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Abstract

Tankyrase inhibition stimulates

innate repair capacity in

osteoarthritic cartilage

Sukyeong Kim

School of Biological Sciences

The Graduate School

Seoul National University

Osteoarthritis (OA) is a prevalent degenerative disease, which

involves progressive and irreversible destruction of articular cartilage.

Despite efforts to regenerate cartilage in osteoarthritic joints, it has

been a difficult task as adult cartilage exhibits marginal self-repair

capacity. I conducted systems-level factor analysis on mouse

reference populations and identified tankyrase as a regulator of the

cartilage anabolism axis. Tankyrase inhibition increases the collective

expression of cartilage-specific matrix genes in mouse chondrocytes.

Moreover, tankyrase inhibition stimulates chondrogenic differentiation

of mesenchymal stem cells from mouse limb-bud and human bone

marrow. In osteochondral defect model of rats, stem-cell

transplantation coupled with tankyrase knockdown results in superior
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regeneration of cartilage lesions. Mechanistically, the pro-regenerative

features of tankyrase inhibition are mainly triggered by regulating

SOX9 transcriptional activity. I found that tankyrase binds to and

poly(ADP-ribosyl)ates (PARylates) SOX9. Furthermore, in surgically

induced OA mouse model, treatment of hydrogel-based tankyrase

inhibitor ameliorates OA progression. These results suggest that

tankyrase inhibition in treating OA cartilage may be a potential

strategy for functional repair of articular cartilage.

………………………………………

keywords : tankyrase, osteoarthritis, cartilage repair, SOX9,

PARylation
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INTRODUCTION

Osteoarthritis (OA) is one of the most prevalent degenerative diseases 

involving progressive degeneration of articular cartilage. 

Osteoarthritis (OA) is one of the most prevalent d e g e n e r a t i v e 

diseases and one of the leading causes of chronic disability in elderly 

populations. Its prevalence is increasing worldwide, imposing a tremendous 

medical and socioeconomic burden. OA is primarily characterized by the 

loss of proteoglycan contents and collagen degradation in cartilage matrix. 

The degeneration of cartilage matrix during OA development eventually 

causes failure in load-bearing functions of articular cartilage, further linking 

to subchondral bone damage and joint pain (Wieland et al., 2005). 

Disease-modifying OA therapy essentially aimed prolonged and functional 

repair of articular cartilage.

Cartilage repair is steered by chondrogenic differentiation of resident 

progenitor cells and ECM anabolism by the differentiated chondrocytes, but 

these abilities generally decline with aging and the disease progression, 

leaving only a marginal repair capacity in osteoarthritic joints (Johnson et 

al., 2012; Heinemeier et al., 2016). To compensate for the lack of innate 

repairing abilities, stem-cell based therapies utilizing enrichment of 

mesenchymal stem cell population by marrow stimulation (Sakata et al., 

2013) or direct transplantation (Diekman and Guilak, 2013) into damaged 

region has been rigorously attempted. However, cells differentiated from 

these progenitors tend to rapidly lose characteristic features of chondrocytes 

with concomitant cessation of cartilage-specific matrix molecule synthesis 

(Sakata et al., 2013; Diekman and Guilar, 2013). 

Recent studies have focused on elimination of catabolic factors that develop 
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cartilage destruction. 

There are many causes that progress OA, for example, joint instability 

and injury, and aging. These activate catabolic biochemical pathways in 

chondrocytes including matrix degrading enzymes, matrix metalloproteinases 

(MMPs) and aggrecanases (ADAMTSs). This results in degradation of 

cartilage matrix and deterioration in OA symptoms. Thus, inhibiting these 

catabolic factors serve as an attractive therapeutic approach that delays 

erosion of the cartilage matrix and further OA advancement. 

Particularly, recent trends in research as a new therapeutic strategy for 

treating degenerative cartilage are removing cells aged in cartilage and bone 

tissue and expressing a matrix degrading enzyme protein and 

inflammation-related proteins, that can accelerate the progression of 

degenerative arthritis (Farr et al., 2017; Jeon et al., 2017). In addition, when 

traumatic arthritis is induced, chondrocytes in the superficial zone of the 

joints’ cartilage express catabolic mediators and cause cartilage damages. 

Inducing superficial chondrocyte death reduces the progression of murine 

posttraumatic osteoarthritis (Zhang et al., 2016).

Delaying cartilage damage through inhibition of catabolic factors is 

insufficient to obtain the regenerative effect in cartilage tissue.

   A therapeutic strategy by finding factors and cells that regulate cartilage 

degeneration and eliminating them is merely possible to delay in the 

progression of cartilage degeneration. There is a limit to regenerating the 

cartilage matrix in which destruction has progressed.

   Moreover, because degenerative arthritis is more common in elderly 

people and cartilage tissue of aged mammals spontaneously undergoes almost 

no turnover, side-effects are expected when applying a method of removing 

cartilage cells as a treatment for patients with degenerative arthritis.



- 8 -

Stimulating the innate repair capacity in articular cartilage will be  possible 

through activation of cartilage anabolic genes. 

The current paradigm is that articular cartilage possesses only a 

marginal capacity for self-repair, partly because this avascular tissue has 

limited access to nutrients and oxygen. Furthermore, this regenerative 

capacity appears to further decline with age and post-traumatic events, 

rendering OA an irreversible degenerative disease of the connective tissues. I

undertook this study to investigate whether it is feasible to stimulate the 

innate repair capacity of articular cartilage and possibly reverse the disease 

progression of OA. 

Here, I demonstrate that tankyrase inhibition serves as a potential 

therapeutic strategy, enabling reconstruction of the cartilage matrix and 

reversion of OA-associated phenotypes, at both the molecular and organismal 

levels.
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MATERIALS AND METHODS

In silico analysis of multi-tissue transcriptomes of the BXD mouse 

population. 

