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ABSTRACT

Additive Regression with Hilbertian

Responses

Jeong Min Jeon
The Department of Statistics
The Graduate School

Seoul National University

This paper develops a foundation of methodology and theory for
the estimation of structured nonparametric regression models with
Hilbertian responses. Our method and theory are focused on the
additive model, while the main ideas may be adapted to other
structured models. For this, the notion of Bochner integration is
introduced for Banach-space-valued maps as a generalization of
Lebesgue integration. Several statistical properties of Bochner in-
tegrals, relevant for our method and theory, and also of importance
in their own right, are presented for the first time. Our theory is
complete. The existence of our estimators and the convergence of a
practical algorithm that evaluates the estimators are established.

These results are non-asymptotic as well as asymptotic. Further-



more, it is proved that the estimators of component maps achieve
the univariate error rates in pointwise, L? and uniform conver-
gence, and converge jointly in distribution to Gaussian random
elements. Our numerical examples include the cases of functional,
density-valued and simplex-valued responses, which demonstrate
the validity of our approach.

Keywords: Additive model, Smooth backfitting, Bochner inte-
gral, Non-Euclidean data, Infinite-dimensional space, Hilbert space,
Functional response.
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Chapter 1

Introduction

Regression analysis with non-Euclidean data is one of the major
challenges in modern statistics. In many cases it is not transparent
how one can go beyond traditional Euclidean methods to analyze
non-Euclidean objects. The problem we tackle in this paper is
particularly the case. We consider the estimation of nonparametric
additive models that involve non-Euclidean random objects.
Additivity is a commonly employed structure with which one
is able to avoid the curse of dimensionality in nonparametric re-
gression. A powerful kernel-based method for achieving this is the
smooth backfitting (SBF) technique originated by Mammen et al.
(1999). A full account of the practical issues about the method
is given in Nielsen and Sperlich (2005). The idea has been devel-
oped for various structured nonparametric models, see Mammen
and Park (2006), Yu et al. (2008), Linton et al. (2008), Lee et al.
(2010, 2012) and Han and Park (2018+), for example. All of them,
however, treated the case of Euclidean response. There have been

a few applications of the idea to functional response. Examples in-



clude Zhang et al. (2013), Lee et al. (2018) and Park et al. (2018+).
But, their techniques and theory are essentially the same as in the
case of Euclidean response. They applied the SBF technique to a
functional response Y (:) on a domain 7 in a pointwise manner,
ie., to Y(t) for each t € T, or to a finite number of its singular
components that live in a Euclidean space. These methods have
certain drawbacks. The pointwise application does not guarantee
a smooth trajectory for Y(-) on 7 while Y () is believed to be
smooth. Methods based on singular components require choosing
the number of included components in a working model, which is
very difficult.

In this paper we develop a unified approach for fitting additive
models with a Hilbertian response. Let H be a separable Hilbert
space with a zero vector 0, vector addition @ and scalar multipli-
cation @. For a probability space (2, .%#, P), we consider a response
Y : Q — H. Let X = (X3, --,Xy4) be a predictor taking values
in a compact subset of R?, say [0,1]¢, and € be a H-valued error
satisfying E(€|X) = 0. The additive model we study in this paper

is

d
Y =my® Pm;(X;) de, (1.0.1)
j=1
where my is a constant in H and my, ..., my : [0, 1] — H are mea-

surable maps. There are numerous examples of Hilbertian vari-
ables. In the next section we introduce three examples, which we
also treat in our numerical study in Section 5. These are func-
tional variables, density-valued variables and simplex-valued vari-

ables. Our approach guarantees that the values of the estimators

;ﬁ'! 2 1_..” .__;J!_ W



of m;(z;) at «; belong to the space H where the targets live. This
is a minimal requirement for a reasonable estimator. For exam-
ple, in case H is a space of smooth functions defined on 7, as is
typically the case with functional data, our approach always pro-
duces smooth m;(z;)(-). Existing methods where one estimates
m;(x;)(t) pointwise in t € T do not have this property. Moreover,
the computation of our estimators is faster than the pointwise ap-
proach as the grid on T gets denser, since the proposed method
estimates m;(x;)(-) on the whole 7 all at once.

The SBF technique involves solving a system of integral equa-
tions that is based on the integral representations of the condi-
tional expectations of the response. In our case, the traditional
Lebesgue integral theory does not apply since we treat random
elements taking values in a general Hilbert space. For this, we
base our approach on the notion of Bochner integration. The no-
tion, rather new in statistics, is for Banach-space-valued maps. We
develop integral formulas for (conditional) expectation, relevant
theory for projection operators acting on the spaces of Hilbert-
space-valued maps and some topological properties of the space
of regression maps under the model (1.0.1). These are essential
for investigating the theoretical properties of our estimators. We
note that this paper is the first in the statistical application of
Bochner integration. We establish the basic building block of struc-
tured nonparametric regression for Hilbertian responses. For this
we start from the foundation of Bochner integral theory. Some
of our results are familiar in Lebesgue integral theory, but their

derivation for Bochner integrals requires substantial innovation.
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Based on the Bochner integral theory we develop in this paper,
we establish the existence of the SBF estimator of the regression
map under the model (1.0.1) and the convergence of the SBF al-
gorithm. The results include non-asymptotic versions as well as
asymptotic ones. The non-asymptotic results have not been stud-
ied before even for the case H = R. The conventional way of estab-
lishing the convergence of the SBF algorithm is to prove that the
associated projection operators are compact. We find, however,
that this is no longer valid for infinite-dimensional H. Instead, we
prove that the space of sums of univariate Hilbert-space-valued
maps is closed by a novel use of a result on the equivalence of
the ‘compatibility’ of sum-maps (the condition (c) in Proposi-
tion 3.3.1) and the closedness of the sum-space. We also provide
a creative way of implementing the proposed algorithm, which re-
duces the task of iterating abstractly-defined Bochner integration
to that of updating real-valued weight functions based on Lebesgue
integration, see (2.5.2). Furthermore, we present complete theory
for the rates of convergence of the estimators of the component
maps m; and their asymptotic distributions.

We do not consider the case where the predictor X in (1.0.1)
is of infinite-dimension. The reason is that our approach is based
on solving a system of integral equations where each integral is
evaluated on the space of X values. It is well known that there is no
nontrivial locally finite translation invariant measure on infinite-
dimensional separable Banach spaces, like Lebesgue measure on
RE. Thus, it is not easy to evaluate the integrals in practice when

X takes values in an infinite-dimensional separable Banach space.

.-':r-\-..ﬁ-! -k"l- 1_-” .-"‘.l!_ T'I.I



There have been a few attempts of dealing with possibly non-
Euclidean response. Dabo-Niang and Rhomari (2009), Ferraty et
al. (2011) and Ferraty et al. (2012) studied a functional Nadaraya-
Watson estimator for Banach- or Hilbert-space-valued response.
Lian (2011) and Lian (2012) investigated a functional k-nearest
neighbor estimator for Hilbert-space-valued response. But, these
are for full-dimensional regression, which would suffer from the
curse of dimensionality when the number of predictors increases.
Some others for functional response include Chiou et al. (2003),
Jiang and Wang (2011), Zhu et al. (2012) and Scheipl et al. (2015).
They are differentiated from ours in that their methods or the
models under study essentially reduce the problem to the esti-
mation of a regression function for a scalar response. There has
been no earlier work on nonparametric regression with density-
valued responses, although Petersen and Muller (2016) introduced
a transformation approach for density-valued responses and pre-
dictors. Recently, Tsagris (2015) considered simplex-valued re-

sponses but in a parametric model.



Chapter 2

Bochner Smooth

Backfitting

Throughout this paper, we use the symbol B to denote Banach
spaces and || -|| for their norms. We use the symbol B(B) to denote
the Borel o-field of B. For a set S € B(B), we write S N B(B) for
the o-field {SNB: B € B(B)} on S. We denote Hilbert spaces by
H and their inner products by (-,-). We also let Leb;, denote the

Lebesgue measure on R¥.

2.1 Examples of Hilbertian response

Here, we introduce three Hilbert spaces. These are the spaces we

consider for the response in our numerical study in Section 5.

L? and Hilbert-Sobolev spaces. For a subset S € B(RF), con-
sider L2(S, S N B(R¥), Leby,) and a Hilbert-Sobolev space W2(S)

for I € N. It is well known that these are separable Hilbert spaces.



Bayes-Hilbert spaces. Consider a space of density functions on

S € B(R). Let

M = {p: uis a o-finite measure on SN B(Rk) such that

p < Lebg and Leby < p}.

For yn € M, let f, = du/dLeby. For p, v € M and ¢ € R, define
pv, p o S N B(RF) — [0,00] by (uv)(A) = [, fu(s)fu(s)ds and

A) = [4(fu(s))°ds, respectively. Then, v, p¢ € M. For these
measures, fu, = fu - f, a.e. [Lebg| and fu,.c = (fu)° a.e. [Leby].
Define

2 k [§ = . (6] S 2 S o0
(5.5 NBRY) Lebw) = {[£] -0 € M. | (10 f(5)) s < o0},

where [f,] denotes the class of all measurable functions g : S —
[0, 00] such that g = C' - f, a.e. [Leby] for some constant C' > 0.
Define @ and ® on B2(S, SNB(R¥), Leby) by [f.] @ [f,] = [fu] =
(fu- fo]l and ¢ © [fu] = [fue] = [(fu)], respectively. Also, define

() by
(e = [ og( ]{5((5,))>1og< ny”f:))) dsds’

Then, B2(S, S N B(R¥), Leby) is a separable Hilbert space with

0 = [fLeb,) = [1], as proved by van den Boogaart et al. (2014).

Simplices. For s > 0, consider the space S¥ = {(vy,--- ,v;) €
(0,8)k Z§:1 v; = s}. For v,w € S¥ and ¢ € R, define @ and
®, respectively, by v & w = (20— Ulwlﬁ’.’f‘kawk) and
cOV = (vfjﬁrv;; e Uffv%wg) Define

ko k
= ZZlog vj/v) log(wj/wy).

j=11=1



Then, with 0 = (s/k,...,s/k),(SE,®,®, (-,-)) is a separable Hilbert

space.

2.2 Bochner integration

Our method of estimating the additive model (1.0.1) is based on
the representation of the conditional means of my(X}) given X;
for k # j, in terms of the conditional densities of X}, given X;.
This involves integration of my(xy) over zj in the support of the
corresponding conditional density. Since each component my is
a H-valued map, the conventional Lebesgue integration does not
apply to the current problem. In this subsection we study a notion
of integration in a more general setting. Specifically, we consider
integration of Banach-space-valued maps.

For the integration of B-valued maps, we use a notion of Bochner
integral. Let (£, <7, u) be a measure space. In the classical Bochner
integral theory, see Lang (1993) and van Neerven (2008), for ex-
ample, Bochner integrals are defined for Banach-space-valued u-
measurable maps. Note that amap f : Z — B is called u-measurable
if it is the p-almost everywhere limit of a sequence of p-simple
maps. A map f : Z — B is called p-simple if f(z) = @) | 14,(z) ©
b; for some b; € B and disjoint A; € o with pu(A;) < oo. However,
a p-measurable map is not necessarily (&7, B(B))-measurable. Fail-
ure of (o, B(B))-measurability causes a fundamental problem in
statistical applications. To explain why, let (2,.%, P) be a prob-
ability space and Z : 0 — Z be a random element. If f is not
(7, B(B))-measurable, then f(Z) : 2 — B may not be a random

element.

;ﬁ'! 2 1_..” .__;J!_ W



We consider a recently introduced notion of Bochner integra-
tion, which has never been studied in statistics, to the best of our
knowledge. The new notion is for ‘strongly measurable’ Banach-
space-valued maps. We briefly introduce it here. For more details,
see Cohn (2013). For a map f : Z — B, we let range(f) denote
{f(z):z€ Z} CB.

Definition 2.2.1. A map f : (2,9, ) — (B,B(B)) is called
strongly measurable if it is (<7, B(B))-measurable and range(f) is

separable.

An immediate example of strongly measurable map is p-simple
map. For a p-simple map f(z) = @ 14,(z) ® b;, the Bochner
integral is defined by [f(z)du(z) = @), u(A;) © b;. It can be
shown that, if a map f is strongly measurable and ||f|| is Lebesgue
integrable with respect to u, then there exist u-simple maps f,

such that f(z) = ILm f.(z) and [|f,(2)| < ||f(z)] for all z and n.

