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Assessment of the morphological characteristics of the optic 

nerve on digital fundus photographs is a critical step in making 

the correct diagnosis in optic neuropathy. However, optic disc 

morphology on fundus photographs can exhibit similar findings in 

various diseases, which makes it hard to distinguish between 

different etiologies solely based on morphological assessment. 

Despite the extensive use of quantitative imaging techniques such 

as optical coherence tomography (OCT) nowadays, most of the 

health care centers and primary eye care clinics use digital 

fundus photography as an initial screening tool for posterior 

segment eye diseases due to its cost-effective and feasible 
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nature. The interpretation of digital fundus photographs in the 

common clinical setting rely on manual detection by an examiner, 

which is subject to interindividual variability. Thus, to improve 

the accuracy of interpretation of fundus photographs, we 

developed a fully automated novel computer-aided detection 

(CAD) system for optic disc morphology on fundus photographs. 

The performance of the system in differentiating subjects with 

normal optic discs and those with RNFL defects and optic disc 

pallor showed an accuracy of 94% and 96%, respectively. The 

efficacy of the CAD system in diagnosing optic neuropathy during 

mass screening of fundus photographs in a single health care 

center was 90%.  

 

.................................................................................................................. 

Keyword : Fundus photograph, Automated diagnosis, Optic 

neuropathy 

Student Number : 2011-30560 

 

 

 

 

 

 

 

 



 

 iii 

Table of Contents 

 
List of Tables.......................................................................... .1 

List of Figures ......................................................................... 2 

Chapter 1. Introduction  .......................................................... 5 

Chapter 2. Automatic Computer-aided Diagnosis of Retinal 

Nerve Fiber Layer Defects ...................................................... 7 

Chapter 3. Automatic Computer-Aided Diagnosis of Optic Disc 

Pallor  .................................................................................... 33 

Chapter 4. Efficacy of Automated Computer-Aided Diagnosis 

of Retinal Nerve Fiber Layer Defects in Healthcare Screening 

 ............................................................................................... 56 

Chapter 5. Conclusion ............................................................ 71 

Bibliography ........................................................................... 72 

Abstract in Korean ................................................................ 85 

 



 

 1 

List of Tables 

 

Table 2.1 Performance of the proposed algorithm as a function 

of angular widths of the retinal nerve fiber layer defects ...... 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 2 

List of Figures 

 

Figure 2.1 Flowchart of the proposed computer-aided 

diagnosis system for automatic retinal nerve fiber layer defect 

detection and result images at each step...................................11 

Figure 2.2 Clock-hour locations of retinal nerve fiber layer 

defects on fundus photographs of the right eye and the left 

eye................................................................................................12 

Figure 2.3 An example of non-uniform illumination correction: 

Green channel image, estimated bias field for correction, 

corrected green image, and intensity profiles of one row in the 

given green channel image and in the corrected green 

image............................................................................................15 

Figure 2.4 Results of blood vessel extraction from bottom-hat 

transformation, Kirsch method, and the combined 

method .........................................................................................17 

Figure 2.5 Detection results for the optic disc and macular 

centers and polar coordinate transformation of blood vessel 

removal image and retinal nerve fiber layer defects ..............18 

Figure 2.6 Representative detection results using the proposed 

algorithm on 3 patients consisting of a typical superior 

temporal retinal nerve fiber layer defect in glaucoma, slit-like 

RNFL defect in early stage preperimetric glaucoma and 



 

 3 

papillomacular bundle RNFL defect in a patient with Leber’s 

hereditary optic neuropathy.......................................................23 

Figure 2.7 The free-response receiver operating 

characteristics curve indicating the performance of the 

proposed algorithm for detecting retinal nerve fiber layer 

defects ........................................................................................24 

Figure 2.8 Mean intensity of the blood vessels, retinal nerve 

fiber layer (RNFL) defects, and normal RNFL regions ..........26 

Figure 2.9 Distribution of clock-hour locations for the retinal 

nerve fiber layer defects ..........................................................27 

Figure 3.1 Examples of image enhancement for noise reduction 

and illumination correction .......................................................39 

Figure 3.2 Average brightness intensity profiles of the 

clinically significant neuroretinal rim area in all clock-hour 

locations for each case of normal subjects, temporal pallor of 

the optic disc and diffuse optic disc pallor ...............................40 

Figure 3.3 Representative fundus photographs, segmentation 

results of the CAD model and circumpapillary RNFL thickness 

map in normal subjects, temporal pallor of the optic disc and 

diffuse pallor ...............................................................................42 

Figure 3.4 Box plots of the Brightness correction ratio (BC) 

and Temporal-to-Nasal area ratio (TN) for normal subjects 

and those with optic disc pallor .................................................46 



 

 4 

Figure 3.5 ROC curve of the proposed model for detecting optic 

disc pallor....................................................................................48 

Figure 4.1 A free-response receiver operating characteristics 

(FROC) derived by plotting the sensitivity as a function of the 

number of false positives (FP) per image 

(FPs/image) ...............................................................................64 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

 5 

Chapter 1. Introduction 

 

Assessment of the morphological characteristics of the optic nerve 

on digital fundus photographs, including optic disc pallor, notching, 

cupping and retinal nerve fiber layer (RNFL) defects together with 

the associated retinal findings is a critical step in making the correct 

diagnosis in patients with optic neuropathy. However, optic disc 

morphology on fundus photographs can exhibit similar findings in 

various diseases, which makes it hard to distinguish between 

different etiologies solely based on morphological assessment. 

Despite the extensive use of quantitative imaging techniques such 

as optical coherence tomography (OCT) nowadays, most of the 

health care centers and primary eye care clinics use digital fundus 

photography as an initial screening tool for posterior segment eye 

diseases due to its cost-effective and feasible nature. The 

interpretation of digital fundus photographs in the common clinical 

setting rely on manual detection by an examiner, which is subject to 

interindividual variability. Thus, to improve the accuracy of 

interpretation of fundus photographs, we developed a fully 

automated novel computer-aided detection (CAD) system for optic 

disc pallor on fundus photographs, and validated its performance in 

detecting optic neuropathy among normal fundus photographs and 
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during mass screening in a large population who visited a single 

healthcare center. 
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Chapter 2. Automatic Computer-Aided 

Diagnosis of Retinal Nerve Fiber Layer Defects 

in Fundus Photographs 

 

2.1. INTRODUCTION 

Retinal nerve fiber layer (RNFL) defects such as localized thinning 

or loss of the RNFL, including papillomacular bundle defects,1, 2 is a 

major sign that precedes detectable optic disc changes and visual 

field loss in the early stages of glaucoma or other non-

glaucomatous optic neuropathies.3, 4 Glaucoma leads to structural 

changes of the optic disc and RNFL and advanced visual field loss. 

Because such changes are generally irreversible, early diagnosis 

and treatment are critical.5, 6 Papillomacular bundle defect is also a 

major sign of various hereditary, toxic, and mitochondrial optic 

neuropathies, and early detection of such changes can facilitate the 

clinical diagnosis and decision-making. 3, 4 

 Various methods are available for examining RNFL defects. 

Heidelberg retina topography (HRT), scanning laser polarimetry 

(SLP), and optical coherence tomography (OCT) can accurately 

produce quantitative measurements of the optic disc and RNFL.5 
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However, these technologies are expensive and require a trained 

technician.7 Fundus photography is the most commonly used and 

cost-effective imaging tool that can be performed as part of the 

routine medical check-up; thus, it has an enormous potential for 

community glaucoma screening in remote or non-hospital 

environments.8 However, RNFL defects are thin and shallow in the 

early stages of glaucoma, which makes them difficult to detect. 

Fundus photographs may have sharper boundaries for RNFL defects 

showing early defects on fundus photographs, while OCT results 

may not be definitely decreased in thickness compared to the age-

matched normal population, with only a relative thinning compared 

to other sectors observed. Further, the detection rates are highly 

dependent on the experience of the examiner. Therefore, the 

development of a method that is more sensitive and reliable for 

detecting RNFL defects on fundus photographs for use as a 

diagnostic tool for glaucoma and various optic neuropathies is 

important.  

 In this work, we have proposed a simple and efficient 

algorithm for the automatic detection of RNFL defects that can alert 

ophthalmologists to the location of possible RNFL defects. We 

tested its validity in patients with localized RNFL defects with 

glaucoma and other hereditary and toxic optic neuropathies.  
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2.2. METHODS 

Subjects and Fundus Photographs 

This study included the fundus photographs of 98 subjects with 140 

localized RNFL defects and 100 fundus photographs of healthy 

normal subjects who did not have any history of ocular diseases 

and had normal RNFL and optic disc appearance on fundus 

photographs. The subjects consisted of 89 patients with early to 

moderate glaucoma, and their mean deviation was -4.06 ± 3.44 dB 

(range, -12.87 ~ -0.03) by the Humphrey Field Analyzer, and 9 

patients with non-glaucomatous optic neuropathy with 

papillomacular bundle defects: 4 patients with Leber’s hereditary 

optic neuropathy, 3 patients with autosomal dominant optic atrophy, 

and 2 patients with toxic optic neuropathy.  

