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Abstract 

 

A comparison study of statistical methods 
for the analysis of  
metagenome data 

 

Chanyoung Lee 

Interdisciplinary Program in Bioinformatics 

The Graduate School 

Seoul National University 

 

With the advent of next-generation sequencing (NGS) technology, 

sequencing microorganisms from varied samples facilitates association 

analysis between feature and environment. Several statistical methods have 

been proposed for analyzing metagenome data such as Metastats, 

metagenomeSeq, ZIBSeq, ANCOM, edgeR, and DESeq2. Each method has 

assumed its own specific distribution and model assumptions. While there 

have been some comparative studies on these methods, the comparison is 

rather limited and the results have been varied depending on how to generate 

simulation datasets. In this study, we systematically investigate the properties 

of these statistical methods for finding differentially abundant features (DAF). 

In addition, centered log-ratio transformation and permutation logistic 
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regression model (CLR Perm) were applied to metagenome data. We 

compare their performances using simulation data generated from the Human 

Microbiome Project (HMP). We first assessed the type I error rate of each 

method over different levels of sparsity. CLR Perm, metagenomeSeq and 

ANCOM methods yielded well preserved type I error rates regardless of 

sparsity. In the power comparison study, CLR Perm showed the highest 

power among the methods preserving type I error. Furthermore, we applied 

the methods to real data on colorectal cancer (CRC) to compare our results 

with existing taxonomic markers of CRC. In conclusion, we recommend 

using a combination of CLR Perm and metagenomeSeq for the analysis of 

metagenome data because there are differences in the list of significant taxa 

discovered by CLR Perm and metagenomeSeq. 

 

Keywords: Differentially abundant feature, Metagenome, 16S rRNA, 

Association test. 

 

Student number: 2015-20510  
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Chapter 1 

 

Introduction 

 

Next Generation Sequencing(NGS) technique contributes DNA-based 

analysis for various biological studies including metagenomics where 

researchers extract the genome of microorganisms from sample [1]. There are 

two approaches in metagenomics. The one is based on 16s rRNA and the other 

is based on whole genome shotgun sequencing. The former approach has been 

used mainly to identify the taxa of microorganisms present in a sample, 

whereas the later has been used to perform functional analyses [2]. Although 

the both approaches can be identifying taxa, the whole genome shotgun 

sequencing is not cost effective only to find a taxonomic biomarker. In this 

study, we focused on the 16S rRNA approach to find taxonomic biomarkers 

related to treatment (group).  
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Until now, most of the metagenome (or microbiome) studies have aimed to 

identify taxa and compare microbial communities between different 

environments. For this reason, the metagenome studies have been performed 

mainly by using α and β diversities which are measures for summarizing 

within-sample variation and between-sample variation, respectively [3]. 

Additionally, there have been many studies demostrating an association 

between the occurrence of human diseases and the presence of a specific 

microorganisms [4]. These are such as psoriasis [5], reflux oesophagitis [6], 

obesity [7], childhood-onset asthma [8], inflammatory bowel disease 

[9] ,functional bowel diseases [10], colorectal cancer (CRC) [11], 

cardiovascular disease [12] etc. For this reason, Microbiome-wide association 

studies (MWAS), which investigate not only α and β diversities, but also 

ascertain the relationship between the microorganisms and phenotypes, have 

become more popular [13]. 

MWAS are performed mainly by whole genome shotgun sequencing to 

identify functional markers through the feature table consisting of genes or 

protein families. However, when analyzing the Operational Taxonomic Unit 

(OTU) table, the same statistical methods used in 16S rRNA analysis can also 

be applied. Several statistical methods have been developed for analyzing 

OTU table, as summarized in Table 1.  
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Statistically, they can be classified into univariate models and multivariate 

models. The hypothesis of univariate model is testing a single taxon 

abundance differences between the treatment groups. While that of 

multivariate is to test whether or not microbial communities differs between 

treatment groups. The univariate models are sometimes called as differentially 

abundant features (DAFs) finding methods. In this study, we focused on 

univariate models. 

Many univariate models have been proposed for analyzing OTU table. 