   Cartilage (GN208) (Suwanwela et al., 2011), bonefemur(GN411) (Farber et 

al., 2009), kidney(GN118), lung(GN160) (Alberts et al., 2011), 

andbrain(GN123) (Saba et al., 2006) data sets were obtained from 

GeneNetwork (www.genenetwork.org). Probes in the data sets were 

reannotated using the illuminaMousev1.db 1.26.0, lluminaMousev1p1.db 

1.26.0, or mouse4302.db 3.2.3 R packages. For the cartilage and bone femur 

data sets, a probe having non-overlapping SNPs, ‘Perfect’ quality, and the 

highest expression was used for each transcript. For the other data sets, the 

probe with the highest expression was used for each transcript. Data values 

were clustered using the hierarchical clustering algorithm (complete linkage 

and uncentered correlation distance) in Cluster 3.0 

(http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm), and correlation 

heatmaps were drawn with Gitools 2.3.1 (Perez-Llamas and Lopez-Bigas, 2011). 

Factor analysis was performed using IBM SPSS Statistics 24 

(http://www.ibm.com/analytics/us/en/technology/spss/). Principal component 

analysis was used to extract two factors, and factor scores were calculated 

using a regression method.

Animals. 

   All animal studies were conducted with the approval of the Seoul 

National University Institutional Animal Care and Use Committee (IACUC). 

I conformed to the ARRIVE guidelines (https://www.nc3rs. 

org.uk/arrive-guidelines) for reporting animal experiments (Kilkenny et al., 

2010). 
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Primary culture of mouse articular chondrocytes. 

   For the primary culture of mouse articular chondrocytes, cells were 

isolated from femoral condyles and tibial plateaus of 4–5-day-old ICR mice, 

as described previously (Gosset et al., 2008). Chondrocytes were maintained in 

DMEM supplemented with 10% fetal bovine serum (FBS), 100 units/ml 

penicillin, and 100 μg/ml streptomycin, and cells were treated as indicated 

in each experiment. Transfection was performed with METAFECTENE PRO 

(Biontex) according to the manufacturer’s protocol. Small interfering RNAs 

(siRNAs) used for RNA interference (RNAi) in mouse articular chondrocytes 

are listed in Table 1. All siRNAs, including negative control siRNA, were 

purchased from Bioneer. 

Tankyrase, PARP1/2, or β-catenin responsive transcription inhibitors. 

   XAV939 (X3004), IWR-1 (I0161), JW55 (SML0630), and WIKI4 

(SML0760) were obtained from Sigma-Aldrich. G007-LK (B5830) was 

purchased from Apexbio, G244-LM (1563007-08-8) was from AOBIOUS, 

MN-64 (HY19351) from MedChem Express, and AZ6102 (S7767) from 

SelleckChem, and TC-E 5001 (5049) from Tocris. Tankyrase inhibitors were 

classified into three different classes depending on their mode of action 

(Lehtio and Krauss, 2013; Haikarainen et al., 2014). ABT-888 (11505) was 

purchased from Cayman. 

RT-PCR and qPCR. 

   Total RNAs were extracted using TRI reagent (Molecular Research 

Center, Inc.). RNAs were reverse transcribed using EasyScript Reverse 

Transcriptase (Transgen Biotech). Then, cDNA was amplified by PCR or 

qPCR with the primers listed in Table 2. qPCR was performed with SYBR 

TOPreal qPCR 2× preMIX (Enzynomics) to determine transcript abundance. 

Transcript quantity was calculated using the ∆∆Ct method, and Hprt or 
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HPRT1 levels were used as housekeeping controls. The log2 (fold change) 

values of cartilage matrix genes in siRNA-treated mouse articular 

chondrocytes were clustered using the hierarchical clustering algorithm 

(average linkage and centered correlation distance) in the factoextra 1.0.4 R 

package. PCA was conducted using the same R package.

Antibodies. 

   Anti-FLAG tag antibody (3165) was purchased from Sigma-Aldrich. 

Antibodies against GFP (sc-9996), Sox-9 (sc-20095), Tankyrase-1/2 

(sc-8337), Actin (sc-1615), Ubiquitin (sc-8017), normal mouse IgG (sc-2025), 

and normal rabbit IgG (sc-2027) were purchased from Santa Cruz 

Biotechnology. The antibody against Sox-9 from Santa Cruz was used only 

in Figure 7e. Antibodies against aggrecan (AB1031) and type II collagen 

(MAB8887) were purchased from Millipore, and antibodies against Myc tag 

(2276) and Sox9 (82630) were purchased from Cell Signaling Technology. 

Prior to detection of aggrecan, samples were treated with chondroitinase 

ABC (C3667) from Sigma-Aldrich. Antibodies against HA tag (ab911) were 

purchased from Abcam. All primary antibodies were used according to the 

manufacturer’s protocol. 

Whole-cell lysate preparation. 

   Whole-cell lysates were prepared in RIPA buffer (150 mM NaCl, 1% 

NP-40, 50 mM Tris, pH 8.0, 0.5% sodium deoxycholate, 0.1% SDS) 

supplemented with a protease inhibitor cocktail (Sigma-Aldrich). The lysates 

were quantified using a BCA assay and analyzed by SDS-PAGE.

Mouse limb-bud micromass culture.

   For the micromass culture of mesenchymal cells, limb-bud cells were 

isolated from E11.5 ICR mouse embryos. 2.0 × 107cells/ml were suspended 
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in DMEM supplemented with 10% FBS, 100 units/ml penicillin, and 100 

μg/ml streptomycin, and 15-µl drops were spotted on culture dishes. After 

24 h, cells were treated as indicated for 3 days and subjected to Alcian 

Blue staining.

