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Abstract 

 

Integrated Simulation Method Based on 

Multibody Dynamics for Production Design 

Verification in Ships and Offshore Structures 

 

It is the most important to verify the safety of the production design before the real 

operation. However, the verification which depends on the experience of the production 

engineer or the rule and regulation cannot be clearly proven or results in overestimation. 

Therefore, the verification based on dynamic analysis is widely adopted. However, it is 

impossible for existing programs to support some mechanical equipment such as the 

equalizer and SPMT (Self-Propelled Modular Transporter). Therefore, this study analyzes 

the requirements that are essential to simulate the lifting and erection operation in ships and 

offshore structures and proposes the integrated simulation framework based on multibody 

dynamics. The proposed framework is composed of five layers such as simulation core 

layer for solving the equations of motion, interface layer for data communication, 

simulation components layer including constraints, forces and collision, equipment layer, 

and service layer. This study develops a dedicated and differentiated program for dynamic 

analysis in ships and offshore structures, named SyMAP (SyDLab’s Multibody Analysis 

Program). 

The proposed simulation framework integrates several modules based on various 

theoretical backgrounds. First of all, the equations of motion are based on multibody 



 ii 

dynamics. Among the several formulations, we adopt the DELE (Discrete Euler-Lagrange 

Equation) to achieve the robustness during numerical integration. Furthermore, we 

formulate the equations of motion of the 1D frame element and 2D shell element based on 

ANCF (Absolute Nodal Coordinate Formulation). Kinematic constraints including joints 

and constraint-based wire rope between the rigid bodies, and between the rigid and flexible 

bodies are also derived. Especially, an equalizer which distributes the tension of wire ropes 

between the load and equipment equally is modeled based on the real mechanism by using 

the constraint-based wire rope. 

Meanwhile, we also deal with special issues in collision detection and response. 

Because the shape exports from the ship CAD system contains unenclosed meshes, we 

propose the position difference method which checks an intersection using the line segment 

made by the two vertices or the trigonal prism consisting of the two triangular meshes at 

time t0 and t1. Furthermore, BVH (Bounding Volume Hierarchy) and exclusion boxes were 

adopted to increase the performance. For collision response, non-interpenetration 

constraint method between a vertex and a plane is derived. This method is applicable when 

two bodies collide at the multiple points, and it does not compulsively violate the kinematic 

constraint because the collision force was also solved together when the equations of 

motion were solved numerically. Moreover, the collision force could be determined 

automatically, reflecting material properties such as restitution and softness. 

This study proposes the modeling of the mechanical parts of the SPMT taking into 

consideration the axle compensation mechanism to maintain the level of the platform when 

the SPMT drives over an uneven roadway by lifting up and down the wheel. As external 

forces, hydrodynamic force, wind force, current force, and mooring force are also explained. 

For the verification, comparison of the benchmarking tests of multibody systems and 
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the examples of commercial multibody software DAFUL is conducted. The analytic 

solutions and the simulation results are compared in case of the flexible multibody 

dynamics. To verify the characteristics of the motion due to the hydrodynamic forces, the 

motion of the floating barge is compared with RAO given by WADAM, OrcaFlex, and 

SIMA. For the validation, the simulation results are compared with the data collected in 

the real operations. 

Finally, we provide four representative applications such as block lifting using 

equalizers, LPG tank erection considering a collision, thin plate block lifting considering 

deformation, and block offloading using SPMT, which have not been solved before. We 

conclude that the problems issued in ships and offshore structures are solved by the 

proposed or adopted methods. We convince that the developed program based on the 

proposed integrated simulation framework is able to cover all of the operations in ships and 

offshore structures. 

 

Keywords: Integrated simulation method; production design verification; Multibody 

dynamics; Flexible multibody dynamics; Absolute nodal coordinate formulation; Discrete 

Euler-Lagrange equation; Constraint-based wire rope; Non-interpenetration constraint; 

Collision; Equalizer; Self-propelled modular transporter (SPMT); 
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 Introduction 

1.1. Research necessities 

As new lifting methods are tried in the shipbuilding area, it becomes more difficult to 

predict the risks of the lifting operation. Moreover, as the weight and size of modules of 

offshore projects increase, it is not easy for production engineers to prove that the lifting 

plan is perfectly safe and that there is no reason for disqualification. Figure 1-1 shows an 

example of a lifting operation in the shipyard. 

 

 

Figure 1-1. Design and operating stages of the module erection. 

At the design stage, the production engineer should prepare the several drawings such 

as lug arrangement, mooring and anchoring plan, and crane and rigging arrangement. At 

the operation stage, the motion of the module, loads on lugs, and the tensions of wire ropes 

between the floating crane and the module are induced due to environmental conditions 
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such as wave, current, and wind. Therefore, a shipowner or a classification society requires 

design verification between design and operation stages (Figure 1-2). 

 

 

Figure 1-2. Design verification between design and operating stages. 

There are several methods for verifying the design. The first method is to depend on the 

experience of the production engineer. However, this method is very hard to be proven, 

and can’t be learned. The biggest problem is that design verification depending on the 

experience is also useless in case of a new lifting concept which has never been tried before. 

The second method is to follow the rules and regulations. However, the rules and 

regulations result in overestimation, which increases the construction cost. There is also no 

appropriate rule to be applied in case of a new lifting concept. The third method is to use 

the existing programs such as MOSES [1], SIMA [2], and OrcaFlex [3], which can simulate 

the marine operation (Figure 1-3). 

 

Figure 1-3. Existing programs for simulating marine operation. 
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It is impossible for existing programs to support some items of mechanical equipment, 

which are essential to model the floating crane. The first item of equipment is the link beam 

that is used to connect two hooks by a hinge joint, as shown in Figure 1-4. 

 

Figure 1-4. Front view of hooks, link beams, and hinge joints. 

Another item of equipment is the equalizer. It is installed under the hook to connect 

multiple wire ropes between the load and the hook. The other purpose of the equalizer is to 

distribute tensions to all wires equally. This is done by several fixed and moving pulleys, 

which are components of the equalizer, and are connected by one wire rope, as shown in 

Figure 1-5. 

 

Figure 1-5. Drawing of the equalizer. 
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The last item of equipment is a transporter which is used to move the heavy block or 

module from one location to another (Figure 1-6). The transporter should be modeled by 

connecting many wheels to the platform by hydraulic cylinders, and the axle compensation 

mechanism should be implemented. 

 

 

Figure 1-6. Modular transporter. 

Furthermore, the existing programs are not suitable to consider collision, flexibility, 

operation scenarios, etc. Therefore, new design verification software is required. New 

design verification software can cover various problems to which the commercial software 

cannot be applied. It can also add new features conveniently, and make special equipment 

in the shipyard. For this, the requirements for the new design verification software should 

be defined. 
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1.2. Requirements for new design verification software 

In this section, the requirements for the new design verification software will be derived 

from the examples.  

1.2.1. Block lifting by the gantry and floating cranes 

Figure 1-7 shows the gantry crane, which lifting capacity is 900 ton. 

 

 

Figure 1-7. Gantry crane. 

This crane is representative equipment in the shipyard, and is also called Goliath crane. 

It is composed of two legs, girder, upper and lower trolleys on the top. The upper and lower 

trolley can be moved on the girder. The gantry crane is also moved along the rail of the 

dock. Therefore, it can be modeled by the slider joints. In other words, the gantry crane is 
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a multibody system which means that multiple bodies are connected with joints or springs. 

Similarly, the mega floating crane is also a multibody system which is composed of the 

barge, two jibs, eight hooks, and lifting load as shown in Figure 1-8. 

 

 

Figure 1-8. Mega floating crane. 

The motion of the floating crane is induced by the environmental loads such as wave, 

wind, and current. To prevent the motion, the floating crane is moored by anchors from the 

seabed and the wire ropes from the quay. Therefore, the environmental loads and the 

mooring force should be calculated properly. 
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Meanwhile, a load has several lifting points that can be lifted, whereas cranes, such as 

the floating crane and the gantry crane, have only limited hooks. Thus, a special device 

called by an equalizer is introduced in shipbuilding production. There are equalizers under 

the trolleys of the gantry crane or the hooks of the floating crane. The first purpose of the 

equalizer is to connect the lifting points on the target load with the crane. Moreover, 

because a single load can weigh more than 100 tons, the concentrated load at one lifting 

point can cause severe accidents, such as being torn out and dropping the load on the ground. 

Thus, a second purpose of the equalizer is to distribute tensions to all wires equally. This 

is done by several fixed and moving pulleys, which are components of the equalizer and 

are connected by one wire rope, as shown in Figure 1-9. 

 

 

Figure 1-9. Components of the equalizer. 
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For a load lifting simulation in shipbuilding, the equalizer should be modeled properly. 

However, despite its seemingly simple combination of pulleys with one wire rope, it is not 

easy to implement its real mechanism. This is mainly because of the wire rope, which 

should be bent around the sheaves of the pulleys without disconnection. Thus, it is 

important to study how to model the wire rope and pulleys for load lifting simulation in 

shipbuilding. 

1.2.2. Block lifting considering deformation 

The thin plate block is usually used to build a cruise ship or RORO (Roll-On/Roll-Off) 

ship as shown in Figure 1-10. The thin plate block can be deformed during the lifting or 

erection. 

 

 

Figure 1-10. Thin plate block. 

However, the block motion and wire tensions induced by the environmental condition 

were our interest until now. It was done by rigid multibody dynamics. Now, our interest is 

to check the stress or bending moment during the operation. However, the structural 

analysis cannot apply different tensions according to time. Moreover, it cannot consider 
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the interaction between the block and the equipment, and cannot make a joint to be 

connected with the rigid body. Therefore, flexible multibody dynamics is required. 

1.2.3. Collision detection and response 

As shown in Figure 1-11, there are several examples that require dynamic analysis, 

including a collision in the production and installation of ships and offshore structures. 

During the erecting or lifting operation, the collision might happen between the lifting body 

and the sub-structure due to the motion of the body induced by the environmental loads 

such as winds, currents, and waves. Therefore, the dynamic analysis including the collision 

detection and response should be performed to decide whether the operation is sufficiently 

safe or not. 

 

Figure 1-11. Examples of dynamic analysis including collision. 
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More specifically, the engineer in shipbuilding and offshore installation usually wants 

to calculate two results from the dynamic analysis. One result is collision positions due to 

the dynamic motion of the lifting body. The other result is collision forces acting at the 

collision positions. The collision forces can be used for the input values for structural 

analysis or structural reinforcement. 

1.2.4. Block offloading by SPMTs 

Many shipyards in Korea established a mega block factory abroad in the mid-2000’s. 

For example, they transported these blocks from Yantai (China) to Geoje (South Korea) 

through the sea (Figure 1-12). At first, the block is constructed onshore. It is then moved 

on the TB (transportation barge) using the SPMTs (Self-Propelled Modular Transporters). 

This operation is called load-out. The transportation barge is towed or self-propelled to the 

destination. Finally, the floating crane lifts the block and erects it inside the FD (Floating 

Dock). 

 

Figure 1-12. Construction, load-out, transportation, lifting, and erection. 
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Using the floating crane takes much time to prepare the connection and disconnection 

of wire ropes before and after the erection. Therefore, to increase the productivity and 

reduce the operation time, the production engineers suggested an offloading, which directly 

connects the TB and FD, and uses the SPMTs to move the block as same as the load-out 

(Figure 1-13). This can reduce the operation time dramatically from 3 to 4 hours to only 

less than 30 minutes. However, the safety of the newly suggested operation should be 

evaluated in advance. There are two criteria to do this. One is that the wheel load of the 

SPMT should be less than 20 ton at 0.5 km/h or less. The other is that the stroke length of 

the hydraulic cylinder connected to the wheel of the SPMT should be within ±350 mm. 

 

Figure 1-13. Offloading operation using SPMTs. 
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Several technologies are required for the dynamic analysis of the block offloading 

operation using SPMTs. At first, two floaters (TB and FD) are connected by the hinge joints 

by using two link beams (Figure 1-14). Therefore, the equations of motion for the 

multibody systems should be adopted. Furthermore, the hydrodynamic force should be 

considered because both the TB and FD are on the sea. 

 

 

Figure 1-14. Overview of block offloading operation. 

Second, the model of the SPMT should be then created. The SPMT is composed of 

several mechanical parts, such as hydraulic cylinders, wheels and a platform (Figure 1-6). 

This model should reflect an axle compensation mechanism, which maintains the level of 

the platform when the SPMT drives over an uneven roadway by lifting up and down the 



 14 

wheels. 

Third, the collision between the wheels of SPMTs and decks should be considered when 

the SPMTs move from the TB to FD (Figure 1-15). 

 

 

Figure 1-15. Collision between wheels and decks. 

Along with the movement, the trim- which means the difference of the draft at the fore 

and aft- occurs on the TB and FD (Figure 1-16). Fourth, the ballasting and de-ballasting of 

the TB and FD to maintain the even keel should be considered even though the positions 

of the block and SPMTs are changed. 

 

Figure 1-16. Ballasting and de-ballasting of the TB and FD. 
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1.2.5. Summary of requirements 

As a result, requirements for new design verification software are summarized in Table 

1-1. 

Table 1-1. Requirements for new design verification software. 

Item Requirement 

Equations of motion 
Multibody dynamics for rigid bodies 

Multibody dynamics for deformable bodies 

Collision 

Collision detection and response 

(position difference method, exclusion box, non-

interpenetration constraint) 

Constraint 

Kinematic joints 

(ball, hinge, slider, slider-hinge, fix, constraint-

based wire rope, …) 

External forces 

Hydrodynamic (wave) force 

Hydrostatic (buoyant) force 

Wind force 

Current force 

Mooring force 

Special equipment 

Equalizer 

SPMT 

Gantry crane 

Floating crane 

 

There are too many components to be integrated at the same time. Therefore, we propose 

‘integrated simulation framework based on multibody dynamics’.  
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1.3. Related work 

1.3.1. Related work for simulation framework 

Cha et al. [4] already proposed the concept of simulation frameworks for shipbuilding 

production. They suggested three layers such as simulation kernel, basic simulation 

components, and application-specific simulation components. Because they were focused 

on the combined discrete event and time simulate proposed by Zeigler et al. [5] and used 

an open source [6], dynamics module was only expressed as a simple component.  

Cha et al. [7] improved the functionality and usability of the simulation frameworks by 

introducing simulation middleware, which played a role in transferring simulation data 

among the dynamics modules. The simulation middleware made it easy to add new 

modules or to change existing modules with the other.  

Meanwhile, to extend the functionalities of the dynamics module, Ku et al. [8] and Cha 

et al. [9] developed their own dynamics engine based on the recursive formulation and 

topological modeling approach, respectively. Both of them includes hydrostatic and 

hydrodynamic forces. They compared simulation results with the benchmark tests and 

commercial software. Finally, several lifting and turn-over operations were simulated to 

validate their dynamics module.  

There are several limitations of the previous work. None of them can simulate a pulley 

and an equalizer. They had no choice but to stretch or to shorten the initial length of the 

wire ropes from the equalizer logically. The other limitation is to simulate hydraulic and 

pneumatic systems such as hydraulic cylinders attached to the wheels of MTPs. They didn’t 

include hydraulic and pneumatic modules in their simulation frameworks. And because the 

hydraulic and pneumatic system is usually very stiff, it gives unstable results during 
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numerical integration. 

To overcome these limitations of the previous simulation framework, the integrated 

simulation framework for the advanced simulation in shipbuilding and offshores structures, 

which integrates several physical theories in one system simultaneously, is proposed in this 

study. 

1.3.2. Related work for dynamic analysis including flexible bodies 

Ham et al. [10] used the multibody dynamics based on discrete Euler-Lagrange equation 

only for the rigid bodies. Meanwhile, Ku et al. [11] analyzed the crane operation using 

recursive formulation. The dynamic tension during the analysis was used for structural 

analysis of the block. However, it was only one time in the simulation period.  

TSV-BLS [12] conducted structural analysis during the entire simulation period. 

However, it did not consider dynamic loads because TSV-BLS used quasi-static analysis 

method, which found and solved load for static equilibrium at every time. Moreover, TSV-

BLS could not consider the effect of hydrodynamic forces. 

Park et al. [13] used flexible multibody dynamics and modeled the blade of the wind 

turbine by 1D frame element. However, it is not suitable to be applied to the structural 

analysis of the block.  

To overcome the limitation listed above, this study adopted flexible multibody system 

dynamics based on ANCF (Absolute Nodal Coordinate Formulation) for 2D shell element, 

which is known for la. Therefore, we can model the block approximately as a plate, and 

analyze the stress during the entire simulation periods. 
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Table 1-2. Related work for dynamic analysis including flexible bodies. 

Authors 

Type of 

equations of 

motion 

Consideration 

of flexibility 

Analysis 

method 

Consideration 

of wave force 
Target 

Ham et al. 

MBD 

(Discrete 

Euler-

Lagrange 

equation) 

X - O 

Floating 

crane + 

block 

Ku et al. 

MBD 

(Recursive 

formulation) 
△ 

- 

(Only 

maximum 

tension is 

applied) 

O 
Gantry crane 

+ block 

TSV-BLS Unknown 
O 

(3D FEM) 

Quasi-static 

analysis 
X 

Gantry crane 

+ block 

Park et al. 

FMBD 

(Floating 

frame of 

reference 

formulation) 

O 

(1D frame 

element) 

Dynamic 

analysis 
O 

Floating 

platform + 

wind turbine 

This study 

FMBD 

(Absolute 

nodal 

coordinate 

formulation) 

O 

(2D shell 

element) 

Dynamic 

analysis 
O 

Gantry crane 

(or floating 

crane) + 

block 

 

1.3.1. Related work for collision detection and response 

The existing studies had the following limitations. Ming et al. [14] analyzed the motion 

of the offshore wind turbine during the installation. The studies mentioned above did not 

consider the collision in their dynamic analyses. Meanwhile, Lee et al. [15] only calculated 

collision between the body and the wire rope during the turn-over operation. Jeong et al. 

[16] considered collision detection and response of the subsea equipment on the deck of 

the offshore support vessel. However, they could not calculate collision force because it 

simply used the impulse-based method which changes velocity after direct collision. In 
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conclusion, collision detection and response algorithms suitable for shipbuilding and 

offshore installation are required. Existing dynamic analysis libraries, including collision 

detection and response such as PhysX [17], Bullet [18], and ODE [6] were tested with 

complex mesh models. We found that those libraries were not suitable to calculate collision 

positions and forces. 

The objectives of this study are to develop collision detection and response algorithms 

suitable for shipbuilding and offshore industries. Several strategies such as the position 

difference method, space partitioning, and exclusion boxes are adapted to increase the 

performance during collision detection. Collision response algorithm using non-

interpenetration constraint method is derived. 

1.3.2. Related work for the equalizer 

Cha et al. [4] introduced an approximated mechanism to model an equalizer. They had 

no choice but to stretch or to shorten the initial length of the wire ropes between the 

equalizer and load logically because wire ropes were implemented as incompressible 

springs. The equalizer modeled by the approximated mechanism is shown in Figure 1-17. 
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Figure 1-17. Approximated mechanism for the equalizer. 

This may cause several problems. First, the simulation may be numerically unstable due 

to a sudden change in the length. If the wire ropes have their real spring coefficients, which 

are usually very high, a small variation on one side can cause a large tension. By a length 

adjustment algorithm, the length of a wire rope that gets a large tension is shortened, and 

the others should be extended to the next step. Some of the shortening parts now start to 

get larger tensions. Thus, the tensions of the wire ropes are repeatedly increased or 

decreased and finally induce unstable motion of the system. Second, although the 

equalizing is controlled naturally by the pulleys and wire rope, the approximated 

mechanism should use an artificial factor that controls the length adjustment ratio. The 

shortening length is the same as the total extended lengths of the other wire ropes. If an 

artificial factor is equal to 1, the shortening length is calculated to achieve no tension in it. 

If an artificial factor is less than 1, the shortening length is set to leave some tension in it. 

Thus, the time required for equalizing is controlled by the artificial coefficient. This can 

affect the motion of the load before it is lifted or during lifting. Third, although the total 
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length that can be extended is limited, the approximated mechanism cannot control the total 

length of the equalizer. Moreover, the approximated mechanism does not calculate the 

motions of the pulleys of the equalizer. It is also not possible to connect another pulley at 

the end of the wire rope for an extension, as shown in Figure 1-18. 

 

Figure 1-18. Extension pulleys under the equalizer. 

Some researchers have tried to model the wire ropes and pulleys mathematically, 

considering real phenomena. Imanishi et al. [19] presented a wire rope involving contacts 

with a winch drum using a finite element method. Lugris et al. [20] used a semi-analytical 

method, which was derived by introducing an analytical model of the rope-sheave 

interaction in the system. García et al. [21] divided the wire rope into spring segments and 

calculated the tensions as external forces in the system. They applied their wire rope to 

represent exact pulleys. However, they did not consider in their study how to represent an 

equalizer mechanism. Moreover, the constraint-based wire rope is a simpler way to model 

the equalizer compared with other methods introduced in previous studies. 



 22 

1.3.3. Related work for block offloading 

Naqvi et al. [22] only focused on various transportation considerations in the module 

designs and their impact on the structural configuration of the module. They did not 

consider the dynamic effects and any model of the SPMTs. Ali [23] studied transportation, 

lifting, and installation considering the effects of environmental loads for designing an 

offshore module. He used the dynamic loads for structural analysis. However, he did not 

analyze the operation dynamically. Meanwhile, Zhao et al. [24] studied the electro-

hydraulic control system for the axle compensation of the SPMT. Lu et al. [25] developed 

functions, such as platform leveling, when encountering uneven road or passing through 

road obstacles. Vu et al. [26] conducted durability analysis on the parts of the hydraulic 

suspension system while taking into consideration the multibody dynamics. However, 

these studies were not focused on the dynamic analysis of the operation. The summary of 

the related work is listed in Table 1-3. A few of the related studies analyzed the offloading 

operation using the SPMTs, and did not consider the collision between the wheels and deck, 

ballasting and de-ballasting, and multibody formulation, including the hydrodynamic force. 

