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ABSTRACT 

 

Many ion channel studies have been performed on the plasma 

membrane’s ion channels. However, intracellular organelles’ ion channels have 

been investigated recently. The number of studies on the intracellular ion 

channels has increased, and the importance of intracellular ion channels is now 

being recognized. In addition, there are studies being carried out to identify the 

function of subcellular localized ion channels. In the present study, the subcellular 

localization of the voltage-gated potassium (Kv) channel, the Kv2.1 and Kv3 

subfamily were investigated. The results revealed that Kv2.1, Kv3.1, Kv3.2, 

Kv3.3 and Kv3.4 are detected in the nucleus and mitochondria. The alteration in 

Kv channel expression according to the cell density in A549 cells was also 

observed. The expression of Kv3.1 and Kv3.4 located in the nucleus was 

significantly increased in a cell density-dependent manner. Kv2.1 located in the 

membrane also significantly increased according to cell density. In addition, 

changes in Kv3.3 channels’ expression according to differentiation induced by 

hemin in K562 cells were observed. The expression level of the nuclear Kv3.3 

was increased in the early stage of differentiation.  

These results demonstrate that the Kv2.1 and Kv3 subfamily were 

localized not only in the plasma membrane, but also in the nucleus and 

mitochondria. Furthermore, the subcellular location where the channel 

expressions were altered was different each other. Although the function of 

subcellular localized Kv channels is not clear, expression changes imply that 
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these subcellular localized Kv channels could be associated with the proliferation 

and differentiation of cancer cells. 

 

Keyword: Voltage-gated potassium channels; Subcellular localization; 

Differentiation; Cell density; Mitochondria; Nucleus 

Student Number: 2016-21754 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

CONTENTS 

 

I. ABSTRACT...............................................................i 

II. CONTENTS..............................................................1 

III. LIST OF FIGURES………………...........................2 

IV. INTRODUCTION…………………….……………3 

V. MATERIALS AND METHODS…………………7 

VI. RESULTS…………………………………………11 

VII. DISCUSSION……………………………………31 

VIII. CONCLUSION…………………………………35 

IX. REFERENCES……………………………………36 

X. ABSTRACT IN KOREAN………………….…42 

 

 

 

 



2 

LIST OF FIGURES 

 

Figure 1. Confirmation of antibody specificity.  

Figure 2. Subcellular localization of Kv3.1 in A549, HT-29, K562, and 

SH-SY5Y cells. 

Figure 3. Subcellular localization of Kv3.2 in A549, HT-29, K562, and 

SH-SY5Y cells. 

Figure 4. Subcellular localization of Kv3.3 in A549, HT-29, K562, and 

SH-SY5Y cells. 

Figure 5. Subcellular localization of Kv3.4 in A549, HT-29, K562, and 

SH-SY5Y cells. 

Figure 6. Subcellular localization of Kv2.1 in A549, HT-29, K562, and 

SH-SY5Y cells. 

Figure 7. Mitochondria localization of Kv3.1, Kv3.2, Kv3.3, Kv3.4 

and Kv2.1 in A549 cells. 

Figure 8. Immunocytochemistry of Kv3.1 in A549 cells. 

Figure 9. Immunocytochemistry of Kv3.2 in A549 cells. 

Figure 10. Immunocytochemistry of Kv3.3 in A549 cells. 

Figure 11. Immunocytochemistry of Kv3.4 in A549 cells. 

Figure 12. Immunocytochemistry of Kv2.1 in A549 cells. 

Figure 13. Subcellular expression alterations of the Kv3 subfamily and 

Kv2.1 according to the cell density in A549 cells. 

Figure 14. Alteration of Kv3.3 expression in hemin-induced K562 

differentiation. 

 

 



3 

INTRODUCTION 

 

Voltage-gated potassium channels 

Voltage-gated potassium (Kv) channels are a large group of channels 

that can transfer potassium ion and are sensitive to voltage change. Kv channels 

are related to regulate potassium ion transfer and membrane potential in excitable 

cells (Armstrong, 2003; Jan and Jan, 1997; Pichon et al., 2004; Yellen, 2002), 

including neurons (Coleman et al., 1999; Misonou et al., 2005) and cardiac cells 

(Bijlenga et al., 1998; Grunnet et al., 2008). In addition, Kv channels are present 

not only in excitable cells but also in non-excitable cells. Kv channels are 

involved in cell migration, wound healing, proliferation, oxygen sensing, and 

apoptosis (O'Grady and Lee, 2005). In addition, they could affect the regulation 

of intracellular Ca2+ and cell volume (Bertran et al., 1995; Iliev and Marino, 1993).  

