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Abstract 

Spatial-temporal PM2.5 Prediction 

Using MODIS AOD Products 

 

WANG YIFAN 

Geography 

College of Social Science 

Seoul National University 
 

In recently decade haze in China has severely hurt its economy and threatened 

the health of its population. There is often strong demand from the Ministry for the 

Environment for assessing, predicting, and trying to reduce the levels of PM2.5 

around the country. In practice, PM2.5 data is difficult to measure. Monitor sites 

are not distributed uniformly, most of them built in urban area. Traditional air 

pollution epidemiology studies being conducted in large cities can be limited by the 

availability of monitoring. Satellite Aerosol Optical Depth (AOD) measurements 

offer the possibility of exposure estimates for the entire population. In this situation, 

the 10 km MODIS Aerosol Optical Depth (AOD) product can be used as predictor 

since recent studies has proved the statistical relationship between AOD and PM2.5. 

The traditional statistical study on AOD and PM2.5 are primarily Geographic 
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Weighted Regression. Based on Gaussian process regression, this study developed 

a new regression approach to predict PM2.5 distribution in a Bayesian hierarchical 

setting from October 2016 to October 2017. The spatial non-stationarity was 

modeled by a Gaussian process with exponential covariance function. Parameters 

to explain factors like AOD, spatial random effects and non-spatial factors were 

estimated via a Bayesian hierarchical framework. The result illustrated that our 

model showed a good daily prediction on unknow sites by giving a 0.76 R2 under 

10 cross validation and a precise annual prediction with R2 equal to 0.90. For 

daily model, we compared our result with GWR and a machine learning method 

support vector machine (0.68 and 0.75 respectively), which showed modeling 

spatial random effects via Gaussian process was able to improve the accuracy 

PM2.5 predicting using MODIS AOD data. 

 

Keyword: AOD, PM2.5, Gaussian Process, Bayesian hierarchical modeling, 

GIS 

Student Number: 2016-22068 
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Chapter1. Introduction 

1.1 Research Motivation 

Since 2013, as a part of the air quality improving program, a ground-level 

monitoring network to record ground-measured PM2.5 information was established 

by Chinese governments and public organizations. New plans for implementing air 

pollution enacted in next few years extended the monitoring network from 900 

ground sites to over 1500.  

Ground-based monitoring data is generally considered as an accurate record of 

real value. However, the data are quite sparse, merely representing a small part of 

whole territory of China (Tian et al., 2010). A tough problem is that distribution of 

this network is spatially unbalanced, which makes interpolating difficult (Hu et al., 

2013). Relying on instrument operation period and functionality, the data integrity 

of time series of ground-level PM monitoring also highly varies (Benas et al., 

2013). Although making more monitor site is definite a solution but will be both 

time and labor consuming.  

PM estimation using remote sensing techniques is an efficient solution for 

issues above (Benas et al., 2013). Firstly, satellite taking image on its orbit can 

provide a complete, worldwide spatial resolution. (Hadjimitsis, 2009). Secondly, it 

provides information of 6 global air quality, which can be used to track the origin 

of urban air pollutant and global transportation (Wang et al., 2013). Without 

maintaining the whole monitoring network, this method is affordable for more 
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regions by saving labor and facility cost. Previous studies showed a strong 

correlation between retrieved AOD from satellite and ground-level PM2.5 

concentration by various models (Chu et al., 2003; Wang, 2003). Regarding to 

shortcomings, the major discussed issue is that AOD is in whole atmospheric 

aerosol level, while ground-level PM2.5 data were observed on the Earth’s surface 

(Benas et al., 2013). Furthermore, cloud, snow and ice cover can reduce the AOD 

availability and accuracy, thus unable to estimate PM2.5 concentrations (Lee et al., 

2012). 

The AOD product from remote sensing techniques provides a chance to 

predict PM2.5 concentrations in a high spatial resolution. Popular statistical models 

include the simple linear regression model, the multiple linear regression (MLR) 

model, the geographically weighted regression (GWR) model, artificial neural 

network (ANN) algorithms, generalized additive models (GAMs) or two-stage 

hierarchical models that include combinations of different statistical models.  

In conclusion, finding the way using RS techniques like MODIS data in the 

estimation of PM2.5 over China will not only benefit local citizens’ health and their 

quality of life, but also facilitate local government to take corresponding actions in 

regulating pollutants emission and protecting its local environment. 

 

1.2 Problem Description 

It is showed in previous studies that the relationship between PM2.5 and AOD 
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values varies in space (Hu, 2009). Van Donkelaar et al (2010) generated a map 

about global satellite-derived PM2.5 using the averaged AOD from MISR and 

MODIS during 2001 and 2006. Their results are shown in Figure. 1.2. 

 

 

Figure 1.1 Global satellite-derived PM2.5 (µg/m3) averaged from 2001 to 

2006.(Source: van Donkelaar et al., 2010) 

 

Underlying spatially continuous phenomenon need to be modeled thus simple 

global regression methods performing poorly on this kind of problem. Spatial 

statistics is used to describe a wide range of statistical models and methods 

intended for the analysis of spatially referenced data. To addressing the spatial 

variability and non-stationarity of regression parameters, many studies have 

employed spatial statistics model to address the spatial heterogeneity of the PM2.5-

AOD relationship.  

In observation-based models, besides AOD, locations, meteorological 
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parameters and socio-economic factors have been widely utilized as inputs to 

perfect the performance. Explanation of spatial effect and these factors is a 

complex task. The hierarchical nature can help explain various sources of 

variations in PM2.5 while hyperparameters in such modeling, which usually set 

subjectively and empirically, require tedious trying for optimization in certain 

dataset.   

 

1.3 Research Objective and Research Question 

Overall, this study aims to explore implying statistical models on remote sensing 

datasets for estimating PM2.5 concentrations in China from Oct 1st, 2016 to Sep 

31st, 2017. In order to achieve this goal, the following three main research 

questions need be addressed: 

 

(1) How do we explain multiple sources of variation of PM2.5? 

(2) How to treat spatial relationship between PM2.5 and AOD? 

(3) How to optimize hyperparameters in hierarchical setting? 

 

1.4 Methodology 

To answer the three research questions outlined, the specific methodology of 

this thesis is as following:  
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Firstly, we analyzed relationship between AOD data and PM2.5, and selected 

planetary boundary layer and relative humidity in meteorology factors as other 

predictor in our model by reviewing definition of AOD. Analysis of feasibility of 

MODIS AOD data in china is conducted through literature review. MODIS aerosol 

product has been widely used in PM2.5 estimation in previous study. Based on 

validation works on MODIS AOD data by AERONET AOD conducted in those 

study, feasibility and error were also discussed.  

Secondly, we reviewed that Gaussian processes are one of the most intuitive 

methods to model spatial surfaces as realization of stochastic processes and it has 

impressive performance on modeling spatial effect. We set a hierarchical model to 

help explain various sources of variations in PM2.5 with a linear group of intercept 

and coefficients of AOD, planetary boundary layer and relative humidity, and a 

spatial random effect to capture the geographic variation and a non-spatial random 

effect. Unlike traditional geostatistical methods, which rely on particular functions 

(such as wavelets and splines) to represent spatial relationships, Gaussian processes 

are one of the most intuitive methods to model spatial surfaces as realization of 

stochastic processes. Specifically, Gaussian processes consider the spatial effect as 

random variables by specifying their means and covariance functions, which is the 

major feature that distinguishes them from other traditional methods. 