The fundus images were obtained from Seoul National University 

Bundang Hospital. All images were photographed by using the 

digital Nikon D80 camera (Nikon Co. Ltd. Tokyo, Japan) equipped 

with a KOWA VX-10 fundus camera (Kowa Company Ltd., Tokyo, 

Japan), and were taken as 24-bit color images. Images of various 

sizes were resized to a resolution of 1278 × 848 pixels in order to 

reduce the computational time and to minimize the effects of small 

pathological regions. Two ophthalmologists independently marked 
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the region of the RNFL defects and when both reviewers 

determined the presence of RNFL defect, the case was considered 

to have an RNFL defect. The results of manual detection were 

confirmed by Stratus® OCT (Carl Zeiss Meditec, Germany) or 

Spectralis® OCT (Heidelberg engineering, Germany) results 

showing a definite or relative localized thinning of RNFL analysis 

compared to other sectors. The research adhered to the tenets of 

the Declaration of Helsinki. 

 

Flowchart of Proposed CAD  

The proposed CAD method was performed in 3 steps. First, the 

algorithm automatically detected the location of the main features in 

the fundus image, such as the optic disc, macula, and blood vessels. 

Then, it corrected the non-uniform illumination of the green 

channel image by using the bias image. Second, blood vessels were 

removed. Blood vessel segmentation is essential in order to achieve 

RNFL defect detection. Then, the image was converted to polar 

coordinates according to the center of the optic disc. Finally, the 

candidate RNFL defects were observed as vertical dark bands, and 

the false positives were subsequently reduced by using 

knowledge-based rules of the average pixel value in the candidate 

region, the vertical length, and the angular location. To reduce 
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perceptual errors, 2 ophthalmologists performed independent 

double reading of the fundus photographs. A flowchart showing the 

proposed CAD system for RNFL defects and the resulting images at 

each step is provided in Figure 2.1.  

 

 

Figure 2.1 Flowchart of the proposed computer-aided diagnosis 

system for automatic retinal nerve fiber layer defect detection and 

result images at each step.  

  

In fundus images, the RNFL defect locations were determined as 

clock hours, and we measured the clock-hour location of the RNFL 

defects in all of the cases. The clock-hour location was defined as 

the location from a reference line in a clockwise direction for the 

right eyes and in a counterclockwise direction for the left eyes 
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(Figure 2.2).9 The reference line was a vertical line through the 

center of the circle.  

 

 

Figure 2.2 Clock-hour locations of retinal nerve fiber layer defects 

on fundus photographs of (a) the right eye and (b) the left eye. 

 

Preprocessing  

Preprocessing of the proposed algorithm can be divided into 2 major 

steps: (1) noise reduction and (2) illumination correction. We used 

the green channel of the color fundus image because this maximizes 

the contrast between the RNFL defects and blood vessels.10  

 

Noise Reduction 

To remove unwanted text images such as patient information, we 

applied a binary mask by using a morphological open operation. The 

binary mask extracted the region of interest (ROI) in the entire 

image. Then, a median filter of size 3 × 3 was applied to the 
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masked image to suppress noise and to maintain an edge of the 

image.  

 

Illumination Correction  

Non-uniform illumination by non-ideal acquisition condition and the 

spherical geometry of the eye can cause severe distortions in the 

color fundus image. This non-uniform illumination artifact is often 

described as ‘shading’ or ‘bias’. Correcting the non-uniform 

illumination can contribute to accurate blood vessel segmentation by 

enhancing the contrast of the blood vessel at the periphery of the 

fundus image.11-13 Zheng et al. proposed a retrospective 

illumination-correction method based on the sparsity of the image 

gradient distribution.14 This method can automatically correct the 

illumination of an arbitrary fundus image by using the bias. The bias 

of the image denotes the spatial variations of intensity caused by 

illumination changes for images taken by a digital camera. The bias 

is a smooth field in any format, which can be represented by a 

bivariate polynomial, B-Spline, etc. In this study, we used the 

method described by Zheng et al. A given green channel image (G) 

assumes the product of the uniformly illuminated fundus image (I)  

and the bias field (B), as follows: 
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j)(i,j)(i,j)(i, IBG   

where (i, j) is the pixel position in the image. 

 An example of non-uniform illumination correction is shown 

in Figure 2.3. The given green channel image is shown in Figure 2.3 

(a) and the bias image as the shading artifact is shown in Figure 2.3 

(b). The corrected image was generated by the given green channel 

image divided by the bias image, as shown in Figure 2.3 (c). The 

intensity profiles of 1 row in the given green channel image and in 

the corrected image is shown in Figure 2.3 (d). This shows that the 

background intensity in the corrected image had greater uniformity 

compared to the given green image. 
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Figure 2.3 An example of non-uniform illumination correction: (a) 

Green channel image, (b) Estimated bias field for correction, (c) 

Corrected green image, (d) Intensity profiles of one row in the 

given green channel image and in the corrected green image. 

 

Blood Vessel Removal  

Blood vessel removal (BVR) is an essential step to detect RNFL 

defects more accurately. Many methods have been reported for 

blood vessel extraction from fundus images.15-18In this study, the 

blood vessels were extracted by using a morphological bottom-hat 

transform in order to detect the blood vessels as dark regions. The 

bottom-hat transform is defined as the difference between the 

closing by a disk-shaped structural element (SE) and the input 
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image. Since the maximum blood vessel width is approximately 10 

pixels, the SE diameter was set to 10 pixels. Although the bottom-

hat method can be used simply to detect the blood vessels, this 

method is not sufficient for exact extraction of the entire blood 

vessel structure. Therefore, we also used the Kirsch method, which 

is an edge detector that determines the maximum edge strength 

with an 8-directional filter.15 The Kirsch method is useful for 

detecting the edge of large blood vessel structurea, but it is not 

suitable in detecting small vessels and pathological regions. 

 The results of blood vessel extraction after applying the 

bottom-hat transform, Kirsch method, and combined method are 

shown in Figure 2.4. To compensate for the disadvantages of the 2 

methods, we combined the 2 methods for iterative use. 

 To reduce the false-positive (FP) rates, the pathological 

regions in the fundus images were detected with blood vessels, as 

shown in Figure 2.4. For each pixel of the segmented vessel region 

determined by using the combined method, the intensity value was 

replaced by a mean intensity that was computed over all pixels in a 

61 × 61 neighborhood of the pixel location. The size of the 

neighborhood region was chosen to be a sufficiently large area to 

minimize the influence caused by other pathological lesions and 

blood vessel regions.  
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Figure 2.4 Results of blood vessel extraction from (a) bottom-hat 

transformation, (b) Kirsch method, and the (c) combined method.  

 

Polar Transformation 

RNFL defects appear radially from the optic disc in various forms, 

such as fan shaped, wedge shaped, slit-like shape, and spindle-like 

shape. In this study, to detect the RNFL defects effectively, the 

BVR image was transformed to the polar coordinates with a 

reference point as the location of maximum cup depth in the optic 

disc. Because the optic disc has high intensity in the green image, 

the reference point in the optic disc was detected by using a local 

maximum method. Further, we detected the macular center by using 

a local minimum method to reduce the FP rate. In the polar 

coordinates, a retinal location (pixel) is represented by a radial 

distance and angle from the reference point. Because the RNFL 

defects do not spread out in the radial direction completely around 

the optic disc, the RNFL defect lines in the polar coordinates are 
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slightly tilted toward the macular position. The difference of the 

radial widths of the defect in the polar coordinate was also 

negligible. Thus, we assumed that the RNFL defects in the polar 

coordinates were a relatively straight line in the vertical direction. 

The detection results of the reference point in the optic disc and the 

macular center are shown in Figure 2.5 (a). The polar coordinate 

transformation of the BVR image results is shown in Figure 2.5 (b), 

where the RNFL defect is marked by black arrows.  

 

 

Figure 2.5 (a) Detection results for the optic disc and macular 

centers and (b) polar coordinate transformation of blood vessel 

removal image and retinal nerve fiber layer defects (black arrow). 

