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Abstract 

Recently, a lot of single stage detectors using multi-scale features 

have been actively proposed. They are much faster than two stage 

detectors that use region proposal networks (RPN) without much 

degradation in the detection performances. However, the feature 

maps in the lower layers close to the input which are responsible for 

detecting small objects in a single stage detector have a problem of 

insufficient representation power because they are too shallow. 

There is also a structural contradiction that the feature maps have to 

deliver low-level information to next layers as well as contain high-

level abstraction for prediction.  

In this paper, we propose a method to enrich the representation 

power of feature maps using Resblock and deconvolution layers. In 

addition, a unified prediction module is applied to generalize output 

results and boost earlier layers’representation power for prediction. 

The proposed method enables more precise prediction, which 

achieved higher score than SSD on PASCAL VOC and MS COCO. In 
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addition, it maintains the advantage of fast computation of a single 

stage detector, which requires much less computation than other 

detectors with similar performance. 
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Chapter 1 

Introduction 

The development of deep neural networks (DNN) in recent years 

has achieved remarkable results not only in object detection but also 

in many other areas. In the early researches of object detection using 

DNN, much attention has been paid to representation learning that 

can replace handcrafted features without much consideration on the 

speed of detectors. Recently, real-time detectors with low 

computational complexities have been actively researched. 

Researches on two-stage detectors, mostly based on Faster R-CNN 

[21], applied the region proposal network (RPN) and RoI pooling to 

the feature maps extracted by a state-of-the-art classifier, such as 

ResNet-101 [10]. On the other hand, the single-stage methods such 

as YOLO [18] and SSD [17] removed RoI pooling layer and predict 

bounding boxes and corresponding class confidences directly while 
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enabling faster detection and end-to-end learning. Especially SSD 

makes use of multi-scale feature maps generated from a backbone 

network such as VGG-16 [25] to detect objects in various sizes. 

Since each of the prediction modules composed of 3×3 convolution 

filters detects bounding box on each layer separately, they cannot 

reflect appropriate contextual information from different scales. It 

causes the problem named as “Box-in-Box” [11] as shown in Figure 

Figure 1: Box-in-Box problem. Top: SSD300. Bottom: RUN300 

(proposed). SSD detects objects with overlapping boxes which are 

redundant. 
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1. In the figure, we can see that SSD often detects a single object 

with two overlapping boxes. The smaller box has partial image such 

as the upper body of a person or the head of an animal. To solve the 

problem, [6, 15] used ResNet and feature pyramid network (FPN) 

[14] structure to inject larger contextual information through deep 

convolutional back-bone by the use of deconvolution. However, 

these structures have the disadvantage of increasing the 

computational complexity, thus reduces detection speed, which is a 

key advantage of a single-stage detector. In this paper, we propose 

very simple ideas to solve the essential problems of multi-scale 

single stage detectors. First, we introduce a 3-way residual block, 

which is a structure where the Resblock [10] and the deconvolution 

layer are added on the multi-scale feature maps. It makes detected 

boxes be determined with larger context and be more reliable. 

Second, we integrate the multiple prediction modules, which had been 

applied separately to each layer, into one to boost information level 

of feature maps from earlier layers. The proposed structure, called 

“RUN; Residual features and Unified prediction Network”, is a single-

stage detector that combines 3-way Resblock with unified prediction 

module on VGG-16 network. RUN is not only very compact and fast 

compared to other ResNet-based two-stage detectors and single-

stage detectors using FPN, but it also achieves superior or 

competitive performance compared to other competitors. 
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Chapter 2 

Related Works 

Overfeat[23], SPPNet[9], R-CNN[8], FastR-CNN[7], Faster R-

CNN [21] and R-FCN [13] which are classified as region-based 

convolutional neural networks (R-CNN) showed a tremendous 

improvement in performance compared to the previous object 

detection techniques. These region-based approaches have achieved 

huge advances over the last few years and are still the state-of-

the-art approaches among many object detection techniques. 

