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The support vector machine (SVM) is a powerful tool for binary classification

problem, but it is adversely affected when redundant variables are involved.

Several variants of the SVM have been proposed to rectify this problem. Among

them, the smoothly clipped absolute deviation penalized SVM (SCAD SVM) has

been proven to perform effective variable selection. However, issues regarding non-

convexity and multiple local minimums are evident in the process of optimization.

This paper summarizes the local quadratic approximation (LQA) and the local

linear approximation (LLA) methods, which are primary optimization methods

for the SCAD SVM, and further brings two new approaches. First, the envelope

method is applied in the derivation of each algorithm instead of the usual Taylor

series expansion, which is a more generalized method for the derivation than

the conventional one. Next, in addition to the previously known limitations

of the LQA method and the comparative advantages of the LLA method, we

suggest the insensitivity to initial value of the LLA method and present theories
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about the convergence of the LLA algorithm to the oracle estimator for arbitrary

initial value. Lastly, we verify through a simulation study that the LLA method

gives better results for any initial values than the LQA method.

Keywords: Local approximation algorithm, Smoothly clipped absolute devia-

tion penalty, Support vector machine, Variable selection, Initialization
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Chapter 1

Introduction

The support vector machine (SVM) introduced by Cortes and Vapnik (1995)

is a powerful binary classification tool with high accuracy and great flexibility

and has been successful in many applications. However, one serious drawback

of the standard SVM is that its performance can be adversely affected if many

redundant variables are included because its decision rule utilizes all the variables

without discrimination (Friedman et al., 2001). To deal with this problem, many

variable selection methods have been proposed. Guyon et al. (2002) suggested the

recursive feature elimination algorithm, which successively eliminates variables by

training a sequence of SVM classifiers. Another approach was to achieve variable

selection and prediction simultaneously, by considering the standard SVM in

the regularization framework of hinge loss plus the L2 penalty and replacing

the L2 penalty with another penalty function. Bradley and Mangasarian (1998)

suggested the L1 SVM imposing the absolute value penalty, Wang et al. (2006)

proposed to use the elastic net penalty, and Zou (2007) brought up the adaptive
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lasso penalty.

Zhang et al. (2006) suggested the smoothly clipped absolute deviation (Fan

and Li, 2001) penalized SVM (SCAD SVM) at the first time. The method was

applied to the problem of gene selection and produced good results. Since then,

Park et al. (2012) studied the oracle property of the SCAD SVM when the

number of variables is fixed. It was shown that there exists a local minimizer

of the SCAD SVM objective function, which becomes asymptotically the same

as the oracle estimator. More recently, Zhang et al. (2016) extended the theory

to the situation where the number of variables grows exponentially with the

sample size.

Although the SCAD SVM method has the good oracle property, it is hard

to find the appropriate solution near the oracle estimator because the SCAD

SVM objective function is not convex and might have multiple local minimums.

To remedy this problem, the local approximation algorithms with good initial

values have been proposed. Zhang et al. (2006) introduced the local quadratic

approximation (LQA) algorithm using L2 approximation, and Zhang et al. (2016)

applied the local linear approximation (LLA) algorithm (Zou and Li, 2008) to

the optimization problem and studied its convergence in the moderately high

dimensional setting.

In this paper, we review the LQA and LLA algorithms finding an estimate

of SCAD SVM and bring two new approaches. First, we derive these algorithms

using the envelope method (Polson and Scott, 2016), which is a more generalized

theory for the derivation than the conventional Taylor series expansion. Second,

we study the initialization of the LQA and LLA methods which are to handle

the problem of multiple local minimums. We suggest that, in addition to the

previously known limitations of the LQA method and the comparative advantages
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of the LLA method, the LLA algorithm relatively exhibits insensitivity to initial

value unlike the LQA method whose results differ greatly depending on what

the initial value is. We explain the theoretical basis for this argument based on

the theorems of Zhang et al. (2016) which describes that the LLA algorithm

asymptotically identifies the oracle estimator within a small number of iterations

when the initial value is given as the estimate of the L1 SVM. In this paper, we

modify this theory a little bit and demonstrate that the LLA algorithm finds

the oracle estimator well even if the initial value is given randomly.

This paper is organized as follows. In Chapter 2, we describe the LQA and

LLA algorithms with their derivation and properties. Chapter 3 contains the

theorems to show the insensitivity to initialization of LLA algorithm. Numerical

illustrations via a simulation study are provided in Chapter 4, followed by a

conclusion in Chapter 5. Technical proofs are presented in Appendix A.
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Chapter 2

Local Approximation Algorithms

In this chapter, we derive the LQA and LLA algorithms which were introduced

by Zhang et al. (2006) and Zhang et al. (2016) to solve the SCAD SVM problem,

and examine the good properties of the LLA algorithm over the LQA algorithm.

Given a random sample {(yi, Xi)}n
i=1 for the categorical dependent variable

y ∈ {−1, 1} and the independent variables X = (1, x1, · · · , xp)T , the objective

function of the SCAD SVM to minimize is

ln(β) = 1
n

n∑
i=1

[1 − yiX
T
i βββ]+ +

p∑
j=1

pλ(|βj |) (1)

and the SCAD penalty function is

pλ(|β|) =λ|β|I(0 ≤ |β| < λ) + aλ|β| − (β2 + λ2)/2
a− 1 I(λ ≤ |β| < aλ)

+ (a+ 1)λ2

2 I(|β| ≥ aλ) (2)
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for some a > 2.

We note that only linear SVMs are considered in this paper because linear

classifiers often give better performances than non-linear ones in many appli-

cations on high-dimensional data (Friedman et al., 2001). Since the objective

function is sum of the non-differentiable loss function and the non-convex penalty,

it is not easy to find the minimum value. That is why we need an appropriate

approximation method like the LQA and LLA algorithms.

Although the LQA and LLA algorithms can be derived with the Taylor series

expansion, here we try to explain these in an envelope framework (Polson and

Scott, 2016) that can be more generally applied to non-differentiable functions.

The envelope representation theorem for concave functions discussed in Polson

and Scott (2016) is as follows.

Theorem 1 Suppose that ϕ(x) is a symmetric function and that is concave and

nondecreasing on R+. Then ϕ can be represented in terms of its concave dual

ϕ∗:

ϕ(x) = inf
γ≥0

{γ|x| − ϕ∗(γ)}

where ϕ∗(γ) = infx≥0{γx− ϕ(x)}. Also, the minimization value of γ for fixed x

satisfies γ̂(x) ∈ ∂ϕ(|x|).

Theorem 1 leads to the following Corollary 1.

