. 5x5, 64 Conv. 5x5, 64
| |
Relu Relu
| |
Conv. 3x3, 32 Conv. 3x3, 32
| |
| Relu | | Relu
| |
Conv. 3x3, r? Conv. 3x3, r?
| |
Sub-pixel conv. Sub-pixel conv.
| |
Tanh Conv. 1x1, 1
| !
HR frame HR frame
(a) Original architecture. (b) Modified architecture.

Figure 3.1: The original ESPCN architecture in paper (a) and our modified architecture

(b).

scaling the output pixel values, as shown in Figure 3.1(b).

We apply SR on luminance (Y) channel in YCbCr color space, same as the orig-
inal paper. Aside from the original motivation of this approach that people are more
sensitive to the luminance channel, additional benefit arises from having to send only
the Y channel values of the frame to the server: this reduces the data rate by three times

compared to the case where we apply SR on all RGB channels.

3.2 Prototype implementation on Android

Figure 3.2 depicts the overall prototype architecture. We use Android camera2 API

to obtain frames from the camera in the client (smartphone). CaptureRequest sets the

Server

ImageReader Surface

N

\4

|

|

|

|

|

|

|

|

; CaptureRequest
:

|

|

: Camera
|

Figure 3.2: Overall implementation architecture on Android.

camera parameters and reads the frames from the hardware. Surface displays the cam-
era frame on the screen as preview, reads in user actions (e.g., zoom-in/out, capture),
and passes them back to CaptureRequest so that the adjusted parameters can be ap-
plied. ImageReader receives the frames from CaptureRequest into a byte array (in
YUYV format). Afterwards, the Y channel values are extracted and sent to the server,
connected by TCP socket. The server, implemented in Python, receives the frame,
passes it into the SR model, and sends back the upscaled frame to the client. After the
client receives the upscaled frame, YUV pixel values are converted to RGB values !,
copied into a bitmap, which is overlapped to the Surface. All the image processing
functions, including the YUV to RGB color conversion, are implemented using Java

Native Interface (JNI) for better faster runtime performance.

!The process of upscaling U,V channel values are included in this process.

10

Chapter 4

Evaluation

4.1 SR model performance

We trained the ESPCN described in Chapter 3 with DIV2K dataset [12] ! Table 4.1
summarizes the performance of the trained model on two benchmark datasets: Set5
and Setl4 2. We see that ESPCN achieves better performance compared to bicubic
interpolation. However, the performance of our current trained model shows about
0.2 dB less performance gain compared to the original paper. We suspect the reason
to be the different training dataset, architecture (modifying tanh layer to 1x1 convolu-
tional layer, and the specific training parameters not mentioned in the original paper.
For our future work, we plan to further train the model with more image datasets as
well as fine-tune the training parameters to yield better performance.

We further evaluate the performance of the trained model on actual smartphone
pictures. We take 5 pictures from everyday scenes (including indoor and outdoor) us-
ing a Galaxy S8, embedded with 4,032x3,024 pixels camera. We take the pictures in

raw format (DNG), convert them to PNG format for evaluation. Table 4.2 shows that

'The original paper used 50,000 random images from ImageNet [30]. We used different dataset as we

could not reproduce the original dataset.
%Set5 and Set14 are benchmark datasets, consisted of 5 and 14 images, respectively.

11

Table 4.1: Mean PSNR (dB) of bicubic interpolation and implemented ESPCN on

benchmark datasets

Dataset | Scale | Bicubic interpolation | ESPCN
X2 30.90 33.58
Set5 x3 28.35 30.85
x4 26.28 28.48
x2 27.93 30.14
Setl4 x3 25.82 27.67
x4 24.23 25.86

Table 4.2: Mean PSNR (dB) of bicubic interpolation and implemented ESPCN on

smartphone pictures

Dataset Scale | Bicubic interpolation | ESPCN

x2 34.32 37.37

Smartphone
pictures X3 31.62 34.29
x4 29.54 31.82

the trained model also achieves better performance, demonstrating that applying deep

learning based SR techniques can be effective.