Specifically, these approaches usually use a two-stage method of 

generating a number of bounding boxes and then assigning a 

classification score to the bounding boxes. Thus, although 

classification may be relatively accurate, these are too slow to be 

used for real-time applications. Redmon et al. [18] proposed a 
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method named as YOLO to predict bounding boxes and associated 

class probabilities in a single step by framing object detection as a 

regression problem. It divides input images to grid maps and 

regresses bounding boxes for multiple objects on each grid. This was 

the beginning of single stage detection and subsequently inspired 

structures such as SSD [17]. However, since YOLO uses only the 

highest-level1 feature maps to detect objects, there is a lack of 

lower-level information, which results in somewhat inaccurate 

detection, especially for small objects. In order to solve this problem, 

SSD [17] utilized not only the highest-level features but also lower-

level features which have enough resolution to detect small objects. 

As mentioned in Inside-Outside Net (ION) [1] and HyperNet [12], 

each feature maps at different layers have different abstraction levels 

for an input image. Therefore, it is clear that using multi-scale 

feature maps can improve detection performance for objects of 

various scales. In SSD, many default boxes are created in the feature 

maps and bounding box regression and classification are performed 

for each box area using 3× 3 convolution. This method enables 

multiscale object detection without using RoI pooling. In addition, it 

can effectively improve the detection accuracy of small objects which 

is a disadvantage of YOLO [18]. However, as mentioned in MS-CNN 

[2], SSD has the problem that back-propagation allows the gradient 

to cause unnecessary deformations in the feature maps since the 
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feature maps of the backbone network are used directly in bounding 

box regression and classification. Then, it can lead to some instability 

during learning. In addition, since each classifier only uses single 

scale feature maps, it cannot reflect larger or smaller contextual 

information other than the one for the corresponding scale. Recently, 

various methods have attempted to enhance the contextual 

information of each layer while taking advantage of SSD [17]. DSSD 

[6] could obtain higher accuracy by changing the base network to 

ResNet-101 [10] and combining the FPN [14] using deconvolution 

layers in combination with the existing multiple layers to reflect the 

large-scale context. However, with the use of deep structure of 

ResNet-101 and deconvolution layers, the processing speed 

degrades much (under 16.4 images per second), which prohibits the 

method to be used for real-time detection problems. Ren et al. [20] 

introduced a recurrent rolling convolution (RRC) architecture to 

improve detection performance by mutually complementing layers 

having different sizes of contextual information. RRC made multi-

scale feature maps include large and small context by concatenating 

adjacent feature maps by pooling and deconvolution. This process 

was implemented by RNN structure and it allowed to reflect not only 

the information of the adjacent feature maps but also the information 

of the remote feature maps. Unlike RRC[20], Rainbow SSD(R-

SSD)[11]proposed a method to concatenate feature maps not only in 
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the adjacent layers but also in all the layers for bounding box 

regression and classification using pooling and deconvolution. It 

achieves higher performance than SSD by enhancing representation 

power of feature maps. Also, by making the dimension of each layer 

the same, it made it possible to use a unified prediction module 

instead of different prediction modules for different layers. Woo et al. 

[27] proposed StairNet which utilizes both FPN [14] structure of 

base VGG-16 network and unified prediction of R-SSD. Additionally, 

Lin et al. [15] redefined the loss term for object detection which is 

named as FocalLoss. Unlike other batch reconstruction methods like 

OHEM [24], it effectively resolves the foreground-background 

imbalance problem by changing the loss term. Their RetinaNet which 

uses Focal Loss in combination with ResNet and FPN [14] structure 

achieved the state-of-the-art performance. 
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Chapter 3 

Residual Feature and 

Unified Prediction Network  

for Single Stage Detection 

In this section, we propose residual feature maps and unified 

prediction module. It shows how the addition of a structurally simple 

idea can complement the drawbacks of SSD-based single-stage 

object detection methods. 