In particular, our model can be described in the following three stages: for the 

first stage, PM2.5 concentrations are conditional on the distribution of AOD values, 

spatial and non-spatial random effects, which is the basic foundation of our model; 
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the second stage mainly focuses on the distribution of spatial random effects, which 

are modeled by Gaussian processes with specific mean surface and covariance 

functions; the last stage concentrates on the conditional distribution of the 

covariance functions of Gaussian processes given by the hyperparameters we chose. 

This hierarchical approach is helpful when dealing with ambiguous variations. 

Comparatively, for GWR models, the coefficients of each independent variable (in 

our case, there is a single explanatory variable, AOD) and intercept are different at 

different locations, and the coefficients are intrinsically modeled as fixed numbers.  

Bayesian methods is gaining popularity in recent environmental science, 

epidemiology and health policy management studies along with advancement of 

computing resources. It sounds reasoning of treating parameters as random 

quantities rather than fixed values. Parameters are updated by calculating the 

posterior distribution (prob(parameters|data)) by the incorporated external 

knowledge with respect to the distribution of parameters and the likelihood 

function (prob(data|parameters)). The Bayesian methodology is flexible because it 

allows non-informative priors, as well as informative priors acquired by relevant 

research or spatial variogram analysis. In our study we employed Bayesian 

approach by using Pymc3 to optimize all parameters with an empirical prior setting. 

Daily PM2.5-AOD models for China from Oct 1st 2016 to Sep 31st 2017 were 

constructed. Spatial distribution and seasonal variation were examined. We used 

cross validation to analyze over-fitting in our model.  

We anticipated the GPR model in Bayesian hierarchical setting increased the 
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accuracy so that a comparison with other methods were conducted. We matched 

our daily prediction result with Geographic weighted regression and Support vector 

regression because the GWR model has been widely used in AOD-PM2.5 

relationship with spatial effect represented as linear coefficient on each predicting 

factors, while the SVR and our method, GPR, has the same powerful way to deal 

with non-linear data which is called Kernel trick.   

 

1.5 Contribution 

The results proved our research has increased accuracy on modeling PM2.5-

AOD relationship compared with traditional method GWR and machine learning 

method with Kernel trick SVR. It works remarkably accurate on training data and 

showed little over-fitting but also acceptable performance on test data.  

We also discussed the relationship of PM2.5 between planetary boundary layer 

height and relative humidity via reviewing definition of AOD, and used them to 

perfect our model. The person correlation result showed that correlation among 

variables are low and no collinearity exists thus able to predict PM2.5. 

Our model treated the spatial relationships as random variables and used 

gaussian process to depict. We gave a hierarchical explanation of multiple sources 

of PM2.5 variation. Although fitting the hierarchical models is always considered 

time-consuming owing to the large sample size and high cost of matrix 

decomposition, our research showed that MCMC algorithm performed computed 
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effectively on a national scaled data with over 300 inputs in daily model.    
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Chapter 2. Literature Review 

2.1 Introduction to PM2.5 

It has been globally recognized that air pollution poses a threat to public health 

and the steady worldwide increase since 1990 of the burden of disease is attributed 

to ambient air pollution (Forouzanfar et al., 2015). WHO has reported that 3.7 

million people died in 2012 caused by ambient air pollution, and the Southeast 

Asian and Western Pacific regions bear most of the burden (WHO, 2012).  

The major pollutants consist of carbon monoxide, sulfur oxides, particulates, 

nitrogen oxides, and ground level ozone. The particulate matter is formed by liquid 

and solid airborne particles with different diameters and complicated components 

(Gupta et al., 2006). PM includes coarse particles (diameter greater than 2.5 µm), 

fine particles (PM2.5, particles less than diameter < 2.5 µm) and ultrafine particles 

(particles less than diameter < 0.1 µm) (Wilson et al., 1997). Measurement of 

Coarse, fine and ultrafine particles is based on its size, source, formation 

mechanism, lifetime and spatial- distribution (Wilson et al., 1997). Atmospheric 

life time of PM2.5 lasts days to weeks compared with minutes to hours life time of 

coarse-mode particle. The travel range of PM2.5 is wider than coarse as well, 100 

to 1000 kilometers comparing 10 to 100 kilometers. (Wilson et al., 1997). The 

small size, long life time and wide travel range make it more dangerous and larger 

uncertainty in its distribution. 
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Figure 2.1 Ambient particles’ size distribution, patterned after Chow (1995) and 

Watson (2002). (Source: Cao et al., 2013) 

 

Composition of PM2.5 differ from its source: natural and anthropogenic. The 

natural source includes sea salt, dust, volcanic eruptions, forest and grassland fires 

(Emili et al., 2010; Beh et al., 2013), and the anthropogenic source contains 

industrial processes, transportation, fossil fuel combustion (coal, gasoline and 

diesel), and uncertain sources (Emili et al., 2010; Wang et al., 2016). Figure 1.1 

shows the size range and some of the major components of PM2.5 and PM10. 

Generally, PM2.5 contains nanoparticles (condensed organic carbon and sulfuric 

acid vapors), ultrafine particles (fresh high temperature emissions, organic carbon 

and metal vapors), while PM10 contains the components of PM2.5, and other 

components such as geological material, pollen and sea salt. (Watson et al., 2002; 
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Cao et al., 2013). In addition, atmospheric chemical reactions also occur among 

primary particles and result in secondary particles (Franklin et al., 2008).  

The increasing PM2.5 effects negatively on population health and hinders 

economic development. What’s more, climate change has been impacted by 

PM2.5’s effects directly and indirectly. Through directly interacting the solar 

radiation and terrestrial surface radiation like absorbing and scattering, PM2.5 

makes the radiation budget balance and temperature abnormal (Sokolik et al., 

1996). Indirectly, PM2.5 influence climate through effecting on the chemical 

composition and density of the atmosphere. (Schwartz et al., 1995). It is also 

proved that formation of acid rain can partly attributed PM2.5 (EPA .n.d) thus 

reduces agricultural productivity (Chameides et al., 1999). PM2.5 also reduce air 

visibility because of its hygroscopic properties of constituent Sulphur (Deng et al., 

2011).  