 

Characteristics of the Kv2.1 and Kv3 subfamily 

The Shaw gene encodes the Kv3 subfamily in drosophila (Wei et al., 

1990), rodents, and humans (Jan and Jan, 1990; Perney and Kaczmarek, 1991; 

Rudy et al., 1991). The Kv3 subfamily has fast activation and deactivation 

kinetics with high activation thresholds and channels involved in rapid 

repolarization in neurons, and they have an important role in the fast-spiking 

neuronal phenotype (Chow et al., 1999; Rudy and McBain, 2001). When Kv3.1 

is selectively blocked by low concentrations of tetra-ethyl-ammonium, the 
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proliferation of neural progenitor cells is increased (Liebau et al., 2006). 

Moreover, Kv3.1 channels contribute to oxygen sensing in rabbit pulmonary 

artery smooth muscle (Osipenko et al., 2000). Kv3.3 has been involved in K562 

cells’ hemin-induced erythroid differentiation (Song et al., 2016). As a novel 

target in cancer therapy, the blockage of Kv3.4 using 4-aminopyridine inhibited 

the growth of oral squamous cell carcinoma (Felipe et al., 2006).  

The expression of Kv2.1 could be altered by hypoxia in cultured 

pulmonary artery smooth muscle cells because of the oxygen-sensing property 

(Dong et al., 2012; Guo et al., 2010). In addition, Kv2.1/Kv9.3 heteromers are 

ATP‐dependent delayed‐rectifier K+ channels in oxygen‐sensitive pulmonary 

artery myocytes (Patel et al., 1997). 

 

Subcellular localization of ion channels 

 It is well known that ion channels are localized in the plasma 

membrane. However, several experimental results have revealed that ion 

channels, which are generally known as plasma membrane-spanning channels, 

may exist not only in the plasma membrane but also in the intracellular organelles 

(Leanza et al., 2013; Mazzanti et al., 1990). Potassium channels are no exception, 

and there are reports demonstrating their intracellular localizations. For instance, 

Kv1.3 has been found in the nuclei of cancer cells and human brain tissues (Jang 

et al., 2015); it has also been identified in the inner mitochondrial membrane of 

T lymphocytes (Szabo et al., 2005). Ca2+-dependent K+ channel activities were 

observed in the nuclei of pancreatic acinar cells (Maruyama et al., 1995), and 



5 

Ca2+-independent K+ channels were found in the envelope of nuclei from a rat’s 

cerebral cortex (Draguhn et al., 1997). An ATP-sensitive K+ channel (KATP) exists 

on the nuclear envelope of pancreatic beta cells (Quesada et al., 2002). 

It was also discovered that the Kv channel, which is localized in 

intracellular organelles, could play its own role—for example, the selective Kv1.3 

inhibitor margatoxin induces hyperpolarization of the nuclear membrane. The 

inhibition of Kv1.3 also induces the activation of transcription factors, such as 

the phosphorylation of the cAMP response element-binding protein (CREB) and 

c-Fos activation; the inhibition of the transcription factor Sp1 results in a decrease 

in Kv1.3 expression (Jang et al., 2015). The Bax-mediated inhibition of 

mitoKv1.3 could lead to the development of hyperpolarization and reactive 

oxygen species (ROS) which may play multiple roles in apoptosis (Szabo et al., 

2008). A blockade of KATP provokes a Ca2+ increase in the nucleoplasm, and this 

increase induces CREB phosphorylation, which may activate transcription 

(Quesada et al., 2002). 

 

Purpose of the present study 

Most studies of ion channels have been investigated using patch clamp 

techniques. As a result, most of the experiments using a patch clamp have focused 

on channels that are localized in the plasma membrane. This may be the reason 

intracellular localized channels have been investigated less than the plasma 

membrane-spanning channels. In recent decades, the functions of intracellular 

channels have been revealed, but further researches are still required (Gomez-
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Ospina et al., 2006; Valenzuela et al., 2000). In the present study, the subcellular 

localization of the Kv2.1 and Kv3 subfamily was investigated since these 

channels have been less investigated by electrophysiology than other channels 

and to find their roles in the cells. 
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MATERIALS AND METHODS 

 

Cell culture 

A549 (lung carcinoma cells), HT-29 (colon adenocarcinoma cells), and 

K562 (leukemia cells) were maintained with an RPMI 1640 medium (Welgene, 

Gyeongsan-si, South Korea) containing 10% fetal bovine serum (Welgene, 

Gyeongsan-si, South Korea) and 1% antibiotic-antimycotic solution (Sigma-

Aldrich, MO, USA). SH-SY5Y (neuroblastoma) cells were cultured in an MEM 

medium (Welgene, Gyeongsan-si, South Korea). 