The circle region (yellow dot line) indicates the region for polar 

transformation and is transformed in the clockwise direction (white 

arrow) for the right eye from the start position.   
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Detection of RNFL Defects 

Hough transformation was applied to detect the candidates with 

straight lines. The procedure for detecting RNFL defects consisted 

of 3 steps. First, the polar transformed image was filtered with a 

2D-Gaussian filter to smooth the boundary of the blood vessel 

region. Then, we determined the edge of the smoothed image by 

using the Canny edge detection algorithm. Subsequently, the Hough 

transform for line detection was performed on the edge image. 

Finally, the candidate RNFL defects were detected, including the 

misdetected candidates. If the detected region of the arbitrary 

candidate overlapped with the region of the gold standard, it was 

considered a true positive (TP) detection. 

 

False Positive Reduction 

In this study, a FP represented a misdetected RNFL defect 

candidate. The misdetected candidates of the RNFL defects were 

reduced by using knowledge-based rules. For each candidate, we 

classified the average pixel values in the candidate region, the 

vertical length, and the angular location. With these 3 features, the 

true RNFL defects were determined. First, we extracted the 

average pixel values in the candidate region that were smaller 

compared to the average value in the surrounding background 
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region, except for the blood vessel region. Then, the candidates 

were classified by the vertical length to suppress noise. We 

selected the vertical lengths which were more than two times of the 

maximum blood vessel width in order to reduce the false detection 

of the blood vessel and other noise. We selected the angular 

location within a main vascular region (± 79° from a reference 

line) corresponding to the temporal sector, as this is where 

clinically significant loss of glaucomatous and nonglaucomatous 

RNFL thinning takes place. The reference line was drawn from the 

center of the optic disc to the macular center on the fundus image. 

We also excluded the macula region and the blood vessel region 

from the inner region of the main vascular region. The FPs were 

removed after FP reduction, leaving the true detected candidates. 

 

Main Outcome Measures 

The intensities and widths of the RNFL defects were measured and 

the detection rates according to each feature were determined for 

glaucoma and non-glaucomatous optic neuropathy with 

papillomacular bundle defects. The comparison was based on 

agreement in the position of the RNFL defect band and not the 

width. 

 To evaluate the performance of the proposed algorithm 
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quantitatively, we used free-response receiver operating 

characteristics (FROC) analysis.19, 20 The FROC curve is a tool for 

characterizing the performance of the proposed algorithm at all 

decision thresholds simultaneously.28 The thresholds were decided 

by varying the number of the initial candidate in the detection step. 

The FROC curve was obtained by plotting the sensitivity as a 

function of the number of false positives per image (FPs/image). 

The sensitivity, which was defined as the number of TPs divided by 

the sum of TPs and false negatives (FN), indicated the ability of the 

algorithm to detect RNFL defects correctly. We defined the 

sensitivity and the number of FP per image in this evaluation as 

follows:  

FN)TP/(TPySensitivit                                                    

imgN

RFP
FPs/image   

where RFP is the number of remaining false positives after 

application of the FP reduction method and Nimg is the total number 

of images. 
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2.3. RESULTS 

 

Validity of the Proposed CAD in Automated RNFL Detection 

We tested 98 patients with 140 RNFL defects, including 9 patients 

with 9 images with papillomacular bundle defects. The distribution 

of the number of RNFL defects per case was as follows: 60 patients, 

single RNFL defect; 34 patients, 2 RNFL defects; and 4 patients, 3 

RNFL defects. Among the 131 defects of 89 patients with glaucoma, 

the algorithm identified 117 defects and failed to identify 14. Among 

the 9 defects of 9 patients with papillomacular bundle defects, the 

algorithm identified all 9 defects. The results obtained by using the 

proposed algorithm are shown in Figure 2.6. The white arrows 

indicate the region of the RNFL defect marked by the 2 

ophthalmologists and the yellow lines indicate the TPs. The first 

column shows the original images, the second column shows the 

correct detection results, and the third column shows the red-free 

fundus photographs of the original images.  
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Figure 2.6 Representative detection results using the proposed 

algorithm on 3 patients consisting of a typical superior temporal 

retinal nerve fiber layer (RNFL) defect in glaucoma (top row), slit-

like RNFL defect in early stage preperimetric glaucoma (middle 

row) and papillomacular bundle RNFL defect in a patient with 

Leber’s hereditary optic neuropathy (bottom row). (a) First 

column: original image, (b) second column: detection results, (c) 

third column: red-free fundus image of original image. White 

arrows indicate the region of RNFL defect marked by two 

ophthalmologists. 
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 The FROC curve of the proposed algorithm for the 98 

patients was derived by varying the number of the initial candidates 

in the detection step (Figure 2.7). The sensitivity by using non-

uniform illumination was 74% and the sensitivity after illumination 

correction was increased 1.2-fold from 74% to 90%. Finally, a 

sensitivity of 90% was obtained at 0.67 FPs per image. The 100 

fundus photographs of healthy normal subjects showed a false 

positive (FP) rate of 0.25 per image. Finally, the overall diagnostic 

accuracy of the proposed algorithm for detecting RNFL defects 

among 98 patients and 100 healthy individuals was 86% sensitivity 

and 75% specificity. 

 

Figure 2.7 The free-response receiver operating characteristics 

curve indicating the performance of the proposed algorithm for 

detecting retinal nerve fiber layer defects. The proposed algorithm 

achieved 90% sensitivity at 0.67 false positives per image. 
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Intensity of RNFL Defects 

In fundus photography, the intensity of the RNFL represents the 

thickness of the RNFL, and the thinning or loss of the RNFL 

appears as low intensity. Therefore, we compared the mean 

intensity of the blood vessel, RNFL defects, and normal RNFL 

region (Figure 2.8). In order to maintain the same grayscale level 

for each image, the grayscales of the images were normalized by 

using an arbitrary image. We automatically selected a region of 

interest (ROI) with a 50x50 square region in the 8 o’clock 

direction according to the clock-hour locations of figure 2.2, which 

was independent of eye orientation, at a distance of 100 pixels from 

the optic disc in the illumination corrected image. The ROI was set 

to minimize the effect of the darkened macula and RNFL defect 

region. The mean intensity of the normal RNFL region was 

calculated from the ROI excluding blood vessel region in the fundus 

image. The blood vessel region was selected in the same ROI and 

the mean intensity of blood vessel was calculated. The RNFL defect 

region was selected as an arbitrary region with the same size. The 

regions of the RNFL defects were marked by two ophthalmologists. 

The box plot shows the differences in the mean intensity. The mean 

intensity (±standard deviation) of the RNFL defects (38.20±7.60) 

was significantly higher compared to the blood vessel region 
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(36.06±7.19), but was lower compared to the normal RNFL region 

(40.20±8.29) (F-value = 22.64, p < 0.005, by ANOVA).20 

Therefore, if the difference between the mean intensity of each 

candidate defect region and its surrounding background region is 

greater than the half value of the difference between the mean 

intensity of RNFL defects and normal RNFL, the candidate defect 

region was selected as an RNFL defect.  

 

 

Figure 2.8 Mean intensity of the blood vessels, retinal nerve fiber 

layer (RNFL) defects, and normal RNFL regions. A central line of 

the box plot indicates the median value of the data. Lower and 

upper boundary lines of the central box are at the 25% and 75% 

quartile of the data. Box represents 95% confidence interval. 
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Location of RNFL Defects 

The distribution of the clock-hour locations for the RNFL defects is 

shown in Figure 2.9. The RNFL defects were most frequently 

located at 7 o’clock, followed by 11 o’clock and 10 o’clock.  

 

Figure 2.9 Distribution of clock-hour locations for the retinal nerve 

fiber layer defects. 

 

Detection Rate According to Angular Widths of RNFL Defects 

The detection accuracy as the angular widths of the RNFL defects 

increased is shown in Table 2.1. The angular width of the RNFL 

defects was defined as the angle between the proximal and distal 

border lines, with the height of each bar representing the true 

detection rate of the RNFL defects. Although the numbers of RNFL 

defects varied, the detection rates of the proposed algorithm were 

almost uniformly high, regardless of the angular widths of the RNFL 
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defects. The average detection accuracy was approximately 0.94. 

 

Table 2.1 Performance of the proposed algorithm as a function of 

the angular widths of the retinal nerve fiber layer (RNFL) defects. 

Angular 

Width(AW) 

No. of RNFL 

Defects 

True 

Positive 

Detection 

Rate 

10 30 26 87 

20 37 33 89 

30 26 22 85 

40 19 18 95 

50 9 9 100 

60 3 2 67 

70 6 6 100 

80 3 3 100 

90 1 1 100 

110 1 1 100 

120 2 2 100 

130 1 1 100 

140 2 2 100 
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2.4. DISCUSSION  

In this study, we have proposed a fully automatic method for 

detecting various forms and widths of RNFL defects in color fundus 

images. Fundus photography is the most common screening tool to 

detect RNFL defects in various optic neuropathies. However, the 

detection of RNFL defects by using fundus photographs depends on 

the experience of the examiner, and early defects may be missed 

because of the low contrast of the RNFL. Therefore, we developed 

a simple and efficient algorithm to assist the ophthalmologist for the 

detection of RNFL defects.  