Due to its size, PM2.5 can be breathed deeply into the lungs and would never 

come out (Pope III et al., 2000). Long term and short exposure to PM2.5 has been 

associated with hospital admissions for 3 pneumonia, emergency department visits, 

asthma, bronchitis, cardiovascular problems, respiratory infections, lung cancer, 

heart disease and premature deaths. (Wellenius et al., 2005; Baccarelli, 2009; Jones 

et al., 2015; Kioumourtzoglou et al., 2016; Zanobetti et al., 2015). According to a 

survey in OECD Environmental Outlook To 2050, it is estimated that in 2010, 1.4 

million people died due to PMs and this number is expected to increase to 2.3 in 

2030 and 3.6 in 2050. Most of the premature deaths are elderly with weaker 
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immune systems (EPA. n.d). Children are also at high health risks because their 

immune and respiratory systems are premature: 40% of asthma cases are children, 

while the population of children only occupies 25% of the whole world’s 

population (EPA. n.d).Recent research also shows the health risks attributed to 

PM2.5 differ for men and women: the increase of PM2.5 is associated with a 

higher increase of heart rhythm disturbance admission to hospital for women than 

for men (Bell et al., 2015). In addition, PM2.5 can even damage DNA in human 

cell (Sørensen et al., 2003; Corsini et al., 2013). 

In addition to the influence on climate change and human health, PM2.5 also 

brings economic loss. According to Ontario Ministry of the Environment (MOE) 

(2005), Ontario was burdened with approximately $9.6 billion CAD economic loss 

due to the high concentration of ozone and PMs in 2003. $5.28 billion CAD loss 

was due to U.S. emissions, while the rest, $4.32 billion CAD, is attributed to 

provincial air pollution. It was also estimated that in the Yangtze River Delta, 

China, the total economic loss caused by the high concentration of PM2.5 was 

¥22.10 billion CNY in 2010 (Wang et al., 2015a). Gao et al (2015) assessed that 

Beijing’s economic loss resulted from the haze in January 2013 was more than 

$250 million USD. 

 

2.2 Aerosol Optical Depth 

Aerosol represents particles suspending in atmosphere with diameter range 
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from 10−2~10−3㎛, which is an important part of atmospheric system. Aerosols 

plays a significant role in climate change and environmental affections in three 

ways, (Liu et al, 2008) scattering and absorbing radiation, influencing cloud 

formation as condensation nucleus, change greenhouse gas by involving chemical 

process. 

Aerosol optical depth (AOD) is a parameter of aerosol, representing the 

extinction of electromagnetic radiation in a certain wavelength (Chudnovsky et al., 

2014). Basically, values of AOD is in a range of 0 to 2. Values smaller than 0.1 

illustrate an extreme clean air with quite good visibility, and those larger than 1 

means thick hazy air condition (NASA). Atmospheric particles in any form like 

dust, faze and PM2.5 are able to block sunlight by absorbing or scattering (NOAA). 

The degree of attenuation can be described by AOD (NOAA).   

Techniques of AOD monitoring has been developed fast in last two decades. 

There are two main approach to gaining AOD data, ground station and remote 

sensing. Main facility capturing ground AOD is sun spectrophotometer. However 

limited number of facilities lead to a limited geographic information scale. 

Representative of ground level station network are Aerosol Bo botic Network 

(AEORNET) and Sky Radiometer Network (SKYNET). On the contrary, AOD 

data acquired via remote sensing has larger coverage. The most popular AOD 

product in academic utilization is MODIS.  
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2.3 Satellite Data and Algorithms for AOD retrieval 

Remote sensing techniques utilized on aerosol started since 1970s. Now a 

complete satellite monitoring system for AOD has been built, users can access to a 

full-available spatial and temporal AOD dataset (Guo et al., 2009). Here we 

reviewed basic retrieving AOD algorithm in satellite sensor. 

The radiation characteristics of solar radiation varies while going through 

atmosphere and being receiving remote sensor because of scattering and reflecting. 

Information received by sensor includes two parts, atmosphere and earth’s surface. 

Given surface reflectance and certain absorption and scattering, AOD data can be 

retrieved using spectral characteristic (Liu et al, 2001). 

Aerosol detected by remote sensor is based on atmosphere surface reflectance 

ρ∗, (Kaufman et al, 1997) 

 

ρ∗ = πL/μ𝑠F𝑠 

 

Where L is top atmosphere’s spectral radiance, μ𝑠 is cos of solar zenith angle, 

F𝑠 is flux density of the direct solar radiation. The atmosphere surface reflectance 

ρ∗ has following relationship with surface bi-reflectance, 

 

ρ∗(θ𝑣 , θ𝑠, 𝜑) = ρ𝑎(θ𝑣 , θ𝑠, 𝜑) +
ρ(θ𝑣 , θ𝑠, 𝜑)F𝑑(θ𝑠)𝑇(θ𝑣)

1 − 𝑆ρ′
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Where θ𝑣 is remote sensor’s zenith angle, θ𝑠 is solar zenith angle, 𝜑 is the 

relative angle between the former two, ρ𝑎(θ𝑣, θ𝑠, 𝜑)  is Atmospheric path 

radiation, which triggered by molecule and aerosol in atmosphere, F𝑑(θ𝑠) is down 

direct radiant flux, 𝑇(θ𝑣)  is total transmittances, S is back-scattering ratio 

depending on single scattering albedo ω0 , aerosol optical depth and aerosol 

Scattering Phase Function P𝑎(θ𝑣, θ𝑠, 𝜑). 

 

Depend on this formula, ρ𝑎(θ𝑣, θ𝑠, 𝜑) in the right part is the atmosphere 

contribution in remote sensor’s observation, and the second part is surface 

reflectance contribution. When surface reflectance contribution is low, ρ∗  is 

mostly depend on atmosphere contribution so precision is high. Therefore, 

retrieving AOD perform well in low surface reflectance regions. (Liu et al 2001). 

 

2.3.1 The MODIS AOD product 

Since the development of remote sensing techniques from 1980s, satellite 

images have been explored for AOD retrieval. Moderate Resolution Imaging 

Spectroradiometer (MODIS) is carried on both Terra and Aqua launched in 1999 

and 2002, respectively. The band designation for MODIS can be found in Table 2.1: 

there are seven well-calibrated channels for spectral information ranging from 

visible to SWIR wavelength (470, 550, 670, 870, 1240, 1640 and 2100 nm) (Chu et 

al., 2003).  

MODIS derives an AOD product (Terra: MOD04_L2; Aqua: MYD04_L2) at 
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10 km resolution using “Deep Blue” (DB) and “Dark Target” (DT) algorithms. DT 

is adopted over ocean and dark land, such as vegetated area, while DB is applied 

over the entire land areas including both dark and bright surfaces in MODIS 

Collection 6 (C6) product. “Collection” means a MODIS dataset and previous 

collections include 001, 003, 004, 005 and 051. Data user can choose the parameter 

when downloading data online, such as “AOD 550 Dark Target Deep Blue 

Combined and “Deep Blue Aerosol Optical Depth 550 Land”. For more detailed 

product information, please refer to MODIS Website (http://modis.gsfc.nasa.gov/). 

In 2014, DT algorithm team released 3 km MODIS AOD product in a separate file 

(Terra: MOD04_3K; Aqua: MYD04_3K) as a part of MODIS C6 production. Xie 

et al (2015) estimated PM2.5 within urban region in Beijing, China using 3 km 

MODIS AOD product. In the same year, Retails et al. (2015) identified the 

correlations between 3 km MODIS AOD product and ground-based PM10 

measurements in the area of Athens, Greece. AOD retrieved from MODIS by using 

visible spectrum and infrared spectrum can reduce errors caused by a single band 

calibration (Xie et al., 2011). Meanwhile, the high temporal resolution (twice a day 

provided by Terra and Aqua) is another advantage of MODIS AOD product over 

others. However, cloud, snow and ice still affect the accuracy of AOD retrieval 

from MODIS (Gupta et al. 2006). 