Table 1-3. Related work for block offloading. 

 Multibody 

formulation 

Hydrodynamic 

 force 

Axle 

compensation 

mechanism 

Collision 

between wheels 

and decks 

Ballasting 

and de-

ballasting 

Naqvi et al. X X X X X 

Ali X X X X X 

Zhao et al. X X O X X 

Lu et al. X X O X X 

Vu et al. O X X X X 

This study O O O O O 
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Therefore, the objectives of this study are to develop the dynamic analysis program that 

makes it possible to simulate the block offloading operation using SPMTs. For this, 

multibody dynamics was adopted to solve the equations of motion, including the 

hydrodynamic force. In addition, the modeling method of the SPMT, including axle 

compensation mechanism, is also proposed. Meanwhile, a collision algorithm using the 

non-interpenetration constraint method is derived for the collision between the wheels and 

decks. Finally, the ballasting and de-ballasting method to maintain the even keel of the TB 

and FD is applied. 
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1.4. Configuration of integrated simulation framework 

According to the requirements defined in the previous section, we developed integrated 

simulation framework based on multibody dynamics as shown in Figure 1-19. 

 

 

Figure 1-19. Configuration of integrated simulation framework based on multibody dynamics. 

The proposed framework is composed of five layers: simulation core layer, interface 

layer, simulation component layer, equipment layer, and service layer. The following 

sections will explain the role of each layer briefly. 

1.4.1. Simulation core layer 

Simulation core layer provides equations of motion theoretically based on multibody 
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dynamics. It is difficult to apply the Newton-Euler equation directly in the case of existing 

constraints and constraint forces. Therefore, to solve the equations of motion of the 

multibody system, we have to use one of multibody dynamics formulations. These can be 

formulated differently according to the expression of the constraint forces. Figure 1-20 

shows typical formulations of multibody dynamics. 

 

 

Figure 1-20. Typical formulation of multibody dynamics. 
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There are the augmented formulation [27], the discrete Euler-Lagrange equation [10], 

[28], [29], the recursive Newton-Euler formulation [8], [30], [31], and the embedding 

technique [9], [32]. They are well explained in detail in their references. Each one has its 

pros and cons.  

The augmented formulation is the most common formulation so that the equations of 

motion can be determined automatically and the constraint force can be obtained from 

constraint Jacobian and Lagrange multiplier. However, the matrix size of the augmented 

formulation is getting bigger because it solves all the bodies at once. On the other hand, the 

discrete Euler-Lagrange equation (DELE) solves the equations of motion very similar to 

the augmented formulation. However, it is a lot easier to formulate the equations because 

it doesn’t contain time derivative of the constraint Jacobian. The recursive Newton-Euler 

formulation breaks the connected bodies into the single body to calculate constraint forces 

between two bodies. Therefore, even though many bodies are included in the simulation, it 

can solve only 6 by 6 matrix efficiently. In case of the embedding technique, the matrix 

size of the formulation is small so that the computing time can be minimized. However, the 

recursive Newton-Euler formulation and the embedding technique are not easy to formulate 

the equations automatically, and have additionally to treat the closed loop such as cut joint 

methods. In this study, DELE is chosen because it is suitable to be developed by computer 

codes, and don’t have to calculate time derivative of the constraint Jacobian which is 

usually not easy to be obtained. DELE also don’t have to take account of the closed loop.   

Details about DELE will be given in section 2.1. The pros and cons of multibody dynamics 

formulations are summarized in Table 1-4. 
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Table 1-4. Pros and cons of multibody dynamics formulations. 

 

 

Meanwhile, flexible multibody systems, in which both elastic and rigid bodies are 

connected through mechanical joints and in arbitrary motion with respect to each other, can 

be divided into linearly elastic multibody systems and nonlinearly elastic multibody 

systems [33]. For linearly elastic multibody systems, it is assumed that the strain-

displacement relationship remains linear, and therefore strain components remain very 

small at all times for elastic bodies. An efficient analysis technique for this type of problem 

is the FFRF (Floating Frame of Reference Formulation). However, for elastic bodies, the 

strain-displacement relationship is nonlinear, or the strain components become large. An 

efficient analysis technique for this type of problem is the ANCF (Absolute Nodal 

Coordinate Formulation) which is mainly handled in section 0 and 2.3. 
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1.4.2. Interface layer 

An interface layer is used to exchange information between simulation core layer and 

simulation component layer. It is similar to the simulation middleware given by Cha et al. 

[7]. However, the interface layer contains network adapter to allow to communicate with 

other analysis tools. Furthermore, not only force and moment calculated from the 

simulation components but also constraint types can be supported. 

1.4.3. Simulation component layer 

Various physical components are included in the simulation components layer. It is 

divided into three groups: ‘Forces’, ‘Constraints’, and ‘Collision’. In ‘Forces’ group, a 

hydrostatics module is used to calculate the buoyancy of the floating body and 

hydrodynamics module is used to calculate the wave force acting on the floating body. In 

‘Constraints’ group, kinematic joints such as a ball joint, hinge joint, slider joint, and fixed 

joint are included. In addition to kinematic joints, constraint-based wire rope to model the 

pulleys. In ‘Collision’ group, position difference method for collision detection and non-

penetration constraint for collision response are newly defined in this study. The related 

theories will be explained in section 2.4, 2.5, 2.6 and 2.9. 

1.4.4. Equipment layer 

There is several equipment such as a gantry crane, a floating crane, a SPMT, and an 

equalizer, which are specialized in shipbuilding and offshore installation. The equalizer 

and SPMT are modeled considering the real mechanism. Details will be presented in 

section 2.7 and 2.8. 
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1.4.5. Service layer 

A service layer is composed of scenario manager, report, graph, visualization and GUI 

(Graphical User Interface). Scenario manager is used to progress the simulation time based 

on the predefined events such as hoisting up, hoisting down, move, etc. Visualization 

module shows simulation results on the screen. After simulation, wire rope tension or the 

position of the block can be provided by report and graph. A user-friendly GUI is also 

developed to simulate various examples conveniently. 

1.4.6. Library diagram and relations 

Figure 1-21 shows library diagram and relation of the components in the integrated 

simulation framework. A black label is a library name and the contents in the yellow box 

is main functions or classes. 

 

Figure 1-21. Library diagram and relation of the components in integrated simulation framework. 
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Model library contains model information such as position, orientation, mass, and 

inertial. In case of the flexible body, the nodal coordinates and material properties such as 

density, Young’s modulus, thickness, etc. are also defined. The shape of the bodies are 

defined in Shape library. The model info is used to calculate the forces, collisions and 

constraints. The model info is also used for the visualization. At each time, the equations 

of motion are solved in Equation library. At first, the pre-processor gathers all data from 

model, force, collision, constraint libraries, and generate the matrix. And then, the solver 

calculate the inverse matrix to obtain the acceleration or the velocity. The integrator 

calculates the position and orientation from the velocity. The results are transferred to 

Model library to update the model info. 
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1.4.7. New production design verification program 

This study develops a new design verification program being able to cover the 

requirement listed in Table 1-1. It is a dedicated and differentiated program for ships and 

offshore structures, named SyMAP (SyDLab’s Multibody Analysis Program). Figure 1-22 

shows the main view of SyMAP. It is developed in C# programming language and 

Windows Presentation Foundation (WPF) and contains many user-friendly functions. 

 

 

Figure 1-22. Main view of SyMAP. 
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1.5. Research objective and work scope 

The research objective is to develop the integrated simulation method to solve the 

problems which have not been analyzed by the previous studies or commercial programs 

in ships and offshore structures. The work scopes of this study are as follows. 

1) Implementation of the simulation core to solve the equations of motion of the 

multibody for rigid and flexible bodies 

2) Collision detection and response between the two objects which shapes are composed 

of triangular meshes 

3) Implementation of special equipment such as equalizer and SPMT (Self-Propelled 

Modular Transporter) in ships and offshore structures 

4) Proposal of the integrated simulation framework 

5) Development of the program with commercial level convenience and performance 
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 Theoretical backgrounds 

2.1. Multibody dynamics for rigid bodies 

Multibody dynamics is a discipline describing the dynamic behavior of mechanical 

systems that consist of several bodies connected via kinematic constraints called joints that 

impose restrictions on their relative motion. This study uses a discrete Euler-Lagrange 

equation which is proven to be numerically stable for the case of linear holonomic 

constraints. However, Wendlandt et al. [34], Marsden et al. [35], and Lew [36] briefly 

explain the DELE. Therefore, this chapter deals with the more detailed process to obtain 

the DELE. 

2.1.1. Discretization of the Euler-Lagrange equation 

A variational principle is introduced in Fowles and Cassiday [37]. The action integral 

of the Lagrangian L means the expenditure of total energy of the system during the motion. 

This can be expressed as follows: 

 

 
0

Nt

t
J Ldt   (1) 

 

where T , V  are kinetic and potential energy of the particle, and L is called 

Lagrangian. During the time interval t0 and tN, the actual motion minimizes the above 

integral. This can be expressed mathematically as 
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2 2

1 1

( )
t t

t t
J T V dt Ldt       (2) 

 

From the form (2), we can induce Euler-Lagrange equation known to be 

 

 0
d L L

dt

  
  

  q q
 (3) 

 

where, q  is generalized coordinates. The action integral of Lagrangian can be 

represented with the sum of the infinitesimal area with time divided into small time step h, 

as shown in Figure 2-1. 

 

 

Figure 2-1. Discretization of the action integral. 

The discretized J can be expressed as follows. 

 

        
1 1

0 1 1

, , , ,
k k N

k k N

t t t t

t t t t
J L dt L dt L dt L dt



 

        q q q q q q q q  (4) 
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For simplicity, let ( )k kt q q . For an approximation, each integral term can be 

regarded as a rectangular shape of width h , and height ( , )k kL q q . This yields: 

 

        0 0 1 1 1 1, , , ,k k k k N NJ L h L h L h L h        q q q q q q q q  (5) 

 

Approximate each infinitesimal area as a rectangular shape, and velocity 
kq  as 

1k k

h

 q q
, discrete action integral of Lagrangian 

dJ  can be expressed as follows. 

 

  1

1

, ,
N

d d k k

k

J L h



 q q  (6) 

 

dL
 
is denoted as the discrete Lagrangian. According to Eq. (2), the motion follows the 

trajectory that minimizes the discretized action integral 
dJ , which yields: 

 

 

 

   

1

1

1

2 1 1 1

1
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, , , , 0

N

d d k k

k

N

d k k d k k k

k

J L h

D L h D L h

 









 





    





q q

q q q q q

 (7) 

 

where, 
iD  is the partial differential operator, which means partial differentiation by 

the ith variable. Eq. (7) gives the DEL equation, 
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    2 1 1 1, , , , 0d k k d k kD L h D L h  q q q q
 

(8) 

 

Meanwhile, by using the Stömer-Verlet method [38], we set the discrete Lagrangian to 

be Eq. (9): 

 

    1 1
1

1
, ,

2
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k k k k
d k k kL h h V

h h

 


     
     

     

q q q q
q q M q  (9) 

 

where M is the mass matrix, and V is potential energy defined in Eq. (2). Now, we can 

calculate D2Ld and D1Ld, respectively. 
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 (10) 

 

We obtained Eq. (11) by substituting the discrete Lagrangian (10) into Eq. (8). 
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Leaving qk+1, and moving the remaining term to the right side, we obtained Eq. (12). 

 

   2

1 12k k k

k

V
h 


  


Mq M q q

q
 (12) 

 

Figure 2-2 summarizes the discretization process. 

 

 

Figure 2-2. Summary of the discretization of the Euler-Lagrange equation. 
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2.1.2. Discrete Euler-Lagrange equation with constraints 

Eq. (11) is the basic form of the DEL equation with no constraints. Constraints are 

kinematic restrictions on the variables in the system, with the form ( ) 0g q . In a 

multibody system, each body is connected by joints or wire ropes, and they limit the motion 

of bodies into certain areas. Therefore, we should include the constraints in the equations 

of motion. We can obtain the DEL equation with the number of m constraints directly from 

the modified Lagrangian, L . 

 

  
1

,
m

C C j j

j

L L L L g


 
   

 
 q  (13) 

 

where 
CL  is constraint Lagrangian and j  is a Lagrange multiplier of the jth 

constraint. We can change LC as a vector form    T

CL t g q λ , where 

   1 , ,
T

mg g   g q q  and  1, ,
T

m λ . 

With the modified Lagrangian, we can easily derive the DEL equation with constraints 

from the same procedure in Section 2.1.1. Eq. (9) can be changed as below. 

 

  
2

1 0 0 0

N N Nt t t t

C C C
t t t t

J Ldt L L dt Ldt L dt J J           (14) 

 

We have already derived the discretization of L in the previous chapter. Therefore, in 

this chapter, we only derived LC. We can express the discretized JC as follows. 
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 (15) 

 

Now, we applied the midpoint rule to JC for approximation. 
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The variation of JC,d is given by 
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The equation above can be rearranged as follows. 
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Adding Eq. (19) to Eq. (8), we obtained the discretized action integral with constraints. 
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In Eq. (20), 
kq  is an independent variable. Therefore, we obtain the following 

equation: 
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Introducing 1 1 1

2

2

4

k k k k

h

   


λ λ λ λ
 and using Eq. (11), Eq. (21) yields the 

following equation. 
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Eq. (22) contains 
kλ  which is an m-dimensional vector, except for 

kq . Therefore, we 

required additional m equations. We can obtain these by the partial differential of J  by 

kλ . 
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By Taylor series approximation, Eq. (24) yields  
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  1 14 2k k k k k k     G q g G q q  (26) 

 

Therefore, the final forms of the DEL equation with constraints are given by Eqs. (22) 

and (26). Dividing by h, and organizing for 
1kq  and 1kλ , we obtained the following 

matrix. 
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2.1.3. Discrete Euler-Lagrange equation with constraints and non-

conservative forces 

The virtual work done by a non-conservative force ( , )f q q  during a time interval 

0[ , ]Nt t  is written by Eq. (28). 

 

 
0

( , )
Nt

NC
t

W f dt   q q q  (28) 

 

The discretized 
NCW  can be expressed as follows. 
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    q q q q q  (29) 

 

where, f - are f + are called the left and right discrete forces, respectively. Adding those 

forces in Eqs. (20) and (21), we obtained the following DEL equation with constraints and 

non-conservative forces. 
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The discrete forces of Eq. (31) are given as follows. 
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If we chose 1  , the discrete force term is reduced as follows. 

 

     1
1 1, , , k k

k k k k khf hf hf
h

  
 

 
   

 

q q
q q q q q  (33) 

 

Consequently, the final form of the DEL equation with constraints and non-conservative 

forces is given by Eq. (34). 
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We can organize Eqs. (34) and (26) in the matrix form. 
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The final form of the DEL equation (35) is an ill-posed problem, which means it can 

have many solutions, or violate constraints, due to the error of approximation. To solve this 

problem, we introduced regularization and stabilization methods. 

The procedure until we obtain Eq. (35) is summarized in Figure 2-3. 

 

 

Figure 2-3. Procedure to obtain discrete Euler-Lagrange Equation with constraints and non-

conservative forces. 

2.1.4. Regularization 

Baumgarte [39] and Eich et al. [40] explain the basic idea of regularization. In 

mathematics and statistics, and particularly in the fields of machine learning and inverse 

problems, regularization refers to the process of introducing additional information, in 

order to solve an ill-posed problem or to prevent over-fitting. This information is usually 

in the form of a penalty for complexity, such as restrictions for smoothness, or bounds on 
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the vector space norm. 

The first step to apply regularization is to add augmented terms in the Lagrangian. 
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RL  means a penalty that is imposed when the motion of a multibody system violates 

the constraints. By defining auxiliary conditions of the constraints, Lanczos [41] shows that 

the Lagrangian j  and error j  yields j j jg    . Therefore, the augmented term is 

given by: 
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We now started the discretization process. First, we found the action integral of the 

regularization term. 
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We can express the discretized JR as follows. 
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Now, we applied the midpoint rule to JR for approximation. 
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The variation of JR,d is zero, because it is only a function of time t. The following 

equation is obtained by the partial differential of J  by 
kλ : 
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From Eqs. (24) and (42), the constraint equation is given by 
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Following the same sequence of Taylor series approximation, Eq. (43) yields 
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From Eqs. (34) and (44), we obtained the regularized DEL equation with constraint and 

non-conservative forces in the matrix form. 
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2.1.5. Stabilization 

The numerical solution 
kq
 
does not satisfy all of the constraint equations at the same 

time. Moreover, the drift and error grow with time t. This is not because of the numerical 

method that is used for integration, but because the system itself is mildly unstable.  

To solve this problem, Yoshimura [42] and Lacoursière [29] have proposed many 

stabilization techniques. The solution can be simply obtained by discretization of the 

velocity-level constrains, as shown in Figure 2-4. 

 

 

Figure 2-4. Velocity-level constraints and its discretization form. 
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Adding this to Eq. (43), the solution is given by: 
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where   is known to be the dissipation rate parameter which plays the same role as 

violation error. We can re-arrange Eq. (46) as follows. 
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 is introduced. From Eqs. (34) and (47), we obtained the 

regularized, stabilized DEL equation with constraint and non-conservative forces in the 

matrix form. 
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2.1.6. Final form of the Discrete Euler-Lagrange equation 

Eq. (48) is a two-step method that finds 
1kq  from 

kq  and 
1kq . The equation is 

only composed of the displacement. Therefore, we change Eq. (48) to a one-step method 

with a velocity formulation, which is more convenient to handle. By substituting 
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λ , we obtained the final form of the DEL equation 

with a one-step method: 
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The procedure of regularization and stabilization until we obtain Eq. (49) is summarized 

in Figure 2-5. 

 

 

Figure 2-5. Procedure of regularization and stabilization to obtain the final form of the discrete 

Euler-Lagrange equation. 
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2.1.7. Physical meanings of the parameters in DELE 

There are several parameters in DELE, which have the important physical meanings. 

The constraint Jacobian (Gk) is the direction of the forces due to the constraint. Lagrange 

multipliers (λ) are the magnitude of the constraint forces. Therefore, Gk
Tλ is the constraint 

forces.  

The stabilization term prevents the system from divergence as if it acts like damping. 

The regularization term ε determines how strongly the equations of motion are satisfied 

with constraints. ε works as if it were inverse of the spring coefficient. For example, the 

hinge joint is exactly connected at the anchor position at the first time. However, it violates 

the constraint during the simulation, which means that g(q) is not zero as shown in Figure 

2-6. 

 

Figure 2-6. Principle how the regularization term works as if it were spring coefficient. 

The constraint force is defined as follows. 
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 g

gk


 


q
q  (50) 

 

where, k is spring coefficient. The spring coefficient can defined by the inverse of ε 

because j j jg     as explain in section 2.1.4. 

The physical meaning of the parameters in DELE is summarized in Figure 2-7. 

 

Figure 2-7. Physical meaning of the parameters in DELE. 
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2.2. Multibody dynamics for deformable bodies (1D frame 

element) 

Flexible multibody systems, in which both elastic and rigid bodies are connected 

together through mechanical joints and in arbitrary motion with respect to each other, can 

be divided into linearly elastic multibody systems and nonlinearly elastic multibody 

systems [33]. For linearly elastic multibody systems, it is assumed that the strain-

displacement relationship remains linear, and therefore strain components remain very 

small at all times for elastic bodies. An efficient analysis technique for this type of problem 

is the FFRF (Floating Frame of Reference Formulation) [43]. However, for elastic bodies, 

the strain-displacement relationship is nonlinear or the strain components become large. 

An efficient analysis technique for this type of problem is the ANCF (Absolute Nodal 

Coordinate Formulation) which is mainly handled in this study.  

2.2.1. Overview of flexible multibody dynamics 

Figure 2-8 shows the concept of flexible multibody dynamics, which is combination of 

multibody dynamics for rigid bodies and structural analysis. 
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Figure 2-8 Introduction of flexible multibody dynamics. 

In this study, we will deal with 1D frame and 2D shell elements. These elementsare 

defined in Figure 2-9. The deformation of 1D frame element is composed of longitudinal 

stretching and bending. In case of shell element, membrane and plate are combined together. 

Membrane is deformed along the axial forces, and the plate is deformed due to the moment. 

Therefore, in case of the shell element, shear and twisting are additionally included. 
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Figure 2-9. Definition of 1D frame and 2D shell elements. 

Firstly, we will derive the flexible multibody dynamics for 1D frame element in this 

section. And then, FMBD for 2D shell element will be derived in the next section. 

2.2.2. Kinematic description of frame element 

A global position on a line segment passing through two given points is shown in Figure 

2-10.  
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Figure 2-10. Line segment passing through two points 

The line segment which is a function of parameter x (0≤x≤l) can be expressed by a 

linear combination of two points. 
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(51) 

 

where, aij is unknowns. From the boundary conditions, we can calculate these unknowns. 

Applying two boundary conditions, we obtain the following equation. 
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Eq. (52) can be expressed by the matrix form. 
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By given boundary condition, r(0) and r(l) is rA and rB, respectively. This means that 

the matrix multiplied in front of 
A

B
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 is an identity matrix. Therefore, we can find 
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Substituting the unknown values obtained in Eq. (54) into Eq. (51), we can obtain the 

global position on a line segment passing through two points. 
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A global position on a cubic spline segment passing through two points and having two 

slope vectors is shown in Figure 2-11.  

