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Abstract

Recently, a lot of single stage detectors using multi—scale features
have been actively proposed. They are much faster than two stage
detectors that use region proposal networks (RPN) without much
degradation in the detection performances. However, the feature
maps in the lower layers close to the input which are responsible for
detecting small objects in a single stage detector have a problem of
insufficient representation power because they are too shallow.
There is also a structural contradiction that the feature maps have to
deliver low—level information to next layers as well as contain high—
level abstraction for prediction.

In this paper, we propose a method to enrich the representation
power of feature maps using Resblock and deconvolution layers. In
addition, a unified prediction module is applied to generalize output
results and boost earlier layers’ representation power for prediction.
The proposed method enables more precise prediction, which

achieved higher score than SSD on PASCAL VOC and MS COCO. In
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addition, it maintains the advantage of fast computation of a single

stage detector, which requires much less computation than other

detectors with similar performance.

Keyword : Object Detection, Neural Network, Deep Learning

Student Number : 2016—26041
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Chapter 1

Introduction

The development of deep neural networks (DNN) in recent years
has achieved remarkable results not only in object detection but also
in many other areas. In the early researches of object detection using
DNN, much attention has been paid to representation learning that
can replace handcrafted features without much consideration on the
speed of detectors. Recently, real—time detectors with low
computational complexities have been actively researched.
Researches on two—stage detectors, mostly based on Faster R—CNN
[21], applied the region proposal network (RPN) and Rol pooling to
the feature maps extracted by a state—of—the—art classifier, such as
ResNet—101 [10]. On the other hand, the single —stage methods such
as YOLO [18] and SSD [17] removed Rol pooling layer and predict

bounding boxes and corresponding class confidences directly while



Figure 1: Box—in—Box problem. Top: SSD300. Bottom: RUN300
(proposed). SSD detects objects with overlapping boxes which are

redundant.

enabling faster detection and end—to—end learning. Especially SSD
makes use of multi—scale feature maps generated from a backbone
network such as VGG—16 [25] to detect objects in various sizes.
Since each of the prediction modules composed of 3x3 convolution
filters detects bounding box on each layer separately, they cannot
reflect appropriate contextual information from different scales. It

causes the problem named as “Box—in—Box” [11] as shown in Figure
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1. In the figure, we can see that SSD often detects a single object
with two overlapping boxes. The smaller box has partial image such
as the upper body of a person or the head of an animal. To solve the
problem, [6, 15] used ResNet and feature pyramid network (FPN)
[14] structure to inject larger contextual information through deep
convolutional back—bone by the use of deconvolution. However,
these structures have the disadvantage of increasing the
computational complexity, thus reduces detection speed, which is a
key advantage of a single—stage detector. In this paper, we propose
very simple ideas to solve the essential problems of multi—scale
single stage detectors. First, we introduce a 3—way residual block,
which is a structure where the Resblock [10] and the deconvolution
layer are added on the multi—scale feature maps. It makes detected
boxes be determined with larger context and be more reliable.
Second, we integrate the multiple prediction modules, which had been
applied separately to each layer, into one to boost information level
of feature maps from earlier layers. The proposed structure, called
“RUN; Residual features and Unified prediction Network”, is a single—
stage detector that combines 3—way Resblock with unified prediction
module on VGG—16 network. RUN is not only very compact and fast
compared to other ResNet—based two—stage detectors and single—
stage detectors using FPN, but it also achieves superior or

competitive performance compared to other competitors.



