

저 시 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

l 차적 저 물 성할 수 습니다.

l 저 물 리 목적 할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

http://creativecommons.org/licenses/by/2.0/kr/legalcode
http://creativecommons.org/licenses/by/2.0/kr/

Ph.D. DISSERTATION

Lifelong Learning of Everyday Human

Behaviors using Deep Neural Networks:

Dual Memory Architecture and Incremental

Moment Matching

깊은 신경망 기반 일상 행동에 대한 평생 학습:

듀얼 메모리 아키텍쳐와 점진적 모멘트 매칭

BY

Sang-Woo Lee

AUGUST 2018

Department of Electrical Engineering & Computer Science

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Lifelong Learning of Everyday Human

Behaviors using Deep Neural Networks:

Dual Memory Architecture and Incremental

Moment Matching

깊은 신경망 기반 일상 행동에 대한 평생 학습:

듀얼 메모리 아키텍쳐와 점진적 모멘트 매칭

BY

Sang-Woo Lee

AUGUST 2018

Department of Electrical Engineering & Computer Science

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Lifelong Learning of Everyday Human Behaviors using

Deep Neural Networks:

Dual Memory Architecture and Incremental Moment

Matching

깊은 신경망 기반 일상 행동에 대한 평생 학습:

듀얼 메모리 아키텍쳐와 점진적 모멘트 매칭

지도교수 장 병 탁

이 논문을 공학박사 학위논문으로 제출함

2018년 04월

서울대학교 대학원

전기.컴퓨터공학부

이 상 우

이 상 우 의 공학박사 학위논문을 인준함

2018년 06월

위 원 장 최 진 영

부위원장 장 병 탁

위 원 윤 성 로

위 원 김 건 희

위 원 하 정 우

Abstract

Learning from human behaviors in the real world is imperative for building

human-aware intelligent systems. We attempt to train a personalized context

recognizer continuously in a wearable device by rapidly adapting deep neural

networks from sensor data streams of user behaviors. However, training deep

neural networks from the data stream is challenging because learning new data

through neural networks often results in loss of previously acquired information,

referred to as catastrophic forgetting. This catastrophic forgetting problem has

been studied for nearly three decades but has not been solved yet because the

mechanism of deep learning has been not understood enough.

We introduce two methods to deal with the catastrophic forgetting prob-

lem in deep neural networks. The first method is motivated by the concept

of complementary learning systems (CLS) theory - contending that effective

learning of the data stream in a lifetime requires complementary systems that

comprise the neocortex and hippocampus in the human brain. We propose a

dual memory architecture (DMA), which trains two learning structures: one

gradually acquires structured knowledge representations, and the other rapidly

learns the specifics of individual experiences. The ability of online learning is

achieved by new techniques, such as weight transfer for the new deep module

and hypernetworks for fast adaptation.

The second method is incremental moment matching (IMM) algorithm.

IMM incrementally matches the moment of the posterior distribution of neural

networks, which is trained for the previous and the current task, respectively.

To make the search space of posterior parameter smooth, the IMM procedure is

i

complemented by various transfer learning techniques including weight trans-

fer, L2-norm of the old and the new parameter, and a variant of dropout with

the old parameter.

To provide an insight into the success of two proposed lifelong learning

methods, we introduce an insight by introducing two online learning methods

of sum-product network, which is a kind of deep probabilistic graphical model.

We discuss online learning approaches which are valid in probabilistic models

and explain how these approaches can be extended to the lifelong learning

algorithms of deep neural networks.

We evaluate proposed DMA and IMM on two types of datasets: the various

artificial benchmarks devised for evaluating the performance of lifelong learning

and the lifelog dataset collected through the Google Glass for 46 days. The

experimental results show that our methods outperform comparative models in

various experimental settings and that our trials for overcoming catastrophic

forgetting are valuable and promising.

Keywords: Lifelong learning, Lifelog dataset, Sum-product networks, Deep

neural networks, Dual memory architecture, Complementary learning systems,

Incremental moment matching, Sequential Bayesian

Student Number: 2012-20835

ii

Contents

Abstract i

1 Introduction 1

1.1 Wearable Devices and Lifelog Dataset 1

1.2 Lifelong Learning and Catastrophic Forgetting 2

1.3 Approach and Contribution . 3

1.4 Organization of the Dissertation 6

2 Related Works 8

2.1 Lifelong Learning . 8

2.2 Application-driven Lifelong Learning 9

2.3 Classical Approach for Preventing Catastrophic Forgetting 9

2.4 Learning Parameter Distribution for for Preventing Catastrophic

Forgetting . 12

2.4.1 Sequential Bayesian . 12

2.4.2 Approach to Simulating Parameter Distribution 14

2.5 Learning Data Distribution for Preventing Catstrophic Forgetting 15

3 Preliminary Study: Online Learning of Sum-Product Networks 17

iii

3.1 Introduction . 17

3.2 Sum-Product Networks . 19

3.2.1 Representation of Sum-Product Networks 19

3.2.2 Structure Learning of Sum-Product Networks 22

3.3 Online Incremental Structure Learning of Sum-Product Networks 23

3.3.1 Methods . 23

3.3.2 Experiments . 25

3.4 Non-Parametric Bayesian Sum-Product Networks 29

3.4.1 Model 1: A Prior Distribution for SPN Trees 29

3.4.2 Model 2: A Prior Distribution for a Class of dag-SPNs . . 34

3.5 Discussion . 38

3.5.1 History of Online Learning of Sum-Product Networks . . 38

3.5.2 Toward Lifelong Learning of Deep Neural Networks . . . 38

3.6 Summary . 39

4 Structure Learning for Lifelong Learning: Dual Memory Ar-

chitecture 42

4.1 Introduction . 42

4.2 Complementary Learning Systems Theory 44

4.3 Dual Memory Architectures . 46

4.4 Online Learning of Multiplicative-Gaussian Hypernetworks . . . 50

4.4.1 Multiplicative-Gaussian Hypernetworks 50

4.4.2 Evolutionary Structure Learning 52

4.4.3 Online Learning on Incremental Features 53

4.5 Experiments . 56

4.5.1 Non-stationary Image Data Stream 56

4.5.2 Lifelog Dataset . 60

iv

4.6 Discussion . 65

4.6.1 Parameter-Decomposability in Deep Learning 65

4.6.2 Online Bayesian Optimization 65

4.7 Summary . 66

5 Sequential Bayesian for Lifelong Learning: Incremental Mo-

ment Matching 68

5.1 Introduction . 68

5.2 Incremental Moment Matching 69

5.2.1 Mean-based Incremental Moment Matching (mean-IMM) 70

5.2.2 Mode-based Incremental Moment Matching (mode-IMM) 71

5.3 Transfer Techniques for Incremental Moment Matching 74

5.3.1 Weight-Transfer . 74

5.3.2 L2-transfer . 76

5.3.3 Drop-transfer . 76

5.3.4 IMM Procedure . 79

5.4 Experimental Results . 79

5.4.1 Disjoint MNIST Experiment 80

5.4.2 Shuffled MNIST Experiment 83

5.4.3 ImageNet to CUB Dataset 85

5.4.4 Lifelog Dataset . 88

5.5 Discussion . 89

5.5.1 A Shift of Optimal Hyperparameter via Space Smoothing 89

5.5.2 Bayesian Approach on lifelong learning. 90

5.5.3 Balancing the Information of an Old and a New Task. . . 90

5.6 Summary . 91

v

6 Concluding Remarks 92

6.1 Summary of Methods and Contributions 92

6.2 Suggestions for Future Research 93

초록 109

vi

List of Figures

1.1 The Lifelong learning framework discovered in this work 2

3.1 Types of nodes in SPN: Univariate node (left); Product node

(middle); Sum node (right) . 20

3.2 The proposed online incremental structure learning algorithm of

SPNs. 25

3.3 Log-likelihoods (left). Average conditional log-likelihoods for ar-

bitrary query and evidence (right). 27

3.4 Growth of complexity. If incoming data are similar to the dis-

tribution of the model, the complexity of the model converges.

Otherwise, the complexity of the model increases. 28

3.5 Different structures evolve according to different orders of datasets. 29

3.6 Loglikelihoods with different sampling schemes 35

4.1 Lifelong Learning framework and the dual memory architecture

(DMA) . 43

4.2 A schematic diagram of the dual memory architecture (DMA). . 46

4.3 A schematic diagram of the multiplicative-Gaussian hypernetworks 49

vii

4.4 Distribution of non-stationary data stream of CIFAR-10 in the

experiment . 57

4.5 Test accuracies of learning algorithms on non-stationary CIFAR-

10 data stream . 58

4.6 Test accuracies of DMA on CIFAR-10 data stream under various

settings . 59

4.7 Averaged test accuracies of various learning algorithms on the

lifelog dataset. The location, sub-location, and activity are clas-

sified separately for each of the three subjects. 62

4.8 Averaged test accuracies of various learning algorithms on the

lifelog dataset. The result of each class type are evaluated sepa-

rately for each participant. 63

4.9 Averaged test accuracies of various learning algorithms on the

lifelog dataset. The result of each participant are evaluated sep-

arately for each of the class type. 64

5.1 Geometric illustration of incremental moment matching (IMM). . 69

5.2 Experimental results on visualizing the effect of weight-transfer. 75

5.3 Test accuracies of two IMM models with weight-transfer on the

disjoint MNIST (Left), the shuffled MNIST (Middle), and the

ImageNet2CUB experiment (Right). 81

5.4 Test accuracies of IMM with various transfer techniques on the

disjoint MNIST. 83

viii

5.5 (Left) Illustration of the effect of the strategy of re-weighing on

the new last-layer. (Right) The results of mode-IMM with chang-

ing the balancing hyperparameter α to the re-scaled balancing

hayperparameter α̂ with the scale of the Fisher matrix of each

network. 84

ix

List of Tables

4.1 Notations . 50

4.2 Properties of DMA and comparative models 57

4.3 Statistics of the lifelog dataset of each subject 60

4.4 Top-5 classes in each label of the lifelog dataset 61

5.1 The averaged accuracies on the disjoint MNIST for two sequen-

tial tasks. For IMM with transfer, only α is tuned. The numbers

in the parentheses refer to standard deviation. Every IMM uses

weight-transfer. 77

5.2 The averaged accuracies on the shuffled MNIST for three sequen-

tial tasks. The results of SGD and EWC with tuned setting is

from (Kirkpatrick et al., 2017) 78

5.3 Experimental results on the Lifelog dataset. Mean-IMM uses

weight-transfer. Classification accuracies among different classes

(Top) and different subjects (Bottom). 88

x

Chapter 1

Introduction

1.1 Wearable Devices and Lifelog Dataset

It is important to learn from human behavior in the real world for building

human-aware intelligent systems in personalized digital assistants. Recently,

various types of wearable devices, including smart watches and Google Glass,

have gained considerable attention. It is noticeable that these devices can see

and hear what the device user sees and hears; this property differentiates them

from the classical agents in personal computers or the smartphones. To simu-

late this environment, we collected a lifelog dataset through the Google Glass

over 46 days from three participants. This dataset has two properties. First,

high-level contexts are hidden in the raw-level data stream, for example, an

egocentric video recorded during a meeting includes various types of high-level

contexts, although the data is only a stream of pixels and audio signals. Sec-

ond, the data streams are often non-stationary, for example, the life patterns

of a student during vacations and semesters are different. It is in our interest

1

Figure 1.1 The Lifelong learning framework discovered in this work

to continually adapt the context-aware activity recognizer rapidly from human

behaviors gathered through wearable devices. To treat these properties, two

algorithmic techniques are required. First, the deep learning method is neces-

sary to manage raw-level data efficiently. Second, an online learning algorithm

is required to keep track of fast-changing life patterns of user behavior.

1.2 Lifelong Learning and Catastrophic Forgetting

Deep learning algorithms, including convolutional neural networks (CNNs)

and recurrent neural networks (RNNs), deliver state-of-the-art performances

for various fields including computer vision (He et al., 2015; Noh et al., 2015),

speech recognition (Graves et al., 2013; Sainath et al., 2015), and natural lan-

guage processing (Sundermeyer et al., 2012; Sutskever et al., 2014), implying

that representation learning with DNNs is essential for various context-aware

problems. Further, this type of deep learning technique is applicable for context-

aware tasks in egocentric videos (Doshi et al., 2015; Bettadapura et al., 2015;

Simonyan and Zisserman, 2014; Yu et al., 2015).

Lifelong learning refers to the learning of multiple consecutive tasks with

never-ending exploration and continuous discovery of knowledge from data

2

streams. It is crucial for the creation of intelligent and flexible general-purpose

machines such as personalized digital assistants and autonomous humanoid

robots (Thrun and O’Sullivan, 1996; Ruvolo and Eaton, 2013; Ha et al., 2015).

We are interested in the learning of abstract concepts from continuously sens-

ing non-stationary data from the real world, such as first-person view video

streams from wearable cameras (Huynh et al., 2008; Zhang, 2013). To handle

such non-stationary data streams, it is important to learn deep representations

in an online manner.

However, this task is challenging because learning new data through neural

networks often results in a loss of previously acquired information, which is

known as catastrophic forgetting (McCloskey and Cohen, 1989; French, 1999).

Assume that you trained a neural network with the first training data as user

data of the first week. Subsequently, the second training data as user data of

the second week becomes available. You can train the neural network with the

second training data; however, the information of the first training data can

be lost, especially when the data stream is non-stationary. In short, if new

data becomes available, the neural network often forgets the old data. The

catastrophic forgetting problem has resurfaced with the renaissance of deep

learning research (Goodfellow et al., 2013; Srivastava et al., 2013; Li and Hoiem,

2016; Kirkpatrick et al., 2017).

1.3 Approach and Contribution

We introduce two approaches to deal with this catastrophic forgetting problem.

The first method is dual memory architecture (DMA) which processes slow-

changing global patterns as well as keeps track of fast-changing local behaviors

over a lifetime (Lee et al., 2016, 2017c). The second method is incremental

3

moment matching (IMM) which merges networks trained for different datasets

or tasks (Lee et al., 2017b).

In our first approach, the DMA trains two memory structures: one is an

ensemble of DNNs, and the other consists of a shallow network that uses hid-

den representations of the DNNs as input. These two memory structures are

designed to use different strategies. The ensemble of DNNs learns new informa-

tion to adapt its representation to new data, whereas the shallow network aims

to manage non-stationary distribution and unseen classes more rapidly.

Moreover, some techniques for online deep learning are proposed in this

study. First, the transfer learning method via weight transfer is applied to

maximize the representation power of each neural module in online deep learn-

ing (Yosinski et al., 2014). Second, the multiplicative Gaussian hypernetwork

(mGHN) and its online learning method are developed. An mGHN concurrently

adapts both structure and parameters to the data stream by an evolutionary

method and a closed-form-based sequential update, which minimizes informa-

tion loss of past data. The mGHN possesses two good properties for online

learning. First, it can learn from every new one instance rapidly, even if the

instance is from a new class. Second, it can handle incremental input features,

which property is essential when a new DNN is constructed, and new input

features appear in the fast memory.

In our second approach, on the other hand, IMM uses the framework of

Bayesian neural networks, which implies that uncertainty is introduced on the

parameters in neural networks, and that the posterior distribution is calculated

(MacKay, 1992; Blundell et al., 2015). The dimension of the random variable

in the posterior distribution is the number of the parameters in the neural net-

works. IMM approximates the mixture of Gaussian posterior with each compo-

nent representing parameters for a single task to one Gaussian distribution for

4

a combined task. To merge the posteriors, we introduce two novel methods of

moment matching. One is mean-IMM, which simply averages the parameters

of two networks for old and new tasks as the minimization of KL-divergence

between the approximated posterior distribution and the mixture of two Gaus-

sian posteriors. The other is mode-IMM, which merges the parameters of two

networks using a Laplacian approximation (MacKay, 1992) to approximate a

mode of the mixture of two Gaussian posteriors, which represent the parameters

of the two networks.

In general, it is too näıve to assume that the final posterior distribution

for the whole task is Gaussian. To make our IMM work, the search space of

the loss function between the posterior means needs to be smooth and convex-

like. In other words, there should not be high cost barriers between the means

of the two networks for an old and a new task. To make our assumption of

Gaussian distribution for neural network reasonable, we applied three main

transfer learning techniques on the IMM procedure: weight transfer, L2-norm

of the old and the new parameters, and our newly proposed variant of dropout

using the old parameters.

To explain the success of the proposed lifelong learning methods of deep neu-

ral networks in the dissertation, we provide insight by introducing two online

learning methods of sum-product networks (SPNs), a kind of deep probabilistic

graphical models (PGMs). The relation between deep PGMs and deep neural

networks have long been studied. For example, deep neural networks can be un-

derstood as a discriminative version of deep belief networks or deep Boltzmann

machine. Though the original SPNs is a generative model, there also is a dis-

criminative version of SPNs which can also be used for classification tasks. We

propose two methods for the online learning of SPNs. One method, ‘online in-

cremental structure learning of sum-product networks’ (OISSPN), continuously

5

extends the structure of the SPN to estimate the probability density function

(Lee et al., 2013). The other method, ‘non-parametric Bayesian sum-product

networks’ (NPBSPN), continuously estimates the probability of the SPN by se-

quential Bayesian (Lee et al., 2014). These two methods for SPN can correspond

to DMA, which use dual structure learning algorithms, and IMM, which use

sequential Bayesian and Bayesian neural networks to estimate the probability

distribution of the whole dataset and task.

1.4 Organization of the Dissertation

The remained part of this dissertation is organized as follows.

Chapter 2 describes the related works of lifelong learning. First, we introduce

various fields related to the lifelong learning research. Then, we review two

approaches for solving lifelong learning, the ensemble approach and the single

network learning approach.

Chapter 3 introduces two online learning methods of sum-product networks

(SPNs), a kind of deep probabilistic graphical models (PGM). One method is

OISSPN, which continuously extends the structure of the SPN to estimate the

probability density function. The other method is NPBSPN, which continuously

estimates the probability of the SPN by sequential Bayesian. The discussion

section explains the follow-up study after our studies on online learning of SPNs

and argues connections between these SPN studies and the lifelong learning of

deep neural networks.

Chapter 4 introduces dual memory architecture (DMA) for tackling the life-

long learning problem with structure learning of the dual deep-memory system.

First, we explain complementary learning systems (CLS) theory which moti-

vates our proposed model. Then, we introduce the general concept of DMA and

6

its multiplicative-Gaussian Hypernetworks (mGHNs). After that, we present

the experimental results for the lifelong learning of DNNs. Finally, we discuss

the potential contribution of DMA.

Chapter 5 introduces incremental moment matching (IMM) for tackling the

lifelong learning problem with sequential Bayesian. First, we propose mean-

IMM and mode-IMM, the method of merging many networks in the perspec-

tive of Bayesian neural network and Gaussian posterior assumption. Then, we

explain various transfer techniques that can be applied to enhance the perfor-

mance of mean-IMM and mode-IMM. Specifically, we propose drop-transfer, a

novel transfer method devised in the paper. After that, we show that proposed

IMM makes state-of-the-art performance in a variety of datasets of lifelong

learning. Lastly, we discuss geometrical properties in IMM and a Bayesian per-

spective of modern deep neural networks.

Finally, we summarize the dissertation and its contributions in Chapter 6.

7

Chapter 2

Related Works

2.1 Lifelong Learning

Lifelong learning refers to the learning of multiple consecutive tasks with never-

ending exploration and continuous discovery of knowledge from data streams.

This task also has been referred to as lifelong learning, but in this case, the

directing point of preventing catastrophic forgetting along with minimizing to

access previous data is emphasized. Lifelong learning is crucial for the creation

of intelligent and flexible general-purpose machines such as personalized digital

assistants and autonomous humanoid robots (Thrun and O’Sullivan, 1996).

Some studies have proposed methods that maintaining a sparsely shared basis

of the shallow network for all task models (Ruvolo and Eaton, 2013). How-

ever, these approaches cannot learn deep shared representation over all tasks,

which degrades the performances of these models. Online deep learning has

useful properties from the perspective of lifelong learning because deep neural

networks show high performance in transfer and multi-task learning (Heigold

8

et al., 2013; Yosinski et al., 2014).

There are a variety of categories consisting of or related to lifelong learning.

Among these categories of lifelong learning, our primary interest is preventing

catastrophic forgetting. In other words, we focus on how the model does not

forget the information of the previous tasks while it is only accessible to the

new task, not previous tasks, for learning.

2.2 Application-driven Lifelong Learning

Various studies have been conducted on online learning from data stream dur-

ing an entire lifetime. Carlson et al. (Carlson et al., 2010; Mitchell et al., 2015)

proposed the Never-Ending Language Learner (NELL), which extracts a vari-

ety of information from the web and constructs a structured knowledge base.