 

 

Figure 2-11. Cubic spline segment passing through two points and having two slope vectors. 

The cubic spline segment can be expressed by a linear combination of two points and 

two slope vectors, similar to the line segment derived previously. 
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By applying boundary condition, we can obtain the following equations. 
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By expressing as a matrix form, we can obtain the following equation. 
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The unknown matrix M can be calculated by the inverse matrix. 
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(59) 

 

Substituting the unknown values obtained in Eq. (59) into Eq. (56), we can obtain the 

global position on a cubic segment. 
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If we introduce  0 1
x

l
    , Eq. (60) can be rewritten as follows. 
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(61) 

 

where, I is 3 by 3 identity matrix, S is the shape function of the frame element, and q is 

the nodal coordinate. The shape function derived from given points and slope vectors are 

called cubic Hermite shape function (Figure 2-12). 
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Figure 2-12. Graphs of cubic Hermite shape function. 

This cubic segment is used to define the shape of the frame element as shown in Figure 

2-13. 

 

Figure 2-13. Kinematic description of a frame element. 

Meanwhile r  is a velocity vector which is obtained by the time derivative of the global 

position vector. 
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2.2.3. Strain energy 

Strain energy is the energy stored in the body as a result of applying a force to deform 

an elastic object. A frame element is deformed due to the forces and moments as shown in 

Figure 2-14. The deformation of a frame element is decomposed into three components 

such as longitudinal stretching, bending, and torsion. 

 

 

Figure 2-14. Deformation of a frame element. 

In the following subsections, axial, bending, and torsional strain energy will be derived. 

(1) Axial strain energy 

Axial strain energy is energy stored due to longitudinal stretching. It is very similar to 

the elastic potential energy of the spring which is stretched for displacement δ. The force 

to stretch the spring by δ is obtained by hook’s law as shown in Figure 2-15. 
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Figure 2-15. Spring stretched by δ due to F. 

Work done by force F is as follows. 
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    (63) 

 

The bar element is very similar to the spring as shown in Figure 2-16. Hook’s law is 

exactly derived from the stress-strain relation. 

 

 

Figure 2-16. Bar element stretched by δ due to F. 

Work done by force F is as follows. 
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Strain energy density is strain energy per unit volume. Therefore, strain energy density 

u is as follows. 
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s 

If the axial force, the cross-sectional area and Young’s modulus vary along the bar 

element, strain energy is only satisfied within a small length dx. For example, the extended 

length of dx at a different position is also different as shown in Figure 2-17. Therefore, they 

have a different strain and strain energy density. 
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Figure 2-17. Strain energy in bar element. 

The total strain energy stored inside bar element is expressed by integral form. 
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(2) Bending strain energy 

Bending strain energy is the energy stored due to bending. Figure 2-18 shows bending 

of the frame element. 

 

 

Figure 2-18. Bending of the frame element. 

The bending strain εb at y from the neutral surface can be derived from the definition. 

 

 
( )

b

y d d d y
y

ds ds

    




  
      (67) 

 

The bending strain energy density of bending is as same as the axial strain energy 

density (Eq. (65)).  
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where, κ is curvature. Finally, total strain energy stored in the frame element due to 

bending is as follows. 
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 (69) 

 

where,  2I y dA   is a second moment of inertia.  

(3) Torsional strain energy 

Torsional strain energy is the energy stored due to torsion. Figure 2-19 shows torsion of 

the shaft element. 

 

 

Figure 2-19. Torsion of shaft element. 

Similar to axial strain, strain energy density is obtained by the shear stress-strain relation. 
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Finally, total strain energy stored in the shaft element due to torsion is as follows. 
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where,  2J r dA   is a polar moment of inertia. 
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(4) Summary of strain energy 

Strain energy density and strain energy according to an element type is summarized in 

Table 2-1. 

Table 2-1. Summary of strain energy 

Element type Image Strain energy density Strain energy 

Bar 
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L

tU GJ dx 
 

 2J r dA 
 

 

2.2.4. Equations of motion for 1D frame element 

We adopt ANCF well described in Berzeri and Shabana [44] and Shabana [43]. The 

kinematic description of frame element derived in section 2.2.2, which are composed of 

the shape function and the nodal coordinate defined in the inertial frame, is used to derive 

ANCF.  

(1) Euler-Lagrange equation revisit 

The derivation of ANCF is also started from Euler-Lagrange equation defined in Eq. 
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(3). We rewrite Euler-Lagrange equation below. 

 

 
d L L

dt

  
  

  
0

q q
 (72) 

 

Eq. (72) does not contain the external force term. It is simply added on the right side of 

the equation. 
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where, Qnc is generalized non-conservative external forces. Qnc is defined as follows. 
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r
Q F

q
 (74) 

 

where, r is a function of generalized coordinate q, and Jacobian 




r

q
 is a partial 

derivative of q, e

ncF  is non-conservative external forces.  

(2) Kinetic energy of frame element 

The kinetic energy of the frame element is defined by the following equation. 
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where, μ is density. Substituting The derivative of r defined in Eq (62), we can obtain 

the following equation. 
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Substituting the kinetic energy into the Euler-Lagrange equation, we can obtain the 

following equation. 
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Meanwhile, the mass matrix M can be calculated explicitly as follows. 
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(78) 

 

(3) Strain energy of frame element 

This study ignored the torsional strain energy. Therefore, we use axial and bending 

strain energies. 
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where, Ua is axial strain energy, Ub is bending strain energy, εa and κ are a longitudinal 

strain and a curvature which are a function of r(x). To calculate strain energy, we have to 

calculate εa and κ first. Figure 2-20 shows the frame element at time t0 and t1. 

 

 

Figure 2-20. Frame element at time t0 and t1. 

The displacement vector u is defined as follows. 
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By definition, the axial strain and curvature can be calculated as follows. 
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Now, the axial and bending strain energy is calculated as follows. 
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Substituting Ua and Ub into Euler-Lagrange equation, we obtain the following results. 
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where, Ka is axial stiffness matrix, and Kb is bending stiffness matrix. The axial and 

bending stiffness matrices can be calculated explicitly as follows. 
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Meanwhile, the results obtained in Eq. (86) is based on the engineering strain, which is 

suitable to small deformation. For large deformation, we have to use Green-Lagrange strain 

defined as follows. 
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Based on Green-Lagrange strain, we can derive the stiffness matrix as follows. 
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(4) External forces 

If the force is a point load at an arbitrary point on the frame element as shown in Figure 

2-21, the generalized non-conservative external force is obtained as follows. 
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Figure 2-21. External force acting at an arbitrary point. 
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If a distributed force acts on the frame element as shown in Figure 2-22, the force is 

expressed by the integral form. 
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Figure 2-22. External force acting on all over the frame element 
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where, we is distributed external force per unit volume, and S  can be calculated as 

follows.  

 

 
1

0

1 1

2 12 2 12

l l
d

 
   

 
S S I I I I  (92) 

 



 79 

A damping force acting on the frame element is proportional to the velocity at x (0 ≤ x 

≤ l) as shown in Figure 2-23. 

 

 

Figure 2-23. Damping force acting on the frame element 

The velocity is the same as the derivative of the position vector r. 
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The damping force acting on a small length dx is multiplying damping coefficient and 

the velocity. 
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For the coordinate transformation, Jacobian is multiplied in front of the damping force 

obtained in Eq. (94). 
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Finally, we can obtain generalized damping force all over the frame element as follows. 
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(5) Summary of equations of motion for 1D frame element 

Now, we substitute kinetic energy, strain energy, and the generalized non-conservative 

external forces into the Euler-Lagrange equation. And then, finally, we can obtain the 

equations of motion for 1D frame element. 

 

    T e T

a b dAl C l t    Mq K K q S F S w Sq  (97) 

 

Figure 2-24 shows a summary of equations of motion for 1D frame element. 

 

 

Figure 2-24. Summary of equations of motion for 1D frame element.  
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2.2.5. Discrete Euler-Lagrange equation including Flexible body 

The final form of DELE (Eq. (49)) derived in section 2.1 and equations of motion for 

1D frame element (Eq. (97) should be solved together in one equation. We will explain this 

with a simple example as shown in Figure 2-25. There is one flexible body with three frame 

elements and two rigid bodies connected by ball and fixed joints. The two rigid bodies, and 

one flexible body are denoted by A, B, and f, respectively. The joint constraint is denoted 

by index 1 and 2. 

 

 

Figure 2-25. Example of one flexible body and two rigid bodies 

We rewrite DELE below. Potential energy is erased because it can be included in the 

force f. 
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Decomposing the component in Eq. (98) according to the bodies and constraints, we 

obtain the following equation.  

 

 

 

(99) 

 

Because the flexible body is composed of three elements, the mass matrix Mf is also 

divided into three parts. 
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(100) 

 

Similarly, the force f f is also composed of three elements as follows. 

 

 

 

(101) 

 

The constraint Jacobian between the rigid body and the frame element is expressed as 

follows. The derivation of the joint constraint and constraint Jacobian will be explained in 

section 2.5.1. 
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2.3. Multibody dynamics for deformable bodies (2D shell 

element) 

In this section, flexible multibody dynamics for 2D shell element will be explained. As 

1D frame element is derived based on ANCF, we will extend it to 2D shell element.  

2.3.1. Kinematic description of shell element 

The kinematic description of the shell element is well defined in Dmitrochenko and 

Pogorelov [45]. Here, we will explain the procedure of derivation more specifically. Figure 

2-26 shows the shell element which length, width, and thickness are a, b, and h, respectively 

The mid-plane (neutral plane) has four corner points indexed by 1, 2, 3, and 4. 

 

 

Figure 2-26. Mid-plane of shell element. 

After deformation, we want to describe the arbitrary point P on the mid-plane using the 

four corner points and slope vectors at the corners (Figure 2-27). 
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Figure 2-27. Arbitrary point P on the deformed mid-plane. 

Temporary point A and B are introduced to use the kinematic description defined for the 

cubic spline segment (Figure 2-28). 

 

 

Figure 2-28. Interpolation of point P using temporary point A, and B. 

It is expressed as follows. A hat of si means that the shape function is a function of ξ.  
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Meanwhile, the points A, B, and the slope vectors are also calculated using the kinematic 

description of a cubic spline segment defined by the position vectors and slope vectors at 

the four corners. The point A, B and the slope vector at point A, B are defined as follows. 

A double hat of si means that the shape function is a function of η. To interpolate the slope 

vector, the derivative of the slope vector at the corner points is used. 
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Figure 2-29. Interpolation of point A and the slope vector. 
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Figure 2-30. Interpolation of point B and the slope vector. 

Finally, the position vector P (ErP)can be expressed by the vectors at the four corners by 

substituting Eq. (104) ~ (107) into Eq. (103). 
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The generalized coordinate q is composed of the position vectors, the slope vectors, and 

the derivatives of the slope vectors. 
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2.3.2. Strain energy for shell element 

A plate is a flat structural element for which the thickness is small compared with the 

surface dimensions. The thickness is usually constant but may be variable and is measured 

normal to the middle surface of the plate. Plate theory is concerned mainly with lateral 

loading. It is very like the beam theory. It turns out to be an accurate theory provided the 

plate is relatively thin (as in the beam theory) but also that the deflections are small relative 

to the thickness. Things are more complicated for plates than for the beams. For one, the 

plate not only bends, but torsion may occur (it can twist). 

To derive the equations of motion for 2D shell element, strain energy due to bending 

and twisting should be derived. The curvature-strain relation of bending and twisting is 
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shown in Figure 2-31. κx and κy are the curvatures in the x and y directions, which is the 

rate of change of the slope with respect to arc length. κxy is the twist, which is a slope 

2 /z x y   . 

 

 

Figure 2-31. Curvature-strain relation of bending and twisting. 

The stress-strain relation is defined as follows. 
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where, ν is Poisson’s ratio, E is Young’s modulus, G is shear modulus. The infinitesimal 

force per unit length is defined as follows. 
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The infinitesimal moment per unit length is obtained by multiplying the moment arm z 

and the infinitesimal force defined in Eq. (111). 
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The moment per unit length is obtained by the integral over the thickness. 
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where, D is flexural rigidity. Similarly, the moment along the y axis and twisting 

moment are as follows. 
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Therefore, the strain energy due to bending and twisting is calculated as follows. Firstly, 

the infinitesimal strain energy along the x direction is defined as follows. 
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Similarly, the infinitesimal strain energy along the y direction and twisting strain energy 

are as follows. 
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Total infinitesimal strain energy is a summation of the above results. 
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Finally, the strain energy due to bending and twisting is obtained as follows. 
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2.3.3. Strain energy for membrane element 

Stress-strain relation of membrane element is defined as follows. 
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The strain energy due to longitudinal and shear deformation is calculated as follows. 
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2.3.4. Equations of motion for 2D shell element 

We adopt ANCF well described in Dmitrochenko and Pogorelov [45]. Similar to the 1D 

frame element, Euler-Lagrange equation is also used to derive the equations of motion for 

2D shell element. 

(1) Kinetic energy of shell element 

The mass matrix can be obtained as a result of kinetic energy. It was already derived in 

section 2.2.4(2). Therefore, the mass matrix of the shell element is calculated with reference 

to Eq. (78). 
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Each component of the mass matrix can be calculated explicitly. Sij is composed of the 

multiplication of two shape functions with different parameters (ξ, η). Therefore, the shape 

functions are divided into two integrals as follows. 
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Each integral can be calculated as follows. 
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The result is obtained by multiplying the value from ith row and kth column of Eq. 

(125) and the value from jth row and lth column of Eq. (126). For example, S12S34 is the 

multiplication of 9/70 (first row and third column) and –b2/140 (second row and fourth 

column). 

(2) Longitudinal and shear strain energy of shell element 

Green-Lagrange strain is defined for 2D shell element as follows. 
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The derivatives of the strains by q are also defined as follows. 
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Now, the mid-plane elastic force of the shell element due to longitudinal and shear 

deformation is obtained by the derivative of the strain energy (Eq. (122)) by q. 
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Substituting the derivatives of the strain, we can obtain the following equation. 
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where, Kls is stiffness matrix due to longitudinal and shear deformation. If we assume 

that deformations are constant over the element, the strains are possible to be treated as 

constant values. Therefore, they can be moved out from the integral. 
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where, 
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xy        r r r r r r r r . There are four integrals in Eq. (131). Each 

integral can be calculated as follows. 
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This model is quite simple. However, this assumption is not suitable for the large 

deformation. Therefore, we should derive the stiffness matrix without any assumption. 
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There are five terms inside the integral. Each term is calculated as follows. 
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After adding all of the above equations, we summarize as follows. 

 

 

(142) 

 

It is hard to calculate integral because qqT is located in the middle. Abbas et al. and 

García-Vallejo et al. [46], [47] suggested the method how to calculate the matrix form 

AeeTB. For example, A, B is 3 by 3 matrix and e is 3 by 1 column vector. 
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Now it is possible to exchange arow and e or to exchange eT and bcol. Therefore, the 

equation is summarized as follows. 
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Generalized the above results, it is as follows. 
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For example, the integral changes to another form as follows. 
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(3) Bending and twisting strain energy of shell element 

From now on, the strain energy of the shell element due to bending and twisting will be 

provided. For this, the curvature should be defined as follows. 
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Substituting the curvature expressed by the shape function and the generalized 

coordinate into Eq. (118), we obtain the following equations. 
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Midplane elastic force (Qbt) of the shell element due to bending and twisting is obtained 

by the derivative of the strain energy by q. 
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where, Kbt is the stiffness matrix due to bending and twisting. There are four integrals 

in Kbt. Each integral can be calculated as follows. 
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(4) External forces 

If the force is a point load at an arbitrary point on the shell element as shown in Figure 

2-32, the generalized non-conservative external force is obtained as follows. 
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Figure 2-32. External force acting at an arbitrary point. 
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If a distributed force acts on the shell element as shown in Figure 2-33, the force is 

expressed by the integral form. 

 

 

Figure 2-33. External force acting on all over the shell element 
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where, we is distributed external force per unit volume, and S  can be calculated as 

follows.  
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A damping force acting on the shell element is proportional to the velocity at x, y (0 ≤ x 

≤ a, 0 ≤ y ≤ b) as shown in Figure 2-34. 
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Figure 2-34. Damping force acting on the shell element 

The velocity is the same as the derivative of the position vector r. 

 

        , , , , ,x y t x y t t  v r S q
 

(157) 

 

The damping force acting on a small length dx is multiplying damping coefficient and 

the velocity. 
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For the coordinate transformation, Jacobian is multiplied in front of the damping force 

obtained in Eq. (158). 
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Finally, we can obtain generalized damping force all over the shell element as follows. 
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(5) Summary of equations of motion for 2D shell element 

Now, we substitute kinetic energy, strain energy, and the generalized non-conservative 

external forces into the Euler-Lagrange equation. And then, finally, we can obtain the 

equations of motion for 2D shell element. 

 

   T e T

ls bt dhab C ab    Mq K K q S F S Sq (161) 

 

Figure 2-35 shows a summary of equations of motion for 2D shell element. 

 

 

Figure 2-35. Summary of equations of motion for 2D shell element.  
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2.4. Kinematic constraints between rigid bodies 

In 3-dimensional space, an unconstrained rigid body has 6 degrees of freedom, which 

are the translational and rotational motions about 3 independent axes. Joints restrain bodies 

by lower degrees of freedom. Table 2-2 lists the many kinds of joint by their restriction of 

degrees of freedom. 

Table 2-2 Joint type by the restriction on the degrees of freedom. 

Joint Type (3D) 

Restriction on the degrees of freedom 

Translation Rotation 

X Y Z X Y Z 

Ball    O O O 

Universal    O  O 

Hinge (Revolute)      O 

Cylindrical O   O   

Slider (Prismatic) O      

Fixed       

Slider-hinge (Translational axis) (Rotational axis) 

 

In this chapter, we derived the terms gk and Gk for each joint listed in Table 1 with 

reference to Shabana [27], and Nikravesh [48]. We expressed the vector that connects point 

P and the origin of the global coordinate E as ErP, or simply rP. We expressed the local 

vector that connects point A and the origin of the local coordinate G as ErP/G. The rotation 

matrix that transforms the local coordinates G into global coordinates E is ERG. 

2.4.1. Ball joint 

A ball joint constrains translational motion about every axis between bodies. As Figure 

2-36 shows, the ball joint allows only rotational motion between body 1 (Green) and body 

2 (Blue). P represents the center of the ball joint, and the E-XYZ is the global coordinate 

that is fixed in the space. The constraint equations are then: 
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1 1 2 2/ / 0E E

ball G P G G P G    g r r r r  (162) 
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Figure 2-36. Ball joint. 

As the location of the ball joint P is calculated about the local coordinates of body 1 and 

body 2, it needs to be transformed to the global coordinates E-XYZ. This yields: 

 

 
1 1 1 2 2 2,3 ,3 / / 0E E E E

ball trans G G P G G G P GR R     g g r r r r  (163) 

 

As the equations above are obtained in 3-dimensional space, Eq. (163) consists of 3 

constraint equations, about the X, Y, and Z axes, respectively. As Table 1 shows, the ball 

joint restrains 3 degrees of freedom. The subscript (ball, 3) means the equations above are 

for a ball joint and include 3 equations. Also, gtrans,3 is the constraint equations that restrain 

the 3 translational motions. Then, Gk is expressed as follows. 
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1 1 2 2( ,3) / /

E E

ball G P G G P G
   
  

G I R r I R r  (164) 

 

The tilde above the second and fourth terms in Eq. (48) means the transformation the 

vector to a skew-symmetric matrix. For example, the skew-symmetric matrix of the vector 

 , ,
T

a b cv  is 

0

0

0

c b

c a

b a

 
 

 
 
  

v . 

2.4.2. Universal joint 

A universal joint constrains translational motion about every direction and rotational 

motion about one axis. Figure 2-37 shows an example of a universal joint between body 1 

and body 2. The two lines perpendicular to each other in the purple joint represent the two 

axes that allow rotation. P is the point of intersection of the two axes. 

 

2G
1s 2s

1G

P

1Q

2Q

 

Figure 2-37. Universal joint. 

Meanwhile, the constraint equations of a ball joint (163) are also included in those of a 
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universal joint, as they also restrain translational motion about every axis. The constraint 

equations of a universal joint consist of 4 equations, which restrain 3 translational motions 

and 1 rotational motion. Therefore, one more equation constraining rotational motion is 

needed for a universal joint. As Figure 2-37 shows, we can assume a straight line passing 

through G1, the center of mass of body 1, and parallel to one of the two perpendicular axes 

of the joint. Assume a random point Q1 in body 1 that lies on the straight line; we can define 

a vector s1 between the two points G1 and Q1. With the same procedure in body 2, we can 

obtain vector s2, parallel to another axis of the joint. Then, the two vectors s1 and s2 are 

perpendicular to each other, and always keep the same direction relative to the joint. Thus, 

the constraints equation that restrains rotational motion can be derived as follows. 

 

 ,1 1 2 1 2 0T

rotg    s s s s  (165) 

 

As a result, we derived the constraint equations and the Gk for a universal joint. 
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2.4.3. Hinge joint 

A hinge joint constraints every translational motion and 2 rotational motions, which 

means that rotational motion about 1 axis is allowed. As the constraint equations for a ball 

joint restrain every translational motion, Eq. (163) is included in the constraint equations 
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of a hinge joint. The following figure shows an example of a hinge joint that allows 

rotational motion about the Z axis. 
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Figure 2-38. Hinge joint. 