Chapter 2

Related Works

Overfeat[23], SPPNet[9], R—CNN[8], FastR—CNN[7], Faster R—
CNN [21] and R—=FCN [13] which are classified as region—based
convolutional neural networks (R—CNN) showed a tremendous
improvement in performance compared to the previous object
detection techniques. These region—based approaches have achieved
huge advances over the last few years and are still the state—of—
the—art approaches among many object detection techniques.
Specifically, these approaches usually use a two—stage method of
generating a number of bounding boxes and then assigning a
classification score to the bounding boxes. Thus, although
classification may be relatively accurate, these are too slow to be

used for real—time applications. Redmon et al. [18] proposed a



method named as YOLO to predict bounding boxes and associated
class probabilities in a single step by framing object detection as a
regression problem. It divides input images to grid maps and
regresses bounding boxes for multiple objects on each grid. This was
the beginning of single stage detection and subsequently inspired
structures such as SSD [17]. However, since YOLO uses only the
highest—levell feature maps to detect objects, there is a lack of
lower—level information, which results in somewhat inaccurate
detection, especially for small objects. In order to solve this problem,
SSD [17] utilized not only the highest—level features but also lower—
level features which have enough resolution to detect small objects.
As mentioned in Inside—Outside Net (ION) [1] and HyperNet [12],
each feature maps at different layers have different abstraction levels
for an input image. Therefore, it is clear that using multi—scale
feature maps can improve detection performance for objects of
various scales. In SSD, many default boxes are created in the feature
maps and bounding box regression and classification are performed
for each box area using 3x 3 convolution. This method enables
multiscale object detection without using Rol pooling. In addition, it
can effectively improve the detection accuracy of small objects which
is a disadvantage of YOLO [18]. However, as mentioned in MS—CNN
[2], SSD has the problem that back—propagation allows the gradient

to cause unnecessary deformations in the feature maps since the



feature maps of the backbone network are used directly in bounding
box regression and classification. Then, it can lead to some instability
during learning. In addition, since each classifier only uses single
scale feature maps, it cannot reflect larger or smaller contextual
information other than the one for the corresponding scale. Recently,
various methods have attempted to enhance the contextual
information of each layer while taking advantage of SSD [17]. DSSD
[6] could obtain higher accuracy by changing the base network to
ResNet—101 [10] and combining the FPN [14] using deconvolution
layers in combination with the existing multiple layers to reflect the
large—scale context. However, with the use of deep structure of
ResNet—101 and deconvolution layers, the processing speed
degrades much (under 16.4 images per second), which prohibits the
method to be used for real—time detection problems. Ren et al. [20]
introduced a recurrent rolling convolution (RRC) architecture to
improve detection performance by mutually complementing layers
having different sizes of contextual information. RRC made multi—
scale feature maps include large and small context by concatenating
adjacent feature maps by pooling and deconvolution. This process
was implemented by RNN structure and it allowed to reflect not only
the information of the adjacent feature maps but also the information
of the remote feature maps. Unlike RRC[20], Rainbow SSD([R-

SSD) [11]proposed a method to concatenate feature maps not only in



the adjacent layers but also in all the layers for bounding box
regression and classification using pooling and deconvolution. It
achieves higher performance than SSD by enhancing representation
power of feature maps. Also, by making the dimension of each layer
the same, it made it possible to use a unified prediction module
instead of different prediction modules for different layers. Woo et al.
[27] proposed StairNet which utilizes both FPN [14] structure of
base VGG—16 network and unified prediction of R—SSD. Additionally,
Lin et al. [15] redefined the loss term for object detection which is
named as FocallLoss. Unlike other batch reconstruction methods like
OHEM [24], it effectively resolves the foreground—background
imbalance problem by changing the loss term. Their RetinaNet which
uses Focal Loss in combination with ResNet and FPN [14] structure

achieved the state—of—the—art performance.



Chapter 3

Residual Feature and
Unified Prediction Network
for Single Stage Detection

In this section, we propose residual feature maps and unified
prediction module. It shows how the addition of a structurally simple
idea can complement the drawbacks of SSD-—based single—stage

object detection methods.

3.1. Single—stage Detector

Since Krizhevsky et al. made great achievements in ImageNet with

CNN structure, many researches on structure using DNN have been
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predictor.

carried out in various fields using image and it outperformed existing
method, especially in object detection. R—CNN began the DNN-—
based object detection by extract CNN feature map from cropped
images using selective search. This structure has evolved into Faster
R—CNN [21] which are proposing a region in a feature map extracted
by CNN and performing classification by pooling only features
corresponding to the proposal box. These methods are called the
two—stage detector.