Corollary 1 Suppose that ϕ(x) is symmetric and ϕ(
√
x) is concave and non-

decreasing on R+. Then

ϕ(|x|) = inf
γ≥0

{γx2 − θ∗(γ)}
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where θ(x) = ϕ(
√
x) on R+. The minimization value of γ for fixed x satisfies

γ̂(x) ∈ ∂θ(x2).

Now we apply the above theorems to derive the LQA and LLA algorithms.

Both are MM (majorize-minimize) algorithms, thus ensure convergence.

Local Quadratic Approximation Algorithm

First, we check the quadratic approximation of the hinge loss function, f(x) :=

(1 − x)+.

Let ϕ(x) := f(x+1)+ 1
2x = 1

2 |x|. Then by Corollary 1, it can be represented

as ϕ(x) = infγ≥0{γx2 − θ∗(γ)}. This implies that

f(x) = inf
γ≥0

{
γ

(
x− 1 − 1

4γ

)2
− 1

16γ − θ∗(γ)
}

where the minimization value of γ for fixed x is γ̂(x) = 1
4|x−1| . Then given a

fixed βββo, the hinge loss function can be approximated as

f(yXTβββ) = (1 − yXTβββ)+

≈ 1
4|yXTβββo − 1|

(
yXTβββ − 1 − 1

4 · 1
4|yXT βββo−1|

)2

+ C(βββo)

= (yXTβββ − 1)2 − 2|yXTβββo − 1|(yXTβββ − 1)
4|yXTβββo − 1|

+ C̃(βββo)

= (yXTβββ − 1)2

4|yXTβββo − 1|
+ 1 − yXTβββ

2 + C̃(βββo)

= (XTβββ − y)2

4|XTβββo − y|
+ 1 − yXTβββ

2 + C̃(βββo).
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Also, the SCAD penalty function pλ(|β|) (2) satisfies the conditions of ϕ(x)

in Corollary 1, so it can be represented as

pλ(|β|) = inf
γ≥0

{γβ2 − θ∗(γ)}

where θ(β) = pλ(
√
β) and γ̂(β) = θ′(β2) = p′

λ(|β|)
2|β| . Therefore, given a fixed βo,

the SCAD penalty function can be approximated as

pλ(|β|) ≈ p′
λ(|βo|)
2|βo|

· β2 + C(βo).

Accordingly, the objective function of the SCAD SVM (1) can be approxi-

mated by the quadratic function as

ln(β) = 1
n

n∑
i=1

[1 − yiX
T
i βββ]+ +

p∑
j=1

pλ(|βj |)

≈ 1
n

n∑
i=1

{
(XT

i βββ − yi)2

4|XT
i βββo − yi|

+ 1 − yiX
T
i βββ

2

}
+

p∑
j=1

{
p′

λ(|βoj |)
2|βoj |

· β2
j

}
+ C(βββo).

The resulting local quadratic approximation algorithm is as follows: one

starts with an initial value βββ(0) and at each step t ≥ 0, repeatedly solves

βββ(t+1) = arg min
βββ

[
1
n

n∑
i=1

{
(XT

i βββ − yi)2

4|XT
i βββ

(t) − yi|
+ 1 − yiX

T
i βββ

2

}
+

p∑
j=1

{
p′

λ(|β(t)
j |)

2|β(t)
j |

·β2
j

}]
.

To avoid numerical instability, it is suggested that if XT
i βββ

(t) − yi ≈ 0, one

replace it with sufficiently small η (Zhang et al., 2006), and if β(t)
j ≈ 0, say

|β(t)
j | < ε0 (a prespecified value), then one set β(t)

j = 0 and delete the jth

component of X from the iteration (Fan and Li, 2001). Zou and Li (2008)
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discussed the consequent weakness of the LQA algorithm. First, the elimination

process leads to a drawback of backward stepwise variable selection: if a variable

is deleted at any step, it is necessarily be excluded from the final selected

model. Second, one has to choose η and ε0, which becomes an additional tuning

parameter. This sometimes can be difficult, and the size of ε0 potentially affects

the degree of sparsity as well as the speed of convergence. Finally, the initial

value βββ(0) must be well-defined. Zhang et al. (2006) empirically suggested the

result of the standard SVM as the initial value.

Local Linear Approximation Algorithm

The derivation of the LLA algorithm is simpler than that of the LQA algorithm.

Since the SCAD penalty function pλ(|β|) (2) satisfies the conditions of ϕ(x) in

Theorem 1, it can be represented as

pλ(|β|) = inf
γ≥0

{γ|β| − p∗
λ(γ)}

where the minimization value of γ for fixed β is γ̂(β) = p′
λ(|β|). Therefore, given

a fixed βo, the SCAD penalty function can be approximated as

pλ(|β|) ≈ p′
λ(|βo|)|β| + C(βo).

Accordingly, the objective function of the SCAD SVM (1) can be approxi-
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mated by the linear function as

ln(β) = 1
n

n∑
i=1

[1 − yiX
T
i βββ]+ +

p∑
j=1

pλ(|βj |)

≈ 1
n

n∑
i=1

[1 − yiX
T
i βββ]+ +

p∑
j=1

p′
λ(|βoj |)|βj | + C(βββo).

Therefore, the resulting local linear approximation algorithm is as follows:

one starts with an initial value βββ(0) and at each step t ≥ 0, repeatedly solves

βββ(t+1) = arg min
βββ

[
1
n

n∑
i=1

[1 − yiX
T
i βββ]+ +

p∑
j=1

p′
λ(|β(t)

j |)|βj |
]
.

It is suggested that one take p′
λ(|β(t)

j |)| = λ when β
(t)
j = 0.

The above convex optimization problem can be easily recast as a linear

programming problem (Zhang et al., 2016)

(ξξξ(t+1), ννν(t+1),βββ(t+1)) = arg min
ξξξ,ννν,βββ

[
1
n

n∑
i=1

ξi +
p∑

j=1
p′

λ(|β(t)
j |)νj

]

subject to

ξi ≥ 0, i = 1, 2, · · · , n,

ξi ≥ 1 − yiX
T
i βββ, i = 1, 2, · · · , n,

νj ≥ βj , νj ≥ −βj , j = 1, 2, · · · , p.

The LLA algorithm has many good properties over the LQA algorithm (Zou

and Li, 2008). First, unlike the LQA algorithm, one does not have to delete

any small coefficient or introduce an additional tuning parameter in order to
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avoid numerical instability. Second, the LLA is the best convex majorization of

pλ(|β|), which means that for any convex majorization function ψ(·) of pλ(|β|)

at β0, the LLA approximation function ψ∗(·) at β0 satisfies ψ(β) ≥ ψ∗(β) for

all β.