Chen et al. (Chen et al., 2013) extended the NELL to develop the Never-Ending

Image Learner (NEIL), which extracts both language and visual information

from the web. Ha et al. (Ha et al., 2015) presented a model of deep concept

hierarchy that enables progressive abstraction of concept knowledge at multi-

ple levels in an online manner. They tested their algorithm on several hundred

episodes of cartoon videos and showed that it can build vision-language con-

cept hierarchies from non-stationary data streams. In our study, we attempt to

extract abstracted concepts from continuous sensing data of wearable devices

or video streams.

2.3 Classical Approach for Preventing Catastrophic

Forgetting

In this section, we categorize the classical approach to training deep networks

in an online manner from data streams into three categories. The first approach

9

is online fine-tuning, which is online learning of an entire neural network based

on typical stochastic gradient descent (SGD). In this setting, a deep network is

continuously fine-tuned with new data as the data is accumulated. However, it

is well-known that learning neural networks requires many epochs of gradient

descent over the entire dataset because the objective function space of neural

networks is complex. Because of the difficulty in optimizing the extremely large

non-convex search space of a neural network, limited theoretical studies exist

on online learning of DNNs (Bottou, 1998). Recently, in (Nam and Han, 2016),

online fine-tuning of a CNN with simple online SGD was used in the inference

phase of visual tracking, which made state-of-the-art performance in the Visual

Object Tracking Challenge 2015. However, it does not guarantee the retention

of old data. The equation of this algorithm can be described as follows:

y = softmax(f(h{1}(x))) (2.1)

where f is a non-linear function of a deep neural network. This equation

is the same in the case of batch learning, where Batch denotes the common

algorithm that learns all the training data at once, with a single neural network.

Other studies use implicit distributed storage of information in SGD learn-

ing. These methods use the idea of dropout, maxout, or neural module for

distributively storing the information for each task by making use of the large

capacity of the neural network (Srivastava et al., 2013). Unfortunately, most

studies following this approach had limited success and failed to preserve per-

formance on the old task when an extreme change to the environment occurred

(Goodfellow et al., 2013).

The second approach is last-layer fine-tuning. According to recent works

on transfer learning, the hidden activation of deep networks can be utilized as

10

a satisfactory general representation for learning other related tasks. Training

only the last-layer of a deep network often yields state-of-the-art performance on

new tasks, especially when the dataset of a new task is small (Zeiler and Fergus,

2014; Donahue et al., 2014). This phenomenon makes online learning of only

the last-layer of deep networks promising, because online learning of shallow

networks is much easier than that of deep networks in general. Recently, online

SVM with hidden representations of pre-trained deep CNNs using another large

image dataset, ImageNet, performed well in visual tracking tasks (Hong et al.,

2015). Mathematically, the last-layer fine-tuning is expressed as follows:

y = δ(wTϕ(h{1}(x))). (2.2)

The third approach is incremental bagging. A considerable amount of re-

search has sought to combine online learning and ensemble learning (Polikar

et al., 2001; Oza, 2005). One of the simplest methods involves forming a neural

network with some amount of online dataset and bagging in inference. Bag-

ging is an inference technique that uses the average of the output probability

of each network as the final output probability of the entire model. If deep

memory is allowed to use more memory in our system, a competitive approach

involves using multiple neural networks, especially when the data stream is non-

stationary. In previous researches, in contrast to our approach, transfer learning

techniques were not used. We refer to this method as näıve incremental bagging.

The equation of incremental bagging can be described as follows:

y =
1

d

d∑
i

softmax(fd(h
{d}(x)). (2.3)

11

Several studies have adopted this incremental bagging method, whereby

a weak learner is made to use the online dataset, and these multiple weak

learners are combined to obtain a better predictive performance (Polikar et al.,

2001). Unfortunately, in our experiment, a simple voting method with weak

learners trained from a relatively small online dataset was unsuccessful; we

presumed that a relatively smaller online dataset is insufficient for learning

highly expressive representations of DNNs.

Recent researcher for preventing catastrophic forgetting also have studied

on extending the structures of neural networks (Lee et al., 2017a). In the study

of progressive network (Rusu et al., 2016), when a new task arrives, the algo-

rithm makes a new network but also shares the representation of old networks

between the tasks. However, this method still has a complexity issue, especially

in inference, because the number of networks increases with the number of new

tasks that need to be learned.

Fernando et al. (Fernando et al., 2017) proposed PathNet, which extends

the idea of the ensemble approach for parameter reuse (Rusu et al., 2016) within

a single network. In PathNet, a neural network has ten or twenty modules in

each layer, and three or four modules are picked for one task in each layer by

an evolutionary approach. This method alleviates the complexity issue of the

ensemble approach to lifelong learning in a plausible way.

2.4 Learning Parameter Distribution for for Prevent-

ing Catastrophic Forgetting

2.4.1 Sequential Bayesian

Sequential Bayesian. It has long been studied updating the parameters not

only for shallow networks but also complex hierarchical models by sequential

12

Bayesian estimation (Ghahramani, 2000). Sequential Bayes was also used to

learn topic models from stream data in Broderick et al. (Broderick et al., 2013).

Similar to our method, Bayesian moment matching is used for sum-product

networks, a kind of deep hierarchical probabilistic model (Rashwan et al., 2016).

Though sum-product networks are usually not scalable to large datasets, their

online learning method is useful, and it achieves similar performance to the

batch learner. Our method using moment matching focuses on lifelong learn-

ing and deals with significantly different statistics between tasks, unlike the

previous method.

Bayesian Neural Networks. Bayesian neural networks (BNN) assume

an uncertainty for the whole parameter in neural networks so that the posterior

distribution can be obtained (Blundell et al., 2015). Previous studies have ar-

gued that BNN regularizes better than NN, and provides a confidence interval

for the output estimation of each input instance. Current research on BNN,

to the best of our knowledge, uses Gaussian distributions as the posteriors of

the parameters. In the Gaussian assumption, because tracking the entire in-

formation of a covariance matrix is too expensive, researchers usually use only

the diagonal term for the covariance matrix, in which case the posterior dis-

tribution is fully factorized for each parameter. However, the methods using

full covariance was also suggested recently (Louizos and Welling, 2016). For

estimating a covariance matrix most studies use stochastic gradient variational

Bayes (SGVB), where a sampled point from the posterior distribution by Monte

Carlo is used in the training phases (Kingma and Welling, 2013). Alternatively,

Kirkpatrick et al. (Kirkpatrick et al., 2017) approximated the covariance matrix

as an inverse of a Fisher matrix. This approximation makes the computational

cost of the inference of a covariance matrix smaller when the update of covari-

ance information is not needed in the training phase. Our method follows the

13

approach using the Fisher matrix.

2.4.2 Approach to Simulating Parameter Distribution

Recently, the concept of applying a regularization function to a network trained

by the old task to learning a new task has received much attention. This ap-

proach can be interpreted as an approximation of sequential Bayesian. Repre-

sentative examples of this regularization approach include elastic weight consol-

idation (EWC) (Kirkpatrick et al., 2017). EWC succeeded in some experiments

where their own assumption of the regularization function fits the problem.

In EWC, the posterior distribution trained by the previous task is used to

update the new prior distribution. This new prior is used for learning the new

posterior distribution of the new task in a Bayesian manner. EWC assumes that

the covariance matrix of the posterior is diagonal and there are no correlations

between the nodes. Though this assumption is tough, EWC performs well in

some domains. EWC maximizes the following terms by gradient descent to get

the solution µ1:K .

log p1:K ≈ log p(yK |XK , θ) + λ · log p1:(K−1) + C

≈ log p(yK |XK , θ) + λ ·
K−1∑
k=1

log q1:k + C

= log p(yK |XK , θ)− λ

2
·
K−1∑
k=1

(θ − µ1:k)
T Σ̃−1

k (θ − µ1:k) + C ′

(2.4)

pk is empirical posterior distribution of kth task, and qk ∼ N(µk,Σk) is an

approximation of pk. In EWC, Σ̃−1
k is also approximated by the diagonal term

of Fisher matrix F̃k with respect to µ1:k and Xk.

When moving to a third task, EWC uses the penalty term of both first and

14

second network (i.e., µ1 and µ1:2). Although this heuristic works reasonably in

the experiments in their paper, it does not match to the philosophy of Bayesian.

2.5 Learning Data Distribution for Preventing Cat-

strophic Forgetting

The approach with simulating data distribution also have received much atten-

tion. Learning without forgetting (LwF) is one example of this approach, which

uses the pseudo-training data from the old task (Li and Hoiem, 2016). Before

learning the new task, LwF puts the training data of the new task into the old

network, and uses the output as pseudo-labels of the pseudo-training data. By

optimizing both the pseudo-training data of the old task and the real data of the

new task, LwF attempts to prevent catastrophic forgetting. This framework is

promising where the properties of the pseudo training set is similar to the ideal

training set. Although LwF does not explicitly assume Bayesian, the approach

can be represented nonetheless as follows:

log p1:K ≈ log p(yK |XK , θ) + λ ·
K=1∑
k=1

log p(ŷk|XK , θ) (2.5)

Where ŷk is the output from µk with inputXK . This framework is promising

where the properties of a pseudo training set of kth task (XK , ŷk) is similar to

the ideal training set (Xk, yk).

Many researchers recently believe that generative models can help prevent

catastrophic forgetting. Shin et al. use generative adversarial networks to learn

data distribution of the whole previous tasks to prevent catastrophic forgetting

(Shin et al., 2017). It is also noticeable that their pair of generative data distri-

15

bution learner and discriminative classifier was also motivated by the concept of

generative replay in complementary learning systems theory (McClelland et al.,

1995).

16

Chapter 3

Preliminary Study: Online
Learning of Sum-Product
Networks

3.1 Introduction

As learning the structure of graphical models is one of the most important is-

sues in machine learning fields, many researchers have contributed to its study.

Noteworthy examples of these research studies are Bayesian networks (Chick-

ering et al., 1997), Markov networks (Ravikumar et al., 2010), deep networks

(Bengio et al., 2009), and sum–product networks (SPNs) (Gens and Pedro,

2013). However, studies on online learning, especially for complex models, are

limited because it is not easy to change the form of probability tables with-

out information about forgotten training data. Nevertheless, online learning is

an essential problem in machine learning, and there are some learning environ-

ments in which it should be applied, such as large-scale data learning or lifelong

learning.

17

In a successful study, a denoising autoencoder was learned using online

incremental structure learning (Zhou et al., 2012). It has been verified that

this model learns the changing probability distribution of data. In order to

solve the online learning problem using enough representation power, we focus

on the SPN, deep architectures that can learn and infer at low computational

costs (Poon and Domingos, 2011). In early research on SPNs (Gens and Pedro,

2013), Gens and Domingos used hierarchical biclustering to learn the structure

of SPNs well. The framework that they used is, however, not suitable for online

learning because entire data should be used in the structure learning steps.

We introduce two approaches to make an incremental model of SPNs. In the

first approach, we proposed the ‘online incremental structure learning of sum-

product networks’ (OISSPN), online structure learning algorithm that used an

online clustering algorithm. We note that structure learning of SPNs is highly

dependent on clustering instances. We devised a simple mini-batch clustering

algorithm which can modify the number of clusters dynamically on incoming

data, and apply it to incremental structure learning. In other words, our online

learning of SPNs is formulated as an online clustering problem, in which a lo-

cal assigning instance corresponds to modifying the tree-structure of the SPN

incrementally. In the method, the number of hidden units and even layers are

evolved dynamically on incoming data. The experiments show that it outper-

forms the online version of the previous method (Gens and Pedro, 2013), and

achieves the performance of batch structure learning.

In the second approach, we define two models for ‘non-parametric Bayesian

sum-product networks’ (NPBSPN), which train SPNs in an online manner using

non-parametric Bayesian. The first is a tree structure of Dirichlet Processes; the

second is a dag of hierarchical Dirichlet Processes. These generative models for

data implicitly define a prior distribution on SPN of tree and of dag structure.

18

They allow MCMC fitting of data to SPN models, and the learning of SPN

structure from data. It can be also understood that NPBSPN also utilizes an

online clustering algorithm, but in a non-parametric Bayesian manner.

3.2 Sum-Product Networks

3.2.1 Representation of Sum-Product Networks

SPNs are one of probabilistic graphical models (PGMs) which have special-

ized struc-ture for fast inference. They are constrained to have tree structures

(rooted directed acyclic graphs), and their leaves represent univariate distribu-

tion such as multinomial distribution for discrete variables, Gaussian, Poisson

and other continuous distribu-tions. Internal nodes in the tree represent prod-

ucts or sums of their children with the corresponding weights as the Figure 3.1.

Recursive definition of SPNs introduced in (Gens and Pedro, 2013) is as follows.

Definition 1 An SPN is defined as follows:

1. A tractable univariate distribution is an SPN.

2. A product of SPNs with disjoint scopes (i.e. variable sets) is an SPN.

3. A weighted sum of SPNs with the same scope is an SPN, provided that

all weights are positive and sum to 1.

4. Nothing else is an SPN.

First, let us define the probability distribution corresponding to an SPN.

Let there be D variables X1, . . . , XD; the SPN specifies a joint probability

distribution over these variables. We assume throughout that D ≥ 2. Each node

in a SPN defines a joint probability distribution over a subset of the variables;

we refer to this subset of the variables as the scope of the sum or product node.

19

Figure 3.1 Types of nodes in SPN: Univariate node (left); Product node (mid-

dle); Sum node (right)

We use s to denote a scope as a subset of indices; in other words a scope with k

indices is s = {s1, . . . , sk} ⊆ {1, . . . , D}. The indexed set of the corresponding

variables is written Xs = (Xs1 , . . . , Xsk). The number of elements in the scope

of a node is termed the level of the node. In this paper we consider only binary

data. Each node of level 1 (a univariate node) defines a Bernoulli distribution

for the (binary) variable that is its scope. Univariate nodes have no children.

We require that each product node and each sum node must have level at least

2.1 We write Ps and Ss to denote a product or sum node respectively with

scope s, where s ⊆ {1, . . . , D}, and write children(Ps) and children(S − s) for

the (indexed) sets of children of product and sum nodes.

A product-node defines the p.d. over its scope that is the product of the

p.d.s of its children, which are sum-nodes or univariate nodes, with disjoint

scopes. Each product node P defines a partition of its scope; we require this

partition to have at least two elements. For a product node P of level k, let

partitition(P) = (s1, . . . , sk)

children(Ps) = (Ss1 , . . . , Ssk)

1For non-binary variables – for example, for real variables – it could be meaningful to have
sum-nodes of level one, which would represent mixtures of univariate distributions, but this
is not useful for binary data considered here.

20

where the si are non-empty, disjoint, and s1∪· · ·∪sk = {1, . . . , D},and the chil-

dren (Ss1 , . . . ,Ssk) are sum nodes or univariate nodes. If |si|, which is level(Ssi),

is equal to 1, then Ssi is a univariate distribution node, otherwise Ssi is a sum-

node. Each product node P only has |partitition(P)| child nodes.

The probability distribution denoted by a product note P is denoted P (·);

and the p.d. of a sum-node or univariate node S as S(·). Then product node

Ps with children (S1, . . . , Sk) defines a joint p.d. over Xs, which is

Ps(Xs) =

k∏
i=1

S(Xsi)

Note that a product node always has D or fewer children, because the scopes

of its children are required to be disjoint.

A sum-node is either a univariate node, or else it defines a mixture dis-

tribution over its children, which are product-nodes, all with the same scope.

In our model, each sum-node Ss may have a countable infinity of children

(P 1
s , P

2
s , P

3
s , . . .) For each child there is a corresponding non-negative weight

w1, w2, w3, . . ., such that
∑∞

i=1wi = 1. The distribution defined Ss is:

Ss(Xs) =
∞∑
i=1

wiP
i
s(Xs)

The top node of the SPN is the sum-node S{1,...,D}, which we also denote Stop.

Many previous works related to SPNs, including sigma-pi neural networks

(Zhang and Muhlenbein, 1994), arithmetic circuits (Darwiche, 2003), AND-OR

graphs (Dechter and Mateescu, 2007), and other compact representations ex-

ist. However, SPNs are a more general probabilistic model that enjoys enough

representation power. Not only is the inference and learning process of SPNs

simple and fast, but they also perform well in terms of representing the prob-

ability distribution of data. SPNs show a remarkable performance in image

21

classification tasks (Gens and Domingos, 2012) and video learning (Amer and

Todorovic, 2012).

3.2.2 Structure Learning of Sum-Product Networks

In the seminal work of SPNs (Poon and Domingos, 2011), the structure of SPNs

was built in the application-oriented manner. After that, structure learning for

SPNs has been introduced in (Gens and Pedro, 2013; Dennis and Ventura,

2012). Dennis & Ventura (Dennis and Ventura, 2012) collected variables using

regional relationship to find better structure to solve the image completion task.

Gens & Domingos (Gens and Pedro, 2013) firstly proposed batch-type structure

learning method by splitting the variables into mutually independent subset to-

ward compact representation of joint distribution minimizing the representation

power loss.

As a brief introduction, structure learning in (Gens and Pedro, 2013) is a

recursive procedure given dataset T and set of variables V . At first, it checks

whether the variables can be split into mutually independent subsets. If possi-

ble, the split recursions are done for each sub-set, and return the products of

the resulting SPNs (building internal product nodes). Otherwise, the instances

T are clustered into similar subsets, and it returns the weighted sum of the

resulting SPNs (building internal sum nodes). Weights for child nodes are de-

termined to be proportional to the number of the assigned instances. At the

end of the recursive process, all leaves consist of a univariable node.

At the clustering process, they use a näıve Bayes mixture model to pick

most likely component in the mixture, where all variables are independent con-

ditioned on the cluster.

22

P (V) =
∑
i

P (Ci)
∏
j

P (Vj |Ci) (3.1)

where Ci is the i-th cluster and Vj is the j-th variable. They use a hard

expectation-maximization (hard EM) algorithm, where each instance is wholly

assigned to only its most probable cluster in expectation.

It is reported (Gens and Pedro, 2013; Rooshenas and Lowd, 2014) that

SPNs outperformed other PGMs in variable retrieval problems along with a

specialized structure for faster inference.

3.3 Online Incremental Structure Learning of Sum-

Product Networks

3.3.1 Methods

Online structure learning of PGMs is challenging task because there is no guar-

antee that new incoming instances follow the learnt model. If new instances are

not explained with the model, they should be modified. Fortunately, in the case

of SPNs, online structure learning is deeply related to clustering, and it can

be converted to online clustering problem. It means that SPNs able to learn

incrementally regardless of any value of instances coming in.

To explain online incremental SPN structure learning method, we first sug-

gest simple mini-batch incremental clustering problem in Algorithm 1. In Algo-

rithm 1, new instances are assigned to one of the existing clusters. New clusters

are added with new instances if they are needed. To find an appropriate number

of clusters k, we increase the number of clusters one by one until likelihood does

not increase any more than threshold.

We can extend the above clustering process to learn the structure of SPNs.

Algorithm 2 and Figure 3.2 illustrate online incremental learning algorithm for

23

Algorithm 1 IncrementalClustering(T ,V ,M)

Input: set of mini-batch instances T , set of variables V , and a cluster model

M

Output: sets of instances assigned to the existing cluster {Ti}, sets of in-

stances assigned to the new cluster {Tj}

likelihood = -inf

while true do

while model M is converge do

assign T with variable V and model M

update model M with T

end while

calculate likelihood

if increase of likelihood is less than threshold then

break

end if

end while

SPNs. The algorithm hierarchically adds new child nodes onto the sum nodes

in whole layers. The clustering process is used in algorithm 2 as one part, and

it basically uses the distributions of child nodes. However, there is no model

for applying to new cluster, so we use näıve Bayes model, as the structure

learning on the previous study does. After clustering, existing child nodes are

augmented recursively, whereas new child nodes are constructed by previous

structure learning methods. This hierarchical hard clustering strategy is also

used in parameter learning of SPNs and verified by previous study (Poon and

Domingos, 2011).

If the model explains new data well, the structure will not be changed.

24

Figure 3.2 The proposed online incremental structure learning algorithm of

SPNs.

Otherwise, the SPN increases their nodes to express new data. Note that, on

the other hands, the variable subsets split by the product node will not change

after the product node is generated once. If they are not mutual independent

on new data, the product node cannot fully explain them. It may cause the

model heavier with meaningless product nodes. It is a major limitation of our

method.

