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ABSTRACT

Additive Regression with Hilbertian

Responses

Jeong Min Jeon

The Department of Statistics

The Graduate School

Seoul National University

This paper develops a foundation of methodology and theory for

the estimation of structured nonparametric regression models with

Hilbertian responses. Our method and theory are focused on the

additive model, while the main ideas may be adapted to other

structured models. For this, the notion of Bochner integration is

introduced for Banach-space-valued maps as a generalization of

Lebesgue integration. Several statistical properties of Bochner in-

tegrals, relevant for our method and theory, and also of importance

in their own right, are presented for the first time. Our theory is

complete. The existence of our estimators and the convergence of a

practical algorithm that evaluates the estimators are established.

These results are non-asymptotic as well as asymptotic. Further-
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more, it is proved that the estimators of component maps achieve

the univariate error rates in pointwise, L2 and uniform conver-

gence, and converge jointly in distribution to Gaussian random

elements. Our numerical examples include the cases of functional,

density-valued and simplex-valued responses, which demonstrate

the validity of our approach.

Keywords: Additive model, Smooth backfitting, Bochner inte-

gral, Non-Euclidean data, Infinite-dimensional space, Hilbert space,

Functional response.

Student Number: 2012− 20232
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Chapter 1

Introduction

Regression analysis with non-Euclidean data is one of the major

challenges in modern statistics. In many cases it is not transparent

how one can go beyond traditional Euclidean methods to analyze

non-Euclidean objects. The problem we tackle in this paper is

particularly the case. We consider the estimation of nonparametric

additive models that involve non-Euclidean random objects.

Additivity is a commonly employed structure with which one

is able to avoid the curse of dimensionality in nonparametric re-

gression. A powerful kernel-based method for achieving this is the

smooth backfitting (SBF) technique originated by Mammen et al.

(1999). A full account of the practical issues about the method

is given in Nielsen and Sperlich (2005). The idea has been devel-

oped for various structured nonparametric models, see Mammen

and Park (2006), Yu et al. (2008), Linton et al. (2008), Lee et al.

(2010, 2012) and Han and Park (2018+), for example. All of them,

however, treated the case of Euclidean response. There have been

a few applications of the idea to functional response. Examples in-
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clude Zhang et al. (2013), Lee et al. (2018) and Park et al. (2018+).

But, their techniques and theory are essentially the same as in the

case of Euclidean response. They applied the SBF technique to a

functional response Y (·) on a domain T in a pointwise manner,

i.e., to Y (t) for each t ∈ T , or to a finite number of its singular

components that live in a Euclidean space. These methods have

certain drawbacks. The pointwise application does not guarantee

a smooth trajectory for Ŷ (·) on T while Y (·) is believed to be

smooth. Methods based on singular components require choosing

the number of included components in a working model, which is

very difficult.

In this paper we develop a unified approach for fitting additive

models with a Hilbertian response. Let H be a separable Hilbert

space with a zero vector 0, vector addition ⊕ and scalar multipli-

cation �. For a probability space (Ω,F , P ), we consider a response

Y : Ω → H. Let X = (X1, · · · , Xd) be a predictor taking values

in a compact subset of Rd, say [0, 1]d, and ε be a H-valued error

satisfying E(ε|X) = 0. The additive model we study in this paper

is

Y = m0 ⊕
d⊕
j=1

mj(Xj)⊕ ε, (1.0.1)

where m0 is a constant in H and m1, . . . ,md : [0, 1]→ H are mea-

surable maps. There are numerous examples of Hilbertian vari-

ables. In the next section we introduce three examples, which we

also treat in our numerical study in Section 5. These are func-

tional variables, density-valued variables and simplex-valued vari-

ables. Our approach guarantees that the values of the estimators
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of mj(xj) at xj belong to the space H where the targets live. This

is a minimal requirement for a reasonable estimator. For exam-

ple, in case H is a space of smooth functions defined on T , as is

typically the case with functional data, our approach always pro-

duces smooth m̂j(xj)(·). Existing methods where one estimates

mj(xj)(t) pointwise in t ∈ T do not have this property. Moreover,

the computation of our estimators is faster than the pointwise ap-

proach as the grid on T gets denser, since the proposed method

estimates mj(xj)(·) on the whole T all at once.

The SBF technique involves solving a system of integral equa-

tions that is based on the integral representations of the condi-

tional expectations of the response. In our case, the traditional

Lebesgue integral theory does not apply since we treat random

elements taking values in a general Hilbert space. For this, we

base our approach on the notion of Bochner integration. The no-

tion, rather new in statistics, is for Banach-space-valued maps. We

develop integral formulas for (conditional) expectation, relevant

theory for projection operators acting on the spaces of Hilbert-

space-valued maps and some topological properties of the space

of regression maps under the model (1.0.1). These are essential

for investigating the theoretical properties of our estimators. We

note that this paper is the first in the statistical application of

Bochner integration. We establish the basic building block of struc-

tured nonparametric regression for Hilbertian responses. For this

we start from the foundation of Bochner integral theory. Some

of our results are familiar in Lebesgue integral theory, but their

derivation for Bochner integrals requires substantial innovation.
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Based on the Bochner integral theory we develop in this paper,

we establish the existence of the SBF estimator of the regression

map under the model (1.0.1) and the convergence of the SBF al-

gorithm. The results include non-asymptotic versions as well as

asymptotic ones. The non-asymptotic results have not been stud-

ied before even for the case H = R. The conventional way of estab-

lishing the convergence of the SBF algorithm is to prove that the

associated projection operators are compact. We find, however,

that this is no longer valid for infinite-dimensional H. Instead, we

prove that the space of sums of univariate Hilbert-space-valued

maps is closed by a novel use of a result on the equivalence of

the ‘compatibility’ of sum-maps (the condition (c) in Proposi-

tion 3.3.1) and the closedness of the sum-space. We also provide

a creative way of implementing the proposed algorithm, which re-

duces the task of iterating abstractly-defined Bochner integration

to that of updating real-valued weight functions based on Lebesgue

integration, see (2.5.2). Furthermore, we present complete theory

for the rates of convergence of the estimators of the component

maps mj and their asymptotic distributions.

We do not consider the case where the predictor X in (1.0.1)

is of infinite-dimension. The reason is that our approach is based

on solving a system of integral equations where each integral is

evaluated on the space of X values. It is well known that there is no

nontrivial locally finite translation invariant measure on infinite-

dimensional separable Banach spaces, like Lebesgue measure on

Rk. Thus, it is not easy to evaluate the integrals in practice when

X takes values in an infinite-dimensional separable Banach space.
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There have been a few attempts of dealing with possibly non-

Euclidean response. Dabo-Niang and Rhomari (2009), Ferraty et

al. (2011) and Ferraty et al. (2012) studied a functional Nadaraya-

Watson estimator for Banach- or Hilbert-space-valued response.

Lian (2011) and Lian (2012) investigated a functional k-nearest

neighbor estimator for Hilbert-space-valued response. But, these

are for full-dimensional regression, which would suffer from the

curse of dimensionality when the number of predictors increases.

Some others for functional response include Chiou et al. (2003),

Jiang and Wang (2011), Zhu et al. (2012) and Scheipl et al. (2015).

They are differentiated from ours in that their methods or the

models under study essentially reduce the problem to the esti-

mation of a regression function for a scalar response. There has

been no earlier work on nonparametric regression with density-

valued responses, although Petersen and Muller (2016) introduced

a transformation approach for density-valued responses and pre-

dictors. Recently, Tsagris (2015) considered simplex-valued re-

sponses but in a parametric model.
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Chapter 2

Bochner Smooth

Backfitting

Throughout this paper, we use the symbol B to denote Banach

spaces and ‖·‖ for their norms. We use the symbol B(B) to denote

the Borel σ-field of B. For a set S ∈ B(B), we write S ∩ B(B) for

the σ-field {S ∩B : B ∈ B(B)} on S. We denote Hilbert spaces by

H and their inner products by 〈·, ·〉. We also let Lebk denote the

Lebesgue measure on Rk.

2.1 Examples of Hilbertian response

Here, we introduce three Hilbert spaces. These are the spaces we

consider for the response in our numerical study in Section 5.

L2 and Hilbert-Sobolev spaces. For a subset S ∈ B(Rk), con-

sider L2(S, S ∩ B(Rk),Lebk) and a Hilbert-Sobolev space W l,2(S)

for l ∈ N. It is well known that these are separable Hilbert spaces.
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Bayes-Hilbert spaces. Consider a space of density functions on

S ∈ B(Rk). Let

M = {µ : µ is a σ-finite measure on S ∩ B(Rk) such that

µ� Lebk and Lebk � µ}.

For µ ∈ M, let fµ = dµ/dLebk. For µ, ν ∈ M and c ∈ R, define

µν, µc : S ∩ B(Rk) → [0,∞] by (µν)(A) =
∫
A fµ(s)fν(s)ds and

(µc)(A) =
∫
A(fµ(s))cds, respectively. Then, µν, µc ∈M. For these

measures, fµν = fµ · fν a.e. [Lebk] and fµc = (fµ)c a.e. [Lebk].

Define

B2(S, S ∩ B(Rk),Lebk) =
{

[fµ] : µ ∈M,

∫
S

(
log fµ(s)

)2
ds <∞

}
,

where [fµ] denotes the class of all measurable functions g : S →

[0,∞] such that g = C · fµ a.e. [Lebk] for some constant C > 0.

Define ⊕ and � on B2(S, S∩B(Rk),Lebk) by [fµ]⊕ [fν ] = [fµν ] =

[fµ · fν ] and c � [fµ] = [fµc ] = [(fµ)c], respectively. Also, define

〈·, ·〉 by

〈[fµ], [fν ]〉 =

∫
S2

log

(
fµ(s)

fµ(s′)

)
log

(
fν(s)

fν(s′)

)
dsds′.

Then, B2(S, S ∩ B(Rk),Lebk) is a separable Hilbert space with

0 = [fLebk
] = [1], as proved by van den Boogaart et al. (2014).

Simplices. For s > 0, consider the space Sks = {(v1, · · · , vk) ∈

(0, s)k :
∑k

j=1 vj = s}. For v,w ∈ Sks and c ∈ R, define ⊕ and

�, respectively, by v ⊕w = ( sv1w1
v1w1+···+vkwk

, . . . , svkwk
v1w1+···+vkwk

) and

c� v = (
svc1

vc1+···+vck
, . . . ,

svck
vc1+···+vck

). Define

〈v,w〉 =

k∑
j=1

k∑
l=1

log(vj/vl) log(wj/wl).
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Then, with 0 = (s/k, . . . , s/k), (Sks ,⊕,�, 〈·, ·〉) is a separable Hilbert

space.

2.2 Bochner integration

Our method of estimating the additive model (1.0.1) is based on

the representation of the conditional means of mk(Xk) given Xj

for k 6= j, in terms of the conditional densities of Xk given Xj .

This involves integration of mk(xk) over xk in the support of the

corresponding conditional density. Since each component mk is

a H-valued map, the conventional Lebesgue integration does not

apply to the current problem. In this subsection we study a notion

of integration in a more general setting. Specifically, we consider

integration of Banach-space-valued maps.

For the integration of B-valued maps, we use a notion of Bochner

integral. Let (Z,A , µ) be a measure space. In the classical Bochner

integral theory, see Lang (1993) and van Neerven (2008), for ex-

ample, Bochner integrals are defined for Banach-space-valued µ-

measurable maps. Note that a map f : Z → B is called µ-measurable

if it is the µ-almost everywhere limit of a sequence of µ-simple

maps. A map f : Z → B is called µ-simple if f(z) =
⊕n

i=1 1Ai(z)�

bi for some bi ∈ B and disjoint Ai ∈ A with µ(Ai) <∞. However,

a µ-measurable map is not necessarily (A ,B(B))-measurable. Fail-

ure of (A ,B(B))-measurability causes a fundamental problem in

statistical applications. To explain why, let (Ω,F , P ) be a prob-

ability space and Z : Ω → Z be a random element. If f is not

(A ,B(B))-measurable, then f(Z) : Ω → B may not be a random

element.
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We consider a recently introduced notion of Bochner integra-

tion, which has never been studied in statistics, to the best of our

knowledge. The new notion is for ‘strongly measurable’ Banach-

space-valued maps. We briefly introduce it here. For more details,

see Cohn (2013). For a map f : Z → B, we let range(f) denote

{f(z) : z ∈ Z} ⊂ B.

Definition 2.2.1. A map f : (Z,A , µ) → (B,B(B)) is called

strongly measurable if it is (A ,B(B))-measurable and range(f) is

separable.

An immediate example of strongly measurable map is µ-simple

map. For a µ-simple map f(z) =
⊕n

i=1 1Ai(z) � bi, the Bochner

integral is defined by
∫

f(z)dµ(z) =
⊕n

i=1 µ(Ai) � bi. It can be

shown that, if a map f is strongly measurable and ‖f‖ is Lebesgue

integrable with respect to µ, then there exist µ-simple maps fn

such that f(z) = lim
n→∞

fn(z) and ‖fn(z)‖ ≤ ‖f(z)‖ for all z and n.

Definition 2.2.2. A map f : (Z,A , µ) → (B,B(B)) is called

Bochner integrable if it is strongly measurable and ‖f‖ is Lebesgue

integrable with respect to µ. In this case the Bochner integral of f is

defined by
∫

fdµ = lim
n→∞

∫
fndµ, where fn is a sequence of µ-simple

maps such that f(z) = lim
n→∞

fn(z) and ‖fn(z)‖ ≤ ‖f(z)‖.

We present several properties of the Bochner integral that are

fundamental in its statistical applications. For 1 ≤ p <∞, define

Lp((Z,A , µ),B) =
{

f : Z → B | f is strongly measurable and(∫
Z
‖f(z)‖pdµ(z)

)1/p
<∞

}
.
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Recall that Lp((Z,A , µ),R) can be made into a Banach space by

taking its quotient space Lp((Z,A , µ),R)/NR with respect to the

kernel NR of its norm, NR =
{
f : f = 0 a.e. [µ]

}
. This also holds

for Lp((Z,A , µ),B). In particular, for N =
{
f : f = 0 a.e. [µ]

}
,

the quotient space L2((Z,A , µ),H)/N is a Hilbert space with an

inner product 〈·, ·〉µ defined by 〈[f ], [g]〉µ =
∫
Z 〈f(z),g(z)〉dµ(z),

where [f ] and [g] denote the equivalence classes of maps f and g,

respectively. We adopt the following convention throughout this

paper.

Convention 1. We write Lp((Z,A , µ),B) for Lp((Z,A , µ),B)/N .

We call Lp((Z,A , µ),B) Lebesgue-Bochner space. We will write

all elements in Lp((Z,A , µ),B) using equivalence class notation

[·] to distinguish them from the elements in Lp((Z,A , µ),B). We

say simply ‘measurable’ for ‘strongly measurable’ and ‘integrable’

for ‘Bochner integrable’. We say ‘µ-integrable’ in case we need to

specify the underlying measure µ associated with Bochner inte-

gration.

For measure spaces (Z,A , µ) and (W,B, ν), let A ⊗ B de-

note the product σ-field and µ ⊗ ν denote a product measure on

A ⊗ B. For a (A ,B)-measurable mapping T : Z → W, we

let µT−1 denote a measure on (W,B) defined by µT−1(B) =

µ(T−1(B)), B ∈ B. For a probability space (Ω,F , P ) and a ran-

dom element Z : (Ω,F , P ) → (Z,A , µ) with σ-finite µ, we write

pZ for its density dPZ−1/dµ with respect to µ.