Moreover, the LLA algorithm is particularly good at solving the SCAD

SVM problem since it allows the minimization problem at each step to be a

simple linear programming problem without any approximation of the hinge

loss function. In addition, the LLA algorithm is relatively insensitive to initial

value as compared with the LQA algorithm. This is discussed in detail in the

next chapter.
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Chapter 3

Insensitivity to Initialization of
the LLA Algorithm

Using the two approximation methods discussed in the previous chapter, we can

handle the non-convexity problem of the SCAD SVM objective function. However,

since the objective function has multiple local minimums, the algorithms can

converge to an undesired value if the initial value is poor. Therefore, previous

studies have empirically and theoretically suggested the results of the standard

SVM or the L1 SVM as the initial values of the approximation algorithms

(Zhang et al., 2006; Zhang et al., 2016).

In this chapter, we show that the LLA algorithm is relatively insensitive to

initial value compared to the LQA algorithm, that is, it can converge to a desired

value even if the initial value is given randomly. We explain the theoretical basis

for this phenomenon based on the theorems of Zhang et al. (2016) who explained

that the LLA algorithm asymptotically identifies the oracle estimator within

a small number of iterations when the initial value is given as the estimate of
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the L1 SVM. With slight modifications, we can get the similar result at random

initial values that we want to derive in this paper.

We begin with the basic set-up and notation. The population version of

ln(β) (1) without the penalty term is

L(βββ) = E{(1 − yXTβββ)+}.

Let βββ∗ denote the true parameter value which satisfies

βββ∗ = arg min
βββ

L(βββ).

We assume that βββ∗ is sparse and {1 ≤ j ≤ q;β∗
j ̸= 0} is the index set of the

non-zero coefficients of βββ∗. Without loss of generality, we let the last p − q

components of βββ∗ are 0, that is βββ∗ = (βββ∗T
1 ,000T )T . Correspondingly, we write

XT = (ZT , RT ) where Z = (1, x1, · · · , xq)T and R = (xq+1, · · · , xp)T . Also, we

define

S(βββ) = −E{I(1 − yXTβββ ≥ 0)yX}

and

H(βββ) = E{δ(1 − yXTβββ)XXT }

where I(·) and δ(·) denotes the indicator function and the Dirac delta function.

If well defined, it can be shown that S(βββ) and H(βββ) are considered to be the

gradient vector and Hessian matrix of L(βββ), respectively (Koo et al., 2008).

Finally, the oracle estimator is defined as β̂ββ = (β̂ββT
1 ,000T )T where

β̂ββ1 = arg min
βββ1

[
1
n

n∑
i=1

(1 − yiZ
T
i βββ1)+

]
.
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We note that non-uniqueness of the above minimizer is not essential here. When

the minimizer is not unique, the theoretical results still hold for any particular

minimizer (Zhang et al., 2016).

Also, we assume the following conditions.

Condition 1. The conditional densities of X given y = 1 and y = −1, denoted

by f and g in this chapter, are continuous and have finite second moments.
Condition 2. There exists B(X0, δ0), a ball centered at X0 with radius δ0 > 0

such that f(X) and g(X) are bounded away from zero on B(X0, δ0).
Condition 3. βββ∗

1 is not zero.
Condition 4. H(βββ) is positive-definite around βββ∗.

Condition 1 ensures that H(βββ) is well-defined and continuous in βββ. Condition

2 guarantees that the classification problem is non-separable, which implies the

oracle estimator is unique. The conditions ensure that S(βββ) and H(βββ) are a

well-defined gradient vector and Hessian matrix. For more detailed discussions,

see Koo et al. (2008).

What we want to show is that under appropriate assumption, with a high

probability, the LLA algorithm converges to the oracle estimator β̂ββ only three

times for any initial value. Zhang et al. (2016) considered the case where both n

and p increases, but in this paper, we briefly assume the case where n increases

with fixed p.

Under the above conditions, the following lemmas can be shown.

Lemma 1 Consider the objective function of the SVM with the weighted L1

penalty which is

l̃n(βββ) = 1
n

n∑
i=1

(1 − yiX
T
i βββ)+ + ∥Dnβββ∥1

13



where Dn is any p× p diagonal matrix whose elements are in {p′
λn

(β);β ∈ R+}.

If λn = o(n− 1
2 ), then β̂ββ

L1 = arg min
βββ

l̃n(βββ) satisfies that

P (|β̂L1
j − β∗

j | > λn for some 0 ≤ j ≤ p) → 0

as n → ∞.

Lemma 2 For the true parameter βββ∗ = (βββ∗T
1 ,000T )T , the oracle estimator β̂ββ =

(β̂ββT
1 ,000T )T satisfies

∥β̂ββ1 − βββ∗
1∥ = Op(n− 1

2 ).

Lemma 3 Consider the subgradient of the hinge loss term of ln(β) (1) which

is the collection of vectors sss(βββ) = (s0(βββ), · · · , sp(βββ))T where

sj(βββ) =
{

− 1
n

n∑
i=1

I(1 − yiX
T
i βββ ≥ 0)yixij − 1

n

n∑
i=1

yixijvi ;

− 1 ≤ vi ≤ 0 if yiX
T
i βββ = 1, and vi = 0 otherwise

}
.

As n → ∞, β̂ββ satisfies

P (000 ∈ sss(β̂ββ)) → 1.

Also, under Conditions 1-4, the following theorem which indicates the good

convergence of the LLA algorithm for any initial value can be shown.
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Theorem 2 Consider the following events:

Fn1 = {|β̂L1
j − β∗

j | > λn for some 0 ≤ j ≤ p};

Fn2 = {|β∗
j | < (a+ 1)λn for some 0 ≤ j ≤ q};

Fn3 = {All s ∈ sj(β̂ββ) satisfy that

|s| > λn for some q + 1 ≤ j ≤ p or s ̸= 0 for some 0 ≤ j ≤ q};

Fn4 = {|β̂j | < aλn for some 0 ≤ j ≤ q}.

Denote the corresponding probability as Pni = P (Fni), i = 1, 2, 3, 4. Then, with

probability at least 1 − Pn1 − Pn2 − Pn3 − Pn4, the LLA algorithm with any

random initial value finds the oracle estimator β̂ββ after three iterations.