4.2 Inference time measured on smartphone and server

We compare the inference time of ESPCN on server and smartphone. Server is equipped
with NVIDIA GTX 1080 Ti, and we measure the inference time on two smartphones,
Galaxy S8 and Nexus 6p, both with Android 7. Table 4.3 shows the core parameters of
the compared devices. On Galaxy S8 and Nexus 6p, ESPCN model runs only on CPU
using TensorFlow Android [19].

Table 4.4 shows the measured inference time on the above mentioned devices.

Input sizes are set to be x8 and x4 downsampled frame size of 12 Mpixel (4,032x3,024

12

Table 4.3: Specs of server and smartphones.

GTX 1080 Ti | Galaxy S8 | Nexus 6p
Cores 3584 8 (4+4) 8 (4+4)
Clock (GHz) 1.582 2.3/1.7 2/1.5
Memory (GB) 11 4 3

pixels) cameras embedded in several state-of-the-art smartphones, including Galaxy
S8 and Nexus 6p>. As a general trend, we observe that higher upscale factor does not
affect the inference time significantly. This is due to the fact that the upscale factor only
affects the number of channels in the sub-convolutional layer. However, as the input
size increases, the amount of computation needed increases proportionally throughout
each layer, significantly increasing the inference time.

It is important to observe that the inference time on the server and the smart-
phone differ by more than hundred times. Considering the inference time on mobile
devices (as high as few seconds for each frame), relying solely on mobile device for
the deep learning model inference cannot satisfy the latency and frame rate needed,
as stated in Chapter 2. Note that the tested ESPCN model is consisted of only four

convolutional layers; inference time of deeper models are expected to be much larger.

4.3 Latency analysis

In this section, we evaluate the overall latency of our application. The measurement
topology is depicted in Figure 4.1. The server uses a and a single NVIDIA GTX 1080
Ti GPU with 11 Gb memory. We use off the shelf TP-link Archer C2600 Wi-Fi Access
Point (AP) equipped with QCA9980 chipset and Nexus 6p, equipped with Qualcomm
Adreno 430 CPU. The server and the AP are both connected with 1 Gbps LAN, so that

3We failed to measure the inference time on Nexus 6p for input size 1,004x756, as the application

stopped during the computation.

13

Table 4.4: Inference time (ms) on server and smartphones.

Size Scale | GTX 1080 Ti | Galaxy S8 | Nexus 6p
x2 4.0 486.8 1701.1
504x378 x3 4.5 511.8 535.7
x4 7.0 535.7 2393.6
x2 16.0 4010.8 -
1008x756 | x3 16.0 4516.6 -
x4 22.5 5243.4 -
Server Wi-Fi AP Client
'''''''''' LAN ;NS l%g 802.11n/ac
...................................

Figure 4.1: Experiment topology.

4.3.1 Offloading latency

to send back the upscaled frame to the client *.

14

the wired link does not act as the bottleneck in data transmission.

We first measure the latency during the server offloading process, which includes the
network latency and the inference time of the SR model at the server. Specifically, we
measure three latency components: i) uplink latency: the time needed for the client to
send frame to the server, measured at the server side, ii) inference time of the deep

learning model on the server, and iii) downlink latency: the time needed for the server

Impact of wireless link: We first measure the latency for 2 different types of Wi-Fi

“Downlink latency is evaluated by measuring the total time between the client sends the frame to the

server and receives the upscaled frame at the client side, and subtracting the uplink latency and inference

Uplink latency ®m Downlink latency
@ Inference time

140
120 |
100 |
80 |
60 |
40 ¢
20 | : ;

. N\ N

802.11n 802.11ac

Latency (ms)

Figure 4.2: Network latency for different Wi-Fi links.

links: 802.11n link in 2.4 GHz band and 802.11ac link in 5 GHz band. The LR image
size is 640x360 and the upscale factor is 2. As the uplink and downlink data traffic
is in units of Megabytes (about 1.75 and 7 Megabytes respectively), data rate of Wi-
Fi affects the latency significantly. Figure 4.2 depicts that using a faster 802.11ac link
reduces the offloading latency by 54 %. For our subsequent evaluations, measurements
were conducted with with 802.11ac link.

