

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사학위논문

Real-Time Data Offloading for

Super Resolution in Mobile Devices

오프로딩을이용한모바일기기에서의

실시간이미지초해상도기술

2018년 8월

서울대학교대학원

전기·정보공학부

이주헌

공학석사학위논문

Real-Time Data Offloading for

Super Resolution in Mobile Devices

오프로딩을이용한모바일기기에서의

실시간이미지초해상도기술

2018년 8월

서울대학교대학원

전기·정보공학부

이주헌

Real-Time Data Offloading for Super

Resolution in Mobile Devices

지도교수최성현

이논문을공학석사학위논문으로제출함

2018년 7월

서울대학교대학원

전기·정보공학부

이주헌

이주헌의공학석사학위논문을인준함

2018년 6월

위 원 장: 이경무 (인)

부위원장: 최성현 (인)

위 원: 윤성로 (인)

Abstract

The rapid enhancement of camera performances in smartphones has allowed users

to take high quality pictures without high-end digital cameras. However, there still

remains a large gap between smartphone cameras and digital cameras when in comes

to zoom-in functionality. Most smartphones provide only digial zoom-in functionality,

where image quality degradation is inevitable when the user enlarges the image. Even

the high-end smartphones embedded with optical lens provide limited optical zoom-

in capabilities, leaving users with great inconvenience. While users can employ an

external optical lens to utilize the optical zoom-in functionality, having to carry around

an extra hardware incurs great overhead, not to mention its price.

Image Super Resolution (SR) can be a solution to overcome this limitation by

recovering the quality degradation caused by digital zoom-in. Image SR, a technique

to restore high frequency details from a Low Resolution (LR) image to obtain a High

Resolution (HR) image, has been a traditional field of research in computer vision. As

deep learning based, especially Convolutional Neural Network (CNN) based, methods

have shown to outperform traditional methods, and have been actively researched in

recent years.

In this paper, we exploit deep learning based image SR to replace the optical zoom-

in functionality in smartphones without embedded optical lenses. As there are several

resource constraints in smartphones (e.g., computing power, energy, memory), chal-

lenges occur when aiming to provide a real-time performance relying solely based

on local execution. To tackle the challenge, we propose a server offloading based ap-

proach to provide higher frame rate. Through a prototype implementation on Android

and extensive experiments in real world environments, we show that our proposed

system can provide at least 10 fps.

i

keywords: Mobile computing, server offloading, deep learning, image super

resolution

student number: 2016-28963

ii

Contents

Abstract i

Contents ii

List of Tables iv

List of Figures v

1 Introduction 1

2 Preliminaries 4

2.1 Image Super Resolution (SR) . 4

2.2 Mobile deep learning framework . 5

2.2.1 Local execution based framework 5

2.2.2 Server offloading based framework 6

2.3 What is different about SR in smartphones? 6

2.3.1 Latency . 6

2.3.2 Resource constraints . 7

2.4 Local or server? . 7

3 Implementation 8

3.1 SR model implementation . 8

3.2 Prototype implementation on Android 9

ii

4 Evaluation 11

4.1 SR model performance . 11

4.2 Inference time measured on smartphone and server 12

4.3 Latency analysis . 13

4.3.1 Offloading latency . 14

4.3.2 Overall latency breakdown 17

5 Discussion 19

5.1 Perceptual quality of generated images 19

5.2 Managing high data rate . 20

6 Conclusion 22

Abstract (In Korean) 28

감사의글 31

iii

List of Tables

4.1 Mean PSNR (dB) of bicubic interpolation and implemented ESPCN

on benchmark datasets . 12

4.2 Mean PSNR (dB) of bicubic interpolation and implemented ESPCN

on smartphone pictures . 12

4.3 Specs of server and smartphones. 13

4.4 Inference time (ms) on server and smartphones. 14

4.5 Overall latency breakdown on Galaxy S8 (upscale factor = 2). 18

iv

List of Figures

3.1 The original ESPCN architecture in paper (a) and our modified archi-

tecture (b). 9

3.2 Overall implementation architecture on Android. 10

4.1 Experiment topology. 14

4.2 Network latency for different Wi-Fi links. 15

4.3 Network latency for different upscale factor, where the input LR frame

size is 320x240. 16

4.4 Network latency for different input LR frame size, where the upscale

factor is 2. 16

4.5 Overall operational flow and latency components. 17

v

Chapter 1

Introduction

As the performances of cameras in smartphones developed rapidly, users can now

take high quality pictures without high-end digital cameras. However, in case of the

zoom-in functionality, there is still a large gap between smartphone cameras and digital

cameras. As opposed to optical zoom-in, most smartphones provide only digial zoom-

in functionality: when the user enlarges certain area of the image to take a closer view,

the image is just cropped and resized to fit into the screen, leading to image quality

degradation. This limitation of digital zoom-in functionality remains a great annoyance

to users.

For users to utilize optical zoom-in functionality, users have two choices: either use

high priced models (e.g., Galaxy S9+, iPhone X) embedded with optical lens, or em-

ploy additional optical zoom lenses for smartphones. However, even such smartphones

embedded with optical lens only provide limited optical zoom in capabilities (x2), and

having to carry around additional hardware incurs significant inconvenience to the

users, not to mention the additional price for purchase (as high as hundreds of dollars).

Meanwhile, image Super Resolution (SR) can be a solution to recovering the qual-

ity of digital zoomed in pictures. Image SR, a technique to restore high frequency

details from a Low Resolution (LR) image to obtain a High Resolution (HR) image,

has been a traditional field of research in computer vision. However, deep learning

1

based, especially Convolutional Neural Network (CNN) based methods have recently

outperformed traditional methods, and have been actively researched recently.