3.3.2 Experiments

We evaluated online incremental structure learning methods on a tiny dataset

to illustrate our argument. The main datasets are variants of the “hand-written

optic digits” (Lichman, 2013). These digit data include an image pixel and a

digit class. However, pixels are binarized for our experiments. We make two

settings: ‘homo’ and ‘hetero.’ In the hetero setting, we only reorder the dataset

according to the class label. In other words, the models first meet all the digit0

25

Algorithm 2 AugmentSPN(T ,V ,M)

Input: set of mini-batch instances T , set of variables V , and an SPN M

Output: an augmented cluster model M ′

if root of M is univariate node then

M = ParameterLearnNode(T ,V ,M)

else if root of M is product node then

for each child node Mk of root do

Mk = AugmentSPN(T ,Vk,Mk)

end for

else if root of M is sum node then

({Ti},{Tj}) = IncrementalClustering(T ,V ,M)

for each instance sets of i-th existing cluster do

Mi = ParameterLearnNode(Ti, V , Mi)

Mi = AugmentSPN(Ti, V, Mi)

end for

for each instance sets of j-th new cluster do

Mj = StructureLearnSPN(Tj , V)

end for

end if

images, then the digit1 images, and so on. The homo setting uses only the

dataset’s own order, and it yields a stable probability distribution of data. The

hetero setting, however, yields a dynamically changing probability distribution

of data in the mini-batch task.

We evaluated the suggested model in a mini-batch environment. The num-

ber of mini-batches was 16. Three models were compared. The first is “classical

online learning”, which uses only the first mini-batch for structure learning. The

26

Figure 3.3 Log-likelihoods (left). Average conditional log-likelihoods for arbi-

trary query and evidence (right).

method for structure learning follows previous research studies. The second is

“online ensemble learning” which ensembles 16 SPNs constructed by “classi-

cal online learning” method. “Classical online learning” methods, however, in

general may include smaller number of nodes than the suggested model. It is

possible that more complex model may do better, which is why this second

model used in the comparison. However, online ensemble models also have a

slightly larger number of nodes than the suggest-ed model. The third model is

“batch learning,” which uses the whole dataset for struc-ture learning and is

exactly same as the classical methods used in previous studies.

We tested two methods for evaluating performances, one of which measures

likelihood. The other goal is to infer the probability of a subset of the variables

(the query) given the values of another (the evidence). We used 50% of the vari-

ables as the query and 30% of the variables as the evidence in the experiments.

Figure 3.3 shows the performance results of the various learning methods

as a hetero handwritten dataset arrives. The suggested model not only out-

27

Figure 3.4 Growth of complexity. If incoming data are similar to the distribution

of the model, the complexity of the model converges. Otherwise, the complexity

of the model increases.

performs na¨̈ıve online models, but also achieves the performances of batch

structure learning. The results imply that the suggested learning method rep-

resents well the probability distribution of the data. We also catch that “nline

ensemble learning” method do better than “lassical online learning”methods,

which means that previous studies may not have fully tuned their own model.

We also investigated the form of the structure of changing SPNs. According

to dif-ferent characteristics of the order in which the data arrive, the structure

changes dif-ferently. First, the complexities of SPNs are different. Figure 3.4

shows that, in the hetero setting, the models need more nodes to represent the

probability distribution as new data arrive. Second, the structure of SPNs or

the numbers of child nodes of a root differ. Figure 3.5 shows that the different

sequence-order of data evolves different forms of structure. Figure 3.5 (a, c)

shows the results of the first mini-batch step, and Figure 3.5 (b, d) shows the

result of the final mini-batch step. Figure 3.5 (a-b) shows the structure change

28

Figure 3.5 Different structures evolve according to different orders of datasets.

of the homo setting when distribution of data is balanced. When data with

similar distribution arrive, SPNs increase their depth. Figure 3.5 (c-d) shows

the structure change of the hetero setting when the order of data is according

to the class. When data with dynamically changing distribution arrive, SPNs

increase their width.

3.4 Non-Parametric Bayesian Sum-Product Networks

3.4.1 Model 1: A Prior Distribution for SPN Trees

We describe two non-parametric generative models for multivariate data, which

indirectly specify non-parametric prior distributions over SPNs. In the first

model, the SPN is always a tree, in that no product node is ever a child of two

sum-nodes, and no sum-node is ever a child of two product nodes. In the second

model, the SPN is a dag, in that every product node is potentially the child of

many sum-nodes, but no sum-node is ever the child of two product nodes. The

29

first model is simpler; the second model is more general. The prior distributions

are defined recursively, node by node.

In both the tree and the dag models, the prior distribution of each sum-

node Ss is a Dirichlet process (Teh et al., 2005), with concentration parameter

αs and base distribution denoted by GP(s). The base distribution GP(s) is a

probability distribution over the set of possible product nodes with scope s. The

distribution GP(s) is a basic input to the model which expresses prior beliefs

about the form of product nodes. In principle, any distribution over product

nodes could be used, but a simple and in some sense elegant choice is specify

GP(s) as a probability distribution over the partitions of s. Only the partition

of s is chosen at this level; the prior distribution for each child sum-node of the

product node is defined recursively, in the same manner, at its own level. if the

partition generated contains singletons, GP(s) must also specify the a p.d. over

the possible univariate distributions; for binary data, a natural choice is a beta

distribution parametrised as a vague prior, such as Beta(12 ,
1
2).

Each sum-node Ss has a countably infinite number of child product-nodes

(note that a sum-node can have multiple child product nodes with the same

partition). The probability distribution over these children is a Dirichlet Process

over base distribution GP(scope(S), αs).

In this model, sum-nodes with identical scopes are distinct and independent.

In short, the prior distribution over SPNs is specified as a tree of Dirichlet

Processes over product-nodes; each product-node has a finite branching factor,

and each sum-node has an infinite branching factor. The tree has maximal

depth D, and there is a unique top sum-node STop = S{1,...,D}.

The prior is parametrised by:

• For each s, a concentration parameter αs > 0 . These may, for example,

plausibly be a function of |s|.

30

• For each s, a probability distribution GP(s) over partitions of s. These dis-

tributions may express significant prior knowledge concerning the desired

shape of the tree, and also which partitions of the particular variables

indexed by s are plausible. For example, different variables may have dif-

ferent meanings, and there may be prior beliefs that some partitions of s

are more probable than others.

• For each i ∈ {1, . . . , D}, a prior distribution on the univariate distribution

S{i}(·). For binary data, this is plausibly a vague beta prior.

Computation is greatly simplified if the predictive distribution for a new

product node Ps, not yet associated with any data, is of a simple known form.

For example, a newly generated product node Ps with no data might predict

the uniform distribution over Xs.

Generating data with the tree model

Sampling and inference with the tree model are rather straightforward: we

place a Blackwell-MacQueen urn process (Blackwell and MacQueen, 1973) at

each sum node, and sample from each such process as required, starting from

the top sum-node STop.

Each sample is generated recursively, as a tree of data requests: the root

request, for all D variables is sent to STop. The recursion is as follows. For a

node of type:

univariate-node : a sample from the univariate distribution defined by the

node is returned.

sum-node : A child product-node P is sampled from the Blackwell-MacQueen

urn process at the sum-node, and the sample request is then sent to that

product node. The sample received from the product node is returned.

31

product-node : Let the node partition be (s1, . . . , sk). The sample request is

partitioned into k requests with scope s1 to sk, and these requests are

sent to the corresponding child nodes. When the samples from the k child

nodes are returned, they are recombined to form a sample for the scope

requested, and returned to the parent node.

This recursive sampling process generates an exchangeable sequence of sam-

ples. To carry out this sampling procedure, each sum-node (and each distribution-

node) must maintain state information sufficient for its urn process: this infor-

mation consists of the indexed sequence of samples taken from that node’s

generative process.

The univariate distribution nodes may simply be fixed probability distri-

butions on one variable, or the may have an arbitrarily complex structure. To

ensure exchangeability of the samples from the entire structure, it is sufficient

that each univariate distribution node should provide an exchangeable sequence

of samples, separately from all other nodes.

This generative model, with urn-processes, can be used in several ways:

• to generate an exchangeable sequence of samples

• to fit a distribution to given data, using Gibbs sampling, Metropolis-

Hastings, or many other MCMC methods. Gibbs and Metropolis-Hastings

can be performed recursively throughout the tree, and in parallel on dif-

ferent branches.

• for any given state of the sampling system, an SPN is defined implicitly

by the predictive sampling probabilities for the next data item at each

node. This SPN can then be used for inference as described in (Poon and

Domingos, 2011)

32

Algorithm 3 Update Instance Full MH

Input: instances {x1, ..., xN}

Initialize M , l

for lo = 1 to nLoop do

for n = 1 to N do

M ′ ← Update Instance One MH(M, root, xn, n)

temp l ← likelihood(M ′, xn)

if rand() < min(1, temp l/l(n)) then

l(n) ← temp l

M ← M ′

end if

end for

end for

Learning algorithm for the tree structure

In this section, we explain two sampling methods for learning SPN topology.

Algorithm 3 explains a Metropolis-Hastings (MH) sampling method, whereas

Algorithm 4 explains a Gibbs sampling method. Algorithm 5 explains the MH

learning rule used for updating the tree structure with one instance at a time.

α is parameter of DP. Gibbs learning rule for updating one instance is a little

difficult compared to MH method, because likelihood of choosing one child

should be calculated in each step. It is more difficult to use the Gibbs learning

rule for updating one instance at a time compared to the learning rule of the

MH method. This is because the Gibbs sampling requires the calculation of

the likelihood of choosing one child in each step. However, as calculating the

likelihood in SPN is tractable, this step can be performed in a less complicated

manner.

33

Algorithm 4 Update Instance Full Gibbs

Input: SPN M , instances {x1, ..., xN}

Initialize M

for lo = 1 to nLoop do

for n = 1 to N do

M ← Update Instance One Gibbs(M, root, xn, n)

end for

end for

The MH and Gibbs sampling scheme was evaluated using a “hand-written

optic digits” UCI dataset which includes 8x8 pixels and digit classes. Only the

image pixels with binarization used in the experiments. Partitions were ran-

domly split every time a new product node was made. In Figure 3.6, Algorithm

3 is used for the ‘Tree with MH’ condition, whereas Algorithm 4 is used for the

‘Tree with Gibbs’. In this graph, the x-axis represents the number of instances

used by the model. This simulation only used the instances once. We found the

Gibbs sampling scheme performs better than the MH sampling scheme.

3.4.2 Model 2: A Prior Distribution for a Class of dag-SPNs

Model 1 is a tree, and this may be undesirable in some applications: this is

because sampling requests follow the tree, and nodes deep in the tree must

therefore typically handle only a small fraction of all sample requests. Models

of this type have been used (Gens and Pedro, 2013), but (Delalleau and Bengio,

2011) intriguingly suggests that deep networks can express a more interesting

class of distributions.

It is straightforward to alter the model to allow the sampling-request paths

to form a dag. Each individual sampling request will take the form of a tree

34

0 5 10 15 20 25 30 35 40
−26

−25.5

−25

−24.5

−24

−23.5

−23

#instances (hundreds)

lo
g

lik
e

lih
o

o
d

Tree with MH

Tree with Gibbs

Figure 3.6 Loglikelihoods with different sampling schemes

within the dag, but the totality of sampling requests will lie on the dag. In such

a model, even nodes deep in the dag may handle a large fraction of sampling

requests, so that ‘deep learning’ becomes possible.

We alter model 1 as follows. For each of the 2D −D− 1 possible scopes s of

level at least 2, we set up a ‘sum-node-group’ Ss, which consists of a hierarchical

Dirichlet Process (Teh et al., 2005). A hierarchical DP consists of a set of ‘layer

1’ DPs which share a common ‘layer 0’ base distribution, which is itself a DP.

For Ss, the base distribution for the layer 0 DP is GP(s), which is the same as

the base-distribution of a sum-node with scope s in the tree-SPN model above.

For layer 1 of Ss, we set up a separate layer 1 DP for each possible par-

ent node from which sampling requests may come. More specifically, for any

product-node with a child sum-node with scope s, then that child sum-node

35

is placed as a DP in layer 1 of Ss. In other words, all sum-nodes with scope

s share the same base-distribution of product-nodes, which is itself a DP with

base distribution GP(s). The effect of this is that all sum-nodes with scope s in

the dag will tend to share, and route requests to, common child product-nodes.

Hence sampling requests from different sum-nodes can be routed to the same

child product-node. Samples from a hierarchical DP are exchangeable, hence

samples from the entire model are exchangeable, as before.

Remarkably, the only new parameters required are the concentration pa-

rameters of the layer 1 and layer 2 Dirichlet processes for each scope: once

again, these may plausibly be functions only of the size of the scope.

Algorithm 3 and 4 can also be used for learning both the tree and dag

structure. Algorithm 6 explains the MH learning rule at updating dag structure

with one instance. α and γ are parameters of the hierarchical DP. Algorithm 4

uses the inference scheme explained in Ch 5.3 of (Teh et al., 2005).

MCMC sampling using the dag-SPN (our model 2) appears to be a particu-

larly elegant possibility, which is as far as we know unexplored. The construction

appears both modular and generic, and could be applied to the generation of

many types of structured object, provided the generative decisions take the form

of a tree, and node-scopes respect the same partial ordering for all objects.

Learning in product nodes is, however, problematic because there are many

possible partitions and it is hard to find a good partition by Gibbs sampling,

proposing random partitions. This is slow because the merit of a good partition

only becomes apparent when many data-requests have been transferred to the

new product node: when a product node is first generated, even if its partition

is optimal, it has no data assigned to it, and so at first it predicts a uniform

distribution over its scope variables. This means that every new product node is

at an initial disadvantage compared to existing competitor product nodes which

36

have data currently assigned to them. An effective sampling method, therefore,

should make proposals of altering the product partitions directly: however, such

proposals are expensive, since if high-level partition elements are altered in this

way, then lower level partition elements need to be changed as well. We are

investigating such algorithms.

In the above experiment, random partition priors were explored, but other

partition priors could also be used. It would be possible to have a hybrid method,

in which the ‘prior’ for partition of variables would be made sensitive to the

number of allocated instances; when few instances are allocated to some prod-

uct node, the partition of this node would be fully separated into univariate

nodes. To solve this problem, we are examining other SPN structure leraning

methods to find good initialisations. One possibility is the LearnSPN algorithm

in (Gens and Pedro, 2013). When a tree structure is made with the DP, the

whole algorithm becomes a non-parametric Bayesian biclustering. If a dag-SPN

is made with the HDP, the algorithm becomes more interesting and is an idea

we will explore in the future. Additionally, (Lowd and Rooshenas, 2013; Peharz

et al., 2013) study the bottom-up learning of SPN and the arithmetic circuit.

These ideas can be used for making good candidates of product nodes. It is also

interesting to note that (Rooshenas and Lowd, 2014) uses the hybrid approach

of top-down and bottom-up.

In summary, we have defined prior distributions on SPNs that specify only

mixture-distribution concentration parameters, priors on partitions of scopes,

and vague priors on univariate distributions. However, finding effective sampling

methods is a challenging problem.

37

3.5 Discussion

3.5.1 History of Online Learning of Sum-Product Networks

The follow-up studies of the structure learning are as follows. Other researchers

also studied infinite online incremental structure learning. In (Hsu et al., 2017),

the structure is evolved by Gaussian leave.

In another direction, there are works on sequential Bayesian (Rashwan et al.,

2016; Zhao et al., 2016). Rashwan et al. apply moment matching with the

Dirichlet distribution assumption on their SPN (Rashwan et al., 2016). In their

moment matching of each parameter, there is a small loss on the likelihood. It

would be not interesting in the perspective of probabilistic models, as counts

on categorical distributions are added in an approximated way. By the way, it

is somewhat surprised in the perspective of deep models, as it overcomes the

catastrophic forgetting easily.

3.5.2 Toward Lifelong Learning of Deep Neural Networks

We introduced online learning methods of SPNs, a kind of deep PGMs. The

properties of PGMs and their online learning is relatively well known, and the

relation between deep PGMs and deep neural networks have long been studied.

There are two approaches to online learning of deep PGMs. One approach

continuously extends the structure of the model and estimate the probability

density function. The other approach continuously estimates the probability of

the model by sequential Bayesian.

Two methods are an example of SPN online learning method based on struc-

ture learning and sequential Bayesian, respectively. We extend the discovery

from these studies of online learning of SPNs to the studies of lifelong learning

in deep neural networks in the following two chapters. These two methods for

38

SPN correspond to DMA, which use dual structure learning algorithms, and

IMM, which use sequential Bayesian and Bayesian neural networks to estimate

the probability distribution of the whole dataset and task.

3.6 Summary

In the section, we introduced two online learning methods of SPN, a kind of deep

PGMs. In the first method, an online incremental strucutre learning method is

used. In the method, the number of hidden units and even layers are evolved

dynamically on incoming data to follow the changing distribution of data. In

the second method, a non-parametric Bayesian method is used. In our study,

two prior distributions on SPNs are defined, which specify mixture-distribution

concentration parameters, priors on partitions of scopes, and vague priors on

univariate distributions.

The relation between deep PGMs and deep neural networks have long been

studied. For example, deep neural networks can be understood as a discrimina-

tive version of deep belief networks or deep Boltzmann machine. Though the

original SPNs is a generative model, there also is a discriminative version of

SPNs which can also used for classification tasks. These two methods for SPN

can be corresponds to DMA, which use dual structure learning algorithms, and

IMM, which use sequential Bayesian and Bayesian neural networks to estimate

the probability distribution of the whole dataset and task.

39

Algorithm 5 Update Instance One MH Tree

Input: SPN M , sumnode index i, instances {x1, ..., xN}, instance index n

Output: SPN M ′

M ′ ← M

{pidx1, ..., pidxK} ← indexes of child nodes of sum node M ′.Si

if M.Si.allocate(n) ̸= empty then

M ′.P[M.Si.allocate(n)].w − = 1

end if

for k = 1 to K do

p(k) =
(M ′.P[pidxk].w)

[(
∑K

k M ′.P[pidxk].w)+α]

end for

p(K + 1) = α
[(
∑K

k M ′.P[pidxk].w)+α]

select k ∼ p(k)

if k ≤ K then

M ′.Si.allocate(n) = pidxk

P[M ′.Si.allocate(n)].w + = 1

{sidx1, ..., sidxL} ← indexes of child nodes of product node M ′.Ppidxk

for l = 1 to L do

M ′ ← Update Instance One MH Tree (M, sidxl, xn, n)

end for

else

M ′ ← make prodnode in sumnode(M ′, i, xn, n)

end if

40

Algorithm 6 Update Instance One MH DAG

Input: SPN M , sumnode index i, instances {x1, ..., xN}, instance index n

Output: SPN M ′

M ′ ← M

{pidx1, ..., pidxK} ← indexes of product nodes which have same scope to sum

node M ′.Si

if M.Si.allocate(n) ̸= empty then

M ′.P[M.Si.allocate(n)].wi − = 1

end if

for k = 1 to K do

p(k) =
(M ′.P[pidxk].wi+α×M ′.Si.βk)

(
∑K

k M ′.P[pidxk].wi)+α]

end for

p(K + 1) =
(α×M ′.Si.βK+1)

[(
∑K

k M ′.P[pidxk].wi)+α]

select k ∼ p(k)

if k ≤ K then

M ′.Si.allocate(n) = idxk

P[M ′.Si.allocate(n)].wi + = 1

{sidx1, ...sidxL} ← indexes of child nodes of product node M ′.Ppidxk

for l = 1 to L do

M ′ ← Update Instance One MH DAG (M, sidxl, xn, n)

end for

else

M ′ ← make prodnode in sumnode(M ′, i, xn, n)

M ′.Si.β ← sample beta(M ′.Si.allocate, α, γ)

end if

41

Chapter 4

Structure Learning for Lifelong
Learning: Dual Memory
Architecture

4.1 Introduction

In this chapter, we explain a dual memory architecture (DMA) that processes

slow-changing global patterns as well as keeps track of fast-changing local be-

haviors over a lifetime. The lifelong learnability is achieved by developing new

techniques, such as weight transfer and an online learning algorithm with in-

cremental features.

The contributions of the study described in this chapter are as follows: 1)

Proposal of the DMA and the mGHN; 2) Empirical analysis of various online

learning methods on real-life datasets; 3) Proof of the online parameter learning

method of mGHNs; 4) Cognitive neuroscience perspective of DMA; 5) Making

the lifelog dataset publically available; and 6) Implications of DMA on other

machine learning fields.

42

Figure 4.1 Lifelong Learning framework and the dual memory architecture

(DMA)

The remainder of this chapter is organized as follows. Section 4.2 explains

complementary learning systems (CLS) theory, which motivated our DMA re-

search. Section 4.3 introduces the general concept of DMA. Section 4.4 discusses

the multiplicative-Gaussian Hypernetworks (mGHN) and its online learning

method. Section 4.5 presents experimental results for the online learning of

DNNs and analyzes the performances of the DMA. Section 4.5.1 explains the

results for a non-stationary variant of the CIFAR-10 dataset, and Section 4.5.2

contains the description and the results for the Google Glass lifelog dataset.

