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Abstract

Allocating computation over multiple threads to reduce running time has be-

come a key to training big models such as deep neural networks because a

Graphics Processing Unit (GPU), which is parallel in nature, can speed up in-

tensive matrix operations. We present a new MCMC algorithm that can be dis-

tributed over multiple GPUs by combining bridge sampling with Hamiltonian

Monte Carlo on partitioned sample spaces. We empirically show that this ap-

proach can expedite MCMC sampling for any unnormalized target distribution

such as Bayesian Neural Network in a high dimensional setting. Furthermore,

in the presence of multimodality, this algorithm is expected to be more effi-

cient in mixing MCMC chains when proper partitions are chosen. Finally, by

comparing the parameter distributions of different learning method, we suggest

that further studies could be conducted on the effect of a constrained sample

space on the generalization error.

Keywords: Bayesian Neural Network, Hamiltonian Monte Carlo, Image Clas-

sification, Bridge Sampling, GPU, Parallelization
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Chapter 1

Introduction

Neural Network models are widely applied for classification and regression. Ad-

vancements in the GPU (Graphical Processing Unit) and related programming

languages have allowed deep Neural Networks to be trained in a reasonable

time. In many occasions, however, questions remain about the certainty of the

model parameters. Bayesian learning offers a systematic way to quantify the

uncertainty of the model parameters. In the Bayesian inference framework, ob-

servations x are considered to be generated from some model with unobserved

parameters θ. As opposed to getting the point estimate, a distribution of the

parameter can be estimated in the form of the posterior distribution p(θ|x).

In Bayesian learning, Markov Chain Monte Carlo (MCMC) is one of the

popular computational methods, along with the variational inference, for ap-

proximating the posterior distribution. Variational inference gained traction in

the Bayesian community due to its fast speed from taking advantage of stochas-

tic and distributed optimizations (Robbins and Monro, 1951) and it is consid-

ered to be the only feasible choice of posterior approximation when the given
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data set is so large that MCMC sampling would be computationally intractable

(Blei, Kucukelbir, and McAuliffe, 2017). MCMC, on the other hand, is more

computationally intensive but enjoys the theoretical guarantee of asymptoti-

cally converging to the target posterior distribution (Robert, 2004) and better

posterior approximation when the target distribution is multimodal (Blei, Ku-

cukelbir, and McAuliffe, 2017). For this reason, we attempt to accelerate the

MCMC sampling procedure by utilizing multiple GPUs to achieve both the fast

computation and a close approximation of the posterior distribution shape and

variance.

Multiple GPUs optimization scheme is already implemented in the conven-

tional point estimation with stochastic optimization such as training CNN with

stochastic gradient descent (Abadi et al., 2016). MCMC samples, however, are

serial by design, making it difficult to speed up the sampling procedure by

launching multiple threads of chains. To accelerate the sampling process with

multiple GPUs, one must devise an MCMC algorithm that can be parallelized.

1.1 Related Works

Past approaches to parallelizing MCMC can be divided into six categories: 1)

simple multiple chains, 2) likelihood parallelization, 3) prefetching, 4) ensem-

ble method, 5) blocking and 6) sample space partition. Firstly, simple multiple

chain method is implemented by launching multiple MCMC chains and by ap-

proximating the posterior through averaging the samples from multiple chains

(Glynn and Heidelberger, 1992; Rosenthal, 2000; Bradford and Thomas, 1996).

Despite its simplicity, the burn-in period cannot be shortened and does not

accelerate the convergence of slow MCMC chains. Therefore, this approach is

often used together with other parallelization approach to see the reliability of

2



the chain. Secondly, likelihood parallelization approach is implemented by par-

allelizing the calculation of the likelihood, which could reduce the computation

time dramatically if likelihood requires heavy calculation and its computation

can be efficiently parallalized (Wilkinson, 2006). However, a separate program-

ming is needed for each problem set, which is a significant drawback to those

who are less concerned with a learning method and more focused on the model

design and architecture. Thirdly, prefetching is an algorithm in which parts of

the computations that require heavy computation are pre-calculated in in other

cores Brockwell, 2006; Byrd, Jarvis, and Bhalerao, 2008. This method suffers

from the similar drawback from the likelihood parallelization method. Fourthly,

ensemble methods include techniques such as parallel tempering, affine invariant

ensemble sampling and parallel elliptical slice sampling (Swendsen and Wang,

1986; Foreman-Mackey et al., 2013; Goodman and Weare, 2010; Nishihara,

Murray, and Adams, 2014). In this approach, multiple chains are aggregated to

approximate the posterior distribution. For example, in the parallel tempering,

multiple chains are launched simultaneously and some chains are used to im-

prove the mixing of other chains. These algorithms are known to be effective in

high dimension, but the number of cores to launch parallel threads is limited.

Fifthly, in blocking, samples are generated in a subspace of the sample space

with a fewer number of dimension. Each parallel chain updates a part of the

sample space. Wilkinson, 2006. But the sample space must meet strong require-

ments and naive decomposition of the state space will not result in the correct

limiting distribution. Lastly, in the state space partition method, multiple in-

dependent chains are launched independently on each partition of the state

space (Basse, Smith, and Pillai, 2016; VanDerwerken and Schmidler, 2013).

This method requires finding both a good partition and an MCMC sampling

scheme that can sample from the subspace of the state space.
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1.2 Contribution

We improve on the state space partitioning method for parallelizing the MCMC

chains by suggesting an algorithm that is efficient in high dimensional space

and can take advantage of multiple GPUs. We argue that Hamiltonian Monte

Carlo and bridge sampling can be used together to launch independent MCMC

chains and the whole computation can be carried out in GPUs to speed up

the calculation. The key idea of the proposal is to divide the sample space

into partitions and to generate samples within each partition using constrained

Hamiltonian Monte Carlo. The samples from each partition are then aggregated

in a careful manner using bridge sampling to recover the original distribution.