The two—stage detector is a useful structure based on state—of—
the—art research to date, but it has a disadvantage of speed that it
needs to deploy for each Rol boxes. Wel er al. proposed a structure

to improve these disadvantages in [17], which was a great inspiration
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Figure 3: Network of SSD. It uses multi—scale feature maps and

prediction modules.

for single stage detector studies.

The Single Stage Detector is aimed at eliminating the pooling of the
Two Stage Detector and creating a structure for end—to—end
learning and deployment. To do this, a multi—scale feature map is
used as a prediction input, and a prediction is performed by applying
an independent convolution layer to each feature map. At this time,
the prediction module determined multi—class confidences. Then, the
objective loss is a weighted sum of the localization loss and the

confidence loss:

1
L(z,¢,l,9) = = (Leons(x,¢) + alioc a:,l,g (3.1)
N f

where N is the number of matched proposal boxes. The confidence

loss is the softmax loss over multiple classes confidences.
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exp(¢;)
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where

3.2. Residual Feature Maps

Recent CNN models designed for object detection makes use of a
backbone network which is originally devised to solve image
classification problems. Although the detection network can be
trained end—to—end, the backbone network is normally initialized
with the weights for the image classification problems. The relation
between the features and predictions in the networks used for image

classification can be expressed mathematically as follows:

Xp = Fo(xp-1) = (Fy(xp_1) e Fpoq 0 -0 Fp)U) (3.3)

Scores = P(x,) (3.4)

where I is an input image, x,is the n*®*—level feature map, P is a
prediction function, and ¥, is a combination of nonlinear
transformations such as convolution, pooling, RelLU, etc. Here, the
top feature map, x,, learns information on high—level abstraction. On

the other hand, xyx(k <n) has more local and low—level information

11



as k becomes smaller.

SSD [17] applies several feature maps with different scales directly
as an input to separate prediction modules to calculate object
positions and classification scores, which can be denoted by the

following equation:
Detection = {P; (x;,), P2(xs,), -+ Pi(x5, )} (3.5)

where s; to sy are feature indices for source feature maps for
multi—scale prediction, Py is a function that outputs multiple objects
with different positions and scores. Combining (1) and (3), it can be

expressed as

Detection = {?1(x51),?2 (T:lz (xsl)) o Pr (ﬂslk(xsl))} (3.6)

Where FP(x,) 2 (Fp 0 -0 F,p1)(x,). Here, the earlier feature map Xs,
needs to learn high—level abstraction to improve the performance of
-7’1(Xsl)- At the same time, it also needs to learn local features for
efficient information transfer to the next feature maps. This not only
makes learning difficult, but also causes the overall performance to

decrease.

12 3
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Figure 4: Residual blocks. Left: 2—way Resblock. Right: 3—way

Resblock with deconvolution branch (branch3).

To resolve this problem, SSD [17] added L2 normalization layer
between the conv4_3 layer and the prediction module, which results
in a reduced magnitude of the gradients from the prediction module.
Cai et al. [2] tried to solve this problem by adding a convolution layer
only to the conv4_3 layer. Since the above problem is not solely on
the conv4_3 layer, the aforementioned approaches do not essentially
solve the problem. To meet this contradictory requirement of
maintaining low—level information while having the flexibility to learn
high—level abstraction, it is desired to separate and decouple the
backbone network and the prediction module in the training phase.