Section 4.6 discusses our philosophy of parameter-decomposability which is ex-

tended to the IMM algorithm, and the implication of the DMA algorithm on

Bayesian optimization.

43

4.2 Complementary Learning Systems Theory

To devise the DMA algorithm for solving the catastrophic forgetting problem,

we apply the concept of complementary learning systems (CLS) theory a frame-

work that suggests a dual learning system structure in the brain (McClelland

et al., 1995; O’Reilly et al., 2014). According to the CLS theory, there are

two critical areas in the brain that affect online learning: the neocortex and

hippocampus, which complement each other’s functionality. From the learning

perspective, the neocortex is analogous to a deep neural module that can gradu-

ally learn to extract a structure from the real-world sensor streams (Guyonneau

et al., 2004). Further, corroborative evidence from cognitive neuroscience shows

that the behaviors of performance-optimized deep CNNs closely match to the

neural responses in higher visual cortex of the brain in a monkey (Yamins

et al., 2014). However, the key limitations introduced by the perspective of

online learning is that the neocortex does not rapidly learn a new concept in

a single attempt nor does it process data accordingly at the instance-level to

weigh appropriately specific events. In contrast, the hippocampus alleviates this

problem by allowing rapid and individuated storage to memorize a new instance

(Treves and Rolls, 1992; Knierim and Neunuebel, 2016). There has been evi-

dence that the hippocampus can allow general statistics of the environment to

be circumvented by weighting procedures such that statistically unusual but

significant events may be afforded a privileged status (Carr et al., 2011; Bendor

and Wilson, 2012). However, a hippocampal system alone would be insufficient

for continuous learning because of the limitations on memory capacity and gen-

eralization ability.

Recently, some machine learning algorithms related to CLS theory have

been proposed. A recently published study reviewed the link between the core

44

principles of the CLS theory and recent themes in machine learning (Kumaran

et al., 2016); we follow this perspective.

The first example is model-free episodic control, which is a reinforcement

learning method inspired by hippocampal episodic control applied to difficult

sequential decision-making tasks (Blundell et al., 2016). In this method, memo-

rization strategy is utilized for learning a value function directly from experience

without iterative estimation of the value function. This approach not only makes

the learning significantly faster than comparable deep reinforcement learning

algorithms, but also performs better on some of the more challenging domains.

The second example is an external memory utilized for the neural network.

The neural network researchers found that the capability of a neural network

alone is limited in solving complex AI problems including question and answer-

ing tasks. Thus, they have proposed coupling neural networks with external

memory resources that correspond to hippocampal episodic memory. There are

two methods exploiting external memory for neural networks. One method is

the neural Turing machine (NTM) (Graves et al., 2014), where the framework

consists of an external memory and an RNN controller that control the read-

ing from and writing to an external memory. An external memory writes the

intermediate computations of the neural network, which can read out when the

results are required. Studies have shown that the NTM can learn the general

concepts of a simple algorithm such as copying and sorting. The other method

is the memory network (Weston et al., 2014), where the external memory stores

knowledge as a vectorized form. The memory network is mainly used for ques-

tion and answering tasks and makes notable results (Sukhbaatar et al., 2015). In

typical question and answering applications, appropriate vectorized knowledge

(e.g., ‘Tom left the basketball’ and ‘Tom traveled to the garden’) is retrieved

by the similarity of a vectorized question (e.g., ‘Where is the basketball’) to

45

Figure 4.2 A schematic diagram of the dual memory architecture (DMA).

find the right answer (‘the garden’). However, some researchers criticize that

these methods due to their lower performance compared with that of a simpler

model (Kim et al., 2016a).

4.3 Dual Memory Architectures

The dual memory architecture (DMA) is a framework designed to learn con-

tinuously from data streams. The DMA framework is illustrated in Figure 4.2,

and the online learning process of the DMA is explained in Algorithm 7. With

continuously arrived instances of data streams, fast memory updates its shallow

network immediately. If a certain amount of data is accumulated, deep mem-

ory makes a new deep network with this new online dataset. Simultaneously,

the shallow network changes its structure corresponding to deep memory. The

DMA consists of deep memory and fast memory. The structure of deep mem-

ory consists of several deep networks. Each of this network is constructed when

46

a specific amount of data from an unseen probability distribution is accumu-

lated, thus creates a deep representation of data in a specific time. Examples of

deep memory models include deep neural network classifier, CNNs, deep belief

networks (DBNs), and recurrent neural networks (RNNs). The fast memory

consists of a shallow network. The input of the shallow network is hidden nodes

at upper layers of deep networks. Fast memory is to be updated immediately

from a new instance. Examples of shallow networks include linear regressor,

denoising autoencoder (Zhou et al., 2012), and support vector machine (SVM)

(Liu et al., 2008) that can be learned online. The shallow network is in charge of

making inference in the DMA; deep memory only generates deep representation.

The equation used for inference can be described as:

y = δ(wTϕ(h{1}(x), h{2}(x), · · · , h{k}(x))) (4.1)

where x is the input (e.g., a vector of image pixels), y is the target, ϕ and w

are kernel and corresponding weight respectively, h is values of the hidden layer

of a deep network used for the input of the shallow network, δ is an activation

function of the shallow network, and k is an index for the last deep network

ordered by time.

Fast memory updates parameters of its shallow network immediately from

new instances. If a new deep network is formed in the deep memory, the struc-

ture of the shallow network is changed to include the new representation. Fast

memory is referred to as fast for two properties with respect to learning. First,

a shallow network learns faster than a deep network in general. Second, a shal-

low network is better able to adapt to new data through online learning than a

deep network. If the objective function of a shallow network is convex, a simple

stochastic online learning method, such as online SGD, can be used to guar-

antee a lower bound to the objective function (Zinkevich, 2003). Therefore, an

47

Algorithm 7 Online Learning of Dual Memory Architecture

1: if new instances come then

2: if a new DNN is required then

3: Initialize a new DNN with a previously constructed DNN.

4: Train the new DNN with instances in the storage.

5: Update the input feature and corresponding structure of the shallow

network.

6: end if

7: Update the parameter of the shallow network.

8: Put the new instances into the storage.

9: Discard the oldest instances in the storage.

10: end if

efficient online update is possible. Unfortunately, learning shallow networks in

the DMA is more complex. During online learning, deep memory continuously

forms new representations of a new deep network; thus, new input features

appear in a shallow network. This task is a kind of online learning with an

incremental feature set. In this case, it is not possible to obtain statistics of old

data at new features. i.e., if a node in the shallow network is a function of h{k},

statistics of the node cannot be obtained from the 1st ∼ k-1th online dataset. In

this paper, we explore online learning by shallow networks using an incremental

feature set in the DMA.

In learning deep memory, each deep neural network is trained with a corre-

sponding online dataset by its objective function. Unlike the prevalent approach,

we use the transfer learning technique proposed by (Yosinski et al., 2014) to

utilize the knowledge from an older deep network to form a new deep network.

This transfer technique initializes the weights of a newly trained deep network

48

Figure 4.3 A schematic diagram of the multiplicative-Gaussian hypernetworks

Wk by the weights of the most recently trained deep network Wk−1. Once the

training of the deep network from its own online dataset is complete, the weights

of the network do not change even though new data arrives. This is aimed to

minimize changes of input in the shallow network in the fast memory. This orig-

inal transfer method assumes that the two networks have the same structure.

However, there are some extensions (Chen et al., 2016; Wei et al., 2016) that

allow different widths and a number of layers between some networks.

The proposed DMA is a combination of the ideas of three previously pro-

posed methods mentioned above. In DMA, a new deep network is formed when

a dataset is accumulated, as in the incremental bagging. However, the initial

weights of new deep networks are drawn from the weights of the older deep

networks, as in the online learning of neural networks. Moreover, a shallow net-

work in the fast memory is concurrently trained with deep memory, which is

similar to the last-layer fine-tuning approach.

49

Table 4.1 Notations

Symbol Explanation

y class (i.e., location, sub-location, or activity)

ϕ kernel vector

ϕk kth kernel

h hidden vector of DNNs

x input vector (i.e., input pixel)

k index of kernel set

d index of small dataset

n index of instance

µ̂, Σ̂ empirical sufficient the statistics

µ̃, Σ̃ approximated maximum likelihood solution of statistics

ϕk·(d,n) (d, n)th instance of kth kernel

µ̂k·d, Σ̂k·d empirical sufficient statistics of ϕk over dth small dataset

4.4 Online Learning of Multiplicative-Gaussian Hy-

pernetworks

4.4.1 Multiplicative-Gaussian Hypernetworks

In this section, we introduce a multiplicative Gaussian hypernetwork (mGHN)

as an example of fast memory (Figure 4.3). Table 4.1 summarizes the notation

used in this section. mGHNs are shallow networks that use a multiplicative

function as an explicit kernel in (4.2):

ϕ = [ϕ(1), · · · , ϕ(p), · · · , ϕ(P)]T ,

s.t., ϕ(p)(h) = (h(p,1) × · · · × h(p,Hp)),
(4.2)

where P is a hyperparameter of the number of kernel functions, and × de-

notes scalar multiplication. h is the input feature of mGHNs, and also rep-

resents the hidden activation of DNNs. The set of variables of the pth kernel

{h(p,1), ..., h(p,Hp)} is randomly chosen from h, where Hp is the order or the

50

number of variables used in the pth kernel. The multiplicative form is used for

two reasons, although an arbitrary form can be used. First, it is an easy, ran-

domized method to put sparsity and non-linearity into the model, which is a

point inspired by (Zhang, 2008; Zhang et al., 2012). Second, the kernel could

be controlled to be a function of few neural networks. mGHNs assume the joint

probability of target class y and ϕ is Gaussian as in (4.3):

p

 y

ϕ(h)

 = N

 µy

µϕ

 ,

 Σyy Σyϕ

Σϕy Σϕϕ

 , (4.3)

where µy, µϕ, Σyy, Σyϕ, Σϕy, and Σϕϕ are the sufficient statistics of the Gaussian

corresponding to y and ϕ. Target class y is represented by one-hot encoding.

The discriminative distribution is derived by the generative distribution of y

and ϕ, and predicted y is real-valued score vector of the class in the inference.

E[p(y|h)] = µy +Σyϕ · Σ−1
ϕϕ · (ϕ(h)− µϕ) (4.4)

The maximum likelihood solution of mGHNs can be updated immediately

from any amount of new instances by online update of the mean and covariance

if the number of features does not increase. Note that the distribution over y

and ϕ over the first and second datasets (d = 1:2) is as follows:

 y

ϕ1

 |d=1:2 ∼ N

 µ̂y·1:2

µ̂1·1:2

 ,

 Σyy·1:2 Σy1·1:2

Σ1y·1:2 Σ11·1:2

 (4.5)

where µ̂·1:2, Σ̂·1:2 is the function of µ̂·1, µ̂·2, Σ̂·1, and Σ̂·2.

µ̂1·1 =
1

N1

N1∑
n=1

ϕ1·(d=1,n) (4.6)

µ̂1·2 =
1

N2

N2∑
n=1

ϕ1·(d=2,n) (4.7)

51

µ̂1·1:2 =
1

N1 +N2

[
N1∑
n=1

ϕ1·(d=1,n) +

N2∑
n=1

ϕ1·(d=2,n)

]
= αµ̂1·1 + (1− α)µ̂1·2

(4.8)

α =
N1

N1 +N2
(4.9)

Σ̂11·1 =
1

N1

N1∑
n=1

(ϕ1·(d=1,n) − µ̂1·1)(ϕ1·(d=1,n) − µ̂1·1)
T

=
1

N1

[
N1∑
n=1

ϕ1·(d=1,n)ϕ
T
1·(d=1,n)

]
+ µ̂1·1µ̂

T
1·1

(4.10)

Σ̂11·1:2 = αΣ̂11·1 + (1− α)Σ̂11·2 + α(1− α)(µ̂1·1 − µ̂1·2)(µ̂1·1 − µ̂1·2)
T (4.11)

In our model, the parameter of two datasets can be decomposed into the

parameter of each dataset, which we refer to as instance-decomposibility. This

property allows our model to weigh specific events appropriately, which we refer

to as instance-scale reweighting. For example, the model learns significantly

r times from recent events as opposed to the penalized previous events by

substituting α in (4.9) for following α′:

α′ =
N1

N1 + r ·N2
(4.12)

4.4.2 Evolutionary Structure Learning

If the kth deep neural network is formed in the deep memory, the mGHN in

the fast memory receives a newly learned feature h{k}, which consists of the

hidden values of the new deep neural network. As the existing kernel vector is

not a function of h{k}, a new kernel vector ϕk should be formed. The struc-

ture of mGHNs is learned via an evolutional approach (Zhang et al., 2012), as

illustrated in Algorithm 8.

52

Algorithm 8 Structure Learning of mGHNs
repeat

if New learned feature h{k} comes then

Concatenate old and new feature (i.e., h← h
⋃
h{k}).

Discard a set of kernel ϕdiscard in ϕ (i.e., ϕ̂← ϕ− ϕdiscard).

Make a set of new kernel ϕk(h) and concatenate into ϕ (i.e., ϕ← ϕ̂
⋃
ϕk).

end if

until forever

The core operations in the algorithm consist of discarding less-important

kernel and adding new kernel. In our experiments, the set of ϕdiscard was picked

by selecting the kernels with the lowest corresponding weights. From Equation

(4.4), ϕ is multiplied by ΣyϕΣ
−1
ϕϕ to obtain E[p(y|h)], such that weight w(p)

corresponding to ϕ(p) is the pth column of ΣyϕΣ
−1
ϕϕ (i.e., w(p) = (ΣyϕΣ

−1
ϕϕ)(p,:).)

The length of w(p) is the number of class categories, as the node of each ker-

nel has a connection to each class node. We sort ϕ(p) in descending order of

maxj |w(p)
j |, where the values at the bottom of the maxj |w(p)

j | list correspond

to the ϕdiscard set. The size of ϕdiscard and ϕk are determined by α|ϕ| and β|ϕ|

respectively, where |ϕ| is the size of the existing kernel set, and α and β are

predefined hyperparameters.

4.4.3 Online Learning on Incremental Features

As the objective function of mGHNs follows the exponential of the quadratic

form, second-order optimization can be applied for efficient online learning. For

the online learning of mGHNs with incremental features, we derive a closed-form

sequential update rule to maximize likelihood based on studies of regression

with missing patterns (Little, 1992).

53

Suppose the first (k = 1) and the second (k = 2) kernel vectors ϕ1 and ϕ2 are

constructed when the first (d = 1) and the second (d = 2) online datasets arrive.

The sufficient statistics of ϕ1 can be obtained for both the first and second

datasets, whereas information of only the second dataset can be used for ϕ2.

Suppose µ̂i·d and Σ̂ij·d are empirical estimators of the sufficient statistics of the

ith kernel vector ϕi and jth kernel vector ϕj corresponding to the distribution

of the dth dataset. If these sufficient statistics satisfy the following equations:

ϕ|d=1 ∼ N(µ̂1·1, Σ̂11·1) (4.13)

 ϕ1

ϕ2

 |d=2 ∼ N

 µ̂1·2

µ̂2·2

 ,

 Σ̂11·2 Σ̂12·2

Σ̂21·2 Σ̂22·2

 (4.14)

ϕ1|d=1,2 ∼ N(µ̂1·1:2, Σ̂11·1:2) (4.15)

the parametrization of maximum likelihood via the conditional Gaussian dis-

tribution can be done as follows.

p(ϕ2|ϕ1)|d=2 = N(µ̂2|1·2, Σ̂22|1·2)

= N(µ̂2·2 + Σ̂21·2Σ̂
−1
11·2(ϕ1 − µ̂1·2), Σ̂22·2 − Σ̂21·2Σ̂

−1
11·2Σ̂12·2)

(4.16)

Note the following properties of Gaussian:

E

 x

y

 =

 µ

Aµ+ b

 (4.17)

Cov

 x

y

 =

 Λ−1 Λ−1AT

AΛ−1 L−1 +AΛ−1AT

 (4.18)

54

where the probability of x and the conditional probability of y given x are as

follows:

p(x) = N(x|µ,Λ−1) (4.19)

p(y|x) = N(y|Ax+ b, L−1) (4.20)

Thus, the maximum likelihood solution represents ϕ as (4.21).

 ϕ1

ϕ2

 |d=1,2 ∼ N

 µ̂1·1:2

µ̃2

 ,

 Σ̂11·1:2 Σ̃12

Σ̃T
12 Σ̃22

 , (4.21)

µ̃2 = µ̂2·2 + Σ̂T
12·2 · Σ̂−1

11·2 · (µ̂1·12 − µ̂1·2),

Σ̃12 = Σ̂11·1:2 · Σ̂−1
11·2 · Σ̂12·2,

Σ̃22 = Σ̂22·2 − Σ̂T
12·2 · Σ̂−1

11·2 · (Σ̂12·2 − Σ̃12)

(4.21) can also be updated immediately from a new instance by online update

of the mean and covariance. Note that the proposed online learning algorithm

estimates generative distribution of ϕ, p(ϕ1, · · · , ϕk). When training data having

ϕk is relatively small, information of ϕk can be complemented by p(ϕk|ϕ1:k−1),

which helps create a more efficient prediction of y.

The alternative of this generative approach is a discriminative approach.

For example, in (Liu et al., 2008), LS-SVM is directly optimized to get the

maximum likelihood solution over p(y|ϕ1:k). However, equivalent solutions from

the discriminative method can also be produced by the method of filling in the

missing values with 0 (e.g., assume ϕ2|d=1 as 0), which is not what we desire

intuitively.

µ̂y|x, Σ̂y|x = argmax p(y|ϕ1:k),

p(y|ϕ1:k) ∼ N(µ̂y|ϕ, Σ̂y|ϕ)
(4.22)

55

Moreover, (4.21) can be extended to sequential updates, when there is more

than one increment of the kernel set (i.e., ϕ3, · · · , ϕk), because the equation

of maximum likelihood of whole kernel observation ϕobs can be decomposed as

follows:

p(ϕobs) =

k∏
i=1

k∏
d=1

Nd∏
n=1

p(ϕi·(d,n)|ϕ1:(i−1)·(d,n)) (4.23)

4.5 Experiments

4.5.1 Non-stationary Image Data Stream

We investigate the strengths and weaknesses of the proposed DMA in an ex-

treme non-stationary environment using a well-known benchmark dataset. The

proposed algorithm was tested on the CIFAR-10 image dataset consisting of

50,000 training images and 10,000 test images from 10 different object classes.

The performance of the algorithm was evaluated using a 10-split experiment

where the model is learned in a sequential manner from 10 online datasets. In

this experiment, each online dataset consists of images of 3 ∼ 5 image classes.

Figure 4.4 shows the distribution of the data stream. In particular, the first

online dataset contains 40% instances of classes 1 and 2 respectively, and 20%

instances of class 3. Meanwhile, the second online dataset contains 40% in-

stances of class 1, and 20% instances of classes 2, 3, and 4 respectively. We

used the Network in Network (NIN) model (Lin et al., 2014), a kind of deep

CNN, implemented using the MatConvNet toolbox (Vedaldi and Lenc, 2015).

In the NIN, the conventional convolution linear filters are replaced by multi-

layer DNNs. This idea is utilized by various CNNs including inception networks

(Szegedy et al., 2015), the winner of ImageNet Challenge 2014. In our learning

phase, the learning rate is set to 0.25 and then is reduced by a constant factor

of 5 at some predefined steps. The rate of weight decay is 5 × 10−4, and the

56

Figure 4.4 Distribution of non-stationary data stream of CIFAR-10 in the ex-

periment

Table 4.2 Properties of DMA and comparative models
Many deep Online Dual memory

networks learning structure

Online fine-tuning ✓

Last-layer fine-tuning ✓

Näıve incremental bagging ✓ ✓

DMA (our proposal) ✓ ✓ ✓

Incremental bagging w/ transfer ✓ ✓

DMA w/ last-layer retraining ✓ ✓

Batch

rate of momentum is 0.9.

We evaluate the performance of DMA with comparative models. The prop-

erties of DMA and comparative methods are listed in Table 4.2. Specifically,

we propose two comparable learning methods to clarify the concept of DMA.