Impact of upscale factor: Figure 4.3 depicts the offloading latency with different up-
scale factors, where the size of the input LR frame is 320x240. Varying the upscale
factor for the same input LR frame size increases the downlink data traffic quadrati-
cally, significantly increasing the offloading latency. Although the input LR frame size
affects the inference time significantly, the overall impact on the offloading latency is
small, as the increased inference time is minimal compared to uplink and downlink
latency.

Impact of image size: Figure 4.4 compares the offloading latency for varying input

LR frame size, where the upscale factor is fixed as 2. Varying the input LR frame size

15

Latency (ms)

Uplink latency
& Inference time

80

60

40

20

m Downlink latency

x3

x4

Figure 4.3: Network latency for different upscale factor, where the input LR frame size

is 320x240.

Latency (ms)

Bo

80

60

40

20

Uplink latency
Inference time

® Downlink latency

320x240

640x360

640x480

Figure 4.4: Network latency for different input LR frame size, where the upscale factor

is 2.

16

s - w k)

e

|
Receive Y |« : Send Y
7 L
Upscale Y i E
‘1' : : v
SendY [—F> ReceiveY

v
YUV->RGB

\4

Rendering

Figure 4.5: Overall operational flow and latency components.

increases both the uplink and downlink data traffic linearly, incurring larger network
latency, but not as significantly as the upscale factor. Again, the increased inference
time due to higher upscale factor does not affect the overall offloading latency signifi-

cantly.

4.3.2 Opverall latency breakdown

Figure 4.5 depicts the detailed flow of the system. The overall latency can be divided
into two blocks: offloading latency and image rendering latency. Image rendering la-
tency includes the conversion from YUV to RGB, setting the converted RGB pixel
values in a bitmap, and drawing the bitmap on a canvas for rendering.

Table 4.5 shows the measured latency of each delay components, where the size
of the LR frame is 640x360 and the upscale factor is 2. Total latency of the system is
104 mgs, resulting in about 10 fps.

In our initial implementation, the image rendering latency is quite substantial, even

17

Table 4.5: Overall latency breakdown on Galaxy S8 (upscale factor = 2).

Latency (ms)
Component
320x240 | 640x360 | 640x480
Offloading latency 27 54 63
YUV —RGB conversion 6 18 23
Set RGB pixels in a bitmap 4 9 12
Draw bitmap on screen 1 4 4
Total latency 38 85 93
Frame rate (fps) 26.3 11.8 10.8

comparable to the network latency. This latency can be minimized by using the An-
droid Renderscript API [31] used for running computationally extensive tasks at high

performance, which will be included in our future work.

18

Chapter 5

Discussion

In this section, we discuss some practical issues and challenges related to our proposed

application.

5.1 Perceptual quality of generated images

It is a well-known issue that conventional deep learning based SR models that are
trained with HR image-downsampled LR image pairs to maximize PSNR (i.e., min-
imize mean square error) do not always produce images with maximized perceptual
quality. The reasons are because (i) , and (ii) various factors other than downsam-
pling contribute to the generation of LR image (i.e., non-ideal downsampling kernel,
blurring, noise, artifacts caused by lossy compression, etc.). While [32] derives the
theoretical insight on the the tradeoff between the distortion and perception, recent
approaches use various training methodologies (e.g., adversarial training with Gen-
erative Adversarial Network (GAN)) to generate a HR frame with better perceptual
quality [10,33-35], or propose self-example based approaches where the HR frame
generation process is tailored specific to the input LR frame [36,37].