Tri-lineage differentiation of human mesenchymal stem cells. 

   hMSCs were purchased from Lonza and Thermo Scientific. hMSCs were 

cultured in α-MEM supplemented with 20% FBS, 100 units/ml penicillin, 

100 μg/ml streptomycin, and 250 ng/ml amphotericin B. To induce 

osteogenesis or adipogenesis, 1.0 × 105 hMSCs were cultured in 12-well 

plates with osteogenic medium with or without indicated drugs for 14 days 

or adipogenesis medium with or without indicated drugs for 18 days, 

respectively. Osteogenic medium consisted of α-MEM supplemented with 

10% FBS, 100 units/ml penicillin, 100 μg/ml streptomycin, 250 ng/ml 

amphotericin B, 50 μM L-ascorbic acid, 0.1 μM dexamethasone, and 10 

mM β-glycerophosphate. Adipogenic medium consisted of α-MEM 

supplemented with 10% FBS, 100 units/ml penicillin, 100 μg/ml 

streptomycin, 250 ng/ml amphotericin B, 0.5 mM 

3-isobutyl-1-methylxanthine, 1 μM dexamethasone, and 200 μM 

indomethacin. To analyze differentiation, Oil Red O or Alizarin Red S 

staining was used. To induce chondrogenesis, 2.5 × 105 hMSCs were 

centrifuged to form a pellet in α-MEM supplemented with 20% FBS, 100 

units/ml penicillin, 100 μg/ml streptomycin, and 250 ng/ml amphotericin B. 

After 3 days, the medium was changed to chondrogenic medium consisting 

of DMEM/F-12 supplemented with 100 units/ml penicillin, 100 μg/ml 

streptomycin, 250 ng/ml amphotericin B, 1.25 mg/ml BSA, 1% 

Insulin-Transferrin-Selenium, 1 mM Sodium pyruvate, 50 μM L-aspartic acid, 

50 μM L-proline, 100 nM dexamethasone, and 10 ng/ml of TGF-β1 with or 

without indicated drugs. On day 21 (for drug treatment) or day 28 (for 
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siRNA treatment), cells were harvested and subjected to Alcian Blue/Fast 

Red staining.

Plasmids. 

   Human SOX9 cDNA (hMU008919) was purchased from Korea Human 

Gene Bank and subcloned into a pcDNA3-HA plasmid. To generate mutant 

constructs, PCR-mediated mutagenesis was conducted. The GFP-tagged 

human TNKS1 plasmid was a gift from Dr. Chang-Woo Lee, and the 

Myc-tagged human TNKS2 plasmid was a gift from Dr. Junjie Chen. The 

SOX9 reporter construct was a gift from Dr. Veronique Lefebvre. Human 

TNKS2 cDNA was subcloned into a pEGFP-C1 plasmid to construct a 

GFP-tagged human TNKS2 plasmid. A control shRNA sequence was 

inserted into the pLKO.1 puro and pLKO.1 hygro plasmids. Human TNKS1

and TNKS2 shRNA sequences were inserted into the pLKO.1 puro and 

pLKO.1 hygro plasmids, respectively. The shRNA sequences targeting human 

TNKS1 or TNKS2 were as described previously (Huang et al., 2009). Mouse 

Tnks1 and Tnks2 shRNA sequences were inserted into the pLKO.1 puro and 

pLKO.1 hygro plasmids, respectively. The shRNA sequence targeting mouse 

Tnks1 was as described previously (Levaot et al., 2011). The primers used to 

generate the above plasmids are listed in Tables 3,4 and 5.

Generation of control shRNA or TNKS1/2 shRNA–infected human 

mesenchymal stem cells. 

   psPAX2 and pMD2.G were transfected to HEK293T. After 3 days, cell 

supernatants were harvested and filtered through a 0.45-μm filter. hMSCs 

were treated with 8 μg/ml polybrene and infected with the indicated 

lentiviruses. Twenty-four hours after infection, hMSCs were selected with 5 

μg/ml puromycin and 200 μg/ml hygromycin for 4 days.
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Preparation of hydrogels and in vivo confirmation of controlled release of 

embedded molecules. 

   6-O-Palmitoyl-l-ascorbic acid (76183) was purchased from Sigma-Aldrich. 

Hydrogels were prepared with 6-O-Palmitoyl-l-ascorbic acid as described 

previously (Zhang et al., 2015). DiD percholate (5702) purchased from Tocris 

was loaded into the hydrogels and used for imaging of controlled release in 

mouse knee joints. PBS-suspended hydrogel (10 μl, PBS:hydrogel = 1:1) 

containing 50 pmol DiD was administered intra-articularly, and at 1–9 days 

post-injection, light-emitting diode (LED) and fluorescence images of knee 

joints were obtained. LuminoGraph II (Atto) was used to acquire the 

images.

Experimental OA in mice. 

   Eight-week-old male ICR mice were used for experimental OA. 

Experimental OA was induced by DMM surgery on the right hindlimb, and 

sham surgery was conducted on the left hindlimb as a control (Glasson et al., 

2007). 10 μl of PBS-suspended hydrogel (PBS:hydrogel = 1:1) containing 

vehicle or 10 nmol drugs was administered intra-articularly.

Rat osteochondral defect model. 

   Twelve-week-old male Sprague Dawley rats were used as the 

osteochondral defect model. To expose the articular cartilage in the knee 

joints, a medial parapatellar incision was made and the patella was slightly 

displaced toward the medial condyle. A full-thickness cartilage defect (3 mm 

× 1 mm × 1 mm) was created using a 1-mm-diameter spherical drill at the 

surface of the femoral patellar groove. At the same time, hMSCs were 

suspended in 10 µl of fibrin glue (TISSEEL) by tapping, and implanted on 

the defect. To avoid immune rejection, cyclosporine A (C988900) from 
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Toronto Research Chemicals was injected intra-peritoneally every day. At 8 

weeks, rats were sacrificed for histological analyses.