 

Density-dependent cell seeding 

A549 cells were seeded into 6-well plates. Low density represents 

20~30% cell confluence (Cell seeding numbers: approximately 2 x 104), medium 

density represents 40~60% cell confluence (approximately 4 x 104), and high 

density represents over 80% cell confluence (approximately 1.2 x 105). A549 

cells were grown until cells reached the desired confluence for experiments. 

 

Subcellular fractionation 

Cells were fractionated using a subcellular protein fractionation kit for 

cultured cells (Thermo scientific, MA, USA), into cytosol, membrane, and 

nuclear proteins. The cells suspended in cytoplasmic extraction buffer were 

incubated at 4°C for 10 m and were gently mixed and centrifuged at 500 × g for 

5 m at 4°C. The supernatant was then transferred into a new microcentrifuge tube 
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(cytoplasmic extract). The membrane extraction buffer was added to the pellets 

and incubated at 4°C for 10 m; it was then gently mixed. The extracts were 

centrifuged at 3000 × g for 5 m at 4°C, and the supernatant was transferred into 

a new microcentrifuge tube (membrane extract). The nuclear extraction buffer 

was added to the pellets and incubated at 4°C for 30 m; it was then gently mixed. 

The extracts were centrifuged at 5000 × g for 5 m at 4°C, and the supernatant was 

transferred into a new microcentrifuge tube (nuclear extract). Finally, subcellular 

extracts were resolved in a 5× sample buffer to load samples into gels for a 

western blot analysis. 

 

Mitochondria fractionation 

Mitochondria were isolated using a mitochondria isolation kit (Life 

Technologies, Van Allen Way Carlsbad, CA). The isolation was performed 

following the manufacturer’s instructions, and a reagent-based method was used 

to isolate mitochondria. Cytosol and mitochondrial fractions were used for the 

western blot assay right after the isolation. The isolated mitochondrial fraction 

was confirmed with α-tubulin and COX4 protein expression levels as a reference. 

 

Transfection with small interference RNA (siRNA) 

Cells were transfected with siRNA-Kv3.1 using Kv3.1 siRNA (Santa 

Cruz Biotechnology, Texas, USA) and Lipofectamine™ 2000 reagent (Invitrogen, 

Carlsbad, CA, USA). Transfection was performed following the manufacturer’s 

instructions. The A549 cells (1 x 105) were plated in 6-well plates (SPL Life 

Sciences, Gyeonggi-do, Korea) immediately prior to the transfection step in 
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RPMI 1640 (Welgene, Daegu, Korea) containing 10% FBS without any 

antibiotics. After 24 h, the siRNA-Kv3.1 transfected cells were incubated. The 

incubation time was 72 h. 

 

Probing with control antigen  

Before the probing protein transferred membranes overnight with 

primary antibody, Kv3.2 control antigen reacted with anti-K3.2 (Alomone, 

Jerusalem, Israel) according to the manufacturer’s instructions. An antigen-

antibody reaction was performed in 3% skim milk for 1 h. 

 

Western blot analysis 

The total protein concentration was measured by a BCA protein assay 

kit (Pierce, Rockford, IL). The quantified protein was loaded on a 10% SDS-

PAGE and then transferred to nitrocellulose membranes (Whatman, Maidstone, 

Kent). Blocking was performed using a 1X TBS-Tween 20 containing 5% nonfat 

milk (Difco, Franklin Lakes, NJ); protein transferred membranes were then 

probed overnight with target protein primary antibodies, such as anti-Kv2.1, anti-

Kv3.1, anti-Kv3.3, Na-K-ATPase, lamin A, anti-Kv3.2, and anti-Kv3.4. Primary 

antibodies probed membranes and were incubated with horseradish peroxidase-

conjugated goat, anti-rabbit, or anti-mouse secondary antibody (GenDEPOT, 

Barker, TX) for 1 h; they were visualized using WesternBright™ Quantum™ 

(Advansta, Menlo Park, CA).  
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Immunocytochemistry 

A549 cells were grown for 24 h, mitochondria staining with mitotracker 

solution 1 mM (Life Technologies, Van Allen Way Carlsbad, CA), fixed with 4% 

PFA, permeabilised with 0.2% Triton X-100 (Sigma-Aldrich, St Louis, MO, 

USA), and incubated overnight at 4°C with 5% donkey serum (final dilution 

1:200) and primary antibodies. Double immunolabelling was done using the 

appropriate Alexa Fluor secondary antibodies diluted 1:200 (Molecular Probes). 

Samples were mounted with DAPI staining solution (ImmunoBioScience Corp, 

Mukilteo, WA). 

 

Hemin-induced erythroid differentiation 

K562 cells (5 x 105 cells) were cultured into a T75 flask (SPL Life 

Sciences, Gyeonggi-do, Korea) and incubated for 30 m with 50 μM hemin (Sigma, 

St. Louis, MO) to induce erythroid differentiation. 