 

2.3.2 Validation on MODIS AOD in China 

In ground level, long-term international AOD observation network have been 
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built. The AEORNET program, mentioned in Chapter 1, started up by NASA and 

PHOTONS, then extended by national institutes, agencies, universities, etc. 

National observation networks joined AEORNET successively, including Chinese 

Sun Hazemeter Network (CASHNET), Finnish Meteorological Institute (FMI), 

German Weather Service (DWD), Japan Meteorological Agency, U.S. (ARM and 

SURFRAD), Australia Bureau of Meteorology (BOM) (Levin et al., 2008). A 

global scale, long-term continuous AOD observation with 15 min temporal 

resolution and 0.01-0.02 low uncertainties is offered by AERONET network. 

(Sayer et al., 2013). 

The Chinese part AEORNET network, China meteorological administration 

Aerosol Remote Sensing NETwork (CARSNET), was established in 2002. (Che et 

al., 2009). he instrument deployed by CARSNET is automatic Cimel sun and sky 

scanning radiometer (Cimel Electronique Cimel-318), the same instrument used by 

AERONET.  
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Figure2-2, AERONET sites (Source, AERONET, 2016a) 

 

The long-term reliable and consistent measurements of CARSNET provide an 

unprecedented opportunity to study aerosol properties and validate MODIS 

retrieved AODs over various terrestrial regions in China. 

Previous validation work showed a high corelated linear relationship between 

MODIS AOD and ground observation AOD. Xie et al, 2011 matched MODIS 

retrieval AOD data with interpolated CARSNET monitor AOD in national scale 

and proved both DT and DB AOD Fall within the expected error envelope. He et al, 

2010 indicated that MODIS AODs are in good agreement with observation sites in 

Yangtze River Delta region with a correlation coefficient of 0.85 and RMS of 0.15, 

showing MODIS AOD product are generally suitably reasonable for aerosol 

retrieval in YRD. 
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Table 2.1 Band designation for MODIS (Source: NASA, 2016) 

 

Wang evaluated MODIS AOD performance over different ecosystem in China, 

showing that most agreement between the MODIS data and that of the CSHNET 

was in farmland sites in central-southern China with high R2>0.82, and moderate 
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agreement, with R0.64–0.80 in temperate forest, coastal regions, and northeast 

while poorest agreement existed in northern arid and semiarid regions, in remote 

northeast farmlands, in the Tibetan and Loess Plateau, and in southern forests, with 

13–54% of retrieval data falling within the expected errors. Over different 

ecological and geographic regions in China, Wang et al, 2007 indicated that 

performance MODIS AOD is poor in Tibetan Plateau, northern desert area, and 

northeast corner of China, while it is moderate in forest area and performed greatly 

in agricultural, vegetated areas and eastern seashore area. Overall, validation 

studies indicated that MODIS AOD in China has varies bias in different region 

though, it performed satisfactorily in an overall national perspective. Therefore, it 

is feasible to model on MODIS AOD data in China. 

 

2.4 PM2.5 Estimation based on AOD 

2.4.1 Theoretical basis 

Numerous studies have focused on constructing statistical relationships 

between satellite AOD retrievals and ground-level PM2.5 measurements that can 

then be used to estimate PM2.5 concentrations in places where AOD data are 

available.  

AOD is defined as the integration of aerosol extinction coefficient in vertical 

direction. It is a physical dimensionless quantity about counts of aerosol particles. 

Commonly used PM2.5 value means concentration of PM2.5 particles per cubic 
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meter. Their physical significance though, previous studies showed there is 

correlation between them and it is feasible to estimate PM2.5 using AOD (Li et al, 

2003). The theocratic basic of modeling is that AOD retrieved by visible and near-

infrared light correspond to 0.1-0.2μm particles, which is pretty close to PM2.5 

(Kahn et al, 1998). This provides the theoretical basis of PM2.5-AOD modeling. 

The AOD recorded by MODIS is the integration of aerosol extinction 

coefficient in vertical direction, while PM2.5 represent the concentration of dried 

ground particles. Based on this, two factors can be found working in relationship 

between AOD and PM2.5, vertical distribution of aerosol and relative humidity. 

The formula representing this relationship is as following (Jia et al, 2014),   

 

AOD = PM𝑥 ∙ H ∙ f(RH) ∙
3 < 𝑄𝑒𝑥𝑖 >

4𝛼 ∙ ρ ∙ r𝑒𝑓𝑓
 

 

Where PM𝑥 is concentration of particles with diameter less than x, H is the 

aerosol scale height, f(RH)  is a function on relative humidity, < 𝑄𝑒𝑥𝑖 > 

represents normalized extinction efficiency particle, r𝑒𝑓𝑓 is effective radius, ρ is 

density, 𝛼 is ratio of aerosol depth in scale height in total aerosol depth. This 

formula indicates aerosol scale height and f(RH) plays a significant role in PM-

AOD relationship. 

The aerosol scale height is defined as the height when concentration of 

atmosphere aerosol decreases to 1/e of the ground concentration, namely the height 
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where aerosol concentration become constant with height increasing. This figure is 

difficult to gain. Research showed that most particles distribute in Planetary 

boundary layer, therefore the height of Planetary boundary layer is good alternative 

of aerosol scale height working as a predicting factor in models (Liu et al, 2005). 

The other factor is relative humidity. Effect on extinction coefficient by 

humidity can be described as hygroscopic growth factor f(RH).  

Defination of this function is ratio of  extinction coefficient in nature and 

extinction coefficient in environment humidity less than 40% (Kotchenruther et al, 

1999). 

 

f(RH) =
𝑘(λ)

𝑘(𝑅𝐻 ≤ 40%)
 

 

Where k represents extinction coefficient. f(RH) varies a lot in regions with 

different environmental humidity. What’s more, relative humidity helps the 

formation of ammonium nitrate (Tai et al., 2010). 

Besides height of Planetary boundary layer and relative humidity, other 

meteorological variables and other natural factors like Visibility, precipitation, 

temperature, wind speed, elevation, pressure affect the formation and dispersion of 

PM2.5 as well (Tai et al., 2010). Human activities also generate considerable 

amount of PM2.5. Socio economic factors like GDP, population and land use data 

are used to reflect the impact of human activities.  
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2.4.2 Estimation Models 

Basically, models estimating PM2.5-AOD are classified into two types: 

simulation-based and observation-based methods (Lin et al., 2015). Simulation-

based models are usually on chemical transport theoretical basis (Liu et al., 2004; 

Martin, & Park, 2006; Van Donkelaar et al., 2010). 