 

 

3.1. Single-stage Detector 

Since Krizhevsky et al. made great achievements in ImageNet with 

CNN structure, many researches on structure using DNN have been 
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carried out in various fields using image and it outperformed existing 

method, especially in object detection. R-CNN began the DNN-

based object detection by extract CNN feature map from cropped 

images using selective search. This structure has evolved into Faster 

R-CNN [21] which are proposing a region in a feature map extracted 

by CNN and performing classification by pooling only features 

corresponding to the proposal box. These methods are called the 

two-stage detector. 

The two-stage detector is a useful structure based on state-of-

the-art research to date, but it has a disadvantage of speed that it 

needs to deploy for each RoI boxes. Wei et al. proposed a structure 

to improve these disadvantages in [17], which was a great inspiration 

Figure 2: Network of Faster R-CNN. It shares feature map 

extracted by CNN with Region Proposal Network (RPN) and 

predictor. 
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for single stage detector studies. 

The Single Stage Detector is aimed at eliminating the pooling of the 

Two Stage Detector and creating a structure for end-to-end 

learning and deployment. To do this, a multi-scale feature map is 

used as a prediction input, and a prediction is performed by applying 

an independent convolution layer to each feature map. At this time, 

the prediction module determined multi-class confidences. Then, the 

objective loss is a weighted sum of the localization loss and the 

confidence loss: 

 

 

(3.1) 

where N is the number of matched proposal boxes. The confidence 

loss is the softmax loss over multiple classes confidences. 

Figure 3: Network of SSD. It uses multi-scale feature maps and 

prediction modules. 
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where  

(3.2) 

 

 

3.2. Residual Feature Maps 

Recent CNN models designed for object detection makes use of a 

backbone network which is originally devised to solve image 

classification problems. Although the detection network can be 

trained end-to-end, the backbone network is normally initialized 

with the weights for the image classification problems. The relation 

between the features and predictions in the networks used for image 

classification can be expressed mathematically as follows: 

 

 𝒙𝒏 = ℱ𝓃(𝒙𝒏−𝟏) = (ℱ𝓃(𝒙𝒏−𝟏) ∘ ℱ𝓃−1 ∘ ⋯ ∘ ℱ1)(𝑰) (3.3) 

 𝐒𝐜𝐨𝐫𝐞𝐬 = 𝒫(xn) (3.4) 

 

where I is an input image, 𝑥𝑛is the 𝑛𝑡ℎ-level feature map, 𝒫 is a 

prediction function, and ℱ𝓃  is a combination of nonlinear 

transformations such as convolution, pooling, ReLU, etc. Here, the 

top feature map, xn, learns information on high-level abstraction. On 

the other hand, xk(k < n) has more local and low-level information 
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as k becomes smaller. 

SSD [17] applies several feature maps with different scales directly 

as an input to separate prediction modules to calculate object 

positions and classification scores, which can be denoted by the 

following equation: 

 

 𝐃𝐞𝐭𝐞𝐜𝐭𝐢𝐨𝐧 = {𝒫1(𝒙𝒔𝟏),𝒫2(𝒙𝒔𝟐),⋯ ,𝒫k(𝒙𝒔𝒌)} (3.5) 

 

where s1  to sk  are feature indices for source feature maps for 

multi-scale prediction, 𝒫k is a function that outputs multiple objects 

with different positions and scores. Combining (1) and (3), it can be 

expressed as 

 

 𝐃𝐞𝐭𝐞𝐜𝐭𝐢𝐨𝐧 = {𝒫1(𝒙𝒔𝟏),𝒫2 (ℱ𝑠1
𝑠2(𝒙𝒔𝟏)) ,⋯ ,𝒫𝑘 (ℱs1

sk(𝒙𝒔𝟏))} (3.6) 

   

Where ℱa
b(xa) ≜ (ℱb ∘ ⋯∘ ℱ𝒶+1)(xa). Here, the earlier feature map xs1  

needs to learn high-level abstraction to improve the performance of 

𝒫1(xs1). At the same time, it also needs to learn local features for 

efficient information transfer to the next feature maps. This not only 

makes learning difficult, but also causes the overall performance to 

decrease. 
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To resolve this problem, SSD [17] added L2 normalization layer 

between the conv4_3 layer and the prediction module, which results 

in a reduced magnitude of the gradients from the prediction module. 