 

Statistical analysis  

The values were expressed as mean ± standard errors. For analysis of 

the density dependent alteration experiment, t-test was used to comparing two 

different groups. Statistical significant for the hemin-induced differentiation 

experiment was determined using Mann Whitney U test. P-values of less than 

0.05 were considered to be statistically significant.  
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RESULTS 

 

Confirmation of antibody specificity in A549 cells 

Before the western blot analysis, it was confirmed that which band 

represented the target channel proteins in the western blot membrane. To confirm 

the band size of Kv3.1, siRNA transfection was performed. siRNA-Kv3.1 was 

transfected into the A549 cells and the degree of siRNA transfection was 

confirmed by western blot analysis (Fig. 1 A). The results demonstrated that 

Kv3.1 is 57 kDa in size. 

Kv3.2 control antigen was used to verify the Kv3.2 protein band size. It 

was determined that the specific band that disappeared due to an antigen-antibody 

reaction represented Kv3.2 proteins. According to western blot, Kv3.2 expression 

was decreased at 75 kDa in the membrane and 60 kDa in the nucleus (Fig. 1 B). 

Therefore, it was confirmed that the band size of Kv3.1 is 57 kDa and Kv3.2 is 

75 and 60 kDa in protein-transferred membrane. 
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Figure 1. Confirmation of antibody specificity (A) Transfection of siRNA-

Kv3.1 in A549 cells. The transfection of small interference RNA was performed 

on A549 cells to verify the Kv3.1 protein band size. The concentration of siRNA 

was 0.4 μM and 0.8 μM. Expressions were significantly decreased at 57 kDa, 

confirming that Kv3.1 antibody was specific to Kv3.1. (B) Probing protein-

transferred membranes with control antigen. The control antigen was used to 

identify the band of Kv3.2 channels. When the control antigen reacted with anti-

Kv3.2, the visualized signals of Kv3.2 in the protein-transferred membrane were 

decreased; it could be confirmed that band size of the Kv3.2 was 60 kDa in the 

membrane and 75 kDa in the nucleus. (C: cytosol, M: membrane, N: nucleus) 
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Subcellular localizations of the Kv2.1 and Kv3 subfamily 

Cell fractionation (separated into the cytosol, membrane, and nucleus) 

was performed to identify the subcellular localization of Kv3.1, Kv3.2, Kv3.3, 

Kv3.4 and Kv2.1 channels in A549, HT-29, K562, and SH-SY5Y cells. 

Subcellular fractionation was confirmed using Na-K-ATPase (a membrane 

marker) and lamin A (a nuclear marker) as cell fraction markers. Kv3.1 was 

observed in the cytosol, membrane and nucleus (Fig. 2). Kv3.2 was localized in 

the membrane with a band size of 60 kDa and in the nucleus with a band size of 

75 kDa (Fig. 3). Kv3.3 was detected in the cytosol, membrane, and nucleus (Fig. 

4). Kv3.4 was detected in the cytosol, membrane, and nucleus (Fig. 5). Kv2.1 was 

also observed in the cytosol, membrane, and nucleus (Fig. 6).  

Mitochondria fractionation was also performed (separated into cytosol 

and mitochondria) to verify the mitochondrial localization of Kv3.1, Kv3.2, 

Kv3.3, Kv3.4 and Kv2.1 channels in A549 cells. Mitochondria fractionation was 

confirmed using α-tubulin (a cytosol marker) and COX4 (a mitochondria marker) 

as the cell fraction marker. According to the data (Fig. 7), Kv3.1, Kv3.2, Kv3.3 

Kv3.4 and Kv2.1 channels were observed in the mitochondria. 
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Figure 2. Subcellular localization of Kv3.1 in A549, HT-29, K562, and SH-

SY5Y cells. Four cell lines were fractionized to confirm the subcellular 

localization of Kv3.1. Kv3.1 was detected in the cytosol, membrane, nucleus of 

A549, HT-29, K562, and SH-SY5Y cells. Cell fractionation was confirmed using 

Na-K-ATPase (a membrane marker) and lamin A (a nuclear marker). (C: cytosol, 

M: membrane, N: nucleus) 
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Figure 3. Subcellular localization of Kv3.2 in A549, HT-29, K562, and SH-

SY5Y cells. Kv3.2 channels were found in the membrane with the band size of 

60 kDa and in the nucleus with the band size of 75 kDa of A549, HT-29, K562, 

and SH-SY5Y. Cell fractionation was confirmed using Na-K-ATPase (a 

membrane marker) and lamin A (a nuclear marker). (C: cytosol, M: membrane, 

N: nucleus) 
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Figure 4. Subcellular localization of Kv3.3 in A549, HT-29, K562, and SH-