3D chemical transport is most used in Simulation-based models (Martin, & 

Park, 2006). These models are composed of meteorological driver and chemical 

transport module. Goddard Earth Observing System Atmospheric Chemistry 

Transport(GEOS-Chem) is driven by meteorological variables from the GEOS of 

NASA. Van Donkelaar et al. (2010) applied GEOS-Chem model and calculated the 

PM2.5 concentration with MODIS and MISR data for 2001 to 2005 at a global 

level. In 2015, van Donkelaar built a global model for PM2.5 concentrations from 

2001 to 2010 by utsing GEOS-Chem model and MODIS data, which is shown in 

Figure 2.4. In his research the PM2.5 concentration in China is more than 80 

µg/m3. 

The Weather Research and Forecasting model coupled with Chemistry (WRF-

Chem) is a numerical weather prediction system for atmospheric research needs 

(Tie et al., 2007). WRF-Chem models results present a good association with the 

correct emission database. Eta-CMAQ and MM5-CMAQ model have also been 

applied in estimating PM2.5 (Yu et al., 2004).  

The major advantage of simulating models is simulating the process of factors 
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forming PM2.5 (such as chemical composition and particulate size) and explaining 

the correlation between AOD and PM2.5. Whereas the major shortcoming is that 

their principle is complex thus made modeling difficult. 

 

 

Figure 2.3 Global mean PM2.5 concentrations from 2001 to 2010 (Source: van 

Donkelaar et al., 2015) 

 

Observation-based models are mainly based on statistical regression methods 

(Lin et al., 2015). Simple linear regression method was firstly employed to estimate 

PM10 concentration by inputting daily averaged AERONET AOD observation in 

Italy.  Later in research in Alabama, U.S., PM2.5 concentrations were estimated 

via simple linear regression with dataset composed of 7 observe stations and 

MODIS AOD product (Wang & Christopher, 2003). The research presented AOD 

as a useful tool for modeling PM estimation with a result of 0.49 R2.   

Nevertheless, most researchers agree that AOD can poorly retrieve surface 
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distribution of PM2.5 in satisfied accuracies because the inconsideration of other 

factors may affect AOD-PM2.5 relationship (Paciorek et al., 2008b).  

The multi linear regression was introduced in order to incorporate more 

predictors (Gupta & Christopher, 2009a). Variables that directly relate to PM2.5 

include temperature, relative humidity, height of the planetary boundary layer and 

wind speed. Gupta et al. (2009a) presented that correlation coefficients increased 

up to threefold from simple linear regression to MLR model in their model of MLR 

equations with AOD and meteorological factors over the southern U.S. MODIS 

AOD and NCEP (National Centers for Environmental Prediction) data were 

applied on PM2.5 modeling in study of Li et al, 2011. They also compared the R 

square in simple linear regression and MLR. Though the remarkable lifting of 

MLR result showing a better capacity due to the consideration of more relevant 

variables, most MLR models in previous study using meteorological factors were 

biult on a global, national or regional level, the spatial variability are rarely 

considered in modeling structures. 

Regression method were proved as a strong tool to estimate PM2.5 by 

assuming a linear relationship between PM2.5 and predictors, though, Liu et al., 

2005 indicated non-linear model works as well. Li et al. (2011) run a non-liear 

model and showed a better performance (R2 =0.49) than simple and multiple linear 

regression (R2 = 0.24; 0.44). In small scale study, for example, Yu et al., 2006’s 

study in semi-arid area in northern China, the performance has been improved 

when using non-linear regression model. Besides nonlinear regression model, a 
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more complex model, generalized additive model (GAM) also allows non-linear 

function of variables. This model is developed for each scaling method at each site 

(Liu et al., 2011). By allowing some of all variables to be non-linear related to 

dependent variable, GAM improves the capacity of traditional linear regression 

(Liu et al., 2011). Though non-linear model is able to improve the accuracy in these 

studies, it only works for certain areas and or seasons (Li et al., 2011). Moreover, 

similar to linear regression, this model does not consider local variables: this is 

because the correlations between AOD and PM2.5 are non-stationary, so the 

dependent and independent variables are not spatially constant (Engel-Cox et al., 

2004; Hu et al., 2009). 

To solve this problem, spatial regression model, such as the GWR model is 

also applied to build a local relationship between AOD and PM2.5 (Hu et al., 2013). 

Instead of assuming global geographic uniformity, GWR estimates PM2.5 in 

consideration of local variability.  Hu et al. (2013) adopted both Ordinary Least 

Squares and the GWR model to estimate PM2.5 in U.S., and R squre was slightly 

improved when using the GWR model. The GWR model has also been applied in 

China at a national level in 28 previous studies (Ma et al., 2014). You et al. (2016) 

used the GWR model with the 3 km AOD product to estimate PM2.5 

concentrations at a national-scale. Their model could explained 81% of the dairy 

PM2.5 variations.  
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2.5 Machine Learning Methods 

Linear regression models did performe well in short-term forecasting based on 

daily or weekly time resolution, but not for long period forecasting at a seasonal or 

annual time resolution, neither can they handle nonlinearity exhibited relationship 

in variables well. Since the computer’s performance is developing vary fast in 

recent decade, various machine learning models have been developed and 

harnessed to model spatial issues in geography studies.  

Machine learning methods and, in particular, supervised learning methods, 

refer broadly to statistical techniques for developing predictive models using 

training data. Unlike physics-based models, machine learning methods are data-

driven and rely almost exclusively on information embedded in training datasets. 

Artificial neural network (ANN) is one of the earliest machine learning methods 

adopted in PM2.5 AOD modelling. However, despite its popularity and remarkable 

accuracy fitting result on training data, crucial issues of Artificial neural network 

are its tendency to overfit training data and instability with short training data 

records (Sun et al, 2014).  

In machine learning studies, recent decades have witnessed a soaring interest 

in the development and application of kernel-based methods. In particular, the 

support vector machine (SVM) algorithm was proposed to deal with two issues 

alluded above, in other words, how to establish a relationship between the size of 

training data and generalization performance of a trained model and how to 
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incorporate such knowledge in the training process to prevent overfitting. Via 

kernel trick, SVM projects the model’s inputs into a higher dimensional or even 

infinite-dimensional space, such that the projected training data exhibit linearity 

and linear regression methods can be applied (Bishop, 2006). An elegant feature of 

SVM is that the actual form of nonlinear mapping does not need to be known, and 

only their inner products (i.e., the so-called kernel function) are required to train an 

SVM model. This is known as the “kernel trick” in machine learning, which has 

served as a building block in all kernel-based methods. The Support vector 

regression is a variation of support vector machine particularly for regression 

problem which has been already introduced in spatial PM10 forecasting and wind 

predicting.  

Although the SVR can found a satisfactory regression line linear or non-linear 

dataset, a main limitation of the SVR method is that it can yield unreliable results 

when there is a test data point deviating far from the relevance vectors, in which 

case the predictive distribution will be a Gaussian with mean close to zero and 

variance also close to zero (Rasmussen and Williams, 2006). The Gaussian Process 

Regression (GPR) was developed to address this issue.  

The GPR is a full Bayesian learning algorithm that has received significant 

attention in the machine learning community for applications such as model 

approximation, multivariate regression, and experiment design (Rasmussen and 

Williams, 2006).  