Histology and immunohistochemistry. 

   Mouse or rat knee joint samples were fixed with 4% paraformaldehyde 

overnight at 4°C, decalcified in 0.5 M EDTA, pH 7.4, for 2–4 weeks at 

4°C, and embedded in paraffin. Paraffin blocks were sectioned at a 

thickness of 6 μm. For Safranin O staining, Alcian Blue/Fast Red staining, 

or immunostaining, sections were deparaffinized in xylene and hydrated 

using a graded ethanol series. To assess cartilage destruction, Safranin O 

stained samples were graded based on the Osteoarthritis Research Society 

International (OARSI) (Glasson et al., 2010) by three blinded observers. 

Cartilage regeneration was scored according to the International Cartilage 

Repair Society (ICRS) scoring system (van den Borne et al., 2003; 

Mainil-Varlet et al., 2003) by three blinded observers. 

Immunoprecipitation. 

   Cells were treated with 10 μM of MG-132 (A2585) from ApexBio for 6 

h before lysis, except for those shown in Figure 8a and 9c,d. Cell lysates 

were prepared using EBC200 buffer (50 mM Tris-HCl, pH 7.4, 150 mM 

NaCl, 0.5% NP-40 and 1 mM EDTA) supplemented with the protease 

inhibitor cocktail. To detect PARylated proteins, 5 µM of ADP-HPD 

(118415) from Calbiochem was added to the lysis buffer. Cell lysates were 

used for pulldown with the indicated antibodies and protein A/G-Sepharose 

beads (GE Healthcare). The mixture was incubated for overnight at 4°C and 

washed five times with EBC200 buffer. The bound proteins were subjected 

to SDS-PAGE or LC-MS/MS analysis.

Endogenous TNKS1/2 pulldown and mass spectrometry. 
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   Primary mouse articular chondrocytes were grown for 4 days followed 

by 6 h of treatment with 10 µM MG132 (Apexbio, A2585). Cells were 

lysed, and lysates were incubated with normal rabbit IgG or endogenous 

TNKS1/2. The bound proteins were eluted with 8 M urea in 50 mM 

NH4HCO3 buffer, pH 8.2 for 1 h at 37°C, and in-solution digestion was 

performed as described previously (Kim et al., 2013). Peptide sequencing 

was carried out by LC-MS/MS on a Thermo Ultimate 3000 RSLCnano 

high-pressure liquid chromatography system coupled to a Thermo Q-Exactive 

Hybrid Quadrupole-Orbitrap mass spectrometer. LC-MS/MS raw data were 

converted into .mzML files using ProteoWizard MSConvert 3.0.8789 

(Chambers et al., 2012), and the MS-GF+ algorithm (Kim and Pevzner, 2014) 

with a parameter file consisting of no enzyme criteria and static cysteine 

modification (+57.022 Da) was used for comparison of all MS/MS spectra 

against the mouse Uniprot database (release 08-Jun-2016). The final peptide 

identifications had < 1% false discovery rate (FDR) q, at the unique peptide 

level. Only fully tryptic and semitryptic peptides were considered. For each 

biological replicate, proteins that were detected only once and proteins that 

were coimmunoprecipitated with normal rabbit IgG were not considered. For 

proteins detected in more than one biological replicate, the Venn diagram 

was drawn with eulerAPE v3 (Micallef and Rodgers, 2014).

In silico prediction of Tankyrase substrate proteins. 

   The 8 × 20 position-specific scoring matrix (PSSM) generated in 

Guettler et al.19 was used to calculate a TTS for each octapeptide in the 

proteins identified by LC-MS/MS.

TTS = 
max 

  



 


  




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   Only those proteins having at least one octapeptide with a TTS of ≥ 

0.385 were considered. This cutoff is the TTS of the TNKS-binding motifs 

of mouse AXIN1 and AXIN2. AXIN1 and AXIN2, known tankyrase 

substrates (Huang et al., 2009), have the lowest maximum TTS among the 

known tankyrase substrates, due to the suboptimal amino acids at the 4th

and 5th positions (Guettler et al., 2011). For further screening, the 

chondrogenesis category in IPA (release Sep-2016) 

(https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/) 

was used. The mouse proteins in the IPA chondrogenesis category are listed 

in Table 6. For the candidate proteins, were calculated for the 

octapeptides with a TTS of ≥ 0.385. The heatmap of TTS and IUPred 

disorder scores for candidate proteins was drawn with Gitools 2.3.1 

(Perez-Llamas and Lopez-Bigas, 2011).

Cell line culture. 

   HEK293 and HEK293T were cultured in DMEM containing 10% FBS, 

100 units/ml penicillin, and 100 μg/ml streptomycin. Transfection was 

performed with METAFECTENE PRO or PEI transfection reagent 

(Sigma-Aldrich) according to the manufacturer’s protocol. The siRNAs used 

in HEK293T are listed in Table 1. The siRNA sequences targeting TNKS1

or TNKS2 were described previously (Huang et al., 2009).

Sequence alignment of TBD1 and TBD2 of SOX9 among vertebrates. 

  For the sequence alignment of TBD1 and TBD2 of SOX9 among 

vertebrates, NP_000337.1 (Homo sapiens SOX9), NP_035578.3 (Mus 

musculus SOX9), NP_989612.1 (Gallus gallus SOX9), NP_001016853.1 

(Xenopus tropicalis SOX9), and NP_571718.1 (Danio rerio SOX9) were 

used.