Though we have seen in Chapter 4 that the trained SR model performs well on

actual pictures taken from smartphones in terms of PSNR, the actual effect on the

19

image quality perceived to the users should be more closely investigated. Note that
our proposed system does not require a specific type of SR model to be utilized: any
model mentioned above can be employed for in our application as long as the perfor-
mance and computational efficiency are considered. We plan on testing with various

SR models to further enhance the performance of our system.

5.2 Managing high data rate

When using server offloading, optimizing the amount of data traffic between the server
and the client is crucial, as they directly affect the energy consumption and cost (e.g.,
LTE data budget).

State-of-the-art smartphones (e.g., Galaxy S8) are often embedded with 12 Mpixel
cameras (4,032x3,024 pixels). Assume a situation where we offload frames maximum
zoomed-in (often x8) with frame rate at 10 fps. Even when we send Y channel only
so that the data rate is reduced by 3 times compared to sending all RGB channels, the

data rate sent to the server becomes,

(504 * 378 pizels) x (1 channel) * (8 bits/channel) x (10 fps) = 15.2 Mbps. (5.1)

One possible alternative may be sending the frames after compression (e.g., in

forms of PNG). In such a case, reduced data rate can be estimated as follows,
(504 x 378 pizels) x (1 channel) * (8 bits/channel) * (10 fps) * (0.5') = 7.6 Mbps. (5.2)

However, such compression can introduce additional latency incurred by the com-
pression process, lowering the overall frame rate.

Note that the above calculation is only for the uplink data traffic (from client to
the server). As the size of the upscaled frame is proportional to the square of the up-
scale factor, downlink data traffic (from server to the client) increases significantly. For

instance, when the upscale factor is 2 in the above scenario, the total data rate becomes

15.2 (uplink) + 15.2 * 4 (downlink) = 76 Mbps. (5.3)

'This is the empirical average compression ratio measured on 800 training images in DIV2K dataset

7§ ty 1
":l"*-_i _'-;.- ok 11

20

This results in tremendous amount of wireless data usage just by running the applica-
tion for a few seconds, which may incur huge costs for users especially when LTE link
is used.

Mobile deep learning frameworks for continuous vision applications, both includ-
ing local execution and server offloading, often employ caching mechanism to enhance
system efficiency [3, 26]. The core idea of caching mechanism is to reuse the result of
previous frames, so that redundant computation can be avoided. As continuous frames
from the camera share a lot in common (e.g., background), caching mechanism can
effectively reduce the amount of resource usage (e.g., computation, amount of data
offloaded to server).

Though caching mechanism has definite merits, it should be employed carefully,
as the decision making process to determine whether to reuse previous results or not
should not impose much overhead. While some simple methods such as pixel differ-
encing [26] or color histogram matching [3] has been used for image classification or
object detection/tracking, caching mechanisms for image super resolution differs from
such tasks in two ways: (i) every output pixel value is important and (ii) downlink data
traffic from server to client is huge (several times larger than uplink) as opposed to
above applications where the result from server is rather simple and small (e.g., label
or bounding box of the object). We plan on devising a caching mechanism for image

SR in our future work.

21

Chapter 6

Conclusion

In this paper, we have presented a novel application to enable real-time image super
resolution in smartphone cameras. We implemented a deep learning based image super
resolution model, and verified that applying SR can be effective on the pictures taken
from the actual smartphone cameras. We also checked that the inference time of deep
learning models executed on mobile devices are too long to provide real-time perfor-
mance, and proposed a server offloading based framework to provide lower latency
and higher frame rate. Via a prototype implementation on Android, we measured that
using server offloading, 10 fps can be provided.

For our future work, we plan to further optimize the latency components in our
system. Furthermore, we will devise a caching mechanism adequate for image super

resolution to reduce the amount of data offloaded to the server.