Gaussian processes (GP) assume that the joint probability distribution of 
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model outputs is Gaussian. The notion of GP is not new in the geospatial analysis 

literature. In fact, GP is underlying the kriging algorithm in classical geostatistics, 

the autoregressive moving average models (ARMA), Kalman filters, geostatistical 

inversion methods, and radial basis function networks (Bishop, 2006). The 

ensemble Kalman filter and Gaussian particle filter may also be regarded as 

sequential versions of GP-based learning algorithms. Gaussian stochastic processes 

are widely used in practice as models for geostatistical data  

The GPR was originally formulated by Rasmussen and his coworkers, 

provides a “principled, practical, and probabilistic approach to learning in kernel 

machines” (Rasmussen, 1996; Rasmussen and Williams, 2006). The advantage of 

GPR over many other machine learning methods lies in its seamless integration of 

several machine learning tasks, including hyperparameter estimation, model 

training, and uncertainty estimation which strengthen the model result and 

explanation of variables in practical studies; thereby, the regression process is 

streamlined significantly and the results are less affected by subjectivity and more 

interpretable. Along with surging popularity of GPR, a suite of GPR tools packages 

are now available in the public domain for various applications. In comparison, 

similar machine learning methods mentioned above usually only address certain 

aspects of the regression/prediction problem. 

GPR can be viewed in weight space, thus be considered as multivariate 

regression techniques. In this sense, it is closely related to generalized least squares, 

which has been used extensively in the so-called regional regression analysis in 
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hydrology (Sun et al, 2014). The difference between GPR and general MLR 

method is that most existing studies parameterize the predicted values as a linear 

combination of predictors and then estimate the linear coefficients while GPR 

expresses the unknown as a linear combination of nonlinear basis functions. The 

Bayesian joint probability method proposed recently by Yu and his coworkers (Yu 

et al, 2017) used Bayesian inference to predict PM2.5 in China. The authors mainly 

focused on learning parameters of an enhanced Box-Cox transform using Monte 

Carlo Markov chain sampling. 

Previous studies have found out that the relationship between PM2.5 and AOD 

values varies in space. The varying spatial surfaces is the critical issue to be 

addressed for lifting PM2.5 predicting into higher level.  

In Gaussian process, training points in dataset that near test points should be 

more informative than far points on giving prediction. This is closely related to 

geostatistic principle, near all attribute values on a geographic surface are related to 

each other, but closer values are more strongly related than are more distant ones 

thus can be used to model the non-stationary in spatial data. From the perspective 

of Gaussian process, it is the covariance function that define the nearness or 

similarity in data (Rasmussen et al, 2006). Gaussian process is one of the most 

intuitive methods to model spatial surfaces as realization of stochastic processes. 

Specifically, Gaussian processes consider the spatial effects as random variables by 

specifying their means and covariance functions, which is the major feature that 

distinguishes them from other traditional methods. 
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Gaussian processes are one of the most intuitive methods to model spatial 

surfaces as realization of stochastic processes. Specifically, Gaussian processes 

consider the spatial effects as random variables by specifying their means and 

covariance functions, which is the major feature that distinguishes them from other 

traditional methods. The hierarchical setting in a GPR model can explain diverse 

sources of variations in PM2.5. The hierarchical approach is helpful when dealing 

with ambiguous variations (Finley, A. O., 2007). 

However, historically, few studies have developed Gaussian process models 

for PM2.5-AOD modeling. Along with the advancement of Geographical 

Information Systems (GIS), large spatiotemporal datasets were adopted in studies 

in areas like environmental science, epidemiology and health policy management, 

which is a challenge for modelling. In the existing spatial statistical methods, 

Bayesian methods have gained in popularity because of its sound reasoning of 

treating parameters as random quantities rather than fixed values. Parameters are 

updated by calculating the posterior distribution by the incorporated external 

knowledge with respect to the distribution of parameters and the likelihood 

function. The Bayesian methodology is flexible because it allows non-informative 

priors, as well as informative priors acquired by relevant research or spatial 

variogram analysis. 

In recent years, several studies have employed Bayesian methods to improve 

satellite PM2.5 modeling. For example, Chang et al. applied a unified Bayesian 

hierarchical framework to improve PM2.5-AOD modeling that allows the model to 
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calculate the prediction uncertainties, which are invaluable in further health impact 

analyses, Yu et al. utilized GPR in a Bayesian hierarchical setting to improve 

satellite based PM2.5-AOD estimates. 
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Chapter 3. Study Area and Data 

3.1 Study Area 

The People's Republic of China has an area of about 9,600,000 km2. The 

eastern plains and southern coasts of the country consists of fertile lowlands and 

foothills and is the location of most of China's agricultural output and human 

population. The southern areas of the country (South of the Yangtze River) consists 

of hilly and mountainous terrain. The west and north of the country is dominated 

by sunken basins (such as the Gobi and the Taklamakan), rolling plateaus, and 

towering massifs. It contains part of the highest tableland on earth, the Tibetan 

Plateau, and has much lower agricultural potential and population.  

 

Figure 3.1 Haze hovered over eastern China on October 20, 2012 (Source: Image 

took by NASA’s Aqua satellite) 
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The dense population, high-speed economic development and urbanization, 

industrial process, congested local traffic and coal consumption for winter heating 

all make the China the most concentrated region of PM2.5 over the world these 

days. 

 

3.2 Data Acquisition  

3.2.1 MODIS 10km products 

Although the MODIS AOD started releasing its 3KM spatial resolution 

product since 2014 which has been recently utilized in fine scale PM2.5 prediction, 

displaying a richer variation than 10KM AOD, the miss value portion is so big that 

even difficult to interpolate in regions like Tibet, Xin Jiang, Inner Mongolia 

province, etc., thus not appropriate in our whole national scale model. On the other 

hand, the traditional 10KM works well in climate related application (Leigh et al., 

2014) and providing information for more area in China.  
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Figure 3.2 A comparison of the MODIS True Colour Image, MODIS10 km AOD 

and 3 km AOD Products (Source: Leigh et al., 2014) 

 

Here we use MYD04_L2 - MODIS/Aqua Aerosol 5-Min L2 Swath 10km 

product that produced daily level 2 data at spatial resolution of a 10 × 10 KM 

pixel array and 5 minutes temporal resolution. Considering two satellites shows 

same performance on image quality here we only use the Aqua AOD product to 

control the size of whole dataset, whose time of passing eastern China is 1:30 PM 

and 1:30 AM every day (Bouarar et al., 2017). MODIS AOD product files are 

stored in Hierarchical Data Format (HDF-EOS). 

 

3.2.2 PM2.5 ground monitoring data 

All ground level monitoring PM2.5 data is crawled from website, 

https://www.aqistudy.cn. Chinese government has established the network for 

https://www.aqistudy.cn/


 

 

 

 

 

36 

PM2.5 monitoring since 2013, the number of monitoring sites increase from 946 to 

1497 in 2016. Our study crawled an hourly recorded dataset from Oct 1st, 2016 to 

Oct 1st, 2017 in all available sites. Because our AOD data was recorded by various 

times a day, for simplify our data process, we use the mean daily PM2.5 monitor 

data to match AOD data on with same date and location.  