Among them, Metastats [14] was proposed using the t-test and Fisher’s exact 

test. However, Metastats does not consider many zeros in metagenome data 

and relative abundances of compositional data. To consider these zeros, 

metagenomeSeq [15] and ZIBSeq [16] were proposed using zero-inflated 

mixture models. Analysis of composition of microbiome (ANCOM) [17] was 

also proposed to solve the problem of using relative abundances of 

compositional data. DESeq2 [18] and edgeR [19], originally proposed for 

RNA sequencing data, can also be used for finding DAFs. Table 1 summarizes 

the distributions, normalization methods, and the ability of handling covariates 

for each method. Although this study focused on DAFs tests (univariate), 

multivariate (multiple) methods also introduced in Table 1 [20-23].  

Most OTU tables contain many zero counts at a particular taxon. This 

phenomenon is called a sparsity problem which may occur when the 
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sequencing depth is not deep enough to detect a rare taxa [24]. The sparsity 

is defined as a ratio of zero for each taxon. Thus, when sparsity is high, that 

is when there are many zeros in a OTU table, it is difficult to know whether 

zero abundance is due to the absence of taxon in environment or to the lack 

of sequencing depth. 

While many methods for finding DAFs are available, each method has 

its own specific distributional and model assumptions (Table 1). They were 

shown to have different performances depending on simulation datasets. In 

this study, we systematically investigate the properties of univariate models 

listed in Table 1 using simulation data generated from the Human 

Microbiome Project (HMP) data [25, 26]. 

 Through the HMP data, we generated a binary phenotype and kept to 

the natural characteristics of the real-world data such as sparsity and their 

relative composition. We paid special attention to the effect of sparsity on the 

performance of these statistical methods. Furthermore, we performed 

colorectal cancer (CRC) data analysis (Baxter et al. [27]), and compared the 

results with previous studies related to CRC.  
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Chapter 2 

 

Materials and Methods 

 

2.1 Simulation materials (HMP) 

The OTU table generated from 16s rRNA variable region v3-5 and 

metadata used in this study were downloaded from HMP QIIME Community 

Profiling website (http://hmpdacc.org/HMQCP/). The v3-5 data is composed 

of 4743 specimens of 235 screened healthy adults from 124 males and 111 

females. Among the 18 body site data of HMP, stool data was selected for our 

comparison study because of its larger sample size than other sites [25]. 

Characteristics of the HMP stool data at genus level are summarized in Figure 

1. Bar-plot in Figure 1 shows variation 
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between samples. Each stacked bar represents an individual and each color 

represents relative abundance of taxon. Pie-chart in Figure 1 shows the mean 

values of relative abundance of taxa across the sample. Box-plot in Figure 1 

shows the variation of some taxon with a large mean of relative abundance. 

Individual variability seems pretty large. Especially, grey colored taxon 

shows dominantly higher proportion across all samples and larger variability 

than other taxa. 

 

2.2 Colorectal cancer data (CRC) 

Until now, it has been difficult to obtain metagenome data the true 

significance of whose taxonomic markers for a disease was known.  For this 

reason, the performance of statistical methods had not been evaluated on real 

data. In this study, we use CRC data published by Baxter at al. [27]. The data 

relate to the development of a model for improving the accuracy of the fecal 

immunochemical test (FIT) [28]. In their study, the prediction model for 

diagnosing of colonic lesions was developed using the random forest method. 

Although, the significant markers of association test and the markers in 

prediction model have slightly different meanings due to different evaluation 

criteria, we compared significant taxa of association tests with the taxa used 

in prediction model. 
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We downloaded 16s rRNA variable region v4 dataset from 

https://github.com/SchlossLab/Baxter_glne007Modeling_GenomeMed_201

5. The data are composed of 292 samples: 172 normal samples and 120 CRC 

samples. We used 335 OTUs in our study that account for at least 5 percent 

of abundance across the taxa. The characteristics of the CRC data at genus 

level are summarized in Figure 2. Bar-plot in Figure 2 shows variation 

between case and control. Unlike the HMP data, Pie-chart in Figure 2 does 

not show dominantly higher proportion. Box-plot in Figure2 shows that the 

top 15 taxa in order of highest proportion show similar abundances and 

variations. 
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2.4 Existing methods 

We briefly review existing methods for finding DAF. Their characteristics 

are well summarized in Table 1. 