In order to solve the same problem, we propose a new architecture
that decouples backbone network from the prediction module. Instead
of directly connecting the feature maps in the backbone network to
the prediction module, we inserted a multi—way Resblock for each

level of feature maps, which acts like a bumper. The detailed
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Figure 5: Networks of RUN. Compared with SSD, RUN has residual
blocks and unified prediction module. The arrow from the bottom to

the top indicates the deconvolution branch

architecture of the proposed multi—way Resblocks are shown in
Figure 4. Convolution layers and nonlinear activation units are used
for all branches of the proposed Resblock. This prevents the
gradients of the prediction module from flowing directly into the
feature maps of the backbone network. Also, it clearly distinguishes
the features to be used for prediction from the features to be
delivered to the next layer. In other words, the proposed Resblock
takes the role of learning high—level abstraction for object detection,
while the backbone network containing low—level features is
designed to be intact from the high—level detection information. This
design helps to improve the feature structure of the SSD [17] by
forcing it not to learn highlevel abstraction and to keep low—level

image features.
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Also, the depths of the earlier layers (eg. conv4_3) used for small—
sized object detection in SSD [17] are very shallow. Therefore, in
SSD, small objects cannot be detected well because the
representation power is insufficient to be used in the prediction as it
1s. To supplement this problem, we used a 3 x 3 convolution layer in
branch? of the Resblock as shown in Figure 5 to reflect the peripheral
contextual information.

Branch3 in the right side of Figure 5 contains a deconvolution layer
whose input is the feature maps of the consecutive layer. This is
similar to a structure proposed in [6] and [20], and it is a proper
method to propagate large contextual information to a small—scale
feature map so that even when detecting a small object, information
about its surroundings is also utilized. This can reduce the cases of
detecting a part of an actual object. Thus, it can be a remedy for the
box—in—box problem described earlier. Finally, the proposed

architecture in Figure 5 can be expressed as follows:

Detection

(3.7)
= {?1(5251,52)' P, (252,53)' ""‘{Pk—l(gsk—psk)'?k (st)}

where Xap = B1(Xa) + Ba(Xa) + B3(xp) and X, = B;(x,) + B,(x,). Here,

B;, B, and Bj indicate branchl, branch2 and branch3, respectively.

15



3.2. Unified Prediction Module

Detecting objects of various sizes has been recognized as an
important problem in object detection. Traditionally, [26, 3, 4] used
a single classifier to predict multi—scale feature maps extracted from
the image pyramid. There is another approach of using multiple
classifiers on a single input image. The latter has the advantage of
reducing the amount of computation for calculating feature maps.
However, it requires an individual classifier for each object scale.

Since the neural network has been prevalent, the two—stage
detectors applied Rol Pooling to the CNN output to extract feature
maps of the same size from objects of different sizes. These feature
maps were used as the input of a single classifier. Meanwhile, other
methods using multiscale features, such as SSD [17], adopted
multiple classifiers since feature maps in each scale differed not only
in length but also in the underlying contextual information. In order
to effectively learn the prediction layers of various scales, it is
necessary to input objects of various scales. SSD could dramatically
increase the detection performance through augmentation which

transforms the size of input images.

16 3
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Figure 6: Comparison of various object detection schemes: a) R—
CNN and its variants need object—wise cropping and the prediction
is done by a common unified classifier. b) SSD does not need any
cropping but requires a separate classifier for each scale of feature
maps. ¢) R—SSD concatenates feature maps in different layers so
that objects in each scale can be predicted with one unified
classifier with the same amount of information. d) In the proposed
method, Resblock takes the role of feature map concatenation and

one unified classifier is used for prediction.
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R—SSD [11] proposed the Rainbow concatenation which combines

feature maps in different scales using pooling and deconvolution. This
allows to set the depth of the input features for each prediction
module to be the same. Thus, R—SSD could use a single classifier
that shares the weight of multi—scale prediction modules. Similarly,
the proposed 3—way Resblocks enforce all the feature maps to have
the same depth of 256 as shown in Figure 6. Thus, structurally, it is
possible to unify convolution layers of different prediction modules
like R—SSD. The idea of the unified prediction module is similar to
[11], but our method is different from R—SSD in information
contained in the input feature maps.

