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Some Empirical Evidence on Models of 
Fisher Relation

Jae-Young Kim and Woong Yong Park

The Fisher relation, describing a one-for-one relation between 
nominal interest rate and expected inflation, underlies many 
important results in economics and finance. The Fisher relation is a 
conceptually simple relation, but the empirical evidence of it is more 
or less complicated with mixed results. Several alternative models 
with different implications were proposed in empirical literature for 
the Fisher relation. We evaluate these alternative models for the 
Fisher relation based on a post-data model determination method. 
Our result for data from the U.S. and Korea shows that models with 
both regimes/periods, a regime with nonstationary fluctuations and 
the other with stationary fluctuations, fit data best for the Fisher 
relation.
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I. Introduction

The Fisher relation underlies many important results in economics 
and finance. This relation explains that nominal interest rate is 
determined as the sum of expected inflation and real interest rate which 
is a constant or a stable variable around a constant. Therefore, the 
Fisher relation signifies that nominal interest rate has a statistical one-
for-one relation with the expected rate of inflation. Although the Fisher 
relation seems to be simple, several alternative models with different 
implications were proposed in literature. In this study, we examine the 
Fisher relation by evaluating the alternative models based on post-data 
model determination method.

Empirical analysis on the Fisher relation was initiated by Fama (1975). 
The constancy of real interest was studied by Nelson and Schwert 
(1977), Garbade and Wachtel (1978), Mishkin (1981, 1984), and Fama 
and Gibbons (1982). The correlation between nominal interest rate 
and inflation rate, which is noted as the Fisher effect was studied by 
Summers (1982), Huizinga and Mishkin (1986), and Mishkin (1990). 
Rose (1988), Atkins (1989), Mishkin (1992), and Wallace and Warner 
(1993) studied real interest rate based on concepts of a unit root and co-
integration. Huizinga and Mishkin (1986) and Roley (1986) studied the 
possibility that the change in the U.S. monetary policy in the late 1970s 
through the mid-1980s affected the dynamics of interest rates and 
inflation. Evans and Lewis (1995) and Garcia and Perron (1996) used 
models of regime switch to analyze the behavior of U.S. real interest 
rate using post-war data, including the period of policy regime change 
and oil shocks. Kim and Park (2015) studied the possibility of short-run 
instability of the Fisher relation.

Several Fisher relation approaches and models were proposed in 
literature, but we do not know which model is the most appropriate for 
the Fisher relation. This issue is important because each model has 
a distinct implication for the Fisher relation, which may conflict with 
each other. In this study, we evaluate those alternative models using 
data from the U.S. and Korea in the post war period before the 2007-
2008 world financial crisis. For this purpose, we employ a post-data 
model determination method that evaluates the relative probability 
of each model having generated given data. We use a Markov-chain-
Monte-Carlo (MCMC) method to compute the criterion that quantifies 
the relative probability of each model. The model that yields the highest 
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post-data probability is the one that best fits the data. We use the 
Gibbs sampler to compute the relative post-data probabilities. Our 
results show that the best model is not the same for the two countries. 
However, models with both regimes/periods, a regime with non-
stationary fluctuations and the other with stationary fluctuations, seem 
the most appropriate.

The rest of the paper is organized as follows. Section II introduces the 
Fisher relation and its related issues. Section III explains several models 
for the Fisher relation proposed in literature. In Section IV we discuss 
how to select the most appropriate model for the Fisher relation and 
provide some empirical results of model selection. Finally, Section V 
concludes the paper.