Although there has been approaches to apply image SR in smartphones, such

works focused on restoring the image quality after the pictures are taken [1, 2]. How-

ever, such approaches cannot be a fundamental solution, as users are still left with

images (degraded by the digital zoom-in) on the preview screen before taking pic-

tures. In this paper, we aim to enable the optical zoom-in functionality in smartphones

without optical lenses via deep learning based image SR techniques.

An important issue in designing our system is to determine where the deep learn-

ing model inference is executed. As there are several resource constraints in smart-

phones (e.g., computing power, energy, memory), challenges occur when using the

local device for deep learning model execution. While some of recent works on mo-

bile deep learning frameworks for continuous vision applications (e.g., image classi-

fication [3, 4] or image segmentation [5]) that rely solely on local execution tackles

the challenge by either lowering frame rate (frame per second, or fps) or using a low

resolution image for input (e.g., 128x128), such compromises are not acceptable in

case of image super resolution, as both large input size and real-time performance

is required. As an alternative, we propose a server offloading based approach to pro-

vide higher frame rate. Through a prototype implementation on Android, we show that

about 10 fps can be provided using server offloading.

The major contributions of this paper are as follows:

• We propose an application of applying image super resolution in smartphone cam-

eras. To the best of our knowledge, there has been no literature dealing with the

real-time performance of SR on smartphones.

• We implement and train a deep learning based image super resolution model, and

verify that it applies well for real pictures taken from smartphone cameras.

• We compare the inference time of the deep learning based image super resolution

2

model on smartphone and server and verify that server offloading is necessary for

providing real-time performance.

• We implement a prototype of our proposed application on Android and evaluate the

performance via real world experiment.

The rest of the paper is organized as follows. We summarize preliminary knowl-

edge and related work in Chapter 2. We discuss the overall implementation structure

and explain the operational flow in Chapter 3. Performance evaluation of the imple-

mented system is detailed in Chapter 4. We address practical issues of our application

in Chapter 5 and conclude the paper in Chapter 6.

3

Chapter 2

Preliminaries

2.1 Image Super Resolution (SR)

Image Super Resolution (SR) refers to the task of recovering high frequency details

from a Low-Resolution (LR) image to generate a High-Resolution (HR) image. Start-

ing from SRCNN [6], deep learning-based approaches have outperformed non-deep

learning-based approaches such as A+ [7], and various CNN-based architectures have

been proposed [8–10] afterwards to further enhance performance. Current state-of-the-

art is EDSR [11], the winner of the NTIRE Challenge 2017 [12].

Several recent work also deal with applying SR in mobile devices. [1] applies

non-deep learning based multi-frame SR for pictures taken from smartphone cameras.

Google proposed an application for smartphones to reduce internet traffic by down-

loading an x2 downsampled image and upscaling it in the smartphone via their pro-

posed deep learning based SR model RAISR1 [2, 14]. Several Android applications

such as Camera Super Pixel [15] or TensorZoom [16] also provide similar functional-

ities. However, all of such approaches aim at applying SR as a post-processing (i.e.,

after the pictures have been taken); to the best of our knowledge, none of the existing

work has dealt with applying SR to preview frames in real time.

1RAISR has also been included in Pixel 2 smartphones [13].

4

2.2 Mobile deep learning framework

As deep learning has proved to be successful in various applications, employing deep

learning models on mobile device (e.g., smartphones, tablets)-based applications have

drawn a lot of attention in recent years. Existing works on mobile deep learning frame-

works can be divided into two branches depending on whether the deep learning model

inference is done on the local device or at the server.

2.2.1 Local execution based framework

Local execution based mobile deep learning frameworks do not get help from the oth-

ers; everything is handled on the device itself. As mobile devices are very short on

computational resources, executing deep learning model inference on mobile devices

require significant optimization to provide acceptable performance, especially in terms

of frame rate or latency. Optimization techniques are applied either at (i) deep learning

model level or or at (ii) code level. Deep learning model level optimization involves

making the model lightweight (in terms of model size and inference time) via vari-

ous techniques such as pruning, quantization, and distillation. Code level optimiza-

tion involves accelerating the computations during the model inference. Popular deep

learning frameworks (e.g., Caffe, Torch, and TensorFlow) provide their own mobile

versions (e.g. Caffe Android [17], Torch Android [18], and TensorFlow Android [19]),

while several other works also propose frameworks to accelerate deep learning model

inference [20–23].

Although such optimization techniques are shown to improve the performance sig-

nificantly, there are some unavoidable limitations: they either provide a low frame

rate (e.g., 1 fps) [3, 4], or require a small input image size (e.g., 128x128) [5, 24, 25].

5

2.2.2 Server offloading based framework

Opposed to local execution based frameworks, server offloading based mobile deep

learning frameworks relies on the server for executing deep learning model inference.

Server offloading refers to passing the computationally-intensive task on to a dedicated

server with abundant resources, i.e., sending the data to be processed to the server and

receiving the processed results. Following the works [26] that have exploited server

offloading for continuous vision applications where computationally expensive image

processing task was offloaded to the server, several approaches propose deep learning

applications on mobile devices utilizing server offloading to provide higher frame rate

and lower latency [24, 27, 28]. While the biggest merit of server offloading based mo-

bile deep learning framework is that there is no need to worry about the computational

cost, meaning there is a high chance where state-of-the-art models can be employed

without much optimization, there are some costs that need to be paid: network latency,

network cost (e.g., LTE data), and possible server usage cost.