Definition 2.2.2. A map f : (Z,9,u) — (B,B(B)) is called
Bochner integrable if it is strongly measurable and ||f|| is Lebesgue
integrable with respect to . In this case the Bochner integral of f is
defined by [ fdu = nh_)ngo [ £adp, where £, is a sequence of p-simple
maps such that f(z) = nli_)rgofn(z) and ||£.(2)]| < ||f(z)]|.

We present several properties of the Bochner integral that are

fundamental in its statistical applications. For 1 < p < oo, define

LP(Z,9, 1), B) = {f : Z — B|f is strongly measurable and

([ 1@ irau) " < oo},



Recall that £P((Z, .o/, ), R) can be made into a Banach space by
taking its quotient space LP((Z, </, ), R)/Ng with respect to the
kernel NV of its norm, Ng = {f : f =0 a.e. [p]}. This also holds
for £P((Z, </, ), B). In particular, for N' = {f : £ = 0 a.e. [y]},
the quotient space L2((Z, 4, 1), H)/N is a Hilbert space with an
inner product (-,-), defined by ( = [ (f z))du(z),
where [f] and [g] denote the equlvalence classes of maps f and g,

respectively. We adopt the following convention throughout this
paper.

Convention 1. We write LP((Z, o7, u), B) for LP((Z, .47, 1), B) /N
We call LP((Z,9/, 1), B) Lebesgue-Bochner space. We will write
all elements in LP((Z,47,p1),B) using equivalence class notation
[-] to distinguish them from the elements in LP((Z, %7, 1), B). We
say simply ‘measurable’ for ‘strongly measurable’ and ‘integrable’
for ‘Bochner integrable’. We say ‘u-integrable’ in case we need to
specify the underlying measure p associated with Bochner inte-
gration. ]

For measure spaces (2,7, u) and (W, B,v), let o/ @ B de-
note the product o-field and p ® v denote a product measure on
o @ AB. For a (o, HB)-measurable mapping T : Z — W, we
let uT~! denote a measure on (W, %) defined by pT-}(B) =
w(T~YB)), B € #. For a probability space (2,.%, P) and a ran-
dom element Z : (2, #,P) — (2,4, p) with o-finite u, we write
pz for its density dPZ~!/du with respect to p.

The following two propositions are the basic building blocks of
our methodological and theoretical development to be presented

later. They are also of interest in their own right. The results

10



are very new in statistics although there are familiar versions in
the Lebesgue integral theory. In the propositions and thereafter
throughout this paper, B denotes a separable Banach space. Sepa-
rability is required for the associated maps to be measurable, see

Definition 2.2.1.

Proposition 2.2.1. Let (2, %, P) be a probability space and (Z, o/, )
be a o-finite measure space. Let Z : @ — Z be a random el-
ement such that PZ™' < p and £ : Z — B be a measurable
map such that E(||f(Z)||) < oo. Then, it holds that E(f(Z)) =

[ £(2) © pa(2)du(2).

Proof. From the condition of the proposition, f(Z) :  — B is
P-integrable so that an application of Lemma 6.1.1 in the Ap-
pendix gives that f is PZ~'-integrable and [, f(z)dPZ™'(z) =

Jo £(Z)dP. According to Lemma 6.1.2 in the Appendlx fO(dPZ™Y/du)
is p-integrable and [ f(z)dPZ~ = [, £(z)0(dPZ " /du)(z)du(z).

The proposition now follows. O

Proposition 2.2.2. Let (Q,.%, P) be a probability space, and (Z, o/, )
and (W, AB,v) be o-finite measure spaces. Let Z : Q@ — Z and
W : Q — W be random elements such that P(Z, W)™ ! < p® v.
Assume that pw(w) € (0,00) for allw € W. Let £ : Z — B be a
measurable map such that E(||f(Z)||) < co. Define g : W — B by

g(w) = fzf(z) %d(), if w € Dyy

go(w), otherwise,

where Dy = {w € W : [ ||f(z)|lpz,w(z, w)du(z) < oo} and
o : W — B is any measurable map. Then, g is measurable and

g(W) is a version of E(f(Z)|W).

11



Proof. We first note that the map (z,w) — f(z) © pz w(z, w) is

measurable. From Tonelli’s theorem, it follows that
E(8(2)]) = / / 1£(2)|lpz.w (2, w)dv(w)dp(z)
2w (2.2.1)
— / / 1£(2) 12w (2, w)dpu(z)d(w).
VAR A

Since E(||f(Z)]]) < oo, (2.2.1) implies that [ ||f(z)|pz w(z,-)du(z) <
oo a.e. [v]. By Lemma 6.1.3 in the Appendix, h : W — B defined

h(w) = g(w) ® pw(w) is measurable. Thus, g is measurable
and g(W) is (W~1(%), B(B))-measurable. We also get

1
/an(w)ndpw (w) < /W /Z 1£(2) [pz,w (2 W)du(z)dv(w) < co.

Hence, g(W) € LY((Q,W~1(%4),P),B) by Lemma 6.1.1. Now,
from Lemmas 6.1.1-6.1.3 and the fact that v(Dy,,) = 0 it follows
that, for all B € 4,

/ g(W)dP = / £(2) © [Lp(w)pz.w(z, w)ldu ® v(z, w)
W-1(B) ZXW

- / £(Z)dP.
wW-1(B)

This completes the proof of the proposition. O

2.3 Lebesgue-Bochner spaces of additive maps

We introduce some relevant spaces for the estimation of the addi-
tive model (1.0.1). For a probability space (€2,.%, P) and a sepa-
rable Hilbert space H, let Y : Q — H be a response with E||Y||? <
00, and X : Q — [0,1]¢ a d-variate predictor vector. We assume

PX~! <« Leby. For simplicity we write p, instead of px, to denote

12



its density dPX~1/dLebg. We also write p; for alPXj_1 /dLeby and
pjk for dP(X;, X))~ /dLebs.

The conditional means E(Y|X;) and E(Y|X), respectively,
are (X:'([0,1] N B(R)), B(H))- and (X~1([0,1]4 N B(R?)), B(H))-
measurable maps by definition. In general, for a measurable space
(Z,47), a random element V : @ — B and a random element
Z : Q — Z, it holds that V is (Z7!(«), B(B))-measurable if
and only if there exists a measurable map h : Z — B such
that V. = h(Z), see Lemma 1.13 in Kallenberg (1997), for ex-
ample. Thus, there exist measurable maps h; : [0,1] — H and
h: [0,1]¢ — H such that E(Y|X;) = h;(X;) and E(Y|X) = h(X).
For such measurable maps, we define E(Y|X; = :) = h; and
E(YIX=:)=h.

Let m : [0,1]% — H be defined by m(x) = mq @ émj(xj).
We note that m = E(Y|X = :). As the space where EJ(_S}\X =)

belongs, we consider
£3(p) = £2((0,1]%,0, 1] N B(R), PX "), H)

and endow LE(p) := L2(([0,1]%,[0,1]¢ N B(RY), PX~1),H) with
the norm || - ||2 defined by

= [ IEPaPXte = [ 1eeolpeo

[0,1]¢

As subspaces of L (p), define
L¥(p;) == {fe L (p) : 3 a univariate map f; such that f(x) = £;(z;) }

and define LE(p;) := L5 (p;)/N. We note that £ (p;) depends

on p only through its marginalization p; since, for f € Egﬂ(pj), it

13



holds that
1
/ £ [2p(x)dx = / 16 () 11%; () de,
[0,1]¢ 0

where f; is a univariate map such that f(x) = fj(z;). Let S¥(p)
be the sum-space defined by

d

$%(p) = {@PIf]: 1] € LE(py), 1 < j < d} < LE().
j=1

To define empirical versions of L5(p), L¥(p), £ (p;), LE (p;)
and S™(p), we let K : R — [0,00) be a baseline kernel function.
Throughout this paper, we assume that K vanishes on R\ [—1, 1]
and satisfies f}l K(u)du = 1. For a bandwidth h > 0 we write
K} (u) = K(u/h)/h. Define a normalized kernel Kj,(u,v) by
Kp(u—v)

Ky (u,v) = m

whenever fol K (t —v)dt > 0 and we set Kj(u,v) = 0 otherwise.
This type of kernel function has been used in the smooth backfit-

ting literature, see Mammen et al. (1999), for example. Note that

fol Kp(u,v)du =1 for all v € [0,1] and
Kp(u,v) = Kp(u—wv) for all (u,v) € [2h,1—2h] x[0,1]. (2.3.1)
We also have
0 1 1 1
/ K(u)du/\/ K(u)du §/ Kp(u —v)du §/ K(u)du
~1 0 0 -1

for all v € [0,1] and h < 1/2. Hence, i [, K (u)duA [ K (u)du >
0, then
) < Kp(u—v)

B f_ol K (u)du A fol K(u)du

Kp(u—v) < Kp(u,v

14



for all u,v € [0,1] and h < 1/2.
Suppose that we observe (Y;,X;),1 < i < n, which follow the

model (1.0.1). We estimate p;(z;) and p;r(z;, ) by

n
pi(s) =n"> Ky (25, X)),
=1

p]k(iﬁj,l‘k 1ZKh xjvxlj)th(xkaX’Lk)
=1
respectively, where X;; denotes the jth entry of X;. Here, we allow
the bandwidths h; to be different for different j. Because of the
normalization in defining Kp(+,-), it holds that

1 1
/0 pj(xj)da; =1, /0 Pjk(@j, 2x)dwy = pj(2;).

Let p be the multivariate kernel density estimator of p defined
by p(x) =n 12 HJ 1 Kn; (x5, Xij). The density estimator p also

have the marglnahzatlon properties as p:

/[01]d—1 p(x)dx—; = p;(z;), /[0 s PR)dX_j . = Pjw(as, xx)

for 1 < j # k < d, where x_; and x_j;; denote the respective
(d—1)- and (d — 2)-vector resulting from omitting x; and (z;, z)
inx=(z1,...,2q).

Now, define a measure PX " on [0, 1]*NB(R%) by PX~(B) =
[ B(x)dx. With this measure, we define £5(p), L5 (p), L5 (p;) and
Li(p;) as L5 (p), L5 (p), L5 (p;) and LE(p;) with PX ! in the def-
inition of £5(p) and LY (p) being replaced by PX~!. We endow
LY (p) with the norm || - ||, defined by

6, = [ IGIPaPXT00 = [ 1eeop00i

15
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Also, define an analogue of S™(p) by

d
H (A H( A ~ H (A
$9(5) = {EDIE) : (6] € L5(5y), 1 < j < df € L5 (0.

j=1
Convention 2. It is often convenient to treat f in L£Y(p;) or
in £5(p;) as a univariate map and write f(z;) instead of f(x).
This convention is particularly useful when we express a system
of Bochner integral equations in Section 2.4, see (2.4.6) below, for
example. Conversely, we may embed a univariate map f : [0, 1] —
H into L5 (p;) or £E(p;) by considering its version fr defined
by fi(x) = f(z;) for x € [0, 1]¢. We take the above convention
throughout this paper. With this convention, we may put m; into

L5 (py) it B(|lm;(X;)[*) < oc. O

2.4 Bochner integral equations and backfit-

ting algorithm

In this section, we describe the estimation of the component maps
m; in the model (1.0.1) using Bochner integrals. Throughout this
paper, we assume that m; € £5(p;) for all 1 < j < d. Further-

more, we make the following assumptions on the densities p; and

Pjk-

Condition (A). The p; and pji, for all 1 < j # k < d satisfy
pj(xj) > 0 and folp?k(xj,xk)/pk(xk)dxk < oo for all zj € [0,1],

and ) )
2 (T, @
/ dejdxk < 0.
0,12 25 () Pk (@)

16



We also use the following analogue of the condition (A) for p;

and pjg.
Condition (S). The p; and pj, for all 1 < j # k < d satisfy

pj(x;) > 0 and folﬁik(xj,xk)/ﬁk(xk)dwk < oo for all zj € [0,1],

p2, (i, x
/ Mdmjdxk < o0.
0,12 Dj(25)pr (k)

and

We note that the condition (S) always holds under weak condi-
tions on the bandwidths and baseline kernel function. Let X q) ; <
e < X(n)jj denote the order statistics of (X;; : 1 <4 < n). Sup-

pose that h; and K satisfy

(Sl) hj > max {X(l),j7 1_X(n),j7 ISI?Sa'rf(—l(X(i—i_l)’j —X(l)d)/2} for
all1<j<d.