Theorem 2 shows that when Pni’s are small, the LLA algorithm converges

to the oracle estimator regardless of initial value with a high probability. We

expect Pn1 to be small when β̂ββ
L1 is sufficiently close to the true parameter value

βββ∗. Also, Pn2 and Pn4 can be small when the non-zero elements of βββ∗ and the

corresponding elements of the oracle estimator β̂ββ have sufficiently large values.

Pn3 is small when the subgradient of the hinge loss term at the oracle estimator

has a value sufficiently close to 0.

Favorably, the previous Lemma 1, 2 and 3 support the convergence of Pni’s

to 0 under appropriate conditions. First, Lemma 1 implies that if λn = o(n− 1
2 ),

Pn1 converges to 0 as n → ∞. Also, since β∗
j ’s are fixed and non-zero values by

assumption, clearly Pn2 converges to 0 as n → ∞ if λn decreases to 0. In addition,

Lemma 3 ensures that Pn3 converges to 0 as n → ∞. Finally, if λn = o(n− 1
2 ),
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Pn4 converges to 0 as n → ∞ since

Pn4 ≤ P (|β̂j | < aλn for some 0 ≤ j ≤ q, |β̂j − β∗
j | ≤ λn for all 0 ≤ j ≤ q)

+ P (|β̂j − β∗
j | > λn for some 0 ≤ j ≤ q)

≤ P (|β∗
j | < (a+ 1)λn for some 0 ≤ j ≤ q)

+ P (|β̂j − β∗
j | > λn for some 0 ≤ j ≤ q) −→ 0 as n → ∞.

The convergence of the first term is supported by the fact that Pn2 converges to

0, and the convergence of the second term is guaranteed by Lemma 2.

In sum, Theorem 2 supports that with a certain probability, the LLA

algorithm converges to a desired oracle estimator within 3 times regardless of

initial value. In addition, Lemma 1, 2 and 3 uphold that the probability is

close to 1 as n increases and λ becomes smaller at a speed faster than n− 1
2 . In

brief, these theories justify the LLA algorithm’s insensitivity to initial value for

large n and small λ. In the next chapter, we check this phenomenon through a

simulation study.
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Chapter 4

Simulation Study

In this chapter, we look through the results of a simulation study to see if the

theories in the previous chapter are well applied to data. The arguments to

be checked are as follows: First, the LLA algorithm is less sensitive to initial

value than the LQA algorithm. Second, as Theorem 2, the LLA algorithm gives

good results regardless of initial value as n increases and λ becomes smaller. In

this paper, we consider the following data generation process with reference to

Zhang et al. (2006):

p = 200, q = 2, P (y = 1) = P (y = −1) = 0.5,

x1 = yN(3, 1) and x2 = yN(0, 1) with probability 0.7,

x1 = yN(0, 1) and x2 = yN(3, 1) with probability 0.3,

xj are independently generated from N(0, 20) for j = 3, · · · , 200.
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We dealt with three settings for the sample size: n = 25, 50, 100. For each case,

we run the algorithms on the set of λ of {e−7, e−4, e−1, e2}. A random value

between −100 and 100, the result from the standard SVM, and the result from

the L1 SVM are considered as the initial values. We use a = 3.7 for the SCAD

penalty.

After estimating the coefficients by the LQA and LLA algorithms, three

indicators were calculated from the obtained estimates. ‘Signal’ is the number

of selected relevant variables and ‘Noise’ is the number of selected irrelevant

variables. That is, signal has a maximum value of q = 2 and is better as close to

q = 2, and noise has a maximum value of p − q = 198, and is better as close

to 0. Finally, a prediction error (= F P +F N
T P +T N+F P +F N ) was calculated for a test

set with n = 100. A total of 30 simulations were performed to calculate the

mean and variance of each indicator. Additionally, for each signal and noise, we

calculated the difference between the maximum value and the minimum value

among the mean values obtained from the three types of initial values, which is

denoted by ‘Max difference’.

Table 4.1, 4.2 and 4.3 show the results of signal, noise, and prediction error,

respectively. Numbers outside the parentheses in the tables indicate the mean,

and numbers in parentheses indicate the standard deviation. The results from λ

giving the best results at each initial value are shown in bold.

First, we examine the argument that the LLA algorithm is less sensitive

to initial value than the LQA algorithm. In the case of signal in Table 4.1, the

values of max difference of the LLA algorithm is smaller than those of the LQA

algorithm in all cases except for one case where n = 50 and λ = e−4. In the case

of noise in Table 4.2, the LLA algorithm has a smaller max difference value than

the LQA algorithm in all cases. This shows that the initial values in the LLA
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LLA LQA

λ e−7 e−4 e−1 e2 e−7 e−4 e−1 e2

n=25

random
0.100

(0.305)

0.100

(0.305)

0.800

(0.484)

0.000

(0.000)

2.000

(0.000)

2.000

(0.000)

1.967

(0.183)

0.867

(0.571)

l2
0.167

(0.461)

1.200

(0.484)

0.800

(0.484)

0.000

(0.000)

2.000

(0.000)

1.567

(0.568)

0.800

(0.484)

0.000

(0.000)

l1
0.500

(0.682)

0.567

(0.728)

0.800

(0.484)

0.000

(0.000)

0.133

(0.346)

0.167

(0.379)

0.433

(0.626)

1.100

(0.481)

max difference 0.400 1.100 0.000 0.000 1.867 1.833 1.534 1.100

n=50

random
0.333

(0.606)

0.367

(0.615)

1.800

(0.407)

0.033

(0.183)

2.000

(0.000)

2.000

(0.000)

1.933

(0.254)

1.333

(0.758)

l2
0.500

(0.630)

1.833

(0.379)

1.800

(0.407)

0.000

(0.000)

2.000

(0.000)

2.000

(0.000)

1.800

(0.407)

0.000

(0.000)

l1
1.667

(0.479)

1.900

(0.305)

1.800

(0.407)

0.000

(0.000)

0.633

(0.615)

0.700

(0.466)

1.067

(0.365)

1.200

(0.407)

max difference 1.334 1.533 0.000 0.033 1.367 1.300 0.866 1.333

n=100

random
1.500

(0.572)

1.500

(0.572)

2.000

(0.000)

0.067

(0.254)

2.000

(0.000)

2.000

(0.000)

1.900

(0.305)

1.333

(0.802)

l2
1.500

(0.572)

2.000

(0.000)

2.000

(0.000)

0.000

(0.000)

2.000

(0.000)

2.000

(0.000)

2.000

(0.000)

0.000

(0.000)

l1
2.000

(0.000)

2.000

(0.000)

2.000

(0.000)

0.000

(0.000)

1.033

(0.183)

1.067

(0.254)

1.100

(0.305)

1.167

(0.379)

max difference 0.500 0.500 0.000 0.067 0.967 0.933 0.900 1.333

Table 4.1 Mean and Standard Deviation of Signal

algorithm has less effect on the results. Also, in the case of prediction error in

Table 4.3, the LQA algorithm has big prediction error values of 0.3 or more for

random initial value and the L1 SVM initial value, in all cases of n and λ. Only

when the initial value is given as a result of the standard SVM, it has small

prediction error values less than 0.2 in the appropriate λ. On the other hand,

the LLA algorithm has prediction error values less than 0.2 for all initial values

in the appropriate λ when n is 50 and 100. These results also show that the

LLA algorithm is more insensitive to the initial value than the LQA algorithm.