 The strength of the proposed algorithm is that it can detect 

very narrow defects in early stage glaucoma to non-glaucomatous 

optic neuropathy involving the papillomacular bundle accurately, as 

shown in the representative cases in Figure 2.6. To our knowledge, 

no previous studies described specific methods for detecting RNFL 

defects with various forms and widths in fundus images. Our results 

showed that the proposed algorithm was successful, with a 

sensitivity of 90% for glaucoma and 100% for papillomacular bundle 

defects in non-glaucomatous optic neuropathies.  

 Many algorithms have been proposed for detecting RNFL 

defects. Prageeth et al. used texture analysis by utilizing only 

intensity information about the RNFL around the optic disc in the 
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red-free fundus image.21 Odstrcilik et al. proposed the use of 

texture analysis by utilizing Gaussian Markov random fields 

(GMRF) for classification of healthy and glaucomatous RNFL tissue 

in fundus images.22, 23 These results were compared with the OCT 

images as a gold standard.21, 22 Muramatsu et al. applied 3 sizes of 

Gabor filters to detect RNFL defects in the fundus image.17 The 

detection rates were 89~91% at 1.0 FPs per image in these 

studies.17, 22 However, because determining the filter width for 

detecting RNFL defects with various forms and widths is difficult 

with these methods, we applied the Hough transformation to detect 

RNFL defect candidates with straight continuous lines. In addition, 

these previous studies confined their study subjects to those with 

glaucoma with localized RNFL defects, which would be apparently 

visible and found on OCT; however, these studies did not include 

early stage preperimetric glaucoma, other non-glaucomatous optic 

neuropathies, and papillomacular bundle defects.  

 The RNFL defects were most commonly located in the 

inferior temporal and superior temporal regions. These locations 

are the most frequently affected in the early stage of glaucoma.24 

Additionally, the detection rate of the proposed algorithm was 

almost consistent, regardless of the angular widths of RNFL defects. 

However, among the total defects, the proposed algorithm 
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performed worse in cases with shallow defects, i.e., in early-stage 

glaucoma or in images with poor resolution.  

 This study had several limitations. First, the number of 

images used in this study was not large; thus, a larger database 

should be used in the future. Second, we did not consider structural 

changes of the optic disc, such as cupping, notching or pallor of the 

rim. Because the change in the optic disc is an important indicator 

of the severity of glaucoma, the detection of optic disc parameters 

can provide a significant differential clue regarding glaucomatous 

and non-glaucomatous optic neuropathies. 24, 25 Therefore, future 

work should be focused on the detection of optic disc changes, 

thereby combining these findings with RNFL defects. Further, 

regarding the high rate of false positives per image, modification of 

the FP reduction method may improve the reliability of the current 

algorithm for early detection of various optic neuropathies. Finally, 

diffuse RNFL defects in advanced glaucoma or optic atrophy cannot 

be detected with our program, since the mean intensity of the RNFL 

is low in all clock hours and a localized lesion is not distinguishable. 

However, in these cases, the pathologic features of disc cupping or 

atrophy are more prominent than RNFL thinning, and can easily be 

detected. 

In conclusion, the proposed algorithm showed a reliable 
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diagnostic accuracy for automatically detecting RNFL defects in 

fundus photographs of optic neuropathy of various causes. This 

method has the potential to assist the ophthalmologist for double 

reading in the office and for mass screening by using fundus 

photographs. 
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Chapter 3. Automatic Computer-Aided 

Diagnosis of Optic Disc Pallor 

 

3.1. INTRODUCTION  

Optic disc pallor is a common clinical finding followed by axonal 

damage of the optic nerve. Optic disc pallor on fundoscopic 

examination is thought to be caused by changes in tissue 

translucency and reflectance following axonal loss and glial 

reorganization.26 Assessment of the morphological characteristics of 

the optic disc including optic disc pallor, notching, cupping and 

edema together with the associated retinal findings is a critical step 

in making the correct diagnosis in patients with visual dysfunction.27 

However, optic disc morphology on fundus photographs can exhibit 

similar findings in various diseases, which makes it hard to 

distinguish between different etiologies solely based on 

morphological assessment.27 In addition, there are certain conditions 

that may mimic pallor of the optic disc such as physiologic temporal 

pallor, pseudophakic eyes and myopic discs which are frequently 

misinterpreted as optic disc pallor in normal subjects during 

healthcare screening.28 To discriminate these findings with true 

pallor of the optic disc related to pathologic axonal loss can be 
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extremely challenging, particularly if the pallor is mild and limited to 

the temporal aspect of the disc. The variable quality of brightness in 

fundus photographs makes it even perplexing to accurately detect 

optic nerve pallor.29  

 Despite the extensive use of quantitative imaging techniques 

such as optical coherence tomography (OCT) and Heidelberg 

Retinal Tomography (HRT) nowadays, most of the health care 

centers and primary eye care clinics use fundus photography as an 

initial screening tool for posterior segment eye diseases due to its 

cost-effective and feasible nature. The interpretation of fundus 

photographs in the common clinical setting rely on manual detection 

by an examiner, which is subject to interindividual variability.27 

Thus, to improve the accuracy of interpretation of fundus 

photographs, there have been previous attempts to assess optic 

disc pallor by objective and quantitative methods based mainly on 

color discrimination and manual or semi-automated 

measurements.30-39 However, most of the previous studies used 

fundus cameras equipped with a special filter for assessing optic 

disc pallor on fundus photographs and the overall procedure was 

semi-automated requiring manually demarcated region of interests 

of the optic disc.30-39 Herein, in this study, we developed a fully 

automated novel computer-aided detection (CAD) system for optic 
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disc pallor on fundus photographs via a risk analysis algorithm. We 

evaluated the performance of the system in differentiating subjects 

with normal optic discs and those with various degrees of optic disc 

pallor. 

 

3.2. METHODS 

Subjects and Fundus Photographs 

We tested 230 photographs including 107 photographs with 

temporal and diffuse optic disc pallor, and 123 normal optic discs. 

Fundus photographs with optic disc pallor were recruited from 107 

patients who were diagnosed with optic neuropathy, including 

hereditary causes such as autosomal dominant optic atrophy and 

Leber’s hereditary optic neuropathy, and acquired causes of 

compression, inflammation, and idiopathic optic atrophy. The other 

123 fundus photographs were collected from subjects who did not 

have any ocular diseases and featured normal appearance of the 

optic disc on fundus photographs. Fundus images were 

photographed as 24-bit color images using a digital SLR camera 

(Nikon D80; Nikon Co. Ltd., Tokyo, Japan) equipped with a fundus 

camera (KOWA VX-10; Kowa Company Ltd., Tokyo, Japan). 

Images were resized to a resolution of 1278x848 pixels.  
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The presence of optic disc pallor was classified according to 

the morphologic features of the optic disc on fundus photographs 

and was confirmed by Stratus®  OCT (Carl Zeiss Meditec, Germany) 

or Spectralis®  OCT (Heidelberg engineering, Germany) results 

showing retinal nerve fiber layer (RNFL) thinning by 

circumpapillary RNFL analysis as the gold standard test for 

determining optic disc pallor. Among the 107 photographs with optic 

disc pallor, 59 photographs were classified as having a relative 

temporal pallor, while 48 photographs showed diffuse pallor of the 

optic disc.  

To compare the results of the CAD system with manual 

detection, two independent ophthalmologists determined the 

presence of optic disc pallor on fundus photographs. Each case was 

classified as having optic disc pallor when both reviewers agreed on 

the presence of optic disc pallor. When the readings of the two 

examiners were discrepant, the case was considered 

‘undetermined’. The accuracy of manual detection was compared 

with the diagnostic accuracy of the newly proposed CAD model. 

Subjects with glaucomatous optic neuropathy, 

indistinguishable retinal images owing to media opacity such as 

corneal opacity, cataract, and abnormal retinal findings that obscure 

the detection of optic disc morphology such as macular 
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degeneration or retinal hemorrhage were excluded. The research 

was approved by the Institutional Review Board of Seoul National 

University Bundang Hospital and adhered to the tenets of the 

Declaration of Helsinki. 

 

Analysis of Optic Disc Pallor  

In this study, we proposed a risk analysis algorithm of optic disc 

pallor using a logistic regression model. The proposed algorithm 

consists of the following three steps; 1) automated detection of the 

optic disc boundary, 2) image enhancement, and 3) feature 

extraction from the neuroretinal rim for the logistic regression 

model.  