The rest of the paper is organized as follows. For the completeness of the

paper, basics of HMC is included in chapter 2. In chapter 3, we propose the

new method for parallelizing MCMC by using Constrained Hamiltonian Monte

Carlo and bridge sampling. In chapter 4, the proposed method is illustrated in

applications and its benefits are emphasized. The discussion is given in chapter

5.
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Chapter 2

Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo was proposed as a molecular dynamics simula-

tion method by Alder and Wainwright (Alder and Wainwright, 1959). In the

molecular dynamics, one often needs simulates the classical mechanics princi-

ple known as Hamiltonian equations. In 1996, Neal, 2012 noted that efficient

MCMC transition could be made using the Hamiltonian dynamics. For the com-

pleteness of the paper, a brief introduction of the Hamiltonian Monte Carlo is

included in this chapter. The notation has been adopted from Liu, 2008 and

Choo, 2000.

An object’s motion is charaterized by its location or state variable q and

momentum p at time t. For each location, object takes the potential energy

E(q) and the kinetic energy K(p). The total energy is equivalent to H(q,p) =

E(q) +K(p), which is also called the Hamiltonian.

The kinetic energy is defined as

K(p) =
d∑

i=1

p2i
2mi
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and the potential energy E(q) is defined in relation to the desired distribu-

tion P (q),

E(q) = − logP (q)− log(Z)

where Z is the normalization constant, and it allows the HMC to be used when

complicated probability distribution is known up to a normalization constant.

In using the Hamiltonian dynamics in HMC, P (q) becomes the desired target

distribution from which we wish to generate samples. It can also be the poste-

rior distribution in Bayesian learning. The kinetic energy can be viewed as an

auxiliary variable that will be discarded when the samples are generated.

The Hamiltonian dynamics are governed by a set of differential equations

known as the Hamiltonian equations.

dqi
dt

=
dH

dpi
=

dK(p)

dpi
=

p

mi

dpi
dt

= −dH

dqi
=

dE(q)

dqi
.

If dE(q)
dqi

, dK(p)
dpi

, qo and po at time to are given, it is possible to predict the

location and momentum of an object at time t = to + T .

The Hamiltonian Monte Carlo is a combination of Hamiltonian dynamics

proposal and Metropolis rejection. In the MCMC chain, new samples are pro-

posed by simulating movements in the Hamiltonian dynamics, and the samples

are either accepted or rejected based on the usual Metropolis rejection criterion.

When those two steps are combined appropriately, the samples proposed in the

Hamiltonian dynamics can travel farther than the samples from the random

walk proposal without breaking ergodicity and invariance condition necessary

for the chain to converge to the target distribution (Choo, 2000).

Theoretically, if the Hamiltonian dynamics could be simulated perfectly,

Metropolis rejection step would be unnecessary because all proposed samples
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would be in the same H and therefore be accepted. It is not possible, however,

to simulate the Hamiltonian dynamics on a continuous time scale, and in prac-

tical implementations one often resorts to using leapforg updates to simulate

Hamiltonian dynamics in the discrete time space. Therefore the HMC is car-

ried out in two parts: sample proposal stage and the Metropolis accept-reject

stage for correcting the error due to the discretization of time. The sample

proposal stage is carried out in two fold: momentum proposal and the leapfrog

simulation.

2.1 Momentum proposal

The Hamiltonian Monte Carlo is a variant of Metropolis Hastings(MH) algo-

rithm, in that the random walk proposal in MH is replaced with a random walk

that preserves the Hamiltonian defiend by the target probability distribution.

Randomness in the walk comes from sampling the auxiliary variable, p from

the standard normal distribution. Sampled momentum p will serve as a start-

ing point in simulating movement in the same hamiltonian H(q,p). Simulating

movement in the hamiltonian is carried out by leapfrog update.

2.2 Leapfrog update

The leapfrog update is composed of 3 steps: 1) half update of momentum p, 2)

full update of state q, and 3) half update of momentum p.

1. For each i in i = 1, ..., d

pi(t+
ϵ

2
) = pi(t)−

ϵ

2

dE

dqi
(q(t)). (2.1)

2. For each i in i = 1, ..., d

qi(t+ ϵ) = qi(t)− ϵ
pi(t+

ϵ
2)

mi
. (2.2)
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3. For each i in i = 1, ..., d

pi(t+ ϵ) = pi(t+
ϵ

2
)− ϵ

2

dE

dqi
(q(t+ ϵ)). (2.3)

Each leapfrog update is a movement in the Hamiltonian with respect to time.

Therefore repeating the leapfrog multiple times will result in simulating the

object’s movement for longer time. The leapfrog updates are repeated L times

to simulate state and momentum movement for L steps in the Hamiltonian

space.

2.3 Metropolis Accept-Reject

The last step of the Hamiltonian Monte Carlo is the Metropolis accept-reject

step. In the following steps, the acceptance ratio is computed.

1. Genrate p∗,q∗ from the current values p(s),q(s) using the leapfrog pro-

posal distribution Ls(p∗,q∗|p(s),q(s))

2. Calculate acceptance ratio by

r =
p(p∗,q∗)

p(p(s),q(s))
× Ls(p(s),q(s)|p∗,q∗)

Ls(p∗,q∗|p(s),q(s))
.

3. Sample u ∼ uniform(0, 1) and if u < r, set (p(s+1),q(s+1)) = (p∗,q∗);

Otherwise, set (p(s+1),q(s+1)) = (p(s),q(s))

Note that the leapfrog proposal is symmetric by construction. Thus

Ls(p(s),q(s)|p∗,q∗)

Ls(p∗,q∗|p(s),q(s))
= 1.