The following two propositions are the basic building blocks of

our methodological and theoretical development to be presented

later. They are also of interest in their own right. The results
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are very new in statistics although there are familiar versions in

the Lebesgue integral theory. In the propositions and thereafter

throughout this paper, B denotes a separable Banach space. Sepa-

rability is required for the associated maps to be measurable, see

Definition 2.2.1.

Proposition 2.2.1. Let (Ω,F , P ) be a probability space and (Z,A , µ)

be a σ-finite measure space. Let Z : Ω → Z be a random el-

ement such that PZ−1 � µ and f : Z → B be a measurable

map such that E(‖f(Z)‖) < ∞. Then, it holds that E(f(Z)) =∫
Z f(z)� pZ(z)dµ(z).

Proof. From the condition of the proposition, f(Z) : Ω → B is

P -integrable so that an application of Lemma 6.1.1 in the Ap-

pendix gives that f is PZ−1-integrable and
∫
Z f(z)dPZ−1(z) =∫

Ω f(Z)dP . According to Lemma 6.1.2 in the Appendix, f�(dPZ−1/dµ)

is µ-integrable and
∫
Z f(z)dPZ−1(z) =

∫
Z f(z)�(dPZ−1/dµ)(z)dµ(z).

The proposition now follows.

Proposition 2.2.2. Let (Ω,F , P ) be a probability space, and (Z,A , µ)

and (W,B, ν) be σ-finite measure spaces. Let Z : Ω → Z and

W : Ω → W be random elements such that P (Z,W)−1 � µ ⊗ ν.

Assume that pW(w) ∈ (0,∞) for all w ∈ W. Let f : Z → B be a

measurable map such that E(‖f(Z)‖) <∞. Define g :W → B by

g(w) =


∫
Z f(z)� pZ,W(z,w)

pW(w) dµ(z), if w ∈ DW

g0(w), otherwise,

where DW = {w ∈ W :
∫
Z ‖f(z)‖pZ,W(z,w)dµ(z) < ∞} and

g0 : W → B is any measurable map. Then, g is measurable and

g(W) is a version of E(f(Z)|W).

11



Proof. We first note that the map (z,w) 7→ f(z) � pZ,W(z,w) is

measurable. From Tonelli’s theorem, it follows that

E(‖f(Z)‖) =

∫
Z

∫
W
‖f(z)‖pZ,W(z,w)dν(w)dµ(z)

=

∫
W

∫
Z
‖f(z)‖pZ,W(z,w)dµ(z)dν(w).

(2.2.1)

Since E(‖f(Z)‖) <∞, (2.2.1) implies that
∫
Z ‖f(z)‖pZ,W(z, ·)dµ(z) <

∞ a.e. [ν]. By Lemma 6.1.3 in the Appendix, h : W → B defined

by h(w) = g(w) � pW(w) is measurable. Thus, g is measurable

and g(W) is (W−1(B),B(B))-measurable. We also get∫
W
‖g(w)‖dPW−1(w) ≤

∫
W

∫
Z
‖f(z)‖pZ,W(z,w)dµ(z)dν(w) <∞.

Hence, g(W) ∈ L1((Ω,W−1(B), P ),B) by Lemma 6.1.1. Now,

from Lemmas 6.1.1–6.1.3 and the fact that ν(Dc
W) = 0 it follows

that, for all B ∈ B,∫
W−1(B)

g(W)dP =

∫
Z×W

f(z)� [1B(w)pZ,W(z,w)]dµ⊗ ν(z,w)

=

∫
W−1(B)

f(Z)dP.

This completes the proof of the proposition.

2.3 Lebesgue-Bochner spaces of additive maps

We introduce some relevant spaces for the estimation of the addi-

tive model (1.0.1). For a probability space (Ω,F , P ) and a sepa-

rable Hilbert space H, let Y : Ω→ H be a response with E‖Y‖2 <

∞, and X : Ω → [0, 1]d a d-variate predictor vector. We assume

PX−1 � Lebd. For simplicity we write p, instead of pX, to denote

12



its density dPX−1/dLebd. We also write pj for dPX−1
j /dLeb1 and

pjk for dP (Xj , Xk)
−1/dLeb2.

The conditional means E(Y|Xj) and E(Y|X), respectively,

are (X−1
j ([0, 1] ∩ B(R)),B(H))- and (X−1([0, 1]d ∩ B(Rd)),B(H))-

measurable maps by definition. In general, for a measurable space

(Z,A ), a random element V : Ω → B and a random element

Z : Ω → Z, it holds that V is (Z−1(A ),B(B))-measurable if

and only if there exists a measurable map h : Z → B such

that V = h(Z), see Lemma 1.13 in Kallenberg (1997), for ex-

ample. Thus, there exist measurable maps hj : [0, 1] → H and

h : [0, 1]d → H such that E(Y|Xj) = hj(Xj) and E(Y|X) = h(X).

For such measurable maps, we define E(Y|Xj = ·) = hj and

E(Y|X = ·) = h.

Let m : [0, 1]d → H be defined by m(x) = m0 ⊕
d⊕
j=1

mj(xj).

We note that m = E(Y|X = ·). As the space where E(Y|X = ·)

belongs, we consider

LH2 (p) := L2(([0, 1]d, [0, 1]d ∩ B(Rd), PX−1),H)

and endow LH
2 (p) := L2(([0, 1]d, [0, 1]d ∩ B(Rd), PX−1),H) with

the norm ‖ · ‖2 defined by

‖[f ]‖22 =

∫
[0,1]d

‖f(x)‖2dPX−1(x) =

∫
[0,1]d

‖f(x)‖2p(x)dx.

As subspaces of LH2 (p), define

LH2 (pj) :=
{

f ∈ LH2 (p) : ∃ a univariate map fj such that f(x) = fj(xj)
}

and define LH
2 (pj) := LH2 (pj)/N . We note that LH2 (pj) depends

on p only through its marginalization pj since, for f ∈ LH2 (pj), it

13



holds that∫
[0,1]d

‖f(x)‖2p(x)dx =

∫ 1

0
‖fj(xj)‖2pj(xj)dxj ,

where fj is a univariate map such that f(x) = fj(xj). Let SH(p)

be the sum-space defined by

SH(p) =
{ d⊕
j=1

[fj ] : [fj ] ∈ LH
2 (pj), 1 ≤ j ≤ d

}
⊂ LH

2 (p).

To define empirical versions of LH2 (p), LH
2 (p),LH2 (pj), L

H
2 (pj)

and SH(p), we let K : R → [0,∞) be a baseline kernel function.

Throughout this paper, we assume that K vanishes on R \ [−1, 1]

and satisfies
∫ 1
−1K(u)du = 1. For a bandwidth h > 0 we write

Kh(u) = K(u/h)/h. Define a normalized kernel Kh(u, v) by

Kh(u, v) =
Kh(u− v)∫ 1

0 Kh(t− v)dt

whenever
∫ 1

0 Kh(t − v)dt > 0 and we set Kh(u, v) = 0 otherwise.

This type of kernel function has been used in the smooth backfit-

ting literature, see Mammen et al. (1999), for example. Note that∫ 1
0 Kh(u, v)du = 1 for all v ∈ [0, 1] and

Kh(u, v) = Kh(u−v) for all (u, v) ∈ [2h, 1−2h]× [0, 1]. (2.3.1)

We also have∫ 0

−1
K(u)du ∧

∫ 1

0
K(u)du ≤

∫ 1

0
Kh(u− v)du ≤

∫ 1

−1
K(u)du

for all v ∈ [0, 1] and h ≤ 1/2. Hence, if
∫ 0
−1K(u)du∧

∫ 1
0 K(u)du >

0, then

Kh(u− v) ≤ Kh(u, v) ≤ Kh(u− v)∫ 0
−1K(u)du ∧

∫ 1
0 K(u)du

14



for all u, v ∈ [0, 1] and h ≤ 1/2.

Suppose that we observe (Yi,Xi), 1 ≤ i ≤ n, which follow the

model (1.0.1). We estimate pj(xj) and pjk(xj , xk) by

p̂j(xj) = n−1
n∑
i=1

Khj (xj , Xij),

p̂jk(xj , xk) = n−1
n∑
i=1

Khj (xj , Xij)Khk(xk, Xik),

respectively, where Xij denotes the jth entry of Xi. Here, we allow

the bandwidths hj to be different for different j. Because of the

normalization in defining Kh(·, ·), it holds that∫ 1

0
p̂j(xj)dxj = 1,

∫ 1

0
p̂jk(xj , xk)dxk = p̂j(xj).

Let p̂ be the multivariate kernel density estimator of p defined

by p̂(x) = n−1
n∑
i=1

∏d
j=1Khj (xj , Xij). The density estimator p̂ also

have the marginalization properties as p:∫
[0,1]d−1

p̂(x)dx−j = p̂j(xj),

∫
[0,1]d−2

p̂(x)dx−j,k = p̂jk(xj , xk)

for 1 ≤ j 6= k ≤ d, where x−j and x−j,k denote the respective

(d− 1)- and (d− 2)-vector resulting from omitting xj and (xj , xk)

in x = (x1, . . . , xd).

Now, define a measure P̂X−1 on [0, 1]d∩B(Rd) by P̂X−1(B) =∫
B p̂(x)dx. With this measure, we define LH2 (p̂), LH

2 (p̂),LH2 (p̂j) and

LH
2 (p̂j) as LH2 (p), LH

2 (p),LH2 (pj) and LH
2 (pj) with PX−1 in the def-

inition of LH2 (p) and LH
2 (p) being replaced by P̂X−1. We endow

LH
2 (p̂) with the norm ‖ · ‖2,n defined by

‖[f ]‖22,n =

∫
[0,1]d

‖f(x)‖2dP̂X−1(x) =

∫
[0,1]d

‖f(x)‖2p̂(x)dx.
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Also, define an analogue of SH(p) by

SH(p̂) =
{ d⊕
j=1

[fj ] : [fj ] ∈ LH
2 (p̂j), 1 ≤ j ≤ d

}
⊂ LH

2 (p̂).

Convention 2. It is often convenient to treat f in LH2 (pj) or

in LH2 (p̂j) as a univariate map and write f(xj) instead of f(x).

This convention is particularly useful when we express a system

of Bochner integral equations in Section 2.4, see (2.4.6) below, for

example. Conversely, we may embed a univariate map f : [0, 1]→

H into LH2 (pj) or LH2 (p̂j) by considering its version f∗j defined

by f∗j (x) = f(xj) for x ∈ [0, 1]d. We take the above convention

throughout this paper. With this convention, we may put mj into

LH2 (pj) if E(‖mj(Xj)‖2) <∞.

2.4 Bochner integral equations and backfit-

ting algorithm

In this section, we describe the estimation of the component maps

mj in the model (1.0.1) using Bochner integrals. Throughout this

paper, we assume that mj ∈ LH2 (pj) for all 1 ≤ j ≤ d. Further-

more, we make the following assumptions on the densities pj and

pjk.

Condition (A). The pj and pjk for all 1 ≤ j 6= k ≤ d satisfy

pj(xj) > 0 and
∫ 1

0 p
2
jk(xj , xk)/pk(xk)dxk < ∞ for all xj ∈ [0, 1],

and ∫
[0,1]2

p2
jk(xj , xk)

pj(xj)pk(xk)
dxjdxk <∞.
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We also use the following analogue of the condition (A) for p̂j

and p̂jk.

Condition (S). The p̂j and p̂jk for all 1 ≤ j 6= k ≤ d satisfy

p̂j(xj) > 0 and
∫ 1

0 p̂
2
jk(xj , xk)/p̂k(xk)dxk < ∞ for all xj ∈ [0, 1],

and ∫
[0,1]2

p̂2
jk(xj , xk)

p̂j(xj)p̂k(xk)
dxjdxk <∞.

We note that the condition (S) always holds under weak condi-

tions on the bandwidths and baseline kernel function. Let X(1),j <

· · · < X(n),j denote the order statistics of (Xij : 1 ≤ i ≤ n). Sup-

pose that hj and K satisfy

(S1) hj > max
{
X(1),j , 1−X(n),j , max

1≤i≤n−1
(X(i+1),j−X(i),j)/2

}
for

all 1 ≤ j ≤ d.

(S2) K is bounded and infu∈[−c,c]K(u) > 0, where

c = max
1≤j≤d

h−1
j max

{
X(1),j , 1−X(n),j , max

1≤i≤n−1
(X(i+1),j−X(i),j)/2

}
< 1.

Then, it is easy to see that

inf
xj∈[0,1]

p̂j(xj) > 0, sup
xj ,xk∈[0,1]

p̂jk(xj , xk) <∞

for all 1 ≤ j 6= k ≤ d. Hence, (S1) and (S2) imply the condition

(S).

From the basic properties of conditional expectation and the

model (1.0.1), we get

E(Y|Xj) = m0 ⊕mj(Xj)⊕
⊕
k 6=j

E(mk(Xk)|Xj), 1 ≤ j ≤ d.

(2.4.1)
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Under the condition (A) we also get that∫ 1

0
‖mk(xk)‖pjk(xj , xk)dxk <∞ (2.4.2)

for all xj ∈ [0, 1] and 1 ≤ j 6= k ≤ d. The property (2.4.2) is a

simple consequence of an application of Hölder’s inequality. Then,

by Proposition 2.2.2, we may write (2.4.1) as

E(Y|Xj) = m0 ⊕mj(Xj)⊕
⊕
k 6=j

∫ 1

0
mk(xk)�

pjk(Xj , xk)

pj(Xj)
dxk, 1 ≤ j ≤ d.

By the definition of E(Y|Xj = ·), we may also write it as

E(Y|Xj = xj) = m0 ⊕mj(xj)⊕
⊕
k 6=j

∫ 1

0
mk(xk)�

pjk(xj , xk)

pj(xj)
dxk, 1 ≤ j ≤ d.

(2.4.3)

For the identifiability of mj in the model, we put the constraints

E(mj(Xj)) = 0, 1 ≤ j ≤ d. By Proposition 2.2.1, the constraints

are equivalent to∫ 1

0
mj(xj)� pj(xj)dxj = 0, 1 ≤ j ≤ d. (2.4.4)

The constraints entail m0 = E(Y).

Now we describe the estimation of mj based on the Bochner

integral equations at (2.4.3). We estimate E(Y|Xj = xj) by the

Nadaraya-Watson-type estimator

m̃j(xj) =
[
p̂j(xj)

−1n−1
]
�

n⊕
i=1

Khj (xj , Xij)�Yi (2.4.5)

and E(Y) by the sample mean Ȳ = n−1 �
⊕n

i=1 Yi. Let 	 be

defined by b1 	 b2 = b1 ⊕ (−1 � b2). We solve the estimated
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system of Bochner integral equations

m̂j(xj) = m̃j(xj)	 Ȳ 	
⊕
k 6=j

∫ 1

0
m̂k(xk)�

p̂jk(xj , xk)

p̂j(xj)
dxk, 1 ≤ j ≤ d

(2.4.6)

for (m̂1, · · · , m̂d) in the space of d-tuple maps {(f1, . . . , fd) : fj ∈

LH2 (p̂j), 1 ≤ j ≤ d}, subject to the constraints∫ 1

0
m̂j(xj)� p̂j(xj)dxj = 0, 1 ≤ j ≤ d. (2.4.7)

We note that the Bochner integrals at (2.4.6) are well-defined for

m̂j ∈ LH2 (p̂j) under the condition (S).