Cai et al. [2] tried to solve this problem by adding a convolution layer 

only to the conv4_3 layer. Since the above problem is not solely on 

the conv4_3 layer, the aforementioned approaches do not essentially 

solve the problem. To meet this contradictory requirement of 

maintaining low-level information while having the flexibility to learn 

high-level abstraction, it is desired to separate and decouple the 

backbone network and the prediction module in the training phase. 

In order to solve the same problem, we propose a new architecture 

that decouples backbone network from the prediction module. Instead 

of directly connecting the feature maps in the backbone network to 

the prediction module, we inserted a multi-way Resblock for each 

level of feature maps, which acts like a bumper. The detailed 

Figure 4: Residual blocks. Left: 2-way Resblock. Right: 3-way 

Resblock with deconvolution branch (branch3). 
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architecture of the proposed multi-way Resblocks are shown in 

Figure 4. Convolution layers and nonlinear activation units are used 

for all branches of the proposed Resblock. This prevents the 

gradients of the prediction module from flowing directly into the 

feature maps of the backbone network. Also, it clearly distinguishes 

the features to be used for prediction from the features to be 

delivered to the next layer. In other words, the proposed Resblock 

takes the role of learning high-level abstraction for object detection, 

while the backbone network containing low-level features is 

designed to be intact from the high-level detection information. This 

design helps to improve the feature structure of the SSD [17] by 

forcing it not to learn highlevel abstraction and to keep low-level 

image features. 

Figure 5: Networks of RUN. Compared with SSD, RUN has residual 

blocks and unified prediction module. The arrow from the bottom to 

the top indicates the deconvolution branch 
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Also, the depths of the earlier layers (eg. conv4_3) used for small-

sized object detection in SSD [17] are very shallow. Therefore, in 

SSD, small objects cannot be detected well because the 

representation power is insufficient to be used in the prediction as it 

is. To supplement this problem, we used a 3 × 3 convolution layer in 

branch2 of the Resblock as shown in Figure 5 to reflect the peripheral 

contextual information. 

Branch3 in the right side of Figure 5 contains a deconvolution layer 

whose input is the feature maps of the consecutive layer. This is 

similar to a structure proposed in [6] and [20], and it is a proper 

method to propagate large contextual information to a small-scale 

feature map so that even when detecting a small object, information 

about its surroundings is also utilized. This can reduce the cases of 

detecting a part of an actual object. Thus, it can be a remedy for the 

box-in-box problem described earlier. Finally, the proposed 

architecture in Figure 5 can be expressed as follows: 

 

 𝐃𝐞𝐭𝐞𝐜𝐭𝐢𝐨𝐧

= {𝒫1(𝒙̂𝒔𝟏,𝒔𝟐), 𝒫2(𝒙̂𝒔𝟐,𝒔𝟑),⋯ ,𝒫k−1(𝒙̂𝒔𝒌−𝟏,𝒔𝒌),𝒫𝑘(𝒙̂𝒔𝒌)} 
(3.7) 

   

where x̂a,b = ℬ1(xa) + ℬ2(xa) + ℬ3(xb) and x̂a = ℬ1(xa) + ℬ2(xa). Here, 

ℬ1, ℬ2 and ℬ3 indicate branch1, branch2 and branch3, respectively. 
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3.2. Unified Prediction Module 

Detecting objects of various sizes has been recognized as an 

important problem in object detection. Traditionally, [26, 3, 4] used 

a single classifier to predict multi-scale feature maps extracted from 

the image pyramid. There is another approach of using multiple 

classifiers on a single input image. The latter has the advantage of 

reducing the amount of computation for calculating feature maps. 

However, it requires an individual classifier for each object scale. 