Figure 2-38 shows the Z axis that allows rotation. Set a random point Q1 in body 1, so 

that the vector from G1 to Q1 is parallel to the axis of rotation. With the same step in body 

2, we obtained the vectors s1 and s2, as Figure 5 shows. As the vectors are parallel to the 

axis of rotation, the directions of the vectors are constant. This can be mathematically 

formulated as: 

 

 ,2 1 2 1 2 0rot    g s s s s  (168) 

 

Eq. (168) consists of 3 equations; however, one of them is dependent on the others. 

Therefore, Eq. (168) includes 2 independent equations. The constraint equations of a hinge 

joint and its derivative are then, 
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(170) 

 

2.4.4. Slider joint 

A slider joint allows translational and rotational motion about 1 axis. Accordingly, we 

required 4 equations. Figure 2-39 shows an example of a prismatic joint. The dotted line is 

the axis that translation and rotation are allowed about. 
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Figure 2-39. Slider joint. 

Meanwhile, the random points in bodies 1 and 2, Q1 and Q2 can be chosen so that the 

vectors G1Q1 (s1) and G2Q2 (s2) are parallel to the dotted line. As body 1 and body 2 only 

move along the dotted line, the two vectors are parallel, no matter how the two bodies move. 

As this constraint only allows rotation about the dotted line, this yields the following 

constraint equations. 
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 ,2 1 2 1 2 0rot    g s s s s  (171) 

 

Likewise, two random points in bodies 1 and 2 lying on the dotted line can be chosen 

as S1 and S2. To exclude translational motion about any axis except for the dotted line, the 

vector s1 in body 1 should be parallel to the vector S1S2 (d). Therefore, 

 

 ,2 1 1 0trans    g s d s d  (172) 

 

Finally, the constraint equations of a slider joint and its derivative are given by: 
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(174) 

 

2.4.5. Fixed joint 

A fixed joint restrains every translational or rotational motion. As Figure 2-40 shows 

that a fixed joint restrains any motion between the two bodies. 
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Figure 2-40. Fixed joint. 

Therefore, we needed the constraint equations that restrain 3 translational motions, Eq. 

(163). In addition, the equations to constrain 3 rotational motions are easily given by: 

 

 
0 0

,3 1 2 1 2( ) 0rot     g θ θ θ θ  (175) 

 

The final form of the constraint equations for a fixed joint and its derivative are then, 
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2.4.6. Slider-hinge joint 

A slider-hinge joint is the combination of slider and hinge joints as shown in Figure 

2-41 

 

 

Figure 2-41. Slider-hinge joint. 

For the slider-hinge joint, the constraint equations of slider joint and hinge joint are 

simply combined as follows. 

 

 ,2 1 1 0trans    g s d s d  (178) 

 ,2 3 4 3 4 0rot    g s s s s  (179) 

 

where, s1 and d are the same vectors in Eq. (172), s3 and s4 are the same vectors of s1 

and s2 in Eq. (168), respectively. Therefore, the constraint Jacobian is also given as follows. 
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2.4.7. Wire rope constraint 
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As shown in Figure 2-42, Body1 and Body2 are connected to each other with a wire 

rope. To simulate stretching with a constraint-based wire rope, the length of the wire rope 

should be equal to the constant value ltotal. If the distance between the wire connection 

points is larger than ltotal, this means that the constraint is violated. If Body2 violates the 

constraint, the constraint force is acting on the Body2, which is equal to the spring force. 

 

 

Figure 2-42. Wire rope with a single element. 

Then, the constraint equation of stretching is given by: 

 

   0A B totalg l   q r r  (181) 

 

where, rA and rB are position vectors from the origin O to point A and B, respectively. 

The position vector can be expressed using the rotation matrix and the position vector of 

the center of gravity. Thus, the constraint equation of the wire rope can be rewritten as: 

   1 1 / 1 2 2 / 2 0G A G G B G totalg l     q r R r r R r  (182) 
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where, rG1 and rG2 are the position vectors, and R1 and R2 are the rotation matrixes of 

Body1 and Body2, respectively. rA/G1 means the vector from G1 to A and rB/G2 means the 

vector from G2 to B. If we let 
1 1 1 2 2 2/ /G G A G G G B G   l r R r r R r , and 

l
n

l
, we obtain 

the derivation of the constraint equation as follows: 

 

    
1 2/ /A G B G

     
 

G n n r n n r  (183) 

 

In Eq. (37), 
2

2

r
g  is the same form of spring energy 

2

2

k
g , where k is the spring 

coefficient. Therefore, 
1

r k


  . This implies that the epsilon is in inverse proportion to 

the spring coefficient. 

The stretching constraint can be used to connect several bodies with one wire rope. In 

this case, we express the constraint equation with a summation of the length between the 

points. 

 

  
,

0i j total

i j

g l   q r r  (184) 

 

We can apply this to make fixed and moving pulleys. Figure 2-43 shows an example of 

pulleys. 
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Figure 2-43. Wire rope with pulleys. 

As the main wire winding around the pulleys has constant length, the constraint equation 

of the wire is simply formulated as follows. 

 

   0a b c totalg l l l l       (185) 

 

  



 123 

2.5. Kinematic constraints between rigid and flexible 

bodies 

In the multibody system, the bodies may be interconnected by one or more kinematic 

constraints which can be described as algebraic constraint equations that constrain some 

degrees of freedom of the body. This section explains the constraint equation between a 

flexible body and a rigid body. 

2.5.1. Joints on 1D frame element 

(1) Ball joint between rigid and 1D flexible bodies 

Figure 2-44 shows a ball joint attached between a rigid body and one of frame elements.  

 

 

Figure 2-44.Ball joint between a rigid body and a frame element 
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The position vector using the coordinate of the rigid body is expressed as follows. 

 

 ,

E E E A

P rigid A A P r r R r
 

(186) 

 

Meanwhile, the position vector on the third element (Elelemt3) is defined by the nodal 

coordinate of N3 and N4 as shown in Figure 2-45. 

 

 

Figure 2-45. Position vector of ball joint on the frame element. 

It is expressed by the position vectors and slope vectors on N3, and N4.  
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The constraint equation of the ball joint is to restrict the translational motion. This is 

done by the following equation. 
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E E E E A

P flexible P rigid f A A P     g r r S q r R r 0  (188) 

 

The constraint Jacobian is also derived as follows. 
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(2) Fixed joint between rigid and 1D flexible bodies 

A fixed joint is to restrict the rotation in addition to the translation. The slope vector at 

the fixed joint is defined as follows. 
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Figure 2-46. Slope vector defined on the frame element. 

Meanwhile, the reference vector initially coincided with a slope vector calculated from 

frame element is defined as follows. 

 ,

E E A

P rigid r A P v v R r  (191) 

 

 

Figure 2-47. Reference vector initially coincided with a slope vector calculated from the frame 

element. 
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Two vectors (vf and vr) should parallel to restrict the rotation. Therefore, the constraint 

equation and constraint Jacobian are given as follows. 

 

 f r  g v v 0
 

(192) 

 r f r


   
 

g
v S 0 v v

q  

(193) 

 

The calculation procedure of the constraint Jacobian is explained in detail in the 

following equation. 
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2.5.2. Joints on 2D shell element 

(1) Ball joint between rigid and 2D flexible bodies 

Figure 2-48 shows a ball joint attached between a rigid body and one of shell elements.  
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Figure 2-48.Ball joint between a rigid body and a shell element 

The position vector using the coordinate of the rigid body is expressed as follows. 

 

 ,

E E E A

P rigid A A P r r R r
 

(195) 

 

Meanwhile, the position vector on ‘Elelemt2’ is defined by the nodal coordinate of N2, 

N3, N5, and N6 as shown in Figure 2-49. 

 

Figure 2-49. Position vector of ball joint on the shell element. 



 129 

It is expressed by the position vectors and slope vectors on N2, N3, N5, and N6.  

 

  
2 3 5 6, ,E

P flexible N N N N r S q
 

(196) 

 

The constraint equation of the ball joint is to restrict the translational motion. This is 

done by the following equation. 

 

    , , ,E E E E A

P flexible P rigid A A P      g r r S q r R r 0
 

(197) 

 

The constraint Jacobian is also derived as follows. 
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(2) Fixed joint between rigid and 2D flexible bodies 

A fixed joint is to restrict the rotation in addition to the translation. The slope vector at 

the fixed joint is defined as follows. 
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Figure 2-50. Slope vector defined on the shell element. 

Meanwhile, the reference vector initially coincided with a slope vector calculated from 

shell element is defined as follows. 

 

 ,

E E A

P rigid r A P v v R r  (200) 

 

 

Figure 2-51. Reference vector initially coincided with a slope vector calculated from the shell 

element. 
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Two vectors (vf and vr) should parallel to restrict the rotation. Therefore, the constraint 

equation and constraint Jacobian are given as follows. 

 

 f r  g v v 0
 

(201) 

 r f r


   
 

g
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2.6. Collision detection and response 

Theoretical backgrounds of the collision detection and response proposed in this study 

will be explained in the following sections. 

2.6.1. Collision detection 

Collision detection is to find the mesh pair and the penetration depth when two bodies 

collide. Collision detection is generally composed of two stages, as shown in Figure 2-52. 

One is a broad phase stage which checks collisions between two bounding boxes. The other 

is a narrow phase stage which checks collisions between the meshes. 

 

 

Figure 2-52. Broad and narrow phase stages. 

There are mainly two specialized problems in the shipbuilding and offshore industries 

during the collision detection. The first problem is that the shape is not a polyhedron, but 

contains unenclosed meshes. Figure 2-53 shows the example of meshes which are not 

enclosed. In this case, the well-known collision detection algorithms [49]–[51] which are 

suitable to convex and concave shapes cannot be applied. 
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Figure 2-53. Unenclosed mesh in LPG tank. 

Secondly, there are too many meshes in one body shape which is exported from the ship 

CAD (Computer-Aided Design) system. Figure 2-54 shows an LPG tank model in which 

the number of vertices is 57,696, and the number of triangular meshes is 19,232. Therefore, 

it takes a lot of time to detect the collision. 
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Figure 2-54. LPG tank model. 

To solve the first problem, we propose the position difference method which checks an 

intersection using the line segment made by the two vertices or the trigonal prism consisting 

of the two triangular meshes at time t and t+1. To solve the second problem, we must reduce 

the number of meshes. Therefore, space partitioning and exclusion boxes are adopted. In 

the following sub-sections, the methods to solve those problems will be explained. 

(1) Position difference method 

PDM (Position Difference Method) uses the positions of the meshes at time t and t+1. 

Therefore, it is only available in dynamic analysis. This method is very similar to 

continuous collision detection which is derived from polyhedra [52], [53]. This method is 

divided into two states such as vertex-mesh collision and edge-edge collision. 

PDM for vertex-mesh collision is further divided into three cases according to the 

colliding position and the existence of movement. The first case is that a colliding vertex 
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on the moving body (Body2) moves into the fixed body (Body1) as shown in Figure 2-55. 

 

Figure 2-55. Vertex-mesh collision: Vertex on the moving body moves into the fixed body. 

At time t0, Body1 and Body2 do not collide. However, the vertex (P) passes through the 

mesh on the top of Body1 at time t1. The first step is to find P0 and P1 which are the positions 

of the vertex (P) at times t0 and t1, respectively. The next step is to draw a line segment 

0 1P P . The last step is to check whether or not 0 1P P  intersects with one of the meshes. The 

penetration depth is the minimum distance from P1 to the mesh. The sequence is 

summarized in the pseudocode below. 

 

Vertex-mesh collision algorithm 1 

FOR each vertex of Body2 

  P0 = Previous vertex position 

  P1 = Current vertex position 

  Set segment using P0 and P1 

  FOR each mesh of Body1 

    IF Intersect mesh with segment THEN 

      Set mesh and P1 to Collision Pair 

    END IF 

  END FOR 

END FOR 
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However, this algorithm has a problem. Even though we apply the first algorithm, 

collision at the corner cannot be detected, as shown in Figure 2-56. 

 

 

Figure 2-56. Collision at the corner. 

Therefore, the second case of PDM for the vertex-mesh collision is that a colliding 

vertex on the fixed body (Body1) moves into the moving body (Body2), as shown in Figure 

2-57. 

 

 

Figure 2-57. Vertex-mesh collision: Vertex on the fixed body moves into the moving body. 

At time t0, the vertex (P) of Body1 is located outside Body2. However, the vertex (P) is 
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located inside Body2 at time t1. The first step is to find Mesh0 and Mesh1 at times t0 and t1. 

The next step is to make a trigonal prism connecting vertices at time t0 and t1. The last step 

is to check that P is located inside the trigonal prism. It is done by five plane equations. 

The penetration depth is the minimum distance from P to Mesh1. The sequence is 

summarized in the pseudo code below. 

 

Vertex-mesh collision algorithm 2 

FOR each mesh of Body2 

  Mesh0 = Previous mesh position 

  Mesh1 = Current mesh position 

Calculate five planes using Mesh0 and Mesh1 

  FOR each vertex of Body1 

    IF vertex inside trigonal prism THEN 

      Set Mesh1 and vertex to Collision Pair 

    END IF 

  END FOR 

END FOR 

 

Even though both the first and second algorithms are applied, there is still a problem 

when both bodies are moving, as shown in Figure 2-58. 
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Figure 2-58. Collision between two moving bodies. 

It is because both the vertex and the mesh are moved, and the line segment 0 1P P  

unfortunately gets out of the mesh1 at time t1, as shown in Figure 2-59. 

 

 

Figure 2-59. Collision detection failure in case of two moving bodies. 

Therefore, we modify the first and second algorithm a little bit to solve this problem. 

We call this the third case of PDM for vertex-mesh collision. Basically, the first algorithm 

uses P0 at time t0, and P1, Mesh1 at time t1. In the third algorithm, Mesh0 is used for collision 

detection instead of Mesh1 (See Figure 2-60-(1)). Besides, the second algorithm uses Mesh0 

at time t0, and P1, Mesh1 at time t1. In the third algorithm, P0 is used instead of P1 (See 
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Figure 2-60-(2)). 

 

 

Figure 2-60. Vertex-mesh collision: Both bodies are moving. 

PDM for edge-edge collision is further divided into two cases like PDM for vertex-mesh 

collision. The first case is that a colliding edge on the moving body (Body2) moves into 

the fixed body (Body1), as shown in Figure 2-61. 
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Figure 2-61. Edge-edge collision: Edge on the moving body moves into the fixed body. 

At time t0, Body1 and Body2 do not collide. However, the edge (E0) passes through the 

edge of Body1 at time t1. The first step is to find E0 and E1 which are the edges at times t0 

and t1. The next step is to draw a rectangle using E0 and E1. The last step is to check whether 

or not the rectangle intersects with one of the edges of Body1. The penetration depth is the 

minimum distance from E1 to the intersected edge. The sequence is summarized in the 

pseudocode below. 

 

Edge-Edge collision algorithm 

FOR each edge of Body2 

  E0 = Previous edge position 

  E1 = Current edge position 

  Set Rectangle using E0 and E1 

  FOR each edge of Body1 

    IF Intersect edge with Rectangle THEN 

      Set edge and E1 to Collision Pair 

    END IF 

  END FOR 

END FOR 

 

If both bodies are moving, the edge-edge collision algorithm has the same problem 
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compared to the vertex-mesh collision algorithm, as shown in Figure 2-58. Instead of the 

edge of Body1 at time t1 (E1, Body1), the edge of Body1 at time t0 (E0, Body1) is used to solve 

this problem (See Figure 2-62-(1)). As an alternative, the edge of Body2 at time t0 (E0, Body2) 

is used instead of the edge of Body2 at time t1 (E1, Body2) (See Figure 2-62-(2)). 

 

 

Figure 2-62. Edge-edge collision: Both bodies are moving. 

(2) Space partitioning 

PDM requires a lot of computational costs if the shape contains many meshes. Space 

partitioning is the process of dividing a space into two or more non-overlapping regions. 

There are many kinds of space-partitioning techniques. In this study, BVH (Boundary 

Volume Hierarchy) is adopted [54], [55]. BVH is a tree structure on a set of geometric 

shapes. All geometric shapes are wrapped in bounding volumes that form the leaf nodes of 

a tree. The procedure to build BVH is depicted in Figure 2-63.  
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Figure 2-63. Procedure of BVH. 

The first step is to organize the centroids of meshes in the ascending order. The next 

step is to split the centroids into left and right sides. These two steps are repeated for the 

different axis until the bound volume is a leaf. 

BVH can dramatically reduce the computational costs of the collision detection. 

Bounding boxes of BVH are used instead of calculating collision detection between the 

meshes of the two bodies. Figure 2-64 shows a method demonstrating how to use BVH 

during the collision detection.  
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Figure 2-64. Traversal of two BVHs during the collision detection. 

At first, top-level bounding volume (BV0) is used to detect the collision. If the detection 

is noticed, the next level of bound volume (BV11, BV12) is used to check the detection. 

This procedure is repeated until the leaf bounding volume is found. Finally, the meshes 

inside the leaf nodes are used to calculate collision detection. 

(3) Exclusion box 

Even though space partitioning reduces a lot of computational costs, it still takes a long 

time to detect the collision if there are too many meshes. If we take a close look, there are 
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also many meshes which are not involved in the collision from the beginning. However, it 

is not easy to erase unnecessary meshes before the simulation using third-party programs. 

Sometimes, meshes which belong to a different part of the body want to be excluded 

according to the simulation conditions. Therefore, we developed exclusion boxes to 

exclude meshes inside boxes dynamically in the program. Figure 2-65 shows several 

examples of exclusion boxes applied to the LPG tank. 

 

 

Figure 2-65. Examples of exclusion boxes applied to the LPG tank. 

2.6.2. Collision response 

Collision response is to find the forces acting at the collision position or velocities of 
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bodies directly after the collision. The classification of the collision response and the 

method we choose in this study will be explained in the following sub-sections. 

(1) Classification of collision response 

There are basically two methods to describe the collision response [56]. One is an 

impulse-based method, which directly modifies the velocity as a result of impulse. This 

method is very simple. However, it is not applicable when two bodies collide at multiple 

points. It also makes the system unstable, because the direct change of the velocity after 

solving the equations of motion violates kinematic constraints. In other words, it is not 

applicable to a multibody system. 

The other is a force-based method, which is further divided into two methods such as a 

spring-damper method, and a non-interpenetration constraint method. The spring-damper 

method exerts the collision force modeled by a spring-damper at the collision position. 

Unlike the impulse-based method, the spring-damper method is applicable when two 

bodies collide at the multiple points, and it does not compulsively violate the kinematic 

constraint because the collision force is also solved together when the equations of motion 

are solved numerically. However, it is not easy to select the proper parameters such as the 

exponent of the penetration depth (n), spring and damping coefficient (k, d), which vary 

according to material properties, the weight, the number of contact points, and so on. 

The non-interpenetration constraint method exerts a collision force modeled by the 

constraint. This method has the same advantages as the spring-damper method. Moreover, 

the collision force can be determined automatically, reflecting material properties such as 

restitution and softness. Therefore, we choose the non-interpenetration constraint method 

for the collision response. Classification of the collision response is summarized in Figure 

2-66. 
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Figure 2-66. Classification of collision response. 

(2) Non-interpenetration constraint method 

There are three statuses such as ‘no collision,’ ‘exact contact,’ and ‘interpenetration’ 

between two bodies as shown in Figure 2-67. 1 and 2 are the shape functions of the body 

surfaces which are continuously differentiable. 

 

Figure 2-67. Three statuses between two bodies. 
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Non-interpenetration constraint equation can be expressed mathematically as follows 

[57], [58]. 

 

 
1 2 0collisiong     (203) 

 

If two bodies violate the non-interpenetration constraint, the collision (normal) force is 

acting on the bodies. The collision force can be expressed by the constraint Jacobian 

(
collisionG ) which is the direction, and the Lagrange multiplier (), which is the magnitude. 
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However, it is not easy to represent the body surface as continuously differentiable 

functions. Therefore, we derive a simple non-interpenetration constraint equation between 

a vertex and a plane, as shown in Figure 2-68. 

 

 

Figure 2-68. Non-interpenetration constraint between a vertex and a plane. 
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ErP/C means that the vector direction is from point C to P, and the reference frame is the 

inertial frame (E-xyz). The starting point can be omitted if the origin of the reference frame 

and the starting point are the same (ErA, ErB). Since two bodies are separated, the line 

segment PQ  should be larger than or equal to zero. This constraint and constraint 

Jacobian can be expressed as follows. 
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Using Eq. (206), the collision force is calculated as follows. 
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Meanwhile, there are not only the normal force but also the frictional force at the 

collision position. The magnitude of the frictional force (Ffriction) is simply proportional to 
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the normal force (Fnormal), and the direction is the opposite of the projected relative velocity 

(Evrel) on the plane, as shown in Figure 2-69. 

 

 

Figure 2-69. Calculation of the frictional force. 

Therefore, the frictional force is calculated as follows. 
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where, Et is the unit vector, which is obtained by projection of the relative velocity at 

the collision position on the plane, and  is a frictional coefficient. Finally, we obtain the 

collision force including both the normal and frictional forces by replacing the normal 

vector En with En +Et in Eq. (206). 
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So far, we explained the non-interpenetration constraint equation between a vertex and 

a plane. This equation can also be extended to the collision response between two bodies 

by using the collision pair which is obtained from the collision detection. There are two 

types of collision pairs. One is the mesh and the vertex which are obtained from vertex-

mesh collision detection algorithm, as shown in Figure 2-70. The mesh becomes the plane 

and P becomes the vertex. 

 

 

Figure 2-70. Collision pair: Mesh and vertex. 