• Metastats 

In Metastats, taxa counts are normalized by library size (sample total). This 

normalization process is called total sum scaling (TSS) and the normalized 

abundance is called relative abundance (RA). In Metastats, either a 

permutation t-test based on Welch’s t-test statistics [29] or Fisher’s exact 

method is used [30]. Fisher’s exact method is applied only if the total feature 

count is less than the number of subject in each treatment. Otherwise, the 

permutation t-test is used. 

• metagenomeSeq 

metagenomeSeq was developed to take sparsity in OTU table into 

account. At first, a binary indicator is introduced to represent whether the 

feature count 0 is actually zero or is caused by the lack of sequencing depth 

(library size)[15]. Since there is no way of knowing the true value of this 

indicator, it is treated as a latent variable. The log2-transformed feature count 

is assumed to follow a Gaussian distribution. To account for extra zero counts, 

the zero inflated Gaussian mixture model (metagenomeSeq1) is defined. The 

Expectation-maximization (EM) algorithm [31] is used for fold-change 
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estimation. In the E-step, the mean model is expressed by a regression model 

which adopts Cumulative Sum Scaling (CSS) normalization factor and a 

parameter of fold-change. Finally assessing significance is done through a 

moderate t-test [32] using estimated parameter of fold change in the mean 

model. Recently, the zero inflated log normal models (metagenomeSeq2) 

were also developed [33]. metagenomeSeq1 and metagenomeSeq2 are 

different in their distributional assumptions and parameter estimation steps. 

 

• ZIBSeq 

The key idea of ZIBSeq lies in that relative abundance after TSS 

normalization is composed of large number of zeros and results in the skewed 

distribution [16]. Thus, the zero inflated beta distribution is considered with 

the beta distribution reparametrized by mean and dispersion parameters. With 

the assumption of relative abundance to follow zero inflated beta distribution, 

regression model is used with the logit link. For parameter estimation, R 

package GAMLSS can be used to find MLEs of model parameters 

numerically [34]. For testing hypothesis, Wald statistics is used with its p-

value obtained from the chi-squared distribution. 
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• ANCOM 

ANCOM was developed to compensate for a weakness in the methods that 

calculate the relative abundance (RA) of features: the RA value can vary 

greatly due to a small change in the abundance of one of the features [35]. The 

key idea behind ANCOM is to use a hypothesis test which is based on 

computing the pairwise log ratio. The preceding methods used the following 

hypothesis test : For the 1,… , th taxon and the 1,… ,  group, 

the hypothesis, 

	: E log E log , 

has been commonly used, where  represents the mean abundance of the 

kth group. Instead of this hypothesis, ANCOM considered the following 

1 sub-hypotheses:  

	: E log / E log / , ∀r i .  

Then, all pairwise 1 /2	 	 p-values are calculated by a non-parametric 

procedure such as Wilcoxon rank sum test K 2 , the Kruskal-Wallis test 

K 3 , and Freidman test for repeated sample.From the	 1 /2	  p-

values for each taxon  ,   , the number of rejected sub-hypotheses 

  , 	   , can be computed. Finally, through empirical cumulative 

density function of , decision rule of significance taxa is defined. 
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• DESeq2 and edgeR 

Both methods use the negative binomial model. The main differences lie 

in normalization and parameter estimation procedures. edgeR uses the 

trimmed mean of M-value (TMM) normalization and DESeq2 uses relative 

log expression (RLE) normalization [36] Additionally, DESeq2 and edgeR 

use slightly different estimation procedures for the dispersion parameters. The 

detailed step of estimating dispersion parameters was introduced by Love et 

al. [18] and Robinson et al. [19]. In this study, the likelihood ratio test (LRT) 

statistics and Wald statistics are used for DESeq2, while only LRT statistics 

are used for edgeR. 

 

2.4 Permutation logistic regression with centered log-ratio 
transformation (CLR Perm) 

In previous existing methods, taxon counts or abundances are treated as 

random variable. Therefore, the counts and abundances have distributional 

assumption. For this reason, complex distributional assumptions such as the 

zero-inflated mixture models are required by the sparsity of metagenome data. 