SY5Y cells. Protein expression of Kv3.3 was detected in the cytosol, membrane, 

and nucleus of A549, HT-29, K562, and SH-SY5Y. Cell fractionation was 

confirmed using Na-K-ATPase (a membrane marker) and lamin A (a nuclear 

marker). (C: cytosol, M: membrane, N: nucleus) 
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Figure 5. Subcellular localization of Kv3.4 in A549, HT-29, K562, and SH-

SY5Y cells. The western blot images of Kv3.4 using subcellular fractionation 

demonstrate that Kv3.4 is localized in the cytosol, membrane and nucleus of 

A549, HT-29, K562, and SH-SY5Y. Cell fractionation was confirmed using Na-

K-ATPase (a membrane marker) and lamin A (a nuclear marker). (C: cytosol, M: 

membrane, N: nucleus) 
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Figure 6. Subcellular localization of Kv2.1 in A549, HT-29, K562, and SH-

SY5Y cells. Kv2.1 was observed in the cytosol, membrane and nucleus of A549, 

HT-29, K562, and SH-SY5Y. Cell fractionation was confirmed using Na-K-

ATPase (a membrane marker) and lamin A (a nuclear marker). (C: cytosol, M: 

membrane, N: nucleus) 
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Figure 7. Mitochondria localization of Kv3.1, Kv3.2, Kv3.3, Kv3.4 and Kv2.1 

in A549 cells. Kv3.1, Kv3.2, Kv3.3, Kv3.4 and Kv2.1 were observed in the 

mitochondria. Mitochondria fractionation was confirmed using α -tubulin (a 

cytosol marker) and COX4 (a mitochondria marker). (C: cytosol, Mito: 

mitochondria) 
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Immunocytochemistry 

Immunocytochemistry was performed to identify the localization of 

Kv3.1, Kv3.2, Kv3.3, Kv3.4, and Kv2.1 channels as the target antigen by 

immunocytochemistry using A549 cells. The immunoreactivity of Kv3.1 (Fig. 8) 

was most intense in the nucleus region and slightly less in the mitochondria. 

Similar to Kv3.1, the signal of Kv3.2 (Fig. 9) overlapped the nucleus and 

mitochondria. Although Kv3.3 (Fig. 10) was mainly observed in the nucleus 

region, it was detected to some extent in the mitochondria and plasma membrane 

as well. Kv3.4 (Fig. 11) was detected in the mitochondria, plasma membrane, and 

nucleus. The signal of Kv2.1 (Fig. 12) was detected in the nucleus, plasma 

membrane and mitochondria. 
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Figure 8. Immunocytochemistry of Kv3.1 in A549 cells. The signal of Kv3.1 

channels was co-localized with the signal of the plasma membrane, nucleus and 

mitochondria. Kv3.1 channels labeled with anti-Kv3.1 antibody are shown in 

green. The plasma membrane labeled with Na-K-ATPase is shown in red. The 

mitochondria labeled with mitotracker is in magenta, and the nucleus labeled with 

DAPI is in blue. (PM: plasma membrane) 
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Figure 9. Immunocytochemistry of Kv3.2 in A549 cells. The signal of Kv3.2 

channels was co-localized with the signal of the plasma membrane, nucleus and 

mitochondria. Kv3.2 channels labeled with anti-Kv3.2 antibody are shown in 

green. The plasma membrane labeled with Na-K-ATPase is in red. The 

mitochondria labeled with mitotracker is in magenta, and the nucleus labeled with 

DAPI is in blue. (PM: plasma membrane) 
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Figure 10. Immunocytochemistry of Kv3.3 in A549 cells. The signal of Kv3.3 

channels was co-localized with the signal of the plasma membrane, nucleus and 

mitochondria. Kv3.3 channels labeled with anti-Kv3.3 antibody are shown in 

green. The plasma membrane labeled with Na-K-ATPase is in red. The 

mitochondria labeled with mitotracker is in magenta, and the nucleus labeled with 

DAPI is in blue. (PM: plasma membrane) 
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Figure 11. Immunocytochemistry of Kv3.4 in A549 cells. The signal of Kv3.4 

channels was co-localized with the signal of the plasma membrane, nucleus and 

mitochondria. Kv3.4 channels labeled with anti-Kv3.4 antibody are in green. The 

plasma membrane labeled with Na-K-ATPase is in red. The mitochondria labeled 

with mitotracker is in magenta, and the nucleus labeled with DAPI is in blue. (PM: 

plasma membrane) 
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Figure 12. Immunocytochemistry of Kv2.1 in A549 cells.  The signal of 