II. Fisher Relation and Its Related Issues

The Fisher relation explains how nominal interest rate is determined. 
Let πe

t + 1 be the expected rate of inflation from period t to period t + 1. 
Let rt

* and it be the ex ante real interest rate and the nominal interest 
rate, respectively, at time t. Nominal interest rate is equal to the real 
interest rate plus the expected rate of inflation:

	 it = rt
* + πe

t + 1 + εt,� (1)

allowing for temporary disturbance εt.
As explained in Kim and Park (2015) and others, the Fisher relation 

describes that nominal interest rate has a one-for-one relation with the 
expected rate of inflation. In other words, the Fisher relation describes 
that a stable level of the “real interest rate” exists that is equal to the 
nominal interest rate minus expected inflation, allowing for temporary 
disturbance. In terms of ex ante variables, the relation is written as

	 rt
* = it – πe

t + 1 – εt.� (2)

We also have an ex post version of the relation written as

	 rt = it – πt + 1 – εt,� (3)

where πt + 1 and rt are ex post inflation and ex post real interest rates, 
respectively. We use the same notation for disturbance εt in ex ante and 
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ex post cases to save the notation.
Denoting by νt the error of inflation expectation, νt = πe

t – πt, we have 
that rt = rt

* + νt. If νt is stationary, which is the case under rational 
expectations, then the ex ante real interest rate rt

* and the ex post real 
interest rate rt have the same statistical properties. In this case, one can 
analyze the Fisher relation based on ex post as well as ex ante interest 
rates. The existence of a stable Fisher relation is, in the statistical sense, 
the same as that the real interest rate is a constant or a stationary 
variable fluctuating around a constant. Thus, the Fisher relation is 
conceptually a simple relation. However, the empirical analysis of the 
Fisher relation is rather complicated with mixed results.

Several different models are proposed in Fisher relation literature. 
The issue of which model is the most appropriate for the empirical 
Fisher relation is very important. We evaluate the alternative models for 
the Fisher relation based on post-data model determination method.

III. Models for the Real Interest Rate

In the following discussion, we use variable yt for real interest rate. 
Let TT = {1, …, T  } be the sample period. We have four alternative Fisher 
relation models studied in the literature in the following, Mi, for i = 0, 1, 2, 
3.

A. Autogression: M0

The basic model is the pth order autoregression in yt:

	 µ φ µ ε−
=

− = − +∑
1

( ) ( )
p

t s t s t
s

y y � (4)

where εt ~ iid N(0, σ2), and all roots of characteristic equation 1 – φ1z – 
… – φpz p = 0 lie outside the unit circle.

We can rewrite Model (4) as: 

	 yt = (1 – ∑p
s = 1 

ϕs)μ + ∑p
s = 1 

ϕs yt – s + εt, � (5)

which is the commonly used form in usual time series analysis. We use 
the mean-deviated form in (4) instead of the common one in (5) because 
the former is more convenient for adopting standard regime switching 
models in our study.
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B. Model with Partial-sample Instability: M1

We incorporate the possibility of partial-sample (or short-run) 
instability in M0 following the suggestion in Kim (2003), Andrews and 
Kim (2006), and Kim and Park (2015). Suppose that the process yt in a 
relatively short period TT

B(⊂ TT ) becomes unstable with properties of a 
non-stationary unit root or of higher volatility. In model M1, we assume 
that TT

B is identified a priori, unlike model M3 below. Then, we obtain the 
following model for yt:

	 (yt – τt ) = ∑p
s = 1 

[ϕs ∙ I (t ∈Ts ) + ζs ∙ I (t ∈TB )](yt – s – τt – s) + εt, �  (6)

where TS = T \ TB; εt ~ N (0, v0
2), I (∙) is the indicator function, and φs and 

ζs are parameters. For t ∈TS, we assume that the mean of yt is τt = µ0 
and for t ∈TB τt = µ1 + yt – 1. Therefore, in the period TB the process yt 
has a unit root, and its first difference Δyt is a stationary autoregressive 
process.