Since the neural network has been prevalent, the two-stage 

detectors applied RoI Pooling to the CNN output to extract feature 

maps of the same size from objects of different sizes. These feature 

maps were used as the input of a single classifier. Meanwhile, other 

methods using multiscale features, such as SSD [17], adopted 

multiple classifiers since feature maps in each scale differed not only 

in length but also in the underlying contextual information. In order 

to effectively learn the prediction layers of various scales, it is 

necessary to input objects of various scales. SSD could dramatically 

increase the detection performance through augmentation which 

transforms the size of input images. 
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Figure 6: Comparison of various object detection schemes: a) R-

CNN and its variants need object-wise cropping and the prediction 

is done by a common unified classifier. b) SSD does not need any 

cropping but requires a separate classifier for each scale of feature 

maps. c) R-SSD concatenates feature maps in different layers so 

that objects in each scale can be predicted with one unified 

classifier with the same amount of information. d) In the proposed 

method, Resblock takes the role of feature map concatenation and 

one unified classifier is used for prediction. 
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R-SSD [11] proposed the Rainbow concatenation which combines 

feature maps in different scales using pooling and deconvolution. This 

allows to set the depth of the input features for each prediction 

module to be the same. Thus, R-SSD could use a single classifier 

that shares the weight of multi-scale prediction modules. Similarly, 

the proposed 3-way Resblocks enforce all the feature maps to have 

the same depth of 256 as shown in Figure 6. Thus, structurally, it is 

possible to unify convolution layers of different prediction modules 

like R-SSD. The idea of the unified prediction module is similar to 

[11], but our method is different from R-SSD in information 

contained in the input feature maps. 

This approach makes differently-scaled feature maps have similar 

level of information. SSD [17] used multiple features of various 

scales. This results in an improved performance of detecting small 

objects compared with YOLO [18, 19] which used only the last layer 

of the back-bone network. However, since its earliest feature map 

is obtained from much shallower layers than the later feature maps, 

it still has a limitation of insufficient information for prediction. 

Because unified prediction applies equally to feature maps of all 

scales, it forces the output of the 3-way Resblock between the 

feature map of the backbone and This approach makes differently-

scaled feature maps have similar level of information. SSD [17] used 

multiple features of various scales. This results in an improved 
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performance of detecting small objects compared with YOLO [18, 19] 

which used only the last layer of the back-bone network. However, 

since its earliest feature map is obtained from much shallower layers 

than the later feature maps, it still has a limitation of insufficient 

information for prediction. Because unified prediction applies equally 

to feature maps of all scales, it forces the output of the 3-way 

Resblock between the feature map of the backbone and the prediction 

module to be learned at a similar information level. It means that 

unified prediction in combination with the residual feature block 

makes the feature maps in the earliest Resblocks rich in context. A 

brief summary of different object detection schemes is shown in 

Figure 6. 
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Chapter 4 

Experiment 

We experimented the proposed method on PASCAL VOC 2007 [5], 

PASCAL VOC 2012 and MS COCO datasets [16]. Our implementation 

is based on the publicly available SSD [17]①. All of experiments 

results of SSD are the latest scores with data augmentation 

mentioned in [6]. For all the experiments, the reduced VGG-16 

model [25] pre-trained on the ILSVRC CLS-LOC dataset [22] is 

used as the backbone network. For fair comparison, most of the 

settings are set to be the same as those of SSD except the number 

of proposals. It is different from SSD, because we used 6 default 

boxes in all the prediction layers for unified prediction while SSD 

used 4 for the conv4 3 and the top layer, and 6 for the rest. 

                                            

① https://github.com/weiliu89/caffe/tree/ssd 
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Ablation Study on PASCAL VOC2007 We trained our model on 

VOC2007 trainval and VOC2012 trainval. We set the batch size as 32. 

For the training of the 2-way model, we used learning rate of 10−3 

initially, then it decreased by a factor of 10 at 80k and 100k iterations, 

respectively. The training was terminated at 120k iterations. For the 

3-way model, we froze all the weights of the pre-trained 2-way 

model except the prediction module, then fine-tuned the network 

using the learning rate of 10−3 for 40k iterations, 10−4 for the next 20k 

iterations, and 10−5 for the final 10k iterations. The end-to-end 

training was also applied on the 3-way model, but the results were 

worse than the above training strategy. 