Structural modeling of protein-peptide interactions. 
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   GalaxyPepDock (Lee et al., 2015) was used for modeling of the ARC4 

domain of human TNKS2 in complex with the TBD1 or TBD2 peptide of 

human SOX9. The structures of ARC4:3BP2 (PDB ID: 3TWR) and 

ARC4:MCL1 (PDB ID: 3TWU) were obtained from Guettler et al (Guettler 

et al., 2011). The ARC4 domain of human TNKS2 (PDB ID: 3TWU_A) and 

MCL1 peptide (PDB ID: 3TWU_B) were used as templates. The MCL1 

peptide was substituted by the TBD1 (255–266 aa) or TBD2 (269–280 aa) 

peptide of human SOX9 and docked into a complex. The best predicted 

model for each of ARC4:SOX9 TBD1 and ARC4:SOX9 TBD2 was selected. 

The model structures were superimposed with ARC4:3BP2 and ARC4:MCL1 

and visualized using the BIOVIA Discovery Studio Visualizer 4.0 

(http://accelrys.com/products/collaborative-science/biovia-discovery-studio/visuali

zation.html).

Reporter gene assay. 

   A firefly luciferase reporter plasmid with SOX9-dependent Col2a1

enhancer elements (Murakami et al., 2000) was used to quantify the 

transcriptional activity of SOX9. Primary mouse articular chondrocytes or 

HEK293T cells were transfected with both a reporter plasmid and a 

constitutive Renilla luciferase plasmid. Cells were also treated with siRNAs 

or drugs as indicated. Renilla and firefly luciferase activity were sequentially 

measured using a Dual Luciferase Assay Kit (Promega). Renilla luciferase 

was used as a control.

Statistical Analysis. 

   All experiments were carried out independently at least three times. All 

images are representative of at least three independent trials. For parametric 

tests, two-tailed Student’s t test or one-way analysis of variance (ANOVA) 

followed by Fisher’s least significant difference post-hoc test were used. For 
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nonparametric tests, the Mann-Whitney test was used. All statistical analysis 

was performed using IBM SPSS Statistics 24. A P-value < 0.05 was 

considered statistically significant.
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Supplementary Table 1. List of siRNAs.
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Supplementary Table 2. List of PCR primers.  
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Supplementary Table 3. List of primers used for cloning.
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Supplementary Table 4. List of primers used for mutagenesis.
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Supplementary Table 5. List of primers used for shRNA plasmid 

construction.
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Supplementary Table 6. List of mouse proteins in the IPA chondrogenesis

category.
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RESULTS

To screen for a key regulatory factor that could be targeted to initiate 

cartilage matrix anabolism, I conducted genetic analysis of transcriptomes of 

mouse reference populations using post-hoc factor analysis. First, I assessed 

transcriptional variance in the cartilage tissues of 16 strains of BXD mice 

(Suwanwela et al., 2011). I noted strong positive correlations among levels of 

transcripts encoding cartilage matrix genes (Fig. 1a) (Heinegard and Saxne, 

2011). These high correlations were absent in organs without cartilaginous 

functions (Fig. 1b). I then attempted to extract a common axis underlying 

cartilage anabolism by performing a principal component analysis (PCA) on 

14 highly inter-correlated cartilage matrix genes. The first axis I identified 

(Factor 1) essentially reflects the state of cartilage matrix anabolism (Fig. 

2a). I further computed Pearson correlation coefficients between Factor 1 

and various genes annotated as transcription factors, enzymes, or signaling 

molecules of unknown function in cartilage. Tankyrase (encoded by Tnks1 or 

Tnks2) was found to possess a striking negative correlation with this 

anabolic axis as well as individual cartilage matrix genes, Col2a1 and Acan, 

and was selected as a candidate (Fig. 2a,b).
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Figure 1. There are positive inter-correlations among transcript levels of 

cartilage matrix genes in the cartilage tissues of 16 strains of BXD mice. 

(a) Heatmap of Pearson correlation coefficients of transcript levels for 

cartilage matrix genes in the cartilage tissue. (b) Heatmaps of Pearson 

correlation coefficients of transcript levels for cartilage matrix genes in bone 

femur, kidney, lung, and brain.



- 29 -

Figure 2. Identification of tankyrase as a candidate gene for cartilage 

anabolic genes regulator. (a) Factor loadings plot of 14 cartilage matrix 

genes in terms of transcript abundance, with Tnks1/2 added to the plot. (b) 

Correlation between Tnks1/2 and Col2a1 or Acan mRNA levels.
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Tankyrase belongs to the poly(ADP-ribose) polymerase (PARP) 

superfamily, which catalyzes addition of ADP-ribose moieties onto substrate 

proteins (Riffell et al., 2012; Levaot et al., 2011; Cho-Park and Steller, 2013; 

Guettler et al., 2011; Chang et al., 2005; Huang et al., 2009; Smith et al., 1998). 

Next, I examined the potential regulatory role of tankyrase in cartilage. Both 

tankyrase knockdown and specific inhibition by XAV939 (Huang et al., 2009)

or IWR-1 (Huang et al., 2009) caused the collective expression of 

cartilage-specific matrix genes in chondrocytes (Fig. 3a-c). However, the 

PARP1/2 inhibitor ABT-888 failed to increase their expression (Fig. 3c).

Because mesenchymal progenitor cells are responsible for the 

regenerative capacity of damaged cartilage, I examined how tankyrase 

inhibition influences chondrogenic differentiation in mesenchymal stem 

cells11,23. Tankyrase inhibitors effectively induced chondrogenic nodule 

formation in micromass cultures of mouse limb-bud mesenchymal cells (Fig. 

4a). Similarly, both pharmacological inhibition and knockdown of TNKS1/2

effectively enhanced chondrogenic differentiation of human bone 

marrow–derived mesenchymal stem cells (hMSCs) (Fig. 4b-d). In contrast, 

tankyrase inhibition reduced osteogenesis and exerted no significant effect on 

adipogenesis of hMSCs (Fig. 5a,b).