The first one is incremental bagging with transfer. Unlike the näıve incremental

bagging, this method transfers the weights of the older deep networks to the

new deep network, as in DMA. The other is DMA with last-layer retraining

where a shallow network is retrained in a batch manner. Although this algo-

57

Figure 4.5 Test accuracies of learning algorithms on non-stationary CIFAR-10

data stream

rithm is not part of online learning, it is practical because batch learning of

shallow networks is much faster than that of deep networks in general.

Figure 4.5 illustrates 10-split experimental results on non-stationary data.

The models with only one CNN, which are online fine-tuning and last-layer

fine-tuning in this experiment, show inferior results compared to other algo-

rithms. These models did not adapt to extreme non-stationary data streams in

the experiment on CIFAR-10. In the last-layer fine-tuning, a CNN trained by

the first online dataset was used. The model has deep representation for dis-

criminating only three image classes. Hence, the performance does not increase

significantly. In the case of online fine-tuning, the model loses the previously

seen information, which reduces the performance of test accuracy as time pro-

gresses. Meanwhile, incremental bagging increases its performance continuously

with the non-stationary data stream. Incremental bagging that uses many net-

works outperforms online fine-tuning that uses only one deep network. On the

58

Figure 4.6 Test accuracies of DMA on CIFAR-10 data stream under various

settings

other hand, the proposed DMA outperforms incremental bagging consistently.

This result shows learning a shallow network and deep networks concurrently

is advantageous compared to näıvely averaging softmax output probability of

each CNN.

Alternative configurations of the DMA were also explored in our study to

discover the characteristics of DMA (Figure 4.6). First, we analyze the effect of

weight transfer in the deep memory. The DMA with weight transfer performs

better than the DMA without weight transfer (+3.80%), as shown in Figure 4.6.

The performance gap is much larger between incremental bagging with weight

transfer and the model without weight transfer (+4.89%), as shown in Figure

4.5. Part of the entire data is not sufficient for learning discriminative repre-

sentations in the weak learner for the whole class. In the experiment, weight

transfer alleviates this problem for both the DMA and incremental bagging.

Second, we substitute our generative assumption over class y and kernel ϕ

59

Table 4.3 Statistics of the lifelog dataset of each subject
Instances (sec/day) Number of class

Training Test Location Sub-location Activity

A 105201 (13) 17055 (5) 18 31 39

B 242845 (10) 91316 (4) 18 28 30

C 144162 (10) 61029 (4) 10 24 65

to the discriminative counterpart suggested by Liu et al. (Liu et al., 2008). The

performance of two approaches does not differ at the early phase of the learn-

ing. However, the performance of the discriminative approach deteriorates as

extreme non-stationary data is encountered continuously. This result supports

our argument that a generative approach is one of the key points of successful

online learning of mGHNs.

Lastly, we discuss the effect of the number of kernel features in the mGHN.

The generative approach of mGHN needs more number of parameter compared

to the discriminative approach. For example, the number of parameters of the

covariance matrix in our generative approach is directly proportional to square

of the number of kernel features, whereas the number of parameters of the

weight matrix in the discriminative counterpart is directly proportional to the

number of kernel features. The performance of the DMA severely decreases if

the kernel size increase from 1,000 to 4,900 variables at the end of training as

shown in DMA with large # of kernel in Figure 4.6.

4.5.2 Lifelog Dataset

We collected Google Glass lifelog dataset recorded over 46 days from three

participants. The 660,000 seconds of the egocentric video stream data reflects

the behaviors of participant including the indoor activities, such as ‘working

in the office’ or ‘eating in the restaurant’, and the outdoor activities, such as

60

Table 4.4 Top-5 classes in each label of the lifelog dataset
Location Sub-location Activity

office (196839) office-room (182884) working (204131)

university (147045) classroom (101844) commuting (102034)

outside (130754) home-room (86588) studying (90330)

home (97180) subway (35204) eating (60725)

restaurant (22190) bus (34120) watching (35387)

‘walking on the road’ or ‘waiting for the arrival of the subway car’. The subjects

were asked to notate what they were doing and where they were in real-time by

using a life-logging application installed on their mobile phones. The notated

data was then used as labels for the classification task in our experiments. In

this study, the classification task of location, sub-location, and daily activity

are considered. For evaluation, the dataset of each subject is separated into the

training set and test set in order of time. A frame image of each second is used

and classified as one instance. Table 4.3 summarizes the dataset statistics and

Table 4.4 presents the distribution of the five major classes in each class type.

We allowed the AlexNet features and the labels of class types of the lifelog

dataset to be publically available (version 1) 1.

Two kinds of neural networks were used to extract the representations in

the experiment. One is AlexNet, a prototype network trained by ImageNet

(Krizhevsky et al., 2012). The other is referred to as LifeNet, a network trained

with our lifelog dataset. The structure of LifeNet is similar to AlexNet, but

the number of nodes in LifeNet is half of those in AlexNet. Both AlexNet and

LifeNet were implemented using the MatConvNet toolbox. We chose a 1000-

dimensional softmax output vector of AlexNet for representation of online deep

learning algorithms, as we assume the probability of an object’s appearance in

1bi.snu.ac.kr/datasets/lifeome/

61

Figure 4.7 Averaged test accuracies of various learning algorithms on the lifelog
dataset. The location, sub-location, and activity are classified separately for
each of the three subjects.

each scene to be highly related to the daily activity represented by each scene.

The performances on the lifelog dataset were evaluated in a 10-split exper-

iment. Each online dataset corresponds to each day for the subjects B and C

respectively. However, for subject A, the 13 days of training data was changed

into 10 online datasets by merging 3 of the days into its next days. Each online

dataset is referred to as a day. LifeNets made from 3 groups of online lifelog

datasets, with sets of consecutive 3, 4 and 3 days for each group. In the entire

learning of LifeNet, the learning rate is set to 0.0025, the rate of weight de-

cay is 5 × 10−4, and the rate of momentum is 0.9. In the experiment, LifeNet

is used for online fine-tuning and incremental bagging, AlexNet for last-layer

fine-tuning and both the LifeNet and AlexNet are used for DMA.

Figure 4.7 shows the experimental results from the lifelog dataset. The ex-

periments consist of three subjects whose tasks are classified into three cat-

egories. A total of nine experiments are performed and their averaged test

62

Figure 4.8 Averaged test accuracies of various learning algorithms on the lifelog
dataset. The result of each class type are evaluated separately for each partici-
pant.

accuracies from a range of learning algorithms are plotted. Unlike the previous

result on CIFAR-10, last-layer fine-tuning that uses one AlexNet outperforms

other online deep learning algorithms that use many LifeNets. However, these

learning algorithms perform worse than DMA that uses numerous LifeNets and

one AlexNet. This implies that usage of pre-trained deep networks by a large

corpus dataset is effective on the lifelog dataset. From the perspective of person-

alization, a representation obtained by existing users or other large dataset can

be used together with a representation obtained by a new user. However, DMA

that uses both AlexNet and LifeNet works better than last-layer fine-tuning,

which implies again that using multiple networks is necessary for online deep

63

Figure 4.9 Averaged test accuracies of various learning algorithms on the lifelog
dataset. The result of each participant are evaluated separately for each of the
class type.

learning.

Figure 4.8 and 4.9 show the accuracies by each subject and class type respec-

tively. In some experiments, at times the performance of algorithms decreases

with the incoming stream of data. While learning a non-stationary data stream

is a natural phenomenon, it would occur in situations where the test data is

more similar to the training data encountered earlier than later during the

learning process. Although, such fluctuations can occur, on average, however,

the accuracies of algorithms increase steadily with the incoming stream of data.

64

4.6 Discussion

4.6.1 Parameter-Decomposability in Deep Learning

We have previously mentioned that the DMA is inspired by the CLS theory.

The study not only first raises the catastrophic forgetting problem, but also

suggests the dual structure to solve the problem; deep memory corresponds to

the neocortex, whereas fast memory corresponds to the hippocampus. Further,

the following questions on missing links in the cognitive modeling of CLS are

in our interest: First, how can the neocortex as the connectionist parametric

model and the hippocampus as the instance-based non-parametric model work

together? Second, what is the mechanism of data regeneration? Is it a database-

style memorization or, does a more efficient algorithm exists for preserving the

information of data pattern?

Two properties of the DMA can be used to answer these questions. First,

the parameter µ and Σ of an mGHN is decomposable at each instance although

DNN and mGHN infer as one neural network. This instance-decomposability

allows one-shot learning (Fei-Fei et al., 2006), learning information about cate-

gories, from one, or only a few training instances, and instance-scale reweighting,

learning with over-weight and under-weight instances by their importance.

Second, mGHNs can recover old information using an analytic method over

the maximum likelihood solution from a pattern-completion perspective. This

property accords with the interpretation of the CLS theory that there are areas

for pattern classification (dentate gyrus) and pattern generation (CA3) in the

hippocampus.

4.6.2 Online Bayesian Optimization

Bayesian optimization is a global black-box optimization technique that can be

effectively applied on functions whose evaluation cost is expensive and its dis-

65

tribution is unknown. For determining next search point, Bayesian optimization

uses a surrogate estimator of real search space, which gives an estimated score

and its predictive uncertainty for each point. The most typical algorithm for

Bayesian optimization is the Gaussian processes (GPs), that models non-linear

search space but the speed of inference is high. However, the inference costs of

GPs become expensive where the size of training data is large, since GPs scale

cubically with the number of observations. Snoek et al. (Snoek et al., 2015)

propose DNN-based modeling which alleviates this problem, because the DNN

is adaptable for large-scale data. In their model, a Bayesian linear regression

model is added to the last layer of the DNN. However, the existing method

of DNNs does not fit the stream data to develop deep representations in an

online manner. Our method can be applied to this kind of setting. The DMA

updates not only the mGHN, which can work as the regression model in the last

layer of DNN, but also the deep representation. For using mGHNs as Bayesian

models, the prior can be put into the sufficient statistic of Gaussian parameter

µ, Σ over class y and kernel ϕ. An example structure of the Bayesian version

of DMA is shown in Kim et al.’s work (Kim et al., 2016b), where effective

deep representations of a CNN pretrained by ImageNet are selected with the

Bayesian least-square support vector machine (LS-SVM) model to classify into

a new task.

4.7 Summary

We presented DMA for online deep learning of user behavior in everyday life

using a wearable device. Our experimental results showed that the proposed

method overcomes catastrophic forgetting in the learning of real non-stationary

data. This property was utilized for implementing advanced personalized con-

text recognition system.

66

This success is an example that solving the engineering problem by obtaining

inspiration from the theories in cognitive neuroscience, which in our case was

the CLS theory. On the other hand, our DMA implementation was used to

discuss how neural network model and instance-based method work together

from the CLS theory perspective. We also discussed two variants of the DMA

that can potentially contribute to other machine learning fields. One model is

the novel Bayesian optimization method having deep representation and online

learnability. The other model is a novel online multi-task learner with evolving

deep representation.

67

Chapter 5

Sequential Bayesian for Lifelong
Learning: Incremental Moment
Matching

5.1 Introduction

In this chapter, we introduce the incremental moment matching (IMM), which

uses the Bayesian neural network framework. IMM assumes that the poste-

rior distribution of parameters of neural networks is approximated with the

Gaussian distribution and incrementally matches the moment of the posteriors,

which are trained for the first and second task.

There are two moment matching methods in our study, mean-IMM and

mode-IMM. Mean-IMM simply averages the parameter of two neural networks,

whereas mode-IMM tries to find a maximum of the mixture of Gaussian poste-

riors. For IMM to be reasonable, the search space of the loss function between

the posterior means µ1 and µ2 should be reasonably smooth and convex-like. To

find a µ2 which satisfies this condition of a smooth and convex-like path from

68

Figure 5.1 Geometric illustration of incremental moment matching (IMM).

µ1, we propose applying various transfer techniques for the IMM procedure.

The transfer techniques include 1) weight-transfer; 2) L2-transfer, L2-norm of

old and new parameters; and 3) drop-transfer, a newly proposed variant of

dropout using old parameters.

5.2 Incremental Moment Matching

In incremental moment matching (IMM), the moments of posterior distribu-

tions are matched in an incremental way. In our work, we use a Gaussian dis-

tribution to approximate the posterior distribution of parameters. Given K

sequential tasks, we want to find the optimal parameter µ∗
1:K and Σ∗

1:K of the

Gaussian approximation function q1:K from the posterior parameter for each

kth task, (µk,Σk).

p1:K ≡ p(θ|X1, · · · , XK , y1, · · · , yK) ≈ q1:K ≡ q(θ|µ1:K ,Σ1:K) (5.1)

pk ≡ p(θ|Xk, yk) ≈ qk ≡ q(θ|µk,Σk) (5.2)

q1:K denotes an approximation of the true posterior distribution p1:K for the

whole task, and qk denotes an approximation of the true posterior distribution

pk over the training dataset (Xk, yk) for the kth task. θ denotes the vectorized

parameter of the neural network. The dimension of µk and µ1:k is D, and the

69

dimension of Σk and Σ1:k is D ×D, respectively, where D is the dimension of

θ. For example, in the case of a multi-layer perceptrons (MLP) with [784-800-

800-10] as the number of nodes, D = 1917610.

Next, we explain two proposed moment matching algorithms for the lifelong

learning of modern deep neural networks. Two algorithms have a different form

of Gaussian with a different objective function for the same dataset.

5.2.1 Mean-based Incremental Moment Matching (mean-IMM)

Mean-IMM averages the parameters of two networks in each layer, using

mixing ratios αk with
∑K

k αk = 1. The objective function of mean-IMM is to

minimize the KL-divergence between q1:K and the mixture of each qk. According

to Zhang and Kwok (Zhang and Kwok, 2010), the solutions µ∗
1:K and Σ∗

1:K are

as follows:

µ∗
1:K ,Σ∗

1:K = argmin
µ1:K ,Σ1:K

KL(q1:K ||
∑K

k αkqk) (5.3)

µ∗
1:K =

∑K
k αkµk (5.4)

Σ∗
1:K =

∑K
k αk(Σk + (µk − µ∗

1:K)(µk − µ∗
1:K)T) (5.5)

Notice that covariance information is not needed for mean-IMM, since cal-

culating µ∗
1:K does not require any Σk. A series of µk is sufficient to perform the

task. The idea of mean-IMM is commonly used in shallow networks (Pathak

et al., 2010; Baldi and Sadowski, 2013). However, the contribution of this paper

is to discover where and how mean-IMM can be applied in modern deep neural

networks and to show it can performs better with other transfer techniques.

70

5.2.2 Mode-based Incremental Moment Matching (mode-IMM)

Mode-IMM is a variant of mean-IMM which uses the covariance information

of the posterior of Gaussian distribution. Though mean-IMM minimizes KL-

divergence for a mixture of Gaussian (MoG), usually, a weighted average of two

mean vectors of Gaussian distributions is not a mode of MoG. In discriminative

learning, the maximum of the distribution is of primary interest. According to

Ray and Lindsay (Ray and Lindsay, 2005), all the modes of MoG withK clusters

lie on (K−1)-dimensional hypersurface {θ|θ = (
∑K

k akΣ
−1
k)−1(

∑K
k akΣ

−1
k µk), 0 <

ak < 1 and
∑

k ak = 1}. See Appendix A for more detail.

Motivated by the above description, a mode-IMM approximate MoG with

Laplacian approximation, in which the logarithm of the function is expressed

by a Taylor expansion (MacKay, 1992). Using Laplacian approximation, the

MoG is approximated as follows:

log q1:K ≈
∑K

k αk log qk + C = −1

2
θT (

∑K
k αkΣ

−1
k)θ + (

∑K
k αkΣ

−1
k µk)θ + C ′

(5.6)

µ∗
1:K = Σ∗

1:K · (
∑K

k αkΣ
−1
k µk) (5.7)

Σ∗
1:K = (

∑K
k αkΣ

−1
k)−1 (5.8)

Here, we assume diagonal covariance matrices, which means that there is

no correlation among parameters. This diagonal assumption is useful, since it

decreases the number of parameters for each covariance matrix from O(D2) to

O(D) for the dimension of the parameters D.

For covariance, we use the inverse of a Fisher information matrix, following

(Kirkpatrick et al., 2017; Pascanu and Bengio, 2013). The main idea of this

71

approximation is that the square of gradients for parameters is a good indicator

of their precision, which is the inverse of the variance. The Fisher information

matrix for the kth task, Fk is defined as:

Fk = E

[
∂

∂µk
ln p(ỹ|x, µk) ·

∂

∂µk
ln p(ỹ|x, µk)

T

]
, (5.9)

where the probability of the expectation follows x ∼ πk and ỹ ∼ p(y|x, µk),

where πk denotes an empirical distribution of Xk.

The theoretical verification is as follows. According to Ray and Lindsay (Ray

and Lindsay, 2005), all the critical points θ of a mixture of Gaussian (MoG)

with two components are in one curve as the following equation with 0 < α < 1.

θ = ((1− α)Σ−1
1 + αΣ−1

2)−1((1− α)Σ−1
1 µ1 + αΣ−1

2 µ2) (5.10)

The proof is as follows. Imagine two Gaussian distribution q1 and q2, such

as in Equation 5.2.

q1 ≡ q1(θ;µ1,Σ1) =
1√

(2π)D|Σ1|
exp

(
−1

2
(θ − µ1)

TΣ−1
1 (θ − µ1)

)
(5.11)

q2 ≡ q2(θ;µ2,Σ2) =
1√

(2π)D|Σ2|
exp

(
−1

2
(θ − µ2)

TΣ−1
1 (θ − µ2)

)
(5.12)

D is the dimension of the Gaussian distribution. Mixture of two Gaussian

q1 and q2 with the equal mixing ratio (i.e., 1:1) is q1/2 + q2/2. The derivation

of the MoG is as follows:

∂(q1/2 + q2/2)

∂θ
= −q1

2
(Σ−1

1 (θ − µ1))−
q2
2
(Σ−1

2 (θ − µ2)) = 0 (5.13)

If we set Equation 5.13 to 0, to find all critical points, the following equation

holds:

72

θ = (q1Σ
−1
1 + q2Σ

−1
2)−1(q1Σ

−1
1 µ1 + q2Σ

−1
2 µ2) (5.14)

When set α to q2
q1+q2

, Equation 5.10 holds.

Note that αk is a function of θ, so θ cannot be calculated in a closed-form

from Equation 5.14. However, the optimal θ is in the set {θ|θ = ((1− α)Σ−1
1 +

αΣ−1
2)−1((1−α)Σ−1

1 µ1+αΣ−1
2 µ2), 0 < α < 1}, which motivates our mode-IMM

method.

In our study IMM uses diagonal covariance matrices, which means that

there is no correlation between parameters. This diagonal assumption is useful,

since it decreases the number of parameters for each covariance matrix from

O(D2) to O(D). Based on this, the µ∗
1:2 is defined as follows:

µ∗
1:2,v =

µ1,v/σ
2
1,v + µ2,v/σ

2
2,v

1/σ2
1,v + 1/σ2

2,v

(5.15)

v denotes an index of the parameter vector. µ·,v and σ2
·,v are scalar.

For MoG with two components in K dimension, the number of modes can

be at most K + 1 (Ray and Ren, 2012). Therefore, it is hard to find all modes

in high-dimensional Gaussian in general.

The property of critical points of a MoG with two components can be ex-

tended to the case of K components. The following equation holds:

θ = (

K∑
k=1

αkΣ
−1
k)−1(

K∑
k=1

αkΣ
−1
k µk), (5.16)

where 0 < αk < 1 for all k and
∑

k αk = 1. There is no tight upper bound on

the number of modes of MoG in general. There is a guess that, for all D,K ≥ 1,

the upper bound is D +K − 1 choose D (Améndola et al., 2017).

73

5.3 Transfer Techniques for Incremental Moment Match-
ing

In general, the loss function of neural networks is not convex. If the param-

eters of two neural networks initialized independently are averaged, it might

perform poorly. This results from high cost barriers between the two param-

eters (Goodfellow et al., 2014). However, we will show that various transfer

learning techniques can be used to ease this problem, and make the assump-

tion of Gaussian distribution for neural networks reasonable. In this section,

we introduce three practical techniques for IMM, including weight-transfer, L2-

transfer, and drop-transfer.

5.3.1 Weight-Transfer

Weight-transfer initialize the parameters for the new task µk with the param-

eters of the previous task µk−1 (Yosinski et al., 2014). In our experiments, the

use of weight-transfer was critical to the lifelong learning performance. For this

reason, the experiments on IMM in this paper use the weight-transfer technique

as a default.

The weight-transfer technique is motivated by the geometrical property of

neural networks discovered in the previous work (Goodfellow et al., 2014). They

found that there is a straight path from the initial point to the solution without

any high cost barrier, in various types of neural networks and datasets. This

discovery suggests that the weight-transfer from the previous task to the new

task makes a smooth loss surface between two solutions for the tasks, so that

the optimal solution for both tasks lies on the interpolated point of the two

solutions.