2.3 What is different about SR in smartphones?

2.3.1 Latency

While several recent works focus on the computational efficiency, the primary goal of

SR has been enhancing the quality of the generated HR image. As a result, the infer-

ence time of the state-of-the-art SR models are often far from real-time performance.

For instance, current state-of-the-art model EDSR [11] takes about 100 seconds for

x2 upscaling to 2K resolution frame. On the other hand, applying SR in smartphones

impose another important challenge: the system should run on real-time, so that users

can view the upscaled image from the camera with minimized delay. Large inference

time of the SR model can lead to unacceptable latency between the incoming LR frame

from the camera and the actual rendering on the smartphone screen, leading to unsat-

isfactory user experience.

6

2.3.2 Resource constraints

Furthermore, super resolution for mobile devices incurs challenge as mobile devices

are very short on resources (e.g., computing power, memory, and energy). To satisfy

the strict latency requirement, deep learning model should be carefully selected and

optimized. Even when offloading the data to the server, additional network usage cost

and energy consumption should be considered. Furthermore, a naive approach such as

applying SR on each incoming frame can lead to a very inefficient system: deciding

’when’ and ’how’ to apply SR on frames becomes importance for system optimization.

2.4 Local or server?

A question remains when aiming to apply SR in smartphone cameras: where would

be perform the deep learning model inference? As mentioned earlier, relying solely on

local execution forces us to either gives up high frame rate (i.e., low latency), or large

input image size. For some tasks, such sacrifices may be acceptable (e.g., for image

classification small input image size may be acceptable). However, we need both the

large input image size and low latency for image super resolution, as they both directly

affect the user experience. In such a case, relying solely on local execution cannot

achieve the goal; the help from a powerful server is a must (we verify this statement

by the evaluation in Chapter 4 by showing that even the simplest four counvolutional

layered SR model takes about 500 ms in state-of-the-art smartphone). As a result, we

focus on server offloading to provide high frame rate and at the same time maintain a

large input image size.

7

Chapter 3

Implementation

3.1 SR model implementation

We implement ESPCN [8] in TensorFlow [29]. Distinguished from the previous ap-

proaches where the input LR frame is upscaled using bicubic interpolation and then

passed into the deep learning model, ESPCN takes in the LR frame itself without any

upscaling as input. Instead, ESPCN employs a sub-pixel convolutional layer, where

the number of channels in the last layer is r2 times the number of channels in the input

LR frame, which are then shuffled together to generate a r times upscaled HR frame.

As the input size of the deep learning model is remained the same as the LR frame

size, the amount of computation required reduces significantly, and it is reported in the

original paper that the inference time of ESPCN for x4 upscaling on 2K Full HD frame

is 29 ms on NVIDIA K2 GPU, capable of providing a real time performance.

Figure 3.1(a) depicts the architecture of ESPCN in the original paper. ESPCN is

consisted of 3 convolutional layers and a sub-pixel shuffling layer. Relu activation

is utilized except for the output layer, where tanh activation is used. Though it is

mentioned in the paper that using the tanh activation for the output layer shows a

better Peak Signal-to-Noise Ratio (PSNR) performance, we found it difficult to train

the model with tanh activation. Instead, we employed a 1x1 convolutional layer for

8

(a) Original architecture. (b) Modified architecture.

Figure 3.1: The original ESPCN architecture in paper (a) and our modified architecture

(b).

scaling the output pixel values, as shown in Figure 3.1(b).

We apply SR on luminance (Y) channel in YCbCr color space, same as the orig-

inal paper. Aside from the original motivation of this approach that people are more

sensitive to the luminance channel, additional benefit arises from having to send only

the Y channel values of the frame to the server: this reduces the data rate by three times

compared to the case where we apply SR on all RGB channels.

3.2 Prototype implementation on Android

Figure 3.2 depicts the overall prototype architecture. We use Android camera2 API

to obtain frames from the camera in the client (smartphone). CaptureRequest sets the

9

Figure 3.2: Overall implementation architecture on Android.

camera parameters and reads the frames from the hardware. Surface displays the cam-

era frame on the screen as preview, reads in user actions (e.g., zoom-in/out, capture),

and passes them back to CaptureRequest so that the adjusted parameters can be ap-

plied. ImageReader receives the frames from CaptureRequest into a byte array (in

YUV format). Afterwards, the Y channel values are extracted and sent to the server,

connected by TCP socket. The server, implemented in Python, receives the frame,

passes it into the SR model, and sends back the upscaled frame to the client. After the

client receives the upscaled frame, YUV pixel values are converted to RGB values 1,

copied into a bitmap, which is overlapped to the Surface. All the image processing

functions, including the YUV to RGB color conversion, are implemented using Java

Native Interface (JNI) for better faster runtime performance.

1The process of upscaling U,V channel values are included in this process.

10

Chapter 4

Evaluation

4.1 SR model performance

We trained the ESPCN described in Chapter 3 with DIV2K dataset [12] 1. Table 4.1

summarizes the performance of the trained model on two benchmark datasets: Set5

and Set14 2. We see that ESPCN achieves better performance compared to bicubic

interpolation. However, the performance of our current trained model shows about

0.2 dB less performance gain compared to the original paper. We suspect the reason

to be the different training dataset, architecture (modifying tanh layer to 1x1 convolu-

tional layer, and the specific training parameters not mentioned in the original paper.

For our future work, we plan to further train the model with more image datasets as

well as fine-tune the training parameters to yield better performance.