I next evaluated the effect of tankyrase inhibition on stem cell–based 

restoration of hyaline cartilage. A full-thickness osteochondral lesion was 

filled with fibrin gel containing hMSCs transduced with control or TNKS1/2

shRNAs. After 8 weeks, defects transplanted with hMSCs-control shRNA 

failed to fully recover hyaline cartilage organization, instead exhibiting 

features of fibrocartilage (Fig. 6a-e). However, lesions implanted with 

hMSCs-shTNKS1/2 had regenerated hyaline cartilage similar to articular 

cartilage, with robust accumulation of cartilage-specific matrix.
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Figure 3. Tankyrase inhibition increases mRNA and protein levels of 

cartilage-specific matrix genes in mouse articular chondrocytes. (a) Mouse 

chondrocytes were treated with the indicated siRNAs (n ≥ 5) or (b,c) drugs 

(n = 7). Col6a5, Col6a6, and Col13a1 mRNAs were undetected. Data 

represent means ± s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001; by t test 

(a) or ANOVA (b,c). 
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Figure 4. Tankyrase inhibition enhances chondrogenic differentiation in 

mesenchymal stem cells. (a) Alcian Blue staining of micromass cultured 

mouse limb-bud mesenchymal cells in the absence or presence of 10 μM of 

XAV939, IWR-1, or ABT-888 (left). Scale bar, 1 mm (top), 300 μm 

(bottom). Absorbance quantitation from stained cells (right; n = 4) (b-d) 

Histology of hMSC pellets stained by Alcian Blue. (b) Images of pellets 

infected with the indicated shRNA lentiviruses. (c) Knockdown efficiency of 

shRNAs (n = 4). (d) Images of pellets treated with the indicated drugs. 

Scale bars, 100 μm (b,d). Data represent means ± s.e.m. **P < 0.01, ***P

< 0.001; by ANOVA (a) or t test (c). 
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Figure 5. Tankyrase inhibition reduces osteogenesis and has no effect on 

adipogenesis. (a) Alizarin Red S Staining of osteogenesis-induced hMSCs in 

the absence or presence of 10 μM of XAV939, IWR-1, or ABT-888 (left). 

Scale bars, 100 μm. Absorbance of extracted Alizarin Red S from stained 

cells (right; n ≥ 6). (b) Oil Red O staining of adipogenesis-induced hMSCs 

in the absence or presence of 10 μM of XAV939, IWR-1, or ABT-888 

(left). Scale bars, 50 μm. Absorbance of extracted Oil Red O from stained 

cells (right; n = 4). Data represent means ± s.e.m. *P < 0.05, ***P < 

0.001; by ANOVA (a,b). 
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Figure 6. Knockdown of tankyrase in mesenchymal stem cells enhances in 

vivo cartilage repair in a rat osteochondral defect model. (a) hMSCs infected 

with control or TNKS1/2 shRNA lentiviruses were implanted in the 

full-thickness cartilage lesions of rat knee joints with fibrin gel constructs. A 

fibrin-only group was used as a control. Gross appearance of the indicated 

groups 8 weeks after transplantation. Transplantation of hMSCs with 

TNKS1/2 knockdown resulted in superior healing, filling lesions with 

cartilage-like tissues. (b) Gross appearance (top) and histological images 

(middle and bottom) of cartilage lesions. ▼ indicates the graft sites. (c) 

Cartilage regeneration as evaluated using the ICRS macroscopic score system 

(n = 6). (d) Cartilage repair was assessed using various criteria of the ICRS 

visual histological score system for in vivo repaired cartilage (n = 6) (e) 

immunostaining of cartilage matrix proteins, Type Ⅱ Collagen and Aggrecan. 

Data represent means ± s.e.m. *P < 0.05, **P < 0.01; by ANOVA. 
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Next, to elucidate the molecular mechanism of tankyrase function in 

regulating cartilage regeneration, I searched for tankyrase-interacting proteins 

by performing coimmunoprecipitation experiments followed by liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) analysis (Fig. 7a,b). 

Candidate substrates were screened using a tankyrase- targeting score (TTS) 

system (Fig. 7c) (Guettler et al., 2011). Ingenuity pathway analysis (IPA) 

revealed that 4 candidate proteins above the TTS cutoff fell into the 

chondrogenesis category. Unlikely targets, with tankyrase-binding motifs in a 

structured region, were further filtered out by IUPred disorder score (Fig. 

7d) (Dosztanyi et al., 2005). SOX9 showed high TTS and disorder scores. 

Binding of tankyrase with SOX9 was confirmed by immunoprecipitation 

assays (Fig. 7e and Fig. 8a). Moreover, interaction between Tankyrase and 

SOX9 was shown in mouse chondrocytes by a Duolink assay (Fig. 8b). The 

two tankyrase-binding domains (TBDs) of SOX9, designated TBD1 and 

TBD2, are highly conserved among vertebrates (Fig. 9a). Based on structural 

simulations, the TBD1 and TBD2 peptides fit into the binding pocket 

located central to the ankyrin repeat cluster (ARC) domains of tankyrase, in 

which known substrates, 3BP2 and MCL1, are aligned (Fig. 9b). Indeed, 

deletion of either TBD1 or TBD2 significantly impaired the binding affinity 

of SOX9 for tankyrase (Fig. 9c); simultaneous deletion of both TBDs nearly 

abolished the association (Fig. 9d). Consistently, wild-type SOX9 underwent 

extensive poly(ADP-ribosyl)ation (PARylation), whereas the SOX9 mutant 

missing both TBDs exhibited a markedly reduced extent of PARylation (Fig. 

9e). 