In the next section we will show that there exists a solution

(m̂j : 1 ≤ j ≤ d) of (2.4.6) satisfying (2.4.7) and that their sum⊕d
j=1 m̂j is unique, only under the condition (S). The estimator

of the regression map m := E(Y|X = ·) : [0, 1]d → H is defined by

m̂, where m̂(x) = Ȳ ⊕
d⊕
j=1

m̂j(xj). For the estimator m̂, we will

also prove that the component tuple (m̂j : 1 ≤ j ≤ d) is uniquely

determined under some additional assumption. Our estimator of

(m1, . . . ,md) is then the solution (m̂1, . . . , m̂d). We call m̂ and

m̂j Bochner smooth backfitting estimators or B-SBF estimators in

short, and the system of equations (2.4.6) Bochner smooth back-

fitting equation, or B-SBF equation in short.

Our approach guarantees that m̂j(xj) and m̂(x) belong to H,

the space of the true values of the maps mj and m as well as

the values of Y. For example, in the case where H is a space

of smooth functions in L2(S, S ∩ B(Rk),Lebk), as is typically as-

sumed in functional data analysis, our approach always produces

a smooth trajectory m̂j(xj)(·) : S → R for each xj . Here, one

19



should not confuse the smoothness of m̂j(xj)(·) : S → R with

that of m̂j as maps from [0, 1] to L2(S, S ∩ B(Rk),Lebk). In the

case where H is a Bayes-Hilbert space B2(S, S∩B(Rk),Lebk) or a

simplex space Sks , our approach gives automatically densities on S

or k-dimensional compositional vectors with nonnegative entries,

respectively, as the estimators of m̂j(xj) and m̂(x), that integrate

or sum into one.

To solve the B-SBF equation (2.4.6), we take an initial esti-

mator (m̂
[0]
1 , · · · , m̂

[0]
d ) that satisfies the constraints (2.4.7). We

update the estimator (m̂
[r]
1 , · · · , m̂

[r]
d ) for r ≥ 1 by

m̂
[r]
j (xj) = m̃j(xj)	 Ȳ 	

⊕
k<j

∫ 1

0
m̂

[r]
k (xk)�

p̂jk(xj , xk)

p̂j(xj)
dxk

	
⊕
k>j

∫ 1

0
m̂

[r−1]
k (xk)�

p̂jk(xj , xk)

p̂j(xj)
dxk, 1 ≤ j ≤ d.

(2.4.8)

We let m̂[r](x) = Ȳ ⊕
⊕d

j=1 m̂
[r]
j (xj). We call (2.4.8) Bochner

smooth backfitting algorithm or B-SBF algorithm in short. In the

next section we will show that the B-SBF algorithm converges

always in ‖ · ‖2,n norm under the condition (S). We will also show

that it converges in ‖ · ‖2 norm with probability tending to one

under weak conditions on p, K and hj . We note that, if the initial

estimator (m̂
[0]
1 , · · · , m̂

[0]
d ) satisfies the constraints (2.4.7), then all

subsequent updates (m̂
[r]
1 , · · · , m̂

[r]
d ) for r ≥ 1 also satisfy (2.4.7)

due to the normalization property
∫ 1

0 Khj (u, ·)du ≡ 1 on [0, 1].
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2.5 Practical implementation

Bochner integrals are defined in an abstract way. Thus, one can

not evaluate the integrals at (2.4.8) with the usual numerical in-

tegration techniques. In this subsection we present an innovative

way of implementing the B-SBF algorithm. The key idea is to use

the fact that, for any measure space (Z,A , µ),

(Bochner)

∫
Z
f(z)� b dµ(z) = (Lebesgue)

∫
Z
f(z)dµ(z)� b,

(2.5.1)

where f is a real-valued integrable function on Z and b is a con-

stant in a Banach space. Suppose that we choose

m̂
[0]
j (xj) = n−1 �

n⊕
i=1

w
[0]
ij (xj)�Yi

as the initial estimators with the weights w
[0]
ij (xj) ∈ R satisfying∫ 1

0 w
[0]
ij (xj)p̂j(xj)dxj = 0. This is not a restriction since we can take

w
[0]
ij ≡ 0 for all 1 ≤ j ≤ d and 1 ≤ i ≤ n. Then, we may express the

Bochner integrals on the right hand side of the equation at (2.4.8)

in terms of the corresponding Lebesgue integrals as follows.

m̂
[r]
j (xj) = n−1 �

n⊕
i=1

(
Khj (xj , X

i
j)

p̂j(xj)
− 1−

∑
k<j

∫ 1

0
w

[r]
ik (xk)

p̂jk(xj , xk)

p̂j(xj)
dxk

−
∑
k>j

∫ 1

0
w

[r−1]
ik (xk)

p̂jk(xj , xk)

p̂j(xj)
dxk

)
�Yi

=: n−1 �
n⊕
i=1

w
[r]
ij (xj)�Yi, 1 ≤ j ≤ d.

(2.5.2)

Thus, it turns out that the algorithm (2.4.8) reduces to a simple

iteration scheme that updates the weight functions w
[r]
ij based on
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Lebesgue integrals.

The equation (2.5.2) reveals that m̂
[r]
j for r ≥ 1 are linear

smoothers if the initial m̂
[0]
j are. It also demonstrates explicitly

that the values of m̂
[r]
j (xj) for each xj belong to H, the space of

the values of Yi and mj(xj). The idea of using (2.5.1) in the evalu-

ation of Bochner integrals appears to be important in the analysis

of more general object-oriented data belonging to a Banach space.

One may develop a similar idea for nonparametric structural re-

gression dealing with various types of random objects.
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Chapter 3

Existence and Algorithm

Convergence

3.1 Projection operators

Our theory for the existence of the B-SBF estimators and the

convergence of the B-SBF algorithm relies heavily on the the-

ory of projection operators that map LH
2 (p) to LH

2 (pj), or LH
2 (p̂)

to LH
2 (p̂j). We start with a proposition that characterizes LH

2 (pj)

and LH
2 (p̂j), respectively, as closed subspaces of LH

2 (p) and LH
2 (p̂).

These topological properties of LH
2 (pj) and LH

2 (p̂j) are essential to

defining relevant projection operators. We write B1 ≤ B2 if B1 is

a closed subspace of a Banach space B2. The following proposition

is immediate from Lemma 6.1.5 in the Appendix and the fact that

a complete subspace of a metric space is closed.

Proposition 3.1.1. LH
2 (pj) ≤ LH

2 (p) and LH
2 (p̂j) ≤ LH

2 (p̂).

We define the operators πj : LH
2 (p)→ LH

2 (pj) by πj([f ]) = [πjf ],
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where

πjf (xj) =


∫

[0,1]d−1 f(x)� p(x)
pj(xj)dx−j , if xj ∈ Dj(f)

0, otherwise

where Dj(f) = {xj ∈ [0, 1] :
∫

[0,1]d−1 ‖f(x)‖p(x)dx−j < ∞}. Like-

wise, we define the operators π̂j : LH
2 (p̂) → LH

2 (p̂j) with p and pj

being replaced by p̂ and p̂j , respectively. The following proposition

demonstrates that both πj and π̂j are projection operators on the

respective spaces.

Proposition 3.1.2. If pj(xj) > 0 for all xj ∈ [0, 1], then, πj

is an orthogonal projection operator. Also, if p̂j(xj) > 0 for all

xj ∈ [0, 1], then, π̂j is an orthogonal projection operator.

For Banach spaces B1 and B2, we let L(B1,B2) denote the

space of all bounded linear operators from B1 to B2. We write

simply L(B) for L(B,B). Let πj |LH
2 (pk) : LH

2 (pk) → LH
2 (pj) de-

note the operator πj restricted to LH
2 (pk) for k 6= j. Under the

condition (A), πj |LH
2 (pk) are integral operators with the kernel

kjk : [0, 1]d × [0, 1]d → L(H) defined by kjk(u,v)(h) = h �
pjk(uj ,vk)
pj(uj)pk(vk) . To see this, we note that the condition (A) implies∫
[0,1]d−1 ‖fk(x)‖p(x)dx−j < ∞ for all xj ∈ [0, 1] if fk ∈ LH2 (pk), so

that Dj(fk) = [0, 1] for all fk ∈ LH2 (pk). Thus, it holds that

πjfk(uj) =

∫
[0,1]d

fk(x)�
pjk(uj , xk)

pj(uj)pk(xk)
dPX−1(x)

=

∫
[0,1]d

kjk(u,x)(fk(x))dPX−1(x).

Similarly, under the condition (S), π̂j |LH
2 (p̂k) are integral oper-

ators with the kernel k̂jk : [0, 1]d × [0, 1]d → L(H) defined by

k̂jk(u,v)(h) = h� p̂jk(uj ,vk)
p̂j(uj)p̂k(vk) .
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3.2 Compactness of projection operators

In the case where H = R, a common approach to establishing the

existence of the SBF estimators and the convergence of the SBF

algorithm is to prove that πj |LH
2 (pk) or π̂j |LH

2 (p̂k) for all 1 ≤ j 6=

k ≤ d are compact operators, see Mammen et al. (1999) or a more

recent Mammen et al. (2014), for example. Indeed, it follows from

Proposition A.4.2 in Bickel et al. (1993) that, if πj |LH
2 (pk) for all

1 ≤ j 6= k ≤ d are compact, then

SH(p) ≤ LH
2 (p). (3.2.1)

Moreover, according to Corollary 4.3 in Xu and Zikatanov (2002),

(3.2.1) implies

‖T‖L(SH(p)) < 1, (3.2.2)

where T is an operator in L(SH(p)) defined by T = (I −πd) ◦ · · · ◦

(I − π1), where I is the identity operator. The same properties

hold for SH(p̂) and for T̂ , defined in the same way as T with πj

being replaced by π̂j , if π̂j |LH
2 (p̂k) are compact. The two properties

at (3.2.1) and (3.2.2) are essential to the existence of the B-SBF

estimators and the convergence of the B-SBF algorithm.

The compactness of πj |LH
2 (pk) or π̂j |LH

2 (p̂k) has been unknown

when H 6= R. Some sufficient conditions for the compactness

of integral operators defined on Lebesgue-Bochner spaces of ‘µ-

measurable maps’ were studied by Busby et al. (1972) and Vath

(2000) among others. But, the case for ‘strongly measurable maps’,

which are relevant in statistical applications and on which our the-

oretical development is based, has never been studied. Below, we
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present two general theorems in the latter case. The first one gives

a sufficient condition for compactness, and the second is about

non-compactness for certain integral operators. The two theorems

have important implications in our theoretical development, while

they are also of interest in their own right.

In the statements of the two theorems, (Z,A , µ) and (W,B, ν)

are measure spaces and B1 and B2 are separable Banach spaces.

We denote by ‖ · ‖L(B1,B2) the operator norm of L(B1,B2). Let

1 < p, q <∞ satisfy p−1 + q−1 = 1. Let k : Z×W → L(B1,B2) be

a measurable map such that
∫
Z×W ‖k(z,w)‖qL(B1,B2)dµ⊗ν(z,w) <

∞. Define L : Lp((Z,A , µ),B1) → Lq((W,B, ν),B2) by L([f ]) =

[Lf ], where

Lf (w) =


∫
Z k(z,w)(f(z))dµ(z), if w ∈ DW

L0(f)(w), otherwise,
(3.2.3)

where DW = {w ∈ W :
∫
Z ‖k(z,w)‖qL(B1,B2)dµ(z) <∞} and L0 is

any linear map from Lp((Z,A , µ),B1) to {g :W → B2 |g is measurable}.

Finally, we let C(B1,B2) denote the space of all compact operators

from B1 to B2.

Theorem 3.2.1. L is a bounded linear operator. Furthermore, if

range(k) ⊂ C(B1,B2), then L is compact.

Theorem 3.2.1 tells that, if the kernel of an integral operator

takes values in the space of compact operators, then the inte-

gral operator is compact. To apply the theorem to πj |LH
2 (pk) or

π̂j |LH
2 (p̂k) we need to check the measurability of kjk and k̂jk. This

is not trivial since the Banach space C(B1,B2) is not separable in

general. In Lemma 6.1.6 in the Appendix we establish that both
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kjk and k̂jk are measurable. One can also show that kjk(u,v)

and k̂jk(u,v) belong to C(H,H) for all u,v ∈ [0, 1]d under the

conditions (A) and (S), respectively, if H is finite-dimensional.

Corollary 3.2.1. Suppose that H is finite-dimensional. Then, for

all 1 ≤ j 6= k ≤ d, πj |LH
2 (pk) and π̂j |LH

2 (p̂k) are compact under the

conditions (A) and (S), respectively.

At the beginning we thought that πj |LH
2 (pk) and π̂j |LH

2 (p̂k)

might be also compact when H is infinite-dimensional. However, we

find that the conclusion of Corollary 3.2.1 is not valid for infinite-

dimensional H, which follows from an application of the following

theorem.

Theorem 3.2.2. Suppose that µ(Z) <∞. Let κ : Z ×W → R be

a measurable function such that
∫
Z×W |κ(z,w)|qdµ⊗ν(z,w) <∞

and 0 <
∫
W
∣∣ ∫
Z κ(z,w)dµ(z)

∣∣qdν(w) < ∞. Let C ∈ L(B1,B2)

be a non-compact operator. Then, the operator L at (3.2.3) with

k(z,w)(h) = κ(z,w)�C(h) is a non-compact bounded linear op-

erator.

For the application of Theorem 3.2.2 to πj |LH
2 (pk) and π̂j |LH

2 (p̂k),

we take κjk : [0, 1]d × [0, 1]d → R defined by

κjk(u,v) = pjk(uj , vk)/(pj(uj)pk(vk))

for κ in the theorem, and the identity operator IH : H→ H for C.

Note that IH is non-compact since the unit closed balls in infinite-

dimensional Hilbert spaces are not compact. Also, κjk satisfies

the conditions of κ in Theorem 3.2.2 under the condition (A). The

same holds for κ̂jk defined by κ̂jk(u,v) = p̂jk(uj , vk)/(p̂j(uj)p̂k(vk))
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under the condition (S). Therefore, surprisingly we have the fol-

lowing corollary of Theorem 3.2.2.

Corollary 3.2.2. Suppose that H is infinite-dimensional. Then,

πj |LH
2 (pk) and π̂j |LH

2 (p̂k) for all 1 ≤ j 6= k ≤ d are non-compact

under the conditions (A) and (S), respectively.

3.3 Existence of B-SBF estimators

Non-compactness of πj |LH
2 (pk) and π̂j |LH

2 (p̂k) raises a major diffi-

culty in proving (3.2.1) and (3.2.2) since the earlier proofs of them

for the case H = R use the compactness of the respective projec-

tion operators. To tackle the difficulty, we rely on the following

equivalence result on (3.2.1) and (3.2.2), which is a direct con-

sequence of applying Lemma 6.1.7 in the Appendix and Propo-

sition 3.1.2. We state the result only for the empirical versions

SH(p̂) and T̂ , but an obvious analogue holds for SH(p) and T as

well. Let SH(p̂) denote the closure of SH(p̂).