  

Automated Detection of the Optic Disc 

Optic disc segmentation is not quite simple because its size, color 

and the presence of peripapillary atrophy on fundus photographs 

vary greatly among subjects.40 In this study, optic disc 

segmentation was automatically performed using a novel program 

that we developed using Matlab 2015b.41 In our previous work, we 

proposed a method to detect the optic disc center in fundus 

photographs.42 The image was then cropped to the size of 700x700 
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pixels with the optic disc center placed in the middle. Since the 

radius of the optic disc varies from 100 to 200 pixels in fundus 

photographs, the cropped size was chosen to be large enough to 

cover the whole optic disc area. Automatic segmentation of the 

optic disc was performed using a simple threshold method, and 

finally, the results of optic disc segmentation were confirmed by an 

ophthalmologist (HKY). 

 

Image Enhancement 

Image enhancement was performed according to the following three 

steps. First, we separated the green channel image (G) and blue 

channel image (B). The G image provides high contrast of blood 

vessels and optic disc structures. The B image is quite noisy, but 

provides a dark background that provides a high contrast of the 

optic disc. The G image was corrected (Gc) for noise reduction and 

illumination correction using the same methods that were used in 

our previous work regarding the automated CAD system for RNFL 

defects.42 Then, we combined the corrected green channel image 

(Gc) and B image prior to analysis (Figure 3.1).  
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Figure 3.1 Examples of image enhancement for noise reduction and 

illumination correction. (a) Illumination corrected green channel 

image, (b) blue channel image, and (c) the combined image of 

corrected green channel image and blue channel image. 

 

 

Feature Extraction 

The morphological characteristics of optic disc pallor in fundus 

photographs are defined as the pale color of the neuroretinal rim, 

which gets brighter with disease progression in various optic 

neuropathies.26, 34, 43, 44 The neuroretinal rim can be segmented by 

subtraction of the optic cup from the whole optic disc area. However, 

defining the boundaries of the optic cup solely on fundus 

photographs is not feasible.27 Therefore, feature extraction for 

neuroretinal rim analysis was conducted in terms of a ‘clinically 

significant neuroretinal rim’ area that was defined as 5 

consecutive pixels adjacent to the automatically segmented optic 

disc boundaries.45 We measured the average brightness intensity of 

the ‘clinically significant neuroretinal rim’ area in all clock-hour 
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locations (Figure 3.2). The clock-hour locations were defined as 

follows; the nasal sector was defined as 2 to 4 clock-hour locations 

and the temporal sector was defined as 8 to 10 clock-hour 

locations.42, 46 

 

(a) normal    (b) temporal pallor       (c) diffuse pallor 

Figure 3.2 Average brightness intensity profiles of the clinically 

significant neuroretinal rim area in all clock-hour locations for each 

case of (a) normal subjects, (b) temporal pallor of the optic disc 

and (c) diffuse optic disc pallor. 

 

Parameters of Optic Disc Pallor 

Two parameters were developed for risk analysis of optic disc 

pallor; 1) Brightness correction ratio (BC) and 2) Temporal-to-

nasal ratio (TN) were generated by an automatic algorithm using 

fundus photographs and manually segmented masks of the optic disc. 

The brightness of color fundus photographs is not uniform owing to 

non-ideal acquisition by different fundus cameras and illumination 
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conditions.29 Therefore, to correct the brightness of the image, BC 

was defined as the ratio of the mean brightness intensity of the 

‘cup depth’ compared to the ‘background region’. The 

‘background region’ was defined as a square in the 

papillomacular bundle nerve fiber layer (Figure 3.3). The center of 

the background region was automatically set at one-disc diameter 

apart from the geometric center of the optic disc. The height of the 

background region was fit within ±10 degrees from the geometric 

center of the optic disc and the width was fixed at 15 pixels. The 

brightness intensity of the ‘cup depth’ was calculated as the 

mean intensity of pixels that had a higher intensity than 70% of the 

maximum value in the optic disc area. TN was defined as the mean 

brightness intensity of pixels in the temporal region divided by the 

mean intensity of pixels in the nasal region of the clinically 

significant neuroretinal rim. 
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Figure 3.3 Representative fundus photographs, segmentation results 

of the CAD model and circumpapillary RNFL thickness map in (a-c) 

normal subjects, (d-f) temporal pallor of the optic disc and (g-i) 

diffuse pallor. The background region (white square) was set at the 

papillomacular nerve fiber bundle to adjust for inconsistent 

brightness of color fundus photographs. Fully automated 

segmentation of the boundaries of the optic disc and clinically 

significant neuroretinal rim (area between the yellow and black 

circle) were depicted. The proposed CAD model calculated the risk 

of optic disc pallor within the clinically significant neuroretinal rim 

area. 
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Statistical Analysis 

Comparison of BC and TN values between groups were performed 

using one-way ANOVA and when statistical significance was 

identified, post-hoc analysis was carried out with the Tukey’s 

test. For the risk analysis of optic disc pallor, we used a logistic 

regression model with the two parameters of optic disc pallor, BC 

and TN, as continuous variables. All tests were performed using the 

SPSS version 20.0 software package (SPSS Inc., Chicago, IL). A 

P-value of less than 0.05 was considered as statistically significant. 

The general form for the logistic regression model is,  

 

where P is the probability, X is the feature, and β is the coefficient 

of the model.47 The logistic regression model was trained to obtain 

predicted probabilities of the risk of optic disc pallor. The two 

features entered the logistic regression model when variance 

inflation factors (VIF) were less than 10. The VIF was defined as a 

degree of collinearity present for each factor and a VIF greater than 

10 indicates significant multicollinearity. The regression model 

yielded estimated regression coefficients that weighted the 

information from the two features in an optimal way for combining 

them. In this study, two parameters indicating optic disc pallor, BC 

and TN, were generated by the automatic algorithm using fundus 
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photographs and manually segmented mask of the optic disc. The 

regression analysis also determined whether each variable was 

significantly associated with the probability of optic disc pallor. The 

overall predictive ability of the proposed model was evaluated by 

use of the area under the receiver operating characteristic (ROC) 

curve (AUC). 48, 49 The sensitivity, specificity and accuracy of this 

model were calculated as follows.50  
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3.3. RESULTS 

Parameters of Optic Disc Pallor 

Linear regression analyses demonstrated that BC (β = 0.892; P = 

0.0001) and TN (β = 0.123; P = 0.033) were significantly 

different between normal subjects and those with optic disc pallor.  

The mean value of BC in normal subjects was significantly 

lower (1.94±0.42) than those with temporal pallor (5.41±1.90, 

P<0.001) and diffuse pallor (5.28±1.70, P<0.001) (Figure 3.4a). 

There was no significant difference in BC values between subjects 

with temporal pallor and diffuse pallor (P=0.870). 

The mean value of TN in normal subjects was significantly 

lower (1.12±0.15) than those with temporal pallor (1.51±0.52, 

P<0.001), but not significantly different with diffuse pallor 

(1.24±0.22, P=0.072) (Figure 3.4b). TN value was significantly 

higher in subjects with temporal pallor compared to diffuse pallor 

(P<0.001). 
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Figure 3.4 Box plots of the Brightness correction ratio (BC) and 

Temporal-to-Nasal area ratio (TN) for normal subjects and those 

with optic disc pallor. A center line of the box indicates the median 

value of data. Lower and upper boundary lines of the box are the 25 

ro 75% quartile, and marginal lines represent 95% confidence 

interval. 

 

Risk Analysis of Optic Disc Pallor 

A linear model was created to associate the risk of optic disc pallor 

with the two parameters, BC and TN, to generate a probability map. 

Based on the results of this model, we obtained the following 
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equation for the probability (P) of optic disc pallor.  

 

 The probability of optic disc pallor ranged from 0 to 1, and 

the risk of having optic disc pallor was higher with a value closer to 

1. The P value for each coefficient in the final model was significant 

(P value for the constant, BC, and TN were <0.0001, 0.0001 and 

0.022, respectively). Higher risk of optic disc pallor was 

significantly associated with a larger BC (P<0.001) and TN 

(P=0.022).  

 

Accuracy of CAD for Optic Disc Pallor  

The probability of optic disc pallor by the linear regression model 

with BC and TN was used to generate the ROC curve (Figure 3.5). 

A probability value of 0.5 or more was used as the cutoff value of 

detecting optic disc pallor in fundus photographs using the linear 

regression model. Our results showed that the proposed model 

successfully detected optic disc pallor among normal patients with a 

sensitivity of 95.3% and a specificity of 96.7%. The accuracy was 

96.1% and AUC value was 0.996.  