The other type of collision pair is two edges from edge-edge collision detection 

algorithm, as shown in Figure 2-71. The closest point (P) from E1, Body1 becomes the vertex. 

The other closest point (Q) becomes the point on the plane, and the normalized vector from 

P to Q becomes the normal vector of the plane. 
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Figure 2-71. Collision pair: two edges. 

(3) Consideration of material properties 

In section 2.6.2 (1), we insist that one of the advantages using a non-interpenetration 

constraint method is to consider material properties such as restitution and softness. This 

advantage is closely related to DELE (Eq. (49)) which is adopted for our equations of 

motion. The second row of DELE is rewritten as follows. 
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If the right side of Eq. (210) is transposed to the left side, we obtain the following 

equation. 
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Eq. (212) is an identical equation. Therefore, the first and the second terms inside the 

bracket should be zero. 
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The stabilization term () in Eq. (213) is the ratio between the velocity before and after 

the collision, which is known as the restitution coefficient. If the regularization term () in 

Eq. (214) is zero, the constraint is strictly satisfied. In other words,  allows the violation 

of the constraint, and decide the softness of the material when two bodies collide. The 

collision force is automatically obtained from DELE with respect to  and . 

The collision between the rigid bodies is affected by the several factors. However, we 

want to make the non-interpenetration constraint independent of weight and time step. This 

can be done by the regularization term . For this, we can change Eq. (214) in the form of 

1kλ . 
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1kλ  is constraint force magnitude, gk is violation of the constraint which means the 

penetration depth. Therefore, 
2 1h  ε  can be regarded as a spring coefficient (k). To 

determine the result independent of the time step (h), ε should be proportional to h2. The 

collision force should be proportional to the weight to determine the value of ε independent 

of the weight as shown in Figure 2-72. Therefore, the value of ε should be inversely 

proportional to the weight. 
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Figure 2-72. Spring coefficient proportional to the weight. 

2.6.3. Dynamic analysis including collision detection and response 

This section explains how to conduct the dynamic analysis, including collision detection 

and response algorithms, proposed in the previous sections. Figure 2-73 shows the 

numerical procedure for dynamic analysis, including collision detection and response. At 

first, we solve the equations of motion expressed by DELE. Then, we obtain a position, 

attitude, velocity, and acceleration of the bodies by the time integration. These results are 

used to calculate external forces for the next time. At the same time, the collision detection 

which is composed of two stages (broad-phase and narrow-phase) is conducted. Then, the 

collision response is executed using the collision pair data. The results from the collision 

response are used to formulate the constraint equation (gk) and Jacobian (Gk) in the 

equations of motion. This procedure is repeated until the dynamic analysis is finished. 
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Figure 2-73. A numerical procedure for dynamic analysis including collision detection and 

response. 

2.6.4. Case studies of collision detection and response 

This section presents several case studies of the dynamic analysis including collision 

detection and response. 

(1) Collision for multibody system 

It was explained in the previous section that the impulse-based method which directly 

changes the velocity was not applicable to the multibody system which has a kinematic 

constraint. In contrast to the impulse-based method, the force-based method is applicable 

to the multibody system. For the test, two bodies (Link A, Link B) are connected by ball 

joints, and the small box hits ‘Link B,’ as shown in Figure 2-74. 
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Figure 2-74. Collision test model for the multibody system. 

When the box hits ‘Link B,’ the kinematic constraint between ‘Link A’ and ‘Link B’ is 

violated because the velocity of ‘Link B’ is compulsively changed (See Figure 2-75-(1)). 

Therefore, the enormous constraint force is exerted to fix the kinematic constraint, and the 

system diverges (See Figure 2-75-(2)). 

 

 

Figure 2-75. Test results using the impulse-based method. 

Meanwhile, in case of using the force-based method, it is successfully simulated without 

divergence of the system, as shown in Figure 2-76. 
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Figure 2-76. Test results using the force-based method. 

The next examples are to drop two links connected by ball joint on the plate. The link 

is 10 m length, and 1 ton. Their initial tilt angles are different as shown in Figure 2-77.  

 

 

Figure 2-77. Dropt two links connected by ball joint. 
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The simulation results are depicted in Figure 2-78. The collision is successfully 

conducted even though there are the constraint between two bodies. 

 

 

Figure 2-78. Collision test of multibody system. 

Furthermore, the collision forces of the two links are calculated as shown in Figure 2-79. 
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Figure 2-79. Collision force of two links. 

(2) Performance tests of collision detection 

The first test is to check the collision between two bunny models, as shown in Figure 

2-80. The bunny model contains 292 meshes and 148 vertices. 
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Figure 2-80. Performance test: Collision between two bunny models. 

The computing time is compared with and without applying BVH. The results are 

summarized in Table 2-3. We set the leaf node of BVH which has less than eight meshes. 

As a result, the computing time for the one-time step decreased about 95 %. Total 

computing time is also decreased about 77 %. Total computing time and one-time step are 

not the same because total computing time includes the time when the collision between 

two bunnies does not occur. 

Table 2-3. Comparison of computing times: With and without BVH.  

 Without BVH With BVH Ratio 

Simulation time 10 sec - 

Computing 

time 

One-time step 94 msec 5 msec 95 %  

Total time 30 sec 7 sec 77 %  
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The second test is to drop two bunny models on the plane (Figure 2-81). In this case, 

the meshes of right bunny model staying out of the collision is excluded using the exclusion 

box. The right bunny model contains 172 meshes and 87 vertices. 

 

 

Figure 2-81. Performance test: Drop two bunny models on the plane. 

We compared the computing time with and without applying the exclusion box. The 

results are summarized in Table 2-4. The result shows that the computing time for a one-

time step is also reduced about 57% as the number of meshes is reduced to about 60%. 

Total computing time is also decreased by 33 %. 
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Table 2-4. Comparison of computing time: With and without exclusion box. 

 
Without 

exclusion box 

(292 meshes) 

With 

exclusion box 

(172 meshes) 

Ratio 

Simulation time 10 sec - 

Computing 

time 

One-time step 7 msec 3 msec 57 %  

Total time 3.3 sec 2.2 sec 33 %  

 

The third test is to drop the LPG tank model on the plane to check the performance 

using both the exclusion box and the BVH at the same time, as shown in Figure 2-82. The 

original LPG tank model contains 19,232 meshes and 57,696 vertices. 

 

 

Figure 2-82. Performance test: Drop LPG tank model on the plane. 

The results are summarized in Table 2-5, and computation time is depicted by graphs in 

Figure 2-83. When applying only BVH, the computing time is reduced by 62 %. As the 
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number of meshes is reduced, the computing time is also reduced from 75% to 98 %. In 

conclusion, both BVH and the exclusion box are effective to increase the performance of 

the collision detection. 

Table 2-5. Comparison of computing time: Both exclusion box and BVH. 

 

Without BVH With BVH 

Full meshes 

(19,232) 

Full meshes 

(19,232) 

Exclusion box 

(12,727) (8,133) (2,228) (819) 

Simulation time 5 sec 

Computing 

time 

One-time 

step 

800 msec 300 msec 200 msec 100 msec 30 msec 15 msec 

100 % 62.5 %  75.0 %  87.5 %  96.3 %  98.1 %  

Total 

time 

356.6 sec 139.0 sec 92.3 sec 45.0 sec 10.1 sec 4.7 sec 

100 % 61.0 %  74.1 %  87.4 %  97.2 %  98.7 %  

 

 

Figure 2-83. Graphs of computing time of dropping LPG tank model on the plane. 
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(3) Collision between complex shapes 

The model exported from the ship CAD system has very complex shapes, as shown in 

Figure 2-84, and Figure 2-85. Both LPG tank and hull structure models have many 

unenclosed meshes. Furthermore, stiffeners attached to the side shell is very sharp. 

 

Figure 2-84. Example of complex shape: LPG tank. 

 

Figure 2-85. Example of complex shape: Hull structure. 
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We simply drop the LPG tank inside the hull structure. Two simulations are conducted 

in the case that the tank was not tilted and the case that it was tilted for 20 degrees, as shown 

in Figure 2-86. In spite of the unenclosed meshes and very sharp edges, the collision 

detection and response between two models are successfully performed. 

 

 

Figure 2-86. Collision test between complex shapes. 
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(4) Collision according to material properties 

It was explained in section 2.6.2 that DELE, using non-interpenetration constraint, could 

consider material properties such as the restitution coefficient and softness. At first, the box 

drops on the plane according to different restitution coefficients, as shown in Figure 2-87. 

Collision test according to restitution coefficients. We choose the restitution coefficient as 

0.0 (perfectly inelasticity), 0.5, and 1.0 (perfectly elasticity). The results are depicted as 

graphs in Figure 2-88. Position and velocity according to restitution coefficient. When the 

restitution coefficient is zero, the velocity is directly changed to zero right after the collision. 

When the restitution coefficient is 0.5, the velocity is reduced to half after the collision. 

When the restitution coefficient is one, the velocity before and after the collision is almost 

the same. 

 

 

Figure 2-87. Collision test according to restitution coefficients. 
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Figure 2-88. Position and velocity according to restitution coefficient. 

To check the effect of the softness, the restitution coefficient is fixed to 0.8, and we 

change the softness by 1, 10, and 50. Due to the softness, the penetration depth is changed 

by 0.11, 0.35 and 0.84. 

 

Figure 2-89. Position according to softness of the material. 
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(5) Comparison with open source program 

One of the famous open source library (Bullet [18]) is tested by colliding two objects. 

One of the object has unenclosed meshes as shown in Figure 2-90. 

 

Figure 2-90. Unenclosed meshes for testing collision by Bullet. 

A small box which color is blue is dropped on the box which has unenclosed meshes. 

Bullet shows unexpected motion such as stuck when the dropped box touches the edge on 

the other box. On the other hand, the proposed method shows good quality of the motion 

after collision. 
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Figure 2-91. Comparison of collision with open source program (Bullet). 

2.6.5. Consideration of impulse and impulsive force 

An impulsive force is a large force exerted during a small interval of time when two 

objects collide. An impulse is integral of an impulsive force over the time interval which it 
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acts. The impulse is defined by the difference the momentum before and after the collision. 
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When the object hits the ground, the object experiences the compression and expansion 

within a very short time. During this duration, the velocity of the object is changed. The 

impulsive force and velocity graphs in the real collision are described in Figure 2-92. 

 

Figure 2-92. Compression and expansion in the real collision. 
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If the restitution is same, the difference of the momentum should be the same. This 

means that the impulse is also same. However, the impulsive force can be different from 

the other if the duration of the collision time is different. Therefore, we can divide the 

collision by three types such as hard, medium, and soft collisions as shown in Figure 2-93. 

 

 

Figure 2-93. Hard, medium, and soft collisions. 

The key factor which is closely related to the collision time is the softness which is 

adjusted by the parameter ε. For example, the boxes which has same restitution, but 

different softness factors such as 1, 10, and 50 are dropped on the plane. The impulsive 

forces when the boxes hit the ground at the first time is depicted by graphs in Figure 2-94. 
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Figure 2-94. Graphs of impulsive forces when the three boxes with different softness drop on the 

plane. 

The graphs shows that the maximum impulsive forces are different, but the area is 

almost same. The impulse is simply expressed by multiplying the impulsive force and the 

collision time.  
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Therefore, the impulsive force is obtained as follows. 
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In this case, the force graph looks like a step function. However, the shape of the graph 

of the impulsive force is similar to triangle rather than a step. Therefore, we can be 
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estimated by the maximum impulsive force by multiplying 2. 

 

 

Figure 2-95. Estimation of impulsive force. 

The estimation of the impulsive force are summarized in Table 2-6. The numerical 

solution shows almost same value to the estimated value. 

Table 2-6. Estimation of impulsive forces 

ε 
m 

[kg] 

Δt 

[sec] 

v 

[m/s] 

v‘ 

[m/s] 

F 

[N] 

2F 

[N] 

1 

10 0.06 8.2 6.5 2,450 4,900 

Numerical solution 4,917 

Error (%) 0.3% 

10 

10 0.17 8.2 6.5 865 1,730 

Numerical solution 1,722 

Error (%) -0.4% 

50 

10 0.34 8.2 6.5 432 864 

Numerical solution 842 

Error (%) -2.7% 
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2.7. Modeling of Equalizer 

2.7.1. Real mechanism of the equalizer 

Figure 2-96 shows how the fixed and moving pulleys are assembled. The equalizer is 

connected under the hook of the crane. Inside the equalizer, several fixed and moving 

pulleys are placed by turns. All of the pulleys are connected by a single wire rope, which 

should have the same tension anywhere in its length. Thus, if the tension is denoted by T, 

all of the moving pulleys are exerted by 2T from the equalizing wire rope. 

 

 

Figure 2-96. Internal structure of the equalizer. 

Figure 2-97 shows how the wire rope tensions connected to the moving pulleys and the 

load are adjusted. It is assumed that only three moving pulleys, p0, p1, and p2, are connected, 

and their tensions are denoted by f0, f1, and f2, respectively. At the first time point, f1 is 

acting on the middle moving pulley p1; however, the others are still zero (Figure 2-97-(a)). 
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As p1 is the only moving pulley where a force is exerted, p1 starts to move down. Due to 

the equalizing wire rope, the other two pulleys – p0 and p2 – move up simultaneously. 

Sometime later, f0 which is larger than f1 is acting on p0. To make the tension equal, p0 

moves down, and the other two pulleys move up (Figure 2-97-(b)). As f1 is larger than f2, 

the moving distance of p2 is larger than that of p1. Until all of the wire rope tensions – f1, f2, 

and f3 – are exactly same, the pulleys are repeatedly moving up and down. Finally, they 

stop moving when all the wire ropes have the same tension (Figure 2-97-(c)). 

 

 

Figure 2-97. Procedure of the adjustment of tensions acting on wire ropes through the equalizer. 

2.7.2. Modeling of pulleys and the equalizer 

A constraint-based wire rope defined in Section 2.4.7 can be applied to make fixed and 

moving pulleys. Figure 2-98 shows an example of fixed and moving pulleys using the 

constraint-based wire rope. If the total length is denoted as ltotal, the total length is equal to 

the sum of the segments between the fixed and moving pulleys, and the circumference of 

the pulleys. 
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Figure 2-98. Fixed and moving pulleys using the constraint-based wire rope. 

Thus, the constraint equation of the wire rope connecting the fixed and moving pulleys 

in the above example is given by: 

 

 

  1 2

1 2

2 2

0
2 2

a b c total

total

D D
g l l l l

D D
l

 

 

 
      
 

 
          
 

A B C D E F

q

r r r r r r

 (219) 

 

The equalizer can be realized by a combination of several fixed and moving pulleys, as 

shown in Figure 2-99. 
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Figure 2-99. Arrangement of fixed and moving pulleys of the equalizer. 

If there are a number of n moving pulleys with the same diameter D, the constraint 

equation of the equalizing rope can be written as a given equation: 
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2.7.3. Case studies 

This section presents two test cases to validate the mathematical model explained in the 

previous section. One involves several fixed and moving pulleys, and the other is an 

equalizer. 

(1) Pulleys 

This test case uses pulleys with a constraint-based wire rope. The purpose of this case 

is to show that the constraint-based wire rope can model fixed and moving pulleys, as 
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explained in Section 2.7.2. Figure 2-100 shows two fixed pulleys and two moving pulleys. 

One end of a wire rope is attached to the fixed body, and the other is attached to a box of 

11 kg weight. 

 

 

Figure 2-100. Modeling of moving and fixed pulleys with a wire rope constraint. 

From Eq. (219), we obtain the constraint equation g and its derivative G of the wire rope 

constraint as follows: 
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where, rB/G1 is the vector from the center of gravity of Body1 to point B in the inertial 

frame, and i j

ij

i j






r r
n

r r
 is the normal vector from the point i to the point j. 

Because the weight of each pulley is set to 20 kg, the box starts to move downward, 

whereas the moving pulleys move upward, as shown in Figure 2-101. 

 

 

Figure 2-101. Simulation result of moving and fixed pulleys with the constraint-based wire rope. 

(2) Equalizer 

This test case shows the modeling of the equalizer and the wire rope tension adjusted 

equally by the real mechanism, as explained in Section 2.7.1. 

By adding more fixed and moving pulleys, we can construct an equalizer. For example, 

an equalizer with five moving pulleys is modeled, as shown in Figure 2-102. The hook and 

the equalizer are connected by hinge joints, where the rotating axis is aligned to the vertical 

vector. The sheave diameter of the moving pulleys is 0.8 m. The main dimensions of the 

equalizer are indicated in Figure 2-102. 
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Figure 2-102. Modeling of the equalizer. 

To test the mechanism of the equalizer, a simple load was lifted with one equalizer. 

Figure 2-103 shows the modeling of the equalizer test case and connections between the 

equalizer and the load. The load is assumed to be a 10 × 10 × 5 m box, with a weight of 

300 ton. To check the equalizing process, the initial length of each wire rope is set at 23 m 

or 26 m. 
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Figure 2-103. Modeling of connections between the equalizer and the load. 

The motion of the equalizer and the load are shown in Figure 2-104. Because ‘Line1’ 

and ‘Line5’ are shorter than the others, wire rope tensions are acting on the sheaves 

connected by ‘Line1’ and ‘Line5’ at the first time point. Due to these tensions, the sheaves 

start to move up and down. The motions of the sheaves are enlarged in Figure 2-105. In 

addition, we can also see that the equalizer is rotated due to the hinge joint, which is used 

to connect the equalizer and the hook. 
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Figure 2-104. Simulation result: Motion of the equalizer and the load. 

 



 182 

 

Figure 2-105. Simulation result: Motion of the sheaves in the equalizer. 

Figure 2-106 shows the wire rope tensions of ‘Line1’, ‘Line2’, ‘Line3’, ‘Line4’, and 

‘Line5’. If one of the tensions is larger or smaller than the others, the length is shortened 

or extended to adjust the tension equally. Finally, all of the wire rope tensions become 

equal. 
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Figure 2-106. Graphs of wire rope tensions between the load and the equalizer. 
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2.8. Modeling of Self-propelled modular transporter 

(SPMT) 

2.8.1. Modeling of SPMT and axle compensation mechanism 

The SPMT is a platform vehicle with a large array of wheels that is used for transporting 

massive objects from one location to another. Several SPMTs can be connected with others 

as if they are just one body. The dimensions and loads of the SPMT are summarized in 

Table 2-7 [59]. 

Table 2-7 Dimensions and loads of the SPMT. 

KAMAG modular transporter Type 2406 

Dimension 

Length 8,400 mm 

Breadth 2,430 mm 

Height 1,490 ± 350 mm 

Load 

Max. weight 240 ton 

Dead weight 24.3 ton 

Max. capacity 215.7 ton 

No. of wheel 12 EA 

Max. wheel capacity 20 ton 

 

As shown in Figure 2-107, the platform and wheels are connected by bogies, which are 

composed of hydraulic cylinders and other mechanical parts. The power pack supplies 

hydraulic powers to the hydraulic cylinders to lift the platform up. The hydraulic force can 

be modeled by the compressible springs, which are resisted only when they are compressed 

(Figure 2-107). Meanwhile, the hydraulic cylinder can be modeled by the slider joint. The 

wheel is connected by hinge joints at the bottom of the hydraulic cylinder. Slider and hinge 

joints restrict five among six degrees of freedom, respectively. If the slider and hinge joints 
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are modeled separately, the matrix to solve in the equations of motion is increased by ten 

per one hydraulic cylinder and wheel set. Therefore, a slider-hinge joint that has two 

degrees of freedom is used to connect the wheel and the platform. This increases the size 

of the equation matrix by four rather than ten per one wheel of the SPMT. 

 

 

Figure 2-107. Modeling of the SPMT. 

Hydraulic cylinders can be tied into three or four suspension groups (Figure 2-108). The 

hydraulic axle compensation shall guarantee equal loads on each group, independent of the 

road conditions. Each hydraulic cylinder acts as a cushion when the SPMT drives over an 

uneven roadway. If the SPMT drives over a bump in the road, the wheels lift up and down. 
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Figure 2-108. Hydraulic suspension groups. 

Figure 2-109 shows the compensation mechanism in detail. For example, one SPMT 

lifts the block, whose weight is 90 tons, and the wheels are divided into two groups (Figure 

2-109-(1)). Since the center of gravity of the block is located at the front side, the loads 

acting on the groups are different. The hydraulic force of groups 1 and 2 are 10 and 20 tons, 

respectively. Due to the curvature of the road, the uneven forces are acting on the wheels 

(Figure 2-109-(2)). In the meantime, the hydraulic cylinder is compressed or extended until 

the reaction and hydraulic forces are the same (Figure 2-109-(3)). Therefore, regardless of 

the curvature of the road, the SPMT keeps on maintaining the level of the platform. 

 

 

Figure 2-109. Compensation mechanism of the SPMT. 
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In this study, all of the bodies involved in block offloading simulation are treated as 

rigid bodies. Therefore, the deformation effect due to the uneven load acting on the 

platform of the SPMT as shown in Figure 2-110 was not considered. However, it is 

supposed to be a key factor to the simulation results. Therefore, further research will 

consider the deformation of SPMTs for more accurate results. 

 

 

Figure 2-110. Deformation of the platform of a SPMT. 

2.8.2. Replication of ballasting and de-ballasting for the floaters 

As the SPMTs lift the block and move towards the FD, the trims of the TB and FD occur. 

The trim disturbs the movement of the SPMTs and applies the unexpected load on the 

wheel. Therefore, maintaining an even keel is important in the real operation. It is done by 

ballasting or de-ballasting, which means pumping in or out of water inside tanks. Figure 

2-111 shows de-ballasting of the TB. 
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Figure 2-111. De-ballasting of the TB. 