Proposition 3.3.1. Assume that p̂j(xj) > 0 for all xj ∈ [0, 1]

and 1 ≤ j ≤ d. Then, the followings are equivalent.

(a) SH(p̂) ≤ LH
2 (p̂).

(b) ‖T̂‖L(SH(p̂))
< 1.

(c) There exists ĉ > 0 such that, for all [f ] ∈ SH(p̂), there exist

[f1] ∈ LH
2 (p̂1), . . . , [fd] ∈ LH

2 (p̂d) satisfying
⊕d

j=1[fj ] = [f ] and∑d
j=1 ‖[fj ]‖22,n ≤ ĉ ‖[f ]‖22,n.

The most difficulty is that the above proposition does not say

that one of (a)–(c) is true, which has never been known. Proving or
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disproving any of the statements in the proposition is not easy. We

find that standard inequalities such as Hölder’s and those in Diaz

and Metcalf (1966), for example, are not helpful. However, we are

able to show that the ‘compatibility’ condition (c) for sum-maps

holds, with an innovative use of Corollary 3.2.1.

Theorem 3.3.1. Assume that (S) holds. Then, the statements in

Proposition 3.3.1 are true.

Proof. We only need to prove the theorem for infinite-dimensional

separable H since the case of finite-dimensional H is implied by

Corollary 3.2.1 and Proposition 3.3.1. We prove (c) in Propo-

sition 3.3.1. Let [f ] ∈ SH(p̂) be given and {ek}∞k=1 be an or-

thonormal basis of H. Then, f(x) =
⊕∞

k=1〈f(x), ek〉 � ek and

‖f(x)‖2 =
∑∞

k=1〈f(x), ek〉2 for all x ∈ [0, 1]d. Thus, we have

‖[f ]‖22,n =

∫
[0,1]d

∞∑
k=1

〈f(x), ek〉2p̂(x)dx =

∞∑
k=1

‖[〈f(·), ek〉]‖22,n,

where with slight abuse of the notation for the norm ‖ · ‖2,n, we

write ‖[g]‖22,n for real-valued maps [g] ∈ LR
2 (p̂) as well, meaning

that ‖[g]‖22,n =
∫
|g(x)|2p̂(x)dx. By applying Corollary 3.2.1 and

Proposition 3.3.1 with H = R, we can argue that there exists ĉ > 0

such that, for any [g] ∈ SR(p̂), there exist [gj ] ∈ LR
2 (p̂j) for 1 ≤ j ≤

d satisfying [g] =
∑d

j=1[gj ] and
∑d

j=1 ‖[gj ]‖22,n ≤ ĉ‖[g]‖22,n. For this

we have used the condition (S). Since [〈f(·), ek〉] ∈ SR(p̂) for all k ≥

1, this entails that, for each k ≥ 1, there exist [fkj ] ∈ LR
2 (p̂j), 1 ≤

j ≤ d, such that [〈f(·), ek〉] =
∑d

j=1[fkj ] and
∑d

j=1 ‖[fkj ]‖22,n ≤

ĉ‖[〈f(·), ek〉]‖22,n. Thus, it holds that

d∑
j=1

∞∑
k=1

‖[fkj ]‖22,n ≤ ĉ
∞∑
k=1

‖[〈f(·), ek〉]‖22,n = ĉ ‖[f ]‖22,n <∞. (3.3.1)
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Now, (3.3.1) implies that, for each 1 ≤ j ≤ d, the sequence

{
⊕n

k=1[fkj(·)� ek]}n≥1 is Cauchy in LH
2 (p̂j) since

∥∥∥ n⊕
k=m+1

[fkj(·)� ek]
∥∥∥2

2,n
=

∫
[0,1]d

n∑
k=m+1

‖fkj(x)� ek‖2p̂(x)dx

=

n∑
k=m+1

‖[fkj ]‖22,n → 0

as n > m→∞. Denote the limit of the Cauchy sequence in LH
2 (p̂j)

by [fj ]. Then, there exists a subsequence {
⊕njl

k=1[fkj(·)�ek]}l≥1 of

{
⊕n

k=1[fkj(·)� ek]}n≥1 such that

lim
l→∞

njl⊕
k=1

fkj(x)� ek = fj(x) a.e. [P̂X−1].

Then,

d⊕
j=1

fj(x) =
∞⊕
k=1

( d∑
j=1

〈 lim
l→∞

njl⊕
i=1

fij(x)� ei, ek〉
)
� ek

=
∞⊕
k=1

( d∑
j=1

lim
l→∞
〈
njl⊕
i=1

fij(x)� ei, ek〉
)
� ek

=
∞⊕
k=1

( d∑
j=1

fkj(x)
)
� ek

=

∞⊕
k=1

〈f(x), ek〉 � ek = f(x)

a.e. [P̂X−1]. Moreover, using the fact that hn → h ∈ H and

h∗n → h∗ ∈ H imply 〈hn,h∗n〉 → 〈h,h∗〉, we get

d∑
j=1

‖[fj ]‖22,n =
d∑
j=1

∫
[0,1]d

(
lim
l→∞

njl∑
k=1

f2
kj(x)

)
p̂(x)dx =

d∑
j=1

∞∑
k=1

‖[fkj ]‖22,n ≤ ĉ ‖[f ]‖22,n,

where the inequality follows from (3.3.1).
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We are now ready to discuss the existence of the B-SBF estima-

tors. For this we consider an objective functional F̂ : SH(p̂) → R

defined by

F̂ ([f ]) =

∫
[0,1]d

n−1
n∑
i=1

‖Yi 	 f(x)‖2 ·
d∏
j=1

Khj (xj , Xij)dx.

F̂ is well-defined since F̂ ([f ]) ≤ 2
(

max1≤i≤n ‖Yi‖2 + ‖[f ]‖22,n
)
<

∞. Now, for [f ], [g] ∈ SH(p̂),

lim
ε→0

ε−1
[
F̂ ([f ]⊕ ε� [g])− F̂ ([f ])

]
(3.3.2)

= −2

∫
[0,1]d

n−1
n∑
i=1

〈Yi 	 f(x),g(x)〉
d∏
j=1

Khj (xj , Xij)dx

=: DF̂ ([f ])([g]).

Clearly, DF̂ ([f ]) : SH(p̂) → R is a linear operator. It is also

bounded, which we may verify by using Hölder’s inequality. Hence,

F̂ is Gâteaux differentiable.

Theorem 3.3.2. Assume that the condition (S) holds. Then, there

exists a solution (m̂1, · · · , m̂d) ∈
∏d
j=1 LH2 (p̂j) of (2.4.6) satisfy-

ing (2.4.7). Moreover, their sum is unique in the sense that if

(m̂∗1, · · · , m̂∗d) is another solution, then
d⊕
j=1

m̂j(xj) =
d⊕
j=1

m̂∗j (xj)

a.e. [P̂X−1]. Furthermore, if p̂(x) > 0 for all x ∈ [0, 1]d, then the

decomposition of the sum is unique in the sense that m̂j(xj) =

m̂∗j (xj) a.e. [Leb1] for all 1 ≤ j ≤ d.

Proof. First, we note that F̂ is a convex and continuous functional

satisfying F̂ ([f ])→∞ as ‖[f ]‖2,n →∞. These with Theorem 3.3.1

and Lemma 4 in Beltrami (1967) imply that there exists a mini-

mizer of F̂ in SH(p̂). Now, [f̂ ] being a minimizer of F̂ is equivalent
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to DF̂ ([f̂ ])([g]) = 0 for all [g] ∈ SH(p̂), where DF̂ ([f ]) is defined

at (3.3.2). With specification of [g] ∈ SH(p̂) to [gj ] ∈ LH
2 (p̂j) for

each 1 ≤ j ≤ d, we find that this is equivalent to∫
[0,1]d−1

n−1 �
( n⊕
i=1

(Yi 	 f̂(x))�
d∏
j=1

Khj (xj , Xij)

)
dx−j = 0

(3.3.3)

a.e. xj ∈ [0, 1] with respect to Leb1, for all 1 ≤ j ≤ d. Let

f̂ = f0 ⊕
⊕d

j=1 f̂j be a decomposition of f̂ such that f̂j ∈ LH2 (p̂j)

and
∫ 1

0 f̂j(xj) � p̂j(xj)dxj = 0 for all 1 ≤ j ≤ d. Plugging the

decomposition into the left hand side of (3.3.3) and by using∫ 1
0 Khj (xj , Xij)dxj ≡ 1, we see that f0 = Ȳ and (f̂j : 1 ≤ j ≤ d)

satisfies

f̂j(xj) = m̃j(xj)	 Ȳ 	
⊕
k 6=j

∫ 1

0
f̂k(xk)�

p̂jk(xj , xk)

p̂j(xj)
dxk

a.e. xj ∈ [0, 1] with respect to Leb1, for all 1 ≤ j ≤ d. Define the

right hand side by m̂j(xj) for all xj ∈ [0, 1]. Then, (m̂j : 1 ≤ j ≤

d) ∈
∏d
j=1 LH2 (p̂j) and it satisfies (2.4.6) and (2.4.7).

From (2.4.6), we may verify that [
⊕d

j=1 m̂j ] = T̂ ([
⊕d

j=1 m̂j ])⊕

[s̃] and [
⊕d

j=1 m̂∗j ] = T̂ ([
⊕d

j=1 m̂∗j ])⊕ [s̃] where

[s̃] = [m̃d	Ȳ]⊕(I−π̂d)([m̃d−1	Ȳ])⊕· · ·⊕(I−π̂d)◦· · ·◦(I−π̂2)([m̃1	Ȳ]) ∈ SH(p̂).

Since ‖T̂‖L(SH(p̂)) < 1 from Theorem 3.3.1, it holds that [
⊕d

j=1 m̂j ] =

[
⊕d

j=1 m̂∗j ]. This proves the first part of the theorem.

For the proof of the second part, suppose that
⊕d

j=1 ĝj(xj) = 0

a.e. [P̂X−1] with ĝj satisfying (2.4.7). Since p̂ > 0 on [0, 1]d by

the assumption, this implies
⊕d

j=1 ĝj(xj) = 0 a.e. on [0, 1]d with
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respect to Lebd, so that, for any map δj ∈ LH2 (p̂j), we get

〈 d⊕
k=1

ĝk(xk)� p̂X−j (x−j), δj(xj)
〉

= 0 a.e. on [0, 1]d w.r.t. Lebd.

(3.3.4)

Because of the marginalization property of p̂X−j such that∫
[0,1]d−2

p̂X−j (x−j)dx−j,k = p̂k(xk)

and the constraints (2.4.7), the equation (3.3.4) implies that

0 =
d∑

k=1

∫
[0,1]d

〈
ĝk(xk)� p̂X−j (x−j), δj(xj)

〉
dx

=
d∑
k 6=j

∫ 1

0

〈∫ 1

0
ĝk(xk)� p̂k(xk)dxk, δj(xj)

〉
dxj +

∫ 1

0
〈ĝj(xj), δj(xj)〉dxj

=

∫ 1

0
〈ĝj(xj), δj(xj)〉dxj

for all δj ∈ LH2 (p̂j). This implies ĝj(xj) = 0 a.e. on [0, 1] with

respect to Leb1. This proves the second part of the theorem.

3.4 Convergence of B-SBF algorithm

In this subsection we establish the convergence of the B-SBF algo-

rithm (2.4.8). We first consider convergence in the empirical norm,

‖ · ‖2,n, for fixed n and given observations (Xi,Yi), 1 ≤ i ≤ n.

Then, we study convergence in ‖ · ‖2 norm, where we let n di-

verge to infinity. We note that all works in the smooth backfitting

literature treated only the latter asymptotic version for H = R.

Throughout this section we assume that the initial estimators m̂
[0]
j

are measurable and satisfy max1≤j≤d
∫ 1

0 ‖m̂
[0]
j (xj)‖2p̂j(xj)dxj < C
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for an absolute constant 0 < C < ∞. This is not restrictive since

we can take m̂
[0]
j ≡ 0 for all 1 ≤ j ≤ d. Under this condition on

the initial estimators and the condition (S) one can verify that

all the subsequent updates m̂
[r]
j are also measurable and satisfy

max1≤j≤d
∫ 1

0 ‖m̂
[r]
j (xj)‖2p̂j(xj)dxj <∞. The following theorem is

a non-asymptotic version of the convergence of the B-SBF algo-

rithm.

Theorem 3.4.1. Assume that the condition (S) holds. Then, ‖T̂‖L(SH(p̂)) <

1 and there exists ĉ > 0 such that∫
[0,1]d

∥∥m̂(x)	 m̂[r](x)
∥∥2
p̂(x)dx ≤ ĉ ‖T̂‖rL(SH(p̂)) for all r ≥ 0.

Proof. We embed m̃j , m̂j and m̂
[r]
j into LH2 (p̂j). Then, from (2.4.6)

and (2.4.8)

[m̂j ] = [m̃j ]	 [Ȳ]	
⊕
k 6=j

π̂j([m̂k]), 1 ≤ j ≤ d,

[m̂
[r]
j ] = [m̃j ]	 [Ȳ]	

⊕
k<j

π̂j([m̂
[r]
k ])	

⊕
k>j

π̂j([m̂
[r−1]
k ]), 1 ≤ j ≤ d.

(3.4.1)

Define ŝ =
⊕d

j=1 m̂j and ŝ[r] =
⊕d

j=1 m̂
[r]
j . Then, the two systems

of equations at (3.4.1) are expressed as [ŝ] = T̂ ([ŝ])⊕[s̃] and [ŝ[r]] =

T̂ ([ŝ[r−1]])⊕ [s̃], respectively, where

[s̃] = [m̃d	Ȳ]⊕(I−π̂d)([m̃d−1	Ȳ])⊕· · ·⊕(I−π̂d)◦· · ·◦(I−π̂2)([m̃1	Ȳ]) ∈ SH(p̂).

Since ‖T̂‖L(SH(p̂)) < 1 from Theorem 3.3.1, it holds that
⊕∞

k=0 T̂
k([s̃])

exists in SH(p̂),
⊕∞

k=0 T̂
k([s̃]) = T̂ (

⊕∞
k=0 T̂

k([s̃])) ⊕ [s̃] and thus⊕∞
k=0 T̂

k([s̃]) = [ŝ]. This entails

‖[ŝ[r] 	 ŝ]‖2,n ≤
‖T̂‖rL(SH(p̂))

1− ‖T̂‖L(SH(p̂))

(
‖[ŝ[0]]‖2,n + ‖[s̃]‖2,n

)
. (3.4.2)
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The inequality (3.4.2) gives the theorem with the choice ĉ =(
‖[ŝ[0]]‖2,n + ‖[s̃]‖2,n

)
/(1− ‖T̂‖L(SH(p̂))).

We now turn to the asymptotic version of the convergence of

the B-SBF algorithm in ‖ ·‖2 norm. For this we need the following

additional conditions.

Condition (B).

(B1) E(‖Y‖α) <∞ for some α > 2.

(B2) p is bounded away from zero and infinity on [0, 1]d, and pjk

are continuous on [0, 1]2 for 1 ≤ j 6= k ≤ d.

(B3) K is Lipschitz continuous and
∫ 0
−1K(u)du∧

∫ 1
0 K(u)du > 0.