Comparing the results of manual detection by two 

independent ophthalmologists, 13.9% (32/230) of cases were 

‘undetermined’ due to inconsistent results between the two 
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examiners. Disagreement between both examiners was found in 

8.1% (10/123) of normal subjects, 22.0% (13/59) of temporal 

pallor, and 18.8% (9/48) of diffuse pallor. The accuracy of the 

results of individual examiners were 90.0% and 94.8%, respectively.  

 

Figure 3.5 ROC curve of the proposed model for detecting optic disc 

pallor. The performance of the proposed CAD model for detecting 

optic disc pallor in 230 fundus photographs of 123 normal subjects 

and 107 subjects with optic disc pallor achieved a sensitivity of 

95.3% and specificity of 96.7% (AUC=0.996).  

 

 

After excluding undetermined cases, the sensitivity of 

manual detection was 98.9% and specificity was 99.1% for 

diagnosing optic disc pallor among the 198 cases (86.1%) that were 

interpreted identically by the two examiners. When 

‘undetermined’ cases were reclassified as having optic disc 
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pallor, the specificity dropped to 91.1% with a sensitivity of 99.1%. 

Two cases were erroneously judged as having optic disc pallor or a 

normal optic disc by both examiners, whereas they were accurately 

diagnosed with the proposed CAD model.  

 

3.4. DISCUSSION 

In this study, we developed a fully automatic CAD system for 

detecting variable degrees of optic disc pallor on color fundus 

images by a risk analysis model generated by novel parameters. 

The proposed model showed a relatively good performance in 

detecting both diffuse and temporal optic disc pallor caused by 

various etiologies with a sensitivity of 95.3% and specificity of 

96.7%. The accuracy of the CAD model was superior to the results 

of manual detection by individual examiners. 

 The strength of the proposed algorithm in our study is as 

follows. First, our CAD system detected optic disc pallor through a 

fully automated process, beginning with optic disc segmentation to 

the final step of providing a probability score of optic disc pallor by 

a risk analysis model. Second, the combination of corrected green 

channel images and blue channel images provided a high contrast of 

the optic disc compared to previous studies on quantitative 

assessment of optic disc pallor.32-39 Third, we adopted two novel 
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concepts to overcome the major obstacles of objective assessment 

of optic disc pallor in previous studies.32-39 Due to the difficulty in 

delineating the boundaries of the optic cup and neuroretinal rim area 

on fundus photographs, we defined a ‘clinically significant 

neuroretinal rim’ adjacent to the optic disc boundary that can be 

automatically segmented without difficulty.45 In addition, the 

variable quality of brightness in fundus photographs acquired by 

different fundus cameras and illumination conditions29 was adjusted 

using the Brightness correction ratio (BC). Fourth, the inclusion of 

‘TN ratio’ as a parameter of the risk analysis model effectively 

detected temporal pallor of the optic disc which is often confused 

with physiologic temporal pallor of the disc in normal subjects. 

Finally, be verified the results of CAD using OCT as the gold 

standard method instead of manual detection which is subject to 

interindividual variability. In fact, the CAD system showed relatively 

superior results compared to individual manual detection of optic 

disc pallor on fundus photographs.  

 There have been previous attempts to measure optic disc 

pallor on fundus photographs.30-39 Zenker et al.30 introduced a 

photographic technique using green and red filters taken 

simultaneously at different angles by a stereoscopic fundus camera, 

and the pallor-disc ratio was calculated in black and white films. 
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Sorenson31 took fundus photographs using a purple filter, and the 

difference between the blue and red density was used to determine 

optic disc color with the normal optic disc reflecting red light and 

pale disc reflecting blue light. Miller et al.32 undertook videographic 

imaging of the optic disc (Rodenstock Analyzer) that was 

consecutively taken under green (540 nm) and red (640 nm) 

illumination at different time points to quantify optic disc pallor in a 

small number of patients with glaucoma. Vilser et al.33 described a 

method using a special dual bandpass filter (548 and 610 nm) 

mounted on a fundus camera to simultaneously obtain red and green 

images of the optic disc to determine a mean pallor value. This 

method was applied in a recent study by Ramm and colleagues51 to 

quantitatively assess optic disc pallor in 89 patients with primary 

open angle glaucoma (POAG), which showed a higher value of pallor 

in POAG compared to healthy normal subjects. Unfortunately, these 

studies all required a special filter while taking fundus photographs 

to obtain an ideal image for assessing optic disc color, which is not 

the usual case in regular clinical practice. 

 Quantitative measurement of optic disc pallor on fundus 

photographs without using a special filter also have been reported.34, 

37 However, the previous studies mainly relied on color 

discrimination of red, green and blue pixels using common image 
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analysis software, which employed calculation algorithms using the 

mean intensity of each color to quantify optic disc pallor.34 

Conversely, in our study, the combination of corrected green 

channel images and blue channel images provided a high contrast of 

the optic disc compared to the former studies which allows accurate 

segmentation and color discrimination of the optic disc. Moreover, 

the former methods were not fully automated as the region of 

interests including the border of the optic disc was manually 

demarcated on digital color fundus photographs.11,14 Fully automated 

segmentation of the optic disc with high accuracy, as in our study, 

is essential for image analysis and preprocessing particularly in the 

era of deep learning which has a promising potential for screening 

and diagnosis in the near future.52 

 Variability in the brightness of fundus photographs is one of 

the major issues that decrease the reproducibility of manual 

interpretation or image analysis.29, 53, 54 Our new algorithm was 

based on the knowledge that assessment of optic disc pallor may 

vary according to the luminance and image quality of fundus 

photographs.29, 53 While a standardized method of image acquisition 

and enhancement has been recommended for best quality images to 

detect retinopathies,29 the best parameters for assessing optic disc 

color have not been thoroughly evaluated.34, 54 In our study, the 
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mean brightness intensity of the background region was calculated 

in the papillomacular nerve fiber bundle, which is not interrupted by 

vessels and located close to the visual axis of which the luminance 

is least affected by pupil size. By adopting the BC ratio in our CAD 

model, fundus photographs with variable quality and luminance were 

effectively analyzed with excellent accuracy.  

 In our study, we introduced a novel parameter, the TN ratio 

that was automatically calculated to detect temporal optic disc pallor. 

Segmental pallor of the optic disc cannot be detected by simply 

calculating mean values of optic disc pallor unless multiple regions 

are assessed separately or the region of suspected pallor is 

delineated by the examiner.11,14 The TN ratio in this study allowed 

automatic detection of relative temporal pallor by the CAD system 

with a sensitivity of 94.9% and specificity of 95.1%, and no 

additional steps were required. In a previous study regarding the 

accuracy of morphological assessment of the optic disc by glaucoma 

and neuro-ophthalmology experts, a major disagreement between 

examiners was found on determining the presence of optic disc 

pallor in autosomal dominant optic atrophy and Leber’s hereditary 

optic neuropathy.27 This implicates that manual detection of 

temporal pallor is extremely unreliable even among experts, and the 

results attained in this study indicate the superiority of our 
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proposed CAD system in optic disc pallor detection over subjective 

interpretation.  

 There are certain limitations in our study. First, the 

reproducibility of the CAD system could not be determined by 

multiple photographs taken from one person as this was a 

retrospective study and most of the subjects had only one fundus 

photograph taken at each examination. Second, our study did not 

include subjects with glaucomatous optic neuropathy. Moderate to 

severe glaucoma or widespread chorioretinal disease may also end 

up with secondary optic disc pallor in advanced stages.51, 55 

Therefore, differentiation of optic disc structure between 

glaucomatous optic neuropathy and compressive optic neuropathy 

may be confusing particularly in advanced stages.34, 51, 55 While optic 

disc pallor is considered the most crucial difference between 

glaucoma and compressive optic neuropathy, even glaucoma may 

exhibit some degree of pallor compared to healthy controls which 

complicates the matter.51 Nakano et al.34 showed that the redness of 

the neuroretinal rim was effective in differentiating mild stages of 

compressive optic neuropathy and normal tension glaucoma. 

However, the diagnostic performance of their color index was not 

impressively high with an AUC of 0.7. Therefore, future studies to 

differentiate glaucoma and non-glaucomatous optic neuropathy 
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among normal optic discs should be performed to enhance the utility 

of the software in mass screening. In this case, other morphological 

features of the optic disc such as cupping or notching of the rim, 

together with the detection of RNFL defects should be combined.42 

Finally, our CAD system should be validated in different ethnicities 

as the brightness of the background region may partly depend on 

the degree of choroidal pigmentation.  