22

[1]

(2]

(3]

[4]

[5]

[6]

[7]

Bibliography

N. P. D. Gallego and J. Ilao, “Multiple-image super-resolution on mobile devices:
an image warping approach,” in EURASIP Journal on Image and Video Process-

ing, 2017.

Y. Romano, J. Isidoro, and P. Milanfar, “Raisr: Rapid and accurate image super

resolution,” in IEEE Transactions on Computational Imaging, 2017.

L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon: Mobile gpu-based deep learn-

ing framework for continuous vision applications,” in Proc. ACM MobiSys, 2017.

X.Zeng, K. Cao, and M. Zhang, “Mobiledeeppill: A small-footprint mobile deep
learning system for recognizing unconstrained pill images,” in Proc. ACM Mo-

biSys, 2017.

B. Zhu, Y. Chen, J. Wang, S. Liu, B. Zhang, and M. Tang, “Fast deep matting
for portrait animation on mobile phone,” in Proc. ACM Multimedia Conference,

2017.

C. Dong, C. Loy, K. He, and X. Tang, “Learning a deep convolutional network
for image super-resolution,” in Proc. European Conference on Computer Vision

(ECCV),2014.

R. Timotfe, D. Smet, V, and L. V. Gool, “A+: Adjusted anchored neighborhood

regression for fast super-resolution,” in ACCV, 2014.

23

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Ruecker, and
Z. Wang, “Real-time single image and video super-resolution using an efficient

sub-pixel convolutional neural network,” in Proc. IEEE CVPR, 2016.

J. Kim, J. Lee, and K. Lee, “Accurate image super resolution using very deep

convolutional networks,” in Proc. IEEE CVPR, 2016.

C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image
super-resolution using a generative adversarial network,” in Proc. IEEE CVPR,

2017.

B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual net-

works for single image super-resolution,” in Proc. IEEE CVPR Workshops, 2017.

R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, L. Zhang, and ef al., “Ntire
2017 challenge on single image super-resolution: Methods and results,” in Proc.

IEEE CVPR Workshops, 2017.
https://www.cnet.com/news/google-pixel-2-photos-get-ai-better-digital-zoom/.

https://ai.googleblog.com/2016/11/enhance-raisr-sharp-images-with-

machine.html.

https://play.google.com/store/apps/details?id=com.anforapps.

camerasuperpixel&hl=en.
https://play.google.com/store/apps/details?id=uk.tensorzoom&hl=en.
“Caffe android library,” https://github.com/sh1r0/caffe-android-lib.
“Torch android,” https://github.com/soumith/torch-android.

“Tensorflow android demo,” https://github.com/tensorow/tensorow/tree/master/

tensorow/examples/android.

24

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

S. S. L. Oskouei, H. Golestani, M. Hashemi, and S. Ghiasi, “Cnndroid: Gpu-
accelerated execution of trained deep convolutional neural networks on android,”

in Proc. ACM Multimedia Conference, 2016.

N. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and
F. Kawsar, “Deepx: A software accelerator for low-power deep learning infer-

ence on mobile devices,” in Proc. ACM/IEEE IPSN, 2016.

M. Alzantot, Y. Wang, Z. Ren, and M. B. Srivastava, “Rstensorflow: Gpu en-
abled tensorflow for deeplearning on commodity android devices,” in Proc. ACM
1st International Workshop on Embedded and Mobile Deep Learning (EMDL),
2017.

Q. Cao, N. Balasubramanian, and A. Balasubramanian, “Mobirnn: Efficient re-
current neural network executionon mobile gpu,” in Proc. ACM st International

Workshop on Embedded and Mobile Deep Learning (EMDL), 2017.

X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile deep
learning framework for edge video analytics,” in Proc. IEEE INFOCOM, 2018.

S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand deep model
compression for mobile devices: A usage-driven model selection framework,” in

Proc. ACM MobiSys, 2018.

T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition onmobile devices,” in Proc.