This approach makes differently —scaled feature maps have similar
level of information. SSD [17] used multiple features of various
scales. This results in an improved performance of detecting small
objects compared with YOLO [18, 19] which used only the last layer
of the back—bone network. However, since its earliest feature map
i1s obtained from much shallower layers than the later feature maps,
it still has a limitation of insufficient information for prediction.
Because unified prediction applies equally to feature maps of all
scales, it forces the output of the 3—way Resblock between the
feature map of the backbone and This approach makes differently —
scaled feature maps have similar level of information. SSD [17] used

multiple features of various scales. This results in an improved

18



performance of detecting small objects compared with YOLO [18, 19]
which used only the last layer of the back—bone network. However,
since its earliest feature map is obtained from much shallower layers
than the later feature maps, it still has a limitation of insufficient
information for prediction. Because unified prediction applies equally
to feature maps of all scales, it forces the output of the 3—way
Resblock between the feature map of the backbone and the prediction
module to be learned at a similar information level. It means that
unified prediction in combination with the residual feature block
makes the feature maps in the earliest Resblocks rich in context. A
brief summary of different object detection schemes is shown in

Figure 6.

19



Chapter 4

Experiment

We experimented the proposed method on PASCAL VOC 2007 [5],
PASCAL VOC 2012 and MS COCO datasets [16]. Our implementation
is based on the publicly available SSD [17]1%. All of experiments
results of SSD are the latest scores with data augmentation
mentioned in [6]. For all the experiments, the reduced VGG—16
model [25] pre—trained on the ILSVRC CLS—LOC dataset [22] is
used as the backbone network. For fair comparison, most of the
settings are set to be the same as those of SSD except the number
of proposals. It is different from SSD, because we used 6 default
boxes in all the prediction layers for unified prediction while SSD

used 4 for the conv4 3 and the top layer, and 6 for the rest.

@ https://github.com/weiliu89/caffe/tree/ssd
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Ablation Study on PASCAL VOC2007 We trained our model on
VOC2007 trainval and VOC2012 trainval. We set the batch size as 32.
For the training of the 2—way model, we used learning rate of 107
initially, then it decreased by a factor of 10 at 80k and 100k iterations,
respectively. The training was terminated at 120k iterations. For the
3—way model, we froze all the weights of the pre—trained 2—way
model except the prediction module, then fine—tuned the network
using the learning rate of 107° for 40k iterations, 10~* for the next 20k
iterations, and 107 for the final 10k iterations. The end—to—end
training was also applied on the 3—way model, but the results were

worse than the above training strategy.

| Method ‘ mAP |
SSD 300 77.5
SSD 300 + 2WAY 78.3
SSD 300 + 2WAY + Unified Pred | 78.6
SSD 300 + 3WAY 78.8
SSD 300 + 3WAY + Unified Pred | 79.2

Table 1: PASCALZ2007 test detection results.

Table 1 shows our result on PASCAL VOC 2007 test set. Here,
Unified Pred is the proposed unified prediction module and the
prediction modules for the ones without this indication were trained
separately as in the original SSD. As mentioned above, each 3—way

model was fine—tuned on the corresponding 2—way model. In this

: &0



Method “""”l network ‘mAyl acro. bike bird boat  boule  bus car cal chair  cow table dog horse  mbike  person plam  sheep  sofa nin v

sspaonT |oreiz|  vea | 75.8(88.1 82.9 74.4 61.9 47.6 82.7 78.8 91.5 58.1 80.0 64.1 89.4 85.7 85.5 82.6 50.2 79.8 73.6 86.6 72.1
SSDA2N (6] | 07412 | Residual-tor | 75.4[87.9 82.9 73.7 61.5 45.3 81.4 75.6 92.6 57.4 78.3 65.0 90.8 86.8 85.8 81.5 50.3 78.1 75.3 85.2 725
DSSPA2I (6] | 074412 | Residual-101 | 76,3 [87.3 83.3 75.4 64.6 46.8 82.7 76.5 92.9 59.5 78.3 64.3 91.5 86.6 86.6 82.1 53.3 79.6 75.7 85.2 73.9
Rsspa (1| ore2|  vao | 76.4]88.0 83.8 74.8 60.8 48.9 83.9 78.5 91.0 59.5 81.4 66.1 89.0 86.3 86.0 83.0 51.3 80.9 73.7 86.9 73.8
saNet(27] o2 ves | 76.4(87.7 83.1 74.6 64.2 51.3 83.6 78.0 92.0 58.9 81.8 66.2 89.6 86.0 84.9 82.6 50.9 80.5 71.8 86.2 73.5
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Table 3: SSD300—based models on PASCAL 2012 test.