It is not easy to simulate the filling or emptying of several ballast tanks. Therefore, we 

replicate ballasting and de-ballasting by shifting the center of gravity (COG) of the TB and 

FD, with reference to the trim without ballasting and de-ballasting. According to the 

position of the block and SPMTs, the trims are changed without ballasting and de-ballasting 

as shown in Figure 2-112. At first, the TB leans to the FD. The weight of the block then 

crosses over to the FD, and the trim of the TB is recovered. However, the trim of the FD is 

increased. 

 

 

Figure 2-112. Trim change without ballasting and de-ballasting. 

Figure 2-113 shows how to shift the COG according to the position of the block. To 

maintain an even keel, the COG of the TB moves to the opposite direction of the FD. When 

the SPMTs enter the FD, the COG of the TB moves towards the FD, and the COG of the 

FD moves to the opposite direction of the block. Finally, when all of the weight of the block 

and SPMTs transfer to the FD, the COG of the TB is moved back to the center, and the 
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COG of the FD is located far from the COG of the block. 

 

 

Figure 2-113. Shift of center of gravity. 

The draft is also changed when the block moves from the TB to FD. Therefore, in 

accordance with the shift of the COG, the weight of the TB and FD should be increased or 

decreased to keep the constant draft. 

2.8.3. Case studies of SPMT 

(1) Pass through small bump 

We modeled the SPMT with twelve wheels based on the dimensions listed in Table 2-7 

(Figure 2-114). Each heel was connected to the platform by a slider-hinge joint. The wheels 

can collide to the ground using the non-interpenetration constraint method between the 

cylinder and plane. 

 

 

Figure 2-114. Modeling of the SPMT. 
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The third test was to transport the block passing through the small bump using two 

SPMTs (Figure 2-115). The weight of the block was 300 ton, and the length, width, and 

height was 20 m, 10 m, and 10 m, respectively. The small bump protrudes 100 mm above 

the floor. The wheels of the first SPMT make one compensation group (Group 1), and the 

wheels of the second SPMT belong to the second compensation group (Group 2). 

 

 

Figure 2-115. Modeling of the block, two SPMTs, and the small bump. 

The simulation results are depicted in Figure 2-116. The wheels on the bump were lifted 

up to maintain the level of the platform. The height of the first wheel and the load acting 

on the wheel from the ground are shown as graphs in Figure 2-117. At the moment when 

wheels got out of the bump, the wheel load became zero. Afterward, the wheel was laid 

down on the ground. This resulted in a sudden change of the wheel loads. Moreover, to 

maintain the level of the platform, the load of the wheel is also affected by loads of the 

other wheels in the same group. Therefore, the load shows several peaks when the other 

wheels are entering or leaving the bump. 



 191 

 

 

Figure 2-116. SPMT test: Transport the block passing through the small bump. 
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Figure 2-117. Wheel height and loads. 

(2) Pass through inclined bump 

The fourth test was to transport the block passing through the inclined bump using two 

SPMTs. The only difference from the previous example was the bump. It was modeled by 

the three boxes, which were tilted by 10 degrees to make the inclined and declined bumps 

(Figure 2-118). 
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Figure 2-118. Modeling of the inclined bump. 

The simulation results are depicted in Figure 2-119. The wheels on the bump were lifted 

up to maintain the level of the platform. The height of the first wheel and the load acting 

on the wheel from the ground are shown as graphs in Figure 2-120. The height of the wheel 

was smoothly changed compared to the previous test. 
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Figure 2-119. SPMT test: Transport the block passing through the inclined bump. 
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Figure 2-120. Wheel height and loads. 
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2.9. External forces 

2.9.1. Hydrodynamic force 

The lifting force is dynamically changed due to the motion of the floating cranes induced 

by the hydrodynamic force. The hydrodynamic force can be divided into two parts: the 

wave exciting force, which is exerted by the incident wave; and the radiation force from 

the wave due to the motion of the corresponding body in still water. The radiation force is 

composed of two terms, one is the force proportional to the acceleration of the motion, and 

the other one is the force proportional to the velocity of the motion. 

 

 hydrodynamic exciting radiation F F F  (223) 

 

Fexciting is calculated by multiplying the force RAO (Response Amplitude Operator) with 

the sinusoidal function at a given frequency. The force RAO can be obtained from a 

commercial solver, such as WADAM by DNV. The Cummins equation [60] can be used 

to calculate Fradiation , which considers the impulse response of the floater in the time domain. 

The frequency-dependent added mass coefficient aij() and the frequency-dependent 

damping coefficient bij() at a given frequency  can also be obtained from the commercial 

solver. Using the frequency-dependent coefficients aij(), and bij(), the added mass A and 

retardation function B() can be determined. The added mass at infinite motion frequency 

(A), which is a constant matrix, is often used rather than calculating the integral because 

the equation is valid for any value of , and thus also for  = ∞. Figure 2-121 summarizes 

the calculation procedure. 
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Figure 2-121. Calculation of the hydrodynamic force. 

In the case of a regular wave, one wave frequency (ω) and one wave amplitude (a) are 

chosen. According to the wave frequency, only one force RAO (F(ω)) and a phase angle 

(ε) are also selected. However, in the case of an irregular wave, there are a number of N 

wave frequencies and amplitudes according to the given wave spectrum. Therefore, Fexciting 

of the irregular wave is calculated as follows. 
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  F F  (224) 

 

where, am is the wave amplitude at a given frequency, and ɛm is the phase angle. 

Meanwhile, if the wave height, period, and direction is given stochastically, the analysis 

results such as motions and tensions can be regarded stochastically. As a result, the 

expectation maximum value of the simulation results can be used to indicate the operation 

limit stochastically. 
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2.9.2. Buoyant force 

The buoyant force is the upward force exerted by a fluid that opposes the weight of an 

immersed object. A 3 by 3 restoring matrix can be used, if we assume that the motion is 

very small. However, most cases are not satisfied with this assumption. Therefore, we need 

to find the exact volume and the center of the volume. This is done by the direct volume 

calculation method under the water plane. If the body shape is composed of triangular 

meshes, we can obtain new triangles after the plane intersection shown in Figure 2-122. 

Once we obtain the triangular meshes under the water plane, the volume and the center of 

volume can be calculated by the sum of the volumes and the 1st order moments of the 

tetrahedral under the water plane [16]. 
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Figure 2-122. Plane intersection under the water plane. 

2.9.3. Wind force 

The wind force is calculated by the same equations as the current force.  
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The wind speed (Vwind) is not constant, but a value that varies with time. Therefore, we 

have to find the mean wind speed at H m above the water plane. This can be obtained by 

the following equation: 
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where, H is the height above the water plane, U(10) is the average speed at 10 m above 

the water plane, and  is the height coefficient, which according to ISO 19901-1 [61] is 

usually 0.11 . Meanwhile, the wind fluctuation is calculated from the wind spectrum. In 

this study, the NPD spectrum given by ISO 19901-1 is adopted to calculate the wind 

fluctuation. 
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As a result, the wind speed in the time domain is the summation of the mean wind speed 

at H and the wind fluctuation. Figure 2-123 summarizes the overall procedure. 

 

 

Figure 2-123. Wind speed, including mean wind speed and wind fluctuation. 

2.9.4. Current force 

The current force in the x, y directions (Fx, Fy) and the moment about the z axis (Mz) can 

be simply calculated as follows: 
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where, water is the sea water density, Cx, Cy, and CN are the coefficients that are obtained 

by experiment, Af is the projected frontal area, As is the projected side area, and Vcurrent is 

the current velocity, which is constant. 

2.9.5. Catenary mooring 

The mooring force is induced by a mooring line. A mooring line is modeled by the self-

weight of a catenary cable. If the two endpoints are fixed, Figure 2-124 shows the shape of 

the cable considering the deflection due to its own weight. 

 

 

Figure 2-124. Catenary cable with its own weight. 

From the shape information and the force equilibrium equations, we can obtain one 

equation that contains the horizontal tension (TH) [62]: 
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where, b is the horizontal length, h is the vertical length, S is the total cable length, and 

q is the weight per unit length. We can find TH by solving Eq. (229) by the Newton-Raphson 

method. 

2.9.6. Wire rope tension 

The floating cranes use the wire rope to lift the wreck from the seabed to the sea surface. 

In this study, the wire rope is modeled by the incompressible spring, which adds force only 

when it is extended. The principle of the incompressible spring is shown in Figure 2-125. 

 

 

Figure 2-125. Principle of the incompressible spring. 

This wire rope model is applied to each sling or cable used in the wreck removal analysis. 

It is calculated as follows. 

 

    0 0,Spring k x x only if x x   F  (230) 
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 Verification and validation 

This section will provide several verification examples compared with the analytic 

solutions or commercial software to increase the reliability. For validation, two simulation 

cases will be compared to the real operations.  

3.1. Verification of multibody dynamics for rigid bodies 

3.1.1. Multibody benchmarking tests 

MBS Benchmark (Multibody Systems Benchmark) is a collaborative project dedicated 

to develop and maintain a standardized set of problems and procedures which enable easy 

and objective performance evaluation of multibody systems simulation software [63], [64]. 

(1) A01. Simple pendulum 

The simple planar pendulum is composed by a lumped mass of 1 kg and a massless link 

of 1 m length. The system is under gravity effects (9.81 N/kg acting in the negative y 

direction). The position of the global reference frame is shown in Figure 3-1. 

 

Figure 3-1. MBS benchmarking test A01. Simple pendulum. 
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The values of x (red line) and y (blue dot line) are depicted as the graphs in Figure 3-2. 

By comparing two graphs, we can conclude that those values are almost identical with each 

other. 

 

Figure 3-2. Graphs of the displacement of simple pendulum. 

(2) A02. N-four-bar mechanism 

The one degree-of-freedom assembly of N four-bar linkages is composed of 2N+1 links 

of 1 m length with a uniformly distributed mass of 1 kg. The system is under gravity effects 

(9.81 N/kg acting in the negative y direction). The mechanism is a one-degree-of-freedom 

assembly of four-bar linkages with N loops. When the mechanism reaches a horizontal 

position, the number of degrees of freedom instantaneously increases from 1 to N+1. Figure 

3-3 shows N four-bar models. 
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Figure 3-3. MBS benchmarking test A02. N-four-bar mechanism. 

 

Figure 3-4. Simulation results of A02 (N four-bar mechanism) 
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The values of x (red line) and y (blue dot line) of the first link are depicted as the graphs 

in Figure 3-5. By comparing two graphs, we can conclude that those values are almost 

identical with each other. 

 

 

Figure 3-5. Graphs of the displacement of N four-bar mechanism. 

(3) A03. Andrew’s mechanism 

This plane mechanism is composed of seven bodies interconnected by revolute joints. 

The assembly is driven by a motor located at point O, with a constant drive torque of 0.033 

Nm. This system has a very small time scale, thus making it difficult to simulate for solvers 

that can't reach small time steps. Figure 3-6 shows the seven bodies and the connection 
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points. Initially, the system is at rest, and the β angle has a value of -0.0620 rad. 

 

 

Figure 3-6. MBS benchmarking test A03. Andrew’s mechanism. 

When the simulation starts, the link OF rotate counterclockwise. Due to the 

interconnected joints, the other links are also moved as shown in Figure 3-7. 



 209 

 

Figure 3-7. Simulation results of A03 (Andrew’s mechanism). 
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The values of x (red line) and y (blue dot line) of the position of F are depicted as the 

graphs in Figure 3-8. By comparing two graphs, we can conclude that those values are 

almost identical with each other. 

 

 

Figure 3-8. Graphs of the position F. 

(4) A04. Bricard’s mechanism 

The Bricard mechanism is a classic example of the overconstrained system. It is 

composed of five rods of 1 m length with a uniformly distributed mass of 1 kg, and 6 

revolute joints. The system is under gravity effects (9.81 N/kg acting in the negative y 

direction). Grübler formula gives 0 degrees-of-freedom for this mechanism, but the 

particular orientation of the revolute pairs yields a system with 1 degree-of-freedom. Figure 
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3-9 shows the bodies and connections of Bricard’s mechanism. 

 

 

Figure 3-9. MBS benchmarking test A04. Bricard’s mechanism. 
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Figure 3-10. Simulation results of A04 (Bricard’s mechanism). 
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The values of x (red line), y (blue dot line), and z (pink dot line) of the position of F are 

depicted as the graphs in Figure 3-11. By comparing two graphs, we can conclude that 

those values are almost identical with each other. 

 

 

Figure 3-11. Graphs of the position of point P3. 

3.1.2.  Verification by commercial software 

DAFUL [65] is one of the most famous multibody dynamics software developed in 

South Korea. We decided to simulate the following two examples to be compared with 

DAFUL for verification. 
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(1) Three links connected by hinge joints (Open loop system) 

The first example is the three links connected by hinge joints as shown in Figure 3-12. 

The link is 10 m length, and its weight is 1 ton. This example is open loop, which does not 

contain any kinematic loops to reach from one body to another. 

 

 

Figure 3-12. Three links connected by hinge joints (open loop). 

When the simulation starts, the links are dropped down due to the gravitational force. 

However, the constraint forces due to the hinge joints make the links rotate based on the 

hinge point. 
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Figure 3-13. Simulation results of three links connected by hinge joints (open loop). 

The values of z displacement of link1 (red line), link2 (green line), and link3 z (blue 

line) are depicted as the graphs in Figure 3-14. By comparing two graphs, we can conclude 

that those values are almost identical with each other. 
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Figure 3-14. Graphs of z displacement of three links. 

(2) Three links connected by hinge joints (Closed loop) 

The second example is three links connected by four hinge joints. The last hinge joint 

makes the degree of freedom of the system from three to one. This example is to test the 

closed loop, which contains kinematic loops. 
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Figure 3-15. Three links connected by hinge joints (closed loop). 

 

Figure 3-16. Simulation results of three links connected by hinge joints (closed loop). 

The values of z displacement of link1 (blue line), link2 (green line), and link3 z (red 

line) are depicted as the graphs in Figure 3-17. By comparing two graphs, we can conclude 

that those values are almost identical with each other. 
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Figure 3-17. Graphs of z displacement of three links. 
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3.2. Verification of multibody dynamics for deformable 

bodies 

3.2.1. Verification of 1D frame element 

The first example is the simple support with uniform distributed load (w) as shown in 

Figure 3-18. 

 

 

Figure 3-18. Simple support of 1D frame element. 

The maximum deflection derived by beam theory of the simple support is as follows. 
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where L is the length of the beam, E is Young’s modulus, and I is area moment of inertia. 

Uniform load per length is determined by multiplying the density (ρ) and the cross-section 

area. According to different E and ρ, the analytic solution is listed in Table 3-1. 



 220 

Table 3-1. Analytic solution of simple support beam according to different beam properties. 

Case 

Material property 
Simple support 

(Analytic solution) 

E Density L D I w ymax (Center) 

[GPa] [ton/m3] [m] [m] [m4] [ton/m] [mm] 

1 1 1 10 1 0.0491 0.7854 20.438 

2 10 1 10 1 0.0491 0.7854 2.044 

3 100 1 10 1 0.0491 0.7854 0.204 

4 210 7.85 10 1 0.0491 6.1654 0.764 

 

The simulation results according to the number of elements are summarized in Table 

3-2. If the number of elements is more than 5, the results are very close to the analytic 

solutions. 

Table 3-2 Simulation results of simple support beam according to the number of elements. 

Case 

Simple support 

(Simulation) 

ymax (Center) 

1 EA 2 EA 3 EA 5 EA 10 EA 

1 16.334 20.404 20.353 20.396 20.403 

2 1.635 2.044 2.039 2.043 2.044 

3 0.163 0.204 0.204 0.204 0.204 

4 0.624 0.764 0.762 0.764 0.764 

 

The second example is the cantilever as shown in Figure 3-19. 
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Figure 3-19. Cantilever of 1D frame element. 

The maximum deflection derived by beam theory of the cantilever is as follows. 
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We use the same property used in simple support. The analytic solution of the cantilever 

beam is listed in Table 3-3. 

Table 3-3. Analytic solution of cantilever beam according to different beam properties. 

Case 

Material property 
Cantilever 

(Analytic solution) 

E Density L D I w ymax (Center) 

[GPa] [ton/m3] [m] [m] [m4] [ton/m] [mm] 

1 1 1 10 1 0.0491 0.7854 196.200 

2 10 1 10 1 0.0491 0.7854 19.620 

3 100 1 10 1 0.0491 0.7854 1.962 

4 210 7.85 10 1 0.0491 6.1654 7.334 
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Simulation results according to the number of elements are summarized in Table 3-4. If 

the number of elements is more than 5, the results are very close to the analytic solutions. 

Table 3-4 Simulation results of cantilever beam according to the number of elements. 

Case 

Cantilever (Simulation) 

ymax (Center) 

1 EA 2 EA 3 EA 5 EA 10 EA 

1 195.920 195.622 196.108 196.140 196.140 

2 19.620 19.620 19.620 19.620 19.620 

3 1.962 1.962 1.962 1.962 1.962 

4 7.334 7.334 7.334 7.334 7.334 

 

The third example is free falling pendulum suggested by Berzeri and Shabana [44]. The 

main dimension and material properties are shown in Figure 3-20 and Table 3-5. 

 

 

Figure 3-20. Free falling pendulum of 1D frame element. 

Table 3-5. Main dimension and properties of free falling pendulum. 

Item Value 

Length 1.2 [m] 

Density 5,540 [kg/m3] 

Cross section area 0.0018 [m2] 

2nd moment of area 1.215 x 10-8 [m4] 

Modulus of elasticity 0.7 x 106 [Pa] 
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Configurations of the free falling pendulum at different times for the case that 

gravitational acceleration is 50 m/s are compared in Figure 3-21. The top graph is the results 

depicted in the Berzeri and Shabana [44], and the bottom graph is the results calculated by 

SyMAP. Two graphs are almost identical to each other.  

 

 

Figure 3-21. Comparison of the configuration of the fee falling pendulum. 
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3.2.2. Verification of 2D shell element 

The first example is the simple support plate as shown in Figure 3-22. The ball joints 

are modeled all around the edges. 

 

Figure 3-22. Simple support plate. 

The maximum deflection at the center derived by plate theory of the simple support is 

as follows. 
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where, D is flexural rigidity, and q is load per area. According to different Poisson’s 

ratio, the analytic solution is listed in Table 3-6. 

Table 3-6. Analytic solution of simple support plate according to Poisson’s ratio. 

Case 

Material property 
Simple support 

(Analytic solution) 

L h Density E v D q wmax (Center) 

[m] [m] [ton/m3] [GPa] - - [kN/m2] [mm] 

1 10 0.1 1 1 0 8.333E-05 0.981 478.226 

2 10 0.1 1 1 0.3 9.158E-05 0.981 435.185 
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The simulation results according to the number of elements are summarized in Table 

3-7. Due to the approximation when the maximum deflection of the simple support plate is 

derived, the results show some errors. However, it is converged to the value within the 

acceptable range of accuracy. 

Table 3-7 Simulation results of simple support plate according to the number of elements. 

Case 

Simple support (Simulation) 

wmax (Center) 

2 x 2 4 x 4 6 x 6 8 x 8 10 x 10 

1 534.681 479.981 478.447 478.257 478.215 

2 478.060 430.689 427.761 427.016 426.712 

 

The second example is the plate with clamped edges. It is simply done by changing the 

ball joints of the simple support plate to the fixed joints. The maximum deflection at the 

center derived by plate theory of the plate with clamped edges is as follows. 
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According to different Poisson’s ratio, the analytic solution is listed in Table 3-8. 

Table 3-8. Analytic solution of simple support plate according to Poisson’s ratio. 

Case 

Material property 
Simple support 

(Analytic solution) 

L h Density E v D q wmax (Center) 

[m] [m] [ton/m3] [GPa] - - [kN/m2] [mm] 

1 10 0.1 1 1 0 8.333E-05 0.981 151.064 

2 10 0.1 1 1 0.3 9.158E-05 0.981 137.468 
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The simulation results according to the number of elements are summarized in Table 

3-9. It also shows some errors due to the approximation. However, it is converged to the 

value within the acceptable range of accuracy. 

Table 3-9 Simulation results of the plate with clamped edges according to the number of elements. 

Case 

Clamped edges (Simulation) 

wmax (Center) 

2 x 2 4 x 4 6 x 6 8 x 8 10 x 10 

1 187.112 155.602 150.913 149.765 149.367 

2 170.232 141.300 136.593 135.333 134.856 

 

The third example is the heavy membrane hanged on four corners. The ball joint is 

connected only at the four corners. The main dimension and material properties are shown 

in Figure 3-23 and Table 3-10. The maximum deflection (Point E) is 0.58 m. 

 

 

Figure 3-23. Heavy membrane hanged on four corners: 2x1, 4x2, 8x4, 16x8 elements. 
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Table 3-10. Main dimension and properties of free falling pendulum. 

Item Value 

Length 2.0 [m] 

Width 1.0 [m] 

Density 1,000 [kg/m3] 

Thickness 0.01 [m] 

Modulus of elasticity 10,000 [Pa] 

Poisson ratio 0.3 

 

The simulation results shows the good convergence to the maximum deflection as the 

number of element is increased. The maximum deflection is summarized in Table 3-13. 

Table 3-11 Simulation results of the heavy membrane hanged on four corners according to the 

number of elements. 