C. Markov Regime Switching Model: M2

We assume that the variable yt follows regime-switching dynamics 
across K states st = 1, 2, …, K:

	 (yt – τt ) = ∑p
s = 1 

ϕs(yt – s – τt – s ) + εt, � (7)

for εt ~ N (0, vt
2), where τt = µst

 and vt
2 = σst

2 in state st. We assume that 
µ1 < ··· < µK for identification. State variable st follows the first-order 
Markov process with transition probability from state i to state j, with pij 
= P [st = j|st – 1 = i ] for i, and j = 1, …, K. Garcia and Perron (1996) used 
M2-type models of regime switch to analyze the behavior of the U.S. real 
interest rate for post-war data.

D. An Extended Markov Switching Model: M3

We now consider a Markov switching model that contains a non-
stationary state, which is an extension of M2 that only contains K 
stationary regimes. In extended model M3, the last Kth state is set to be 
non-stationary. The extended model M3 is thus

	 (yt – τt ) = ∑p
s = 1 

[ϕs ∙ I (st ≠ K ) + ζs ∙ I (st ≠ K )](yt – s – τt – s ) + εt, � (8)
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where εt ~ N(0, vt
2). The mean of yt  in a stationary state is τt = µst

 and 
that in the non-stationary state is τt = µK + yt – 1, which implies that 
variable yt has a unit root in the state sK.

Remark: There is an alternative modeling scheme with the regime 
switching due to its own lagged variable, known as the self-exciting 
threshold regression. It was introduced by Tong and Lim (1980) and 
studied by Seo (2008) in relation to unit root testing for the model. 
This alternative specification may be a relevant option for modeling the 
Fisher relation. However, we do not consider this specification in this 
paper since our objective is to evaluate existing models of the Fisher 
relation. This modeling scheme may be applied to the Fisher relation in 
any future work.

IV. Model Selection for the Fisher Relation

In this section, we discuss how to compare different models and 
select the one that best fits data for the Fisher relation. Then, we 
provide the results of model selection for models explained in Section 
III.

A. Post-data Model Selection

In this subsection we explain how to determine the best model for the 
real interest rate out of several different ones. Our approach is a post 
data model selection method developed in the Bayesian framework and 
is a generalized version of the Bayesian information criterion. Through 
the method, we can evaluate the relative merit of each model and select 
the model that best fits the data. We use an MCMC method to compute 
the criterion that quantifies the relative merit of each model.

A sample of T observations for the process yt is denoted by YT = (y1, 
…, yT ). A family M consists of candidate models for YT in the presence 
of uncertainty of the true model. A model mi ∈ M is associated with a 
parameter space Θi of dimension pi  for i ∈ I, where I = {1, ..., I  }. Assume 
that for each mi, a family Qi

T (θ
i, YT ) of distribution functions with 

density qi
T (θ

i, YT ) is defined. Let Pr(mi|YT ) be the post-data (posterior) 
probability that mi is true. By Bayes’ rule, we obtain:
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	 ∈

=
∑

( | ) Pr( )Pr( | ) ,
( | ) Pr( )

T T i i
i T

T T i ij I

q Y m mm Y
q Y m m �

(9)

where Pr(mi ) is the prior probability for mi and qT (YT|mj ) = qi
T (YT ). 

However, 

	 qT (YT|mj ) = ∫ qT (YT|θj, mj )ϕ(θj|mj )dθi = Ej [qT (YT|θj )],� (10)

where ϕ(θj|mj ) is the prior density associated with the model mj. If we 
further assume that Pr(mj ) is the same for all j, then the model selection 
rule is to choose mi for which Ei [qT (YT|θj ) is the largest.