ACM SenSys, 2015.

S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishnamurthy,
“Mcdnn:an approximation-based execution framework for deep stream process-

ing under resource constraints,” in Proc. ACM MobiSys, 2016.

25

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

X. Ran, H. Chen, Z. Liu, and J. Chen, “Delivering deep learning to mobile de-
vices via offloading,” in Proc. ACM VR/AR Network, 2017.

“Tensorflow,” https://tensorflow.org.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, and et al., “Imagenet large scale visual

recognition challenge,” in International Journal of Computer Vision, 2014.

“Android renderscript api guide.” https://developer.android.com/guide/topics/

renderscript/compute.html.

Y. Blau and T. Michaeli, “The perception-distortion tradeoff,” in Proc. IEEE
CVPR, 2018.

M. S. Sajjadi, B. Scholkopf, and M. Hirsch, “Enhancenet: Single image super-

resolution through automated texture synthesis,” in Proc. IEEE ICCV, 2017.

A. Ignatov, N. Kobyshev, R. Timotfe, K. Vanhoey, and L. V. Gool, “Dslr-quality
photos on mobile devices with deep convolutional networks,” in Proc. IEEE

ICCV, 2017.

X. Wang, K. Yu, C. Dong, and C. C. Loy, “Recovering realistic texture in image

super-resolution by deep spatial feature transform,” in Proc. IEEE CVPR, 2018.

J. B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution from trans-

formed self-exemplars,” in Proc. IEEE CVPR, 2015.

A. Shocher, N. Coheny, and M. Irani, “““zero-shot™ super-resolution using deep

internal learning,” in Proc. IEEE CVPR, 2018.

26

2 AT et

SECRIL WanCsAaL |INMVERSTY

off w=h HAE 7H|et glol=

&

35

il

1_

=]
=

24 2ntEE FhH|2ke] A5l A
7159 7%, 2PEE ZHvEket HA " ZHHEt Atol o= o

RS ™ __MM Wﬁ % Wou nrM_M o dr o OF
I op G T Mo TR
R D JﬂDH N o— N) v T
= SR X " % o O
B Bo oMo w X B o= 1r
lpm Tode2es o =
5 3 CRSCEECINNIE A TP R W
N (e T o M M) or oo K"
HA Fe o w X JALagpae do Wl ~ To!
o 1D| 1__,._ M__M__ 5 KM E._o ~X N ,”I > ‘mpl ~ 4_ony._
H o % E = ~
W) Mu_m T Ko M,H D= & o o < _iﬂ z
@%%%@%ﬁﬂﬂﬂ %@.‘F_L
H o= = X N nk ~ w_mL =1 n__l
— P =g P E g oy W oo K
2P T Y T - TR = D
z nﬂ N m__mo o_m HoE o 2 _,n_Ao_u o mq_ﬂ_ o
I N 5 L W_ M o W
W I T < <2
BB o Moo N " o T m_. X = N "
E_aﬂe]q%ﬂ&]_ﬂlﬁ__ B o 7T
7R K -5 XoR e C o M = 5
0N T B B Gl N —
A_EL__alo_Eﬂéaaﬂom I
Hfﬂﬂﬂﬁﬁmﬂ%%o_aqwiﬁ_ﬁoﬂﬂ
TRELN AT L] oMo
" T = o o
iﬂmﬂuouTM%mmgmwtaﬂL:_oﬂ
ﬂ_%ﬂnow%__oa_%ﬂ = Nﬂm
op W Bl G0N T Lo G T B A il E 1o
N | o= oo X B oW E R~ B R
o W —_ aqu o oo T o = 9 e
%iﬂéui_auﬂﬁﬂma%ég
ﬁﬁmaiﬂﬂ&%ﬂ]%%%ﬂi%
1__/I ToH o B ,._.1u WI o T Oo AE — o7 X
jo —; = — -
N zam*%%fmwiﬂ % T
KT W W]