We further evaluate the performance of the trained model on actual smartphone

pictures. We take 5 pictures from everyday scenes (including indoor and outdoor) us-

ing a Galaxy S8, embedded with 4,032x3,024 pixels camera. We take the pictures in

raw format (DNG), convert them to PNG format for evaluation. Table 4.2 shows that

1The original paper used 50,000 random images from ImageNet [30]. We used different dataset as we

could not reproduce the original dataset.
2Set5 and Set14 are benchmark datasets, consisted of 5 and 14 images, respectively.

11

Table 4.1: Mean PSNR (dB) of bicubic interpolation and implemented ESPCN on

benchmark datasets

Dataset Scale Bicubic interpolation ESPCN

Set5

x2 30.90 33.58

x3 28.35 30.85

x4 26.28 28.48

Set14

x2 27.93 30.14

x3 25.82 27.67

x4 24.23 25.86

Table 4.2: Mean PSNR (dB) of bicubic interpolation and implemented ESPCN on

smartphone pictures

Dataset Scale Bicubic interpolation ESPCN

Smartphone

pictures

x2 34.32 37.37

x3 31.62 34.29

x4 29.54 31.82

the trained model also achieves better performance, demonstrating that applying deep

learning based SR techniques can be effective.

4.2 Inference time measured on smartphone and server

We compare the inference time of ESPCN on server and smartphone. Server is equipped

with NVIDIA GTX 1080 Ti, and we measure the inference time on two smartphones,

Galaxy S8 and Nexus 6p, both with Android 7. Table 4.3 shows the core parameters of

the compared devices. On Galaxy S8 and Nexus 6p, ESPCN model runs only on CPU

using TensorFlow Android [19].

Table 4.4 shows the measured inference time on the above mentioned devices.

Input sizes are set to be x8 and x4 downsampled frame size of 12 Mpixel (4,032x3,024

12

Table 4.3: Specs of server and smartphones.

GTX 1080 Ti Galaxy S8 Nexus 6p

Cores 3584 8 (4+4) 8 (4+4)

Clock (GHz) 1.582 2.3/1.7 2/1.5

Memory (GB) 11 4 3

pixels) cameras embedded in several state-of-the-art smartphones, including Galaxy

S8 and Nexus 6p3. As a general trend, we observe that higher upscale factor does not

affect the inference time significantly. This is due to the fact that the upscale factor only

affects the number of channels in the sub-convolutional layer. However, as the input

size increases, the amount of computation needed increases proportionally throughout

each layer, significantly increasing the inference time.

It is important to observe that the inference time on the server and the smart-

phone differ by more than hundred times. Considering the inference time on mobile

devices (as high as few seconds for each frame), relying solely on mobile device for

the deep learning model inference cannot satisfy the latency and frame rate needed,

as stated in Chapter 2. Note that the tested ESPCN model is consisted of only four

convolutional layers; inference time of deeper models are expected to be much larger.

4.3 Latency analysis

In this section, we evaluate the overall latency of our application. The measurement

topology is depicted in Figure 4.1. The server uses a and a single NVIDIA GTX 1080

Ti GPU with 11 Gb memory. We use off the shelf TP-link Archer C2600 Wi-Fi Access

Point (AP) equipped with QCA9980 chipset and Nexus 6p, equipped with Qualcomm

Adreno 430 CPU. The server and the AP are both connected with 1 Gbps LAN, so that

3We failed to measure the inference time on Nexus 6p for input size 1,004x756, as the application

stopped during the computation.

13

Table 4.4: Inference time (ms) on server and smartphones.

Size Scale GTX 1080 Ti Galaxy S8 Nexus 6p

504x378

x2 4.0 486.8 1701.1

x3 4.5 511.8 535.7

x4 7.0 535.7 2393.6

1008x756

x2 16.0 4010.8 -

x3 16.0 4516.6 -

x4 22.5 5243.4 -

Figure 4.1: Experiment topology.

the wired link does not act as the bottleneck in data transmission.

4.3.1 Offloading latency

We first measure the latency during the server offloading process, which includes the

network latency and the inference time of the SR model at the server. Specifically, we

measure three latency components: i) uplink latency: the time needed for the client to

send frame to the server, measured at the server side, ii) inference time of the deep

learning model on the server, and iii) downlink latency: the time needed for the server

to send back the upscaled frame to the client 4.

Impact of wireless link: We first measure the latency for 2 different types of Wi-Fi

4Downlink latency is evaluated by measuring the total time between the client sends the frame to the

server and receives the upscaled frame at the client side, and subtracting the uplink latency and inference

time.

14

 0

 20

 40

 60

 80

 100

 120

 140

802.11n 802.11ac

L
a

te
n

c
y

 (
m

s
)

Uplink latency
Inference time

Downlink latency

Figure 4.2: Network latency for different Wi-Fi links.

links: 802.11n link in 2.4 GHz band and 802.11ac link in 5 GHz band. The LR image

size is 640x360 and the upscale factor is 2. As the uplink and downlink data traffic

is in units of Megabytes (about 1.75 and 7 Megabytes respectively), data rate of Wi-

Fi affects the latency significantly. Figure 4.2 depicts that using a faster 802.11ac link

reduces the offloading latency by 54 %. For our subsequent evaluations, measurements

were conducted with with 802.11ac link.

Impact of upscale factor: Figure 4.3 depicts the offloading latency with different up-

scale factors, where the size of the input LR frame is 320x240. Varying the upscale

factor for the same input LR frame size increases the downlink data traffic quadrati-

cally, significantly increasing the offloading latency. Although the input LR frame size

affects the inference time significantly, the overall impact on the offloading latency is

small, as the increased inference time is minimal compared to uplink and downlink

latency.