Kv2.1 channels was co-localized with the signal of the plasma membrane, 

nucleus and mitochondria. Kv2.1 channels labeled with anti-Kv2.1 antibody are 

shown in green. The plasma membrane labeled with Na-K-ATPase is in red. The 

mitochondria labeled with mitotracker is in magenta, and the nucleus labelled 

with DAPI is in blue. (PM: plasma membrane) 
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Subcellular localization-dependent alteration of the Kv3 

subfamily and Kv2.1 in A549 cells 

 Next, A549 cells were cultured in three different cell densities (low, med, 

and high) and subjected cell to fractionation. It was found that Kv3.1 (57 kDa) 

was cell-density dependently increased in the nuclear fraction (med: 7.89-fold, 

high: 9.23-fold), whereas Kv3.1 was not altered according to the cell density in 

the membrane fraction (med: 1.79-fold, high: 1.80-fold). The protein expression 

of Kv3.2 and Kv3.3 in the membrane and nuclear fraction were not significantly 

altered during the cell density increment. As with Kv3.1, Kv3.4 (40 kDa) was 

also increased in the nuclear fraction (med: 2.99-fold, high: 7.77-fold) but not 

altered according to the cell density in the membrane fraction (med: 0.71-fold, 

high: 0.86-fold). Interestingly, Kv3.4 (100 kDa), which was observed only in the 

nuclear fraction, did not show any significant expression changes (med: 1.24-fold, 

high: 1.90-fold). It was also checked the subcellular expression changes of Kv2.1, 

which is a well-investigated oxidation-sensitive Kv channel, according to its cell 

density. It was found that the expression of Kv2.1 in the membrane fraction was 

increased significantly when the A549 cells were cultured at a high density 

compared to the cells at a low density (med: 1.87-fold, high: 15.71-fold), whereas 

Kv2.1 in the nuclear fraction did not show any alterations according to the cell 

density (med: 1.25-fold, high: 0.98-fold) (Fig. 13). 
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Figure 13. Subcellular expression’s alterations of the Kv3 subfamily and 

Kv2.1 according to the cell density in A549 cells. A549 cells were fractionized 

into the cytosol, membrane, and nucleus. Kv3.1 (57 kDa) and Kv3.4 (40 kDa) in 

the nuclear fraction were significantly increased in a cell density-dependent 

manner, whereas Kv3.1 and Kv3.4 in the membrane fraction did not show any 

changes in their expression level according to their cell density. Cell density did 

not have any effect on Kv3.4 (100 kDa), which was only detected in the nuclear 

fraction. Kv3.2 (60 kDa) in the membrane fraction and Kv3.3 (81 kDa) in the 

membrane and nuclear fractions were not altered by cell density. Kv2.1 in the 

membrane fraction increased significantly when the A549 cells were cultured at 

a high density compared to the cells at a low density. In contrast, Kv2.1 in the 

nuclear fraction did not show any alterations according to the cell density. 

Relative protein expressions of the Kv3 subfamily were normalized to the lamin 

A for the nuclear fraction or the Na-K-ATPase for the membrane fraction, and 

they were expressed as a fold change relative to the low-density group. All 

experiments were performed in triplicate, and data represented the mean ± 

standard error. *p<0.05 versus the low-density value. 
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Hemin-induced K562 differentiation 

This investigation was performed to observe the alteration of ion 

channel expression in the membrane and nucleus according to hemin-induced 

K562 differentiation. The expression of nuclear Kv3.3 in the hemin-treated group 

was 1.87-fold higher than in the control group (Fig. 14). On the other hand, the 

expression of membrane Kv3.3 in the hemin-treated group was 0.87-fold change 

relative to the control group. 

 
 

Figure 14. Alteration of Kv3.3 expression in hemin-induced K562 

differentiation. The protein expression level of Kv3.3 in the membrane and 

nucleus was estimated after inducing 30 m of differentiation. In the nucleus, the 

relative protein expressions of the Kv3.3 were expressed as a 1.87-fold change 

relative to the control cells. In the membrane, on the other hand, the relative 

protein expressions of the Kv3.3 were expressed as a 0.87-fold change relative to 

the control cells. Cell fractionation was confirmed using Na-K-ATPase (a 

membrane marker) and lamin A (a nuclear marker) All experiments were 

performed in sextuplicate, and data represented the mean ± standard error. 

*p<0.05 versus the control group value.
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DISCUSSION 

 

Ion channels are widely known for existing in the plasma membrane. 

Since it was found that ion channels exist in the intracellular organelle, studies 

exploring intracellular channels have been increasing in number, and the function 

of intracellular channels has been getting more attention (Gomez-Ospina et al., 

2006; Jang et al., 2015; Valenzuela et al., 2000; Xu et al., 2015) 

To my knowledge, there are no data about the intracellular localization 

and the nuclear expression of the Kv3 subfamily and Kv2.1, but there are data on 

the nuclear localization of Kv1.3 and Kv10.1 (Chen et al., 2011; Jang et al., 2015). 