(S2) K is bounded and inf,¢c[_. g K (u) > 0, where

C = Imax hj_l max {X(l),j) ]'_X(n)J’ 1§I{l§a‘;(_1(X(z+1),j_X(l),j)/2} <1

1<j<d

Then, it is easy to see that
inf p;(z;) >0, sup  Pjk(zj, xp) < 00
z;€[0,1] x;,x,€[0,1]
for all 1 < j # k < d. Hence, (S1) and (S2) imply the condition
(S)-

From the basic properties of conditional expectation and the

model (1.0.1), we get
E(Y|X;) = mp © m;(X;) & @PEmg(Xp)|X;), 1<j<d

ki
(2.4.1)

17



Under the condition (A) we also get that

1
| et oo < oo 2.42)
0

for all z; € [0,1] and 1 < j # k < d. The property (2.4.2) is a
simple consequence of an application of Holder’s inequality. Then,

by Proposition 2.2.2, we may write (2.4.1) as

Xj,
k#£j pj(XJ)

By the definition of E(Y|X; = -), we may also write it as

E(Y|X; = ;) = mo ® mj(z;) @@/ my (v )@dek, 1<j<d
vt pi(z;)

(2.4.3)

For the identifiability of m; in the model, we put the constraints
E(m;(X;)) = 0,1 < j < d. By Proposition 2.2.1, the constraints

are equivalent to
1
/ mj(a:j) @pj(xj)dxj =0, 1<5< d. (2.4.4)
0

The constraints entail my = E(Y).
Now we describe the estimation of m; based on the Bochner
integral equations at (2.4.3). We estimate E(Y|X; = z;) by the

Nadaraya-Watson-type estimator
n
m;(z;) = [p;(z;)'n7) © K, (z;, Xij) Y (24.5)

and E(Y) by the sample mean Y = n™t ® @I, Y’ Let & be
defined by b; © by = by @ (—1 ® by). We solve the estimated

18



system of Bochner integral equations

- - S ! X ﬁjk(xjvmk) .
;(z;) =m;(z;) o Yo P [ myla) 0 L dy, 1<j<d

k£ 70 pj(x;)

(2.4.6)
for (my,--- ,1my) in the space of d-tuple maps {(fi,....fy) : f; €
L£E(p;), 1 < j < d}, subject to the constraints

1
/ ;(z;) © pj(zj)de; =0, 1<j<d. (2.4.7)
0

We note that the Bochner integrals at (2.4.6) are well-defined for
m; € L5(p;) under the condition (S).

In the next section we will show that there exists a solution
(m; : 1 < j <d) of (2.4.6) satisfying (2.4.7) and that their sum
@?:1 m; is unique, only under the condition (S). The estimator
of the regression map m := E(Y|X = -) : [0, 1]¢ — H is defined by
m, where m(x) =Y @ érhj(:cj). For the estimator m, we will
also prove that the comé(grllent tuple (m; : 1 < j < d) is uniquely
determined under some additional assumption. Our estimator of
(mji,...,my) is then the solution (mj,...,m,;). We call m and
m; Bochner smooth backfitting estimators or B-SBF' estimators in
short, and the system of equations (2.4.6) Bochner smooth back-
fitting equation, or B-SBF' equation in short.

Our approach guarantees that m;(z;) and m(x) belong to H,
the space of the true values of the maps m; and m as well as
the values of Y. For example, in the case where H is a space
of smooth functions in L?(S, S N B(RF),Leby), as is typically as-
sumed in functional data analysis, our approach always produces

a smooth trajectory mj;(z;)(-) : S — R for each x;. Here, one
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should not confuse the smoothness of m;(z;)(-) : S — R with
that of t; as maps from [0,1] to £2(S, S N B(RF), Leby). In the
case where H is a Bayes-Hilbert space B2(S, SN B(RF), Leby) or a
simplex space Sf, our approach gives automatically densities on S
or k-dimensional compositional vectors with nonnegative entries,
respectively, as the estimators of m;(z;) and m(x), that integrate
or sum into one.

To solve the B-SBF equation (2.4.6), we take an initial esti-

mator (m[lo],~-- [0]) that satisfies the constraints (2.4.7). We

update the estimator (m[1 o ,mg]) for r > 1 by

[r](l'j) m;(z;) @Y@@/ m Md%k
k<j pj(z;)

@EB/ ml ™ (z pij’i(wj’x’“)d:ck, 1<j<d.
et pj(;)

(2.4.8)

We let ml"(x) = Y @ @?21 rhgﬂ(xj). We call (2.4.8) Bochner
smooth backfitting algorithm or B-SBF algorithm in short. In the
next section we will show that the B-SBF algorithm converges
always in | - ||2,, norm under the condition (S). We will also show
that it converges in || - |2 norm with probability tending to one
under weak conditions on p, K and h;. We note that, if the initial
estimator (rh[lol, . ,rhgo]) satisfies the constraints (2.4.7), then all
subsequent updates (rﬁ[{], e [T]) for » > 1 also satisfy (2.4.7)
due to the normalization property fo K, (u,-)du=1 on [0,1].
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2.5 Practical implementation

Bochner integrals are defined in an abstract way. Thus, one can
not evaluate the integrals at (2.4.8) with the usual numerical in-
tegration techniques. In this subsection we present an innovative
way of implementing the B-SBF algorithm. The key idea is to use
the fact that, for any measure space (Z, .97, i),

(Bochner) /Zf(z) ® bdu(z) = (Lebesgue) /Zf(z)du(z) © b,
(2.5.1)

where f is a real-valued integrable function on Z and b is a con-

stant in a Banach space. Suppose that we choose
0 L
~ [0 -1 0
m;(z;) =n"" © @wlj (zj)©Y
i=1

as the initial estimators with the weights wl[-g} (zj) € R satisfying
f01 wl[.(;} (xj)p;(xj)dx; = 0. This is not a restriction since we can take
wl[?] =0foralll <j<dand1 <1i<n.Then, we may express the
Bochner integrals on the right hand side of the equation at (2.4.8)

in terms of the corresponding Lebesgue integrals as follows.

K (z
il () = ! (hn / ) DT Th)
® —1-
@ pj(x;) ; pj(x;)
B Z/ =1l pjki(xjal'k)d k) oY,
k>j p](ﬂf])

@@wm (z;)©Y;, 1<j<d

(2.5.2)

Thus, it turns out that the algorithm (2.4.8) reduces to a simple
[r

iteration scheme that updates the weight functions wij] based on
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Lebesgue integrals.

[

The equation (2.5.2) reveals that Ii’ljr] for » > 1 are linear

smoothers if the initial rﬁgo] are. It also demonstrates explicitly

that the values of rﬁgﬂ

the values of Y; and m;(z;). The idea of using (2.5.1) in the evalu-

(x;) for each z; belong to H, the space of

ation of Bochner integrals appears to be important in the analysis
of more general object-oriented data belonging to a Banach space.
One may develop a similar idea for nonparametric structural re-

gression dealing with various types of random objects.
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Chapter 3

Existence and Algorithm

Convergence

3.1 Projection operators

Our theory for the existence of the B-SBF estimators and the
convergence of the B-SBF algorithm relies heavily on the the-
ory of projection operators that map L5 (p) to L5 (p;), or L5 (p)
to LE(p;). We start with a proposition that characterizes LE(p;)
and L5 (p;), respectively, as closed subspaces of L5 (p) and LE(p).
These topological properties of L5 (p;) and L5 (p;) are essential to
defining relevant projection operators. We write By < B if B; is
a closed subspace of a Banach space By. The following proposition
is immediate from Lemma 6.1.5 in the Appendix and the fact that

a complete subspace of a metric space is closed.
Proposition 3.1.1. Li(p;) < LY (p) and LY (p;) < LE(p).
We define the operators ; : Li(p) — LE(p;) by 7;([f]) = [m¢],

23



where

() = f[o,l]dfl f(x) ® pfgj-)dxfja if z; € Dj(f)
0, otherwise

where D;(f) = {z; € [0,1] : f[O,l]d*l |f(x)||p(x)dx_; < oco}. Like-
wise, we define the operators #; : LY (p) — Li(p;) with p and p;
being replaced by p and p;, respectively. The following proposition
demonstrates that both 7; and 7; are projection operators on the

respective spaces.

Proposition 3.1.2. If p;j(z;) > 0 for all z; € [0,1], then, 7,
is an orthogonal projection operator. Also, if pj(x;) > 0 for all

xj € [0,1], then, 7tj is an orthogonal projection operator.

For Banach spaces By and By, we let £(B1,B2) denote the
space of all bounded linear operators from B; to By. We write
simply L(B) for L(B,B). Let ;L5 (py) : L' (p) — LY (p;) de-
note the operator 7; restricted to Li(py) for k # j. Under the
condition (A), 7;|Li(px) are integral operators with the kernel
kjr : [0,1]% x [0,1]¢ — L(H) defined by kji(u,v)(h) = h®
%. To see this, we note that the condition (A) implies
f[o,l]d—l £ (x)||lp(x)dx_; < oo for all z; € [0,1] if £ € L5 (px), so
that D;(f;) = [0, 1] for all f;, € L3 (px). Thus, it holds that

g (u;) = x Py, xy) (g
£, (ug) /[O’l}dfk( )ij(uj)pk(xk)dpx (x)

:/ ke (w, ) (F () dPX ! ().
[0,1]¢

Similarly, under the condition (S), #;|Li(px) are integral oper-

ators with the kernel Rjk : [0,1]% x [0,1]% — L(H) defined by

kji(u,v)(h) = h o Lkl

Py (uj)pr(ve)
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3.2 Compactness of projection operators

In the case where H = R, a common approach to establishing the
existence of the SBF estimators and the convergence of the SBF
algorithm is to prove that m;| L5 (pg) or ;| LY (py) for all 1 < j #
k < d are compact operators, see Mammen et al. (1999) or a more
recent Mammen et al. (2014), for example. Indeed, it follows from
Proposition A.4.2 in Bickel et al. (1993) that, if 7;|LE(py) for all
1 < j # k < d are compact, then

SH(p) < L (p). (3.2.1)

Moreover, according to Corollary 4.3 in Xu and Zikatanov (2002),
(3.2.1) implies

||T||E(SH(p)) <1, (322)

where T is an operator in £(S™(p)) defined by T = (I —mg)o---o0
(I — 1), where I is the identity operator. The same properties
hold for S™(p) and for T', defined in the same way as T with 7;
being replaced by 7, if #;| L5 (px) are compact. The two properties
at (3.2.1) and (3.2.2) are essential to the existence of the B-SBF
estimators and the convergence of the B-SBF algorithm.

The compactness of m;| L5 (py) or 7| L5 (px) has been unknown
when H # R. Some sufficient conditions for the compactness
of integral operators defined on Lebesgue-Bochner spaces of ‘u-
measurable maps’ were studied by Busby et al. (1972) and Vath
(2000) among others. But, the case for ‘strongly measurable maps’,
which are relevant in statistical applications and on which our the-

oretical development is based, has never been studied. Below, we
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present two general theorems in the latter case. The first one gives
a sufficient condition for compactness, and the second is about
non-compactness for certain integral operators. The two theorems
have important implications in our theoretical development, while
they are also of interest in their own right.

In the statements of the two theorems, (2, .o, u) and (W, %, v)
are measure spaces and B; and By are separable Banach spaces.
We denote by || - |z, B, the operator norm of L(By,B2). Let
1 <p,q<oosatisfy p~t+¢7 1 =1. Let k: ZxW — L(B1,Bs) be
a measurable map such that [, [Ik(z, w)||‘]£(]BI’]B{2)d,u<XJ1/(z7 w) <
0o. Define L : LP((Z,4/,n),B1) — LY((W, %B,v),Bs) by L([f]) =
[Lg], where

Le(w) = Jzk(z,w)(f(z))du(z), if we Dy (3.2.3)

Lo(f)(w), otherwise,

where Dyy ={weW: [, Hk(z,w)”qﬁ(ﬁh%)du(z) < oo} and Ly is

any linear map from LP((Z, .o/, 1), B1) to {g : W — Bs | g is measurable}.

Finally, we let C(B1,B2) denote the space of all compact operators

from By to Bs.

Theorem 3.2.1. L is a bounded linear operator. Furthermore, if

range(k) C C(B1,B2), then L is compact.

Theorem 3.2.1 tells that, if the kernel of an integral operator
takes values in the space of compact operators, then the inte-
gral operator is compact. To apply the theorem to m;|L (pg) or
7;| LY (py) we need to check the measurability of k;j, and ﬁjk. This
is not trivial since the Banach space C(B1,B2) is not separable in

general. In Lemma 6.1.6 in the Appendix we establish that both
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k;, and l;jk are measurable. One can also show that kj(u,v)
and Rjk(u, v) belong to C(H,H) for all u,v € [0,1]¢ under the

conditions (A) and (S), respectively, if H is finite-dimensional.