28

ol

8] Bkl AHE,

H: 2016-28963

=
T

o}
o}

29

2 AT et

SECRIL WanCsAaL |INMVERSTY

F

Q
=

RS S|S0y, 244}

Al
=

AR F

tH 2 24 Fete] A+

°

she vl o]

- O

&

A& el

~

A
A=Y,

o

AL, 2] ot

[¢]

A3

=

=

SFATH A

5]

A ZHA =

ol

ok AAggo &

=g
—H

il A7E 2983 Hegoll ¥de

9

o
dS 5

<

<H

o 3
31

o

-

= 2

9|

T

2AEY gt

7]

=

=

o}, <Al Au) A
2% A7 A

ﬁ%@
53 ﬂuﬂaa
E%@?%mﬁz
"o o mx s T T
@ygﬁﬂ%ﬂmﬂs
m}ﬂﬂwﬂif}am A E
BZ.,EHPA'O%Q ﬂ/lLV‘MO—M
z,_amﬁm:h_l,umWLleﬂHmmramL”Om‘o',
wowﬂﬁﬁdoqwmoEommﬁwﬂmwwi
— e = ! by
droﬂ%wQ@#g%%##%&%ﬂ
w@uﬁ%aumarzauﬁ¢o1f§o*@}1ﬁ ol
M@%é:mmmlgiﬂﬁx%rheemuo:e%mmmo
dlﬁmLa-&LéWmﬂlﬂmMuo?a-Q%M%QWFExLoezﬂzA_u/c_ﬁ =
uloafle%uuaaw@nf%uﬂ_!mﬂ%iiuiﬂEJ. = %
auM-ﬂEﬂnmlﬂEmeéoEﬂEﬁ_douuo_._._Wo14&-%@ Mﬂ_,_lE
E}magtgﬂﬂo%qmemggééLﬂ;mwwaﬁ% m_ﬁw
uﬂqg;ﬁ_u uﬂoxlao@omo;;uovfaf 0 G
%u.ofﬂ%dozfmnmié%wméﬂeoHé%xmmﬁ:y&ﬂn WO#W
L.. | - — —
mLﬂuanwﬂgajTMouﬂ_%mgﬂypﬁaxﬂgo s 2 F
oL_.loUlT,AurﬂllP,muo do,o*u]mw_c._ouwﬂ!ﬂo o
]]1%}@ 77u oﬂm umATéz}] 1rmﬂ1__,_ o_eqr_,
< E L @4%ﬂ5@% E%J4me%%o¢ y
= e ‘@nL 17M on ~ Z.O 01_ 5y 1._.% ~ s ~ ,I_l ,Hn,_ — Nlu_ﬁ ToH _Il_ ,7A| _I]_ ,_.IJI T 2 Ef mr
! ﬂ_nnm S N O_._v ZT Z,._ E._O e ToR ﬂL E_ R N ﬂ_mo E,._ En_ o :.l o . ‘mﬂ .A m 1..MO
ATonﬂioa_Bq%o uuuuﬂqﬁz%ﬂwqﬂlﬂlui&o
ﬂ@nxu-m.@mezmﬁamwﬂ-d.u.nmmL%ﬂ.ﬂ%ﬂﬁﬂuzﬂqﬂv
dﬂﬂ%domz,_%dlh.ﬁ.auEm,_d.ﬂ.ouOM&_.arﬂe:qm,nuluME
ﬂnmoﬂﬁd.fwo.ac%%?Hm%mu‘ﬂwm,.howuﬁﬂ
ﬁWE%AT.WTMochduWrduz_.x_w@zeuuqﬁ_/-%uwﬁﬂlzfmﬂ
ALMO_ mL,.._.oLl_;_uo_,_Zu uu‘m,ﬂlo‘mlﬁ..maoﬂ_iﬁ ,ulw_.w_ou
N ™ ﬂ_ouﬂ} %aoiel;ndqloe%ﬂ%@oa
‘HD ;._.M E._ X " 7U X_l E ,mo ‘HU —_ _-__E o iy X P/FE = o ﬂ] = En_ ‘O#. ﬂ.D
ﬂmze;_igﬂwﬂj..ﬂfpr:a.u..foﬂoﬂq
imeﬁj_uu%@iwg.fanqdomm@qgnu
%@H%ﬂﬁ?é%Sé#&ﬁw&uwamooﬂﬁma
dogkoqiw%wz.gdm&xXO%%O:Té;é
z_lum._ow_H._,u70HIMOMHMOOE7ZTW_|ZLO1DI
L%l1mﬂ11wa%1% Mﬂﬁ - ol o
= ﬂi _,_r _,_|1 ul
oP@o L.,Ax_]]q_.c._rl,l oH T
ouo*oumM%aTMEAztﬁle._wszq%
donLuWLﬂ%mdo}oxﬂulga
< W o < %S 0 9| B uj ~—
Hw.z,1oao% 1%7
_ﬂ_VUH’ ,L_LAMMJI
< Z_.ryw_mlllll,l,l
,A‘.W!&ou,_}%_bomm
o“_o_oﬂ%.hu%x
mMunAxLﬂawu
N aﬁ_w%
ﬂ%m
<+