Moreover, when computing the RA, a small change in the abundance of one 

taxon affects the whole microbiota composition because the overall 

abundance of compositional data is constrained to sum to one. 
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In this study, we simply treated taxon counts as constant and binary trait 

as random variable. From this point of view, we used logistic regression and 

centered log-ratio transformation developed by John Aitchison [35] to 

overcome the constant sum constrain. In addition, permutation method [29] 

is applied to Wald statistics of logistic regression to reflect exact null 

distribution based on observation. 

 

• Centered log-ratio transformation (CLR) 

Let, 	  is raw taxon count. For the 1,… , th taxon and the 

1,… ,  sample. To avoid the geometric mean becoming zero, 

∗ 1  is considered by adding a pseudo count 1. After adding 

pseudo count for each count, a vector, ∗ ∗ , ∗ , … , ∗ ,  is 

defined for sample j, where, ∗ 0	 and ∑ ∗ .  is library 

size of sample j. Then CLR transformed values  is defined as below :  

∗

∗  , ∗ ∗ . ∗ . … . ∗  

 

 

• Permutation logistic regression 

Let ~	 	  and , , , … ,  is above 

transformed value. the success probability is P 1
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∑

∑
,where	 1. Then we can define likelihood  as 

below :  

∙ log 1 exp  

Estimate  is obtained from 	 0. standard error of  is 

square-root of 	 	 .  Statistics  is defined as below : 

	
.

 

Finally, Storney and Tibshirani permutation method [29] is used to assess 

significance under the null ( 	: =0). we randomly shuffle  labels 

over K times and compute statistics , , … ,  for i th taxon. After 

calculating a set of statistics, p-value , , of i th taxon is computed as 

below : 

	
| | | |
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Chapter 3 

 

Simulation  

 

3.1 Simulation model 

 To compare the performance of each method for finding DAFs, we 

used HMP stool data (genus level). For simplicity, we fixed the HMP stool 

data and generated binary responses from the binomial distribution. Let  

be a random variable generated from  and  be scaled 

relative abundance, where 1,… ,165   represents causal taxon, 	

1, … ,180   samples, and 	 1, … ,100   replicate numbers. The success 

probability  is defined as a function of  given as follows: 

 
⋯ 	⋯	
⋯ 	⋯	

	 	 (1) 
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The parameter  in model (1) is an intercept and is given by ∑  

to let π   have values near 0.5 and   vary from 0.5 to 1.5 by 

increments of 0.5. Using the given model, the power and type I error are 

computed by assuming that only one taxon is truly causal and the other 164 

taxa are non-causal. The power for detecting a causal taxon   can be 

computed when 0 and 0 for all .  The type I error rate 

of detecting non-causal taxon  can similarly be evaluated for all . 

 

3.2 Power and type I error rate 

Assuming that only one taxon is truly causal and the other 164 taxa are non-

causal, we compared the performance of each method at different levels of 

sparsity based on their empirical power and type I error rates. A detailed 

procedure for computing power and the type I error rates is given in Figure 3. 

Figure 3 (a) shows 165 tables of binary traits generated by model (1). The first 

table in Figure 3 (a) shows the case when the first taxon is causal, the second 

table shows the case when the second taxon is  



 

19 

 

 

 

Fig. 3. The Procedure of computing type1 error rates and powers.  
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causal, and so forth. Figure 3 (b) shows the tables of p-values for the test results. 

Figure 3 (c) shows the tables of q-values for multiple comparisons. Finally, 

Figure 3 (d) shows the tables of powers and type I error rates. The type I 

error rate (Uncontrolled p-value) was computed by counting the number of 

cases when the unadjusted p-value under the null hypothesis was smaller than 

0.05, , ∑ ∑ 0.05: / 100 ∙ 164 ,  where  is the 

index of a table as given in Figure 3. In order to restrict the type I error rate to 

5% for methods with a high type I error rate, we numerically found the  

thresholds for each taxon at which the Type I error rate (Controlled p-value) 

was limited to 0.05 with the following equation: ,

∑ ∑: / 100 ∙ 164 . Additionally, we computed rank-

based type I errors. the Type I error rate (Rank): 