(B4) hj ,
√

log n/(nhjhk) = o(1) and infn n
cjhj ≥ (const.) for

some cj < (α− 2)/α for 1 ≤ j 6= k ≤ d.

Theorem 3.4.2. Assume the condition (B). Then, there exist

constants c > 0 and γ ∈ (0, 1) such that

lim
n→∞

P
(

max
1≤j≤d

∫ 1

0
‖m̂j(xj)	 m̂

[r]
j (xj)‖2pj(xj)dxj ≤ c γr for all r ≥ 0

)
= 1.

Theorem 3.4.2 is about the L2-convergence of the B-SBF algo-

rithm, like all other results in the literature on smooth backfitting

for H = R. Here, we add a new convergence result, which is also

of interest. We note that the theorem implies
∑∞

r=1

∫ 1
0 ‖m̂j(xj)	

m̂
[r]
j (xj)‖2pj(xj)dxj < ∞ with probability tending to one. This

entails that, with probability tending to one,
∑∞

r=1 ‖m̂j(xj) 	

m̂
[r]
j (xj)‖2pj(xj) < ∞ a.e. xj ∈ [0, 1] with respect to Leb1, which

gives the following corollary.
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Corollary 3.4.1. Assume that the condition (B) holds. Then, for

1 ≤ j ≤ d,

lim
n→∞

P
(
m̂

[r]
j (xj)→ m̂j(xj) as r →∞ a.e. xj with respect to Leb1

)
= 1.
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Chapter 4

Asymptotic properties

4.1 Rates of convergence

Below we collect the assumptions for our asymptotic theory.

Condition (C).

(C1) E(‖Y‖α) <∞ for some α > 5/2.

(C2) The true maps mj for 1 ≤ j ≤ d are twice continuously

Fréchet differentiable on [0, 1].

(C3) The condition (B2) in Section 3.4 holds. In addition, pjk are

C1 on [0, 1]2 for 1 ≤ j 6= k ≤ d.

(C4) The condition (B3) in Section 3.4 holds. In addition,
∫ 1
−1 uK(u)du =

0.

(C5) n1/5hj → αj for some positive constant αj , 1 ≤ j ≤ d.

The moment condition on Y and the Fréchet differentiability

of the maps mj : [0, 1] → H, respectively, are natural generaliza-

tions of the usual moment condition on Euclidean errors and the
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smoothness assumptions on real-valued functions. In the theory,

we need functional calculus for Fréchet derivatives and Bochner

integrals. Other assumptions on the baseline kernel K and the

density p are typical in the kernel smoothing theory.

Let Ij = [2hj , 1 − 2hj ] and Icj denote its complement in [0, 1].

The following theorem demonstrates that our estimators achieve

the univariate error rates.

Theorem 4.1.1. Assume that the condition (C) holds. Then, the

followings hold for 1 ≤ j ≤ d.

(i) (Pointwise convergence)

‖m̂j(xj)	mj(xj)‖ = Op(n
−2/5) for xj ∈ Ij ,

‖m̂j(xj)	mj(xj)‖ = Op(n
−1/5) for xj ∈ Icj .

(ii) (L2 convergence)∫
Ij

‖m̂j(xj)	mj(xj)‖2pj(xj)dxj = Op(n
−4/5),∫ 1

0
‖m̂j(xj)	mj(xj)‖2pj(xj)dxj = Op(n

−3/5).

(iii) (Uniform convergence)

sup
xj∈Ij

‖m̂j(xj)	mj(xj)‖ = Op(n
−2/5

√
log n),

sup
xj∈[0,1]

‖m̂j(xj)	mj(xj)‖ = Op(n
−1/5).
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4.2 Asymptotic distribution and asymptotic

independence

Recall that, for a mean zero random element Z : Ω → H, its

covariance operator C : H→ H is characterised by

〈C(h),g〉 = E (〈Z,h〉 · 〈Z,g〉) , h,g ∈ H.

Also, recall that a H-valued random element Z is called Gaussian if

〈Z,h〉 is normally distributed for any h ∈ H. We denote a Gaussian

random element with mean zero and covariance operator C, by

G(0, C).

For brevity, we write

wij(u) =
( n∑
i=1

Khj (u,Xij)
)−1√

nhjKhj (u,Xij).

Then, for the marginal estimators m̃j defined at (2.4.5), we may

write √
nhj � m̃j(xj) =

n⊕
i=1

wij(xj)�Yi.

From the standard kernel smoothing theory and the fact (2.3.1),

it follows that
∑n

i=1wij(xj)
2 converges to pj(xj)

−1
∫ 1
−1K

2(u)du

in probability for each xj ∈ Ij under suitable conditions on pj , hj

and K. Let {el}Ll=1 be an orthonormal basis of H, where we allow

L =∞ for infinite-dimensional H. Define

aj,kl(xj) = pj(xj)
−1

∫ 1

−1
K2(u)du · E (〈ε, ek〉 · 〈ε, el〉 |Xj = xj)

for the H-valued error ε in the model (1.0.1). Then, as we show

in the proof of the following theorem, the conditional covariance
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operator of
⊕n

i=1wij(xj) � εi given Xj = xj is approximated by

the operator Cj,xj : H→ H characterised by

〈Cj,xj (h), ek〉 =
L∑
l=1

〈h, el〉 · aj,lk(xj). (4.2.1)

The following theorem plays an important role in determining the

distributions of the stochastic parts of m̂j(xj).

Theorem 4.2.1. Assume that the condition (B3) on K holds. Fix

x ∈ I1 × · · · × Id and assume that, for all 1 ≤ j ≤ d and k, l, (i)

E(‖ε‖α) < ∞ for some α > 2 and E(〈ε, ek〉 · 〈ε, el〉 |Xj = ·) are

continuous on [xj−hj , xj+hj ], respectively; (ii) pj are continuous

on [xj−hj , xj +hj ], respectively, and pj(xj) > 0; (iii) hj → 0 and

nhj →∞ as n→∞. Then,(
n⊕
i=1

wi1(x1)� εi, . . . ,
n⊕
i=1

wid(xd)� εi

)
d→ (G(0, C1,x1), . . . ,G(0, Cd,xd)) ,

where G(0, C1,x1), · · · ,G(0, Cd,xd) are independent.

Now, we are ready to present a theorem that demonstrates the

asymptotic distribution and independence of our estimators of the

component maps mj . In addition to (C), we need the following

condition.

Condition (D). For all 1 ≤ j ≤ d and k, l, the followings hold.

(D1) E(〈ε, ek〉 · 〈ε, el〉 |Xj = ·) are continuous on [0, 1].

(D2) ∂p(x)/∂xj exist and are bounded on [0, 1]d.

To state the theorem we need to introduce more terminologies.

For a twice Fréchet differentiable f : [0, 1]→ H, we let Df : [0, 1]→
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L(R,H) denote its first Fréchet derivative, and D2f : [0, 1] →

L
(
R,L(R,H)

)
its second Fréchet derivative. Let p′j denote the first

derivative of pj and define

δj(xj) =

[
p′j(xj)

pj(xj)
·
∫ 1

−1
u2K(u)du

]
� Dmj(xj)(1),

δjk(xj , xk) =

[
∂pjk(xj , xk)/∂xk

pjk(xj , xk)
·
∫ 1

−1
u2K(u)dt

]
� Dmk(xk)(1),

∆̃j(xj) = α2
j � δj(xj)⊕

⊕
k 6=j

∫ 1

0
δjk(xj , xk)�

[
α2
k

pjk(xj , xk)

pj(xj)

]
dxk.

Let (∆1, · · · ,∆d) ∈
∏d
j=1 LH2 (pj) be a solution of the system of

equations

∆j(xj) = ∆̃j(xj)	
⊕
k 6=j

∫ 1

0
∆k(xk)�

pjk(xj , xk)

pj(xj)
dxk, 1 ≤ j ≤ d

(4.2.2)

satisfying the constraints∫ 1

0
∆j(xj)� pj(xj)dxj = α2

j �
∫ 1

0
δj(xj)� pj(xj)dxj , 1 ≤ j ≤ d.

(4.2.3)

Below in Theorem 4.2.2 we prove that the equation (4.2.2) subject

to (4.2.3) has a unique solution. Define cj(xj) = 1
2

∫ 1
−1 u

2K(u)du�

D2mj(xj)(1)(1) and Θj(xj) = α2
j�cj(xj)⊕∆j(xj). Define C̃j,xj :

H → H by C̃j,xj (h) = α−1
j � Cj,xj (h), where Cj,xj are the covari-

ance operators defined at (4.2.1).

Theorem 4.2.2. Assume the conditions (C) and (D). Then, there

exists a solution of (4.2.2) subject to (4.2.3) and the solution is

unique in the sense that if (∆?
1, · · · ,∆?

d) is another solution, then

41



∆j(xj) = ∆?
j (xj) a.e. [Leb1]. Furthermore, for a.e. x ∈

∏d
j=1 Ij

with respect to Lebd, it holds that
n2/5 � (m̂1(x1)	m1(x1))

...

n2/5 � (m̂d(xd)	md(xd))

 d−→


Θ1(x1)⊕G(0, C̃1,x1)

...

Θd(xd)⊕G(0, C̃d,xd)

 ,

where Θ1(x1) ⊕ G(0, C̃1,x1), · · · ,Θd(xd) ⊕ G(0, C̃d,xd) are inde-

pendent. Moreover,

n2/5 � (m̂(x)	m(x))
d−→

d⊕
j=1

Θj(xj)⊕G
(
0,

d∑
j=1

C̃j,xj

)
.

Let m̂ora
j be the oracle estimator of mj under the knowledge

of all other component maps mk, k 6= j. Using Theorem 4.2.1, we

may prove that for xj ∈ Ij ,

n2/5(m̂ora
j (xj)	mj(xj))

d−→ α2
j � [δj(xj)⊕ cj(xj)]⊕G(0, C̃j,xj ).

Therefore, m̂j and m̂ora
j have the same asymptotic covariance

operator, but differ in their asymptotic biases. The difference of

asymptotic biases is [α2
j � δj(xj)]	∆j(xj) =: βj(xj) and it holds

that E(βj(Xj)) =
∫ 1

0 βj(xj)� pj(xj)dxj = 0 by (4.2.3).
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Chapter 5

Numerical Study

In the simulation and real data examples presented here, we took

Epanechnikov kernel K(u) = (3/4)(1 − u2)I(|u| < 1). We chose

the initial estimators

m̂
[0]
j (xj) = n−1�

n⊕
i=1

(Khj (xj , X
i
j)

p̂j(xj)
−1
)
�Yi =: n−1�

n⊕
i=1

w
[0]
ij (xj)�Yi,

so that they satisfy
∫ 1

0 w
[0]
ij (xj)p̂j(xj)dxj = 0. For the convergence

criterion of the B-SBF algorithm we set

max
1≤j≤d

∫ 1

0
‖m̂[r]

j (xj)	 m̂
[r−1]
j (xj)‖2p̂j(xj)dxj < 10−8.

5.1 Bandwidth selection

Searching for the bandwidths hj on a full-dimensional grid is not

feasible when d is large. One way often adopted in multivariate

smoothing is to set h1 = · · · = hd and perform one-dimensional

grid search. Obviously, this is not desirable since it ignores different

degrees of smoothness for different target functions. Recently, Han
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et al. (2018) and Han and Park (2018+) used a method called

‘bandwidth shrinkage’. The method first selects ĥj for each j that

is good for estimating marginal regression function of Xj and then

tunes c > 0 for (cĥ1, · · · , cĥd). The latter method also searches

bandwidths on a restricted class of options.

Here, we suggest a new scheme called ‘CBS(Coordinate-wise

Bandwidth Selection)’ based on cross-validation. We used the CBS

method, as described below, in our numerical study. Let CV(h1, . . . , hd)

denote a cross-validatory criterion for bandwidths h1, . . . , hd.

CBS algorithm. Take a grid G =
∏d
j=1{gj1, . . . , gjLj}. Choose

an initial bandwidth h
(0)
j from {gj1, . . . , gjLj} for 1 ≤ j ≤ d. For

t = 1, 2, · · · , find

h
(t)
j = arg min

gj∈{gj1,··· ,gjLj
}
CV(h

(t)
1 , . . . , h

(t)
j−1, gj , h

(t−1)
j+1 , . . . , h

(t−1)
d ), 1 ≤ j ≤ d.

Repeat the procedure until (h
(t)
1 , · · · , h(t)

d ) = (h
(t−1)
1 , · · · , h(t−1)

d ).

In our numerical study, we chose G =
∏d
j=1{aj+0.005×k : k =

0, · · · , 40} for some small values aj that satisfy (S1) in Section 2.4

and used a 10-fold cross-validation. The grid actually covered op-

timal bandwidths. Let

T = min
{
t ≥ 1 : (h

(t)
1 , . . . , h

(t)
d ) = (h

(t−1)
1 , . . . , h

(t−1)
d )

}
. (5.1.1)

We note that T is finite since the grid size is finite. In our numerical

work, the algorithm converged very fast. In all cases T ≤ 4. We

also note that (h
(T )
1 , . . . , h

(T )
d ) is a coordinate-wise minimum that

satisfies

CV(h
(T )
1 , · · · , h(T )

d ) = min
j

min
gj

CV
(
h

(T )
1 , . . . , h

(T )
j−1, gj , h

(T )
j+1, . . . , h

(T )
d

)
.
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Although a coordinate-wise minimum does not always match with

a global minimum, they coincided in most cases in our numerical

study.

5.2 Simulation study with density response

We considered the case where Y (·) is a probability density on a

domain S ∈ B(R) such that Y := [Y (·)] ∈ B2(S, S ∩ B(R),Leb1).

In this case, simply writing wi,j,r(xj) = n−1w
[r]
ij (xj) for brevity we

get

m̂
[r]
j (xj) =

[(∫
S

n∏
i=1

Yi(s)
wi,j,r(xj)ds

)−1 n∏
i=1

Yi(·)wi,j,r(xj)

]
,

Ȳ ⊕
d⊕
j=1

m̂
[r]
j (xj) =

[(∫
S

n∏
i=1

Yi(s)
n−1+

∑d
j=1 wi,j,r(xj)ds

)−1

×

n∏
i=1

Yi(·)n
−1+

∑d
j=1 wi,j,r(xj)

]
(5.2.1)

whenever the denominators are nonzero and finite. We predicted

Y (·) at X = x for an out-of-sample (X, Y (·)) by(∫
S

n∏
i=1

Yi(s)
n−1+

∑d
j=1 wi,j,r(xj)ds

)−1

×
n∏
i=1

Yi(·)n
−1+

∑d
j=1 wi,j,r(xj)

We note that the denominators are nonzero and finite for all

w
[r]
ij (xj) ∈ R if Yi(·)’s are essentially bounded away from zero and

infinity on S and Leb1(S) < ∞. In this simulation study, our fo-

cus is to demonstrate that (i) the CBS algorithm for bandwidth

selection works well, and (ii) the prediction based on the proposed

estimators m̂j and m̂ is valid for small sample sizes, avoiding the

curse of dimensionality.
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We generated Y (·) on S = [−1/2, 1/2] according to the follow-

ing formula.