 

 

Figure3.3, Aqua predicted pass time (Source: NASA distributed active archive 

center) 
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Figure 3.4 Ground monitoring stations’ locations and the averaged PM2.5 of every 

city’ all stations during the study period 

 

The monitoring sites distribute as showed in figure. Ground-level PM2.5 

concentrations were mainly measured by the TEOM and BAM instruments as 

introduced in Chapter 2. On the basis of the Environmental Protection Standard of 

China (HJ 618-2011), all the measurements had been processed with calibration 

and quality control (MEPCN, 2011). 

 

3.2.3 Supplementary Data 

Elevation data was obtained from the digital elevation model (DEM) of the 

Shuttle Radar Topography Mission (SRTM) with a resolution of 90m. The China 
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elevation map is presented in Figure 3.1. 

For meteorological data, we downloaded daily ERA Interim dataset from the 

European Centre for Medium-Range Weatherm Forecasts (ECMWF). ECMWF 

uses its data assimilation systems and forecast models to re-analyze observation 

datasets. As one of the ECMWF’s reanalysis datasets, ERA Interim is a global 

atmosphere reanalysis from 1979. Meteorological data calibrating in our model in 

the period of Oct 1st, 2016 to Sep 31st , 2017 includes only relative humidity (RH) 

and boundary layer height (BLH), which has been illustrated as main predict factor 

in Chapter 2.  

 

  

Figure 3.5, daily Global Boundary Layer map, interpolated via IDW method, point 

data sourced from ECMWF  
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Meteorological Data Beijing Time Spatial Resolution 

Relative humidity 12:00 0.7 

Boundary Layer Height 

Table3.1, Meteorological data acquired from ECMWF 

 

Data offered by ERA Interim model do not contain RH data. With Dewpoint 

and temperature values, the relative humidity data value was calculated using the 

August-Roche-Magnus approximation (Alduchov et al. 1996).  
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Chapter 4. Model 

4.1 Overview of Workflow 

Methodology includes two phases: data pre-processing and model 

construction.  

 

Figure4.1, Work flow of Methodology 
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4.2 Data Pre-processing 

Data pre-processing is primarily integrating data from all kinds of sources into 

one large dataset. A 0.1° × 0.1° grid with 100,699 grid cells was created that covers 

all of China. All data were resampled into grids by longitude and latitude and 

conducted outlier identification and removal steps. PM 2.5 Data recorded over 

3000 are treated as invalid data and mean of neighbor value were given while None 

values were given 0 while extracting from monitoring sits files. 

 

 

Figure4.2, Box-Plot of the whole year’s PM2.5 monitoring site data 

 

The width of AOD satellite image is 2330 km. There are over 10 images per 

day contains China territory took by Aqua and we reproject and mosaic the daily 

meta data into one image in ENVI 5.3 IDL. Resample on AOD data is also implied 
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because the meta data were in 10 × 10 KM resolution and cells near edge of each 

images tends to be distorted.  

Daily data in Locations with small daily sample size of PM2.5-AOD matchups 

values were used as training and testing dataset. Considering the spares AOD data 

leads to a poor match-up result, we implied a grid based neighbor searching 

algorithm with  bandwidth of 0.5° latitude-longitude grid, which ameliorate our 

matching result from a 96 average daily pairs to over 104 pairs.  

A 10 folds cross validation was conducted in them. Those locations without 

monitoring PM2.5 values were regarded as predict matrix to generate our 

estimation of daily model. We resample data by extracting all other data on 

locations where monitor site was built by GDAL package in Python 3.6.  

 

 

Figure4.3, 10 folds cross validation 
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The model construction module consists of the GPR model construction, 

Bayesian Hierarchical nature setting and hyper parameters’ prior arrangement. Also, 

GWR model and support vector regression model were fit for result comparison.  

 

4.3 Model Construction 

4.3.1 Gaussian Process Regression Model 

Gaussian stochastic processes are widely used in practice as models for 

geostatistical data (Gelfand, 2016). Physical justification rarely appeared in such 

model. Rather, they are used as convenient empirical models which can capture a 

wide range of spatial behavior according to the specification of their correlation 

structure (Diggle P J, 1998). According to previous studies, one very good reason 

for concentrating on Gaussian models was that they are uniquely tractable as 

models for dependent data. With the increasing use of computationally intensive 

methods, and in particular of simulation-based methods of inference, the analytic 

tractability of Gaussian models is becoming a less compelling reason to use them 

(Rasmussen and Williams, 2006). 

Different from traditional geostatistical methods, which are based on certain 

functions, such as wavelets and splines, to depict spatial relationships, Gaussian 

processes are one of the most intuitive methods to model spatial surfaces as 

realization of stochastic processes. Specifically, Gaussian processes consider the 
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spatial effect as random variables by specifying their means and covariance 

functions, which is the major feature that distinguishes them from other traditional 

methods. What’s more, the hierarchical nature can help explain various sources of 

variations in PM2.5.  

In our model, the Gaussian process for PM2.5 predicting can be interpreted as 

following: firstly, PM2.5 concentrations in China follows a conditional distribution 

of AOD values, spatial and non-spatial random effects, which is the basic 

foundation in the hierarchical setting; the second stage is mainly aimed at 

specifying the distribution of spatial random effects in PM2.5 and AOD 

relationship. It is modeled by Gaussian processes with specific mean surface and 

covariance functions; Last stage focus on the conditional distribution of the 

covariance functions we set for the GPR given by the hyperparameters we chose 

empirically. This hierarchical approach is helpful when dealing with ambiguous 

variations.  

Comparatively, in GWR models, coefficients of each predictor variable, AOD, 

RH, PBLH and intercept varies along with locations. In Gaussian processes 

settings, these coefficients and the intercept remain the same in each daily mode. 

While the geographical variation was simulated by the spatial random effect. Thus, 

compared to GWR, Gaussian processes separate out different sources of variation 

(the independent variable AOD, RH, PBLH, spatial random effects and non-spatial 

random effects) in explaining PM2.5.  

Our Gaussian process model in Bayesian hierarchical setting is as following: 
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Giving training data 𝑥1, 𝑥2 … 𝑥𝑛  and corresponding observe value 

𝑦1, 𝑦2 … 𝑦𝑛 , in Gaussian process, function of 𝑦 was not assumed as specific 

formula like 𝑓(𝑥) = mx + c or 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐  but considered as an 

Infinite dimension point from Gaussian process.  