SOX9, a master transcription factor of chondrogenesis, transcribes 

various cartilage-specific matrix genes (Ohba et al., 2015). I explored whether 

tankyrase inhibition affected the transcriptional activity of SOX9. Tankyrase 

inhibition using various classes of drugs or siRNAs specifically increased the 

transcriptional activity of SOX9 (Fig. 10a-c). 
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Figure 7. Identification of SOX9 as a novel tankyrase substrate. (a) 

Flowchart of tankyrase substrate identification in chondrocytes. (b) Venn 

diagram illustrating the overlap of tankyrase-binding proteins identified by 

three biological replicates (BR) using LC/MS-MS. (c) Histogram of the 

maximum TTS of the identified tankyrase-binding proteins. ▼ indicate the 

bins that include proteins implicated in chondrogenesis. (d) Heatmap of the 

TTS and disorder score of TBDs from the predicted tankyrase-binding 

proteins. (e) Coimmunoprecipitation of endogenous TNKS1/2 with SOX9 in 

chondrocytes. 
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Figure 8. Endogenous interaction between tankyrase and SOX9. (a) 

Pull-down assays of GFP-tagged TNKS or TNKS2 with HA-tagged SOX9 in 

HEK293T cells. (b) Detection of TNKS1/2 and SOX9 co-localization (red) 

in mouse chondrocytes by a Duolink assay. DAPI staining (blue). Scale 

bars, 25 μm (top) and 10μm (bottom). 
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Figure 9. Tankyrase binding domain 1 and 2 of SOX9 are responsible for 

tankyrase binding. (a) Schematic representation of the predicted TBDs in 

human SOX9 protein (top) and sequence alignment of TBD1 and TBD2 of 

SOX9 among vertebrates (bottom). Colored letters indicate the consensus 

amino acid sequence of TBDs. (b) Superimposition of TNKS2:3BP2 and 

TNKS2:MCL1 complexes with TNKS2 bound to SOX9-TBD1/2. (c) 

Pull-down assays of Myc-tagged TNKS2 with HA-tagged wild-type SOX9 or 

TBD1 or TBD2 deleted SOX9 mutants in HEK293T cells. (d) Pull-down 

assay of TNKS2 with wild-type or TBD1/2-deleted SOX9 in HEK293T 

cells. (e) PARylation of wild-type or TBD1/2-deleted SOX9 in HEK293T 

cells.  
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Figure 10. Tankyrase inhibition enhances the transcriptional activity of 

SOX9. (a-c) SOX9-dependent Col2a1 enhancer activity was measured with a 

reporter gene assay in mouse articular chondrocytes after (a) siRNA (n = 3) 

or (b) drugs (n ≥ 5). (c) SOX9 reporter gene assay in mouse articular 

chondrocytes treated with 10 μM of various classes of tankyrase inhibitors 

for 48 h (n = 3). Data represent means ± s.e.m. **P < 0.01, ***P < 

0.001; by t test (a) or ANOVA (b,c).



- 42 -

Based on its overall pro-regenerative effects at the cellular level, I 

evaluated the efficacy of tankyrase inhibition in treating OA cartilage in 

vivo, using surgical destabilization of the medial meniscus (DMM) in mice 

(Fig. 12 and Fig. 13). For stable and prolonged delivery of tankyrase 

inhibitors to mouse knee joints, I used injectable hydrogels made of ascorbyl 

palmitate (Zhang et al., 2015). Intra-articular (IA) injection of this 

hydrogel-based drug delivery system allowed controlled release of the loaded 

small molecule to the articular cartilage over 9 days (Fig. 11a,b). IA 

administration of XAV939 or IWR-1 significantly reduced surgically induced 

OA cartilage destruction 8 weeks after surgery (Fig. 12a-c). A concomitant 

increase in type II collagen and aggrecan was observed, further supporting 

the pro-anabolic effects of tankyrase inhibition in vivo (Fig. 12d). 

I further tested the potential of tankyrase inhibition to repair mid-to-late 

stage OA defects. Using a DMM model in mice, I previously showed that 

early osteoarthritic lesions are observed 2 weeks after surgery (Kim et al., 

2015), and the disease progresses to the mid-to-late stage 6 weeks after 

surgery (Fig. 13b, left). Following drug exposure for an additional 6 weeks 

(Fig. 13a), vehicle-treated mice experienced further OA progression and 

damage of cartilage (Fig. 13b, center). In contrast, XAV939 treatment to 

mid-to-late stage OA mice attenuates articular cartilage destruction  (Fig. 

13b, right). Taken together, my results clearly indicate that tankyrase 

inhibition exerts regenerative effects in mice, highlighting its promise as a 

therapeutic strategy for OA. 
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Figure 11. Hydrogel made from ascorbyl palmitate mediates controlled 

release in mouse knee joints. (a) Light-emitting diode (LED) and fluorescence 

images of mouse knee joints intra-articularly injected with carrier-free DiD or 

DiD-loaded ascorbyl palmitate hydrogel. Images were acquired on the indicated days 

after injection. (b) Fluorescence images of mouse femur (femoral condyle) and tibia 

(tibial plateau) with carrier-free DiD or DiD-loaded ascorbyl palmitate hydrogel. 

Images were acquired at 9 days after IA injection.
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Figure 12. Tankyrase inhibition enhances cartilage repair in a 

surgically-induced OA model. (a) Schematic illustration of the destabilization 

of the medial meniscus (DMM) model and treatment schedule in mouse. 

(b,c) Cartilage destruction assessed by (b) Safranin O staining and (c) 

OARSI grade (n = 10). (d) Immunohistochemical staining for cartilage 

matrix proteins, Type Ⅱ Collagen and Aggrecan. Data represent means ± s.e.m. 

*P < 0.05, **P < 0.01, ***P < 0.001; by Mann-Whitney U test.  
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Figure 13. Tankyrase inhibitor XAV939 enhances cartilage repair in 

advanced OA. (a) Schematic representation of controlled drug delivery to 

DMM-operated mice. (b) Cartilage destruction assessed by Safranin O 

staining (n ≥ 14). Scale bar: 200 μm. (c) OARSI grades of articular 

Cartilage destruction for the vehicle- (n = 14) and XAV939-treated groups 

(n = 15). Data represent means ± s.e.m. *P < 0.05; by Mann-Whitney U

test.
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DISCUSSION

OA is degenerative disease, which involves progressive and irreversible 

destruction of articular cartilage. In this perspective, previous studies have 

focused on the discovery of several key catabolic regulators contributing to 

cartilage destruction (Liu-Bryan and Terkeltaub, 2015; Kim et al., 2014).