To empirically validate the concept of weight-transfer, we use the linear path

analysis proposed by Goodfellow et al. (Goodfellow et al., 2014) (Figure 5.2).

74

Figure 5.2 Experimental results on visualizing the effect of weight-transfer.

We randomly chose 18,000 instances from the training dataset of CIFAR-10,

and divided them into three subsets of 6,000 instances each. These three subsets

are used for sequential training by CNN models, parameterized by θ1, θ2, and

θ3, respectively. Here, θ2 is initialized from θ1, and then θ3 is initialized from

θ2, in the same way as weight-transfer. In the analysis, each loss and accuracy

is evaluated at a series of points θ = θ1+α(θ2− θ1)+β(θ3− θ2), varying α and

β. In Figure 5.2, the loss surface of the model on each online subset is nearly

convex.

The geometric property of the parameter space of the neural network is

analyzed. Brighter is better. θ1, θ2, and θ3 are the points of trained networks

from randomly selected subsets of the CIFAR-10 dataset. This figure shows that

there are better solutions between the three locally optimized parameters.

The figure shows that the parameter at 1
3(θ1 + θ2 + θ3), which is the same

as the solution of mean-IMM, performs better than any other reference points

θ1, θ2, or θ3. However, when θ2 is not initialized by θ1, the convex-like shape

disappears, since there is a high cost barrier between the loss function of θ1 and

θ2.

75

5.3.2 L2-transfer

L2-transfer is a variant of L2-regularization. L2-transfer can be interpreted as

a special case of EWC where the prior distribution is Gaussian with λI as a

covariance matrix. In L2-transfer, a regularization term of the distance between

µk−1 and µk is added to the following objective function for finding µk, where

λ is a hyperparameter:

log p(yk|Xk, µk)− λ · ||µk − µk−1||22 (5.17)

The concept of L2-transfer is commonly used in transfer learning (Evgeniou

and Pontil, 2004; Kienzle and Chellapilla, 2006) and lifelong learning (Li and

Hoiem, 2016; Kirkpatrick et al., 2017) with large λ. Unlike the previous usage of

large λ, we use small λ for the IMM procedure. In other words, µk is first trained

by Equation 5.17 with small λ, and then merged to µ1:k in our IMM. Since we

want to make the loss surface between µk−1 and µk smooth, and not to minimize

the distance between µk−1 and µk. In convex optimization, the L2-regularizer

makes the convex function strictly convex. Similarly, we hope L2-transfer with

small λ will help find a µk with a convex-like loss space between µk−1 and µk.

5.3.3 Drop-transfer

Drop-transfer is a novel method devised in this paper. Drop-transfer is a

variant of dropout where µk−1 is the zero point of the dropout procedure. In

the training phase, the following µ̂k,i is used for the weight vector corresponding

to the ith node µk,i:

µ̂k,i =

µk−1,i, if ith node is turned off

1
1−p · µk,i − p

1−p · µk−1,i, otherwise

(5.18)

76

Table 5.1 The averaged accuracies on the disjoint MNIST for two sequential
tasks. For IMM with transfer, only α is tuned. The numbers in the parentheses
refer to standard deviation. Every IMM uses weight-transfer.

Explanation of Natural
Disjoint MNIST Experiment Hyperparam Hyperparam Accuracy
SGD (Goodfellow et al., 2013) epoch per dataset 10 47.72 (± 0.11)
L2-transfer (Evgeniou and Pontil, 2004) λ in (5.17) - -
Drop-transfer p in (5.18) 0.5 51.72 (± 0.79)
EWC (Kirkpatrick et al., 2017) λ in (2.5) 1.0 47.84 (± 0.04)
Mean-IMM α2 in (5.4) 0.50 90.45 (± 2.24)
Mode-IMM α2 in (5.7) 0.50 91.49 (± 0.98)
L2-transfer + Mean-IMM λ / α2 0.001 / 0.50 78.34 (± 1.82)
L2-transfer + Mode-IMM λ / α2 0.001 / 0.50 92.52 (± 0.41)
Drop-transfer + Mean-IMM p / α2 0.5 / 0.50 80.75 (± 1.28)
Drop-transfer + Mode-IMM p / α2 0.5 / 0.50 93.35 (± 0.49)
L2, Drop-transfer + Mean-IMM λ / p / α2 0.001 / 0.5 / 0.50 66.10 (± 3.19)
L2, Drop-transfer + Mode-IMM λ / p / α2 0.001 / 0.5 / 0.50 93.97 (± 0.32)

Explanation of Tuned
Disjoint MNIST Experiment Hyperparam Hyperparam Accuracy
SGD (Goodfellow et al., 2013) epoch per dataset 0.05 71.32 (± 1.54)
L2-transfer (Evgeniou and Pontil, 2004) λ in (5.17) 0.05 85.81 (± 0.52)
Drop-transfer p in (5.18) 0.5 51.72 (± 0.79)
EWC (Kirkpatrick et al., 2017) λ in (2.5) 600M 52.72 (± 1.36)
Mean-IMM α2 in (5.4) 0.55 91.92 (± 0.98)
Mode-IMM α2 in (5.7) 0.45 92.02 (± 0.73)
L2-transfer + Mean-IMM λ / α2 0.001 / 0.60 92.62 (± 0.95)
L2-transfer + Mode-IMM λ / α2 0.001 / 0.45 92.73 (± 0.35)
Drop-transfer + Mean-IMM p / α2 0.5 / 0.60 92.64 (± 0.60)
Drop-transfer + Mode-IMM p / α2 0.5 / 0.50 93.35 (± 0.49)
L2, Drop-transfer + Mean-IMM λ / p / α2 0.001 / 0.5 / 0.75 93.97 (± 0.23)
L2, Drop-transfer + Mode-IMM λ / p / α2 0.001 / 0.5 / 0.45 94.12 (± 0.27)

where p is the dropout ratio. Notice that the expectation of µ̂k,i is µk,i.

There are studies (Srivastava et al., 2014; Baldi and Sadowski, 2013) that

have interpreted dropout as an exponential ensemble of weak learners. By this

perspective, as the marginalization of output distribution over the whole weak

learner is intractable, the parameters multiplied by the inverse of the dropout

rate are used for the test phase in the procedure. In other words, the parameters

of the weak learners are, in effect, simply averaged oversampled learners by

dropout. At the process of drop-transfer in our lifelong learning setting, we

hypothesize that the dropout process makes the averaged point of two arbitrary

77

Table 5.2 The averaged accuracies on the shuffled MNIST for three sequential
tasks. The results of SGD and EWC with tuned setting is from (Kirkpatrick
et al., 2017)

Explanation of Natural
Shuffled MNIST Experiment Hyperparam Hyperparam Accuracy
SGD (Goodfellow et al., 2013) epoch per dataset 60 89.15 (± 2.34)
L2-transfer (Evgeniou and Pontil, 2004) λ in (5.17) - -
Drop-transfer p in (5.18) 0.5 94.75 (± 0.62)
EWC (Kirkpatrick et al., 2017) λ in (2.5) - -
Mean-IMM α3 in (5.4) 0.33 93.23 (± 1.37)
Mode-IMM α3 in (5.7) 0.33 98.02 (± 0.05)
L2-transfer + Mean-IMM λ / α3 1e-4 / 0.33 90.38 (± 1.74)
L2-transfer + Mode-IMM λ / α3 1e-4 / 0.33 98.16 (± 0.08)
Drop-transfer + Mean-IMM p / α3 0.5 / 0.33 90.79 (± 1.30)
Drop-transfer + Mode-IMM p / α3 0.5 / 0.33 97.80 (± 0.07)
L2, Drop-transfer + Mean-IMM λ / p / α3 1e-4 / 0.5 / 0.33 89.51 (± 2.85)
L2, Drop-transfer + Mode-IMM λ / p / α3 1e-4 / 0.5 / 0.33 97.83 (± 0.10)

Explanation of Tuned
Shuffled MNIST Experiment Hyperparam Hyperparam Accuracy
SGD (Goodfellow et al., 2013) epoch per dataset - ∼95.5
L2-transfer (Evgeniou and Pontil, 2004) λ in (5.17) 1e-3 96.37 (± 0.62)
Drop-transfer p in (5.18) 0.2 96.86 (± 0.21)
EWC (Kirkpatrick et al., 2017) λ in (2.5) - ∼98.2
Mean-IMM α3 in (5.4) 0.55 95.02 (± 0.42)
Mode-IMM α3 in (5.7) 0.60 98.08 (± 0.08)
L2-transfer + Mean-IMM λ / α3 1e-4 / 0.65 95.93 (± 0.31)
L2-transfer + Mode-IMM λ / α3 1e-4 / 0.60 98.30 (± 0.08)
Drop-transfer + Mean-IMM p / α3 0.5 / 0.65 96.49 (± 0.44)
Drop-transfer + Mode-IMM p / α3 0.5 / 0.55 97.95 (± 0.08)
L2, Drop-transfer + Mean-IMM λ / p / α3 1e-4 / 0.5 / 0.90 97.36 (± 0.19)
L2, Drop-transfer + Mode-IMM λ / p / α3 1e-4 / 0.5 / 0.50 97.92 (± 0.05)

sampled points using Equation 5.18 a good estimator.

We investigated the search space of the loss function of the MLP trained

from the MNIST handwritten digit recognition dataset for with and without

dropout regularization, to supplement the evidence of the described hypothesis.

Dropout regularization makes the accuracy of a sampled point from dropout

distribution and an average point of two samples, from 0.450 (± 0.084) to 0.950

(± 0.009) and 0.757 (± 0.065) to 0.974 (± 0.003), respectively. For the case

of both with and without dropout, the space between two arbitrary samples

is empirically convex, and fits the second-order equation. Based on this exper-

78

Algorithm 9 IMM with weight-transfer, L2-transfer

Input: data {(X1, y1),...,(XK , yK)}, balancing hyperparameter α
Output: w1:K

w0 ← InitializeNN()
for k = 1:K do

wk∗ ← wk−1

Train(wk∗, Xk, yk) with L(wk∗, Xk, yk) + λ · ||wk∗ − wk−1||22
if type is mean-IMM then
w1:k ←

∑k
t αtwt∗

else if type is mode-IMM then
Fk∗ ← CalculateFisherMatrix(wk∗, Xk)
Σ1:k ← (

∑k
t αtFt∗)

−1

w1:k ← Σ1:k · (
∑k

t αtFt∗wt∗)
end if

end for

iment, we expect not only that the search space of the loss function between

modern neural networks can easily be nearly convex (Goodfellow et al., 2014),

but also that regularizers, such as dropout, make the search space smooth and

the point in the search space has a good accuracy in lifelong learning.

5.3.4 IMM Procedure

Two moment matching methods: mean-IMM and mode-IMM, and three

transfer learning techniques: weight-transfer, L2-transfer, and drop-transfer,

are combined to make a variety of lifelong learning algorithms in our study.

Algorithm 9 describes mean-IMM and mode-IMM with weight-transfer and

L2-transfer.

5.4 Experimental Results

We evaluate our approach on four experiments, which settings are intensively

used in the previous works (Srivastava et al., 2013; Kirkpatrick et al., 2017; Li

and Hoiem, 2016; Lee et al., 2016).

79

5.4.1 Disjoint MNIST Experiment

The first experiment is the disjoint MNIST experiment (Srivastava et al., 2013).

In this experiment, the MNIST dataset is divided into two datasets: the first

dataset consists of only digits {0, 1, 2, 3, 4} and the second dataset consists

of the remaining digits {5, 6, 7, 8, 9}. Our task is 10-class joint categorization,

unlike in the previous work, which considers two independent tasks of 5-class

categorization. Because the inference should include the decision whether a new

instance comes from the first or the second task, our task is more difficult than

the task from the previous work.

We evaluate the models both on the natural setting and the tuned setting.

The natural setting refers to the most natural hyperparameter in the equa-

tion of each algorithm. The tuned setting refers to using heuristic hand-tuned

hyperparameters. Consider that tuned hyperparameter-setting is often used in

previous works of lifelong learning as it is difficult to define a validation set in

their setting. For example, when the model needs to learn from the new task

after learning from the old task, a low learning rate or early stopping without

a validation set, or arbitrary hyperparameter for balancing is used (Goodfel-

low et al., 2013; Kirkpatrick et al., 2017). We discover hyperparameters in the

tuned setting not only for finding the oracle performance of each algorithm,

but also for showing that there exist some paths consisting of the point that

performs reasonably for both tasks. Hyperparam in Table 5.1 and 5.2 denotes

hyperparameter mainly searched in the tuned setting. Table 5.1 and Figure 5.3

(Left) shows the experimental results from the disjoint MNIST experiment.

The natural setting refers to the most natural hyperparameter in the equa-

tion of each algorithm, whereas the tuned setting refers to using heuristic hand-

tuned hyperparameters. Hyperparam denotes the main hyperparameter of each

80

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

alpha, for weighing two networks

T
e

s
t

A
c
c
u

ra
c
y

The disjoint MNIST experiment

First Task, Mean−IMM

Second Task, Mean−IMM

First Task, Mode−IMM

Second Task, Mode−IMM

0 0.2 0.4 0.6 0.8 1
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

alpha, for weighing two networks

T
e

s
t

A
c
c
u

ra
c
y

The shuffled MNIST experiment

First Task, Mean−IMM

Second Task, Mean−IMM

First Task, Mode−IMM

Second Task, Mode−IMM

0 0.2 0.4 0.6 0.8 1

0.52

0.54

0.56

0.58

0.6

0.62

alpha, for weighing two networks

T
e

s
t

A
c
c
u

ra
c
y

The ImageNet2CUB experiment

First Task, Mean−IMM

Second Task, Mean−IMM

First Task, Mode−IMM

Second Task, Mode−IMM

Figure 5.3 Test accuracies of two IMM models with weight-transfer on the
disjoint MNIST (Left), the shuffled MNIST (Middle), and the ImageNet2CUB
experiment (Right).

algorithm.

α is a hyperparameter that balances the information between the old and

the new task.

We first explain the natural setting and the tuned setting in detail. The

natural setting refers to the most natural hyperparameter in the equation of

each algorithm, whereas the tuned setting refers to using heuristic hand-tuned

hyperparameters. For mean-IMM, it is most natural to evenly average K models

and 1/K is the most natural αk value for K sequential tasks. For EWC, 1 is the

most natural λ value in Equation 2.4, because EWC is derived from the equation

of sequential Bayesian. For L2-transfer, there is no natural hyperparameter

81

value in Equation 5.17, so we need to heuristically choose a λ value, which is

not too small but does not damage the performance of the new network for the

new task.

In the SGD, epoch per dataset for the second task corresponds to the hyper-

parameter. The unit is how much of the network is trained from the whole data

at once. In the L2-transfer and EWC, λ in Equations 5.17 and 2.4 corresponds

to their hyperparameter, respectively. In the mean-IMM and mode-IMM, αK

in Equations 5.4 and 5.7 corresponds to the hyperparameter, respectively. In

the drop-transfer, dropout ratio p in Equation 5.18 corresponds to the hyper-

parameter.

All of the explained hyperparameters are devised to balance the information

between the old and new tasks. If λ/(1+λ) = 1 or α1 = 1, the final network of

the algorithms is the same as the network for the first task. If 1/(1 + λ) = 1 or

αK = 1, the final network is the same as the network for the last task.

We used multi-layer perceptrons (MLP) with [784-800-800-10] as the num-

ber of nodes, ReLU as the activation function, and vanilla SGD as the optimizer

for all of the experiments. We set the epoch per dataset to 10, unless otherwise

noted. The entire IMM model uses weight-transfer to smooth the loss surface

of the model. Without weight-transfer, our IMM model does not work at all.

In our experiments, all models only use one 10-way softmax output layer. In

only SGD, dropout is used as proposed in Goodfellow et al. (Goodfellow et al.,

2013), but dropout does not help much.

Each accuracy was measured by repeating 10 experiments. In the experi-

ment, IMM outperforms comparative models by a significant margin. In the

tuned experiment, the performance of the IMM models exceeds 90%, and the

performance increases more when more transfer techniques are applied. Among

all the models, weight-transfer + L2-transfer + drop-transfer + mode-IMM

82

Figure 5.4 Test accuracies of IMM with various transfer techniques on the dis-
joint MNIST.

performs the best and at greater than 94%. However, the comparative mod-

els fail to reach greater than 90%. Existing regularizer including dropout does

not improve the comparative models. In our experimental setting, the usual

SGD-based optimizers always perform less than 50%, because the biases of the

output layer for the old task are always pushed to large negative values, which

implies that our task is extremely hard. Figure 5.4 also shows that mode-IMM

is robust with α and the optimal α of mean-IMM is larger than 1/2 in the

disjoint MNIST experiment.

Both L2-transfer and drop-transfer boost the performance of IMM and make

the optimal value of α larger than 1/2. However, drop-transfer tends to make

the accuracy curve more smooth than L2-transfer does.

5.4.2 Shuffled MNIST Experiment

The second experiment is the shuffled MNIST experiment (Goodfellow et al.,

2013; Kirkpatrick et al., 2017) of three sequential tasks. In this experiment,

the first dataset is the same as the original MNIST dataset. However, in the

second dataset, the input pixels of all images are shuffled with a fixed, ran-

dom permutation. In previous work, EWC reaches the performance level of the

83

Figure 5.5 (Left) Illustration of the effect of the strategy of re-weighing on the
new last-layer. (Right) The results of mode-IMM with changing the balancing
hyperparameter α to the re-scaled balancing hayperparameter α̂ with the scale
of the Fisher matrix of each network.

batch learner, and it is argued that EWC overcomes catastrophic forgetting

in some domains. The experimental details are similar to the disjoint MNIST

experiment, except all models are allowed to use dropout regularization. In the

experiment, the first dataset is the same as the original MNIST dataset. How-

ever, in the second and the third dataset, the input pixels of all images are

shuffled with a fixed, random permutation. Therefore, the difficulty of the three

datasets is the same, though a different solution is required for each dataset.

Table 5.2 and Figure 5.3 (Middle) shows the experimental results from the

shuffled MNIST experiment. Notice that accuracy of drop-transfer (p = 0.2)

alone is 96.86 (± 0.21) and L2-transfer (λ = 1e-4) + drop-transfer (p = 0.4)

alone is 97.61 (± 0.15). These results are competitive to EWC without dropout,

whose performance is around 97.0.

The second experiment is the shuffled MNIST experiment for three sequen-

tial tasks. For the hyperparameter of IMM, we set α1 and α2 as the same value,

and tune only α3. Table 5.2 shows the experimental results. The performance

of SGD + dropout and EWC + dropout comes from the report in (Kirkpatrick

84

et al., 2017). Changing only the epoch does not increase the performance by

much in SGD. Results show that our IMM paradigm does work and performs

similarly to EWC in a case where it is known that EWC performs well. Dropout

regularization in the task makes both our models and comparative models per-

form better.

In our IMM framework, weight-transfer, L2-transfer, and drop-transfer all

takes µk−1 as the reference models of the transfer for training µk. In other words,

weight-transfer initializes µk with µk−1, L2-transfer uses a regularization term

to minimize the Euclidean distance between µk−1 and µk, and drop-transfer

uses a µk−1 as the zero point of the dropout procedure. All three transfer tech-

niques can be considered to change the reference point to, for example, µmean
1:(k−1)

or µmode
1:(k−1), as previous works do (Kirkpatrick et al., 2017). However, these al-

ternatives all make worse performances in our shuffled MNIST experiment. We

argued that our utilization of transfer techniques are devised not to minimize

the distance between µk−1 and µk, but to help find a µk with a smooth and

convex-like loss space between µk−1 and µk. This interpretation seems to be

related to the result.

5.4.3 ImageNet to CUB Dataset

The third experiment is the ImageNet2CUB experiment (Li and Hoiem, 2016),

the lifelong learning problem from the ImageNet dataset to the Caltech-UCSD

Birds-200-2011 fine-grained classification (CUB) dataset (Wah et al., 2011). The

number of classes of ImageNet and CUB dataset is around 1K and 200, and the

number of training instances 1M and 5K, respectively. In the ImageNet2CUB

experiment, the last-layer is separated for the ImageNet and the CUB task. The

structure of AlexNet is used for the trained model of ImageNet (Krizhevsky

et al., 2012). In our experiment, we match the moments of the last-layer fine-

85

tuning model and the LwF model, with mean-IMM and mode-IMM.