Corollary 3.2.1. Suppose that H is finite-dimensional. Then, for
all1 < j # k <d,mj|L5(px) and 7;|LE(px) are compact under the
conditions (A) and (S), respectively.

At the beginning we thought that m;|L5(py) and 7;| L5 ()
might be also compact when H is infinite-dimensional. However, we
find that the conclusion of Corollary 3.2.1 is not valid for infinite-
dimensional H, which follows from an application of the following

theorem.

Theorem 3.2.2. Suppose that p(2) < oo. Let k: ZxW — R be
a measurable function such that [, |k(z, w)|?dp @ v(z, w) < 0o
and 0 < [, | [ k(z, w)du(z)|"dv(w) < co. Let C € L(By,By)
be a non-compact operator. Then, the operator L at (3.2.3) with
k(z,w)(h) = k(z,w) ® C(h) is a non-compact bounded linear op-

erator.

For the application of Theorem 3.2.2 to ;| LY (py,) and 7| L3 (pr),
we take ry, : [0,1]% x [0,1]7 — R defined by

rik(u, v) = pix(uj, o)/ (pj(ui)pr(vk))

for k in the theorem, and the identity operator Iy : H — H for C.
Note that Iy is non-compact since the unit closed balls in infinite-
dimensional Hilbert spaces are not compact. Also, xjj satisfies
the conditions of x in Theorem 3.2.2 under the condition (A). The
same holds for &, defined by &1 (u, v) = pjr(uj, vi)/ (D5 (w;)pr(vk))

27



under the condition (S). Therefore, surprisingly we have the fol-

lowing corollary of Theorem 3.2.2.

Corollary 3.2.2. Suppose that H is infinite-dimensional. Then,
;| L (py) and #j|LE(px) for all 1 < j # k < d are non-compact
under the conditions (A) and (S), respectively.

3.3 Existence of B-SBF estimators

Non-compactness of ;| LE (px) and 7;| LY (py) raises a major diffi-
culty in proving (3.2.1) and (3.2.2) since the earlier proofs of them
for the case H = R use the compactness of the respective projec-
tion operators. To tackle the difficulty, we rely on the following
equivalence result on (3.2.1) and (3.2.2), which is a direct con-
sequence of applying Lemma 6.1.7 in the Appendix and Propo-
sition 3.1.2. We state the result only for the empirical versions
SM(p) and T', but an obvious analogue holds for S™(p) and T as
well. Let SH(p) denote the closure of S™(p).

Proposition 3.3.1. Assume that p;(z;) > 0 for all z; € [0,1]

and 1 < j < d. Then, the followings are equivalent.
(a) S(p) < L (D).
(0) 17 sz < 1
(c) There exists ¢ > 0 such that, for all [f] € SH(p), there exist
[£1) € LE(p1), - -, [a] € L5 (Pa) satisfying B, [f;] = [f] and
>zt 11135 < elIENl3 .-
The most difficulty is that the above proposition does not say

that one of (a)—(c) is true, which has never been known. Proving or
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disproving any of the statements in the proposition is not easy. We
find that standard inequalities such as Holder’s and those in Diaz
and Metcalf (1966), for example, are not helpful. However, we are
able to show that the ‘compatibility’ condition (c¢) for sum-maps

holds, with an innovative use of Corollary 3.2.1.

Theorem 3.3.1. Assume that (S) holds. Then, the statements in

Proposition 3.3.1 are true.

Proof. We only need to prove the theorem for infinite-dimensional
separable H since the case of finite-dimensional H is implied by
Corollary 3.2.1 and Proposition 3.3.1. We prove (c) in Propo-
sition 3.3.1. Let [f] € S%(p) be given and {e;}?2, be an or-
thonormal basis of H. Then, f(x) = @, (f(x),ex) © e and
I£(x)]|2 = 352, (£(x), ex)? for all x € [0,1]¢. Thus, we have

)13, = /01 Z dx—ZH ) en)llZn

where with slight abuse of the notation for the norm || - ||2,n, we
write [[g]|3,, for real-valued maps [g] € LE(p) as well, meaning
that ||[g]l|3,, = [ lg9(x)|*p(x)dx. By applying Corollary 3.2.1 and
Proposition 3.3.1 with H = R, we can argue that there exists ¢ > 0
such that, for any [g] € S®(p), there exist [g;] € LE(p;) for 1 < j <
d satistying [g] = 3°7_, [g;] and >>_, [[[g;113,, < éll[g]l[3,,.- For this
we have used the condition (S). Since [(f(-), ex)] € S®(p) for all k >
1, this entails that, for each k > 1, there exist [fx;] € L5 (p;), 1 <
j < d, such that [(£(-),ex)] = Y0, [fx;] and S0, [|[£is]113,
éH[(f(),ek)]H%n Thus, it holds that

ZZH Frilll3n < CZH ) er)l3, = ¢lllf]lZ, < oo. (3.3.1)

Jj=1k=1

<
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Now, (3.3.1) implies that, for each 1 < j < d, the sequence
{@)=1[frj (1) © ex]}nx1 is Cauchy in Ly'(p;) since

| & a0 oedl], = /01 Z |5() @ el *(x)dx

Z [ feilll3 — 0

k=m+1

asn > m — oo. Denote the limit of the Cauchy sequence in Lgﬂ (pj)
by [f;]. Then, there exists a subsequence {@k 1[fk]( )@ex]}ti>1 of
{@k:1[fkj(') © ek]}nzl such that

’Iljl

Jim @f,w x) @ e}, = fj(x) a.e. [PX 7],

Then,

d nj1

<Z (lim @fm xX)© e e > O ey

J=1

"i!?

nji1

(zd: lim ( @fza X)® e, e ) ® e

<j;;f ) oo

(f(x),ex) © e = f(x)

@ EGHB8 -

>
Il
—_

O

b
Il
—

a.e. [PX~!]. Moreover, using the fact that h, — h € H and
h! — h* € H imply (h,,,h}) — (h,h*), we get

d nj1
SR, Z/ (Jm 30 ix = 33 Wifilln < eI
— 0,14 l—>oo
j=1 Jj=1k=1
where the inequality follows from (3.3.1). O
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We are now ready to discuss the existence of the B-SBF estima-
tors. For this we consider an objective functional F': SH(p) — R

defined by

£ () / *lanef )2 HKh (7. Xiy)

F is well-defined since F([f]) < 2(max19~§n Y12 + ||[f]||§n) <
oo. Now, for [f],[g] € S™(p),

lim ¢! [Faﬂ@e@[g])—f*([f])} (3.3.2)
n d
=-2 n- Y, of(x x], ij)
Joe ™ Bt 100200} [T

=: DF([f])([g])-

Clearly, DE([f]) : S™(p) — R is a linear operator. It is also
bounded, which we may verify by using Hoélder’s inequality. Hence,

F is Gateaux differentiable.

Theorem 3.3.2. Assume that the condition (S) holds. Then, there
exists a solution (my,--- ,Mmy) € H?:l LE(p;) of (2.4.6) satisfy-

ing (2.4.7). Moreover, their sum is unique in the sense that if
d

(i, - ,1my) is another solution, then Pm;(z;) = Pmj(z;)
j=1 j=1

a.e. [PXY]. Furthermore, if p(x) > 0 for all x € [0,1]%, then the

decomposition of the sum is unique in the sense that mj(z;) =

m’(z;) a.e. [Lebs] for all1 < j <d.

Proof. First, we note that F' is a convex and continuous functional
satisfying F'([f]) — oo as ||[f]||2,n — co. These with Theorem 3.3.1
and Lemma 4 in Beltrami (1967) imply that there exists a mini-

mizer of F' in S™(p). Now, [f] being a minimizer of F is equivalent

31



to DE([f])([g]) = 0 for all [g] € S¥(p), where DE([f]) is defined
at (3.3.2). With specification of [g] € S®(p) to [g;] € L (p;) for
each 1 < j < d, we find that this is equivalent to

-1
/[071}61_1 n o <@(Y ) f ) ® HKh :c],XU)>dX_] —0

i=1 j=1
(3.3.3)

a.e. ; € [0,1] with respect to Leby, for all 1 < j < d. Let
f="fho @? L f; be a decomposition of f such that f; € L5(p;)
and fo (z;) ® pj(xj)dz; = 0 for all 1 < j < d. Plugging the
decomposition into the left hand side of (3.3.3) and by using
fol K, (25, Xij)dr; = 1, we see that fo = Y and (fj 11 <5 <d)
satisfies

p]k x]7$k)

dx
pj(z;) g

f;(x;) = m;(z; @Y@@/ fi ()
k#j

a.e. z;j € [0,1] with respect to Leby, for all 1 < j < d. Define the
right hand side by m;(x;) for all z; € [0,1]. Then, (m; : 1 < j <
d) € T19_, £3(p;) and it satisfies (2.4.6) and (2.4.7).
From (2.4.6), we may verify that [D_, ;] = T([B]_, mi;]) &
8] and (@, 1int] = T, 1)) &[] where
8] = Mo Y]a(I—7q)([hg_10Y])@ - B(I—7g)o- - o(I—72) (1 6Y]) € S™(p).
Since ‘|T||E(SH (5) < 1from Theorem 3.3.1, it holds that [GB] Lmj] =
[@Zi  m7]. This proves the first part of the theorem.
For the proof of the second part, suppose that @j 18j(z;)=0

a.e. [PX 1] with g; satisfying (2.4.7). Since p > 0 on [0,1]? by
the assumption, this implies @?21 gi(r;) = 0 a.e. on [0,1]¢ with
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respect to Lebg, so that, for any map §; € L’gﬂ(ﬁj), we get

d
<@gk(1:k) O px_;(X-j), 6j(xj)> =0 a.e. on [0,1]¢ w.r.t. Lebg.
= (3.3.4)

Because of the marginalization property of px_; such that
/ px_, (x_j)dx_jp = pr(y)
[0 1]d72

and the constraints (2.4.7), the equation (3.3.4) implies that

O—Z /0 plaw) © px_, (x5, 8(2;))dx

1]d

= Z/ / gr(zk) © pr(zy)day, 5j($j)>d$j + /Ol@j(l‘j)a d;(x;))d;

k#ﬁ

0
for all §; € L3(p;). This implies g;(z;) = 0 a.e. on [0,1] with
respect to Leby. This proves the second part of the theorem. [

3.4 Convergence of B-SBF algorithm

In this subsection we establish the convergence of the B-SBF algo-
rithm (2.4.8). We first consider convergence in the empirical norm,
| - ll2,n, for fixed n and given observations (X;,Y;), 1 < i < n.
Then, we study convergence in || - ||2 norm, where we let n di-
verge to infinity. We note that all works in the smooth backfitting
literature treated only the latter asymptotic version for H = R.
[0]

Throughout this section we assume that the initial estimators rirlj

are measurable and satisfy maxi<j<q fol HITIE-O] (z)|1*p;(z)dz; < C
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for an absolute constant 0 < C' < co. This is not restrictive since
we can take nAaE-O] = 0 for all 1 < j < d. Under this condition on
the initial estimators and the condition (S) one can verify that
all the subsequent updates rﬁg-r]
pj(x;)dx; < oo. The following theorem is

are also measurable and satisfy
1.~ 1r 2

max<j<q fy [t (z)]|

a non-asymptotic version of the convergence of the B-SBF algo-

rithm.

Theorem 3.4.1. Assume that the condition (S) holds. Then, ||T||E(SH(]3)) <
1 and there exists ¢ > 0 such that

o

Proof. We embed m;, m; and rhy] into £5(5;). Then, from (2.4.6)
and (2.4.8)

m(x) © ml(x)|

*p(x)dx < &[Ty gz for all v > 0.

;] = [iy] © [Y] © P (i), 1<j<d,
] = (my] © [Y] & P () ) o @) ), 1<j<d

(3.4.1)
Define § = ED?:I m; and s = @;l:l rhg“]. Then, the two systems
of equations at (3.4.1) are expressed as [§] = T'([$])@®[8] and [s['] =
T([81]) @ [8], respectively, where
8] = My Y@ (I —7a) (041 6Y])&- - @(I—Fa)o- - -o(I o) (M1 ©Y]) € S7(p).
Since HTHL(SH@)) < 1 from Theorem 3.3.1, it holds that @3>, 7% ([3])
exists in SE(p), @2, TH([8]) = T, T%([8])) @ [8] and thus
@2, T*([8]) = [8]. This entails

17159y

1820 + 18]ll2.n ) - (3.4.2)
L —[|T']| £¢sm(p)) ( )
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The inequality (3.4.2) gives the theorem with the choice ¢ =
(N 2 + 18)ll2m) /(1 = 1T sy —~

We now turn to the asymptotic version of the convergence of
the B-SBF algorithm in || - ||2 norm. For this we need the following

additional conditions.
Condition (B).
(B1) E(]|]Y]|¥) < oo for some o > 2.