 

Table 1 shows our result on PASCAL VOC 2007 test set. Here, 

Unified Pred is the proposed unified prediction module and the 

prediction modules for the ones without this indication were trained 

separately as in the original SSD. As mentioned above, each 3-way 

model was fine-tuned on the corresponding 2-way model. In this 

Table 1: PASCAL2007 test detection results. 
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experiment, we observed that the proposed model with only 2-way 

Resblock without the deconvolution path achieved 1.1% higher mAP 

than that of SSD. The 3-way model which further utilizes 

deconvolution layers was up to 0.6% higher than the 2-way model. 

The unified prediction module made better advance in the 3-way 

model than the 2-way model, which scored 79.2% and 78.4% 

respectively.  

PASCAL VOC 2012 For VOC 2012 test, we trained models on 

07++12 dataset consisting 07trainval, 07test and 12trainval. First, 

we performed an experiment applying the 2-way Resblock in 

Table 3: SSD300-based models on PASCAL 2012 test.  

Trained with 07++12 (07trainval+07test+12trainval). 

Table 2: SSD500-based models and other two-stage detectors on 

 PASCAL 2012 test. Trained with 07++12. 
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combination with the unified prediction, then, another experiment was 

performed using the 3-way Resblock with unified prediction after 

freezing the weights of the contained 2-way Resblock. 

Table 3 shows the VOC 2012 test results of RUN300 and other 

models based on SSD300 [17]. The proposed model, RUN300, has a 

big performance improvement compared to the base model SSD300. 

Especially, the 3-way model achieved 77.1% mAP, outperforming 

other SSDbased models. In addition, it showed improvement of 0.7% 

mAP compared to StairNet [27] which uses FPN [14] and unified 

prediction. From this result, we can conjecture that the proposed 3-

way Resblock is more effective than FPN. 

Table 2 shows results of RUN512 models and others. The 3-way 

model achieved 79.8% mAPs, which is 1.3% better than that of 

SSD512 [17]. It performs slightly worse than DSSD513 [6], which 

is probably because the ResNet101 [10] backbone of DSSD513 

Table 4: MSCOCO test-dev detection results. 
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produces better features for larger input images than VGG-16 [25] 

of SSD and ours. 

COCO For fair comparison with SSD [17], most of the hyper-

parameters required for training were set to the same as SSD. For 

training 2-way models, we used a learning rate of 10−3 for the first 

240k iterations, 10−4 for the next 120k iterations and 10−5 for the last 

40k. For training 3-way models, we used a learning rate of 10−3 for 

the first 120k iterations, 10−4 for the next 60k iterations and 10−5 for 

the last 20k, which are exactly half of those for the 2-way models. 

Other parameters such as scales and aspect ratios of the prior box 

were identical to those of SSD. 

Table 4 shows the performance of various methods on MS COCO 

test-dev. Despite the proposed methods use a relatively shallow 

network, VGG-16 [25], they achieved enough performance to 

compare with other methods which use a very deep network. The 

fourth column indicates that RUN3WAY300 achieved 2.9% better 

mAP compared to SSD300 [17]. It was the same performance with 

SSD321 and DSSD321 [6], which adopted ResNet-101 [10] as their 

back-bone network. Also, RUN3WAY512 achieved 3.6% better mAP 

than SSD512. In particular, RUN3WAY512 achieved the highest 

average precision and recall for small objects among compared 

methods except RetinaNet. It means that the proposed Resblock is a 

quite effective module to enhance low-level feature maps. 
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Speed vs Accuracy The single stage detectors, which are 

represented by YOLO [18] and SSD [17], proposed endto-end 

neural networks that removed the RoI Pooling of two-stage 

detectors. They have achieved a lot of speed improvements, but they 

could not avoid the loss of accuracy. Conversely, recent single stage 

detectors have been studied to improve performance, while suffering 

the loss of speed. Unlike other approaches, the proposed RUN is 

designed to maximize performance at high speeds on the VGG-16 

[25] backbone, which has significantly fewer layers and parameters 

Table 5: Speed & Accuracy on PASCAL VOC2007 test. * is 

measured by ourselves. 