I analyzed cartilage matrix anabolism in mouse cartilage to find a 

regulator of it. This trial has not been approached in previous studies and 

can be a effective strategy for repairing cartilage. Identifying and controlling 

the regulator of cartilage matrix genes suggests potent way to activate the 

innate repair system blocked in degenerative cartilage tissue of mammals.

The target of tankyrase in chondrocytes that I newly identified is SOX9. 

Surprisingly, SOX9 is a master transcription factor of inducing 

cartilage-specific matrix genes and chondrogenesis (Ohba et al., 2015). In a 

recent report, SOX9 expression was upregulated at stage 1 and suppressed at 

a later stage of OA progression (Zhang et al., 2015). This means that early 

OA is associated with increased anabolic gene expression as a reaction to 

recovery damages and SOX9 plays a key role in repair cartilage. However, 

at a later stage of OA, SOX9 activity is not maintained and insufficient to 

counter the increase in catabolic matrix degrading enzymes. Therefore, 

upregulation of SOX9 activity through tankyrase inhibition may enhance 

power to repair cartilage. Chondrocytes and chondrogenic progenitor cells 

obtain more chondrogenic features and express many ECM genes. 

Tankyrase is well known for its role in regulating Wnt/β-Catenin 

Signaling pathway (Huang et al., 2009). Axin is a component of the β

-catenin destruction complex and tankyrase PARylates Axin. RNF146, a 

RING-domain E3 ubiquitin ligase promotes degradation of PARsylated Axin 
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by ubiquitylation (Zhang et al., 2011). Thus, it was thought that the effect 

of tankyrase inhibition is a result of RNF146-Axin-dependent regulation. 

However, in my study, the broad regulation of anabolic catilage matrix 

genes by tankyrase inhibition is not explained only through Wnt/β-Catenin 

Signaling. SOX9, newly identified target of tankyrase, may explain the 

pro-regeneration in cartilage. 

In further study to verify this accurately, it will be required to test that 

the regulation of RNF146 or axin also has an anabolic effect of Tankyrase 

inhibition in chondrocytes. RNF146-independent effects of tankyrase 

inhibition may propose a completely novel mechanism in tankyrase-mediated 

mechanisms.

Overall, tankyrase inhibition is not only a wnt inhibition effect that 

limits catabolic degradation pathway, but also direct activation of SOX9 

boosting innate repair capacity (Fig. 14). In particular, I raise the intriguing 

possibility that tankyrase inhibition elicits regenerative signals for 

reconstruction of cartilage at both the molecular and organismal levels. I 

expect my findings to provide guidelines for future development of OA 

therapies aimed at functional repair of articular cartilage.

Finally, my findings have direct implications for developing therapeutic 

strategies for OA by stimulating innate regeneration of cartilage. The 

regenerative capacity of tankyrase inhibition may be attributable to 

combinatorial effects, promoting the expression of cartilage-specific matrix 

proteins by chondrocytes and stimulating the chondrogenesis of stem cells in 

the joint. I expect my findings to provide guidelines for future development 

of OA therapies aimed at functional repair of articular cartilage. 
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Figure 14. Schematic representation of the molecular mechanisms underlying 

the therapeutic effects of tankyrase inhibitors in OA. Chemical structure of 

XAV939 was drawn by ChemDraw.
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국문초록

탄키라아제 억제를 통한 골관절염

연골의 내재된 회복 능력 활성화

김수경

자연과학대학 생명과학부

서울대학교 대학원

골관절염(osteoarthritis)은 만성 퇴행성 질환으로 관절 연골의 점진적

이고 비가역적인 파괴를 수반하는 질환이다. 골관절염 환자의 연골을

재생시키려는 노력에도 불구하고, 성인 연골이 지닌 재생 능력의 한계

로 골관절염의 완전한 치료는 어렵다. 나는 이 연구에서 연골재생을 유

도할 수 있는 인자를 찾아 새로운 골관절염 치료 전략을 제시하고자

한다. 나는 우선 마우스 레퍼런스 집단에서 시스템 수준 요인 분석

(factor anaylsis)을 통해 연골형성 유전자들의 발현을 조절하는 인자로

탄키라아제(tankyrase)를 발굴했다. 탄키라아제 억제는 마우스 연골세

포에서 연골 특이적 세포 외 기질(extracellular matrix) 유전자의 발현

을 증가시킨다. 또한, 탄키라아제 억제는 중간엽 줄기세포의 연골세포

로의 분화를 촉진한다. 랫트(rat)의 골연골 병변(osteochondral defect)

모델에서는 탄키라아제를 억제한 중간엽 줄기세포를 주입시 연골 병변

이 재생됨을 확인했다. 탄키라아제 억제는 연골세포의 마스터 전사인자

(master transcription factor)인 SOX9의 전사인자 활성 조절을 통해

연골재생을 유도한다. 나는 탄키라아제가 SOX9에 결합해 SOX9을
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poly(ADP-ribosyl)ation화시킴을 확인했다. 더불어, 골관절염이 유도된

마우스(mouse) 모델에 하이드로젤 기반으로 탄키라아제 억제제를 전달

해 골관절염의 진행을 억제했다. 위의 결과들은 탄키라아제 저해를 통

한 새로운 골관절염 치료 전략을 제시한다.

………………………………………

주요어 : 탄키라아제(tankyrase), 골관절염(osteoarthritis),

연골재생(cartilage repair), SOX9, PARylation

학 번 : 2016-20376
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