(B2) p is bounded away from zero and infinity on [0,1]%, and p;s
are continuous on [0,1)% for 1 < j # k < d.

(B3) K is Lipschitz continuous and ff)l K(u du/\fo u)du > 0.

(B4) hj,/logn/(nhjhy) = o(1) and inf,n“h; > (const.) for

some ¢j < (v —2)/a for 1 < j#k <d.

Theorem 3.4.2. Assume the condition (B). Then, there exist
constants ¢ > 0 and v € (0,1) such that

lim P max / || () @m (IJ)H *pi(xj)dx; < ey for all r > 0)

n—00 1<]<d

Theorem 3.4.2 is about the L2-convergence of the B-SBF algo-
rithm, like all other results in the literature on smooth backfitting
for H = R. Here, we add a new convergence result, which is also
of interest. We note that the theorem implies > 2, fol |mj(z;) ©
nhB.T] (z;)|1*pj(zj)dz; < oo with probability tending to one. This
entails that, with probability tending to one, > 2, |lm;(z;) ©

[T] (z;)|1?p;j(z;) < oo a.e. z; € [0,1] with respect to Leby, which

gives the following corollary.

35



Corollary 3.4.1. Assume that the condition (B) holds. Then, for
1<j<d,

nli_)rgloP (fng-r] (zj) = mj(z;) as r — oo a.e. x; with respect to Lebl) =1.
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Chapter 4
Asymptotic properties

4.1 Rates of convergence

Below we collect the assumptions for our asymptotic theory.
Condition (C).

(C1) E(]]Y]|) < oo for some o > 5/2.

(C2) The true maps m; for 1 < j < d are twice continuously
Fréchet differentiable on [0,1].

(C3) The condition (B2) in Section 3.4 holds. In addition, pj, are
Cton [0,1)2 for 1 <j#k<d.

(C4) The condition (B3) in Section 3.4 holds. In addition, f_ll uK (u)du =
0.
(C5) n1/5hj — a; for some positive constant o, 1 < j < d.

The moment condition on Y and the Fréchet differentiability
of the maps m; : [0, 1] — H, respectively, are natural generaliza-

tions of the usual moment condition on Euclidean errors and the
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smoothness assumptions on real-valued functions. In the theory,
we need functional calculus for Fréchet derivatives and Bochner
integrals. Other assumptions on the baseline kernel K and the
density p are typical in the kernel smoothing theory.

Let Ij = [2h;,1 — 2h;] and I{ denote its complement in [0, 1].
The following theorem demonstrates that our estimators achieve

the univariate error rates.

Theorem 4.1.1. Assume that the condition (C) holds. Then, the
followings hold for 1 < j < d.

(i) (Pointwise convergence)

v, () © my(a;)|| = Op(n=>%)  for z; € Ij,

1 (z;) © my(x;)|| = Op(n %) for ;€ If.
(ii) (Lo convergence)

/Ij I (5) © my () [*p; (a)d; = Op(n= /),

/01 I () © my ()| *p; (2)dz; = Op(n~ /7).
(iii) (Uniform convergence)

sup [ty (z;) © my(z;)|| = Op(n~*°/logn),

ijIj

sup ||t (z;) © my ()| = Op(n~'/%).
x;€[0,1]
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4.2 Asymptotic distribution and asymptotic

independence

Recall that, for a mean zero random element Z : Q — H, its

covariance operator C' : H — H is characterised by
(C(h),g) =E((Z,h) - (Z,g)), h,gecH.

Also, recall that a H-valued random element Z is called Gaussian if
(Z,h) is normally distributed for any h € H. We denote a Gaussian
random element with mean zero and covariance operator C, by
G(0,C).

For brevity, we write
= 1
wij(u) = (ZKhj(uaXij)) \/’IWJ‘K}”(U,XU).
i=1

Then, for the marginal estimators m; defined at (2.4.5), we may

write "
Vnhy ©my(e)) = Puwi(e;) © Y.
i=1
From the standard kernel smoothing theory and the fact (2.3.1),
it follows that Y7, w;;(z;)* converges to p;(z;)~! f_ll K?(u)du
in probability for each x; € I; under suitable conditions on pj, h;

and K. Let {e;}1; be an orthonormal basis of H, where we allow

L = oo for infinite-dimensional H. Define

1
) = pi(e) ™ [ KA duE (e, (e.0) | X = )

for the H-valued error € in the model (1.0.1). Then, as we show

in the proof of the following theorem, the conditional covariance

39



operator of @', wi;j(z;) ® € given X; = x; is approximated by

the operator Cj,, : H — H characterised by

L
<ijmj Z h el CL] Lk :E]) (421)
=1

The following theorem plays an important role in determining the

distributions of the stochastic parts of m;(x;).

Theorem 4.2.1. Assume that the condition (B3) on K holds. Fix
x € Iy X -+ X Iy and assume that, for all 1 < j < d and k,l, (i)
E(|le||*) < oo for some o > 2 and E((€,ey) - (€,€;) | Xj = -) are
continuous on [x;— hj, x;+ hj], respectively; (i) p; are continuous
on [x; — hj, xj+ hjl], respectively, and pj(x;) > 0; (i) h; — 0 and

nh; — oo as n — oo. Then,

(@ Wil (.’El) © €iy oo vy @ U}Z‘d(ﬂjd) O] Ei) i> (G(Ov Cl,:ﬁl)v ey G(07 Cd,il?d)) )
i=1 i=1

where G(0,C14,), -, G(0,Cy4,) are independent.

Now, we are ready to present a theorem that demonstrates the
asymptotic distribution and independence of our estimators of the
component maps m;. In addition to (C), we need the following

condition.

Condition (D). For all1 < j <d and k,l, the followings hold.
(D1) E((€,ex) - (€,e) | X; =) are continuous on [0, 1].

(D2) Op(x)/0z; exist and are bounded on [0,1]%.

To state the theorem we need to introduce more terminologies.

For a twice Fréchet differentiable f : [0, 1] — H, we let Df : [0,1] —
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L(R,H) denote its first Fréchet derivative, and D*f : [0,1] —
L’(R, L(R, H)) its second Fréchet derivative. Let p;- denote the first

derivative of p; and define

dj(xj) = [p;(xj) '/1 U2K(U)dU] © Dmj(z;)(1),

pi(x;) J-
w(xi, ) = 8pjk(xj’xk)/awk- 1u2 u my(z
Biu(ayo) = | PEL DB [ x| @ Dang ()

A 2 ! 2 Pik(Tj, Tk)
Aj(zj) = aj © 6;(x;) @EB/ dji (), o) © [Oék iz dzy.
ktj /0 VA

Let (A1, -+ ,Ay) € H;lzl LY (p;) be a solution of the system of

equations

1
A Pik\Zj, T .
Aj(xj):Aj(xj)@@/ Ak(a:k)Qdek, 1<j<d
ktj O A

(4.2.2)

satisfying the constraints

1 1
/0 Aj(z;) © pj(xj)duj = of @/0 9;(z;) ©pj(zj)dr;, 1<j<d.
(4.2.3)

Below in Theorem 4.2.2 we prove that the equation (4.2.2) subject
to (4.2.3) has a unique solution. Define c;(z;) = 3 f_ll uw? K (u)du®
D?m;(z;)(1)(1) and ©;(x;) = a?@Cj(.%'j)@Aj(l‘j). Define C’j,xj :
H — H by C’j,mj (h) = 04]-_1 © Cj .z, (h), where Cj ., are the covari-
ance operators defined at (4.2.1).

Theorem 4.2.2. Assume the conditions (C) and (D). Then, there
exists a solution of (4.2.2) subject to (4.2.3) and the solution is

unique in the sense that if (AT,---, AY) is another solution, then

41



Aj(z;) = Aj(z;) a.e. [Lebi]. Furthermore, for a.e. x € H;.lzl I;

with respect to Leby, it holds that
n?/5 © (xhy (z1) © my (21)) O:(z1) ® G(0,C1,)
: — : ,
n?% © (hy(zq) © my(z4)) Ou(zq) ® G(0,Cy,)

where @1(x1) & G(0,C14,), -+, Ou(xg) © G(0,Cq,,) are inde-

pendent. Moreover,

d
02/ 6 (i(x) © m(x)) -5 @O, (@) © G (0,3 s, ).
4 =~

Jj=1
Let m3™ be the oracle estimator of m; under the knowledge

of all other component maps myg, k # j. Using Theorem 4.2.1, we

may prove that for z; € I},

. d ~
n?P (™ (x;) omy(z;)) -5 af ©[8;(z5) & ¢;j(x;)] @ G(0, Cja,).-
Therefore, m; and ril;’ra have the same asymptotic covariance
operator, but differ in their asymptotic biases. The difference of
asymptotic biases is [ajz- ®d;(z;)]© Aj(z;) =: B;(x;) and it holds
1
that E(8;(X;)) = [y Bj(z;) @ pj(z;)dz; =0 by (4.2.3).
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Chapter 5

Numerical Study

In the simulation and real data examples presented here, we took
Epanechnikov kernel K (u) = (3/4)(1 — u?)I(|u| < 1). We chose

the initial estimators

[ x] —n*1®@<

K, (2, X ' L TN 0]
1>®Yl = n o w; (2;)0Y;,
p;(;) i=1

so that they satisfy fol wl[?] (xj)p;j(xj)dx; = 0. For the convergence
criterion of the B-SBF algorithm we set

1
~ |7 ~ [r—1 ~ _
maX/O IImE](xj)@mg a2 (z;)da; < 1078,

5.1 Bandwidth selection

Searching for the bandwidths h; on a full-dimensional grid is not
feasible when d is large. One way often adopted in multivariate
smoothing is to set hy = --- = hy and perform one-dimensional
grid search. Obviously, this is not desirable since it ignores different

degrees of smoothness for different target functions. Recently, Han
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et al. (2018) and Han and Park (20184) used a method called
‘bandwidth shrinkage’. The method first selects iLj for each j that
is good for estimating marginal regression function of X; and then
tunes ¢ > 0 for (cizl, e ,cfzd). The latter method also searches
bandwidths on a restricted class of options.

Here, we suggest a new scheme called ‘CBS(Coordinate-wise
Bandwidth Selection)’ based on cross-validation. We used the CBS
method, as described below, in our numerical study. Let CV (hy, ..., hg)

denote a cross-validatory criterion for bandwidths hq, ..., hg.
CBS algorithm. Take a grid G = H;l:l{gjl, .5 9jL; }- Choose

an initial bandwidth h§-0) from {gj1,...,9;r,} for 1 < j < d. For
t=1,2,---, find

K = argmin - OV, Y g a0 Rl 1< <

IS

Repeat the procedure until (hgt), e ,hg)) = (hgt_l), . ,h&t_l)).

In our numerical study, we chose G = H?Zl{aj +0.005xk : k=
0,---,40} for some small values a; that satisfy (S1) in Section 2.4
and used a 10-fold cross-validation. The grid actually covered op-

timal bandwidths. Let
T=min {t>1: (" . By =@ alY (5.11)

We note that T is finite since the grid size is finite. In our numerical
work, the algorithm converged very fast. In all cases T' < 4. We
also note that (hgT), ce h((iT)) is a coordinate-wise minimum that
satisfies

CV(hgT)’ o ’hilT)) = minmin CV(hgT)7 T h§'i)1v 95> hg’i)la s >h£lT)).

J 9;
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Although a coordinate-wise minimum does not always match with
a global minimum, they coincided in most cases in our numerical

study.

5.2 Simulation study with density response

We considered the case where Y'(-) is a probability density on a
domain S € B(R) such that Y := [V ()] € B2(S, S N B(R), Leby).

1,,[r]

In this case, simply writing wj j,(2;) = n™ w;; (z;) for brevity we

get

n —1n
rhy](xj) — K/ H)/‘?;<8>wi,j,7'(xj)ds> H}/'i(.)wi,jn'(xj)],
S =1 i=1
n 4 —1
([ TDvitor o =tmenas)
S =1

Hn(.)n-1+zj_lwi,j,r<wj>]

i=1

d
Y & P (z))
j=1

(5.2.1)

whenever the denominators are nonzero and finite. We predicted

Y (-) at X = x for an out-of-sample (X, Y (-)) by

n —1 n
< /S H y;(s)n’“erzl wi’jﬁr(wj)d(g) X H y;(.)n’“rZ?:l Wi g, (2;)
i=1 i=1

We note that the denominators are nonzero and finite for all
wg] (xzj) € Rif Y;(-)’s are essentially bounded away from zero and
infinity on S and Leb;(S) < oco. In this simulation study, our fo-
cus is to demonstrate that (i) the CBS algorithm for bandwidth
selection works well, and (ii) the prediction based on the proposed
estimators m; and 1 is valid for small sample sizes, avoiding the

curse of dimensionality.
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We generated Y () on S = [-1/2,1/2] according to the follow-

ing formula.