In the Hamiltonian Monte Carlo, the posterior samples are generated from

the target distribution P (q) by repeating the leapfrog step and the accept-

reject stage. Algorithm 1 shows the full Hamiltonian Monte Carlo procedure.

Conventionally, new momentum samples are proposed using N(0, 1).
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Algorithm 1 Hamiltonian Monte Carlo

1: procedure HMC(numSample = S, stepSizeTuningParam = η)

2: initialize p0∼ N(0, Id)

3: initialize q0

4: for s in 1 : S do

5: psi ← N(0, 1) for (i in 1 : d)

6: qs ← qs−1

7: for l in 1 : L do ◃ Leapfrog update L times

8: psi (t+
ϵ
2) = psi (t)− ϵ

2
dE
dqsi

(qs(t)) for (i in 1 : d)

9: qsi (t+ ϵ) = qsi (t)− ϵ
psi (t+

ϵ
2 )

mi
for (i in 1 : d)

10: psi (t+
ϵ
2) = psi (t+

ϵ
2)−

ϵ
2
dE
dqsi

(qs(t+ ϵ)) for (i in 1 : d)

11: end for

12: ratio = min[1, exp(−H(qs,ps)) +H(qs−1,ps−1))]

13: if Unif [0, 1] > ratio then ◃ accept-reject

14: qs ← qs−1 ◃ reject the new sample

15: end if

16: end for

17: Return {qs}Ss=0

18: end procedure
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Chapter 3

Bridged Hamiltonian Monte Carlo

In this chapter we propose a new approach of parallelizing an MCMC chain

using a constrained version of the Hamiltonian Monte Carlo and the bridge

sampling. We call the proposed algorithm as Bridged Hamiltonian Monte Carlo

(BHMC).

3.1 Sampling from Partitioned Sample Space

One of the parallelization schemes for MCMC is partitioning the sample space to

run different MCMC chains in each component of the partition (VanDerwerken

and Schmidler, 2013; Basse, Smith, and Pillai, 2016). The existing approaches

focused on finding efficient partition schemes but did not fully explore differ-

ent sampling scheme in a restricted sample space as most of them resorted

to simple Metropolis Hastings algorithm. Instead of using Metropolis Hastings

algorithms, we propose to use the constrained Hamiltonian Monte Carlo for

sampling from the restricted sample space, as HMC explores the high dimen-
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sional space more efficiently.

Let π(θ) be the probability density of interest on the parameter space Θ.

The parameter space Θ is partitioned into multiple sets and
⋃J

j=1 Θj . Here J

is the number of components in the partition. For each component j, MCMC

is run on the target distribution restricted to Θj and its MCMC samples are

denoted as {θ1j , ...θ
nj

j }.

The restricted target distribution is

πj(θ) =
π(θ)1Θj (θ)∫
Θj

π(θ)ν(dθ)
=

π(θ)1Θj (θ)

wj
,

where wj =
∫
Θj

π(θ)ν(dθ), the normalizing constant of the restricted target

distribution and ν is the σ-finite measure on Θ dominating π. Then for any π

integrable function f , the following holds.

Eπ(f) =
J∑

j=1

wj

∫

Θj

f(θ)πj(θ)ν(dθ).

If wj and uj =
∫
Θj

f(θ)πj(θ)ν(dθ), for j ∈ {1, ..., J}, can be estimated,

Eπ(f) can be estimated.

3.1.1 Constrained HMC

A Monte Carlo estimator of uj is

ûj =
1

nj

nj∑

i=1

f(θ(i)j )

where θij are the samples from the restricted target distribution πj(θ). Since

the Hamiltonian Monte Carlo is more efficient than the Metropolis-Hastings

algorithm in high-dimensional space, in this paper we use the Hamiltonian
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Monte Carlo augmented with the “billiards” procedure proposed by Neal et al.,

2011 for restricted sample space.

Consider a d-dimensional parameter space Θ. Then the restricted sample

space Θ∗ can be defined as a hypercube

{(θ1, ..., θd) : li ≤ θi < ui for i in {1, ..., d}}

where li ∈ R1 and ui ∈ R1 are the lower and upper bound of the sample space in

i-th dimension. Let U and L be the d-dimensional vectors (or matrices) with li

and ui as their elements. The dimension of U and L is the same as the dimension

of the state q in HMC. Recall that q is the parameter of interest and second

step in the leapfrog update is

qsi (t+ ϵ) = qsi (t)− ϵ
psi (t+

ϵ
2)

mi
.

To restrict the sample space, Neal proposes the following procedure during the

leapfrog update to achieve the effect of the ball bouncing off the wall.

For each qsi (t+ ϵ) in i ∈ {1, ..., d}

(a) if qsi (t+ ϵ) > ui, replace qsi (t+ ϵ) with ui − (qsi (t+ ϵ)− ui)

(b) if qsi (t+ ϵ) < li, replace qsi (t+ ϵ) with li + (li − qsi (t+ ϵ))

The momentum qi has to be negated correspondingly. The procedure achieves

reversibility, so the acceptance ratio does not need to be modified. The complete

modification to the HMC is given in Alorithm 2.

3.2 Combining Samples from different Sample Space

It remains to combine the different MCMC samples from different sample spaces

by estimating wj . Let g(θ) be the unnormalized target distribution π(θ) and C

12



Algorithm 2 Constrained HMC

1: procedure CHMC(numSample = S, stepSize = η, U, L)

2: ... same as HMC so far

3: for l in 1 : L do ◃ Leapfrog update L times

4: psi (t+
ϵ
2) = psi (t)− ϵ

2
dE
dqsi

(qs(t)) for (i in 1 : d)

5: for i in 1 : d do

6: qsi (t+ ϵ) = qsi (t)− ϵ
psi (t+

ϵ
2 )

mi

7: if qsi (t+ ϵ) > ui then

8: qsi (t+ ϵ) = ui − (qsi (t+ ϵ)− ui)

9: psi (t+
ϵ
2) = −psi (t+

ϵ
2)

10: else if qsi (t+ ϵ) < li then

11: qsi (t+ ϵ) = li + (li − qsi (t+ ϵ))

12: psi (t+
ϵ
2) = −psi (t+

ϵ
2)

13: end if

14: end for

15: psi (t+
ϵ
2) = psi (t+

ϵ
2)−

ϵ
2
dE
dqsi

(qs(t+ ϵ)) for (i in 1 : d)

16: end for

17: ... same as HMC afterward

18: Return {qs}Ss=0

19: end procedure
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be the normalizing costant. We have

g(θ)

C
= π(θ).