Trained with 07++12 (07trainval+07test+12trainval).

Method ‘ data | network | mAP ‘ oo bike  bird  bost bouwle bus  car  cat  chair  cow wble dog hose mbike porson plant  shep  sofa  main v
10N (1] osizss|  ves  [76.4]87.5 84.7 76.8 63.8 58.3 82.6 79.0 90.9 57.8 82.0 64.7 88.9 86.5 84.7 82.3 51.4 78.2 69.2 85.2 73.5
Faster [10] 074+12 | Residuat-101 | 73.8 | 86.5 81.6 77.2 58.0 51.0 78.6 76.6 93.2 48.6 80.4 59.0 92.1 85.3 84.8 80.7 48.1 77.3 66.5 84.7 65.6

RECN (131 | 074412 | Resiguat0t [ 77,6 86.9 83.4 81.5 63.8 62.4 81.6 81.1 93.1 58.0 83.8 60.8 92.7 86.0 84.6 84.4 59.0 80.8 68.6 86.1 72.9
ssosizpmy oz | veo | 78.5(90.0 85.3 77.7 64.3 58.5 85.1 84.3 92.6 61.3 83.4 65.1 89.9 88.5 88.2 85.5 54.4 82.4 70.7 87.1 75.6
ssps13lel | o7en2 | Resicuar-io1| 79.4(90.7 87.3 78.3 66.3 56.5 84.1 83.7 94.2 62.9 84.5 66.3 92.9 88.6 87.9 85.7 55.1 83.6 74.3 88.2 76.8
Dssp 513 (6] | 074412 | Resiuat-t01 | §0.092.1 86.6 80.3 68.7 58.2 84.3 85.0 94.6 63.3 85.9 65.6 93.0 88.5 87.8 86.4 57.4 85.2 73.4 87.8 76.8
ruNzwaYsiz| wa12 | ves  [79.3189.7 87.1 79.2 65.6 61.3 85.3 85.0 92.9 60.6 83.8 66.4 90.6 88.6 88.1 86.1 54.8 84.6 72.5 874 75.8
runowaysiz| o2 | vee | 79.8190.0 87.3 80.2 67.4 62.4 84.9 85.6 92.9 61.8 84.9 66.2 90.9 89.1 88.0 86.5 55.4 85.0 72.6 87.7 76.8

Table 2: SSD500—based models and other two—stage detectors on

PASCAL 2012 test. Trained with 07++12.

experiment, we observed that the proposed model with only 2—way
Resblock without the deconvolution path achieved 1.1% higher mAP
than that of SSD. The 3—way model which further utilizes
deconvolution layers was up to 0.6% higher than the 2—way model.
The unified prediction module made better advance in the 3—way
model than the 2—way model, which scored 79.2% and 78.4%
respectively.

PASCAL VOC 2012 For VOC 2012 test, we trained models on
07++12 dataset consisting O7trainval, O7test and 12trainval. First,

we performed an experiment applying the Z2—way Resblock in
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combination with the unified prediction, then, another experiment was
performed using the 3—way Resblock with unified prediction after
freezing the weights of the contained 2—way Resblock.