2 —1 2
y() = ( / jr_[lfJ-(Xj)(s)e(s)ds) TIHEIO0, - 622

where fj(z;)(-) : S — R are some measurable functions, € is an er-
ror process, X1 and X9 are uniform [0, 1] random variables. Specif-
ically, we considered f1(z1)(s) = —exp(z1)|s| +2 and fa(z2)(s) =
cos(sm/2)213 and e(s) = exp(—Zs*) with Z being a uniform
[—1,1] random variable. By considering the operations @ and ©
for the quotient space H = B2(S, S N B(R), Leb;) and the equiv-
alence class [Y(+)] as introduced in Section 2, we clearly see that
(5.2.2) falls into the additive model (1.0.1) with d = 2. We also
considered a non-additive model for a sensitivity analysis. For this,

we took

Y(s) = exp(X? cos(2ms) + X2 sin(27s) + X1 Xo|s|)e(s)
fi{% exp(X? cos(2ms) + X3 sin(2ms) + X1 Xo|s|)e(s)ds
(5.2.3)

with €(s) = exp(—Zs?).
We repeatedly generated a training sample of size n and a
test sample of size N = 100 for M = 200 times. As a measure

of performance we computed the mean squared prediction error

(MSPE) defined by

M N
MSPE = M1 ZN—lz H [Y;‘test(m)(.)] o [Ytest(m)(')] ’
m=1 =1

(5.2.4)

where Yl-teSt(m)(-) is the ith response in the mth test sample and

~

YiteSt(m) (+) is the prediction of YiteSt(m) () based on the mth training
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Table 5.1: The percentages of the iteration number T defined in (5.1.1) at
which the CBS algorithm stops, based on M = 200 pseudo samples. Ratio in-
dicates (average computing time for the full-dimensional grid search)/(average

computing time for the CBS algorithm).

Scenario n T =2 T=3 T=4 Ratio
(5.2.2) 100 48%  49.5% 2.5%  6.09
400  44%  55.5% 0.5%  8.11

(5.2.3) 100  53%  42.5% 4.5%  6.45
400 62.5% 36% 1.5%  8.72

sample. We note that

K3 K3

Y;test(m) (S) }A/itest(m) (S) 2 /
= log W — log W dsds’.
[—1/2,1/2]2 Y, (s') Y, (s

Table 5.1 suggests that the CBS algorithm for bandwidth se-

|y e et |

lection converges very fast. Its computation was much faster than
the full-dimensional grid search. If the grid G is denser or d is
larger, then the ratios of computing time would increase geomet-
rically. Table 5.2 reveals that the selected bandwidths from the
CBS algorithm and the full-dimensional grid search matched in
most cases. This may be due to the fact that CV(hy,--- ,hq) is
coordinate-wise convex as is often the case in practice. The results
demonstrate that the larger n, the more often the two bandwidth
choices coincide. Even in the case where the two were different,
the CBS bandwidths gave comparable prediction results to the
full-dimensional grid search, as the ratios in the last column of the

table shows.
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Table 5.2: The percentages of the cases where the CBS algorithm gave the
same bandwidth choices as the full-dimensional grid search, based on M = 200
pseudo samples. The ‘MSPE ratio’ means the ratio of the MSPE value with
bandwidths from the full-dimensional grid search, to that with CBS band-
widths. In the computation of the MSPE values according to the formula

(5.2.4), the cases where CBS=Full are deleted.

Scenario n  CBS=Full MSPE ratio for CBS#Full

(5.22) 100  79.5% 0.97
400 98.5% 1

(5.23) 100  88.5% 0.98
400 98.5% 1.02

In the simulation we also compared the prediction based on
our approach with those based on full-dimensional estimators. We
considered the functional Nadaraya-Watson estimator proposed
by Dabo-Niang and Rhomari (2009), Ferraty et al. (2011) and
Ferraty et al. (2012) and the kernel-based functional k-nearest
neighbor estimator proposed by Lian (2011) and Lian (2012).
For these full-dimensional estimators we used Epanechnikov ker-
nel, and tuned bandwidth and k, respectively, by 10-fold cross-
validation on ranges that cover optimal bandwidth and k. Ta-
ble 5.3 demonstrates that the proposed method outperforms these
methods in both additive (5.2.2) and non-additive (5.2.3) scenar-
ios.

To see how our approach performs in higher dimension and
in the estimation of the component maps, we tried d = 4 and
considered the case where f;(z;)(-) = B3;(-)9(®) for some real-

valued functions 8; and g; with E(g;(X;)) = 0. In this way, we
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Table 5.3: The ratios of the MSPE values for the functional Nadaraya-
Watson and the kernel-based functional k-NN methods, to that for our pro-
posed method.

Proposed Functional Kernel-based

Scenario n  with CBS Nadaraya-Watson functional k-NN

(5.2.2) 100 1 1.99 2.07
400 1 1.34 1.42
(5.2.3) 100 1 1.47 1.54
400 1 1.12 1.16

have E([f;(X;)(-)]) = 0 since

E([f;(X;)()]) = E(g;(X;)) © [B;(1)] =00 [8;()] =0, (5.2.5)

satisfying the constraints (2.4.4). The first equation at (5.2.5) fol-
lows from (2.5.1). Specifically, we generated Y (-) according to

V() =

Bo ()31 (=2 gy (onarXe) gy ()eos(nX) g, ()2 e

(5.2.6)

where ¢(s) = a(s)?, X1, X2, X3, X4 are uniform [0, 1] random vari-
ables and Z is a uniform [—1,1] random variable. We chose for
Bo(+), B1(+), B2(+), B3(+), Ba(:) and «(-), respectively, the probabil-
ity density functions of Cauchy(0,0.2), N(0,0.5?), t-distribution
with df = 0.25, Laplace(0, 1), N(—0.3,0.22)/2+N(0.3,0.22) /2 and
Logistic(0, 1), all truncated on [—1/2,1/2]. With these choices, the
simulation model (5.2.6) involves component maps whose values
fj(x;)(-) take various shapes: light- and heavy-tails, sharp peaks,
bimodality etc.
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We compared the proposed estimator, denoted by m(1,2,3,4),
based on the four-dimensional predictor (X1, Xo, X3, X4), with or-
acle estimators. Let 1m(1,2) denote the oracle estimator that one
gets by applying our B-SBF techniques based on the two predic-
tors X7 and X, with the knowledge of f3 and f;. Likewise, let
m(3,4) denote the one based on the knowledge of f; and fy. For
M = 200, we computed

isE; = [ ey | ienO1 e R @) )| day = 158, +1v;,
m=1

ISB; = /1 H @) () e Mo é[f](’”)(xj)(.)] szxj7

IV, _/ M- 12“ oM™ @@f(m (2)( -)]Hdej.

The results are contained in Table 5.4 and Figure 5.1. The values
in the table reveal that the performance of m(1,2,3,4) is compa-
rable with those of the oracle estimators 7 (1,2) and m(3,4). This
suggests that the proposed method does not suffer from the curse

of dimensionality.

5.3 Real data analysis with functional re-

sponse

We analyzed ‘CanadianWeather’ data in the R package ‘fda’(version
2.4.4), which contains daily temperatures measured on 35 loca-
tions, averaged over 35 years from 1960 to 1994. We performed
the prediction of temperature curves based on the two-dimensional

predictor (latitude, longitude). In this example, H = L2([0, 1], [0, 1]N
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Table 5.4: The values of IMSE, ISB and IV, multiplied by 103, of the proposed
m(1,2,3,4) and of the oracle 71(1,2) in the estimation of the two component
maps f1 and f2, and of the oracle m(3,4) in the estimation of f3 and fu,

based on M = 200 pseudo samples. All bandwidths were selected by the CBS

algorithm.

First component Second component
n  Criterion (1,2,3,4) m(1,2) m(1,2,3,4) m(1,2)
IMSE 0.1654 0.1671 0.1346 0.1418

100 ISB 0.0089 0.0154 0.0163 0.0231
v 0.1565 0.1517 0.1183 0.1187
IMSE 0.0350 0.0346 0.0332 0.0330
400 ISB 0.0007 0.0011 0.0019 0.0025
v 0.0343 0.0335 0.0313 0.0305

Third component Fourth component
n  Criterion m(1,2,3,4) m(3,4) m(1,2,3,4) m(3,4)
IMSE 0.0372 0.0319 0.0972 0.0885

100 ISB 0.0037 0.0030 0.0067 0.0042
v 0.0335 0.0289 0.0905 0.0843
IMSE 0.0090 0.0087 0.0252 0.0247

400 ISB 0.0003 0.0003 0.0009 0.0009
v 0.0087 0.0084 0.0243 0.0238
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Figure 5.1: True component maps (left) and their estimates for n = 100
(middle) and for n = 400 (right), based on the median performance sam-
ple, i.e., the one for which the value of the total integrated squared error
Z?:I fol | [fi(z) () e [f](m)(acj)()] ||2dacj is the median among the 200 values

for the whole pseudo samples.



B(R),Leb;) and Y;(-) is the pre-smoothed temperature curve for
the ¢th location. We computed the leave-one-curve-out average

squared prediction error

ASPE = Y V()T IO =01y / ()7 a) P
i=170

=1

with n = 35, where Y-(_i)(‘) is the prediction of Y;(-) based on

i
the sample without the ith observation. We also measured the
smoothness of Yi(fi)(‘) using fractal dimension. Fractal dimension
is a measure of smoothness for curves and surfaces. In the case
of curves, it takes values in [1,2] where ‘1’ means that the curve
is perfectly smooth and ‘2’ indicates that the curve is extremely
wiggly. For the definition of fractal dimension, see Gneiting et
al. (2012). We used ‘fd.estimate’ function in the R package ‘frac-
taldim’(version 0.8-4) and used the madogram estimator suggested
by Gneiting et al. (2012). Let FD; denote the estimated fractal di-
mension of the curve ?;(ﬂ.) (). We computed the average estimated
fractal dimension AEFD =n~'3" | FD,.

For this example, we compared our method with those of Chiou
et al. (2003) and Scheipl et al. (2015), and with the functional
Nadaraya-Watson and the kernel-based functional k-nearest neigh-
bor estimators. To implement the method of Chiou et al. (2003),
we used ‘FQR’ function in the matlab package ‘PACE’(version
2.17) with bandwidth for mean curve being selected by leave-one-
curve-out cross-validation and bandwidth for covariance surface
being selected by GCV. For the method of Scheipl et al. (2015),
we used ‘pffr’ function in the R package ‘refund’(version 0.1-16)

with 100 cubic B-spline basis functions and smoothing parameter
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Table 5.5: Comparison of ASPE and AEFD for CanadianWeather data.

Method ASPE AEFD
B-SBF with CBS 9.10 1
Pointwise SBF with CBS 9.59 1.43

Kernel-based functional k-NN  11.31 1.11
Functional Nadaraya-Watson 14.74 1.13
Chiou et al. (2003) 16.11 1
Scheipl et al. (2015) 19.21 1

selected by GCV. We also computed the pointwise smooth backfit-
ting estimate Yi(ﬂ')(s) for each s using the standard smooth back-
fitting procedure, as in Mammen et al. (1999), and aggregated
them to produce the curve Yi(ﬂ')(-). Table 5.5 and Figure 5.2 con-
tain the results, which suggest that our method outperforms all
competitors in terms of prediction performance and smoothness

of estimated curves.