Then we can write

wj =

∫

Θj

π(θ)ν(dθ)

=

∫

Θj

g(θ)

C
ν(dθ)

=
1

C

∫

Θj

g(θ)ν(dθ)

=
cj
C

where cj =
∫
Θj

g(θ)ν(dθ) is the integral of the unnormalized target distribution

over j-th parameter space. Furthermore, C =
∑J

j=1 cj . Therefore,

wj =
cj∑J
j=1 cj

.

It remains to estimate cj for each partition. Estimating the normalization

constant is a major area of research and various methods have been proposed.

Basse, G. et al. (2016) found that bridge sampling works well (Gelman and

Meng, 1998; Basse, Smith, and Pillai, 2016).

3.2.1 Bridge Sampling

We include a derivation of the bridge sampling defined in Gronau et al. (2017).

p(y|θ), p(θ) are the usual likelihood and prior distribution function. Bridge

sampling defines two new functions, a proposal distribution g(θ) and a bridge

function h(θ).

Consider the following identity and multiply the marginal likelihood p(y)

on both sides.
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p(y) =

∫
p(y|θ)p(θ)h(θ)g(θ)dθ
∫ p(y|θ)p(θ)

p(y) h(θ)g(θ)dθ

=

∫
p(y|θ)p(θ)h(θ)g(θ)dθ∫
h(θ)g(θ)p(θ|y)dθ

=
Eg(θ)p(y|θ)p(θ)h(θ)
Ep(θ|y)h(θ)g(θ)

.

Therefore, the marginal likelihood can be estimated by

p̂(y) =
1
N2

∑N2
i=1 p(y|θ̃i)p(θ̃i)h(θ̃i)

1
N1

∑N1
j=1 h(θ

∗
j )g(θ

∗
j )

(3.1)

where θ̃i ∼ g(θ), the proposal distribution and θ∗j ∼ p(θ|y), the posterior dis-

tribution and N1 is the number of posterior samples and N2 is the number

of samples from the proposal distribution. There are several choices for the

bridge function h(θ). We use the optimal bridge function, which minimizes the

asymptotic variance of the estimator (Gelman and Meng, 1998).

h(θ) = C × 1

s1p(y|θ)p(θ) + s2p(y)g(θ)

where s1 = N1
N2+N1

and s2 = N2
N1+N2

. Then the marginal likelihood estimator

becomes

p̂(y) =

1
N2

∑N2
i=1

p(y|θ̃i)p(θ̃i)
s1p(y|θ̃i)p(θ̃i)+s2p(y)g(θ̃i)

1
N1

∑N1
j=1

g(θ∗j )

s1p(y|θ∗j )p(θ∗j )+s2p(y)g(θ∗j )

. (3.2)

But notice that this equation is an iterative equation because p̂(y) depends

on p(y). So the estimate can be calculated by running the iterative equation

until convergence. Usually the estimate converges within less then ten iterations.

p̂(y)(t+1) =

1
N2

∑N2
i=1

p(y|θ̃i)p(θ̃i)
s1p(y|θ̃i)p(θ̃i)+s2p(y)(t)g(θ̃i)

1
N1

∑N1
j=1

g(θ∗j )

s1p(y|θ∗j )p(θ∗j )+s2p(y)(t)g(θ∗j )

(3.3)
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where θ̃i ∼ g(θ), the proposal distribution and θ∗j ∼ p(θ|y), the posterior distri-

bution. To write down the equation more concisely, l1,j and l2,i can be defined.

l1,j :=
p(y|θ∗j )p(θ∗j )

g(θ∗j )
l2,i :=

p(y|θ̃i)p(θ̃i)
g(θ̃i)

. Then

p̂(y) =

1
N2

∑N2
i=1

p(y|θ̃i)p(θ̃i)
s1p(y|θ̃i)p(θ̃i)+s2p(y)(t)g(θ̃i)

1/g(θ̃i)

1/g(θ̃i)

1
N1

∑N1
j=1

g(θ∗j )

s1p(y|θ∗j )p(θ∗j )+s2p(y)(t)g(θ∗j )

1/g(θ∗j )

1/g(θ∗j )

=

1
N2

∑N2
i=1

l2 ,i
s1 l2 ,i+s2 p̂(y)(t)

1
N1

∑N1
j=1

1
s1 l1 ,j+s2 p̂(y)(t)

. (3.4)

Therefore, the samples from different partitions be combined by using the

following weights.

wj =
p̂(y)

∑J
j=1p̂(y)

. (3.5)

3.3 Practical Issues in Implementing Bridged Hamil-

tonian Monte Carlo

3.3.1 Numerical Overflow or Underflow

When calculating the likelihood, due to the floating point limits, numerical

overflow and underflow can cause the weight estimate to be completely wrong.