Impact of image size: Figure 4.4 compares the offloading latency for varying input

LR frame size, where the upscale factor is fixed as 2. Varying the input LR frame size

15

 0

 20

 40

 60

 80

x2 x3 x4

L
a

te
n

c
y

 (
m

s
)

Uplink latency
Inference time

Downlink latency

Figure 4.3: Network latency for different upscale factor, where the input LR frame size

is 320x240.

 0

 20

 40

 60

 80

320x240 640x360 640x480

L
a

te
n

c
y

 (
m

s
)

Uplink latency
Inference time

Downlink latency

Figure 4.4: Network latency for different input LR frame size, where the upscale factor

is 2.

16

Figure 4.5: Overall operational flow and latency components.

increases both the uplink and downlink data traffic linearly, incurring larger network

latency, but not as significantly as the upscale factor. Again, the increased inference

time due to higher upscale factor does not affect the overall offloading latency signifi-

cantly.

4.3.2 Overall latency breakdown

Figure 4.5 depicts the detailed flow of the system. The overall latency can be divided

into two blocks: offloading latency and image rendering latency. Image rendering la-

tency includes the conversion from YUV to RGB, setting the converted RGB pixel

values in a bitmap, and drawing the bitmap on a canvas for rendering.

Table 4.5 shows the measured latency of each delay components, where the size

of the LR frame is 640x360 and the upscale factor is 2. Total latency of the system is

104 ms, resulting in about 10 fps.

In our initial implementation, the image rendering latency is quite substantial, even

17

Table 4.5: Overall latency breakdown on Galaxy S8 (upscale factor = 2).

Component
Latency (ms)

320x240 640x360 640x480

Offloading latency 27 54 63

YUV→RGB conversion 6 18 23

Set RGB pixels in a bitmap 4 9 12

Draw bitmap on screen 1 4 4

Total latency 38 85 93

Frame rate (fps) 26.3 11.8 10.8

comparable to the network latency. This latency can be minimized by using the An-

droid Renderscript API [31] used for running computationally extensive tasks at high

performance, which will be included in our future work.

18

Chapter 5

Discussion

In this section, we discuss some practical issues and challenges related to our proposed

application.

5.1 Perceptual quality of generated images

It is a well-known issue that conventional deep learning based SR models that are

trained with HR image-downsampled LR image pairs to maximize PSNR (i.e., min-

imize mean square error) do not always produce images with maximized perceptual

quality. The reasons are because (i) , and (ii) various factors other than downsam-

pling contribute to the generation of LR image (i.e., non-ideal downsampling kernel,

blurring, noise, artifacts caused by lossy compression, etc.). While [32] derives the

theoretical insight on the the tradeoff between the distortion and perception, recent

approaches use various training methodologies (e.g., adversarial training with Gen-

erative Adversarial Network (GAN)) to generate a HR frame with better perceptual

quality [10, 33–35], or propose self-example based approaches where the HR frame

generation process is tailored specific to the input LR frame [36, 37].

Though we have seen in Chapter 4 that the trained SR model performs well on

actual pictures taken from smartphones in terms of PSNR, the actual effect on the

19

image quality perceived to the users should be more closely investigated. Note that

our proposed system does not require a specific type of SR model to be utilized: any

model mentioned above can be employed for in our application as long as the perfor-

mance and computational efficiency are considered. We plan on testing with various

SR models to further enhance the performance of our system.

5.2 Managing high data rate

When using server offloading, optimizing the amount of data traffic between the server

and the client is crucial, as they directly affect the energy consumption and cost (e.g.,

LTE data budget).

State-of-the-art smartphones (e.g., Galaxy S8) are often embedded with 12 Mpixel

cameras (4,032x3,024 pixels). Assume a situation where we offload frames maximum

zoomed-in (often x8) with frame rate at 10 fps. Even when we send Y channel only

so that the data rate is reduced by 3 times compared to sending all RGB channels, the

data rate sent to the server becomes,

(504 ∗ 378 pixels) ∗ (1 channel) ∗ (8 bits/channel) ∗ (10 fps) = 15.2 Mbps. (5.1)

One possible alternative may be sending the frames after compression (e.g., in

forms of PNG). In such a case, reduced data rate can be estimated as follows,

(504 ∗ 378 pixels) ∗ (1 channel) ∗ (8 bits/channel) ∗ (10 fps) ∗ (0.51) = 7.6Mbps. (5.2)

However, such compression can introduce additional latency incurred by the com-

pression process, lowering the overall frame rate.

Note that the above calculation is only for the uplink data traffic (from client to

the server). As the size of the upscaled frame is proportional to the square of the up-

scale factor, downlink data traffic (from server to the client) increases significantly. For

instance, when the upscale factor is 2 in the above scenario, the total data rate becomes

15.2 (uplink) + 15.2 ∗ 4 (downlink) = 76Mbps. (5.3)

1This is the empirical average compression ratio measured on 800 training images in DIV2K dataset

20

This results in tremendous amount of wireless data usage just by running the applica-

tion for a few seconds, which may incur huge costs for users especially when LTE link

is used.

Mobile deep learning frameworks for continuous vision applications, both includ-

ing local execution and server offloading, often employ caching mechanism to enhance

system efficiency [3, 26]. The core idea of caching mechanism is to reuse the result of

previous frames, so that redundant computation can be avoided. As continuous frames

from the camera share a lot in common (e.g., background), caching mechanism can

effectively reduce the amount of resource usage (e.g., computation, amount of data

offloaded to server).