Figure 5.3 (Right) shows that mean-IMM moderately balances the per-

formance of two tasks between two networks. However, the balance point of

mode-IMM is far from α = 0.5. It is because the scale of the Fisher matrix F is

different between the ImageNet and the CUB task. As the number of training

data of the two tasks is different, it is natural that the mean of the square of

the gradient, which is the definition of F , is different. This implies that the

assumption of mode-IMM does not always hold for heterogeneous tasks. See

Appendix D.3 for more information including learning methods of IMM in the

case of a different class output layer and a different scale of datasets.

Our results of IMM with LwF exceed the previous state-of-the-art perfor-

mance, whose model is also LwF. This is because, in the previous works, the

LwF model is initialized by the last-layer fine-tuning model, not directly by the

original AlexNet. In this case, the performance loss of the old task is decreased,

but the performance gain of the new task is also decreased. The accuracies of

our mean-IMM (α = 0.5) are 56.20 and 56.73 for the ImageNet task and the

CUB task, respectively. The gains compared to the previous state-of-the-art

are +1.13 and -1.14. In the case of mean-IMM (α = 0.8) and mode-IMM (α =

0.99), the accuracies are 55.08 and 59.08 (+0.01, +1.12), and 55.10 and 59.12

(+0.02, +1.35), respectively.

In cases where a different class output layer of each task, IMM requires ad-

ditional techniques. There is no counterpart in the last-layer of the first network

representing the second task, or the second last-layer of the first network. To

tackle this problem, we add the training process of the last-layer fine-tuning

model to the IMM procedure; we match the moments of the last-layer fine-

tuning model and the original new network for the new task. Last-layer fine-

tuning is the model the last-layer is only fine-tuned for each new task; thus it

86

does not make a performance loss for the first task, but does not often learn

enough for new tasks.

The technique utilizing the last-layer fine-tuning model makes mean-IMM

work in the case of different class output layers, but it is not enough for mode-

IMM. It is not possible to calculate a proper Fisher matrix of the second last-

layer in the first network for the first dataset. As the Fisher matrix is defined

with the gradient from the loss of the first task, elements of the Fisher matrix

have a value of zero. However, a zero matrix not only is what we want but also

degenerates the performance of mode-IMM. To tackle this problem, we apply

mean-IMM for the last-layer with a re-scaling. We change the mixing ratios α1

: α2 to α̂1 : α̂2 = α1 : α2 · |ŵ1|
|ŵ1|+|ŵ2| for the re-scaling, where |ŵ1| and |ŵ2| is the

average of the whole element of weight matrix in the layer before the last-layer,

in the first and the second task.

In our ImageNet2CUB experiment, the moments of the last-layer fine-tuning

model and the LwF model are matched. Though LwF does not perform well in

our previous experiments, it is known that LwF performs well when the size of

a new dataset is small relative to the old dataset, as is in the ImageNet2CUB

experiment.

Figure 5.5 (Left) compares the performances of mode-IMM models with

different assumptions on the Fisher matrix. In näıve mode-IMM, the Fisher

matrix of the second last-layer of the first network is a zero matrix. In other

words, the second last-layer of the final näıve mode-IMM is the second last-layer

of the second network. Näıve mode-IMM does not yield a good performance as

we expect.

Mode-IMM refers to the original mode-IMM devised for the ImageNet2CUB

experiments. In näıve mode-IMM, the second last-layer of the second network

is used for the second last-layer of the final IMM model.

87

Table 5.3 Experimental results on the Lifelog dataset. Mean-IMM uses weight-
transfer. Classification accuracies among different classes (Top) and different
subjects (Bottom).

Algorithm Location Sub-location Activity

Dual memory architecture (Lee et al., 2016) 78.11 72.36 52.92
Mean-IMM 77.60 73.78 52.74
Mode-IMM 77.14 75.76 54.07

Online fine-tuning 68.27 64.13 50.00
Last-layer fine-tuning 74.58 69.30 52.22
Näıve incremental bagging 74.48 67.18 47.92
Incremental bagging w/ transfer 74.95 68.53 49.66

Algorithm A B C

Dual memory architecture (Lee et al., 2016) 67.02 58.80 77.57
Mean-IMM 67.03 57.73 79.35
Mode-IMM 67.97 60.12 78.89

Online fine-tuning 53.01 56.54 72.85
Last-layer fine-tuning 63.31 55.83 76.97
Näıve incremental bagging 62.24 53.57 73.77
Incremental bagging w/ transfer 61.21 56.71 75.23

In Figure 5.5, scaled mode-IMM denotes the results of mode-IMM re-plotted

by the α̂ as we defined above. The result shows that re-scaled mode-IMM per-

forms similarly to mean-IMM in the ImageNet2CUB experiment.

5.4.4 Lifelog Dataset

Lastly, we evaluate the proposed mean-IMM on the Lifelog dataset (Lee et al.,

2016). The Lifelog dataset consists of 660,000 instances of egocentric video

stream data, collected over 46 days from three participants using Google Glass

(Lee et al., 2017c). Three class categories, location, sub-location, and activity,

are labeled on each frame of video. In the Lifelog dataset, the class distribution

changes continuously and new classes appear as the day passes. Table 5.3 shows

that mean-IMM and mode-IMM are competitive to the dual memory architec-

88

ture, the previous state-of-the-art ensemble model, even though IMM uses only

one network.

In the experiment, our IMM paradigm achieves competitive results with the

approach using an ensemble network, without additional cost for inference and

learning.

The Lifelog dataset is the dataset recorded from Google Glass over 46 days

from three participants. The 660,000 seconds of the egocentric video stream

data reflects the behaviors of the participants. The dataset consists of 10 days

of training data and 4 days of test data in order of time for each participant

respectively. In the framework of Lee et al. (Lee et al., 2016), the network can be

updated every day, but a new network can be made for the 3rd, 7th, and 10th

day, with training data of 3, 4, and 3 days, respectively. Following this frame-

work, our network is made in the 3rd, 7th, and 10th day, and then merged to

previously trained networks. Our IMM used AlexNet pretrained by the Ima-

geNet dataset (Krizhevsky et al., 2012) as the initial network. The experimental

results on the Lifelog dataset are in Table 5.3, where the performance of models

is from Lee et al. (Lee et al., 2016) except IMM.

5.5 Discussion

5.5.1 A Shift of Optimal Hyperparameter via Space Smoothing

The tuned setting shows there often exists some α which makes the performance

of the mean-IMM close to the mode-IMM. However, in the natural hyperpa-

rameter setting, mean-IMM performs worse when more transfer techniques are

applied. This is because an assumption of the mean-IMM is broken in that

the training of the network is only affected by the current task or the prior

for the task is rarely informed by the previous task. Fortunately, mode-IMM

works more robustly than mean-IMM where transfer techniques are applied.

89

Figure 5.4 in Appendix D.1 illustrates the change of the test accuracy curve

corresponding to the applied transfer techniques and a following shift of the

optimal α in mean-IMM and mode-IMM.

5.5.2 Bayesian Approach on lifelong learning.

Kirkpatrick et al. (Kirkpatrick et al., 2017) interpreted that the Fisher matrix

F as weight importance in explaining their EWC model. In the shuffled MNIST

experiment, since a large number of pixels always has a value of zero, the corre-

sponding element of the Fisher matrix is also zero. Therefore, EWC does work

by allowing weights to change, which are not used in the previous task. On the

other hand, mode-IMM also works by selectively balancing between two weights

using variance information. However, these assumptions on weight importance

do not always hold, especially in the disjoint MNIST experiment. The most im-

portant weight in the disjoint MNIST experiment is the bias term in the output

layer. Nevertheless, these elements of the Fisher matrix are not guaranteed to

be the highest value nor can they be used to balance the class distribution be-

tween the first and second task. We believe that using only the diagonal term

for the covariance matrix in Bayesian neural networks is too näıve in general

and that this is why EWC failed in the disjoint MNIST experiment. We think

this could be alleviated in future work by using a more complex prior, such as

a matrix Gaussian distribution while assuming correlations between nodes in

the network (Louizos and Welling, 2016).

5.5.3 Balancing the Information of an Old and a New Task.

The IMM procedure produces a neural network without a performance loss

for kth task µk, which is better than the final solution µ1:k in terms of the

performance of the kth task. Furthermore, IMM can easily weigh the importance

90

of tasks in IMM models in real time. For example, αt can be easily changed for

the solution of mean-IMM µ1:k =
∑k

t αtµt . In actual service situations of IT

companies, the importance of the old and the new task frequently changes in

real time, and IMM can handle this problem. This property differentiates IMM

to other lifelong learning methods using the regularization approach, including

LwF and EWC.

5.6 Summary

The contributions of the section are four fold. First, we applied mean-IMM to

the lifelong learning of modern deep neural networks. Mean-IMM makes com-

petitive results to comparative models and balances the information between an

old and a new network. We also interpreted the success of IMM by the Bayesian

framework with Gaussian posterior. Second, we extended mean-IMM to mode-

IMM with the interpretation of mode-finding at the mixture of Gaussian poste-

rior. Mode-IMM outperforms mean-IMM and comparative models in a variety

of datasets. Third, we introduced drop-transfer, a novel method devised in the

paper. Experimental results showed that drop-transfer alone performs well and

is similar to the EWC without dropout, in the domain which it was argued

that EWC rarely forgets. Fourth, We applied various transfer techniques by the

IMM procedure to make our assumption of Gaussian distribution reasonable.

We argued that not only the search space of the loss function among neural

networks can easily be nearly convex, but also regularizers, such as dropout,

make the search space smooth and the point in the search space have a good

accuracy. Experimental results showed that applying transfer techniques often

boost the performance of IMM. Overall, we made state-of-the-art performance

in a variety of datasets of lifelong learning and explored geometrical properties

and a Bayesian perspective of modern deep neural networks.

91

Chapter 6

Concluding Remarks

6.1 Summary of Methods and Contributions

In the dissertation, we proposed two algorithms for overcoming catastrophic

forgetting. First, we presented dual memory architecture (DMA) for online

deep learning of user behavior in everyday life using a wearable device. In the

method, We utilize the concept of complementary learning systems theory - con-

tending that effective learning of the data stream in a lifetime requires comple-

mentary systems that comprise the neocortex and hippocampus in the human

brain. A dual memory architecture (DMA) trains two learning structures: one

gradually acquires structured knowledge representations, and the other rapidly

learns the specifics of individual experiences. Our experimental results showed

that the proposed method overcomes catastrophic forgetting in the learning of

real non-stationary data. This property was utilized for implementing advanced

personalized context recognition system.

Second, we proposed incremental moment matching (IMM), which uses

92

Bayesian neural networks to merge many neural networks. In the study, We

discussed not only how moment matching works but also how three transfer

techniques in the paper make our Gaussian assumption reasonable. Four ex-

perimental results showed that IMM achieves state-of-the-art performance in a

variety of datasets. It was also shown that our IMM procedure performs better,

by applying the methods proposed in the previous works, including dropout reg-

ularization and L2-transfer. We believe our IMM could also be applied together

with other methods, including EWC and PathNet, to boost the performance

further. Using our lifelong learning setting, we discovered geometrical properties

and a Bayesian perspective of modern deep neural networks.

6.2 Suggestions for Future Research

There are numerous directions for the future works on the problem we solved.

We mention some possible directions for the future research.

Learning with Few Labels

Lifelong learning with few labels is a more plausible situation in practice (Nichol

and Schulman, 2018). For example, in the case of lifelog dataset, it is not plau-

sible to get the labeled data every day because it is too expensive to label every

day. In the ideal lifelong learning, the algorithm should learn from the data

stream with fewer labels or no label. It is the case where unsupervised learning

or semi-supervised learning is required along with lifelong learning. Learning

algorithms for two kinds of learning can be used together to solve this problem.

93

Active Learning

Active learning can also be used for lifelong learning if the agent can interact

with the human or environment. For example, in the home-service robot situ-

ation, the robot can ask the user whether he knows the concept correctly. we

believe the task-oriented dialogue algorithm can be used to achieve this kind of

active learning, where the goal is to know the correct label of instances in envi-

ronment (Han et al., 2017; Lee et al., 2018). Though it is known to be difficult

to be achieved by deep neural networks, we hope that some variants ease the

problem in the future work.

94

Bibliography

Améndola, C., Engström, A., and Haase, C. (2017). Maximum number of modes

of gaussian mixtures. arXiv preprint arXiv:1702.05066.

Amer, M. R. and Todorovic, S. (2012). Sum-product networks for modeling

activities with stochastic structure. In Computer Vision and Pattern Recog-

nition (CVPR), 2012 IEEE Conference on, pages 1314–1321. IEEE.

Baldi, P. and Sadowski, P. J. (2013). Understanding dropout. In Advances in

Neural Information Processing Systems, pages 2814–2822.

Bendor, D. and Wilson, M. A. (2012). Biasing the content of hippocampal

replay during sleep. Nature neuroscience, 15(10):1439–1444.

Bengio, Y. et al. (2009). Learning deep architectures for ai. Foundations and

trends R⃝ in Machine Learning, 2(1):1–127.

Bettadapura, V., Essa, I., and Pantofaru, C. (2015). Egocentric field-of-view

localization using first-person point-of-view devices. In IEEE Winter Con-

ference on Applications of Computer Vision, pages 626–633.

Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via pólya

urn schemes. The annals of statistics, pages 353–355.

95

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight

uncertainty in neural network. In Proceedings of the 32nd International Con-

ference on Machine Learning (ICML-15), pages 1613–1622.

Blundell, C., Uria, B., Pritzel, A., Li, Y., Ruderman, A., Leibo, J. Z., Rae, J.,

Wierstra, D., and Hassabis, D. (2016). Model-free episodic control. arXiv

preprint arXiv:1606.04460.

Bottou, L. (1998). Online learning and stochastic approximations, chapter 2,

pages 9–42. Cambridge University Press.

Broderick, T., Boyd, N., Wibisono, A., Wilson, A. C., and Jordan, M. I. (2013).

Streaming variational bayes. In Advances in Neural Information Processing

Systems, pages 1727–1735.

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E. R., and Mitchell,

T. M. (2010). Toward an architecture for never-ending language learning. In

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,

pages 1306–1313.

Carr, M. F., Jadhav, S. P., and Frank, L. M. (2011). Hippocampal replay in

the awake state: a potential substrate for memory consolidation and retrieval.

Nature neuroscience, 14(2):147–153.

Chen, T., Goodfellow, I., and Shlens, J. (2016). Net2net: Accelerating learning

via knowledge transfer. In International Conference on Learning Represen-

tations.

Chen, X., Shrivastava, A., and Gupta, A. (2013). Neil: Extracting visual knowl-

edge from web data. In Proceedings of the IEEE International Conference on

Computer Vision, pages 1409–1416.

96

Chickering, D. M., Heckerman, D., and Meek, C. (1997). A bayesian approach

to learning bayesian networks with local structure. In Proceedings of the

Thirteenth conference on Uncertainty in artificial intelligence, pages 80–89.

Morgan Kaufmann Publishers Inc.

Darwiche, A. (2003). A differential approach to inference in bayesian networks.

Journal of the ACM (JACM), 50(3):280–305.

Dechter, R. and Mateescu, R. (2007). And/or search spaces for graphical mod-

els. Artificial intelligence, 171(2-3):73–106.

Delalleau, O. and Bengio, Y. (2011). Shallow vs. deep sum-product networks.

In Advances in Neural Information Processing Systems, pages 666–674.

Dennis, A. and Ventura, D. (2012). Learning the architecture of sum-product

networks using clustering on variables. In Advances in Neural Information

Processing Systems, pages 2033–2041.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell,

T. (2014). Decaf: A deep convolutional activation feature for generic visual

recognition. In Proceedings of the 31th International Conference on Machine

Learning, pages 647–655.

Doshi, J., Kira, Z., and Wagner, A. (2015). From deep learning to episodic

memories: Creating categories of visual experiences. In Proceedings of the

Third Annual Conference on Advances in Cognitive Systems ACS.

Evgeniou, T. and Pontil, M. (2004). Regularized multi–task learning. In Pro-

ceedings of the tenth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 109–117. ACM.

97

Fei-Fei, L., Fergus, R., and Perona, P. (2006). One-shot learning of object

categories. IEEE transactions on pattern analysis and machine intelligence,

28(4):594–611.

Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A. A., Pritzel,

A., and Wierstra, D. (2017). Pathnet: Evolution channels gradient descent

in super neural networks. arXiv preprint arXiv:1701.08734.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends

in cognitive sciences, 3(4):128–135.

Gens, R. and Domingos, P. (2012). Discriminative learning of sum-product net-

works. In Advances in Neural Information Processing Systems, pages 3239–

3247.

Gens, R. and Pedro, D. (2013). Learning the structure of sum-product networks.

In International Conference on Machine Learning, pages 873–880.

Ghahramani, Z. (2000). Online variational bayesian learning. In NIPS workshop

on Online Learning.

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and Bengio, Y. (2013).

An empirical investigation of catastrophic forgetting in gradient-based neural

networks. arXiv preprint arXiv:1312.6211.

Goodfellow, I. J., Vinyals, O., and Saxe, A. M. (2014). Qualitatively character-

izing neural network optimization problems. arXiv preprint arXiv:1412.6544.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with

deep recurrent neural networks. In IEEE international conference on acous-

tics, speech and signal processing, pages 6645–6649.

98

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines. arXiv

preprint arXiv:1410.5401.

Guyonneau, R., VanRullen, R., and Thorpe, S. J. (2004). Temporal codes and

sparse representations: a key to understanding rapid processing in the visual

system. Journal of Physiology-Paris, 98(4):487–497.

Ha, J.-W., Kim, K.-M., and Zhang, B.-T. (2015). Automated construction

of visual-linguistic knowledge via concept learning from cartoon videos. In

Proceedings of the 29th AAAI Conference on Artificial Intelligence, pages

522–528.

Han, C., Lee, S.-W., Heo, Y., Kang, W., Jun, J., and Zhang, B.-T. (2017).

Criteria for human-compatible ai in two-player vision-language tasks. In

2017 IJCAI Workshop on Linguistic and Cognitive Approaches to Dialogue

Agents.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image

recognition. arXiv preprint arXiv:1512.03385.

Heigold, G., Vanhoucke, V., Senior, A., Nguyen, P., Ranzato, M., Devin, M.,

and Dean, J. (2013). Multilingual acoustic models using distributed deep

neural networks. In IEEE International Conference on Acoustics, Speech

and Signal Processing, pages 8619–8623.

Hong, S., You, T., Kwak, S., and Han, B. (2015). Online tracking by learn-

ing discriminative saliency map with convolutional neural network. In Pro-

ceedings of the 32th International Conference on Machine Learning, pages

597–606.

99

Hsu, W., Kalra, A., and Poupart, P. (2017). Online structure learning for sum-

product networks with gaussian leaves. arXiv preprint arXiv:1701.05265.

Huynh, T., Fritz, M., and Schiele, B. (2008). Discovery of activity patterns

using topic models. In Proceedings of the 10th international conference on

Ubiquitous computing, pages 10–19. ACM.

Kienzle, W. and Chellapilla, K. (2006). Personalized handwriting recognition

via biased regularization. In Proceedings of the 23rd international conference

on Machine learning, pages 457–464. ACM.

Kim, J.-H., Lee, S.-W., Kwak, D.-H., Heo, M.-O., Kim, J., Ha, J.-W., and

Zhang, B.-T. (2016a). Multimodal residual learning for visual qa. arXiv

preprint arXiv:1606.01455.

Kim, Y.-D., Jang, T., Han, B., and Choi, S. (2016b). Learning to select pre-

trained deep representations with bayesian evidence framework. In Proceed-

ings of the IEEE International Conference on Computer Vision, pages 5318–

5326.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,

A. A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.

(2017). Overcoming catastrophic forgetting in neural networks. Proceedings

of the National Academy of Sciences.

Knierim, J. J. and Neunuebel, J. P. (2016). Tracking the flow of hippocampal

computation: Pattern separation, pattern completion, and attractor dynam-

ics. Neurobiology of learning and memory, 129:38–49.

100

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105.

Kumaran, D., Hassabis, D., and McClelland, J. L. (2016). What learning sys-

tems do intelligent agents need? complementary learning systems theory up-

dated. Trends in Cognitive Sciences, 20(7):512–534.

Lee, J., Yun, J., Hwang, S., and Yang, E. (2017a). Lifelong learning with

dynamically expandable networks. arXiv preprint arXiv:1708.01547.

Lee, S.-W., Heo, M.-O., and Zhang, B.-T. (2013). Online incremental structure

learning of sum–product networks. In International Conference on Neural

Information Processing, pages 220–227. Springer.

Lee, S.-W., Heo, Y.-J., and Zhang, B.-T. (2018). Answerer in questioner’s mind

for goal-oriented visual dialogue. arXiv preprint arXiv:1802.03881.