Especially when there are many parameters as in a Bayesian Neural Network,

the likelihood can quickly go to zero beyond the precision limit. Therefore, the

weight estimator should be modified to work with the log likelihood. Gronau

et al. (2017) introduced a similar treatment. The workaround can be done in

twofold; first treatment reduces the overflow in l1,j and the second treatment

reduces the overflow in l2,i
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We let

ll1,j = ln

(
p(y|θ∗j )p(θ∗j )

g(θ∗j )

)

= ln p(y|θ∗j )p(θ∗j )− ln g(θ∗j )

ll2,i = ln

(
p(y|θ̃i)p(θ̃i)

g(θ̃i)

)

= ln p(y|θ̃i)p(θ̃i)− ln g(θ̃i).

Then

p̂(y) =

1
N2

∑N2
i=1

exp(ll2 ,i)
s1 exp(ll2 ,i)+s2 p̂(y)(t)

1
N1

∑N1
j=1

1
s1 exp(ll1 ,j)+s2 p̂(y)(t)

=

1
N2

∑N2
i=1

exp(ll2 ,i) exp(−l∗)
s1 exp(ll2 ,i) exp(−l∗)+s2 p̂(y)(t) exp(−l∗)

1
N1

∑N1
j=1

exp(−l∗)
s1 exp(ll1 ,j) exp(−l∗)+s2 p̂(y)(t) exp(−l∗)

=

1
N2

∑N2
i=1

exp(ll2 ,i−l∗)
s1 exp(ll2 ,i−l∗)+s2 p̂(y)(t) exp(−l∗)

1
N1

∑N1
j=1

exp(−l∗)
s1 exp(ll1 ,j−l∗)+s2 p̂(y)(t) exp(−l∗)

.

Practically, letting l∗ equal to the mean of ll1,j works well because the

variation in ll1,j is smaller than ll2,i. And we let

r̂(t) = p̂(y) exp(−l∗)

to have

r̂(y) =

1
N2

∑N2
i=1

exp(ll2 ,i−l∗)
s1 exp(ll2 ,i−l∗)+s2 r̂(y)(t)

1
N1

∑N1
j=1

1
s1 exp(ll1 ,j−l∗)+s2 r̂(y)(t)

. (3.6)

In general bridge sampling, when converting r̂(t) to p̂(t), exp(−l∗) can cause

numeric overflow if |l∗| is bigger than 700 as exp(700) can reach up to 1.0e+304.

But in this scenario where the primary interest is in the relative weights of each

of the partition, exp(−l∗) can be ignored as
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Figure 3.1: The left figure shows the R2 space divided at s1 and s2. The right figure shows the R3

space divided at s1, s2 and s3. The number of partition after s split is 2s. The number of partitions

and where to split are tuning parameters.

wj =
p̂(y)

∑J
j=1 p̂(y)

=
r̂(y)

∑J
j=1 r̂(y)

if l∗ is chosen to be same across all partition.

This transformation with l∗ can help with the numeric overflow in l1,j . But

often the variation in l2 ,i is bigger than in l1,i because the likelihood in l2 ,i

is calculated with newly generated proposal samples rather than the samples

from its own distribution. Therefore, subtracting l∗ sometimes does not solve

the overflow issue with l2 ,i. Therefore an additional measure has to be taken for

l2 ,i.

Notice how
exp(ll2 ,i − l∗)

s1 exp(ll2 ,i − l∗) + s2 r̂(y)(t)

can go to 0 or 1 when the term exp(ll2 ,i − l∗) is either too close to 0 or to

big. Therefore, in such cases, 0 or infinity was replaced with very small or large

number.

3.3.2 Partitioning Scheme

The number of partitions and where to split are a tuning parameter. The num-

ber of partition is 2 s where s is the number of parameter to split.
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Figure 3.1 shows examples of a partition when the sample space is R2 and

R3. Usually the number of split s should be much smaller than the number of

parameters. Therefore, the parameter to split the sample space could be chosen

randomly or by other methods that utilize initial sampling to calculate the

optimal split such as spectral decomposition used in Basse, Smith, and Pillai

(2016).

The split points for Bayesian neural network in this paper were set to zero

because all the inputs were mean centered and the trained parameters are usu-

ally centered around zero.
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Chapter 4

Experiments

4.1 Bivariate Normal Mixture Model

We started by comparing the performance of generating samples from a mixture

of bivariate normal distribution. The target distribution was

N = π1 ∗N1 + (1− π1) ∗N2

where

N1(y; θ,Σ) =
1√
2π

|Σ|−0.5 exp

(
−1

2
(y − θ1)

TΣ(y − θ1)

)

N2(y; θ,Σ) =
1√
2π

|Σ|−0.5 exp

(
−1

2
(y − θ2)

TΣ(y − θ2)

)

and

Σ =

⎡

⎣ 1 0.8

0.8 1

⎤

⎦

and θ1 = [0, 0] and θ2 = [5, 5].

This example illustrates that partitioning sample space can achieve a better

mixing when the target distribution is multimodal.
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The sample space was divided into two partitions; Ω1 = R2 · 1(y>1), Ω2 =

R2 · 1(y≤1). From each partitioned sample space, an independent MCMC chain

was launched and 5000 posterior samples were sampled. For calculating the

weights, the posterior samples were divided into two parts. The first part was

used in calculating the proposal distribution. The second part was used as the

posterior samples in the bridge sampling. The proposal distribution g(θ) was

chosen to be a bivariate Gaussian distribution with the mean and covariance

equal to the sample mean and sample covariance of the half of the samples.

The performance was compared with the single chain HMC with 10000

samples from the same target distribution.

In this example, there are two high probability regions where the HMC

sampler has a difficult time crossing over due to the low probability region in

between. Therefore, HMC requires many runs before MCMC samples mix well.

The left figure in Figure 4.1 shows the scatter plot of the 10,000 HMC samples

with the first 2,000 samples thrown away. The sample mean was calculated to

be [3.01, 2.99]. The true mean of this mixture normal distribution is [2.5, 2.5].

And it took 23 seconds to generate 10,000 samples on a single GPU (NVidea

GTX 1070) with Tensorflow.