Though caching mechanism has definite merits, it should be employed carefully,

as the decision making process to determine whether to reuse previous results or not

should not impose much overhead. While some simple methods such as pixel differ-

encing [26] or color histogram matching [3] has been used for image classification or

object detection/tracking, caching mechanisms for image super resolution differs from

such tasks in two ways: (i) every output pixel value is important and (ii) downlink data

traffic from server to client is huge (several times larger than uplink) as opposed to

above applications where the result from server is rather simple and small (e.g., label

or bounding box of the object). We plan on devising a caching mechanism for image

SR in our future work.

21

Chapter 6

Conclusion

In this paper, we have presented a novel application to enable real-time image super

resolution in smartphone cameras. We implemented a deep learning based image super

resolution model, and verified that applying SR can be effective on the pictures taken

from the actual smartphone cameras. We also checked that the inference time of deep

learning models executed on mobile devices are too long to provide real-time perfor-

mance, and proposed a server offloading based framework to provide lower latency

and higher frame rate. Via a prototype implementation on Android, we measured that

using server offloading, 10 fps can be provided.

For our future work, we plan to further optimize the latency components in our

system. Furthermore, we will devise a caching mechanism adequate for image super

resolution to reduce the amount of data offloaded to the server.

22

Bibliography

[1] N. P. D. Gallego and J. Ilao, “Multiple-image super-resolution on mobile devices:

an image warping approach,” in EURASIP Journal on Image and Video Process-

ing, 2017.

[2] Y. Romano, J. Isidoro, and P. Milanfar, “Raisr: Rapid and accurate image super

resolution,” in IEEE Transactions on Computational Imaging, 2017.

[3] L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon: Mobile gpu-based deep learn-

ing framework for continuous vision applications,” in Proc. ACM MobiSys, 2017.

[4] X. Zeng, K. Cao, and M. Zhang, “Mobiledeeppill: A small-footprint mobile deep

learning system for recognizing unconstrained pill images,” in Proc. ACM Mo-

biSys, 2017.

[5] B. Zhu, Y. Chen, J. Wang, S. Liu, B. Zhang, and M. Tang, “Fast deep matting

for portrait animation on mobile phone,” in Proc. ACM Multimedia Conference,

2017.

[6] C. Dong, C. Loy, K. He, and X. Tang, “Learning a deep convolutional network

for image super-resolution,” in Proc. European Conference on Computer Vision

(ECCV), 2014.

[7] R. Timotfe, D. Smet, V, and L. V. Gool, “A+: Adjusted anchored neighborhood

regression for fast super-resolution,” in ACCV, 2014.

23

[8] W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Ruecker, and

Z. Wang, “Real-time single image and video super-resolution using an efficient

sub-pixel convolutional neural network,” in Proc. IEEE CVPR, 2016.

[9] J. Kim, J. Lee, and K. Lee, “Accurate image super resolution using very deep

convolutional networks,” in Proc. IEEE CVPR, 2016.

[10] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,

A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image

super-resolution using a generative adversarial network,” in Proc. IEEE CVPR,

2017.

[11] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual net-

works for single image super-resolution,” in Proc. IEEE CVPR Workshops, 2017.

[12] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, L. Zhang, and et al., “Ntire

2017 challenge on single image super-resolution: Methods and results,” in Proc.

IEEE CVPR Workshops, 2017.

[13] https://www.cnet.com/news/google-pixel-2-photos-get-ai-better-digital-zoom/.

[14] https://ai.googleblog.com/2016/11/enhance-raisr-sharp-images-with-

machine.html.

[15] https://play.google.com/store/apps/details?id=com.anforapps.

camerasuperpixel&hl=en.

[16] https://play.google.com/store/apps/details?id=uk.tensorzoom&hl=en.

[17] “Caffe android library,” https://github.com/sh1r0/caffe-android-lib.

[18] “Torch android,” https://github.com/soumith/torch-android.

[19] “Tensorflow android demo,” https://github.com/tensorow/tensorow/tree/master/

tensorow/examples/android.

24

[20] S. S. L. Oskouei, H. Golestani, M. Hashemi, and S. Ghiasi, “Cnndroid: Gpu-

accelerated execution of trained deep convolutional neural networks on android,”

in Proc. ACM Multimedia Conference, 2016.

[21] N. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and

F. Kawsar, “Deepx: A software accelerator for low-power deep learning infer-

ence on mobile devices,” in Proc. ACM/IEEE IPSN, 2016.

[22] M. Alzantot, Y. Wang, Z. Ren, and M. B. Srivastava, “Rstensorflow: Gpu en-

abled tensorflow for deeplearning on commodity android devices,” in Proc. ACM

1st International Workshop on Embedded and Mobile Deep Learning (EMDL),

2017.

[23] Q. Cao, N. Balasubramanian, and A. Balasubramanian, “Mobirnn: Efficient re-

current neural network executionon mobile gpu,” in Proc. ACM 1st International

Workshop on Embedded and Mobile Deep Learning (EMDL), 2017.

[24] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile deep

learning framework for edge video analytics,” in Proc. IEEE INFOCOM, 2018.

[25] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand deep model

compression for mobile devices: A usage-driven model selection framework,” in

Proc. ACM MobiSys, 2018.

[26] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,

“Glimpse: Continuous, real-time object recognition onmobile devices,” in Proc.

ACM SenSys, 2015.

[27] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishnamurthy,

“Mcdnn:an approximation-based execution framework for deep stream process-

ing under resource constraints,” in Proc. ACM MobiSys, 2016.

25

[28] X. Ran, H. Chen, Z. Liu, and J. Chen, “Delivering deep learning to mobile de-

vices via offloading,” in Proc. ACM VR/AR Network, 2017.

[29] “Tensorflow,” https://tensorflow.org.