5.4 Real data analysis with simplex-valued

response

Here, we analyzed ‘gemas’ data in the R-package ‘robComposi-
tions’(version 2.0.5), which contains a simplex-valued response. It
is a geochemical dataset about agricultural and grazing land soil
in European regions. The dataset has 2,108 observations on 30
variables. Among the variables, we chose the composition of three
soil types as the response: (sand, silt, clay) with the sum of the

three entries being equal to 1, and (annual mean temperature, an-
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Pointwise SBF

Figure 5.2: Predicted temperature curves for CanadianWeather data based
on our B-SBF method(left) and the pointwise SBF method(right). Each of the
35 curves depicts ﬁ(7i>(~) for the ith location.

nual mean precipitation) as the two-dimensional predictor. In this
example, H = S7. We deleted 26 observations which contain zero
proportion in some soil type. We divided the remaining 2,082 ob-
servations into 10 partitions Si,1 < k < 10, with each of the first
9 having 208 observations and the last one containing the remain-
der. We then computed the 10-fold average squared prediction
error (ASPE) defined by 10713732 S|~ Sics. Y @YE_S’“)HZ,

where |Si| is the number of observations in Sy and YZ(_S’C) is the

€Sy

prediction of Y; based on the sample without the observations in

Sk

We compared our method with the alpha-transformation method

of Tsagris (2015). For the latter, we used ‘alfa.reg’ function in the
R-package ‘Compositional’ (version 2.5) where ‘alpha’ was tuned
on {—1+0.1xk:0 <k <20} by 10-fold cross-validation. The pro-
posed method with the CBS algorithm gave ASPE = 0.98, while
the method of Tsagris (2015) resulted in ASPE = 1.69. Figure 5.3
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Figure 5.3: The values of the fitted component maps for gemas data based
on the B-SBF method, depicted on the simplex S, for the annual mean tem-

perature(left) and for the annual mean precipitation(right).

depicts the fitted component maps.
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Chapter 6

Appendix (Additional
Results and Selected
Proofs)

6.1 Lemmas and additional propositions

We collect below several lemmas and additional propositions that
are used to prove the propositions and theorems in Sections 2—4.
We note that H and B in Lemmas 6.1.4, 6.1.6 and 6.1.7 do not

need to be separable.

Lemma 6.1.1. Let (2,9, ) be a measure space and (W, AB) be
a measurable space. Let T : Z — W be (o, B)-measurable and g :
W — B be measurable. Then, g € LY((W, B, uT~1),B) if and only
if g(T) € LY(Z,4,p),B), in which case [, g(w)duT H(w) =
[z 8(T(2))du(z).
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Lemma 6.1.2. Let (Z,47) be a measurable space and \ and p be
o-finite measures on (Z,47) such that A < p. Let f : Z — B be
A- mtegmble Then, £© (d\/dpu) is p-integrable and [ f(z)d\(z) =

[z £(2) © (dX/dp)(z)dp(z).

The next lemma is a general type of Fubini’s theorem for B-
valued maps. There are versions of Fubini’s theorem for o-finite
measure spaces. Lemma 6.1.3 does not require o-finiteness. In the
case B = R, there are some results that do not require o-finiteness,

see Mukherjea (1972), for example.

Lemma 6.1.3. Let (Z,97,u) and W, AB,v) be measure spaces
and k : Z x W — B be measurable. Then, (a) for each w €
W, the map k(-,w) : Z — B is measurable; (b) if k(-,w) €
LY(Z,4,11),B) a.e. with respect to v, then g : W — B defined by

fZ z,w)du(z), if we Dy

g(w) =

go(w), otherwise
is measurable, where Dy = {w € W : k(-,w) € L}((Z,/,p),B)}
and go : W — B is any measurable map; (c) if k € LY((Z x
W, o @ B,u®v),B), then

/wa k(z, w)dp ® v(z,w) :/W/zk(z’w)d”(z)dy(w)'

Lemma 6.1.4. Let (2,4, ) be a measure space and <% be a field
that generates <. Let B be a Banach space and p € [1,00) be a
constant. Then, {@?:1 14,0b; :n e N A; € o, u(A;) < oo,b; €
B} is a dense subset of LP((Z, </, 1), B).

Lemma 6.1.5. Define a o-field ; = {[0,119~! x B; x [0,1]%~
B; € [0,1]NB(R)} on [0,1]%. We let %5 denote the smallest o-field
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such that B; C %} and {Be€[0,1]nB(RY) : PX(B) =1} C
%;‘ Then, Lg{(pj) = LQ(([Oa 1]d7‘@;7PX71)7H) and Lgﬂ(ﬁ]) =
L*(([0,1)¢, 287, PX~1),H) for all 1 < j < d.

Lemma 6.1.6. Let (2,97, 1) and (W, AB,v) be measure spaces
and B be a Banach space. Let k : Z x W — R be a measurable
function and b € B be a constant. Then, k : Z x W — B defined
by k(z,w) = k(z,w) © b is measurable.

The following lemma follows from Theorem 4.6 in Xu and

Zikatanov (2002) and Theorem 2.1 in Blot and Cieutat (2016).

Lemma 6.1.7. Let H be a Hilbert space and Hy,... , Hy < H.
Define Hg, = {@?Zlhj :h; e Hj,1 <5< d}, and let Pj : H —
H;,1 < j <d, be orthogonal projections. Then, the followings are
equivalent: (a) He < H; (b) (I = Pg)o---o (I = P)ll gy < L;
(¢c) 3 ¢ >0 such that for all h € Hg, there exists a decomposition
h=@7  h; withh;j e H;, 1<j<d, and 0_, |h;|? < c||h?.

Lemma 6.1.8. Assume that there exists a constant ¢ > 0 such
that p(x) > cpj(x;)px_;(x—;) for all1 < j < d andx € [0,1]%. Let
f;:00,1] = H,1 < j <d be ([0,1]NB(R), B(H))-measurable maps.
If @;.l:l fi(x;) = 0 for a.e. x € [0,1]¢ with respect to PX ™1, then
fi(z;) = c; for a.e. z; € [0,1] with respect to PXj_1 for1<j<d,

. . d
where ¢; € H are some constants satisfying @j:l c; =0.

Proposition 6.1.1. For D € N, let U; and V; be iid copies of
a [0, 1]P-valued random vector U and a H-valued random element
V, respectively. Assume (i) E(||[V]|¥) < oo for some a > 2; (ii)
K is Lipschitz continuous; (iii) inf, n“ H;l:l hj > (const.) for

some ¢1 < (—2)/a and inf, n® miny<;<q h; > (const.) for some
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ca € R. Then, for Sy(u) :=n"to@; (ijzl Ky, (uj—Us;)) OV,
it holds that
sup  [|Sn(u) O E (Sn(w)] = 0, ((nm - hD)_l/Q\/logn> :
ue(0,1]P

The following proposition is a Lindeberg-type theorem. It com-
plements Theorem 1.1 in Kundu et al. (2000) that is for infinite-

dimensional H.

Proposition 6.1.2. Let H be a finite-dimensional Hilbert space
and {bk}ivzl be an orthonormal basis of H. Let V1, , Vp, be
independent H-valued random elements such that E(V,;) = 0 and
E([Vnill?) < 0o for 1 <i <n. For S, = @, Vi, assume that

(i) ap == li_>m E((Spn, bg)(Spn,by)) exist for all 1 < k,l < N;

(i) hrn ZE((Vm,bk> I(|{(Vpi,br)| >n)) =0 foralll <k <
N and n > 0.

Then, S, 4, G(0,C) for the covariance operator C' : H — H
characterized by (C'(h),by) = Zl]\il (h,b)ay.

6.2 Proof of Theorem 3.2.1

The linearity of L follows from the linearity of k(z,w) and L.
Using Lemma 6.1.3 and the fact

IO < ([ 12w, <>)1/q (f |,f<z)||%1du(z>>”’°,

(6.2.1)

one may prove that L is bounded.

60



For the compactness, it suffices to prove that there exists a

sequence of compact operators, say L,, that converges to L. Let

J
(ﬂ@%)oz{w(ijB) Aj € o, B; € B, M(A)<ooz/(Bj)<oo,J€N}.

j=1
Due to Proposition 9.1 in Kubrusly (2015), (& ® %) is a field. We
apply Lemma 6.1.4 with the specifications of B and LP((Z, .27, 1), B)

there, respectively, to C(B1,B2) and LI((ZxW, /@B, p@v),C(B1,B2))

here. We get that there exist sequences I,, € N, Cy,; € C(B1,B2)
and F,; € (o/ @%B) for 1 <i < I, such that k, € LI((ZxW, o ®
B, 11 v),C(By,By)), defined by ku(z,w) = Y2 15, (2,w)Ci,

satisfies

1/q
</Z 14 Hkn(Z,W) B k(z’W)”qﬁ(Bl,Bﬂdﬂ ® I/(Z,W)> < nt
X

(6.2.2)

We take L,, : LP((Z, 9, ), IB%l) — Lq((W A,v),Bs) defined by
Ly ([f]) = [Lng], where Lpg(w) = [ ky (f(z))du(z). As in the
proof of the first part, we may prove that Ln is a bounded linear
operator for each n > 1. One may also prove that || L, — L|lop <
n~t — 0 as n — oo, where || - ||op is the operator norm.

It remains to prove that L, is compact for each n > 1. Fix n

and take any sequence {[fy]}x>1 in the unit ball of LP((Z, o7, 1), B1).

Put F,; = Lﬂj;’l(Amj X ij) with J,; € N, Am'j € & and
Bm'j S ,%, and define Dm'j : ﬁp((Z,d,u),Bl) — By by Dm](f) =
Jz14,,,(z) © f(z)du(z). Then,

nfk @ @ 1BMJ @ Cm(Dnij(fk))-

=1 j=1
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Since supy >4 | Drij (fx) |8, < u(Anij)l/q and Cy,; are compact, { Ly, ([fi]) }r>1
has a convergent subsequence. This completes the proof of the sec-

ond part.

6.3 Proof of Theorem 3.2.2

Using Theorem 3.2.1 and Lemma 6.1.6, one may show that L
is bounded and linear. We show that L is non-compact. Since
C' is non-compact, there exists a sequence {b,} in the unit ball
of By such that {C(b,)}n>1 has no Cauchy subsequence. De-
fine f, : Z — By by f,(z) = b,. Then, f, are measurable and
sup [z Ifa(2)[|Pdp(z) < p(Z). It suffices to prove that {L([f,])}n>1
does not have a Cauchy subsequence. By the assumption on k :

ZxW — R, we get

28D & LDl = ([ | [ s a)iut

>c- HC(bn) o C(bm)H]BQ

for some constant ¢ > 0. This proves the theorem.

6.4 Proof of Theorem 3.4.2

One can prove the theorem by arguing as in the proof of Theorem

3.4.1 and using Lemma 6.1.8 and Proposition 6.1.1.
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6.5 Proof of Theorem 4.1.1

We only give an outline of the proof. For brevity we write ¢;;(z;) =

ﬁj(xj)_ln_lKh]. (a:j,Xij). Define
) =P aij(z)) 0«
=1
07 () = P 4 (z5) © (my(Xy5) © my(ay)),
i=1

n
i) =P aii (x5) © i
=1

where 1;;, = fol(mk(sz) © mk(xk)) @th (.’Ek, sz)dl'k Then, the
B-SBF equation (2.4.6) can be written as

;i (z;) = mj(z;) ® [E(Y) © Y] @ ) (z;) @ mf (z;) ® m§,(z;)

1
@EB@ i () / (my(zr) © g (wg)) © Kp, (vh, X )dw,

k#ji=1

Below, we present a lemma for the approximation of rhj.3 (xj) and
rh]@;c (x). Recall the definitions of §;, d;; and c; given immediately

before Theorem 4.2.2. Define ay, () fo (Y ‘T’“ VK, (2, vg)dog ©

Dmy,(z)(1). We introduce generic stochastlc maps r; : [0,1] — H

such that
sup [l (@)l = op(n %), sup. [y(a;)l = Op(n~2).
zj€l; 2;€[0,1]
(6.5.2)

The notation is used to represent various terms in our asymptotic

analysis here and in the proof of Theorem 4.2.2.
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Lemma 6.5.1. Under the condition (C) it holds that
-1
hy
1
Jo K, (@, v;)dv;

1 h*l
~C 2 k
m;.(z;)=h @/ O ag(zy) ®0(vi, xE) O ez
]k( ]) k 0 <f01 th(a:k,vk)dvk k( k) ]k( J k) k( k))

n? (z;) =hi © ( © aj(z;) © 6;(z;) & Cj(ﬂ?j)) ©rj(z)),

O] ]dek @ 0,(n~Y?) uniformly for z; € [0,1].
pjx;)
Now, define A¥(z;) = h? © §;(x;) & @4, [y djelwj zp) ©
(122200 gy and

ko pj(zy)
AJ(%) =mj(z;) © mj(z;) © rh]A(x]) © fl K (hj )d Qaj(xj)]
o n;\Tj, Uj)av;
e [h? QCj(xj)] ©rj(z;)
(6.5.3)

Then, from (6.5.1) and Lemma 6.5.1, we may get uniformly for
€ [0,1],

A i(xj) A* (zj) © EB/ Ak Mdm EBop(n*Q/‘r’), 1<j<d.
k#j p]($])

(6.5.4)

Now, standard theory of kernel smoothing completes the proof of

the theorem.