Heavy membrane hanged on four corners (Simulation) 

Point E (Center) 

2 x 1 4 x 2 8 x 4 16 x 8 

0.571 0.582 0.583 0.583 
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3.3. Verification of hydrodynamic force 

3.3.1. Barge motion by a regular wave (I) 

To validate the characteristics of the motion due to the hydrodynamic forces, the 

equations of motion of the floating barge in the case of the following sea (heading= 0 deg), 

quartering sea (heading = 45 deg) and beam sea (heading = 90 deg) are solved with different 

sizes of barges. The results (the box point in figures) are compared with the motion RAO 

obtained from the commercial solver (the blue line in figures). Figure 3-24, Figure 3-25 

and Figure 3-26 show that the results almost follow the tendency of the line. 

 

Figure 3-24. Motion RAO of the floating barge 1. 



 229 

 

Figure 3-25. Motion RAO of the floating barge 2. 

 

Figure 3-26. Motion RAO of the floating barge 3. 
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3.3.2. Barge motion by a regular wave (II) 

We applied three regular waves to the floating barge, whose size is the same as that of 

the floating crane. The results are compared with SIMA [2]. We changed the heading angle 

as 0, 45, and 90 degrees with 1 m wave height and 10 sec wave period. Figure 3-27, Figure 

3-28 and Figure 3-29 show the results. The graphs below show that the results from the 

mega floating crane simulator and the results from SIMA are almost identical. 

 

 

Figure 3-27. Verification of the barge motion with SIMA (heading angle 0 deg). 
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Figure 3-28. Verification of the barge motion with SIMA (heading angle 45 deg). 
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Figure 3-29. Verification of the barge motion with SIMA (heading angle 90 deg). 

 

3.3.3. Barge motion connected by 4 springs 

We applied several regular waves to the floating barge to verify the wave, wind, and 

current modules. These results were compared with OrcaFlex [3] this time. We connected 

four springs, to prevent the barge from being swept away. The pre-tension of each spring 

is set to 10 tons. Figure 3-30 shows how the barge is modeled in each program. 
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Figure 3-30. Modeling results in the mega floating crane simulator and OrcaFlex. 

First, to verify the hydrodynamic force module, 9 cases were selected, as shown in Table 

3-12. 

Table 3-12. Simulation cases according to the wave conditions. 

Case Type Height 
[m] 

Period 
[sec] 

Heading angle 
[deg] 

1 

Regular 1 
8 

0 
2 30 
3 90 
4 

10 
0 

5 30 
6 90 

 

Table 3-13 and Table 3-14compare the motions and tensions, respectively. The gray 

cells are ignored according to the wave direction. The error (%) is less than 10 % in most 

of the cases.  
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Table 3-13. Comparison of motions according to the wave conditions. 

Case 
Surge 

[m] 

Sway 

[m] 

Heave 

[m] 

Roll 

[deg] 

Pitch 

[deg] 

Yaw 

[deg] 

Case 1 

OrcaFlex 0.088 0.000 0.048 0.000 0.092 0.000 

Mega floating crane 

simulator 
0.089 0.000 0.050 0.000 0.091 0.000 

Error (%) -1.1 0.0 -4.2 0.0 1.1 0.0 

Case 2 

OrcaFlex 0.045 0.002 0.034 0.052 0.093 0.079 

Mega floating crane 

simulator 
0.044 0.002 0.036 0.054 0.092 0.081 

Error (%) 2.2 0.0 -5.9 -3.8 1.1 -2.5 

Case 3 

OrcaFlex 0.000 0.331 0.139 0.474 0.000 0.000 

Mega floating crane 

simulator 
0.001 0.331 0.145 0.483 0.000 0.000 

Error (%) 0.0 0.0 -4.3 -1.9 0.0 0.0 

Case 4 

OrcaFlex 0.102 0.000 0.072 0.000 0.180 0.000 

Mega floating crane 

simulator 
0.107 0.000 0.076 0.000 0.187 0.000 

Error (%) -4.9 0.0 -5.6 0.0 -3.9 0.0 

Case 5 

OrcaFlex 0.117 0.084 0.082 0.111 0.129 0.023 

Mega floating crane 

simulator 
0.122 0.087 0.087 0.110 0.134 0.024 

Error (%) -4.3 -3.6 -6.1 0.9 -3.9 -4.3 

Case 6 

OrcaFlex 0.000 0.481 0.268 0.952 0.000 0.000 

Mega floating crane 

simulator 
0.000 0.482 0.280 0.971 0.000 0.000 

Error (%) 0.0 -0.2 -4.5 -2.0 0.0 0.0 
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Table 3-14. Comparison of tensions according to the wave conditions. 

Case 
S 

[kN] 

N 

[kN] 

E 

[kN] 

W 

[kN] 

Case 1 

OrcaFlex 98.112 98.112 118.689 118.612 

Mega floating crane simulator 98.113 98.113 119.085 119.050 

Error (%) 0.0 0.0 -0.3 -0.4 

Case 2 

OrcaFlex 99.026 99.242 109.453 109.522 

Mega floating crane simulator 98.657 98.723 109.486 109.568 

Error (%) 0.4 0.5 0.0 0.0 

Case 3 

OrcaFlex 177.569 178.847 98.325 98.406 

Mega floating crane simulator 173.819 173.794 98.423 98.462 

Error (%) 2.1 2.8 -0.1 -0.1 

Case 4 

OrcaFlex 98.120 98.120 123.300 123.183 

Mega floating crane simulator 98.123 98.123 125.128 125.090 

Error (%) 0.0 0.0 -1.5 -1.5 

Case 5 

OrcaFlex 117.222 117.407 125.686 125.495 

Mega floating crane simulator 118.595 118.705 127.340 127.254 

Error (%) -1.2 -1.1 -1.3 -1.4 

Case 6 

OrcaFlex 217.567 221.176 99.178 99.234 

Mega floating crane simulator 220.585 219.670 99.134 99.175 

Error (%) -1.4 0.7 0.0 0.1 

 

Second, to verify the wind force module, two cases were selected, as shown in Table 

3-15. 

Table 3-15. Simulation cases according to the wind conditions. 

Case 
Wind speed 

[m/s] 

Wind direction 

[deg] 

7 
10 

0 

8 90 

 

Table 3-16 and Table 3-17compart the motions and tensions. In spite of the wave 

generation methods and random effects of phases, the results show that the errors (%) are 

within acceptable levels.  
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Table 3-16. Comparison of motions according to the wind conditions. 

Case 
Surge 

[m] 

Sway 

[m] 

Yaw 

[deg] 

Case 7 

OrcaFlex 0.567 0.000 0.000 

Mega floating crane simulator 0.565 0.000 0.000 

Error (%) 0.4 0.0 0.0 

Case 8 

OrcaFlex 0.038 0.475 0.858 

Mega floating crane simulator 0.040 0.484 0.853 

Error (%) -5.2 -1.9 0.6 

 

Table 3-17. Comparison of tensions according to the wind conditions. 

Case 
S 

[kN] 

N 

[kN] 

E 

[kN] 

W 

[kN] 

Case 7 

OrcaFlex 99.697 112.719 0.000 682.960 

Mega floating crane simulator 100.703 111.642 0.000 682.601 

Error (%) -1.0 1.0 0.0 0.1 

Case 8 

OrcaFlex 694.291 0.000 629.700 521.089 

Mega floating crane simulator 700.769 0.000 594.641 554.119 

Error (%) -0.9 0.0 5.6 -6.3 

 

Finally, to verify the current force module, three cases were selected as listed in Table 

3-18. 

Table 3-18. Simulation cases according to the current conditions. 

Case 
Current speed 

[m/s] 

Current direction 

[deg] 

9 

1 

0 

10 30 

11 90 

 

Table 3-19 and Table 3-20compart the motions and tensions. Comparison of the results 

also shows that they are very similar. 
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Table 3-19. Comparison of motions according to the current conditions. 

Case 
Surge 

[m] 

Sway 

[m] 

Yaw 

[deg] 

Case 9 

OrcaFlex 0.144 0.0000 0.0000 

Mega floating crane Simulator 0.144 0.0000 0.0000 

Error (%) 0.0 - - 

Case 10 

OrcaFlex 0.141 0.196 -2.119 

Mega floating crane Simulator 0.134 0.202 -2.119 

Error (%) 5.0 -2.9 0.0 

Case 11 

OrcaFlex -0.007 0.701 0.025 

Mega floating crane Simulator -0.007 0.701 0.026 

Error (%) 0.0 0.0 -4.0 

 

Table 3-20. Comparison of tensions according to the current conditions. 

Case 
S 

[kN] 

N 

[kN] 

E 

[kN] 

W 

[kN] 

Case 9 

OrcaFlex 98.1884 98.1884 36.4886 159.7114 

Mega floating crane Simulator 98.1885 98.1885 36.4793 159.7207 

Error (%) 0.0 0.0 0.0 0.0 

Case 10 

OrcaFlex 198.1347 33.1688 107.2660 239.6341 

Mega floating crane Simulator 200.6350 30.6517 110.4845 236.4443 

Error (%) -1.3 7.6 -3.0 1.3 

Case 11 

OrcaFlex 399.0217 0.0000 103.4241 96.9959 

Mega floating crane Simulator 399.0813 0.0000 103.5041 96.9422 

Error (%) 0.0 0.0 -0.1 0.1 
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3.4. Verification of catenary mooring 

The catenary mooring is verified by comparing the initial profile of this study with that 

of OrcaFlex [3]. When the depth, tension at the end and axial stiffness are given, we can 

obtain total length and length on the seabed. The meaning of each term is depicted in Figure 

3-31. 

 

Figure 3-31. Profile of catenary mooring. 

The results are summarized in Table 3-21. Errors between the output values from 

SyMAP and OrcaFlex is less than 1.0 %. 

Table 3-21. Summary of verification for catenary mooring. 

Input data Output value 

Tension at 

the end 

[m] 

Weight 

per length 

[m] 

Axial 

stiffness 

[kN/m] 

Depth 

[m] 

Horizontal 

length 

[m] 

 

Total 

length 

[m] 

Length on 

seabed 

[m] 

5.0 

19.1 215,893 12 400 
SyMAP 401.23 322.79 

OrcaFlex 401.09 322.14 

 Error (%) 0.03 0.20 

18 213,622 15 300 
SyMAP 301.67 211.53 

OrcaFlex 301.53 210.06 

 Error (%) 0.05 0.69 

22.8 270,375 11 350 
SyMAP 351.18 282.55 

OrcaFlex 351.08 283.11 

 Error (%) 0.03 -0.20 
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3.5. Validation by real operation (1) – Module erection 

In this section, we present modeling, scenario, and simulation results of the module 

erection. The views and tensions among the simulation results are compared with the data 

collected in the real operation. 

3.5.1. Modeling 

For the erection simulation, several models should be prepared. Figure 3-32 shows the 

overall models included in the erection simulation. 

 

 

Figure 3-32. Overall models included in the erection simulation. 

Figure 3-33 shows the main dimensions and weight of the target modules. The length, 

breadth, and height of the target module are about 38 m, 28 m, and 20 m, respectively. The 

weight is about 1,411 ton. This model is exported from the CAD database in the shipyard. 
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Figure 3-33. Main dimensions and weight of the target module. 

The mega floating crane is composed of the barge, two jibs, eight hooks, and the lifting 

load, which are connected by hinge joints and wire ropes. Every time the simulation is 

performed, it takes much effort and time to model the components of the mega floating 

crane. Therefore, the mega floating crane is modeled by default as shown in Figure 3-34. 
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Figure 3-34. Model of the mega floating crane. 

Because one hook capacity is 1,250 [ton], two hooks are enough to lift the target module. 

However, the production engineer decided to use four hooks hanging on one jib, 

considering the size of the target module. Figure 3-35 shows the names of the four hooks 

used in operation. 
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Figure 3-35. The names of the four hooks used in operation. 

There are a total of 32 connection points per one block loader. Two or more lines are 

normally connected to one lug. In this operation, four lines from the block loader are 

connected to one lug on the target module, and 2 or 3 lugs are connected to one block loader. 

Figure 3-36 shows that the wire ropes are connected correctly according to the connection 

plan. 

 

Figure 3-36. Connection plan and simulation views between hooks and the module. 
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The mooring and anchoring lines are modeled with reference to the drawing. 6 mooring 

lines connect from the bow of the floating crane to the bitt on the quay. 4 anchoring lines 

connect from the stern of the floating crane to the seabed. Figure 3-37 shows the 

mooring/anchoring plan and the simulation view. 

 

 

Figure 3-37. Mooring/anchoring plan and simulation views. 

3.5.2. Scenario 

During the real operation, the weather data is gathered for 600 seconds (= 10 minutes). 

Figure 3-38 shows the wind speed and direction. 
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Figure 3-38. Graphs of the wind speed and the wind direction. 

The mean wind speed for 10 minutes is about 7.5 m/s, and the mean wind direction is 

223 deg. Therefore, we use these mean values as inputs to calculate the wind force in the 

erection simulation. Meanwhile, we use the significant wave height 0.1 m and the mean 

period 2 sec, which were announced by the weather forecast on the operation day. 

For the operation scenario, the hoisting speed of the hooks is about 3 ~ 5 m/min, which 

is the operation standard in the shipyard. Therefore, we set the hoisting speed as 3 m/min 

(= 0.05 m/s). Figure 3-39 shows the simulation results from the different viewpoints. 
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Figure 3-39. Simulation results from the different viewpoints. 

3.5.3. Comparison of the posture by images 

In this section, we present images of the real operation and the simulation to compare 

the posture during operation. First, the target module is laid on the quay (Figure 3-40). 
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Figure 3-40. Comparison of the target module laid on the quay. 

As the operation starts, the target module takes off from the ground and keeps on moving 

upward. Figure 3-41 shows the comparison result of the posture in the air. 
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Figure 3-41. Comparison of the target module lifted by the mega floating crane. 

3.5.4. Comparison of tensions 

In this section, the wire rope tensions of each hook are compared with the tension 

obtained by the simulation. The first graph shown in Figure 3-42 is the total tension, which 

is the sum of all the results. 
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Figure 3-42. Graph of the total tension during module erection. 

The mega floating crane does not have any recording system. Therefore, the hook 

tensions are recorded 5 times for 5 minutes by the video camera inside the operation room. 

The markers ①~⑤ in Figure 3-42 indicate the recorded data that are marked by red dots. 

The graph shows that the comparison is not exactly identical to the simulation results. 

However, it gives sufficient implications for validation. From this result, we can judge that 

the simulation results show a very similar tendency when compared with the real operation. 

Figure 3-43 shows the tension graphs of each hook. Because the center of gravity of the 

target module at the operation time could be slightly different from the initial estimation, 

and the way to control the hook height could affect the hook tension, the simulation results 

differ slightly from the recorded data. However, the comparison can be interpreted to show 

that the simulation results are consistent with the real operation in terms of the tendency. 
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Figure 3-43. Graph of the wire rope tension of hooks 5, 6, 7 and 8. 
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3.6. Validation by real operation (2) – LQ erection 

In this section, we present modeling, scenario, and simulation results of the LQ (Living 

Quarter) erection.  

3.6.1. Modeling 

The LQ upper part is a huge structure as shown in Figure 3-44, which weight is 2,356.6 

ton, and length, breadth, and height are about 52.8 m, 32.4 m and 11.65 m, respectively. 

 

 

Figure 3-44. Model of LQ upper part. 

This model is exported from the CAD database in the shipyard and is imported in 

SyMAP as shown in Figure 3-45. The same floating crane used in the previous validation 

is also selected for the erection. Figure 3-45 shows that overall models and connections are 

appropriately arranged. 
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Figure 3-45. Overall models and connections. 

The mooring and anchoring lines are modeled with reference to the drawing (Figure 

3-46). 6 mooring lines connect from the bow of the floating crane to the bitt on the quay. 4 

anchoring lines connect from the stern of the floating crane to the seabed. 

 

 

Figure 3-46. Mooring/anchoring plan and simulation views. 
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3.6.2. Operation sequence 

Figure 3-47 shows the operation sequence in the real world. 

 

 

Figure 3-47 Operation sequence in real world. 

The operation started at a.m. 8:00. Hoisting up the hook for 30 minutes, the bottom of 

the LQ upper part took off from the ground. For next half an hour, the LQ upper part is 

lifted up. And then, the floating crane moved toward the LQ lower part. For the few hours, 

the lowering operation was conducted. The lowering took much time due to interference 

between the lower and upper part of the LQ. 

During the operation, we acquired the tensions of the hooks. Because there is no 

recording system in the floating crane, we recorded the screen by the camcorder. Total 

tension includes the weights of hooks, and equalizer as well as the LQ upper part.  
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Figure 3-48. Tensions of the hooks displayed on the screen. 

3.6.3. Comparison of tensions 

In this section, the wire rope tensions of each hook are compared with the tension 

obtained by the simulation. The graph shown in Figure 3-49 is the total tension, which is 

the sum of all the results. The graphs shown in Figure 3-50 show the sum of two pairs of 

hooks. 

 

 

Figure 3-49. Graphs of the total tension during LQ upper part erection. 
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Figure 3-50. Graph of the wire rope tension of two pairs of hooks. 

During the real operation, the uncertainty of the recording sensors and environmental 

conditions induce the unexpected dot on the graph. However, we conclude that the tensions 

are within the acceptable range of accuracy. 
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 Applications 

This section will provide four representative applications such as block lifting using 

equalizers, LPG tank erection considering a collision, thin plate block lifting considering 

deformation, and block offloading using SPMT which have not been solved before.  

4.1. Block lifting using equalizers 

This section presents the two load lifting simulations using a Goliath crane and a floating 

crane, which are commonly used in shipbuilding. 

4.1.1. Load lifting simulation using a gantry crane 

The first application is load lifting simulation using a gantry crane to erect loads from a 

pre-erection area to the dock. It is widely used in shipyards. 

Figure 4-1 shows the modeling of the load, the dock, and the gantry crane. At the top of 

the crane, there are lower and upper trolleys. Three equalizers are suspended by the trolleys. 

The load model was exported from ship CAD data, including hull plates and outfitting. Its 

size is 43 × 23 × 11 m (length × breadth × height), and its weight is 350 ton. 
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Figure 4-1. Modeling of load lifting using the gantry crane. 

We modeled the equalizer which has five connection points. In total, 15 connection 

points on the load are connected to three equalizers, as shown in Figure 4-2. 

 

 

Figure 4-2. Wire ropes connected between the load and three equalizers. 
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Figure 4-3 shows the pulley height change of the equalizer during the simulation. At the 

first time point, the heights of the equalizer moving pulleys are at the same level. However, 

to control the wire rope tension equally, the pulleys are moved up and down. 

 

 

Figure 4-3. Height change of pulleys of the equalizer during the simulation. 

Simulation procedure of load lifting using the equalizer is summarized in Figure 4-4. 

From Figure 4-4 (1) to (3), the three equalizers move to their equilibrium positions and 

orientations. From Figure 4-4 (4) to (6), the load lifts off the ground. 
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Figure 4-4. Simulation procedure of load lifting using the Goliath crane. 

The wire rope tensions between the load and each equalizer are shown in Figure 4-5. 

The five lines of the wire ropes in the graphs almost overlap. If one of the tensions goes 

high, the others are also increased in a moment. Thus, the wire rope tensions become similar 

even though they show oscillating results during lifting the load. 
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Figure 4-5. Graphs of wire rope tensions between the load and each equalizer. 

 

4.1.2. Load lifting simulation using a floating crane 

The second application is a load lifting simulation using a floating crane. As the weight 

and size of erected loads and modules of the offshore project have increased, floating cranes 

have recently been used to lift heavy loads, exceeding 1,000 tons. 
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Figure 4-6 shows the modeling of the load and the floating crane. In this simulation, a 

3,600-ton capacity floating crane with four hooks and equalizers, possessed by many 

shipbuilding companies, was used. The load model was also exported from ship CAD data 

including hull plates and outfitting. Its size is 34 × 27 × 11 m (length × breadth × height), 

and its weight is 1,000 ton. The wave condition is assumed that the direction is 0 deg 

(following sea) and wave type is irregular wave based on JONSWAP spectrum which 

significant wave height is 1.65 m and peak period is 6.12 sec. 

 

 

Figure 4-6. Modeling of load lifting using a floating crane. 

We used the same equalizers as in the previous example. In total, 20 connection points 

of the load are connected to four equalizers, as shown in Figure 4-7. 
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Figure 4-7. Wire ropes connected between the load and four equalizers. 

Figure 4-8 shows the equalizers before and after equalizing. Before equalizing, the 

heights of the moving pulleys of the equalizers are at the same level. However, after 

equalizing, the pulleys move up and down to find equilibrium positions. 
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Figure 4-8. Position change of the equalizers before and after equalizing. 

The wire rope tensions between the load and each equalizer are shown in Figure 4-9. 

Even though the wave induces the motion of the floating crane and the block, the five lines 

of the wire ropes in the graphs almost overlap as expected. 
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Figure 4-9. Graphs of wire rope tensions between the load and each equalizer.  
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4.2. LPG tank erection considering collision 

This section presents the dynamic analysis of the LPG tank erection inside the hull 

structure by the floating crane. Figure 4-10 shows the modeling result. The floating crane 

has four block loaders. Each block loader is connected to the LPG tank with five wire ropes. 

When the simulation starts, the LPG tank is lowered into the hull structure. 

 

 

Figure 4-10. Modeling of LPG tank, hull structure, and the floating crane. 

The left, right sides, and the bottom of LPG tank, and the hull structure participate in 

the collision. Therefore, unnecessary meshes are ignored by using the exclusion boxes, as 

shown in Figure 4-11. The number of meshes of LPG tank and the hull structure is reduced 

to 1,352 and 2,916, respectively. 
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Figure 4-11. Original and collision shape using exclusion boxes. 