[30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, and et al., “Imagenet large scale visual

recognition challenge,” in International Journal of Computer Vision, 2014.

[31] “Android renderscript api guide.” https://developer.android.com/guide/topics/

renderscript/compute.html.

[32] Y. Blau and T. Michaeli, “The perception-distortion tradeoff,” in Proc. IEEE

CVPR, 2018.

[33] M. S. Sajjadi, B. Scholkopf, and M. Hirsch, “Enhancenet: Single image super-

resolution through automated texture synthesis,” in Proc. IEEE ICCV, 2017.

[34] A. Ignatov, N. Kobyshev, R. Timotfe, K. Vanhoey, and L. V. Gool, “Dslr-quality

photos on mobile devices with deep convolutional networks,” in Proc. IEEE

ICCV, 2017.

[35] X. Wang, K. Yu, C. Dong, and C. C. Loy, “Recovering realistic texture in image

super-resolution by deep spatial feature transform,” in Proc. IEEE CVPR, 2018.

[36] J. B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution from trans-

formed self-exemplars,” in Proc. IEEE CVPR, 2015.

[37] A. Shocher, N. Coheny, and M. Irani, ““zero-shot“ super-resolution using deep

internal learning,” in Proc. IEEE CVPR, 2018.

26

초 록

최신 스마트폰 카메라의 성능이 빠르게 발전함에 따라, 디지털 카메라 없이도

스마트폰을이용하여고화질의사진들을손쉽게찍을수있게되었다.하지만줌인

기능의경우,스마트폰카메라와디지털카메라사이에는여전히큰격차가존재한

다. 촬영 영역을 확대해도 화질의 손실이 없는 광학 줌인 기능을 제공해주는 광학

렌즈는 가격상의 문제로 대부분 스마트폰 카메라에 포함되어있지 않으며, 광학렌

즈가 포함된 스마트폰의 경우에도 제한된 기능만을 제공한다. 광학렌즈가 부재한

대부분의스마트폰에서제공되는디지털줌인기능을활용하는경우촬영할영역을

확대하면화질의손상이불가피하며,이는사용자에게큰불편을준다.

한편, 이미지 초해상도 기술을 이용하는 경우 디지털 줌인된 저화질 사진을 고

화질사진으로복구할수있다.이미지초해상도기술은저화질사진으로부터고주

파수 성분들을 추측하여 고화질 사진을 얻어내는 기술로, 전통적인 영상처리 연구

분야중하나이다.최근딥러닝연구가활발해짐에따라이미지초해상도기술에도

딥러닝이 적용되고 있으며, 합성곱 신경망을 이용한 기술이 기존의 이미지 초해상

도기술들보다뛰어난성능을보임이확인됨에따라딥러닝기반의이미지초해상도

기술이활발히연구되고있다.

본논문에서는딥러닝기반의이미지초해상도기술을이용하여디지털줌인된

사진의화질을실시간으로올려주는시스템을제안한다.스마트폰은연산처리속도,

에너지소모,메모리등이제한되어있기때문에,스마트폰기기자체에서딥러닝모

델연산을수행하기에큰제약이있다.본논문에서는이러한한계를극복하기위해

서버오프로딩을이용하는시스템을제안하며,안드로이드스마트폰에프로토타입

28

구현후다양한환경에서의실험을통해서버오프로딩을이용하는경우훨씬높은

주사율을얻을수있음을보인다.

주요어:모바일컴퓨팅,서버오프로딩,딥러닝,이미지초해상도기술

학번: 2016-28963

29

감사의글

석사과정을마무리하며지난 2년동안의연구실생활을되돌아보니,감사할일

들이 너무나 많은 것 같습니다. 항상 제 진로를 먼저 생각하여주시고, 제가 목표를

향해 나아갈 수 있도록 소중한 기회들을 제공해주신 최성현 교수님께 가장 먼저

감사드립니다. 원하는 바를 이루지 못하고 상심해있을 때마다 교수님께서 주신 진

심어린격려와조언덕분에좌절하지않고무사히졸업할수있었습니다.존대말로

학생들을존중해주시며,부족한모습들을포용하여주시고뛰어난통찰력으로연구

를 지도하여주시는 교수님을 보며 진정한 공학자이자 교육자의 모습을 배울 수 있

었습니다.적극적인자세로끊임없이도전하라는교수님의말씀잊지않고,앞으로

더욱발전할수있도록노력하겠습니다.

제 학위 논문 심사에 참여해주신 이경무 교수님, 윤성로 교수님께도 깊이 감사

드립니다. 심사위원장으로 참여해주시며 저를 격려해주시고, 지도학생인 임비 연

구원님과의공동연구기회를흔쾌히허락하여주신이경무교수님께감사드립니다.

학부 프로그래밍방법론, 대학원 딥러닝 수업을 통해 제가 코딩과 딥러닝에 관심을

가지게 해주시고, 연구까지 이어나갈 수 있도록 소중한 가르침을 주신 윤성로 교

수님께도 다시 한번 감사드립니다. 교수님들께서 주신 소중한 조언들 잊지 않고,

훌륭한연구자가될수있도록노력하겠습니다.

제 첫 논문을 지도해주셨던 최재혁 교수님께도 감사의 말씀을 드리고 싶습니

다. ‘연구실 선배처럼 생각해달라’고 말씀하시며 많이 부족한 저를 따듯한 격려로

이끌어주신 덕분에 연구자로서 첫 걸음을 성공적으로 딛을 수 있었습니다. 바쁘신

가운데도제가지도를요청드릴때마다흔쾌히시간을내어주시고아낌없는조언을

31

주신최재혁교수님께다시한번감사드립니다.