The quantity in (10) may be alternatively interpreted as marginal 
likelihood. The marginal likelihood qT (YT|mj ) = Ei [qT (YT|θi )] may be 
rewritten as

	 θ φ θ
φ θ

=
( | ) ( )( ) ,
( | )

T T
T T

T

q Yq Y
Y

� (11)

where the script j and mj are omitted for convenience, and ϕ(θ|YT ) is the 
posterior density of θ. Equation (11) is a reversed version of Bayes’ rule. 
Given that (11) holds for any θ, we may evaluate qT (YT ) for a convenient 
θ, such as θ = θ * the posterior mean. Taking the logarithm of (11) for θ = 
θ *, we have

	 ln qn (YT ) = ln qT (YT│θ *) + ln ϕ(θ *) – ln ϕ(θ *│YT ).� (12)

Our decision rule is to choose model m j that yields the highest 
value of (12). The calculation of log-likelihood and log-prior at θ = θ * is 
relatively easy unlike the calculation of posterior ϕ(θ *│YT ). To compute 
ϕ(θ *│YT ), we can use an MCMC method, such as Gibbs sampling, as 
in Chib (1995).1 The computation of marginal likelihood or of posterior 
ϕ(θ *│YT ) for the models in Section III is demanding work with highly 
sophisticated programming.

We use standard priors for the parameters in literature. That is, the 
regression coefficients φ and ζ have normal priors, and error variance σ2 

1 Good references for the MCMC method and the Gibbs sampling are Gelman 
et al. (2000), Chib and Greenberg (1996), and Casella and George (1992), among 
others.
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has an inverted gamma distribution. This normal-inverted gamma prior 
is a conjugate prior and is commonly used in literature. Mean µi has a 
normal prior, and the transition probability {pij } has a prior of Dirichlet 
distribution that is conjugate. The prior for the transition probability 
reflects information on the duration of a state. For example, if the 
duration of state i is four quarters, then 1/(1 – pii ) = 4, so that pii = 0.75 
for the prior.

B. Data and Empirical Results

Similar to many existing works, we use the three-month Treasury 
bill rate or equivalence for the nominal interest rate and the consumer 
price index (CPI) for the price level to compute the inflation rate.2 We get 
U.S. data on the Treasury bill rate and CPI from the Federal Reserve 
Board and the Bureau of Labor Statistics, respectively. The Korean data 
are obtained from the International Financial Statistics (IFS). All data 
are seasonally adjusted. The data period is 1953:Q1–2006:Q1 for the U.S. 
and 1976:Q3–2006:Q1 for Korea. Thus, the data set covers observations 
in the post war period before the 2007-2008 world financial crisis.

We consider various aspects of each model in the model selection: 
the number of states K and the order of autoregression running up to 5 
for each Mi, i = 0, 1, 2, 3. Table 1 shows the results of post-data model 
selection.

As shown in Tables 1, the best model is different for the two 
countries: M1 is the best model for the U.S. and M3 is that for Korea. 
However, for data from the two countries, the models with both 
regimes/periods, a regime with stationary fluctuations and the other 
with non-stationary/unstable fluctuations, (M1 and M3) are selected as 
the most appropriate models.

These results may seem like evidence against the existence of the 
Fisher relation as the Fisher relation implies that the real interest rate 
is stable with stationary fluctuations around a constant. However, our 
results are not evidence against the Fisher relation. If non-stationary 
fluctuations, if any, occur only temporarily, then we can say that the 
Fisher relation prevails in the majority of the sample period. Kim and 
Park (2015) have shown that the length of the period of non-stationary 

2 The three-month Treasury bill rate for the U.S. and the money market rate 
for Korea are used.
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fluctuations in the real interest rate is relatively short for data sets 
similar to those used in this paper. Nonetheless, it is important to note 
that the Fisher relation may not be a relation that is stable at all times.

V. Concluding Remarks

We compared several alternative models of the Fisher relation using 
data from Korea and the U.S based on a Bayesian model selection 
method. Among the four alternative models for the Fisher relation our 
results show that models with both regimes/periods of non-stationarity 
and stationarity seem the most appropriate, although the best model 
is not the same for the two countries. These results form a new and 
interesting finding about the Fisher relation that would inspire further 
investigation of related issues.

(Received 4 July 2017; Revised 4 August 2017; Accepted 19 January 
2018)
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