Next, we examine the argument that as n increases and λ becomes smaller,

the LLA algorithm gives good results regardless of initial value. In the case of

signal in Table 4.1, it is shown that no λ gives good results for all three initial
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LLA LQA

λ e−7 e−4 e−1 e2 e−7 e−4 e−1 e2

n=25

random
15.367

(3.774)

8.733

(2.434)

19.633

(1.732)

0.700

(1.622)

198.000

(0.000)

197.567

(0.679)

184.967

(3.479)

41.400

(13.048)

l2
15.133

(4.125)

1.333

(1.093)

19.633

(1.732)

0.200

(1.095)

167.167

(5.059)

6.500

(2.418)

19.800

(2.497)

0.000

(0.000)

l1
9.900

(4.656)

3.100

(2.090)

19.633

(1.732)

0.000

(0.000)

6.867

(2.556)

7.133

(2.113)

9.800

(3.478)

34.000

(3.384)

max difference 5.467 7.400 0.000 0.700 191.133 191.067 175.167 41.400

n=50

random
26.633

(7.411)

13.933

(5.085)

32.133

(2.623)

0.300

(1.208)

197.933

(0.254)

190.900

(35.875)

188.267

(3.118)

58.233

(18.860)

l2
26.167

(7.226)

1.167

(1.341)

31.933

(2.778)

0.000

(0.000)

175.700

(4.380)

8.167

(2.574)

30.867

(3.693)

0.000

(0.000)

l1
13.100

(6.294)

0.600

(1.163)

31.933

(2.778)

0.000

(0.000)

10.033

(4.853)

10.800

(4.923)

15.400

(4.523)

52.800

(4.180)

max difference 13.533 13.333 0.200 0.300 187.900 182.733 172.867 58.233

n=100

random
42.667

(15.932)

9.733

(10.395)

28.967

(4.367)

4.467

(17.071)

198.000

(0.000)

197.600

(0.563)

190.700

(3.354)

82.467

(10.592)

l2
36.400

(13.637)

1.800

(1.126)

28.967

(4.367)

0.000

(0.000)

178.833

(3.228)

9.100

(4.498)

27.700

(4.921)

0.000

(0.000)

l1
16.767

(6.420)

0.667

(0.922)

28.967

(4.367)

0.000

(0.000)

12.567

(6.345)

13.400

(6.775)

15.800

(5.182)

59.633

(6.100)

max difference 25.900 9.066 0.000 4.467 185.433 188.500 174.900 82.467

Table 4.2 Mean and Standard Deviation of Noise

values when n = 25, and that λ = e−1 gives good results for all initial values

when n = 50. Also, λ’s smaller than e−1 give good signal values close to 2 for all

initial values when n = 100. In the case of noise in Table 4.2, the overall result

is good only if λ is e−4 and e2. Combining this with the results of signal, we can

ensure that the λ value of e−4 is best for all n cases, and the difference among

the results of three initial values becomes smaller as n increases at this value of

λ. This implies that as n increases, the insensitivity of the LLA algorithm to

initial value increases as well. Finally, Table 4.3 shows that the LLA algorithm

does not give uniformly good results for initial values in all cases of λ when

n = 25, and that it gives uniformly good results for initial values only when λ

is e−1 for n = 50. Also, the algorithm gives uniformly good results for initial
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LLA LQA

λ e−7 e−4 e−1 e2 e−7 e−4 e−1 e2

n=25

random
0.493

(0.082)

0.499

(0.072)

0.374

(0.120)

0.500

(0.000)

0.463

(0.055)

0.464

(0.056)

0.463

(0.051)

0.465

(0.053)

l2
0.482

(0.082)

0.187

(0.126)

0.374

(0.120)

0.500

(0.000)

0.465

(0.050)

0.200

(0.111)

0.374

(0.115)

0.500

(0.000)

l1
0.402

(0.147)

0.350

(0.197)

0.374

(0.120)

0.500

(0.000)

0.480

(0.078)

0.469

(0.078)

0.452

(0.083)

0.451

(0.071)

n=50

random
0.451

(0.126)

0.434

(0.148)

0.168

(0.073)

0.500

(0.000)

0.452

(0.049)

0.438

(0.092)

0.456

(0.058)

0.457

(0.057)

l2
0.429

(0.132)

0.072

(0.082)

0.164

(0.077)

0.500

(0.000)

0.442

(0.051)

0.116

(0.060)

0.163

(0.076)

0.500

(0.000)

l1
0.155

(0.121)

0.055

(0.076)

0.164

(0.077)

0.500

(0.000)

0.480

(0.058)

0.440

(0.077)

0.375

(0.055)

0.427

(0.052)

n=100

random
0.253

(0.133)

0.162

(0.157)

0.042

(0.018)

0.495

(0.022)

0.428

(0.034)

0.428

(0.034)

0.429

(0.039)

0.441

(0.061)

l2
0.268

(0.149)

0.036

(0.026)

0.042

(0.018)

0.500

(0.000)

0.404

(0.045)

0.085

(0.047)

0.044

(0.020)

0.500

(0.000)

l1
0.061

(0.027)

0.028

(0.013)

0.042

(0.018)

0.500

(0.000)

0.417

(0.074)

0.392

(0.070)

0.342

(0.039)

0.366

(0.046)

Table 4.3 Mean and Standard Deviation of Prediction Error

values even when λ is smaller than e−1 for n = 100. In sum, it can be seen that

as n increases, the LLA algorithm becomes insensitive to initial values, and the

results get better for small λ.
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Chapter 5

Conclusion

In this paper, we have summarized two local approximation methods for solving

the optimization problem of SCAD SVM, which are the LQA and LLA algorithms.