Table 3 shows the VOC 2012 test results of RUN300 and other

Avg. Precision, loU: Avg. Precision, Arca: Avg, Recall, #Dets: Avg. Recall, Area:
Method data nework o095 05 075 S ML |1 10 10| S M L
Faster [21] trainval VGG 219 427 - - - - - - - - - -
ION[1] train VGG 236 432 23.6| 64 241 383|232 327 335|101 37.7 53.6
R-FCN [13] trainval |Residual-101] 299 519 - 10.8 328 45.0( - - - - - -
RetinaNet [15] | trainval |Residual-101| 39.1 59.1 42.3 | 21.8 42.7 50.2| - - - - - -
SSD300[17]  |trainval35k VGG 25.1 431 258 | 6.6 259 414237 351 372|112 404 584

SSD321 [6] trainval35k | Residual-101| 28.0 454 293 | 6.2 283 493|259 37.8 399|115 433 0649
DSSD321 [6] |trainval35k |Residual-101| 28.0 46.1 29.2 | 7.4 28.1 47.6(255 37.1 394|127 420 62.6

RUN2WAY300 | trainval35k VGG 27.4 46.1 284 | 89 279 438|250 373 395|14.6 42.6 59.8
RUN3WAY300 | trainval35k VGG 28.0 475 28999 286 439|253 38.0 405|162 438 60.2
SSD512[17] | trainval35k VGG 28.8 485 303 |10.9 31.8 43.5|26.1 395 420|165 46.6 60.8
SSD513 [6] trainval35k | Residual-101| 31.2 504 33.3 | 102 345 498|283 421 444|176 49.2 658
DSSD513 [6] |trainval35k | Residual-101| 33.2  53.3 352 |13.0 354 51.1|28.9 43.5 46.2|21.8 49.1 664

RUN2WAY512 | trainval 35k VGG 31.7 521 33.6 132 339 465|277 422 447|220 479 62.7

Table 4: MSCOCO test—dev detection results.

models based on SSD300 [17]. The proposed model, RUN300, has a
big performance improvement compared to the base model SSD300.
Especially, the 3—way model achieved 77.1% mAP, outperforming
other SSDbased models. In addition, it showed improvement of 0.7%
mAP compared to StairNet [27] which uses FPN [14] and unified
prediction. From this result, we can conjecture that the proposed 3—
way Resblock is more effective than FPN.

Table 2 shows results of RUN512 models and others. The 3—way
model achieved 79.8% mAPs, which is 1.3% better than that of
SSD512 [17]. It performs slightly worse than DSSD513 [6], which

is probably because the ResNetl01 [10] backbone of DSSD513
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produces better features for larger input images than VGG—16 [25]
of SSD and ours.

COCO For fair comparison with SSD [17], most of the hyper—
parameters required for training were set to the same as SSD. For
training 2—way models, we used a learning rate of 107 for the first
240k iterations, 107" for the next 120k iterations and 107 for the last
40k. For training 3—way models, we used a learning rate of 107 for
the first 120k iterations, 10~* for the next 60k iterations and 107° for
the last 20k, which are exactly half of those for the 2—way models.
Other parameters such as scales and aspect ratios of the prior box
were identical to those of SSD.

Table 4 shows the performance of various methods on MS COCO
test—dev. Despite the proposed methods use a relatively shallow
network, VGG—16 [25], they achieved enough performance to
compare with other methods which use a very deep network. The
fourth column indicates that RUN3SWAY300 achieved 2.9% better
mAP compared to SSD300 [17]. It was the same performance with
SSD321 and DSSD321 [6], which adopted ResNet—101 [10] as their
back—bone network. Also, RUNSWAY512 achieved 3.6% better mAP
than SSD512. In particular, RUN3SWAY512 achieved the highest
average precision and recall for small objects among compared
methods except RetinaNet. It means that the proposed Resblock is a

quite effective module to enhance low—level feature maps.
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Table 5: Speed & Accuracy

measured by ourselves.