6.6 Proof of Theorem 4.2.1

Let H¢ denote the space of tuples (h; : 1 < j < d) with h; €
H. Let || - ||ge and (-, )y« denote the norm and inner product

on H? respectively, defined in the standard way. Let e € H<
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denote (0,...,0,€;,0,...,0) where e; is placed at the jth entry.
Then, (ej; : 1 < j < d,l > 1) forms an orthonormal basis of
H?. By applying Theorem 1.1 in Kundu et al. (2000) for infinite-
dimensional H and Proposition 6.1.2 for finite-dimensional H, we

may prove

(@ wit (21) © €, ..., P wig(xa) © ei> 45 G(0,Cy), (6.6.1)
i=1

i=1
where Cy : HY — H? is a covariance operator such that, for all

h = (hy,...,hy) € HY,

d
(Cx(h),eji)pa = ZZ (h, €pm)ga - Gkmji = Zz<hk,em> * Qlmyjl

k=1 m k=1 m

=> (hjen) ajm, 1>1,1<j<d

m
(6.6.2)
This completes the first part of the theorem.

For the second part of the theorem, let P; denote the projec-
tion operator that maps (hy, ..., hy) € H? to h;. Then, its adjoint
Py H — H¢ is given by Pj*(g) =(0,...,0,g,0,---,0) where g
is placed at the jth entry. We note that the conclusions of Propo-
sition 4.9-4.10 in van Neerven (2008), for P-measurable Gaussian
random elements, also hold for strongly measurable Gaussian ran-
dom elements. The version of Proposition 4.9 implies P;(G(0,Cx)) =
G(0,PjoCxo P]*) Now, for g € H,

(PjoCxo Pf(g),el) = (Cx(0,...,0,g,0,...,0), Pf(el))Hd
= (Cx(0,...,0,g,0,...,0),€j;)pa

Z g7em * Qg lms
m
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where the last equality follows from (6.6.2). This proves Pjo Cx o

P = Cj4;, which coupled with (6.6.1) implies

P; (@wﬂ(m) o€, ..., Puialza) © ei) 45 Pi(G(0,Cx)) = G(0,C;,).
=1

i=1
It remains to prove that P;(G(0,Cy)) for different j are inde-
pendent. By the version of Proposition 4.10 in van Neerven (2008)
for strongly measurable Gaussian random elements, it suffices to

show that
E ((P;(G(0,Cx)), hy) - (Pe(G(0,Cx)), 8k) = 0 (6.6.3)

forall hj,gr € Hand 1 <j#k <d. Fix1<j#k <d and take
h=(0,---,0,h;,0,---,0) € HYand g = (0,--- ,0,g,0,--- ,0) €
H¢ where h; and g appear in the jth and kth positions of h and
g, respectively. Then,

(Cx(h), g)ga = E ((P;(G(0,Cx)), hy) - (P,(G(0,Cx)), 8k)) -
(6.6.4)

On the other hand, using the fact g = ), (gk, e;)ex; and (6.6.2),

we have

(Cx = (gre): ), €k Hd_zz 8k €1) (0, em)-ag,im = 0.
.

This with (6.6.4) gives (6.6.3).

6.7 Proof of Theorem 4.2.2

We only give a sketch of the proof. Recall the definitions of A;‘(x])

and Aj (x) given in Section 6.5. First, we claim that there exists a
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solution (A7,---,A%) € Hj’l:1 LE(p;) of the system of equations

1 . .
Al(r;) = Al(ay) o @D / Af(ay) @ PEELT g g
iy /0 pi(z;)

(6.7.1)

satisfying the constraints
1 1
/0 A;‘(zj) @pj(xj)dmj = h? @/0 (sj($j) @pj(mj)dmj, 1 S] < d.
(6.7.2)

To prove the claim, consider a functional F : S¥(p) — R defined
by

Fie= [

]éi <[h§/11 u2K(u)duap(X)/axj] ® ij(xj)u))

p(x)

F is a convex, continuous and Gateaux differentiable functional
satisfying F'([f]) — oo as ||[f]||2 — oo. The claim follows by arguing

as in the proof of Theorem 3.3.2.

Lemma 6.7.1. Under the conditions of Theorem 4.2.2, it holds
that Aj(xj) © Al(zj) = rj(z;) a.e. x; with respect to Leby, 1 <
J<d.

This gives that, for a.e. z; € I; with respect to Leby,
n*? © (i (z7) © my(z7) =n®/® © W} (z;) © [0*°h3] © cj(z)
&n?® o Al(z;) ® op(1).

By Theorem 4.2.1,

(n?® @i (@), n*® @1 (24)) > (G0, Crgy), -+, GO, Cag,)-
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The fact that n?/° sup, efo,1] [|A7(z;)[ = O(1) and E.6 in Cohn
(2013) entail that (HILIEOHQ/5 © AT, ... ,nlirgon2/5 © AY) satisfies
(4.2.2) and (4.2.3). The uniqueness of sum map follows by arguing
as in the proof of Theorem 3.3.2 and the uniqueness of decompo-
sition follows from Lemma 6.1.8. Also, nlgl;o ([n?/ °h3 © cjlx;) @
n?/5 © AZ(zj)) = ©j(x;). This proves the first and the second
part of the theorem.

For the third part of the theorem, we note that Proposition 4.8
in van Neerven (2008) also holds for strongly measurable Gaus-
sian random elements. Since G(O, C’ljm), -, G(0, éd,md) in The-
orem 4.2.1 are independent, it follows that @?:1 G(O,C'j,xj) =
G(O, Z;l:l CN'jyxj). This completes the third part of the theorem.

6.8 Proof of Lemma 6.1.1

Using Proposition 2.6.8 in Cohn (2013), one may show that g €
LYW, B, uT~1),B) if and only if g(T) € LY((Z,<,u),B). In
which case, there exist yT~'-simple maps g, such that g, — g
and ||gn]| < |lg|| on W by E.2 in Cohn (2013). Using E.6 in Cohn
(2013), one can show that
[ swidur w) =t [ g (w)aur )
w w

n—oo

= lim [ gu(T(2))dp(2)
Z

:/gﬂmwm.
Z

This completes the proof.
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6.9 Proof of Lemma 6.1.2

There exist p-simple maps f,, such that f,, — f and ||f,]| < ||f| on
Z by E.2 in Cohn (2013). Then, f, ® (d\)/(du) — £ ® (dX)/(dp)
and [|£,]|(dN\)/(dp) < |If]|(dX)/(dw) on Z. Since each f,®(d\)/(du)
is measurable, f ® (d\)/(dp) is measurable by E.1 in Cohn (2013).

Also, f&(dN)/(dp) is p-integrable since [ ||f(z)[|(d))/(dp)(z)dp(z) =

Jz If(z)||dA(z) < oo. Using E.6 in Cohn (2013), one can show that

/f(z)d/\(z) = lim [ f,(z)d\(z)
zZ

n—o0 z

— lim [ £.(2) © (dN)/(dp) (2)dps(z)

n—o0 z

- /Z f(2) © (dN)/(djs) (2)dia(z).

6.10 Proof of Lemma 6.1.3

(a) follows from Lemma 8.1 in Lang (1993).

Now, we prove (b). Since k is measurable and Dy € £,k ©
1p,, is measurable. By E.2 in Cohn (2013), there exist maps
k, = éélcm. ©® by, where J, € N,C,; € &/ ® # and b,; € B,
such tljlgtl k, - k®1p,, and |k,| < |k|1p,, on Z x W. Then,
the maps k,(-,w) : Z — B are written as é}l w © by,
where (Cpnj)w = {z € Z|(z,w) € Cp;}. Then, i{nl(-,w) are mea-
surable since (Cp;j)w € 7. Moreover, they are p-integrable since
k(-,w) ® 1p,, (w) is p-integrable. Note that [ ky(z, w)du(z) =
égu((an)w) ® by;. Since the functions w — p((Cpj)w) are mea-
surable the maps w — [, ky(z, w)du(z) are also measurable.

Since g is also measurable, the maps g, : W — B defined by
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= [z kn(z, W)du(z) © 1p,, (W) © go(W) © 1 pg, (W) are mea-
surable. Also, [ kn(z, w)du(z) — [ k(z, w)du(z) by E.6 in Cohn
(2013). Thus, g, — g on W. Therfore, g is measurable by E.1 in
Cohn (2013). This proves (b).
For the proof of (c), note that k € £L( ® v, B) implies that

[ [ Itz w)ldut@ydvo) = [ i wlldu o vz w) < .
wJZz ZxXW

This holds by the Fubini’s theorem in Mukherjea (1972). Hence,
Dyy € # and v(Dy),) = 0. Define go, g,,g and ky, as in the proof
of (b). A similar argument to the proof of (b) shows that the func-
tion g : W — R defined by g(w) = [; ||k(z,w)|/du(z)1p,, (W) +
lgo(w)[I1pg, (W) is 1/-1ntegrable. Since ||g|| is dominated by g, E.6
in Cohn (2013) shows that

/gn dl/%/ du—// (2, w)dp(z)dv(w).
(6.10.1)

On the other hand, the Fubini’s theorem in Mukherjea (1972)
shows that

/W // (2, w)dp(z)dv (w)
_/ZXWk (z,w)dp®v(z,w)  (6.10.2)

— k(z,w)du @ v(z,w).
ZXW

By combining (6.10.1) and (6.10.2), we have [,,, [ k(z, w)du(z)dv(w) =

Sz k(z,w)dp @ v(z, w). This completes the proof of (c).
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6.11 Proof of Lemma 6.1.4

E.1 in Cohn (2013) implies that for each f € LP((Z,</, ), B),
there exist p-simple maps f, = @1 A,; ©bp;, where I,, e N, Ay,; €
o/ and by; € B, such that f, — f and IIf.]] < ||f|| on Z. Then, the

Lebesgue’s dominated convergence theorem implies that ( [ ||f,(z)©

f(z)||Pdu(z))/? — 0. Hence, for a given € > 0, there exists N € N
such that ([ ||é]é(lANi(z)GbNi)@f(z)deu(z))l/p < €/2. One can
show that for ela:cil i, there exists A; € o such that pu(An;AA;) <
(e/(2In]||bns||))P. Note that u(A;) < u(An;AA;) + p(An;) < oo,

and

In
/ ||€B Lay, (2) © byi) © @(14,(2) © by) [Pdpu(z)) 7
=1

<Z [ taan@uta) |

< €/2.

In

Therefore, ([ ||f(z)o @ (14, (z) ©by;)||Pdu(z))Y/P < €. This com-
i=1

pletes the proof.

6.12 Proof of Lemma 6.1.6

For the measurability, we need to prove that range(k) is separable
and k is (&7 @ £, B(B))-measurable. For the separability, define
Rp = {robjr € R} € B and Qp, = {¢ ®blg € Q} C B. Note
that for any ¢ > 0 and r € R, there exists ¢ € Q such that
lr ©b & q® bl = |r —ql|||b]| < e. Hence, Qp is a countable dense
subset of Ry,. Thus, Ry is separable. Since range(k) C Ry, and
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Rp is a metric space, range(k) is also separable. For the (& ®
2, B(B))-measurability, note that there exist measurable simple
functions k, : Z x W — R such that k, — k on Z x W. Since
the maps ky, : Z x W — B defined by k,(z,w) = k,(z,w) ©b
are also (&7 ® %, B(B))-measurable, and k,, - k on Z x W, k is
(o7 ® #,B(B))-measurable by E.1 in Cohn (2013).

6.13 Proof of Proposition 6.1.2

A similar argument to the proof of Theorem 1.1 in Kundu et al.
(2000) gives that (< Sp,b; >, - ,< Sp,by >)T -5 N(04, A),
where 04 = (0,---,0)7 € R? and A is a matrix whose (k,1)th en-
try is ay. Since each < G(0,C'), by > is normally distributed, (<
G(0,C),b; >,--- ,< G(0,C),by >)" follows a multivariate nor-
mal distribution. Since E(< G(0,C), by >) = 0 for all k, and the
(k,0)th entry of E((< G(0,C),by >,---,< G(0,C),by >)"(<
G(0,C),b; >,---,< G(0,C),by >)) is E(< G(0,C),b; ><

G(0,C),b; >) = ay, we have (< G(0,C),b; >,--- , < G(0,C),by >

)T 4 N(0g4, A). Consider T : RN — H defined by T(ug,--- ,uy) =

N
> ur ® bg. Then, T(< S,,b; >,---,< S,,by >) = S,, and
k=1
T(< G(0,C),by >,---,< G(0,C),by >) = G(0,C). Since T
is a continuous map, Theorem 2.3 in Bosq (2000) implies that

S, -4 G(0,0).
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