 In conclusion, we developed a fully automated CAD system 

to detect optic disc pallor in fundus photographs that can assist the 

ophthalmologist with making clinical judgements. Our model showed 

excellent performance in assessing both diffuse and temporal optic 

disc pallor, and the accuracy of the CAD model was superior to 

individual manual detection.  
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Chapter 4. Efficacy of Automated Computer-

Aided Diagnosis of Retinal Nerve Fiber Layer 

Defects in Healthcare Screening 

 

4.1. INTRODUCTION 

Glaucoma is one of the leading causes of blindness worldwide.56 A 

meta-analysis study recently showed that the global prevalence of 

glaucoma for population aged 40-80 years was estimated to be 

3.54%.57 Asians account for almost half of the world ’ s total 

glaucoma cases,58 and population-based studies revealed that the 

prevalence of primary open-angle glaucoma in the population of 40 

years or older was 3.5% in Korea and 3.9% in Japan.59, 60 Glaucoma 

can remain asymptomatic until very advanced stages, which leads to 

a high prevalence of undiagnosed glaucoma in up to 50% of affected 

people.61 As glaucoma decreases vision-related quality of life even 

in earlier stages of the disease and causes irreversible damage to 

the optic nerve, early detection is important.62 A variety of studies 

highlight the high prevalence of undiagnosed glaucoma, pointing to 

the need for devising new screening strategies to identify these 

individuals and assure they receive proper care.61, 62 Application of a 
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technology-based first assessment might be a cost-effective 

option for improving the performance of testing for glaucoma 

detection.63 

Structural changes of glaucoma are represented by alteration 

of the optic nerve head configuration and retinal nerve fiber layer 

(RNFL) defects.64 Localized RNFL defects indicate optic nerve 

damage with a specificity of more than 90 %,65 although these are 

not pathognomonic for glaucoma.66 . Localized RNFL defects can be 

the first structural sign of glaucoma before enlargement of the optic 

cup,67 and can also be seen before the development of apparent 

visual field loss.68, 69 Thus, detection of localized RNFL defects can 

be one of the most effective methods for early glaucoma screening. 

Detection of RNFL defects is also important in the diagnosis 

of non-glaucomatous optic neuropathies.1, 2 As papillomacular RNFL 

bundle (PMB) defect is one of the major signs of various hereditary, 

toxic and mitochondrial optic neuropathies, early detection of PMB 

defects can enable the diagnosis of systemic optic neuropathies at 

an earlier stage of the disease.1, 2 

To detect RNFL defects, fundus photographs, optical 

coherence tomography and scanning laser polarimetry have been 

used.9, 70-78 Although the latter two tests enable the acquisition of 

3D imaging and determine the actual thickness of RNFL, those are 
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costly and time-consuming,7 thus are less suitable for mass 

screening of glaucoma compared to fundus photographs.8 

Development of techniques for automatic detection of RNFL defects 

is important for glaucoma screening using fundus photographs in a 

large population, and several researches have been performed for 

the development of the techniques.17, 78-80 

In our previous work, we developed a new system for 

automatic computer-aided detection (CAD) of RNFL defects using 

fundus photographs, and showed its high sensitivity in detecting 

glaucomatous and non-glaucomatous optic neuropathies.42 In the 

present study, we evaluated the validity of the new CAD system in 

mass screening of RNFL defects using fundus photographs in a 

large population from a single healthcare center. 

 

4.2. METHODS 

Study Population 

This study included fundus photographs of 1200 patients who 

visited the Health Promotion Center of Seoul National University 

Bundang Hospital from July, 2013 to August, 2014. Fundus 

photographs were taken as 24-bit color images by using the digital 

camera (D80, Nikon, Tokyo, Japan) equipped with a fundus camera 
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(VX-10, Kowa, Tokyo, Japan), and then were resized with a 

resolution of 1278 × 848 pixels. The exclusion criteria were as 

follows: (1) Phthisis or anophthalmos (2) Indistinct retinal image 

due to media opacity including cataract or corneal opacity (3) 

Abnormal retinal findings that might disrupt the detection of RNFL 

defect, such as macular degeneration, diffuse retinal hemorrhage or 

macular edema. After excluding the cases inappropriate for analysis, 

2270 fundus photographs were included. This study was conducted 

in compliance with the Declarations of Helsinki and was approved 

by the Institutional Review Board (IRB) of Seoul National 

University Bundang Hospital.  

 

Manual detection of RNFL Defect    

The fundus photographs were reviewed independently by two 

expert ophthalmologists (S.B.H and H.K.Y) for detection of RNFL 

defects, in the same manner as in the previous study.27 When both 

reviewers determined the presence of an RNFL defect, the case 

was considered to have an RNFL defect. The results of manual 

detection were considered as the gold standard.  
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Automatic Detection of RNFL Defect using CAD Method  

Automatic determination of RNFL defect using CAD was performed 

in the same manner as in our prior study.42 Briefly, the color fundus 

photographs were converted to green channel images to maximize 

the contrast between the RNFL defects and blood vessels.10 The 

images were pre-processed for reduction of noise by applying a 

binary mask and a median filter. Correction of the non-uniform 

illumination was performed for accurate blood vessel segmentation 

by enhancing the contrast of the blood vessels at the periphery of 

the fundus photographs.11 After that, blood vessel removal was 

done to detect RNFL defects more accurately. The blood vessels 

were extracted by using a morphological bottom-hat transform in 

order to detect the blood vessels as dark regions, as previously 

described.42 For exact extraction of the entire blood vessel 

structure, the Kirsch method in which an edge detector was used to 

determine the maximum edge strength was also applied.15 After 

blood vessel removal, the image was transformed to polar 

coordinates in regard to the center of the optic disc to detect RNFL 

defects effectively. In polar coordinates, a point is expressed by a 

radial distance and the angle from the optic center. Hence, 

candidates of RNFL defect were transformed to a straight line in the 
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vertical direction because the defects appear radially from the optic 

disc center. Subsequently, the polar transformed image was filtered 

with 2D Gaussian filter for smoothening blood vessel boundaries, 

and the edge of the image was determined using the Canny edge 

detection algorithm.81 Hough transformation for line detection was 

then applied to detect the candidates of RNFL defect. To reduce 

false-positive (FP) rate, knowledge-based rules were applied to 

discern misdetected RNFL defect candidates. For each candidate, 

the average pixel numbers, the vertical length and the angular 

location of the candidate region were documented. Using these 3 

parameters, the misdetected candidates of RNFL defect were 

eliminated according to reference values established in our prior 

study, and only true candidates of RNFL defects remained. Because 

the RNFL does not spread out in complete radial directions around 

the optic disc center, the polar transformation image of RNFL defect 

lines are slightly tilted toward the macula. In this study, to reduce 

FP rate, we selected only the defect candidates tilted toward the 

macular position. In addition, we also limited the angular range in 

inverse proportion to the radial distance from the optic disc center. 
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Evaluation of the Efficacy of the CAD System 

To determine the performance of the CAD method quantitatively, a 

free-response receiver operating characteristics (FROC) curve 

was derived by varying the angular range and threshold of detection. 

The FROC curve is generated by plotting the sensitivity as a 

function of the number of FPs per image (FPs/image) that was 

calculated by dividing the number of remaining FPs after application 

of varying methods by the total number of images. The point of 

minimum FPs/image at which sensitivity does no more increased 

was determined. The results of automatic detection of RNFL 

defects using CAD at the minimum point of FPs/image was 

compared to those of gold standard manual detection for evaluation 

of the sensitivity and specificity of the CAD method. SPSS software 

for Windows (V.18.0; SPSS Inc.) was used for statistical analyses. 

 

4.3. RESULTS 

Of the 2400 fundus photographs of 1200 subjects (M: F = 703:497), 

130 photographs considered inappropriate for the analysis were 

excluded. Finally 2270 fundus photographs were used for the 

analyses. The mean age of subjects was 49.4 ± 9.9 years (range, 

17-81 years of age).  
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Efficacy of the CAD System in Automated RNFL Detection 

In manual detection that was considered as “gold standard”, there 

were 36 eyes from 28 patients with at least one RNFL defect. 

Among the 36 eyes, 31 eyes had one localized RNFL defect and 5 

eyes had two RNFL defects, adding up to a total of 41 RNFL defects. 

In the FROC curve of the automated detection using the CAD 

system to detect the 41 RNFL defects, a sensitivity of 90.2% (37 

out of 41 RNFL defects) was obtained at a FP rate of 0.36 

FPs/image, and no further improvement of the sensitivity was found 

with increasing FPs/image (Figure 4.1). At the FP rate of 0.36 

FPs/image, specificity of the CAD system was 72.5%; 1620 

photographs were correctly determined among the 2234 

photographs with no RNFL defects, while 614 photographs were 

falsely detected to have an RNFL defect. 
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Figure 4.1 A free-response receiver operating characteristics 

(FROC) derived by plotting the sensitivity as a function of the 

number of FPs per image (FPs/image). The CAD system showed 

sensitivity of 90.2% at 0.36 FPs/image, and no further improvement 

in sensitivity with increase in FPs/image was found.  