First, although the LQA algorithm gave good results in some studies (Zhang et al.,

2006), it has the disadvantages of additional tuning parameters, a characteristic

of backward selection, the need for approximation of both loss and penalty

functions, and sensitivity to initial value. The LLA algorithm, on the other

hand, is better than the LQA algorithm because it does not need to specify

additional tuning parameters, is not a kind of backward selection, does not

need approximation of hinge loss function, and is relatively insensitive to initial

value. We have further supported the fact that the LLA algorithm is relatively

insensitive to initial value through theorems and a simulation study. In conclusion,

the LLA algorithm is more recommended than the LQA algorithm.

The convergence rate of the LLA algorithm was, however, slower than the

LQA algorithm in the simulation, and it becomes much slower as the sample
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size increases. In this regard, we might be able to make the LLA algorithm

faster by applying a parallel processing method to solve its linear programming

problem. Another thing we can study further is to check if the insensitivity

theory for initial values can be applied as well in the setting where p is not fixed

and increases as n increases. Perhaps more assumptions and conditions would

be needed.
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Appendix A

Proofs

Proof of Theorem 1

Consider ϕ∗(γ) = infx≥0{γx−ϕ(x)} when γ < 0. If x = ∞, then γx−ϕ(x) = −∞.

Therefore, when x ∈ R+,

ϕ(x) = ϕ∗∗(x) := inf
γ∈R

{γx− ϕ∗(γ)} = inf
γ≥0

{γx− ϕ∗(γ)}.

Since ϕ(x) is symmetric, ϕ(x) = infγ≥0{γ|x| − ϕ∗(γ)}.

Also, λ̂ = arg minλ≥0{λ|x| − ϕ∗(λ)} ⇔ λ̂|x| − ϕ∗(λ̂) = ϕ(|x|) (= ϕ(x))

⇔ λ̂|x| − ϕ(|x|) = infx≥0{λ̂x− ϕ(x)} ⇔ λ̂|x| − ϕ(|x|) ≤ λ̂y − ϕ(y) for ∀y ≥ 0

⇔ ϕ(y) ≤ ϕ(|x|) + λ̂(y − |x|) for ∀y ≥ 0 ⇔ λ̂ ∈ ∂ϕ(|x|).

The proof of Lemma 1 relies on the following Lemma 4.

Lemma 4 Let fn(βββ) = 1
n

∑n
i=1(1 − yiX

T
i βββ)+ and Λn(θθθ) = n{fn(βββ∗ + 1√

n
θθθ) −
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fn(βββ∗)}. Then, for ∀θθθ ∈ Rp and some An = Op(1),

Λn(θθθ) = 1
2θ
θθTH(βββ∗)θθθ +An.

Proof of Lemma 4

First, by the Taylor series expansion of L(βββ) = E{(1 − yXTβββ)+} around βββ∗,

E[Λn(θθθ)] = 1
2θ
θθTH(β̃ββ)θθθ (4a)

where β̃ββ = βββ∗ + t√
n
θθθ for some 0 ≤ t ≤ 1.

Now, we want to show that

1
2θ
θθTH(β̃ββ)θθθ = 1

2θ
θθTH(βββ∗)θθθ + o(1). (4b)

Define Djk(ααα) = H(βββ∗ + ααα)jk − H(βββ∗)jk for 0 ≤ j, k ≤ p. Since H(βββ) is

continuous by Condition 1, for ∀ε > 0 and ∀j, k ∈ {0, · · · , p},

∃δ > 0 s.t. ∥ααα∥ < δ ⇒ |Djk(ααα)| < ε.

Then, for sufficiently large n satisfying ∥ t√
n
θθθ∥ < δ,

|θθθT {H(β̃ββ) −H(βββ∗)}θθθ| ≤
∑
j,k

|θj ||θk|
∣∣∣Djk

(
t√
n
θθθ

)∣∣∣ < ε
∑
j,k

|θj ||θk| ≤ 2ε∥θθθ∥2.

Therefore, (4b) holds.

Next, define Wn and Rin(θθθ) as

Wn = −
n∑

i=1
I(yiX

T
i βββ

∗ ≤ 1)yiXi
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and

Rin(θθθ) =
[
1−yiX

T
i

(
βββ∗ + 1√

n
θθθ

)]
+

− [1−yiX
T
i βββ

∗]+ + 1√
n
I(yiX

T
i βββ

∗ ≤ 1)yiX
T
i θθθ.

Then,

Λn(θθθ) =
n∑

i=1
Rin(θθθ) + 1√

n
W T

n θθθ

= E[Λn(θθθ)] + 1√
n
W T

n θθθ +
n∑

i=1
{Rin(θθθ) − E[Rin(θθθ)]} (4c)

since E[I(yiX
T
i βββ

∗ ≤ 1)yiXi] = −S(βββ∗) = 0.

Now, we want to show that

n∑
i=1

{Rin(θθθ) − E[Rin(θθθ)]} = op(1). (4d)

Define

R = [1 − z]+ − [1 − a]+ + I(a ≤ 1)(z − a).

If a > 1, R = (1 − z)I(z ≤ 1), and otherwise, R = (z − 1)I(z > 1). Hence,

R = (1 − z)I(z ≤ 1, a > 1) + (z − 1)I(z > 1, a ≤ 1)

≤ |z − a|I(z ≤ 1, a > 1) + |z − a|I(z > 1, a ≤ 1)

≤ |z − a|I(|1 − a| ≤ |z − a|).

Therefore,

|Rin(θθθ)| ≤ 1√
n

|yiX
T
i θθθ|I

(
|1 − yiX

T
i βββ

∗| ≤ 1√
n

|yiX
T
i θθθ|

)
= 1√

n
|XT

i θθθ|I
(

|1 − yiX
T
i βββ

∗| ≤ 1√
n

|XT
i θθθ|

)
.
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Now, for ∀ε > 0,

n∑
i=1

E
{(
Rin(θθθ) − E[Rin(θθθ)]

)2}
≤

n∑
i=1

E{[Rin(θθθ)]2}

≤
n∑

i=1
E
{ 1
n

∥Xi∥2∥θθθ∥2I

(
|1 − yiX

T
i βββ

∗| ≤ 1√
n

∥Xi∥∥θθθ∥
)}

≤
n∑

i=1

∥θθθ∥2

n

{
E∥Xi∥2I(∥Xi∥ > C)

+ E∥Xi∥2I

(
|1 − yiX

T
i βββ

∗| ≤ 1√
n

∥Xi∥∥θθθ∥, ∥Xi∥ ≤ C

)}
≤

n∑
i=1

∥θθθ∥2

n

{
E∥Xi∥2I(∥Xi∥ > C) + C2P

(
|1 − yiX

T
i βββ

∗| ≤ C√
n

∥θθθ∥
)}

≤ ∥θθθ∥2

2 ε+ 1 − ∥θθθ∥2

2 ε

for sufficiently large n. The second inequality comes from the Cauchy–Schwarz

inequality, and the fifth inequality is supported by the fact that E∥X∥2 < ∞,

which implies that there exists C > 0 such that E∥X∥2I(∥X∥ > C) < ε
2 for

∀ε > 0, and the fact that the distribution of X is not degenerate, which implies

that lim
t→0

P (|1 − yiX
T
i βββ

∗| ≤ t) = 0. This proves that

n∑
i=1

E
{(
Rin(θθθ) − E[Rin(θθθ)]

)2}
−→ 0

as n → 0. Therefore, (4d) holds.