Y (·) =

(∫
S

2∏
j=1

fj(Xj)(s)ε(s)ds

)−1

·
2∏
j=1

fj(Xj)(·)ε(·), (5.2.2)

where fj(xj)(·) : S → R are some measurable functions, ε is an er-

ror process, X1 and X2 are uniform [0, 1] random variables. Specif-

ically, we considered f1(x1)(s) = − exp(x1)|s|+ 2 and f2(x2)(s) =

cos(sπ/2)x2+x32 and ε(s) = exp(−Zs4) with Z being a uniform

[−1, 1] random variable. By considering the operations ⊕ and �

for the quotient space H = B2(S, S ∩ B(R),Leb1) and the equiv-

alence class [Y (·)] as introduced in Section 2, we clearly see that

(5.2.2) falls into the additive model (1.0.1) with d = 2. We also

considered a non-additive model for a sensitivity analysis. For this,

we took

Y (s) =
exp(X2

1 cos(2πs) +X2
2 sin(2πs) +X1X2|s|)ε(s)∫ 1/2

−1/2 exp(X2
1 cos(2πs) +X2

2 sin(2πs) +X1X2|s|)ε(s)ds

(5.2.3)

with ε(s) = exp(−Zs2).

We repeatedly generated a training sample of size n and a

test sample of size N = 100 for M = 200 times. As a measure

of performance we computed the mean squared prediction error

(MSPE) defined by

MSPE = M−1
M∑
m=1

N−1
N∑
i=1

∥∥∥ [Y
test(m)
i (·)]	 [Ŷ

test(m)
i (·)]

∥∥∥2
,

(5.2.4)

where Y
test(m)
i (·) is the ith response in the mth test sample and

Ŷ
test(m)
i (·) is the prediction of Y

test(m)
i (·) based on themth training
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Table 5.1: The percentages of the iteration number T defined in (5.1.1) at

which the CBS algorithm stops, based on M = 200 pseudo samples. Ratio in-

dicates (average computing time for the full-dimensional grid search)/(average

computing time for the CBS algorithm).

Scenario n T = 2 T = 3 T = 4 Ratio

(5.2.2) 100 48% 49.5% 2.5% 6.09

400 44% 55.5% 0.5% 8.11

(5.2.3) 100 53% 42.5% 4.5% 6.45

400 62.5% 36% 1.5% 8.72

sample. We note that∥∥∥ [Y
test(m)
i (·)]	 [Ŷ

test(m)
i (·)]

∥∥∥2

=

∫
[−1/2,1/2]2

[
log

(
Y

test(m)
i (s)

Y
test(m)
i (s′)

)
− log

(
Ŷ

test(m)
i (s)

Ŷ
test(m)
i (s′)

)]2

dsds′.

Table 5.1 suggests that the CBS algorithm for bandwidth se-

lection converges very fast. Its computation was much faster than

the full-dimensional grid search. If the grid G is denser or d is

larger, then the ratios of computing time would increase geomet-

rically. Table 5.2 reveals that the selected bandwidths from the

CBS algorithm and the full-dimensional grid search matched in

most cases. This may be due to the fact that CV(h1, · · · , hd) is

coordinate-wise convex as is often the case in practice. The results

demonstrate that the larger n, the more often the two bandwidth

choices coincide. Even in the case where the two were different,

the CBS bandwidths gave comparable prediction results to the

full-dimensional grid search, as the ratios in the last column of the

table shows.
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Table 5.2: The percentages of the cases where the CBS algorithm gave the

same bandwidth choices as the full-dimensional grid search, based on M = 200

pseudo samples. The ‘MSPE ratio’ means the ratio of the MSPE value with

bandwidths from the full-dimensional grid search, to that with CBS band-

widths. In the computation of the MSPE values according to the formula

(5.2.4), the cases where CBS=Full are deleted.

Scenario n CBS=Full MSPE ratio for CBS 6=Full

(5.2.2) 100 79.5% 0.97

400 98.5% 1

(5.2.3) 100 88.5% 0.98

400 98.5% 1.02

In the simulation we also compared the prediction based on

our approach with those based on full-dimensional estimators. We

considered the functional Nadaraya-Watson estimator proposed

by Dabo-Niang and Rhomari (2009), Ferraty et al. (2011) and

Ferraty et al. (2012) and the kernel-based functional k-nearest

neighbor estimator proposed by Lian (2011) and Lian (2012).

For these full-dimensional estimators we used Epanechnikov ker-

nel, and tuned bandwidth and k, respectively, by 10-fold cross-

validation on ranges that cover optimal bandwidth and k. Ta-

ble 5.3 demonstrates that the proposed method outperforms these

methods in both additive (5.2.2) and non-additive (5.2.3) scenar-

ios.

To see how our approach performs in higher dimension and

in the estimation of the component maps, we tried d = 4 and

considered the case where fj(xj)(·) = βj(·)gj(xj) for some real-

valued functions βj and gj with E(gj(Xj)) = 0. In this way, we
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Table 5.3: The ratios of the MSPE values for the functional Nadaraya-

Watson and the kernel-based functional k-NN methods, to that for our pro-

posed method.

Proposed Functional Kernel-based

Scenario n with CBS Nadaraya-Watson functional k-NN

(5.2.2) 100 1 1.99 2.07

400 1 1.34 1.42

(5.2.3) 100 1 1.47 1.54

400 1 1.12 1.16

have E([fj(Xj)(·)]) = 0 since

E([fj(Xj)(·)]) = E(gj(Xj))� [βj(·)] = 0� [βj(·)] = 0, (5.2.5)

satisfying the constraints (2.4.4). The first equation at (5.2.5) fol-

lows from (2.5.1). Specifically, we generated Y (·) according to

Y (·) =
β0(·)β1(·)cos(2πX1)β2(·)sin(2πX2)β3(·)cos(πX3)β4(·)2X4−1ε(·)∫ 1/2

−1/2 β0(s)β1(s)cos(2πX1)β2(s)sin(2πX2)β3(s)cos(πX3)β4(s)2X4−1ε(s)ds
,

(5.2.6)

where ε(s) = α(s)Z , X1, X2, X3, X4 are uniform [0, 1] random vari-

ables and Z is a uniform [−1, 1] random variable. We chose for

β0(·), β1(·), β2(·), β3(·), β4(·) and α(·), respectively, the probabil-

ity density functions of Cauchy(0, 0.2), N(0, 0.52), t-distribution

with df = 0.25, Laplace(0, 1), N(−0.3, 0.22)/2+N(0.3, 0.22)/2 and

Logistic(0, 1), all truncated on [−1/2, 1/2]. With these choices, the

simulation model (5.2.6) involves component maps whose values

fj(xj)(·) take various shapes: light- and heavy-tails, sharp peaks,

bimodality etc.
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We compared the proposed estimator, denoted by m̂(1, 2, 3, 4),

based on the four-dimensional predictor (X1, X2, X3, X4), with or-

acle estimators. Let m̂(1, 2) denote the oracle estimator that one

gets by applying our B-SBF techniques based on the two predic-

tors X1 and X2 with the knowledge of f3 and f4. Likewise, let

m̂(3, 4) denote the one based on the knowledge of f1 and f2. For

M = 200, we computed

IMSEj =

∫ 1

0
M−1

M∑
m=1

∥∥∥ [fj(xj)(·)]	 [f̂
(m)
j (xj)(·)]

∥∥∥2
dxj = ISBj + IVj ,

ISBj =

∫ 1

0

∥∥∥ [fj(xj)(·)]	M−1 �
M⊕
m=1

[f̂
(m)
j (xj)(·)]

∥∥∥2
dxj ,

IVj =

∫ 1

0
M−1

M∑
m=1

∥∥∥ [f̂
(m)
j (xj)(·)]	M−1 �

M⊕
m=1

[f̂
(m)
j (xj)(·)]

∥∥∥2
dxj .

The results are contained in Table 5.4 and Figure 5.1. The values

in the table reveal that the performance of m̂(1, 2, 3, 4) is compa-

rable with those of the oracle estimators m̂(1, 2) and m̂(3, 4). This

suggests that the proposed method does not suffer from the curse

of dimensionality.

5.3 Real data analysis with functional re-

sponse

We analyzed ‘CanadianWeather’ data in the R package ‘fda’(version

2.4.4), which contains daily temperatures measured on 35 loca-

tions, averaged over 35 years from 1960 to 1994. We performed

the prediction of temperature curves based on the two-dimensional

predictor (latitude, longitude). In this example, H = L2([0, 1], [0, 1]∩
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Table 5.4: The values of IMSE, ISB and IV, multiplied by 103, of the proposed

m̂(1, 2, 3, 4) and of the oracle m̂(1, 2) in the estimation of the two component

maps f1 and f2, and of the oracle m̂(3, 4) in the estimation of f3 and f4,

based on M = 200 pseudo samples. All bandwidths were selected by the CBS

algorithm.

First component Second component

n Criterion m̂(1, 2, 3, 4) m̂(1, 2) m̂(1, 2, 3, 4) m̂(1, 2)

IMSE 0.1654 0.1671 0.1346 0.1418

100 ISB 0.0089 0.0154 0.0163 0.0231

IV 0.1565 0.1517 0.1183 0.1187

IMSE 0.0350 0.0346 0.0332 0.0330

400 ISB 0.0007 0.0011 0.0019 0.0025

IV 0.0343 0.0335 0.0313 0.0305

Third component Fourth component

n Criterion m̂(1, 2, 3, 4) m̂(3, 4) m̂(1, 2, 3, 4) m̂(3, 4)

IMSE 0.0372 0.0319 0.0972 0.0885

100 ISB 0.0037 0.0030 0.0067 0.0042

IV 0.0335 0.0289 0.0905 0.0843

IMSE 0.0090 0.0087 0.0252 0.0247

400 ISB 0.0003 0.0003 0.0009 0.0009

IV 0.0087 0.0084 0.0243 0.0238
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Figure 5.1: True component maps (left) and their estimates for n = 100

(middle) and for n = 400 (right), based on the median performance sam-

ple, i.e., the one for which the value of the total integrated squared error∑4
j=1

∫ 1

0

∥∥ [fj(xj)(·)]	 [f̂
(m)
j (xj)(·)]

∥∥2dxj is the median among the 200 values

for the whole pseudo samples.
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B(R),Leb1) and Yi(·) is the pre-smoothed temperature curve for

the ith location. We computed the leave-one-curve-out average

squared prediction error

ASPE = n−1
n∑
i=1

‖Yi(·)	Ŷ (−i)
i (·)‖2 = n−1

n∑
i=1

∫ 1

0
(Yi(s)−Ŷ (−i)

i (s))2ds

with n = 35, where Ŷ
(−i)
i (·) is the prediction of Yi(·) based on

the sample without the ith observation. We also measured the

smoothness of Ŷ
(−i)
i (·) using fractal dimension. Fractal dimension

is a measure of smoothness for curves and surfaces. In the case

of curves, it takes values in [1, 2] where ‘1’ means that the curve

is perfectly smooth and ‘2’ indicates that the curve is extremely

wiggly. For the definition of fractal dimension, see Gneiting et

al. (2012). We used ‘fd.estimate’ function in the R package ‘frac-

taldim’(version 0.8-4) and used the madogram estimator suggested

by Gneiting et al. (2012). Let ˆFDi denote the estimated fractal di-

mension of the curve Ŷ
(−i)
i (·). We computed the average estimated

fractal dimension AEFD = n−1
∑n

i=1
ˆFDi.

For this example, we compared our method with those of Chiou

et al. (2003) and Scheipl et al. (2015), and with the functional

Nadaraya-Watson and the kernel-based functional k-nearest neigh-

bor estimators. To implement the method of Chiou et al. (2003),

we used ‘FQR’ function in the matlab package ‘PACE’(version

2.17) with bandwidth for mean curve being selected by leave-one-

curve-out cross-validation and bandwidth for covariance surface

being selected by GCV. For the method of Scheipl et al. (2015),

we used ‘pffr’ function in the R package ‘refund’(version 0.1-16)

with 100 cubic B-spline basis functions and smoothing parameter
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Table 5.5: Comparison of ASPE and AEFD for CanadianWeather data.

Method ASPE AEFD

B-SBF with CBS 9.10 1

Pointwise SBF with CBS 9.59 1.43

Kernel-based functional k-NN 11.31 1.11

Functional Nadaraya-Watson 14.74 1.13

Chiou et al. (2003) 16.11 1

Scheipl et al. (2015) 19.21 1

selected by GCV. We also computed the pointwise smooth backfit-

ting estimate Ŷ
(−i)
i (s) for each s using the standard smooth back-

fitting procedure, as in Mammen et al. (1999), and aggregated

them to produce the curve Ŷ
(−i)
i (·). Table 5.5 and Figure 5.2 con-

tain the results, which suggest that our method outperforms all

competitors in terms of prediction performance and smoothness

of estimated curves.

5.4 Real data analysis with simplex-valued

response

Here, we analyzed ‘gemas’ data in the R-package ‘robComposi-

tions’(version 2.0.5), which contains a simplex-valued response. It

is a geochemical dataset about agricultural and grazing land soil

in European regions. The dataset has 2,108 observations on 30

variables. Among the variables, we chose the composition of three

soil types as the response: (sand, silt, clay) with the sum of the

three entries being equal to 1, and (annual mean temperature, an-
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Figure 5.2: Predicted temperature curves for CanadianWeather data based

on our B-SBF method(left) and the pointwise SBF method(right). Each of the

35 curves depicts Ŷ
(−i)
i (·) for the ith location.

nual mean precipitation) as the two-dimensional predictor. In this

example, H = S3
1 . We deleted 26 observations which contain zero

proportion in some soil type. We divided the remaining 2,082 ob-

servations into 10 partitions Sk, 1 ≤ k ≤ 10, with each of the first

9 having 208 observations and the last one containing the remain-

der. We then computed the 10-fold average squared prediction

error (ASPE) defined by 10−1
∑10

k=1 |Sk|−1
∑

i∈Sk
‖Yi	 Ŷ

(−Sk)
i ‖2,

where |Sk| is the number of observations in Sk and Ŷ
(−Sk)
i is the

prediction of Yi based on the sample without the observations in

Sk.

We compared our method with the alpha-transformation method

of Tsagris (2015). For the latter, we used ‘alfa.reg’ function in the

R-package ‘Compositional’ (version 2.5) where ‘alpha’ was tuned

on {−1+0.1×k : 0 ≤ k ≤ 20} by 10-fold cross-validation. The pro-

posed method with the CBS algorithm gave ASPE = 0.98, while

the method of Tsagris (2015) resulted in ASPE = 1.69. Figure 5.3
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Figure 5.3: The values of the fitted component maps for gemas data based

on the B-SBF method, depicted on the simplex S3
1 , for the annual mean tem-

perature(left) and for the annual mean precipitation(right).

depicts the fitted component maps.
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Chapter 6

Appendix (Additional

Results and Selected

Proofs)

6.1 Lemmas and additional propositions

We collect below several lemmas and additional propositions that

are used to prove the propositions and theorems in Sections 2–4.

We note that H and B in Lemmas 6.1.4, 6.1.6 and 6.1.7 do not

need to be separable.

Lemma 6.1.1. Let (Z,A , µ) be a measure space and (W,B) be

a measurable space. Let T : Z → W be (A ,B)-measurable and g :

W → B be measurable. Then, g ∈ L1((W,B, µT−1),B) if and only

if g(T) ∈ L1((Z,A , µ),B), in which case
∫
W g(w)dµT−1(w) =∫

Z g(T(z))dµ(z).
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Lemma 6.1.2. Let (Z,A ) be a measurable space and λ and µ be

σ-finite measures on (Z,A ) such that λ � µ. Let f : Z → B be

λ-integrable. Then, f�(dλ/dµ) is µ-integrable and
∫
Z f(z)dλ(z) =∫

Z f(z)� (dλ/dµ)(z)dµ(z).