Dividing the sample space and letting the chain run independently on each

of the sample space can achieve a better mixing when the sample space is

reasonably well divided. Bridged Hamiltonian Monte Carlo was run on two

sample space divided at y = 1. In each partition, 5000 MCMC samples were

gathered, and 1000 samples were thrown away for burn in period. It took about

13 seconds in each of the partitions. Since each partition is independent of the

other partition, they can be run on different machines. In this experiment, only

one GPU was used, but if there were more GPUs running concurrently, this

method could theoretically speed up the sampling procedure drastically. In the
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(a) sample mean:[3.61, 3.61] (b) sample mean:[2.47, 2.47]

Figure 4.1: Scatter plot of the samples generated from the Hamiltonian Monte Carlo and Bridged

Hamiltonian Monte Carlo. For HMC,total 10000 sampels were generated from each partition and

initial 2000 samples were thrown away. For BHMC, total 10000 samples were generated from each

partition and initial 2000 samples were thrown away. The true mean is design to be [2.5, 2.5].

Figure 4.2: Kernel density plot of the samples generated from the Hamiltonian Monte Carlo and

Bridged Hamiltonian Monte Carlo.
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Figure 4.3: Sample mean calculated at each iteration for HMC and BHMC. The true value is 2.5

marked by the red line

Mixture Normal Sample Genration Performance Comparison

Method
total number of

samples
number of chains

number of samples in each

chain
time sample mean

HMC 10, 000 1 10, 000 23s [3.01, 2.99]

BHMC 10, 000 2 5, 000 13s [2.47, 2.47]

Table 4.1: The result of sampling from the mixture bivariate normal distribution with the true mean

[2.5, 2.5]. The time signifies the time taken for each chain in BHMC without taking into account the

time to calculate the partition weights. The result shows that BHMC using two chains can approximate

the true mean more closely than HMC in less time.

Figure 4.2, kernel density plot shows that HMC samples are not mixed yet,

whereas the BHMC samples estimate the target distribution reasonably well.

BHMC sample mean was calculated to be [2.47, 2.47], which is a far better

estimate of the true mean [2.5, 2.5] than the simple HMC sample mean which

was [3.01, 2.99]. It would require more samples for the HMC samples to converge

to the true mean. BHMC took less time in each partition, is scalable and is

more accurate in the presence of multi-modality. Figure 4.3 shows that BHMC

converges to the true mean faster than HMC.

4.2 Moon Data Classification

Moon data is a well-known toy classification data in python Scikit-Learn pack-

age. This data is linearly inseparable and often used for testing the performance
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Figure 4.4: Scatter plot of the moon data set. Two classes are linearly unseparable.

of the multilayer neural network. Figure 4.4 shows the scatter plot of the moon

data. Training data has the shape of 500 by 2, and the test data has the shape

of 500 by 2. Each sample is either class 0 or 1. Multilayer neural network trained

on HMC and BHMC will be compared.

For either HMC or BHMC, following two hidden layer architecture is used.

• L = 2 : Number of layer

• h(l) = 0, ..., L+ 1 : lth hidden layer

• h(0) = x : input data

• h(L+1) = f(x) : output

• Each layer h(l) has nl nodes. n0 = 2, n1 = 5, n2 = 5, n3 = 2

z(l)j =
nl−1∑

i=1

wl−1
ij hl−1

i + bj , l = 1, ..., L+ 1 j = 1, ..., nl

h(l)j = tanh(z(l)j ), l = 1, ..., L hidden

h(L+1)
j = Categorical(prob = norm(zL+1)) output
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In Bayesian Neural network architecture, classification is often done by

wrapping categorical distribution around the last layer. In this setting, weight

matricesW 0,W 1,W 1 has the shape of [2, 5], [5, 5] and 5, 2. The bias vectors have

the length of 5, 5 and 2. There are 57 parameters that are going to be updated

at each iteration of the learning. The sample space is in a high-dimensional

setting, which means that the region of probability is a shallow shell compared

to the whole sample space. Therefore, usual Metropolis Hasting random walk

proposal will result in too many rejection samples. Therefore, in this scenario,

HMC or BHMC will be useful in generating samples with a high acceptance

rate. The benefit of using a Bayesian Neural Network over regular gradient

based networks is that the network parameters’ certainty can be analyzed in

the Bayesian Neural Network. In this case, because the input data is in two-

dimension X and Y, parameters’ uncertainty can be visualized. In this example,

all weights have been given a normal distribution prior with mean 1 and vari-

ance 1. All biases have been given a normal prior with mean 0 and variance

1.

For simple Hamiltonian Monte Carlo sampler, total 5000 samples were gen-

erated, and the first 1000 samples were discarded for burn in period. The left

figure in Figure 4.5 shows the scatter plot of the test sample classification re-

sult. In testing, the weight was taken to be the mean of the MCMC samples.

The test accuracy of the classifier was 96.6%.

For Bridged Hamiltonian Monte Carlo sampler, the sample space was di-

vided into eight partitions at the origin. In each partition, 1000 samples were

generated, and the first 500 samples were discarded. The right figure in Figure

4.5 shows the scatter plot of the test sample classification result. The mean of

the MCMC samples was used as the final weight for testing. The test accuracy

of the classifier was 96.0%.
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Figure 4.5: The test sample classificaiton result using Hamiltonian Monte Carlo and Bridged Hamil-

tonian Monte Carlo

Figure 4.6: The test sample classification result using Hamiltonian Monte Carlo. The left shows the

posterior mean probability of class label equal to 0. And the right plot shows the posterior predictive

standard deviation of the probability of class label equal to 0.

Since the output layer is a categorical distribution, the calculated probability

can be a measure of the output label’s certainty. Left figures of Figure 4.6 and

4.7 show the posterior mean probability of the class label equal to 0. The figures

show that the white region has a probability around 0.4 ∼ 0.6 of being a class

0.