According to the results, the nuclear localization of the Kv3 subfamily and Kv2.1 

in the A549, HT-29, K562, and SH-SY5Y cells was found and the Kv3 subfamily 

and Kv2.1 were also localized in the mitochondria in the A549 cells. Finally, 

immunocytochemistry verified the subcellular localization of the Kv3 subfamily 

and Kv2.1. It was found that Kv3.1 existed in the nucleus and mitochondria; 

Kv3.2 also existed in the nucleus and mitochondria. Kv3.3 was localized in the 

nucleus and mitochondria. Kv3.4 was less detected in the nucleus and mainly 

expressed in the mitochondria and plasma membrane. In western blot analysis, 

Kv3.4 was observed in the nucleus with protein sizes of 40 and 100 kDa, whereas 

in the cytosol and membrane, Kv3.4 was found with a protein size of 40 kDa only. 

The size of Kv3.4 is generally 70 kDa (Kanda et al., 2011; Song et al., 2017), but 

Kv3.4 could be glycosylated or form tetramers with other Kv channels or other 

accessory channels. In this case, Kv3.4 has a protein size of 100 kDa 
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(Baranauskas et al., 2003; Song et al., 2017). Furthermore, the Kv3.4 subunit 

(which could be assembled with other Kv channels) would be detected with a 

protein size of 40 kDa. For that reason, various sizes of Kv3.4 may be detected 

in a western blot (Boda et al., 2012; Guo et al., 2008; Miguel-Velado et al., 2010). 

Kv2.1 was found in the nucleus and mitochondria. 

Kv3 channels Kv3.1, Kv3.2, Kv3.3, and Kv3.4 are encoded in the same 

Shaw genes (Butler et al., 1989; Rettig et al., 1992). In addition, each one of the 

same subfamily channel α-subunit could be co-assembled, and they consequently 

make a heteromer (Baranauskas et al., 2003). Although they are encoded in the 

same genes, the data demonstrated that their localizations are different. Therefore, 

it would be important to verify the localization of ion channels and to investigate 

the function of each ion channel in the plasma membrane, mitochondria, and 

nucleus separately.  

Furthermore, according to the data, Kv2.1, Kv3.1, and Kv3.4 showed 

expression alteration patterns that varied dependent on their localization 

according to their cell density. Cell density affected Kv2.1 in the membrane 

fraction, whereas Kv3.1 and Kv3.4 in the membrane fraction were not altered 

according to their cell density. Only nuclear Kv3.1 and Kv3.4 increased in a cell 

density-dependent manner. Considering that they are oxidation-sensitive Kv 

channels and the three Kv channels may respond to the oxidative stress induced 

by a cell density increment, I could assume that (although some channels have 

the same oxygen sensing functions), they could play their oxygen-sensing roles 

in a different subcellular localization. Eukaryotic cells have distinct 

compartments, such as the nucleus, mitochondria, and cytoplasm, and each 
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compartment has a different redox potential. They respond differently to 

microenvironmental changes (Go and Jones, 2008; Go and Jones, 2010; Lopez-

Mirabal and Winther, 2008). For instance, EGF-stimulated ROS production 

affects the cytoplasmic redox system but does not have any effect on the 

mitochondrial or the nuclear redox system (Halvey et al., 2005). In this scheme, 

different oxidation-sensitive Kv channels may be involved in a different 

compartment’s redox system; therefore, I assume that Kv2.1 may be involved in 

cytoplasmic redox regulation, whereas Kv3.1 and Kv3.4 may be involved in the 

nuclear redox system. Further research detailing the exact mechanism is needed.  

 It was demonstrated that Kv3.3 is involved in hemin-induced K562 

differentiation (Song et al., 2016). In the present study, the alteration of Kv3.3 

expression after hemin-induced K562 differentiation in the nucleus and 

membrane was observed. According to the data, the expression of nuclear Kv3.3 

was increased after the hemin-induced differentiation. On the other hand, the 

expression of membrane Kv3.3 was decreased. The Kv3.3 expression level in the 

early stage (30 m) of hemin-induced differentiation was estimated, and there was 

no change in entire Kv3.3 expression level compared to the control cells (Song et 

al., 2016). However, it is observed that the expression of nuclear Kv3.3 was 

increased as a 1.87-fold change relative to the control cells and the expression of 

membrane Kv3.3 was similar as 0.87-fold change relative to the control cells. As 

a result, I can demonstrate that the ion channels of the nucleus may have an 

important role in differentiation and ion channels could migrate as the occasion 

demands. 