The next lemma is a general type of Fubini’s theorem for B-

valued maps. There are versions of Fubini’s theorem for σ-finite

measure spaces. Lemma 6.1.3 does not require σ-finiteness. In the

case B = R, there are some results that do not require σ-finiteness,

see Mukherjea (1972), for example.

Lemma 6.1.3. Let (Z,A , µ) and (W,B, ν) be measure spaces

and k : Z × W → B be measurable. Then, (a) for each w ∈

W, the map k(·,w) : Z → B is measurable; (b) if k(·,w) ∈

L1((Z,A , µ),B) a.e. with respect to ν, then g :W → B defined by

g(w) =


∫
Z k(z,w)dµ(z), if w ∈ DW

g0(w), otherwise

is measurable, where DW = {w ∈ W : k(·,w) ∈ L1((Z,A , µ),B)}

and g0 : W → B is any measurable map; (c) if k ∈ L1((Z ×

W,A ⊗B, µ⊗ ν),B), then∫
Z×W

k(z,w)dµ⊗ ν(z,w) =

∫
W

∫
Z

k(z,w)dµ(z)dν(w).

Lemma 6.1.4. Let (Z,A , µ) be a measure space and A0 be a field

that generates A . Let B be a Banach space and p ∈ [1,∞) be a

constant. Then,
{⊕n

i=1 1Ai�bi : n ∈ N, Ai ∈ A0, µ(Ai) <∞,bi ∈

B
}

is a dense subset of Lp((Z,A , µ),B).

Lemma 6.1.5. Define a σ-field Bj = {[0, 1]j−1 × Bj × [0, 1]d−j :

Bj ∈ [0, 1]∩B(R)} on [0, 1]d. We let B∗j denote the smallest σ-field
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such that Bj ⊂ B∗j and {B ∈ [0, 1]d ∩ B(Rd) : PX−1(B) = 1} ⊂

B∗j . Then, LH
2 (pj) = L2(([0, 1]d,B∗j , PX−1),H) and LH

2 (p̂j) =

L2(([0, 1]d,B∗j , P̂X−1),H) for all 1 ≤ j ≤ d.

Lemma 6.1.6. Let (Z,A , µ) and (W,B, ν) be measure spaces

and B be a Banach space. Let k : Z × W → R be a measurable

function and b ∈ B be a constant. Then, k : Z ×W → B defined

by k(z,w) = k(z,w)� b is measurable.

The following lemma follows from Theorem 4.6 in Xu and

Zikatanov (2002) and Theorem 2.1 in Blot and Cieutat (2016).

Lemma 6.1.7. Let H be a Hilbert space and H1, . . . ,Hd ≤ H.

Define H⊕ =
{⊕d

j=1 hj : hj ∈ Hj , 1 ≤ j ≤ d
}

, and let Pj : H →

Hj , 1 ≤ j ≤ d, be orthogonal projections. Then, the followings are

equivalent: (a) H⊕ ≤ H; (b) ‖(I − Pd) ◦ · · · ◦ (I − P1)‖L(H⊕) < 1;

(c) ∃ c > 0 such that for all h ∈ H⊕, there exists a decomposition

h =
⊕d

j=1 hj with hj ∈ Hj , 1 ≤ j ≤ d, and
∑d

j=1 ‖hj‖2 ≤ c‖h‖2.

Lemma 6.1.8. Assume that there exists a constant c > 0 such

that p(x) ≥ cpj(xj)pX−j (x−j) for all 1 ≤ j ≤ d and x ∈ [0, 1]d. Let

fj : [0, 1]→ H, 1 ≤ j ≤ d be ([0, 1]∩B(R),B(H))-measurable maps.

If
⊕d

j=1 fj(xj) = 0 for a.e. x ∈ [0, 1]d with respect to PX−1, then

fj(xj) = cj for a.e. xj ∈ [0, 1] with respect to PX−1
j for 1 ≤ j ≤ d,

where cj ∈ H are some constants satisfying
⊕d

j=1 cj = 0.

Proposition 6.1.1. For D ∈ N, let Ui and Vi be iid copies of

a [0, 1]D-valued random vector U and a H-valued random element

V, respectively. Assume (i) E(‖V‖α) < ∞ for some α > 2; (ii)

K is Lipschitz continuous; (iii) infn n
c1
∏d
j=1 hj ≥ (const.) for

some c1 < (α− 2)/α and infn n
c2 min1≤j≤d hj ≥ (const.) for some

59



c2 ∈ R. Then, for Sn(u) := n−1�
⊕n

i=1

(∏D
j=1Khj (uj−Uij)

)
�Vi,

it holds that

sup
u∈[0,1]D

‖Sn(u)	 E (Sn(u))‖ = Op

(
(nh1 · · ·hD)−1/2

√
log n

)
.

The following proposition is a Lindeberg-type theorem. It com-

plements Theorem 1.1 in Kundu et al. (2000) that is for infinite-

dimensional H.

Proposition 6.1.2. Let H be a finite-dimensional Hilbert space

and {bk}Nk=1 be an orthonormal basis of H. Let Vn1, · · · ,Vnn be

independent H-valued random elements such that E(Vni) = 0 and

E(‖Vni‖2) <∞ for 1 ≤ i ≤ n. For Sn =
⊕n

i=1 Vni, assume that

(i) akl := lim
n→∞

E(〈Sn,bk〉〈Sn,bl〉) exist for all 1 ≤ k, l ≤ N ;

(ii) lim
n→∞

n∑
i=1

E(〈Vni,bk〉2I(|〈Vni,bk〉| > η)) = 0 for all 1 ≤ k ≤

N and η > 0.

Then, Sn
d−→ G(0, C) for the covariance operator C : H → H

characterized by 〈C(h),bk〉 =
∑N

l=1 〈h,bl〉akl.

6.2 Proof of Theorem 3.2.1

The linearity of L follows from the linearity of k(z,w) and L0.

Using Lemma 6.1.3 and the fact

‖L(f)(w)‖B2 ≤
(∫
Z
‖k(z,w)‖qL(B1,B2)dµ(z)

)1/q (∫
Z
‖f(z)‖pB1

dµ(z)

)1/p

,

(6.2.1)

one may prove that L is bounded.
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For the compactness, it suffices to prove that there exists a

sequence of compact operators, say Ln, that converges to L. Let

(A⊗B)0 =
{ J⊎
j=1

(Aj×Bj) : Aj ∈ A , Bj ∈ B, µ(Aj) <∞, ν(Bj) <∞, J ∈ N
}
.

Due to Proposition 9.1 in Kubrusly (2015), (A ⊗B)0 is a field. We

apply Lemma 6.1.4 with the specifications of B and Lp((Z,A , µ),B)

there, respectively, to C(B1,B2) and Lq((Z×W,A⊗B, µ⊗ν), C(B1,B2))

here. We get that there exist sequences In ∈ N, Cni ∈ C(B1,B2)

and Fni ∈ (A ⊗B)0 for 1 ≤ i ≤ In such that kn ∈ Lq((Z×W,A ⊗

B, µ ⊗ ν), C(B1,B2)), defined by kn(z,w) =
∑In

i=1 1Fni(z,w)Cni,

satisfies(∫
Z×W

‖kn(z,w)− k(z,w)‖qL(B1,B2)dµ⊗ ν(z,w)

)1/q

≤ n−1.

(6.2.2)

We take Ln : Lp((Z,A , µ),B1) → Lq((W,B, ν),B2) defined by

Ln([f ]) = [Lnf ], where Lnf (w) =
∫
Z kn(z,w)(f(z))dµ(z). As in the

proof of the first part, we may prove that Ln is a bounded linear

operator for each n ≥ 1. One may also prove that ‖Ln − L‖op ≤

n−1 → 0 as n→∞, where ‖ · ‖op is the operator norm.

It remains to prove that Ln is compact for each n ≥ 1. Fix n

and take any sequence {[fk]}k≥1 in the unit ball of Lp((Z,A , µ),B1).

Put Fni =
⊎Jni
j=1(Anij × Bnij) with Jni ∈ N, Anij ∈ A and

Bnij ∈ B, and define Dnij : Lp((Z,A , µ),B1)→ B1 by Dnij(f) =∫
Z 1Anij (z)� f(z)dµ(z). Then,

Lnfk(w) =

In⊕
i=1

Jni⊕
j=1

1Bnij (w)� Cni(Dnij(fk)).
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Since supk≥1 ‖Dnij(fk)‖B1 ≤ µ(Anij)
1/q and Cni are compact, {Ln([fk])}k≥1

has a convergent subsequence. This completes the proof of the sec-

ond part.

6.3 Proof of Theorem 3.2.2

Using Theorem 3.2.1 and Lemma 6.1.6, one may show that L

is bounded and linear. We show that L is non-compact. Since

C is non-compact, there exists a sequence {bn} in the unit ball

of B1 such that {C(bn)}n≥1 has no Cauchy subsequence. De-

fine fn : Z → B1 by fn(z) ≡ bn. Then, fn are measurable and

sup
n

∫
Z ‖fn(z)‖pdµ(z) ≤ µ(Z). It suffices to prove that {L([fn])}n≥1

does not have a Cauchy subsequence. By the assumption on k :

Z ×W → R, we get

‖L([fn])	 L([fm])‖Lq =

(∫
W

∣∣∣ ∫
Z
k(w, z)dµ(z)

∣∣∣qdν(w)

)1/q

· ‖C(bn)	 C(bm)‖B2

≥ c · ‖C(bn)	 C(bm)‖B2

for some constant c > 0. This proves the theorem.

6.4 Proof of Theorem 3.4.2

One can prove the theorem by arguing as in the proof of Theorem

3.4.1 and using Lemma 6.1.8 and Proposition 6.1.1.
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6.5 Proof of Theorem 4.1.1

We only give an outline of the proof. For brevity we write qij(xj) =

p̂j(xj)
−1n−1Khj (xj , Xij). Define

m̃A
j (xj) =

n⊕
i=1

qij(xj)� εi,

m̃B
j (xj) =

n⊕
i=1

qij(xj)� (mj(Xij)	mj(xj)),

m̃C
jk(xj) =

n⊕
i=1

qij(xj)� ηik,

where ηik =
∫ 1

0 (mk(Xik)	mk(xk))�Khk(xk, Xik)dxk. Then, the

B-SBF equation (2.4.6) can be written as

m̂j(xj) = mj(xj)⊕
[
E(Y)	 Ȳ

]
⊕ m̃A

j (xj)⊕ m̃B
j (xj)⊕ m̃C

jk(xj)

⊕
⊕
k 6=j

n⊕
i=1

qij(xj)�
∫ 1

0
(mk(xk)	 m̂k(xk))�Khk(xk, Xik)dxk,

1 ≤ j ≤ d.

(6.5.1)

Below, we present a lemma for the approximation of m̃B
j (xj) and

m̃C
jk(xj). Recall the definitions of δj , δjk and cj given immediately

before Theorem 4.2.2. Define ak(xk) =
∫ 1

0 (vk−xkhk
)Khk(xk, vk)dvk�

Dmk(xk)(1). We introduce generic stochastic maps rj : [0, 1]→ H

such that

sup
xj∈Ij

‖rj(xj)‖ = op(n
−2/5), sup

xj∈[0,1]
‖rj(xj)‖ = Op(n

−2/5).

(6.5.2)

The notation is used to represent various terms in our asymptotic

analysis here and in the proof of Theorem 4.2.2.
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Lemma 6.5.1. Under the condition (C) it holds that

m̃B
j (xj) = h2

j �

(
h−1
j∫ 1

0 Khj (xj , vj)dvj
� aj(xj)⊕ δj(xj)⊕ cj(xj)

)
⊕ rj(xj),

m̃C
jk(xj) = h2

k �
∫ 1

0

(
h−1
k∫ 1

0 Khk(xk, vk)dvk
� ak(xk)⊕ δjk(xj , xk)⊕ ck(xk)

)

�
p̂jk(xj , xk)

p̂j(xj)
dxk ⊕ op(n−2/5) uniformly for xj ∈ [0, 1].

Now, define ∆̃∗j (xj) = h2
j � δj(xj) ⊕

⊕d
k 6=j

∫ 1
0 δjk(xj , xk) �[

h2
k
pjk(xj ,xk)
pj(xj)

]
dxk and

∆̂j(xj) = m̂j(xj)	mj(xj)	 m̃A
j (xj)	

[
hj∫ 1

0 Khj (xj , vj)dvj
� aj(xj)

]
	
[
h2
j � cj(xj)

]
⊕ rj(xj).

(6.5.3)

Then, from (6.5.1) and Lemma 6.5.1, we may get uniformly for

xj ∈ [0, 1],

∆̂j(xj) = ∆̃∗j (xj)	
⊕
k 6=j

∫ 1

0
∆̂k(xk)�

p̂jk(xj , xk)

p̂j(xj)
dxk ⊕ op(n−2/5), 1 ≤ j ≤ d.

(6.5.4)

Now, standard theory of kernel smoothing completes the proof of

the theorem.

6.6 Proof of Theorem 4.2.1

Let Hd denote the space of tuples (hj : 1 ≤ j ≤ d) with hj ∈

H. Let ‖ · ‖Hd and 〈·, ·〉Hd denote the norm and inner product

on Hd, respectively, defined in the standard way. Let ejl ∈ Hd
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denote (0, . . . ,0, el,0, . . . ,0) where el is placed at the jth entry.

Then, (ejl : 1 ≤ j ≤ d, l ≥ 1) forms an orthonormal basis of

Hd. By applying Theorem 1.1 in Kundu et al. (2000) for infinite-

dimensional H and Proposition 6.1.2 for finite-dimensional H, we

may prove(
n⊕
i=1

wi1(x1)� εi, . . . ,
n⊕
i=1

wid(xd)� εi

)
d−→ G(0, Cx), (6.6.1)

where Cx : Hd → Hd is a covariance operator such that, for all

h = (h1, . . . ,hd) ∈ Hd,

〈Cx(h), ejl〉Hd =
d∑

k=1

∑
m

〈h, ekm〉Hd · akmjl =
d∑

k=1

∑
m

〈hk, em〉 · akmjl

=
∑
m

〈hj , em〉 · aj,lm, l ≥ 1, 1 ≤ j ≤ d.

(6.6.2)

This completes the first part of the theorem.

For the second part of the theorem, let Pj denote the projec-

tion operator that maps (h1, . . . ,hd) ∈ Hd to hj . Then, its adjoint

P ∗j : H → Hd is given by P ∗j (g) = (0, . . . ,0,g,0, · · · ,0) where g

is placed at the jth entry. We note that the conclusions of Propo-

sition 4.9–4.10 in van Neerven (2008), for P -measurable Gaussian

random elements, also hold for strongly measurable Gaussian ran-

dom elements. The version of Proposition 4.9 implies Pj(G(0, Cx)) =

G(0, Pj ◦ Cx ◦ P ∗j ). Now, for g ∈ H,

〈Pj ◦ Cx ◦ P ∗j (g), el〉 = 〈Cx(0, . . . ,0,g,0, . . . ,0), P ∗j (el)〉Hd

= 〈Cx(0, . . . ,0,g,0, . . . ,0), ejl〉Hd

=
∑
m

〈g, em〉 · aj,lm,
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where the last equality follows from (6.6.2). This proves Pj ◦Cx ◦

P ∗j = Cj,xj , which coupled with (6.6.1) implies

Pj

(
n⊕
i=1

wi1(x1)� εi, . . . ,
n⊕
i=1

wid(xd)� εi

)
d−→ Pj(G(0, Cx)) = G(0, Cj,xj ).