R S S
WA A2k A 3 S S-S 918 el Sl o ul el A] Zo] gAE - 7}
o] el av} ol Rt B4 FACAE nokg-L Aok, oJuts £} FRE 2
HFA 3 2919 F& A @A 1 AT ok P AS AL YATA L
SH wrot Al Slgtotu|), S@mu, ulsel] AN AT AL FAFEY

Fo 2 TS AT meste] AP 2ele ob S, ot £} F

A
MWNLo|| A o] A]7h2 A Q1A ol A 388 0‘11 Y AZte] &

Y WlO
N L
El;)
c =
O i

o
re

TA LG Hj e L7 BREE 9] of 7, ko 2% t& - 25te] MWNLY)

2018 ¢ 8¢
0|59 27

2 AT et

SECRIL WanCsAaL |INMVERSTY

	1 Introduction
	2 Preliminaries
	2.1 Image Super Resolution (SR) .
	2.2 Mobile deep learning framework .
	2.2.1 Local execution based framework
	2.2.2 Server offloading based framework

	2.3 What is different about SR in smartphones
	2.3.1 Latency .
	2.3.2 Resource constraints .

	2.4 Local or server .

	3 Implementation
	3.1 SR model implementation .
	3.2 Prototype implementation on Android

	4 Evaluation
	4.1 SR model performance .
	4.2 Inference time measured on smartphone and server
	4.3 Latency analysis .
	4.3.1 Offloading latency .
	4.3.2 Overall latency breakdown

	5 Discussion
	5.1 Perceptual quality of generated images
	5.2 Managing high data rate .

	6 Conclusion
	Abstract (In Korean)
	감사의글

<startpage>11
1 Introduction 1
2 Preliminaries 4
 2.1 Image Super Resolution (SR) . 4
 2.2 Mobile deep learning framework . 5
 2.2.1 Local execution based framework 5
 2.2.2 Server offloading based framework 6
 2.3 What is different about SR in smartphones 6
 2.3.1 Latency . 6
 2.3.2 Resource constraints . 7
 2.4 Local or server . 7
3 Implementation 8
 3.1 SR model implementation . 8
 3.2 Prototype implementation on Android 9
4 Evaluation 11
 4.1 SR model performance . 11
 4.2 Inference time measured on smartphone and server 12
 4.3 Latency analysis . 13
 4.3.1 Offloading latency . 14
 4.3.2 Overall latency breakdown 17
5 Discussion 19
 5.1 Perceptual quality of generated images 19
 5.2 Managing high data rate . 20
6 Conclusion 22
Abstract (In Korean) 28
감사의글 31
</body>