The probability of class label equal to 0 can also be calculated by the

gradient-based learning approach when the output layer is wrapped by the

softmax function. However, this probability in itself is a point estimation, and

the variance of the probability is not offered in the traditional gradient-based
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Figure 4.7: The test sample classification result using Bridged Hamiltonian Monte Carlo. The left

shows the posterior mean probability of class label equal to 0. And the right plot shows the posterior

predictive standard deviation of the probability of class label equal to 0.

approach. The Bayesian approach can measure how reliable is the point esti-

mation.

Right figures in Figure 4.6 and 4.7 shows the variance of the probability.

The dark region has a standard deviation of 0.4, which is a significant variation

in weight estimation. Although the white region in the mean plot is relatively

narrow, the dark region in the standard deviation plot is wide. 0.4 standard

deviation is big enough to alter the outcome of the prediction in the region

where the mean estimate is between 0.4 and 0.6.

The advantage of using BHMC over HMC is in the computation time. The

deep neural network has shunned away from MCMC learning method because

of its computation time and its difficulty in parallelizing the algorithm for scal-

ability. In this example, BHMC achieved a similar result to HMC but with

multiple independent parallel chains. It took 14 seconds to generate 5000 sam-

ples in HMC with GPU (NVidea GTX 1070) using Tensorflow, and it took 10

seconds to generate 1000 samples in BHMC HMC with GPU (NVidea GTX

1070) using Tensorflow (without the time in calculating the log posterior pdf in

the bridge sampling). If the number of independent chains could be increased,
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Moon Data Classification Performance Comparison

Method total number of samples number of chains
number of samples in each

chain
time accuracy

HMC 20, 000 1 20, 000 57s 96.5

BHMC 20, 000 4 5, 000 42s 95.8

BHMC 20, 000 8 2, 500 23s 94.4

BHMC 20, 000 16 1, 250 13s 95.2

Table 4.2: The result of the moon data classification using Bayesian neural network. The time signifies

the time taken for each chain in BHMC without taking into account the time to calculate the partition

weights. The result shows that BHMC using more chains can decrease the time to achieve the same

level of accuracy.

the necessary samples in each partition can be correspondingly decreased.

The Table 4.2 shows the result of the moon data classification under differ-

ent settings. The table shows that as the number of partitions increases, the

time taken to generate the same number of total samples decreases. However,

the time does not decrease in a linear fashion because in BHMC, the step that

check whether the sample is in the partition consumes additional computation

time. Furthermore, it has been known in the experiement that the test accuracy

could vary when the weight estimation using the bridge sampling is unstable.

Therefore, although BHMC can utilize multiple GPUs to decrease the compu-

tation time, the parameters’ variance can increase due to the variance arising

from the weight calculation in each partition.

4.3 MNIST Data Classification

BHMC was also trained on the MNIST dataset. The MNIST dataset comprised

of digit pictures of the size 28 by 28. It is often used as a quick benchmark for

classification algorithms. Convolutional Neural Network has achieved the error

rate below 0.3%. This experiment’s purpose is not in attaining the lowest error

rate. This experiment illustrates another usage of BHMC; it explores how the
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learned parameters in each learning methods differ. Different learning methods

(Adam Optimizer, HMC, BHMC )have been compared.

For all of the networks, following one hidden layer architecture is used.

• L = 1 : Number of layer

• h(l) = 0, ..., L+ 1 : lth hidden layer

• h(0) = x : input data

• h(L+1) = f(x) : output

• Each layer h(l) has nl nodes. n0 = 784, n1 = 20, n2 = 10

z(l)j =
nl−1∑

i=1

wl−1
ij hl−1

i + bj , l = 1, ..., L+ 1 j = 1, ..., nl

h(l)j = sigmoid(z(l)j ), l = 1, ..., L hidden

h(L+1)
j = argmax(softmax(zL+1)) for adam optimizer

h(L+1)
j = Categorical(prob = norm(zL+1)) for HMC and BHMC

In this example, all weights have been given a normal distribution prior with

mean 1 and variance 1. All biases have been given a normal prior with mean 0

and variance 1.

4.4 Result

Adam optimizer is one of the popular optimizers in first-order gradient de-

scent optimization method. It is based on the adaptive estimates of lower-order

moments. Learning rate was chosen to be 0.01. And here cross entropy was

minimized. Batch size was chosen to be 100, and 10,000 iterations were run. It
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Figure 4.8: MNIST Data Adam Optimizer Weights Histogram. The left plot shows the histogram of

the first layer which has the dimension 784 by 20. The second plot shows the histogram of the second

layer which has the dimension 20 by 10.

Figure 4.9: MNIST Data HMC mean weights Histogram. The left plot shows the histogram of the first

layer which has the dimension 784 by 20. The second plot shows the histogram of the second layer

which has the dimension 20 by 10.

took about 5 seconds, and the resulting test accuracy was 87.5%. Figure 4.8

shows the histogram of the final weights. From Figure 4.8, it is seen that the

first layer weights are symmetric around 0.

For HMC no batch learning is used. Therefore, all 55,000 training samples

were trained at once. Total 3,000 posterior samples were generated, and first

1,000 samples were discarded. The resulting test accuracy was 88.9%. It took

304 seconds to complete the training.

For BHMC, the sample space was constrained to be in a -1 to 1 hypercube.

We tried to see if constraining the parameter to be near zero would result in
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Figure 4.10: MNIST Data BHMC mean weights Histogram. The left plot shows the histogram of the

first layer which has the dimension 784 by 20. The second plot shows the histogram of the second layer

which has the dimension 20 by 10.

a regularization effect. 55,000 training samples were trained at once. Just as

in the HMC setting, 3,000 samples were generated, and the first 1,000 samples

were discarded. The final test accuracy was 89.62%. The final test accuracy was

calculated by using the mean of the posterior samples. It took 329 seconds to

complete the training.