By understanding the localization of the ion channels, I found that some 
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ion channels in the intracellular organelles have been poorly investigated. As 

mentioned above, ion channels have been investigated by recording ion currents, 

which represent plasma membrane currents (Verkhratsky and Parpura, 2014). Ion 

channels play important roles in the intracellular organelle (Gulbins et al., 2010; 

Jang et al., 2015; Leanza et al., 2012; Szabo et al., 2008), and as a result, more 

studies dealing with the intracellular channels would provide a more advanced 

understanding of channel-related vital phenomena. In addition, targeting 

intracellular organelles is essential for drug delivery, and investigations have been 

done in an attempt to target intracellular organelles using biomaterials such as 

fluorescent plasmid DNA nanoparticles (Costa et al., 2017) and methods like 

lipophilic cations, mitochondrial targeting signal peptides, and cell-penetrating 

peptides to selectively target mitochondria (Chen et al., 2016). Therefore, 

choosing an appropriate drug according to the localization of an ion channel is 

also important. In fact, there is a report demonstrating that membrane-permeant 

Kv1.3 inhibitors induce apoptosis by targeting mitochondrial Kv1.3, whereas 

membrane-impermeant Kv1.3 inhibitors did not affect cell survival (Leanza et al., 

2012). Finally, intracellular ion channels could be novel biomarkers and 

therapeutic targets (Leanza et al., 2014; Peixoto et al., 2010). Cancer-expressing 

mitoKv1.3 can be eliminated by a membrane-permeable mitoKv1.3 direct-

targeting inhibitor (PAP-1 derivatives), which leads to ROS-induced apoptosis 

(Leanza et al., 2017). 
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CONCLUSION 

 

 In the present study, the subcellular localization of each Kv3 subfamily 

and Kv2.1 was identified. It was confirmed that Kv2.1 and Kv3 subfamily were 

localized in the nucleus and mitochondria. Although the alteration of specific 

channels’ expressions was observed according to cell density, the location of the 

alteration differed. Kv3.1 and Kv3.4 were altered in the nucleus, and Kv2.1 were 

altered in the membrane. Based on the results, I found that different Kv channels, 

which may play similar roles (e.g., oxygen sensor), could be at different 

subcellular localizations. Furthermore, the expression of Kv3.3 channels, which 

were located in the nucleus, was altered according to hemin-induced K562 

erythroid differentiation in the early stage.  

The subcellular localization of Kv channels had not been widely studied. 

However, the subcellular Kv channels is more investigated currently. These 

results imply that the investigation of Kv channels’ subcellular localizations is 

important for channel research and that it would provide new insights about Kv 

channel-related vital phenomena, such as tumor proliferation and differentiation. 
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국문초록 

 

전압의존성 K+ 채널,  

Kv2.1과 Kv3 아형의 세포 내 분포 

 

변 진 호 

 

서울대학교 대학원 

수의학과 수의생명과학 전공 (수의약리학) 

 

지도교수 이 소 영 

 

그동안 대부분의 이온 채널 연구는 세포막에 존재하는 이온 

채널을 대상으로 이루어졌다. 하지만 최근에는 세포막에 존재하는 이

온 채널뿐만 아니라 세포 내에 존재하는 이온 채널도 연구되고 있다. 

또한 세포 내에 존재하는 이온 채널에 대한 연구는 갈수록 증가하고 

있고 그 중요성은 더욱 커지고 있다. 본 연구는 세포 내에 존재하는 

전압의존성 K+ 채널, Kv2.1과 Kv3 아형을 대상으로 연구하였다. 연

구결과, 핵과 미토콘드리아에서 Kv2.1, Kv3 아형이 모두 관찰되었다. 

A549세포에서 세포 밀도에 따른 Kv채널의 발현 변화를 관찰하였는

데, 세포 밀도의 증가에 따라 핵에서의 Kv3.1과 Kv3.4의 발현이 유
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의하게 증가하였고 세포막에서 Kv2.1의 발현이 현저하게 증가하였다. 

추가적으로, hemin에 의한 K562세포의 분화에 따른 Kv3.3의 발현 

변화가 핵에서 특이적으로 관찰되었다. 

따라서 본 연구 결과를 통해 Kv2.1과 Kv3 아형은 세포막뿐

만 아니라 핵과 미토콘드리아에 존재한다는 것을 알 수 있다. 또한 

세포 밀도와 분화에 따른 채널의 발현 변화가 관찰되는 세포 내 위치

가 채널 별로 다르다는 것을 알 수 있다. 세포 내에 존재하는 Kv채널

들의 기능을 밝히기 위해서는 추가적인 실험이 필요하지만, 본 연구

는 세포 내에 존재하는 Kv채널들이 암세포의 증식 및 분화 등의 기

능에 관련될 가능성을 시사한다. 
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