∑ ∑: / 100 ∙ 164 , where  is the minimum p-

value in kth replicate. For power comparison, we considered five types of 

power. The first type of power P(Uncontrolled p-value), is based on p-values 

not adjusted by applying the multiple comparisons correction. Specifically, 

P(Uncontrolled p-value) was computed by counting the number of cases when 

the unadjusted p-value of the causal taxon was smaller than 

0.05, 	 , 	 ∑ 0.05 /100.  P(Controlled p-value) was 

computed in the same way as P(Uncontrolled p-value), but the threshold  
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obtained from  was used to compare the power of all the methods at the 

same type I error threshold. P(Controlled p-value) is defined 

as	 , 	 ∑ /100, where	 . The second type of power, 

P(Uncontrolled q-value) uses the Benjamini-Hochberg correction-derived q-

values for multiple comparison [37]. P(Uncontrolled q-value) were computed 

by counting the number of cases when the Benjamini-Hochberg q-value of 

causal taxon was smaller than 0.05, , ∑ 0.05 /100 . 

Controlled p-values ∙ .
 , are computed to obtain P(Controlled q-

value) using the threshold . After computing controlled p-values, 

controlled q-values, , are obtained by applying the Benjamini-Hochberg 

correction to the adjusted p-values. Finally, P(Controlled q-value) was 

computed by counting the number of cases when the adjusted q-value of a 

causal taxon was smaller than 0.05: 	 , ∑ 0.05 /100 . 

P(Rank) was computed by ranking of p-values : , ∑ /

100. 
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Chapter 4 

 

Results 

 
4.1 Simulation results 

We performed simulation studies by varying  from 0.5 to 1.5 in 

increments of 0.5. Since the ANCOM method does not provide p-values, but 

does provide  statistics and a list of significant taxa, the power of 

ANCOM was computed on the basis of the significant taxa list, and the 

P(Rank) computed using . 

 Figure 4 (a) shows the type I errors (Rank), which have very low Type I 

error rate because of rank-based calculation. Figure 4 (c) shows Type I error 

(Controlled p-value) of each method at the same type I error rate (α=0.05). 

The results of type I errors (Uncontrolled p-value) showed that some methods 

did not preserve type I errors. Figure 4 (b) shows type I 
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error rates at different levels of sparsity. Three out of nine methods, 

represented by solid lines, were shown to have well preserved type I errors. 

However, the other methods represented by dashed lines, yielded inflated 

more type I errors. In particular, with increasing sparsity, the type I error of 

DESeq2 tended to decrease and that of metagenomeSeq1 tended to increase. 

This was due to the fact that the p-values of DESeq2 become close to one when 

sparsity is greater than 0.8, while those of metagenomeSeq1 become close to 

zero as sparsity increases. edgeR and ZIBSeq did not preserved type I errors, 

with similar patterns, as shown in Figure 4. Metastats showed a well-preserved 

type I errors when sparsity was low. However, when the sparsity is higher than 

0.6, the type I error rate of Metastats tends to increase.  

 Figure 5 shows the results of power analysis. Figure 5 (a) and (b) show the 

plots of P(Rank) and P(Uncontrolled p-value) respectively over different 

levels of sparsity. High P(Rank) means that the causal taxon was frequently 

assigned the minimum p-value among all the other p-values. Among the 

methods well-preserving type I errors, CLR Perm showed the highest power; 

metagenomeSeq2 a high power, similar to CLR Perm. Figure 5 (d) shows the 

plot of P(Uncontrolled q-value) over different levels of sparsity. The ANCOM 

method showed the highest power among the methods well-preserving type I 

errors when applying  
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Fig. 5. Comparsion results of statistical powers of the methods. Different

significant thresholds were used for each taxon to compare the P(Controlled

p-value,q-value) of each method at similar type1 error rate(α=0.05). 
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multiple comparisons correction to the p-values. In order to include other 

methods that did not preserve the type I errors, we adjusted their threshold 

values so that their type I errors were controlled at the 5% significance level. 

Figure 4 (c) showed that type I error rates (Controlled pvalue) are well-

preserved for all methods when using the adjusted thresholds. Using these 

thresholds, we re-computed the power, P(Controlled p-value), as shown in 

Figure 5 (c). Though, all the methods showed very similar power, they yielded 

two clusters: one cluster having higher power includes DESeq2, edgeR, 

Metastat, metagenomeSeq, CLR Perm and the other cluster with lower power 

includes ZIBSeq, and ANCOM. However, it is not easy to estimate these 

threshold values when analyzing real data. Figure 5 (e) shows the P(Controlled 

q-value) plots. metagenomeSeq1, edgeR and Metastats have high power when 

applying Benjamini-Hochberg correction to controlled p-value. As a result, all 

methods except CLR Perm, metagenomeSeq2, and ANCOM suffered from 

inflation of false positive errors. 