It remains to prove that Pj(G(0, Cx)) for different j are inde-

pendent. By the version of Proposition 4.10 in van Neerven (2008)

for strongly measurable Gaussian random elements, it suffices to

show that

E (〈Pj(G(0, Cx)),hj〉 · 〈Pk(G(0, Cx)),gk〉) = 0 (6.6.3)

for all hj ,gk ∈ H and 1 ≤ j 6= k ≤ d. Fix 1 ≤ j 6= k ≤ d and take

h = (0, · · · ,0,hj ,0, · · · ,0) ∈ Hd and g = (0, · · · ,0,gk,0, · · · ,0) ∈

Hd where hj and gk appear in the jth and kth positions of h and

g, respectively. Then,

〈Cx(h),g〉Hd = E (〈Pj(G(0, Cx)),hj〉 · 〈Pk(G(0, Cx)),gk〉) .

(6.6.4)

On the other hand, using the fact g =
∑

l 〈gk, el〉ekl and (6.6.2),

we have

〈Cx(h),g〉Hd =
∑
l

〈gk, el〉·〈Cx(h), ekl〉Hd =
∑
l

∑
m

〈gk, el〉·〈0, em〉·ak,lm = 0.

This with (6.6.4) gives (6.6.3).

6.7 Proof of Theorem 4.2.2

We only give a sketch of the proof. Recall the definitions of ∆̃∗j (xj)

and ∆̂j(xj) given in Section 6.5. First, we claim that there exists a
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solution (∆∗1, · · · ,∆∗d) ∈
∏d
j=1 LH2 (pj) of the system of equations

∆∗j (xj) = ∆̃∗j (xj)	
⊕
k 6=j

∫ 1

0
∆∗k(xk)�

pjk(xj , xk)

pj(xj)
dxk, 1 ≤ j ≤ d,

(6.7.1)

satisfying the constraints∫ 1

0
∆∗j (xj)� pj(xj)dxj = h2

j �
∫ 1

0
δj(xj)� pj(xj)dxj , 1 ≤ j ≤ d.

(6.7.2)

To prove the claim, consider a functional F : SH(p) → R defined

by

F ([f ]) =

∫
[0,1]d

∥∥∥∥ d⊕
j=1

([
h2
j

∫ 1

−1
u2K(u)du

∂p(x)/∂xj
p(x)

]
�Dmj(xj)(1)

)

	f(x)

∥∥∥∥2

p(x)dx.

F is a convex, continuous and Gâteaux differentiable functional

satisfying F ([f ])→∞ as ‖[f ]‖2 →∞. The claim follows by arguing

as in the proof of Theorem 3.3.2.

Lemma 6.7.1. Under the conditions of Theorem 4.2.2, it holds

that ∆̂j(xj) 	∆∗j (xj) = rj(xj) a.e. xj with respect to Leb1, 1 ≤

j ≤ d.

This gives that, for a.e. xj ∈ Ij with respect to Leb1,

n2/5 � (m̂j(xj)	mj(xj)) =n2/5 � m̃A
j (xj)⊕ [n2/5h2

j ]� cj(xj)

⊕ n2/5 �∆∗j (xj)⊕ op(1).

By Theorem 4.2.1,

(n2/5 � m̃A
1 (x1), · · · , n2/5 � m̃A

d (xd))
d→ (G(0, C̃1,x1), · · · ,G(0, C̃d,xd)).
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The fact that n2/5 supxj∈[0,1] ‖∆∗j (xj)‖ = O(1) and E.6 in Cohn

(2013) entail that ( lim
n→∞

n2/5 � ∆∗1, . . . , lim
n→∞

n2/5 � ∆∗d) satisfies

(4.2.2) and (4.2.3). The uniqueness of sum map follows by arguing

as in the proof of Theorem 3.3.2 and the uniqueness of decompo-

sition follows from Lemma 6.1.8. Also, lim
n→∞

([n2/5h2
j ] � cj(xj) ⊕

n2/5 � ∆∗j (xj)) = Θj(xj). This proves the first and the second

part of the theorem.

For the third part of the theorem, we note that Proposition 4.8

in van Neerven (2008) also holds for strongly measurable Gaus-

sian random elements. Since G(0, C̃1,x1), · · · ,G(0, C̃d,xd) in The-

orem 4.2.1 are independent, it follows that
⊕d

j=1 G(0, C̃j,xj ) =

G
(
0,
∑d

j=1 C̃j,xj
)
. This completes the third part of the theorem.

6.8 Proof of Lemma 6.1.1

Using Proposition 2.6.8 in Cohn (2013), one may show that g ∈

L1((W,B, µT−1),B) if and only if g(T) ∈ L1((Z,A , µ),B). In

which case, there exist µT−1-simple maps gn such that gn → g

and ‖gn‖ ≤ ‖g‖ on W by E.2 in Cohn (2013). Using E.6 in Cohn

(2013), one can show that∫
W

g(w)dµT−1(w) = lim
n→∞

∫
W

gn(w)dµT−1(w)

= lim
n→∞

∫
Z

gn(T(z))dµ(z)

=

∫
Z

g(T(z))dµ(z).

This completes the proof.
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6.9 Proof of Lemma 6.1.2

There exist µ-simple maps fn such that fn → f and ‖fn‖ ≤ ‖f‖ on

Z by E.2 in Cohn (2013). Then, fn � (dλ)/(dµ) → f � (dλ)/(dµ)

and ‖fn‖(dλ)/(dµ) ≤ ‖f‖(dλ)/(dµ) on Z. Since each fn�(dλ)/(dµ)

is measurable, f � (dλ)/(dµ) is measurable by E.1 in Cohn (2013).

Also, f�(dλ)/(dµ) is µ-integrable since
∫
Z ‖f(z)‖(dλ)/(dµ)(z)dµ(z) =∫

Z ‖f(z)‖dλ(z) <∞. Using E.6 in Cohn (2013), one can show that∫
Z

f(z)dλ(z) = lim
n→∞

∫
Z

fn(z)dλ(z)

= lim
n→∞

∫
Z

fn(z)� (dλ)/(dµ)(z)dµ(z)

=

∫
Z

f(z)� (dλ)/(dµ)(z)dµ(z).

6.10 Proof of Lemma 6.1.3

(a) follows from Lemma 8.1 in Lang (1993).

Now, we prove (b). Since k is measurable and DW ∈ B,k �

1DW is measurable. By E.2 in Cohn (2013), there exist maps

kn :=
Jn⊕
j=1

1Cnj � bnj , where Jn ∈ N, Cnj ∈ A ⊗B and bnj ∈ B,

such that kn → k � 1DW and ‖kn‖ ≤ ‖k‖1DW on Z ×W. Then,

the maps kn(·,w) : Z → B are written as
Jn⊕
j=1

1(Cnj)w � bnj ,

where (Cnj)w = {z ∈ Z|(z,w) ∈ Cnj}. Then, kn(·,w) are mea-

surable since (Cnj)w ∈ A . Moreover, they are µ-integrable since

k(·,w) � 1DW (w) is µ-integrable. Note that
∫
Z kn(z,w)dµ(z) =

Jn⊕
j=1

µ((Cnj)w)�bnj . Since the functions w 7→ µ((Cnj)w) are mea-

surable, the maps w 7→
∫
Z kn(z,w)dµ(z) are also measurable.

Since g0 is also measurable, the maps gn : W → B defined by
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gn(w) =
∫
Z kn(z,w)dµ(z)� 1DW (w)⊕g0(w)� 1Dc

W
(w) are mea-

surable. Also,
∫
Z kn(z,w)dµ(z)→

∫
Z k(z,w)dµ(z) by E.6 in Cohn

(2013). Thus, gn → g on W. Therfore, g is measurable by E.1 in

Cohn (2013). This proves (b).

For the proof of (c), note that k ∈ L1(µ⊗ ν,B) implies that∫
W

∫
Z
‖k(z,w)‖dµ(z)dν(w) =

∫
Z×W

‖k(z,w)‖dµ⊗ ν(z,w) <∞.

This holds by the Fubini’s theorem in Mukherjea (1972). Hence,

DW ∈ B and ν(Dc
W) = 0. Define g0,gn,g and kn as in the proof

of (b). A similar argument to the proof of (b) shows that the func-

tion g : W → R defined by g(w) =
∫
Z ‖k(z,w)‖dµ(z)1DW (w) +

‖g0(w)‖1Dc
W

(w) is ν-integrable. Since ‖g‖ is dominated by g, E.6

in Cohn (2013) shows that∫
W

gn(w)dν →
∫
W

g(w)dν =

∫
W

∫
Z

k(z,w)dµ(z)dν(w).

(6.10.1)

On the other hand, the Fubini’s theorem in Mukherjea (1972)

shows that∫
W

gn(w)dν(w) =

∫
W

∫
Z

kn(z,w)dµ(z)dν(w)

=

∫
Z×W

kn(z,w)dµ⊗ ν(z,w)

→
∫
Z×W

k(z,w)dµ⊗ ν(z,w).

(6.10.2)

By combining (6.10.1) and (6.10.2), we have
∫
W
∫
Z k(z,w)dµ(z)dν(w) =∫

Z×W k(z,w)dµ⊗ ν(z,w). This completes the proof of (c).
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6.11 Proof of Lemma 6.1.4

E.1 in Cohn (2013) implies that for each f ∈ Lp((Z,A , µ),B),

there exist µ-simple maps fn =
In⊕
i=1

1Ani �bni, where In ∈ N, Ani ∈

A and bni ∈ B, such that fn → f and ‖fn‖ ≤ ‖f‖ on Z. Then, the

Lebesgue’s dominated convergence theorem implies that (
∫
Z ‖fn(z)	

f(z)‖pdµ(z))1/p → 0. Hence, for a given ε > 0, there exists N ∈ N

such that (
∫
Z ‖

IN⊕
i=1

(1ANi
(z)�bNi)	f(z)‖pdµ(z))1/p < ε/2. One can

show that for each i, there exists Ai ∈ A0 such that µ(ANi∆Ai) <

(ε/(2IN‖bNi‖))p. Note that µ(Ai) ≤ µ(ANi∆Ai) + µ(ANi) < ∞,

and

(

∫
Z
‖
IN⊕
i=1

(1ANi
(z)� bNi)	

IN⊕
i=1

(1Ai(z)� bNi)‖pdµ(z))1/p

≤
IN∑
i=1

(

∫
Z

1ANi∆Ai(z)dµ(z))1/p‖bNi‖

< ε/2.

Therefore, (
∫
Z ‖f(z)	

IN⊕
i=1

(1Ai(z)�bNi)‖pdµ(z))1/p < ε. This com-

pletes the proof.

6.12 Proof of Lemma 6.1.6

For the measurability, we need to prove that range(k) is separable

and k is (A ⊗ B,B(B))-measurable. For the separability, define

Rb = {r � b|r ∈ R} ⊂ B and Qb = {q � b|q ∈ Q} ⊂ B. Note

that for any ε > 0 and r ∈ R, there exists q ∈ Q such that

‖r � b	 q � b‖ = |r − q|‖b‖ < ε. Hence, Qb is a countable dense

subset of Rb. Thus, Rb is separable. Since range(k) ⊂ Rb, and
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Rb is a metric space, range(k) is also separable. For the (A ⊗

B,B(B))-measurability, note that there exist measurable simple

functions kn : Z × W → R such that kn → k on Z × W. Since

the maps kn : Z × W → B defined by kn(z,w) = kn(z,w) � b

are also (A ⊗B,B(B))-measurable, and kn → k on Z ×W, k is

(A ⊗B,B(B))-measurable by E.1 in Cohn (2013).

6.13 Proof of Proposition 6.1.2

A similar argument to the proof of Theorem 1.1 in Kundu et al.

(2000) gives that (< Sn,b1 >, · · · , < Sn,bN >)>
d−→ N(0d, A),

where 0d = (0, · · · , 0)> ∈ Rd and A is a matrix whose (k, l)th en-

try is akl. Since each < G(0, C),bk > is normally distributed, (<

G(0, C),b1 >, · · · , < G(0, C),bN >)> follows a multivariate nor-

mal distribution. Since E(< G(0, C),bk >) = 0 for all k, and the

(k, l)th entry of E((< G(0, C),b1 >, · · · , < G(0, C),bN >)>(<

G(0, C),b1 >, · · · , < G(0, C),bN >)) is E(< G(0, C),bk ><

G(0, C),bl >) = akl, we have (< G(0, C),b1 >, · · · , < G(0, C),bN >

)>
d≡ N(0d, A). Consider T : RN → H defined by T(u1, · · · , uN ) =

N∑
k=1

uk � bk. Then, T(< Sn,b1 >, · · · , < Sn,bN >) = Sn and

T(< G(0, C),b1 >, · · · , < G(0, C),bN >) = G(0, C). Since T

is a continuous map, Theorem 2.3 in Bosq (2000) implies that

Sn
d−→ G(0, C).
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[10] Dabo-Niang, S. and Rhomari, N. (2009). Kernel regres-

sion estimation in a Banach space. J. Statist. Plan. Infer. 139

1421-1434.

[11] Diaz, J. B. and Metcalf, F. T. (1966). A complementary

triangle inequality in Hilbert and Banach spaces. P. Am. Math.

Soc. 17 88-97.

[12] Ferraty, F., Laksaci, A., Tadj, A. and Vieu, P. (2011).

Kernel regression with functional response. Electron. J. Statist.

5 159-171.

[13] Ferraty, F., Van Keilegom, I. and Vieu, P. (2012).

Regression when both response and predictor are functions. J.

Multivariate Anal. 109 10-28.
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국문초록

이 논문에서는 힐버트 반응변수를 가진 구조화된 비모수 회귀 모

형에서 추정의 방법론과 이론의 기초를 정립한다. 이를 위해 바

나흐 공간 값을 갖는 함수의 적분인 보크너 적분을 도입하고 그

통계적 성질을 처음으로 밝힌다. 또한 제안된 추정량의 존재성과

추정량을 얻기 위한 알고리즘의 수렴성을 점근적 측면과 비점근

적 측면에서 모두 증명한다. 그리고 각 성분 함수의 추정량이 각

성분 함수로 최적의 오차로 점근 수렴하고, 성분 함수 추정량들

의 쌍이 가우시안 확률 변수들의 쌍으로 분포 수렴하며, 수렴된

가우시안 확률 변수의 성분들이 서로 독립임을 보인다. 시뮬레

이션과 실제 자료 분석을 통해 제안된 방법이 제곱 적분 가능한

함수, 확률 밀도 함수, 구성비 벡터 등 여러 힐버트 반응변수에서

잘 작동함을 확인한다.

주요어 : 가법 모형, 평활 역적합, 보크너 적분, 비유클리디안 자

료, 무한 차원 공간, 힐버트 공간, 함수적 반응변수.

학번 : 2012-20232
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