on PASCAL VOC2007 test. * is

25

Method network mAP | FPS GPU
Faster R-CNN [21] VGGl6 73.2 7 Titan X
Faster R-CNN [10] | Residual-101 | 76.4 | 2.4 K40
R-FCN [13] Residual-101 | 80.5 9 Titan X
SSD300 [17] VGGl6 77.5 | 54.5% Titan X
SSD321 [6] Residual-101| 77.1 | 16.4 Titan X
DSSD321 [6] Residual-101| 78.6 | 11.8 Titan X
R-SSD300 [11] VGG16 78.5 |37.1* Titan X
StairNet [27] VGG16 78.8 | 30 | Titan X Pascal
RUN2WAY300 VGGI6 | 78.6 | 118 | X
58.4 | Titan X Pascal
RUN3WAY300 VGGl6 | 79.2 | 400 | munx
56.3 | Titan X Pascal
SSD512 [17] VGGl6 79.5 [24.5% | Titan X
SSD513 6] Residual-101 | 80.6 | 8.0 Titan X
DSSD513 [6] Residual-101 | 81.5 | 6.4 Titan X
R-SSD512 [11] VGGI16 80.8 [15.8% | Titan X
RUN2WAY512 VGG16 | 80.6 | 201 | manx
31.8 | Titan X Pascal
RUN3WAY512 VGG16 | 80.9 | 193 | munx
29.8 | Titan X Pascal

Speed vs Accuracy The single stage detectors,
represented by YOLO [18] and SSD [17], proposed endto—end
neural networks that removed the Rol Pooling of two—stage
detectors. They have achieved a lot of speed improvements, but they
could not avoid the loss of accuracy. Conversely, recent single stage
detectors have been studied to improve performance, while suffering
the loss of speed. Unlike other approaches, the proposed RUN is
designed to maximize performance at high speeds on the VGG—16

[25] backbone, which has significantly fewer layers and parameters

which are



than ResNet [10]. The experimented results demonstrate the

performance improvement of RUN.
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Figure 7: Speed vs. Accuracy of recent methods using public

numbers on COCO. Our results (sky blue circles) are measured on

Titan X. (Best viewed in color.)

200

Table 5 shows that our method outperforms other competitors with

less loss of speed. Our experiments were tested using Titan X GPU,

cuDNN vb5.1 and Intel I76700@3.4GHz. For exact comparison, we

measured FPS of some methods on the same environment and

marked * in the table.
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In Figure 7, we show the trade—off relation between the detection
accuracy and inference time by plotting the results of RUN and other
methods on COCO test—dev. The RUN—-3way—300 model (25.0ms,
28.0% mAP) is 36% slower but 2.9% better in mAP than the SSD300
[17] model (18.3ms, 25.1% mAP). It is about 60% faster than
ResNet101 based SSD321 [6] model (61ms, 28.0% mAP) that has a
similar performance. Likewise, the RUN—3way—512 (51.4ms, 32.4%
mAP) is 26% slower but 3.6% better in mAP than the SSD512 model
(40.8ms, 28.8% mAP). It is about 44% faster than RetinaNet—50—
500 [15] (73ms, 32.5% mAP) that has a similar performance.

In addition, we measured FPS of our methods on Titan X Pascal with
the other environment kept the same. Table 5 shows that even the
most complex version of our method, RUNSWAY512, can works in

real time (29.8 FPS) on Tital X Pascal.

27 i3 1] 3
,{—'! o 1__l| .



Chapter 5

Conclusion

The proposed RUN architecture for object detection was originated
from the awareness of the contradictory requirements for multi—
scale features that they should contain low level information on an
image as well as high—level information on objectness. The proposed
3—way Resblock alleviated the gradient exploitation problem and
enriched contextual information, an important element of prediction.
We also showed that the generalization performance of multiscale
prediction can be improved by integrating the separate prediction
modules into one unified prediction module. This approach, which can
be seen to be somewhat simple, resulted in outstanding performance
on the PASCAL VOC test. The results on COCO dataset also show
how fast and efficient our algorithms are. We expect the proposed

method be not restricted to SSD—based methods but also applicable
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to other structures utilizing multi—scale features.

* %
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~ X
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Figure 8: Detection examples of RUN300 3—way (Right) compared

with SSD300 (Left) .
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