 

4.2 Colorectal cancer data results 

Until now, we compared the performances of these methods through 

simulation results. We next confirmed the consistency of detecting significant 

OTUs by each method through CRC data as shown in the heatmap in Figure 
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6 (a). Using the Venn diagram in figure 6 (b), we compared the significant 

OTUs detected by the three methods with low type I error rate with 34 OTUs 

detected by Baxter et al. in detail. The CRC data consists of 353 OTUs. 

Among those OTUs, 34 OTUs were used to construct a prediction model to 

diagnose colorectal cancer by Baxter et al. In their study, the prediction model 

showed an AUC (area under the curve) value of 0.84. Figure 6 (a) shows the 

consistency of significant OTU detection by each method. The diagonal in 

figure 6(a) shows the number of significant OTUs detected at a level of 

significance 0.05 by each method. The rest of the cells in figure 6(a) display 

the ratio of the number of significant OTUs found by both the row name 

method and column name methods (numerator) to the number of significant 

OTUs found only by the row name method (denominator). Thus, the halves 

on either side of the diagonal are not symmetric. As the ratio increases from 

zero to one, the color changes from green to red. From Figure 6 (a), we can 

see how consistently two different methods are in finding significant OTUs. 

The DESeq2 and metagenomeSeq1 methods found a large number of 

significant OTUs. These results seem to be due to their high type I error rate 

as shown in the simulation. Except ZIBSeq, all the methods found the OTU 

also found by ANCOM. Among the  
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Fig. 6. (a) The heatmap and (b) Venn diagram of Colorectal cancer data 
analysis.  
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methods well-preserved type I error rates, CLR Perm identified 83 percent 

(39/47) of the discoveries made by metagenomeSeq2. For a more detailed 

comparison, we used the results of ANCOM, metagenomeSeq2, and CLR 

Perm with the result encompassing 34 OTUs obtained by Baxter et al. The 

results are shown in Figure 6 (b). Through the three methods, we found 25 

OTUs among the 34 OTUs. The list of significant OTUs found through the 

methods preserving type I errors is shown in Figure 7. Figure 7 (a) shows a 

significant taxon found in ANCOM—Porphyromonas—a well-known OTU 

related to colorectal cancer [38-42]. Figure 7 (b) shows the list of significant 

OTUs found only by metagenomeSeq2 and Figure 7 (c) shows the list of 

significant OTUs found only by CLR Perm. Although a detailed analysis 

based sequencing is required to acquire complete taxonomical information, 

most of the genera listed in figure 7 (b) and (c) are frequently mentioned as 

being associated with colorectal cancer [38-42]. In summary, through 

metagenomeSeq2 and CLR Perm, we could find OTUs known to be related 

to CRC from various previous studies. 

We used -log10(p-value) of CRC data to obtain the dendrogram in Figure 

8; except for ANCOM which does not provide p-values. The remaining eight 

methods group well according to their underlying distributions and 

characteristics (zero inflated mixture model,  
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Fig. 7. (a) A significant taxon found in three methods simultaneously (b) 
The list of taxa only found in metagenomeSeq2 . (c) The list of taxa nly found 
in CLR Perm. 



 

31 

 

permutation based method, negative binomial model). The -log10(p-value) of 

metagenomeSeq1 seems to be far from the -log(p-value) of the other methods 

due to its high type I error rate. Based on the simulation results, we can 

identify the highest-power method with the preserving type I error rate for 

each group. First, among the zero-inflated models, we recommend 

metagenomeSeq2. Second, of the two permutation-based models, we 

recommend CLR Perm. Third, although negative-binomial models (edgeR, 

DESeq2) show high type I error rates, we recommend edgeR because edgeR 

shows a better performance than DESeq2 with respect to P(rank), 

P(Controlled p-value) and P(Controlled q-value). Finally, for selecting the 

fewest number of important taxa, ANCOM is recommended due to its high 

P(Uncontrolled q-value).    
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Chapter 5 

 

Discussion 

 
Since 16S rRNA has become suitable for taxonomic identification based on 

NGS [43], microbiome-wide association studies have been performed at an 

accelerated pace for finding the linkage between microbiota/microbiome and 

various diseases. While many DAF finding methods have been developed in 

recent years, it is not easy to choose the most appropriate method for real-

world data analysis due to the differing assumptions of the methods and 

differing characteristics of metagenome data. In our study, we reviewed DAF 

finding methods and compared their performance with respect to type I error 

rates and their powers.  