The test accuracy is about the same for HMC and BHMC. But the weights

look strikingly different. As shown by Figure 4.10, all BHMC parameters are

within -1 and 1. A lot of second layer weights went near -1 or 1. The first layer

parameters in HMC were distributed almost in a normal shape, but when the

parameters were constrained in BHMC, the first layer parameter has the form

of a uniform distribution.

Trace plots of 2000 samples after burn-in for HMC and BHMC posterior

samples show that HMC seems to have converged to certain equilibrium from

early on. The weights do not travel much. On the other hand, in BHMC, the

weights seem to be still exploring the space. Although the test accuracy is same

for HMC and BHMC, further run on BHMC might result in a different result.

Analysis of the test results in 4.13 show that certain misclassifications are

understandable as it is difficult for human eyes to differentiate, but for most
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Figure 4.11: MNIST Data HMC weights Histogram. The left plot shows the trace plot of the first 30

weights of the first layer and the right plot shows the trace plot of the first 20 weights of the second

layer.

Figure 4.12: MNIST Data BHMC weights Histogram. The left plot shows the trace plot of the first 30

weights of the first layer and the right plot shows the trace plot of the first 20 weights of the second

layer.

Figure 4.13: MNIST Data Misclassification Result. Left shows the misclassified samples from the HMC

and the right shows the misclassified samples from the BHMC
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mistakes, the problem is in the network, not the data. HMC and BHMC both

seem to be making some bad mistakes.
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Chapter 5

Discussion

We combined Hamiltonian Monte Carlo and bridge sampling to approximate

general unnormalized target distribution using multiple independent MCMC

chains. The main benefit was the speed up in generating samples that approxi-

mate the target distribution. The computation is carried out in either CPU or

GPU, and unlike other single chain MCMC algorithms, Bridged Hamiltonian

Monte Carlo can be carried out over multiple GPUs. The result is MCMC al-

gorithm with desirous properties such as scalable computation time and better

mixing in the presence of multimodality.

We used BHMC to sample from a mixture distribution with multimodality

and fitted two different neural networks. The benefit of using BHMC over the

conventional MCMC algorithm such as HMC was evident in the mixture distri-

bution example; with a reasonable partition, multiple independent chains could

allow the samples to travel in low probability regions. The question remains on

how to choose the right partition boundary, and Basse et al. have worked on

this topic Basse, Smith, and Pillai, 2016 using a spectral decomposition.
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The Bayesian Neural Network fitted using BHMC on the toy moon data

showed that significant speedup over conventional MCMC. When the sample

space is high dimensional, simple random walk proposal is not efficient enough

to generate samples that approximate the target distribution in a reasonable

amount of time. In such scenarios, one would often resort to an auxiliary variable

method such as HMC, but even HMC can be slow on deep neural networks with

lots of parameters. BHMC, which split the sample space into multiple partitions

to run multiple independent HMC chains, was able to speed up the sampling

procedure. Theoretically, this can be scaled up by using multiple GPUs, a level

of parallelization which was not possible in other MCMC algorithms.

All BHMC code is written in python’s GPU friendly package, Tensorflow

and the symbolic variable package, Edward. All the necessary gradients can be

calculated automatically using the symbolic relations of the variables that are

defined. Furthermore, by taking advantage of the Edward’s Random Variable

class, which is a wrapper around the tensor in Tensorflow, one can set any

arbitrary unnormalized target distribution without having to calculate the like-

lihood equations. Therefore, fitting a Bayesian Neural Network using BHMC is

as easy as writing down a similar Neural Network architecture in Tensorflow.

One step that could contribute to the instability of the algorithm is the cal-

culation of the weight in the bridge sampling. In the bridge sampling procedure,

the sum of exponentials has to be computed to calculate the weights. Chapter 3

introduced the transformation to alleviate the floating point problem. However,

when the number of parameters is large, and the variance in the proposal distri-

bution sample is large, the sum of the exponentials could still cause a numerical

overflow. In the moon data example, the calculation of the weights was shown

to be still unstable. When the weight calculation is unstable, the aggregated

sample mean could be significantly off. Therefore, in future studies, more stable
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and generalizable methods to calculate the weights have to be introduced.
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초록

인공신경망과 같은 많은 계산을 요하는 모형이 다양한 분야에서 효과적임이 드러

남에 따라 형렬 연산을 병렬처리 하기 위해 그래픽카드(GPU) 상 에서 계산하는

것이일반화되고있으며이를위해계산을여러스레드로나누는방법을찾는것이

중요해지고 있다. 본 논문은 분할 된 샘플 공간에서 브리지 샘플링과 해밀토니안

몬테카를로를 결합하여 여러 GPU에 분산될 수 있는 새로운 MCMC 알고리즘

을 제시한다. 이 접근법은 베이지안 뉴럴 네트워크 (Bayesian Neural Network)

와 같은 타겟 분포에 대한 MCMC 샘플링을 빠르게 할 수 있다. 또한 다중 모달

(Multimodality)이 존재할 때 이 알고리즘은 낮은 확률 영역에서도 샘플링을 효

율적으로 잘 할수 있는것으로 나타났다. 마지막으로 이 논문은 Adam Optimizer,

해밀토니안 몬테카를로와 같은 다른 학습 방법의 변수 분포와 본 알고리즘의 변

수분포를 비교함으로써, 제한된 표본 공간이 일반화 오차에 미치는 영향에 대한

추가 연구가 수행 될 수 있음을 제시한다.

주요어: 해밀토니안 몬테카를로, 브릿지 샘플링, 베이지안 신경망, GPU, 이미지

분류, 병렬 몬테카를로

학번: 2016-20260
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