Finally, note that E(W1) = −S(βββ∗) = 0 and G(βββ∗) := E(W1W
T
1 ) =

E{I(y1X
T
1 βββ

∗ ≤ 1)X1X
T
1 }. By the central limit theorem, 1√

n
Wn

d−→ N(0, G(βββ∗)).

Thus,
1√
n
W T

n θθθ = Op(1). (4e)

Combining (4a), (4b), (4c), (4d) and (4e), we have the desired result.
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Proof of Lemma 1

Consider ∥θθθ∥ = ∆ for any sufficiently large ∆. Note that

∣∣∣∣∥∥∥∥Dn

(
βββ∗ + 1√

n
θθθ

)∥∥∥∥
1

− ∥Dnβββ
∗∥1

∣∣∣∣ ≤
∥∥∥∥ 1√

n
Dnθθθ

∥∥∥∥
1

= 1√
n

p∑
j=1

|djnθj | ≤ 1√
n
λn

p∑
j=1

|θj | = 1√
n
λn∥θθθ∥1

where djn’s are diagonal elements of Dn. Since ∥θθθ∥1 is bounded, there exists

C > 0 such that

n

∣∣∣∣∥∥∥∥Dn

(
βββ∗ + 1√

n
θθθ

)∥∥∥∥
1

− ∥Dnβββ
∗∥1

∣∣∣∣ ≤
√
nλnC

and it converges to 0 as n → 0 since λn = o(n− 1
2 ). Therefore,

n

{
l̃n

(
βββ∗ + 1√

n
θθθ

)
− l̃n(βββ∗)

}
= Λn(θθθ) + n

{∥∥∥∥Dn

(
βββ∗ + 1√

n
θθθ

)∥∥∥∥
1

− ∥Dnβββ
∗∥1

}
= Λn(θθθ) + o(1).

Then by Lemma 4, n
{
l̃n
(
βββ∗ + 1√

n
θθθ
)

− l̃n(βββ∗)
}

= 1
2θθθ

TH(βββ∗)θθθ + An for some

An = Op(1).

Note that for ∀ε > 0, ∃M > 0 such that P (|An| < M) ≥ 1−ε for sufficiently

large n. Also, since H(βββ∗) is positive definite by Condition 3, there exists a

sufficiently large ∆′ such that 1
2θθθ

TH(βββ∗)θθθ > M for ∀θθθ satisfying ∥θθθ∥ = ∆′. Then,

for ∀ε > 0 and ∀θθθ satisfying ∥θθθ∥ = ∆′,

P

{
An + 1

2θ
θθTH(βββ∗)θθθ > 0

}
≥ 1 − ε

⇒ P

{
l̃n

(
βββ∗ + 1√

n
θθθ

)
− l̃n(βββ∗) > 0

}
≥ 1 − ε
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for sufficiently large n. Therefore, for ∀ε > 0,

P

{
inf

∥θθθ∥=∆′
l̃n

(
βββ∗ + 1√

n
θθθ

)
> l̃n(βββ∗)

}
≥ 1 − ε

for sufficiently large n. Since l̃n(βββ) is convex, the minimizer β̂ββ
L1 = arg min

βββ
l̃n(βββ)

satisfies that for ∀ε > 0,

P

(
∥β̂ββ

L1 − βββ∗∥ ≤ ∆′
√
n

)
≥ 1 − ε

for sufficiently large n. Then, since λn = o(n− 1
2 ), for ∀ε > 0,

P

(
∥β̂ββ

L1 − βββ∗∥ > λn

)
< ε

which implies that

P (|β̂L1
j − β∗

j | > λn for some 0 ≤ j ≤ p) < ε

for sufficiently large n.

Proof of Lemma 2

Since βββ∗ = (βββ∗T
1 ,000T )T and βββ∗ = arg min

βββ
L(βββ) for L(βββ) = E{(1 − yXTβββ)+},

βββ∗
1 = arg min

βββ1

E{(1 − yZTβββ1)+}.

Let f ′
n(βββ1) = 1

n

∑n
i=1(1 − yiZ

T
i βββ1)+. By replacing X and βββ to Z and βββ1, we can

derive the similar result to Lemma 1 and 4, that is, for ∀ε > 0,

P

{
inf

∥θθθ∥=∆′
f ′

n

(
βββ∗

1 + 1√
n
θθθ

)
> f ′

n(βββ∗
1)
}

≥ 1 − ε
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for sufficiently large n. Since f ′
n(βββ1) is convex and the oracle estimator is unique,

β̂ββ1 = arg min
βββ1

f ′
n(βββ1) satisfies that for ∀ε > 0,

P

(
∥β̂ββ1 − βββ∗

1∥ ≤ ∆′
√
n

)
≥ 1 − ε

for sufficiently large n. Thus, we have the desired result.

Proof of Lemma 3

Let β̃ββ = arg min
βββ

[
1
n

∑n
i=1(1 − yiX

T
i βββ)+

]
. Similarly to Lemma 2, it can be shown

that ∥β̃ββ − βββ∗∥ = Op(n− 1
2 ). Combining with the result of Lemma 2,

∥β̂ββ − β̃ββ∥ = Op(n− 1
2 ).

Also, note that P (000 ∈ sss(β̃ββ)) = 1.

Now, consider P (0 /∈ sj(β̂ββ)) for any j = 0, · · · , p. We want to show that

P (0 /∈ sj(β̂ββ)) → 0 as n → ∞.