 

 ２６ 

than ResNet [10]. The experimented results demonstrate the 

performance improvement of RUN. 

Table 5 shows that our method outperforms other competitors with 

less loss of speed. Our experiments were tested using Titan X GPU, 

cuDNN v5.1 and Intel I76700@3.4GHz. For exact comparison, we 

measured FPS of some methods on the same environment and 

marked * in the table. 

Figure 7: Speed vs. Accuracy of recent methods using public 

numbers on COCO. Our results (sky blue circles) are measured on 

Titan X. (Best viewed in color.) 



 

 ２７ 

In Figure 7, we show the trade-off relation between the detection 

accuracy and inference time by plotting the results of RUN and other 

methods on COCO test-dev. The RUN-3way-300 model (25.0ms, 

28.0% mAP) is 36% slower but 2.9% better in mAP than the SSD300 

[17] model (18.3ms, 25.1% mAP). It is about 60% faster than 

ResNet101 based SSD321 [6] model (61ms, 28.0% mAP) that has a 

similar performance. Likewise, the RUN-3way-512 (51.4ms, 32.4% 

mAP) is 26% slower but 3.6% better in mAP than the SSD512 model 

(40.8ms, 28.8% mAP). It is about 44% faster than RetinaNet-50-

500 [15] (73ms, 32.5% mAP) that has a similar performance. 

In addition, we measured FPS of our methods on Titan X Pascal with 

the other environment kept the same. Table 5 shows that even the 

most complex version of our method, RUN3WAY512, can works in 

real time (29.8 FPS) on Tital X Pascal. 
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Chapter 5 

Conclusion 

The proposed RUN architecture for object detection was originated 

from the awareness of the contradictory requirements for multi-

scale features that they should contain low level information on an 

image as well as high-level information on objectness. The proposed 

3-way Resblock alleviated the gradient exploitation problem and 

enriched contextual information, an important element of prediction. 

We also showed that the generalization performance of multiscale 

prediction can be improved by integrating the separate prediction 

modules into one unified prediction module. This approach, which can 

be seen to be somewhat simple, resulted in outstanding performance 

on the PASCAL VOC test. The results on COCO dataset also show 

how fast and efficient our algorithms are. We expect the proposed 

method be not restricted to SSD-based methods but also applicable 
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to other structures utilizing multi-scale features. 

 

  

  

  

Figure 8: Detection examples of RUN300 3-way(Right) compared 

with SSD300(Left).  
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요 약 

다중 스케일 특징 지도를 사용한 단일 단계 검출기는 최근 활발하게 

등장하고 있다. 이러한 구조는 지역 제안 신경망을 사용하는 이중 단계 

검출기에 비해 적은 성능 손실에서 훨씬 더 빠른 속도를 내고있다. 하지

만, 작은 객체를 검출하기 위해 사용하는 입력과 가까운 낮은 단계의 층

에서 추출한 특징 지도는 너무 얕기 때문에 충분한 표현력을 가질 수 없

다는 한계점이 있다. 또한, 특징 지도가 다음 층에 전달하기 위한 저 수

준의 정보 습득과 예측을 위한 고수준의 추상화를 동시에 달성해야 한다

는 구조적 모순에 부딪힌다. 

이 논문에서는 잔여 블록(Resblock)과 디컨볼루션 층을 사용하여 특

징 지도의 표현력을 강화하는 방법을 제안한다. 추가적으로 출력 결과를 

일반화함과 동시에 낮은 층의 표현력을 배가할 수 있는 통합된 추정 모

듈을 적용하였다. 제안한 방법은 더 정확한 추정을 가능하도록 하여 

PASCAL VOC와 MS COCO 데이터셋에서 SSD보다 높은 점수를 달성

하였다. 게다가 단일 단계 검출기의 장점인 속도를 유지하여 비슷한 성

능의 다른 검출기보다 훨씬 적은 연산량을 필요로 한다. 

 

주요어 : 객체 검출, 인공 신경망, 딥러닝 

 

학번 : 2016-26041 
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