Lee, S.-W., Kim, J.-H., Jun, J., Ha, J.-W., and Zhang, B.-T. (2017b). Overcom-

ing catastrophic forgetting by incremental moment matching. In Advances

in Neural Information Processing Systems.

Lee, S.-W., Lee, C.-Y., Kwak, D.-H., Ha, J.-W., Kim, J., and Zhang, B.-T.

(2017c). Dual-memory neural networks for modeling cognitive activities of

humans via wearable sensors. Neural Networks.

Lee, S.-W., Lee, C.-Y., Kwak, D. H., Kim, J., Kim, J., and Zhang, B.-T. (2016).

Dual-memory deep learning architectures for lifelong learning of everyday hu-

man behaviors. In Twenty-Fifth International Joint Conference on Artificial

Intelligencee, pages 1669–1675.

101

Lee, S.-W., Watkins, C., and Zhang, B.-T. (2014). Non-parametric bayesian

sum-product networks. In Workshop on Learning Tractable Probabilistic

Models.

Li, Z. and Hoiem, D. (2016). Learning without forgetting. In European Con-

ference on Computer Vision, pages 614–629. Springer.

Lichman, M. (2013). UCI machine learning repository.

Lin, M., Chen, Q., and Yan, S. (2014). Network in network. In International

Conference on Learning Representations.

Little, R. J. (1992). Regression with missing x’s: a review. Journal of the

American Statistical Association, 87(420):1227–1237.

Liu, X., Zhang, G., Zhan, Y., and Zhu, E. (2008). An incremental feature learn-

ing algorithm based on least square support vector machine. In Proceedings

of the 2nd annual international workshop on Frontiers in Algorithmics, pages

330–338.

Louizos, C. and Welling, M. (2016). Structured and efficient variational deep

learning with matrix gaussian posteriors. arXiv preprint arXiv:1603.04733.

Lowd, D. and Rooshenas, A. (2013). Learning markov networks with arithmetic

circuits. In Artificial Intelligence and Statistics, pages 406–414.

MacKay, D. J. (1992). A practical bayesian framework for backpropagation

networks. Neural computation, 4(3):448–472.

McClelland, J. L., McNaughton, B. L., and O’Reilly, R. C. (1995). Why there

are complementary learning systems in the hippocampus and neocortex: in-

sights from the successes and failures of connectionist models of learning and

memory. Psychological review, 102(3):419.

102

McCloskey, M. and Cohen, N. J. (1989). Catastrophic interference in connec-

tionist networks: The sequential learning problem. Psychology of learning

and motivation, 24:109–165.

Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Betteridge, J., Carlson, A.,

Dalvi, B., Gardner, M., Kisiel, B., Krishnamurthy, J., et al. (2015). Never-

ending learning. In Proceedings of the Twenty-Ninth AAAI Conference on

Artificial Intelligence, pages 2302–2310.

Nam, H. and Han, B. (2016). Learning multi-domain convolutional neural

networks for visual tracking. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 4293–4302.

Nichol, A. and Schulman, J. (2018). Reptile: a scalable metalearning algorithm.

arXiv preprint arXiv:1803.02999.

Noh, H., Hong, S., and Han, B. (2015). Learning deconvolution network for

semantic segmentation. In Proceedings of the IEEE International Conference

on Computer Vision, pages 1520–1528.

Oza, N. C. (2005). Online bagging and boosting. In Systems, Man and Cyber-

netics, IEEE International Conference On, pages 2340–2345.

O’Reilly, R. C., Bhattacharyya, R., Howard, M. D., and Ketz, N. (2014). Com-

plementary learning systems. Cognitive Science, 38(6):1229–1248.

Pascanu, R. and Bengio, Y. (2013). Revisiting natural gradient for deep net-

works. arXiv preprint arXiv:1301.3584.

Pathak, M., Rane, S., and Raj, B. (2010). Multiparty differential privacy via

aggregation of locally trained classifiers. In Advances in Neural Information

Processing Systems, pages 1876–1884.

103

Peharz, R., Geiger, B. C., and Pernkopf, F. (2013). Greedy part-wise learning of

sum-product networks. In Joint European Conference on Machine Learning

and Knowledge Discovery in Databases, pages 612–627. Springer.

Polikar, R., Upda, L., Upda, S. S., and Honavar, V. (2001). Learn++: An

incremental learning algorithm for supervised neural networks. IEEE Trans-

actions on Systems, Man, and Cybernetics Part C: Applications and Reviews,

31(4):497–508.

Poon, H. and Domingos, P. (2011). Sum-product networks: A new deep ar-

chitecture. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE

International Conference on, pages 689–690. IEEE.

Rashwan, A., Zhao, H., and Poupart, P. (2016). Online and distributed bayesian

moment matching for parameter learning in sum-product networks. In Pro-

ceedings of the 19th International Conference on Artificial Intelligence and

Statistics, pages 1469–1477.

Ravikumar, P., Wainwright, M. J., Lafferty, J. D., et al. (2010). High-

dimensional ising model selection using ℓ1-regularized logistic regression. The

Annals of Statistics, 38(3):1287–1319.

Ray, S. and Lindsay, B. G. (2005). The topography of multivariate normal

mixtures. Annals of Statistics, pages 2042–2065.

Ray, S. and Ren, D. (2012). On the upper bound of the number of modes of a

multivariate normal mixture. Journal of Multivariate Analysis, 108:41–52.

Rooshenas, A. and Lowd, D. (2014). Learning sum-product networks with direct

and indirect variable interactions. In Proceedings of the 31st International

Conference on Machine Learning (ICML-14), pages 710–718.

104

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J.,

Kavukcuoglu, K., Pascanu, R., and Hadsell, R. (2016). Progressive neural

networks. arXiv preprint arXiv:1606.04671.

Ruvolo, P. L. and Eaton, E. (2013). Ella: An efficient lifelong learning algorithm.

In Proceedings of the 30th International Conference on Machine Learning,

pages 507–515.

Sainath, T. N., Vinyals, O., Senior, A., and Sak, H. (2015). Convolutional,

long short-term memory, fully connected deep neural networks. In IEEE

International Conference on Acoustics, Speech and Signal Processing, pages

4580–4584.

Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Continual learning with deep

generative replay. In Advances in Neural Information Processing Systems,

pages 2990–2999.

Simonyan, K. and Zisserman, A. (2014). Two-stream convolutional networks for

action recognition in videos. In Advances in Neural Information Processing

Systems, pages 568–576.

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary,

M., Prabhat, M., and Adams, R. (2015). Scalable bayesian optimization using

deep neural networks. In Proceedings of the 32nd International Conference

on Machine Learning, pages 2171–2180.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov,

R. (2014). Dropout: a simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929–1958.

Srivastava, R. K., Masci, J., Kazerounian, S., Gomez, F., and Schmidhuber, J.

105

(2013). Compete to compute. In Advances in neural information processing

systems, pages 2310–2318.

Sukhbaatar, S., Weston, J., Fergus, R., et al. (2015). End-to-end memory net-

works. In Advances in neural information processing systems, pages 2440–

2448.

Sundermeyer, M., Schlüter, R., and Ney, H. (2012). Lstm neural networks for

language modeling. In Interspeech, pages 194–197.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning

with neural networks. In Advances in neural information processing systems,

pages 3104–3112.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,

Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions.

In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–9.

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2005). Sharing clusters

among related groups: Hierarchical dirichlet processes. In Advances in neural

information processing systems, pages 1385–1392.

Thrun, S. and O’Sullivan, J. (1996). Discovering structure in multiple learning

tasks: The tc algorithm. In Proceedings of the 13th International Conference

on Machine Learning, pages 489–497.

Treves, A. and Rolls, E. T. (1992). Computational constraints suggest the need

for two distinct input systems to the hippocampal ca3 network. Hippocampus,

2(2):189–199.

106

Vedaldi, A. and Lenc, K. (2015). Matconvnet – convolutional neural networks

for matlab. In Proceedings of the ACM International Conference on Multi-

media, pages 689–692.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie, S. (2011). The

caltech-ucsd birds-200-2011 dataset. Tech. Rep. CNS-TR-2011-001.

Wei, T., Wang, C., Rui, Y., and Chen, C. W. (2016). Network morphism.

In Proceedings of The 33rd International Conference on Machine Learning,

pages 564–572.

Weston, J., Chopra, S., and Bordes, A. (2014). Memory networks. In Interna-

tional Conference on Learning Representations.

Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., and Di-

Carlo, J. J. (2014). Performance-optimized hierarchical models predict neu-

ral responses in higher visual cortex. Proceedings of the National Academy

of Sciences, 111(23):8619–8624.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable

are features in deep neural networks? In Advances in neural information

processing systems, pages 3320–3328.

Yu, H., Wang, J., Huang, Z., Yang, Y., and Xu, W. (2015). Video para-

graph captioning using hierarchical recurrent neural networks. arXiv preprint

arXiv:1510.07712.

Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolu-

tional networks. In Proceedings of European Conference on Computer Vision,

pages 818–833.

107

Zhang, B.-T. (2008). Hypernetworks: A molecular evolutionary architecture for

cognitive learning and memory. IEEE computational intelligence magazine,

3(3).

Zhang, B.-T. (2013). Information-theoretic objective functions for lifelong learn-

ing. In AAAI Spring Symposium: Lifelong Machine Learning, pages 62–69.

Zhang, B.-T., Ha, J.-W., and Kang, M. (2012). Sparse population code models

of word learning in concept drift. In Proceedings of the 34th Annual Confer-

ence of Cogitive Science Society, pages 1221–1226.

Zhang, B.-T. and Muhlenbein, H. (1994). Synthesis of sigma-pi neural net-

works by the breeder genetic programming. In Evolutionary Computation,

1994. IEEE World Congress on Computational Intelligence., Proceedings of

the First IEEE Conference on, pages 318–323. IEEE.

Zhang, K. and Kwok, J. T. (2010). Simplifying mixture models through function

approximation. Neural Networks, IEEE Transactions on, 21(4):644–658.

Zhao, H., Adel, T., Gordon, G., and Amos, B. (2016). Collapsed variational

inference for sum-product networks. In International Conference on Machine

Learning, pages 1310–1318.

Zhou, G., Sohn, K., and Lee, H. (2012). Online incremental feature learning with

denoising autoencoders. In International Conference on Artificial Intelligence

and Statistics, pages 1453–1461.

Zinkevich, M. (2003). Online convex programming and generalized infinitesi-

mal gradient ascent. In Proceedings of the 20th International Conference on

Machine Learning, pages 928–936.

108

초록

실제 환경에서 사람들의 행동을 통하여 지식을 쌓는 일은 사람을 인지하는 지능

시스템을 구현하는 데 있어서 필수불가결하다. 우리는 깊은 신경망 인식기를 실

시간으로 업데이트하는 기술을 개발함으로서 웨어러블 디바이스 안의 개인화된

상황 인식기를 변화하는 환경에 적응할 수 있도록 하고자 하였다. 그러나, 깊은

신경망을 끊임없이 들어오는 데이터로부터 학습시키는 일은 어려운 일인데, 이는

새로운 데이터를 학습하게 되면 깊은 신경망이 종종 기존에 얻은 지식을 잃어버리

기 때문이다. 이러한 현상을 파국적 망각이라고 부른다.

본논문에서는이러한파국적망각현상을해결하기위하여두개의방법, dual

memory architecture (DMA)와 incremental moment matching (IMM)을제안한

다. 첫번째 방법의 구현에 있어, 우리는 인지신경과학의 complementary learning

system 이론의 영향을 받았다. 이 이론에 따르면, 사람은 평생 동안 지식을 쌓아나

가는 과정에서 두 가지의 큰 시스템, 신피질 시스템과 해마 시스템이 상보적으로

동작한다.우리가제안하는 DMA알고리즘에서는두개의학습구조,깊은신경망

과 하이퍼네트워크가 각각 구조화된 표상을 얻는 동시에 매 사건의 개별 경험들을

저장하기 위하여 사용된다. 알고리즘을 위하여 구체적인 기계학습 기법들 역시

제안되었는데, 이는 깊은 신경망 학습을 위한 파라미터 전이와 빠른 개별 경험

학습을 위한 하이퍼네트워크의 온라인 학습 방법을 포함한다.

두번째 방법인 IMM에서는 새로운 과제 혹은 데이터가 들어올 때 데이터에 대

한파라미터의사후확률을추정한후이전데이터에대한파라미터의사후확률과

매치시켜 전체 데이터를 위한 사후 확률 파라미터로 병합하는 방식으로 동작한다.

파라미터 사후 확률의 탐색 공간을 평탄하게 하기 위하여, IMM 알고리즘에서는

다양한 전이 학습 기법을 사용한다. 이들은 파라미터 전이, L2-norm 방법의 변형,

그리고 dropout 방법의 변형을 포함한다.

109

우리는이제안된두방법의성공을직관적으로설명하기위하여,깊은확률그

래프모델의일종인합곱네트워크의두가지온라인학습방법을제안한다.우리는

두 온라인 학습이 확률 그래프 모델을 학습하기 위한 수학적으로 적합한 온라인

학습 방법임을 보인 후, 이들이 어떻게 깊은 신경망 학습에 확장될 수 이는 지를

보인다.

우리는 제안한 두 개의 알고리즘 DMA와 IMM을 두 스타일의 데이터 셋 군에

데모하였다. 하나는 다양한 벤치마크 셋들과 그 변형들이며, 다른 하나는 구글 글

래스를 통하여 수집된 46일간의 lifelog 데이터셋이다. 우리는 다양한 실험 결과를

통하여, 우리가 제안한 방법들이 다른 비교 모델들보다 더 잘 동작함을 보이는

동시에, 우리의 파국적 망각을 해결하려는 연구 방향이 가치있고 전망 있음을 설

득한다.

주요어: Lifelong learning, Lifelog dataset, Sum-product networks, Deep neural

networks, Dual memory architecture, Complementary learning systems, Incre-

mental moment matching, Sequential Bayesian

학번: 2012-20835

110

	1 Introduction
	1.1 Wearable Devices and Lifelog Dataset
	1.2 Lifelong Learning and Catastrophic Forgetting
	1.3 Approach and Contribution .
	1.4 Organization of the Dissertation

	2 Related Works
	2.1 Lifelong Learning .
	2.2 Application-driven Lifelong Learning
	2.3 Classical Approach for Preventing Catastrophic Forgetting
	2.4 Learning Parameter Distribution for for Preventing Catastrophic Forgetting .
	2.4.1 Sequential Bayesian .
	2.4.2 Approach to Simulating Parameter Distribution

	2.5 Learning Data Distribution for Preventing Catstrophic Forgetting

	3 Preliminary Study: Online Learning of Sum-Product Networks
	3.1 Introduction .
	3.2 Sum-Product Networks .
	3.2.1 Representation of Sum-Product Networks
	3.2.2 Structure Learning of Sum-Product Networks

	3.3 Online Incremental Structure Learning of Sum-Product Networks
	3.3.1 Methods .
	3.3.2 Experiments .

	3.4 Non-Parametric Bayesian Sum-Product Networks
	3.4.1 Model 1: A Prior Distribution for SPN Trees
	3.4.2 Model 2: A Prior Distribution for a Class of dag-SPNs . .

	3.5 Discussion .
	3.5.1 History of Online Learning of Sum-Product Networks . .
	3.5.2 Toward Lifelong Learning of Deep Neural Networks . . .

	3.6 Summary .

	4 Structure Learning for Lifelong Learning: Dual Memory Architecture
	4.1 Introduction .
	4.2 Complementary Learning Systems Theory
	4.3 Dual Memory Architectures .
	4.4 Online Learning of Multiplicative-Gaussian Hypernetworks . . .
	4.4.1 Multiplicative-Gaussian Hypernetworks
	4.4.2 Evolutionary Structure Learning
	4.4.3 Online Learning on Incremental Features

	4.5 Experiments .
	4.5.1 Non-stationary Image Data Stream
	4.5.2 Lifelog Dataset .

	4.6 Discussion .
	4.6.1 Parameter-Decomposability in Deep Learning
	4.6.2 Online Bayesian Optimization

	4.7 Summary .

	5 Sequential Bayesian for Lifelong Learning: Incremental Moment Matching
	5.1 Introduction .
	5.2 Incremental Moment Matching
	5.2.1 Mean-based Incremental Moment Matching (mean-IMM)
	5.2.2 Mode-based Incremental Moment Matching (mode-IMM)

	5.3 Transfer Techniques for Incremental Moment Matching
	5.3.1 Weight-Transfer .
	5.3.2 L2-transfer .
	5.3.3 Drop-transfer .
	5.3.4 IMM Procedure .

	5.4 Experimental Results .
	5.4.1 Disjoint MNIST Experiment
	5.4.2 Shuffled MNIST Experiment
	5.4.3 ImageNet to CUB Dataset
	5.4.4 Lifelog Dataset .

	5.5 Discussion .
	5.5.1 A Shift of Optimal Hyperparameter via Space Smoothing
	5.5.2 Bayesian Approach on lifelong learning.
	5.5.3 Balancing the Information of an Old and a New Task. . .

	5.6 Summary .

	6 Concluding Remarks
	6.1 Summary of Methods and Contributions
	6.2 Suggestions for Future Research

	초록

<startpage>15
1 Introduction 1
 1.1 Wearable Devices and Lifelog Dataset 1
 1.2 Lifelong Learning and Catastrophic Forgetting 2
 1.3 Approach and Contribution . 3
 1.4 Organization of the Dissertation 6
2 Related Works 8
 2.1 Lifelong Learning . 8
 2.2 Application-driven Lifelong Learning 9
 2.3 Classical Approach for Preventing Catastrophic Forgetting 9
 2.4 Learning Parameter Distribution for for Preventing Catastrophic Forgetting . 12
 2.4.1 Sequential Bayesian . 12
 2.4.2 Approach to Simulating Parameter Distribution 14
 2.5 Learning Data Distribution for Preventing Catstrophic Forgetting 15
3 Preliminary Study: Online Learning of Sum-Product Networks 17
 3.1 Introduction . 17
 3.2 Sum-Product Networks . 19
 3.2.1 Representation of Sum-Product Networks 19
 3.2.2 Structure Learning of Sum-Product Networks 22
 3.3 Online Incremental Structure Learning of Sum-Product Networks 23
 3.3.1 Methods . 23
 3.3.2 Experiments . 25
 3.4 Non-Parametric Bayesian Sum-Product Networks 29
 3.4.1 Model 1: A Prior Distribution for SPN Trees 29
 3.4.2 Model 2: A Prior Distribution for a Class of dag-SPNs . . 34
 3.5 Discussion . 38
 3.5.1 History of Online Learning of Sum-Product Networks . . 38
 3.5.2 Toward Lifelong Learning of Deep Neural Networks . . . 38
 3.6 Summary . 39
4 Structure Learning for Lifelong Learning: Dual Memory Architecture 42
 4.1 Introduction . 42
 4.2 Complementary Learning Systems Theory 44
 4.3 Dual Memory Architectures . 46
 4.4 Online Learning of Multiplicative-Gaussian Hypernetworks . . . 50
 4.4.1 Multiplicative-Gaussian Hypernetworks 50
 4.4.2 Evolutionary Structure Learning 52
 4.4.3 Online Learning on Incremental Features 53
 4.5 Experiments . 56
 4.5.1 Non-stationary Image Data Stream 56
 4.5.2 Lifelog Dataset . 60
 4.6 Discussion . 65
 4.6.1 Parameter-Decomposability in Deep Learning 65
 4.6.2 Online Bayesian Optimization 65
 4.7 Summary . 66
5 Sequential Bayesian for Lifelong Learning: Incremental Moment Matching 68
 5.1 Introduction . 68
 5.2 Incremental Moment Matching 69
 5.2.1 Mean-based Incremental Moment Matching (mean-IMM) 70
 5.2.2 Mode-based Incremental Moment Matching (mode-IMM) 71
 5.3 Transfer Techniques for Incremental Moment Matching 74
 5.3.1 Weight-Transfer . 74
 5.3.2 L2-transfer . 76
 5.3.3 Drop-transfer . 76
 5.3.4 IMM Procedure . 79
 5.4 Experimental Results . 79
 5.4.1 Disjoint MNIST Experiment 80
 5.4.2 Shuffled MNIST Experiment 83
 5.4.3 ImageNet to CUB Dataset 85
 5.4.4 Lifelog Dataset . 88
 5.5 Discussion . 89
 5.5.1 A Shift of Optimal Hyperparameter via Space Smoothing 89
 5.5.2 Bayesian Approach on lifelong learning. 90
 5.5.3 Balancing the Information of an Old and a New Task. . . 90
 5.6 Summary . 91
6 Concluding Remarks 92
 6.1 Summary of Methods and Contributions 92
 6.2 Suggestions for Future Research 93
초록 109
</body>