P (0 /∈ sj(β̂ββ)) = P{0 /∈ sj(β̂ββ), (1 − yiX
T
i β̂ββ)(1 − yiX

T
i β̃ββ) > 0 for ∀i = 1, · · · , n}

+ P{0 /∈ sj(β̂ββ), (1 − yiX
T
i β̂ββ)(1 − yiX

T
i β̃ββ) ≤ 0 for some i = 1, · · · , n}

≤ P (0 /∈ sj(β̃ββ)) + P (|yiX
T
i (β̂ββ − β̃ββ)| > η) for some η and i

≤ 0 + P (∥Xi∥∥β̂ββ − β̃ββ∥ > η)

The second inequality holds because of two facts that sj(β̂ββ) = sj(β̃ββ) when

(1−yiX
T
i β̂ββ)(1−yiX

T
i β̃ββ) > 0 for ∀i = 1, · · · , n, and that if 0 /∈ sj(β̂ββ), 1−yiX

T
i β̂ββ ≠

0 for some i = 1, · · · , n.

Since ∥β̂ββ − β̃ββ∥ = Op(n− 1
2 ) and E∥Xi∥ < ∞, it can be shown that for
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∀ε > 0, P (0 /∈ sj(β̂ββ)) < ε for sufficiently large n. Thus, we have the desired result.

Proof of Theorem 2

Let βββ(0) be any random initial value. After one iteration of the LLA algorithm,

the solution of the next iteration is

βββ(1) = arg min
βββ

[ 1
n

n∑
i=1

(1 − yiX
T
i βββ)+ +

p∑
j=1

p′
λ(|β(0)

j |)|βj |
]

which is a kind of β̂ββ
L1 .

Assume that none of the events Fni’s is true. Then, from (Fn1)C and (Fn2)C ,

|β(1)
j | = |β(1)

j − β∗
j | ≤ λn for q + 1 ≤ j ≤ p (2a)

and

|β(1)
j | ≥ |β∗

j | − |β(1)
j − β∗

j | ≥ (a+ 1)λn − λn = aλn for 1 ≤ j ≤ q. (2b)

By (2b), p′
λ(|β(1)

j |) = 0 for 1 ≤ j ≤ q. Therefore, the solution of the next iteration

from βββ(1) is

βββ(2) = arg min
βββ

[ 1
n

n∑
i=1

(1 − yiX
T
i βββ)+ +

p∑
j=q+1

p′
λ(|β(1)

j |)|βj |
]
. (2c)

Also, from (Fn3)C ,

|sj(β̂ββ)| ≤ λn for q + 1 ≤ j ≤ p (2d)
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and

|sj(β̂ββ)| = 0 for 0 ≤ j ≤ q. (2e)

Then, by (2e) and the supporting hyperplane inequality,

1
n

n∑
i=1

(1 − yiX
T
i βββ)+ ≥ 1

n

n∑
i=1

(1 − yiX
T
i β̂ββ)+ +

p∑
j=0

sj(β̂ββ)(βj − β̂j)

= 1
n

n∑
i=1

(1 − yiX
T
i β̂ββ)+ +

p∑
j=q+1

sj(β̂ββ)(βj − β̂j). (2f)

Hence,

{ 1
n

n∑
i=1

(1 − yiX
T
i βββ)+ +

p∑
j=q+1

p′
λ(|β(1)

j |)|βj |
}

−
{ 1
n

n∑
i=1

(1 − yiX
T
i β̂ββ)+ +

p∑
j=q+1

p′
λ(|β(1)

j |)|β̂j |
}

≥
p∑

j=q+1

{
sj(β̂ββ)βj + p′

λ(|β(1)
j |)|βj |

}
=

p∑
j=q+1

{
sj(β̂ββ)sgn(βj) + λn

}
|βj | ≥ 0.

The first inequality is due to (2f) and the fact that β̂j = 0 for j = q + 1, · · · , p.

The equality holds because p′
λ(|β(1)

j |) = λn by (2a). The second inequality holds

because of (2d). Therefore, β̂ββ is the minimizer of the problem (2c), that is

βββ(2) = β̂ββ.

Now, (Fn4)C implies that |β̂j | ≥ aλn for 1 ≤ j ≤ q, so

p′
λ(|β̂j |) = 0 for 1 ≤ j ≤ q

and

p′
λ(|β̂j |) = p′

λ(0) = λn for q + 1 ≤ j ≤ p.
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Therefore, the solution of the next iteration from βββ(2) = β̂ββ is

βββ(3) = arg min
βββ

[ 1
n

n∑
i=1

(1 − yiX
T
i βββ)+ +

p∑
j=q+1

λn|βj |
]
.

Then, since
{

1
n

∑n
i=1(1 − yiX

T
i βββ)+ +

∑p
j=q+1 λn|βj |

}
−
{

1
n

∑n
i=1(1 − yiX

T
i β̂ββ)+ +∑p

j=q+1 λn|β̂j |
}

≥
∑p

j=q+1

{
sj(β̂ββ)sgn(βj) + λn

}
|βj | ≥ 0,

βββ(3) = βββ(2) = β̂ββ.

That is, the LLA algorithm finds the oracle estimator again and stops.
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국문초록

지지벡터기계 모형은 이진분류문제를 푸는 데에 있어 강력한 도구이지만, 불필요

한 변수들이 관여되는 경우 예측력에 악영향을 받을 수 있다. 이 문제를 해결하기

위해 몇 가지 변형된 지지벡터기계 모형들이 제안되어 왔고, 그 중 SCAD 벌점화

지지벡터기계모형이효과적인변수선택을해준다는것이증명되었다.그러나이

모형의 최적화 과정에는 목적 함수의 비볼록성과 여러 국소적 최소값들의 존재성

문제가 제기된다. 이 논문에서는 SCAD 지지벡터 기계 모형을 최적화하는 주된

방법인 국소 2차 근사 방법과 국소 1차 근사 방법에 대해 요약하고, 더 나아가

두 가지의 새로운 접근을 시도하였다. 우선, 각 알고리즘의 유도 과정에서 테일러

급수 전개를 이용한 기존의 방법 대신에 포락선을 이용한 방법을 적용하였는데,

이는 기존의 방법보다 더 일반화된 방법으로서 의미를 갖는다. 다음으로, 기존에

알려졌던 국소 2차 근사 방법의 한계점들과 그에 비한 국소 1차 근사 방법의 장점

들에 더하여, 국소 1차 근사 방법의 최소값에 대한 둔감성을 주장하고 그에 대한

근거로서 국소 1차 근사 방법이 임의의 초기값에 대해서 오라클 추정량으로 수

렴한다는 이론을 제시하였다. 마지막으로 시뮬레이션 연구를 통해 국소 2차 근사

방법보다국소 1차근사방법이임의의초기값에대해더좋은결과를준다는것을

검증하였다.

주요어: 국소 근사 알고리즘, SCAD 벌점함수, 지지벡터 기계, 변수 선택, 초기값

설정

학번: 2016-20274
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