In order to compare these methods more systematically, we generated 

simulation data based on HMP data. Especially, we investigated the effect of 
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sparsity on type I error and empirical power. Our comparison results showed 

that metagenomeSeq2, CLR Perm and ANCOM preserved the type I errors. 

The power of CLR Perm is highest among the methods preserved type I error; 

metagenomeSeq2 showed a similar power. However, there was a difference 

in the list of significant OTUs discovered by CLR Perm and 

metagenomeSeq2. In conclusion, we recommend using a combination of 

metagenomeSeq2 and CLR Perm for the analysis of metagenome data. 

However, there are some limitations in our comparison study. First, HMP 

data may not reflect the characteristics of the original DAF finding studies 

because they were conducted on only healthy individuals. Second, we only 

investigated the effect of sparsity on the performances of each method. In 

addition to sparsity, the effects of some additional key parameters need to be 

investigated. Third, in our comparison only one taxon was assumed to be a 

causal taxon; it is necessary to consider methods with multiple causal taxa. 

Some methods such as ANCOM can take into account multiple taxa 

simultaneously, while others cannot. 

Finally, Although the prediction model using 34 OTUs showed high AUC 

0.84 in Baxter et al., the high AUC does not mean that 34 OTUs is truly 

associated with colorectal cancer. However, the analysis was performed with 

the expectation that OTUs to predict colorectal cancer with high accuracy 

would be highly associated with colorectal cancer.  
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초   록 

 

오늘 날 많은 연구자들이 인간 유전자 연구에 몰두하였지만 인간의 

유전자만으로는 설명 할 수 없는 부분이 존재함을 인식하게 되었다. 이에 따라, 

인체의 모든 유전자 보다, 수백 수천만 배 많은 제 2 의 유전자라고 불리는 

인체 내 미생물 유전자(메타게놈)에 주목하기 시작하였으며 2008 년 미 국립 

보건원 (National Institutes of Health)의 지원을 받아 휴먼 마이크로바이옴 

프로젝트 (The Human Microbiome Project)가 시작되었다. 휴먼 

마이크로바이옴 프로젝트를 통하여 건강한 사람의 미생물 군집 

(microbiome)이 정의되었고. 이를 바탕으로 다양한 질병과 관련된 

미생물군집이 규명되기 시작하였다. 여전히 밝혀지지 않은 많은 인간의 질병과 

미생물간의 관계에 대한 연구가 지속됨에 따라 미생물과 인간의 다양한 표현형 

(Phenotype)간의 연관성 (Association)을 연구하는 분야가 각광 받기 

시작했다. 이러한 연구의 활성화로 인해 방대한 양의 메타게놈 자료를 다루기 

위한 통계적 방법론에 대한 연구도 더불어 각광 받기 시작했다.  

본 연구에서는 미생물과 인간의 다양한 표현형 간의 관계를 다루는 

기존의 다양한 통계적 분석방법 (Statistical association test)들을 소개하고 

중심화 로그 비 변환(Centered log-ratio transformation)과 로지스틱 

회귀분석 (Logistic regression)을 활용한 통계적 분석 방법을 제시하였다. 

시뮬레이션을 통하여 기존 방법과 새로 제시한 로지스틱 모형에 대한 통계적 

검정력과 제 1종 오류를 비교하였으며. 대장암에 대한 실제 자료를 분석하였다. 

그 결과, 새로 제시한 로지스틱 회귀분석 방법과 기존 방법 

메타게놈식(metagenomeSeq)을 병행하여 사용시 대장암과 관련된 미생물들을 

찾는데 성공적인 결과를 보였다.  

주요어: 통계적 연관성 분석, 메타게놈, 표현형, 미생물  
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