The collision detection and response between the LPG tank and the hull structure are 

applied according to various wave conditions. The wave conditions are summarized in 

Table 4-1. The heading angle is fixed to 90, which is marked in Figure 4-10. From Case 1 

to 4, we will check the occurrence of the collision according to wave periods. From Case 

3, 5, and 6, we will check the occurrence of the collision according to wave heights. 

Table 4-1. Wave conditions for LPG tank erection. 

Case 
Wave condition 

Heading angle [deg] Wave period [sec] Wave height [m] 

1 

90 

6 

1.0 
2 8 

3 10 

4 12 

5 
10 

1.5 

6 2.0 
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As the wave period is increased from 6 to 12 sec., the motions of the floating crane and 

LPG tank are also increased. There is no collision between the LPG tank and the hull 

structure when the wave period is less than 10 sec., as shown in Figure 4-12. However, 

when the wave period is more than 12 sec. (Case 4), the collision occurs, as shown in Figure 

4-13. Meanwhile, when the wave height is changed from 1.0 m to more than 1.5 m (Case 

5, 6), the collision also occurs. From these results, we can find safe environmental 

conditions, which are that the wave period is less than 10 sec., and the wave height is less 

than 1.0 m. 
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Figure 4-12. Simulation results of Case 3: No collision. 
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Figure 4-13. Simulation results of Case 4: Occurrence of the collision. 

 



 269 

Figure 4-14 shows the graphs of the maximum collision force, which is the maximum 

value among collision forces acting at several collision positions. There is no collision force 

in Case 1, 2, and 3. The collision forces in Case 4, 5, and 6 are measured as 3,939 ton, 4,196 

ton, and 6,822 ton, respectively. These results can be used as one of the parameters to 

design guide bumpers between the LPG tank and the hull structure. 

 

 

Figure 4-14. Graphs of maximum collision forces according to time. 
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4.3. Thin plate block lifting considering deformation 

This section presents the dynamic analysis of the thin plate block lifting by a gantry 

crane and a floating crane. Von-Mises stress is analyzed to check the safety due to the 

dynamic effect.  

4.3.1. Thin plate block turn-over by a gantry crane 

The first example is the thin plate block turn-over operation by a gantry crane. The 

gantry crane and the block are modeled as shown in Figure 4-15. 

 

 

Figure 4-15. Modeling of the gantry crane and the thin plate block. 

The thin plate block is 200 ton, 30 m length, 20 m width, and 5mm thickness. It is 

composed of 6 by 4 shell elements. Each edge is connected with four rigid plates by the 
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fixed joints. For turn-over, the wire ropes of the block loaders from the upper trolley are 

connected at one of the edges. The other wire ropes from the lower trolley are connected 

to inside nodes on the thin plate. Figure 4-16 shows the scenario of thin plate block turn-

over.  

 

 

Figure 4-16. Scenario of thin plate block turn-over. 
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At first, those three block loaders are hoisted up at the same time. After the thin plate 

block reaches a certain height, the two block loaders keep on being hoisted up, and the 

other is started to be hoisted down. Finally, the block is erected by 90 deg. 

Von-Mises stress is depicted as a color on the thin plate. The red and blue colors are the 

maximum and minimum stresses, respectively. During the turn-over operation, the 

maximum point marked as red color is changed from the inside of the plate toward the edge 

which is connected by wire ropes. The graph of the stress according to simulation time is 

shown in Figure 4-17. When the thin plate block is tilted, the stress exceeds its yield stress 

in case of a mild still (250 MPa). After the turn-over is finished, the maximum stress 

increases up to 606 MPa. In an aspect of the safety, this operation needs to be re-evaluated 

after structural reinforcement or changing the operation itself. 

 

 

Figure 4-17. Graph of the maximum von-Mises stress. 
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4.3.2. Thin plate block lifting by a floating crane 

The second example is the same block lifted by a floating crane, which capacity is 3,600 

ton. In this case, the wave condition affects to the stress inside the thin plate block. Figure 

4-18 shows the modeling of the floating crane and the thin plate block. There are four hooks, 

and each hook has five wire ropes connected with the block. 

 

 

Figure 4-18. Modeling of the floating crane and the thin plate block. 

We assume that the regular wave which height is 1.0 m and period is 10 sec applies to 

the floating crane from the different directions such as 0 deg (following sea), 45 deg 

(quartering sea), and 90 deg (beam sea). According to the wave heading angle, the stress 

inside the thin plate block shows different tendency as shown in Figure 4-19. 
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Figure 4-19. Stress inside the thin plate block according to the wave heading angle. 

When the heading angle is 0 deg, the maximum stress changes between the front edge 

and the back edge. When the heading angle is 45 deg, the maximum stress changes along 

the edges. Finally, when the heading angle is 90 deg, the maximum stress changes between 

the left edge to the right edge.  

We also plot the maximum stresses according to the wave heading angles as shown in 

Figure 4-20. Due to the regular wave, the stress shows regular oscillation.  
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Figure 4-20. Graphs of the maximum stress according to wave heading angle. 

Maximum stress is summarized in Table 4-2. DAF (dynamic amplification factor) is 

calculated based on the no wave condition. When the wave heading angle is 45 deg, the 

stress becomes maximum. 

Table 4-2. Maximum stress and dynamic amplification factor 

Wave condition 
Maximum stress 

[MPa] 
DAF Wave height 

[m] 

Wave period 

[sec] 

Heading angle 

[deg] 

No wave 87 1.00 

1.0 10 

0 132 1.52 

45 140 1.61 

90 114 1.31 
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4.4. Block offloading using SPMTs 

This section presents the dynamic analysis of the block offloading using SPMTs, based 

on the combination of multibody dynamics, a collision between the wheel and the plane, 

modeling of the SPMT, and ballasting and de-ballasting methods given in the theoretical 

backgrounds. 

Figure 4-21 and Figure 4-22 show the modeling results for the block offloading from 

the TB to FD. The weight of the block is 1,600 ton, and its length, breadth, and height is 

20 m, 52 m, and 20 m, respectively. The FD is moored on the seabed and quay to prevent 

the motion due to the environmental loads. The TB is connected by two link beams with 

hinge joints. The total lifting capacity of twelve SPMTs is 2,588.4 ton which is obtained 

by multiplying 215.7 ton with 12 EA. Therefore, it is enough to lift the block with twelve 

SPMTs. The initial lifting height of the SPMTs is set to 350 mm, and the load is set to 

13.028 ton, which is obtained by dividing the total weight of the block and platform by the 

number of wheels. The main dimensions and other properties are summarized in Table 4-3. 
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Figure 4-21. Modeling of the TB, FD, SPMTs, and the block. 

 

Figure 4-22. Link beams connected between the TB and FD. 
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Table 4-3. Main dimensions and other properties of the models. 

Model Item Value 

Block 

Length 25 m 

Breadth 52 m 

Height 20 m 

Transportation barge 

Length 97.5 

Breadth 36 m 

Height 6 m 

Draft 4.5 m 

Displacement 16,190 ton 

Floating dock 

Length 438 m 

Breadth 84 m 

Height 31.7 m 

Draft 6.2 m 

Displacement 228,073 ton 

SPMT 
Initial loads per a wheel 13.028 ton 

Initial height 350 mm 

 

The dynamic simulation of the block offloading by SPMTs was performed according to 

the various wave conditions listed in Table 4-4. The heading angle was fixed to 0 degrees, 

which means the wave is coming from the TB to FD. From Cases 1 to 4, we checked the 

effect of wave heights and periods to the dynamic loads on the wheels. Cases 5 and 6, 

which use JONSWAP spectrum, check the dynamic loads in the moderate and storm 

conditions, respectively. The wave period means peak period, and the wave height means 

the significant wave height for the irregular wave in Table 4-4. 
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Table 4-4. Wave conditions. 

Case Type Heading angle [deg] Wave period [sec] Wave height [m] 

1 

Regular 

0 

10 

0.5 

2 1.0 

3 1.5 

4 12 1.0 

5 Irregular 

(JONSWAP) 

6.12 1.65 

6 10.47 6.1 

 

The dynamic analysis is conducted in the same scenario. Concerning the operation 

manual [59], the moving speed should be less than 0.5 km/h when the maximum payload 

is posted. For safety, we selected half of the given speed for the operation speed, which is 

0.25 km/h (=0.07 m/s). According to the position of the block and SPMTs, the COG of 

both the TB and FD are shifted by the method explained in section 2.8.2.  

The simulation results are depicted in Figure 4-23. Our target block was located at the 

center of the TB (Figure 4-23-(1)). The SPMTs start to move from the initial locations to 

the FD (Figure 4-23-(2), (3)). The first row of the wheels of the SPMTs arrived at the end 

of the TB (Figure 4-23-(4)). The end row of the wheels is left of the TB (Figure 4-23-(5)). 

Finally, the block successfully arrived inside the FD (Figure 4-23-(6)). 
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Figure 4-23. Simulation results of the block offloading. 

From the dynamic analysis under the given wave conditions, we can check the following 

results for the safety. The difference of the block height (zblock) and attitude (θblock = pitch 

angle) from the initial value should be maintained at zero. The movement of the wheel 

(zwheel) should be less than 350 mm and more than -350 mm. The load of the wheel should 

be less than 20 ton. These criteria are listed in Table 4-5. 

Table 4-5. Safety criteria for dynamic analysis of block offloading. 

Item Criteria 

Block height and attitude 
 10-2 ≥ ׀ zblock – zblock, initial ׀

 10-2 ≥  ׀ θblock – θblock, initial ׀

Wheel movement -0.35 m ≤ zwheel ≤ 0.35 m 

Wheel loads Fwheel ≤ 20 ton 
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To check the safety criteria listed in Table 4-5, the simulation results are shown in the 

graphs (Figure 4-24 to Figure 4-29). The graph of the block height and pitch angle shows 

the difference from the initial value. Since there is a total of 144 wheels, the wheel located 

in the middle was selected as a representative. We checked that the height and load of the 

selected wheel are sufficiently representative because the other wheels show a similar 

tendency. Finally, the results are compared with the criteria in Table 4-6. 
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Figure 4-24. Graphs of block height, pitch angle, wheel height and loads for Case 1. 
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Figure 4-25. Graphs of block height, pitch angle, wheel height and loads for Case 2. 
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Figure 4-26. Graphs of block height, pitch angle, wheel height and loads for Case 3. 
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Figure 4-27. Graphs of block height, pitch angle, wheel height and loads for Case 4. 
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Figure 4-28. Graphs of block height, pitch angle, wheel height and loads for Case 5. 
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Figure 4-29. Graphs of block height, pitch angle, wheel height and loads for Case 6. 
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Table 4-6. Comparison of safety criteria with the simulation results according to wave conditions 

Criteria Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Block height 

and attitude 

(below 10-2) 

O 

(below 10-2) 

O 

(below 10-2) 

X 

(above 10-2) 

X 

(above 10-2) 

O 

(below 10-2) 

X 

(above 10-2) 

Wheel 

movement 

(-0.35, 0.35) 

O 

(-0.14,0.14) 

O 

(-0.27,0.28) 

X 

(-0.42,0.43) 

X 

(-0.42,0.43) 

O 

(-.014,0.18) 

X 

(-0.68,1.28) 

Wheel loads 

(20) 

O 

(13.2) 

O 

(15.5) 

X 

(726) 

X 

(650) 

O 

(13.2) 

X 

(719) 

 

For Cases 1, 2, and 5, the block offloading was successfully performed without violating 

the criteria. However, if the wave height is increased from 1.0 m to 1.5 m (Case 3), from 

10 seconds to 12 seconds (Case 4), the motions of the TB and FD exceed the limit of the 

axle compensation of SPMTs. It is also the same for Case 6 in the storm case. Therefore, 

we can find safe environmental conditions, which are that the wave period is less than 10 

seconds and the wave height is less than 1.0 m for the regular waves, and the significant 

wave height is less than 1.65 m and the peak period is less than 6.12 seconds for the 

irregular waves. Furthermore, we also found out that the operation is not allowable in storm 

conditions. 
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 Conclusion and future work 

5.1. Summary 

This study was focused on the integrated simulation framework to develop new design 

verification software. The requirements for the new design software were derived from the 

real operation in shipbuilding and offshore installation. Based on the requirements, we 

presented integrated simulation framework based on multibody dynamics which was 

composed of five layers such as simulation core, interface, simulation components, 

equipment, and service.  

In section 2, theoretical backgrounds of the equations of motion and simulation 

components were derived in detail. The equations of motion were based on multibody 

dynamics. Among the several formulations, we adopted the DELE to achieve the stability 

during numerical integration. Furthermore, we formulated the equations of motion of the 

1D frame element and 2D shell element based on ANCF. Kinematic constraints including 

joints and constraint-based wire rope between the rigid bodies, and between the rigid and 

flexible bodies were also derived. As external forces, hydrodynamic force, wind force, 

current force, and mooring force were also explained. 

We also dealt with special issues in collision detection and response. Because the shape 

exported from the ship CAD system contains unenclosed meshes, we proposed the position 

difference method which checks an intersection using the line segment made by the two 

vertices or the trigonal prism consisting of the two triangular meshes at time t0 and t1. 

Furthermore, BVH and exclusion boxes were adopted to increase the performance. For 

collision response, non-interpenetration constraint method between a vertex and a plane 
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was derived. This method is applicable when two bodies collide at the multiple points, and 

it did not compulsively violate the kinematic constraint because the collision force was also 

solved together when the equations of motion were solved numerically. Moreover, the 

collision force could be determined automatically, reflecting material properties such as 

restitution and softness. However, it was not easy to represent the body surfaces as 

continuously differentiable functions. Therefore, we derived a simple non-interpenetration 

constraint equation between a vertex and a plane. This equation could also be extended to 

the collision response between two bodies by using the collision pair which was obtained 

from the collision detection. 

Special equipment such as equalizer and SPMT was also modeled. We presented the 

real mechanism of an equalizer, which is operated by fixed and moving pulleys sequentially 

connected by a single equalizing wire rope. The modeling of the mechanical parts of the 

SPMT taking into consideration the axle compensation mechanism to maintain the level of 

the platform when the SPMT drives over an uneven roadway by lifting up the wheel was 

also proposed. 

We provided several verification examples compared with the analytic solutions or 

commercial software to increase the reliability. For validation, two simulation cases were 

compared to the data acquired from the real operations.  

Finally, we provided four representative applications such as block lifting using 

equalizers, LPG tank erection considering a collision, thin plate block lifting considering 

deformation, and block offloading using SPMT, which have not been solved before. We 

concluded that the problems issued in section 1 were solved by the proposed or adopted 

methods. We convinced that the developed program based on the proposed integrated 

simulation framework could cover all operation in ships and offshore structures. 
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5.2. Contributions (Originality) 

This study has several contributions distinguished from the other work.  

5.2.1. Theoretical contributions 

Formulation of ANCF (Absolute Nodal Coordinate Formulation) in DELE (Discrete 

Euler-Lagrange Equation) is formulated. Moreover, derivation of joints attached at any 

position between flexible and rigid bodies is also fully explained. Furthermore, we develop 

collision detection and force calculation module by using non-interpenetration constraint. 

Non-interpenetration constraint between the plane and vertex (or sphere, cylinder) is 

derived and then is extended to a collision between two meshes.  

From this study, the accuracy and reliability of the simulation results are dramatically 

increased as multibody dynamics for rigid and flexible bodies are adopted. It is because the 

more realistic models based on the real mechanical relation can be generated. Moreover, 

this study allows to calculate the collision force and collision analysis between the ship 

blocks or modules. It was impossible to use the model exported directly from the ship CAD 

systems because the meshes are not enclosed or have reverse normal. 

5.2.2. Contributions for applications 

We propose modeling special equipment in ships and offshore structures. Firstly, the 

equalizer including fixed and moving pulleys modeled by constraint-based wire rope is 

introduced. Secondly, SPMT which contains hydraulic cylinder connected by slider-hinge 

joint and axle compensation mechanism is also derived. Therefore, it is possible to simulate 

operations using special equipment such as equalizer and SPMTs in ships and offshore 

structures. 
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5.2.3. Other contributions 

We propose integrated simulation framework to integrate various physical theories and 

to develop software conveniently. Based on the framework, we develop production design 

verification software which is dedicated to ships and offshore structures. Some features that 

are not supported by existing software can be supported by this program. 

The developed program is verified and validated by comparing with analytic solutions, 

benchmarking tests, commercial software, and real operation data. Finally, this study 

provides several applications which have not been tried before in ships and offshore 

structures. 

5.3. Future works 

Further research will focus on new operations which have not been solved before due 

to the absence of the simulation program. For this, we will find new requirements and make 

up for the framework. Additionally, the simulation results will be compared with real 

operations or the model tests to validate the program in further research. 
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국문 초록 
 

선박 및 해양구조물의 공법 설계 검증을 위한 

다물체 동역학 기반의 통합 시뮬레이션 방법 

 

선박 및 해양구조물의 공법 설계 검증을 위해서 경험에 의존하거나 규정을 

따르는 것은 과설계를 유발하기 때문에 소프트웨어를 통해 보다 정확한 해석을 

수행하고자 한다. 하지만 기존에 개발된 상용 소프트웨어의 경우 조선 해양 

공법을 사전에 검증하는 데에는 여러 가지 한계점이 존재한다. 따라서 본 

연구에서는 기존 상용 소프트웨어가 수행하지 못하는 조선 해양 분야의 여러 

공법을 대상으로 요구 조건을 분석하고 이를 기반으로 하는 역학 기반의 통합 

시뮬레이션 프레임워크를 제안하였다. 본 연구에서 제안한 프레임워크는 운동 

방정식을 담당하는 시뮬레이션 코어층, 시뮬레이션 구성 요소 간 정보 전달을 

위한 인터페이스층, 관절, 외력 등으로 구성된 시뮬레이션 구성 요소층, 조선 

해양에 특화된 장비층, 마지막으로 서비스 층의 총 5 개의 층 (layer)로 구성되어 

있다. 제안된 시뮬레이션 프레임워크를 기반으로 본 연구에서는 조선 해양 

전용의 역학 기반 공법 검증 프로그램 SyMAP을 개발하였다. 
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본 연구에서 제안한 통합 시뮬레이션 프레임워크는 다양한 이론적 배경을 

기반으로 하고 있다. 우선 다물체 운동 방정식으로 강성 (stiffness)이 큰 

경우에도 수치적으로 안정한 DELE 를 선정하였다. 더불어 1 차원 빔 요소와 

2 차원 판 요소의 실시간 구조 해석이 가능한 유연 다물체 동역학 이론을 

정리하였고, 이를 DELE 로 나타내었다. 본 연구에서는 다양한 관절 (joints)과 

구속 기반의 와이어 로프 (constraint-based wire rope)를 유도하였다. 특히 구속 

기반 와이어 로프를 사용하여 도르래를 모사함으로써 이퀄라이저 (조선 해양 

분야에서 장력을 동일하게 분배시키기 위해 사용되는 특수 장치)의 작동 원리를 

그대로 구현하였다.  

한편, 충돌 검사 (collision detection) 및 반응 (collision response)은 본래 역학 

해석에서 가장 어려운 문제 중 하나이다. 우선 충돌 물체 검사의 경우 다면체가 

아니고, 둘러싸여 있지 않은 메쉬로 구성되어 있기 때문에 잘 알려진 다면체 

알고리즘을 사용할 수 없다. 따라서 본 연구에서는 시간 차를 두고 위치를 

비교하는 방법으로 둘러싸여 있지 않은 메쉬 간 충돌 검사를 수행하는 방법을 

제안하였다. 충돌 반응의 경우 충돌점과 평면의 거리가 0 보다 작을 경우 구속 

조건을 위배하는 것으로 판단하는 비관통 상호 제약 조건 (non-interpenetration 

constraint)를 사용하였다. 본 연구에서는 이를 확장하여 일반적인 두 물체 간에 
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적용하는 방법을 제안하였다. 이 방법은 충돌 시 반발 계수 (restitution)나 물체 

표면의 부드러움 (softness)를 고려하여 보다 현실적인 충돌 해석을 가능하게 

한다. 

본 연구에서는 SPMT (self-propelled modular transporter)에 대한 모델링과 굴곡 

있는 땅을 통과함에도 상판의 수평을 유지할 수 있는 축 보상 메커니즘 (axle 

compensation mechanism)을 구현하였다. 그 밖에, 유체력, 부력, 바람, 조류 등 

다양한 외력도 구현하였다. 

검증을 위해서 다물체 동역학의 벤치 마킹 테스트, 상용 다물체 동역학 

프로그램 DAFUL 과의 비교를 수행하였다. 유연체의 경우는 해석해와 

시뮬레이션 결과를 비교하였다. 유체력의 경우 WADAM RAO, OrcaFlex, SIMA 등 

상용 소프트웨어와도 비교를 수행하였다. 마지막으로 해양 모듈 및 LQ 탑재의 

현장 데이터를 수집하여 시뮬레이션과 검증을 수행하였다. 

개발된 프로그램을 사용하여 본 연구에서는 이퀄라이저를 사용 블록 리프팅, 

충돌을 고려한 LPG 탱크 탑재, 변형을 고려한 박판 블록 리프팅, 그리고 

SPMT 를 사용한 블록 이동의 4 가지 해석을 수행하였다. 각각의 해석을 통해 본 

연구에서 개발한 모듈들이 성공적으로 적용될 수 있음을 확인하였다.  
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향후에는 신규 공법에 대한 수요를 추가로 파악하고, 신규 공법에 맞는 

새로운 검증 방법을 개발하고자 한다. 또한 각 조선소와의 협업을 통해 실제 

현장 데이터를 확보하고, 모형 시험을 통해 프로그램에 대한 검증 작업을 

수행할 계획이다. 
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