MWNL의선후배님들께도감사의말씀을전합니다.학부졸업프로젝트지도조

교님으로인연을맺고,연구실입학후에도같은팀선배이자연구자로서멘토와같

으셨던구종회형님께감사드립니다.때로는따듯한칭찬과격려로,때로는따끔한

충고로 미숙한 제가 더욱 성장할 수 있도록 도와주신 손위평 형님, 날카로운 통찰

력으로제연구에조언을주시던변성호형님께도감사드립니다.현재같이연구를

진행중인, 항상 후배들을 존중으로 대해주시며 선배의 귀감이 되어주시는 김성원

형님께도감사드립니다. 2년동안제가도움을요청드릴때마다항상마다하지않고

도와주셨던 이규진, 양창목 형님께도 감사드립니다. 선배지만 저를 동기처럼 대해

주시고,크고작은여러경험을함께하며연구실생활을더욱보람차게만들어주신

황선욱 형님께도 감사드립니다. 긴 시간은 아니었지만 같은 팀에서 함께했던 박승

일, 윤호영, 김병준 형님께도 감사드립니다. 이외에도 연구실에서 소중한 시간을

함께 보낸 신연철 형님, 윤강진 형님, 김선도 형님, 손영욱 형님, 김지훈 형님, 이재

홍형님,김준석형님,최준영형님,이기택형님,곽철영형님,박태준형님,이지환

형님, 이강현, 허재원, 권휘재, 장민석 형님, 임수훈, 이경진, 이외에도 홈커밍데이,

신년회에서좋은말씀들을아끼지않으셨던연구실선배님들께도감사를전합니다.

대학원생활을무사히마칠수있도록도와준주변의친구들에게도감사드립니

다. 학부 신입생때부터 지금까지 대학생활을 함께한 동기 김정민, 이호진, 이굳솔,

문지우에게감사의인사를전합니다.한창진로고민이많던시절제고민을들어주

시고,지금도항상저보다한걸음먼저걸어나가시며뒤따라가는제게소중한조언

아끼지 않으시는 이창현 형님께도 감사드립니다. 고등학교 시절부터 함께 지내온

홍용재,이영준에게도감사의말을전합니다.각자의꿈을위해서로다른길을걷고

있지만, 항상 서로의 가장 친한 친구이자 조언자가 되어주는 용재, 영준에게 깊이

감사하며,앞으로도소중한우정이어나갔으면좋겠습니다.

사랑하는여자친구박수영에게도감사드립니다.고민이있을때마다본인의것

처럼 진지하게 들어주고, 진심으로 응원해준 덕분에 항상 든든한 마음으로 연구에

매진할수있었습니다.앞으로각자의꿈을위해열심히노력하는과정에서의지할

수있는남자친구가될것을다짐합니다.

마지막으로,사랑하는가족에게감사드립니다.지금의저를있게해주신든든한

인생의후원자이자공학도로서의귀감이되어주시는아버지,항상본인보다가족을

먼저생각하시고가족들을위해배려해주시는어머니에게깊이감사드립니다.가족

의활력소가되어주는동생주연에게도고마움을전하며,의과대학본과공부를잘

마치고본인의꿈을실현해나가길기원합니다.항상저를자랑스러워해주시고따듯

하게 맞아주시는 외할아버지, 외할머니, 미국에 계신 친할머니께도 감사드립니다.

앞으로더욱열심히노력하여자랑스러운아들,오빠,손자가될것을다짐합니다.

MWNL에서의 시간은 제 인생에서 평생 잊지 못할 시간이 될 것 같습니다. 연

구실 생활동안 배우고 느낀 부분들 잊지 않고, 앞으로도 더욱 노력하여 MWNL의

자랑스러운동문이될수있도록노력하겠습니다.

2018년 8월

이주헌올림

	1 Introduction
	2 Preliminaries
	2.1 Image Super Resolution (SR) .
	2.2 Mobile deep learning framework .
	2.2.1 Local execution based framework
	2.2.2 Server offloading based framework

	2.3 What is different about SR in smartphones
	2.3.1 Latency .
	2.3.2 Resource constraints .

	2.4 Local or server .

	3 Implementation
	3.1 SR model implementation .
	3.2 Prototype implementation on Android

	4 Evaluation
	4.1 SR model performance .
	4.2 Inference time measured on smartphone and server
	4.3 Latency analysis .
	4.3.1 Offloading latency .
	4.3.2 Overall latency breakdown

	5 Discussion
	5.1 Perceptual quality of generated images
	5.2 Managing high data rate .

	6 Conclusion
	Abstract (In Korean)
	감사의글

<startpage>11
1 Introduction 1
2 Preliminaries 4
 2.1 Image Super Resolution (SR) . 4
 2.2 Mobile deep learning framework . 5
 2.2.1 Local execution based framework 5
 2.2.2 Server offloading based framework 6
 2.3 What is different about SR in smartphones 6
 2.3.1 Latency . 6
 2.3.2 Resource constraints . 7
 2.4 Local or server . 7
3 Implementation 8
 3.1 SR model implementation . 8
 3.2 Prototype implementation on Android 9
4 Evaluation 11
 4.1 SR model performance . 11
 4.2 Inference time measured on smartphone and server 12
 4.3 Latency analysis . 13
 4.3.1 Offloading latency . 14
 4.3.2 Overall latency breakdown 17
5 Discussion 19
 5.1 Perceptual quality of generated images 19
 5.2 Managing high data rate . 20
6 Conclusion 22
Abstract (In Korean) 28
감사의글 31
</body>