 

It took approximately 6 hours to analyze the 2270 fundus 

photographs, excluding the time spent for transferring the images to 

the system, which is about 9.5 seconds per image for detection of 

RNFL defects using this protocol. 
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4.4. DISCUSSION 

Fundus photography is currently used as one of the major tools of 

health screening worldwide because it is technically easy and 

inexpensive. Studies suggested that RNFL analysis using fundus 

photographs can be a method for glaucoma screening.70, 78, 82 

Application of technology-based first assessment to automatically 

detect RNFL defects might be an option for improving glaucoma 

detection in a large population.63 

 There have been a few studies concerning techniques for 

automatic detection of RNFL defects in fundus photographs, and 

several algorithms have been proposed.17, 23, 79, 80 Prior studies used 

texture analysis applying intensity information around the optic disc, 

analysis using the Gaussian Markov random fields or detection 

using three sizes of Gabor filters, showing detection rates of 89 to 

91% at 1.0 FPs/image.17, 23 However, these methods have 

limitations as follows: 1) despite the high sensitivity in detecting 

RNFL defects, these tests also showed high FP rates and low 

specificities, which limit its availability as screening tools, 2) filter 

width had to be pre-determined for each RNFL defect of various 

forms and widths, which is difficult and cumbersome, and finally, 3) 

although these methods could detect distinct RNFL defects that are 
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apparently visible on fundus photographs, it did not account for 

small defects in early stage preperimetric glaucoma or defects 

caused by non-glaucomatous optic neuropathies such as PMB 

defects.  

  In our previous study, we proposed a new method for 

defection of RNFL defect that showed a sensitivity of 90% with 

0.67 FPs/image of by applying knowledge-based rules to filter out 

misdetected RNFL defect candidates.42 The protocol could 

accurately detect RNFL defects with a narrow angle or PMB defects 

by adopting polar transformation, Canny edge detection algorithm 

and Hough transformation for line detection.  

 In the present study, we upgraded our CAD protocol to 

enhance the specificity and reduce FP rates by selecting only the 

candidates of RNFL defects tilted toward the macular position and 

limiting the angular range in inverse proportion to the radial 

distance from the optic disc center. To investigate whether the new 

method can be used in mass screening of RNFL defect in a large 

population, we tested the sensitivity and specificity of the protocol 

for detection of RNFL defects using 2270 fundus photographs in the 

database of a health promotion center at our hospital. The CAD 

system demonstrated a sensitivity of 90.2% and specificity of 
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72.5% at 0.36 FPs/image, which is better than the results of the 

previous studies.17, 23 The speed of analysis may not be faster than 

experienced ophthalmologists or trained examiners. However, we 

believe that our CAD system can facilitate mass screening by 

saving the burden of ophthalmologists as a first assessment 

screening tool for filtering photographs with suspected RNFL 

defects. We also believe further studies are needed to enhance the 

speed and specificity of image analysis using the CAD system. 

 One of the major limitations of automatic detection systems 

of RNFL defects is that increasing its sensitivity inevitably leads to 

high FP rates. Nonetheless, high sensitivity cannot be sacrificed for 

a mass screening test because detection of every abnormality 

without omission is essential at the stage of screening and falsely 

detected samples can be eliminated at a secondary examination by 

an ophthalmologist. However, excessively high FP rates decrease 

the efficiency of the screening test and fail to alleviate the burden 

of ophthalmologists. Thus, efforts should be made to improve 

specificity without sacrificing sensitivity. In the present study, we 

developed a new CAD system that showed a sensitivity of > 90% 

with improved specificity at only 0.36 FPs/image, which increased 

the feasibility of our CAD system as an effective screening protocol 

of RNFL defects. Further studies are warranted for improvement of 
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the efficacy of the CAD system, and ultimately, for the development 

of an ideal system that can confirm the detection of RNFL defects 

without requiring secondary examination by an ophthalmologist.  

 The present study has limitations as follows. First, we did 

not evaluate the structural changes of the optic disc, which is an 

important sign in both glaucomatous and non-glaucomatous optic 

neuropathy.17 Localized RNFL defects are not pathognomonic for 

glaucoma,66 and were reported to be detected in 20-87% of 

glaucomatous eyes depending on the type of glaucoma.65, 83 

Nevertheless, despite the fact that detection of localized RNFL 

defects without evaluation of optic disc damage may not be an ideal 

screening test for glaucoma, it is useful for detecting other eye 

diseases. Moreover, our software cannot detect diffuse RNFL loss 

in advanced glaucoma or optic atrophy.42 In these cases, prominent 

changes of the optic disc are more easily detectable. With further 

development of a protocol that can automatically locate the optic 

disc and analyze structural changes, we believe that the diagnostic 

ability can be improved by combining the findings of the optic disc 

and RNFL defects.24, 25  Second, although our protocol may be 

useful in Asians, its efficiency in other races with different color 

fundi has not been evaluated. Further studies are needed for the 

establishment of diagnostic thresholds of the CAD system before it 
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can be applied in patients with other ethnicities. Third, a FP rate of 

0.36 FPs/image is still unsatisfactory, although it has been improved 

compared to 0.67 FPs/image in our previous study.42 Specificity of 

72.5% is also insufficient for a mass screening test. The low 

specificity may cause unnecessary worry to the screened subjects. 

It can also lower the cost-effectiveness of the screening test by 

causing unnecessary further tests for glaucoma. Therefore, we 

believe further studies to achieve higher specificity without 

sacrificing sensitivity are necessary. An alternative method is to 

teach the photographers to do primary screening at the time the 

image is taken. However, this is also subject to individual variability 

of assessment, which can be decreased by objective examination 

using a computer software. Practically, this is not possible in many 

centers and additional reading is required by physicians.  Finally, 

the repeatability and variability of the CAD system could not be 

determined because only one fundus photograph was taken for each 

patient. With the same photograph, the results of the CAD system 

are always identical. However, there can be slight discrepancies in 

brightness degree and saturation of fundus photographs between 

photographs taken on different days by different fundus cameras, 

and these conditions may affect the results of the CAD system.  

 In conclusion, the present study verified the accuracy of our 
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new CAD system for the detection of RNFL defects in mass 

screening with high sensitivity and specificity. With further 

refinement, we believe our CAD system can be widely used in 

healthcare screening centers and alleviate the burden of 

ophthalmologists.  
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Chapter 5. Conclusion 

 

Fundus photography is the most common screening tool to detect 

optic disc abnormalities in various optic neuropathies. In this study, 

we have proposed a fully automatic method for detecting 

morphological abnormalities of the optic disc in digital color fundus 

images. We developed a simple and efficient CAD algorithm to 

assist the ophthalmologist for the detection of RNFL defects and 

optic disc pallor. The proposed algorithm showed a reliable 

diagnostic accuracy for automatically detecting RNFL defects and 

optic disc pallor in optic neuropathies of various causes. Moreover, 

the accuracy of the CAD model for detecting optic disc pallor was 

even superior to the results of manual detection by individual 

examiners. Finally, validation of our model for detection of RNFL 

defects in healthcare screening showed high sensitivity and 

specificity. With further refinement and combination with deep 

learning algorithms, we believe that our CAD system can be widely 

used for automated first assessment in healthcare screening and 

primary eye care centers. 
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요약(국문초록) 
 

 

 

시신경병증의 진단에서 가장 기초적인 단계는 안저사진에서 

시신경의 구조적 이상을 확인하는 것이다. 그러나 다양한 질환에서 

시신경의 형태가 유사하게 보일 수 있으며, 안저사진에서 시신경의 

모양만으로 다양한 시신경병증을 감별하는 것은 쉽지 않다. 최근 

빛간섭단층촬영을 포함한 고해상도의 측정 장비가 널리 이용되지만, 

아직까지 비용효과와 편리함을 이유로 망막질환과 시신경질환의 

진단을 위해 대부분의 건강검진기관이나 일차의료기관에서는 디지털 

안저사진을 촬영한다. 디지털 안저사진의 판독은 검사자의 주관적인 

판단에 의존하므로 검사자에 의한 오진 가능성이 있다. 따라서, 이 

연구에서는 안저사진 판독의 정확도와 효율성을 높이기 위해 

자동화된 컴퓨터보조진단 시스템을 개발하였다. 개발된 시스템은 

정상안저와 비교하여 망막신경섬유층결손과 시신경창백을 각각 94%, 

96%의 정확도로 검출하였고, 단일 건강검진기관에서 시행한 대규모 

선별검사에서 90%의 정확도로 시신경질환을 진단하였다. 

 

............................................................................................................... 

주요어 : 안저사진, 자동진단, 시신경병증  
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