For observation with noise: 

𝑌 = 𝑓(𝑥) + 𝑁(0, σ2) 

a gaussian process prior is given to 𝑓(𝑥)   

𝑓(𝑥)~GP(0, 𝐊) 

K is the covariance function. With noise, the k is 

𝐊 = 𝐤(𝑥𝑛, 𝑥𝑚) + σ2𝛅𝑛,𝑚 

Because of conjunction of Gaussian, the joint distribution of training data and 

test data is still Gaussian. With new input vector 𝒙∗, the joint Gaussian of 𝑦 and 

𝑦∗ is  

 

[
𝒚
𝑦∗] ~𝑁(0,

𝑲 𝑲∗
𝑻

𝑲∗ 𝑲∗∗
) 

 

The distribution of 𝑦∗ is conditional distribution of 𝑃(𝑦, 𝑦∗), a Gaussian as 

well  

 

𝑦∗|𝒚 ~𝑵(𝑲∗𝑲−𝟏𝒚, 𝑲∗∗ − 𝑲∗𝑲−𝟏𝑲∗
𝑻) 
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Basically, the mean of distribution above is used as prediction 

𝑦∗̅̅ ̅ = 𝑲∗𝑲−𝟏𝒚 

 

In this study, the PM2.5 daily estimation Y on site i is supposed to be followed 

a Gaussian model as following:  

𝑌𝑖 =  𝑿𝑖
𝑇𝜷 + 𝜔 

 

Where 𝑿𝑖 is the input vector at location i, including AOD data, relative 

humidity, boundary layer height, 𝜷 is the weight vector including intercept and 

slopes corresponding to input 𝑿𝑖 . The spatial random effect  𝜔 follows a 

multivariate Gaussian process with covariance function 𝑲 , the function is 

specified as a exponential model as following, this function outputs a covariance 

matrix, D is distance between two sites i and j and the covariance. We use two 

parameters, 𝜂2and 𝜌2 to define a squared distance function, which is a common 

assumption. In the last piece, 𝛿𝑖𝑗𝜎 can be treated as the nugget together, with 𝜹 

being a diagonal unit matrix and 𝜎 being random error. If i not equal to j then this 

part well not matter because 𝛿𝑖𝑗 is zero.  

 

𝜔~𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝟎, 𝑲) 

𝑲 = 𝜂2𝑒𝑥𝑝(−𝜌2𝑫2) + 𝜹𝜎 

Where 𝐾𝑖𝑗 = 𝜂2𝑒𝑥𝑝(−𝜌2𝐷𝑖𝑗
2 ) + 𝛿𝑖𝑗𝜎 
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𝜎~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜏2) 

 

The prior of hyper parameters are initially set as: 

𝛽0~𝑁𝑜𝑟𝑚𝑎𝑙(0,100) 

𝛽1~𝑁𝑜𝑟𝑚𝑎𝑙(0,100) 

𝛽2~𝑁𝑜𝑟𝑚𝑎𝑙(0,100) 

𝛽3~𝑁𝑜𝑟𝑚𝑎𝑙(0,100) 

𝜏2~ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0, 1) 

𝜂2~𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0, 1) 

𝜌2~𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0, 1) 

 

We also defined the prior distributions for each parameter. Specifically, the 

mean parameters βfollow normal distributions with assigned means and 

covariances. The variance parameters 𝜏2  𝜂2 , and 𝜌2  all obey half Cauchy 

distributions with shape hyperparameters equal to 2 (thus, the variance is infinite, 

by definition). Reasons for selecting the corresponding prior distribution for each 

parameter are twofold. On the one hand, the type of distribution of each parameter 

was chosen by referencing previous studies. On the other hand, some of the values 

of hyperparameters were selected so that each parameter has a broad range of 

potential values (greater variance), which allows for daily variations. The selection 

of prior distributions is mainly heuristic and subject to change. The parameters 

were updated using the Metropolis-Hastings algorithm. A summary of the prior 
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distributions of all the parameters is presented in the Chapter 5. 

We set the number of iterations for each parameter to 5,000. By monitoring 

the changes in these parameters, we found that they changed dramatically from the 

beginning (within 3,000 iterations) and gradually stabilized over time (See 

Supplementary Information, Text S2). Ten, we recovered the regression 

coefficients β and spatial random effects I from the parameters after a burn-in 

period of 3,000 iterations. Regarding the model fitting and cross-validation 

processes, we obtained the mean value of daily predictive PM2.5 according to the 

parameters of each iteration. 

In our study, the model build, MCMC iterations and posterior prediction are 

all carried out in python 3.6 with Pymc3 package. Daily model was first trained 

with daily input and observed data, then test with 20% test points. For over-fit 

detection, 10-fold cross validation was conducted as well for daily model.      

 

4.3.2 Geographically Weighted Regression Model 

Geographically weighted regression (GWR) was adopted to explore the local 

spatial heterogeneity of the causal relationships between PM2.5 concentrations and 

geographic Factors (Luo, et al, 2017).  The traditional GWR model on a daily 

basis can be expressed as 

 

𝑌𝑖 =  𝜶𝟎(𝒖𝒊, 𝒗𝒊) + ∑ 𝜶𝒋(𝒖𝒊, 𝒗𝒊)

𝒌

𝒋=𝟏
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Where 𝑿𝑖 is the input vector at location i, including AOD data, relative 

humidity, boundary layer height, 𝜶 is the weight vector including intercept and 

slopes corresponding to input 𝑿𝑖. 

In GWR model, the regression coefficients show the local spatial variation, 

and the standard errors of the coefficients illustrate the reliability of the estimated 

coefficient (Gao et al, 2012). GWR v4.0 with the adaptive bandwidth and bi-square 

kernel was implemented to build the model. After the spatial autocorrelation 

analysis, a 10-fold Cross Validation (CV) was conducted to verify whether the 

GWR model was over-fitted or not. 

 

4.3.3 Support Vector Regression Model 

Support vector regression (SVR) has been proposed as a good alternative to fit 

relationship between PM25 and PM10 data and had a high generalization 

performance regardless of the big geographical characteristics differences of 

those stations (Song et al, 2014). 

The SVR model solve following optimization problem: 

 

min𝑤,𝑏

1

2
𝑤𝑇𝑤𝐶 ∑(ξ

i
+ ξ𝑖

∗
)

𝑖

𝑖=1
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s. t. {

y
i
− (𝑤𝑇∅(𝑥) + 𝑏) ≤ 𝜖ξ

i

(𝑤𝑇∅(𝑥) + 𝑏) −y
i

≤ 𝜖 + ξ𝑖
∗

ξ
i
, ξ𝑖

∗, 𝑖 = 1 … 𝑙

 

where ϕ(x) is the kernel function, w is the margin and 𝑥 is input vector, 

including AOD data, relative humidity, boundary layer height, and coordinate of 

location as an aid spatial data, and y is the observe data, ϵ is the lose function, ξ 

and ξ∗ are slack variables which quantify the estimation errors greater than ϵ, 

penalty parameter C controls the norm of the weights w. As the result of equation 

above, where 𝜃 is Lagrange multiplier, 

𝑓(𝑥) = ∑ 𝜃∅(𝑥, 𝑥𝑖)

𝑖

𝑖=1

+ 𝑏 
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Chapter 5. Results and Analysis 

5.1 Descriptive Statistics on Dataset 

Before modeling, to validate whether our dataset meets requirement of 

building a model, analysis of correlation among each variable is needed. The result 

of descriptive statistics is as following. In our dataset, the average AOD data and 

PM2.5 data is 0.497 and 56 respectively. Comparing with same time period annual 

mean and Std dv in the U.S., figures in China are higher, which showed that air 

quality is worse and AOD-PM2.5 model is more complex and more uncertain.  

 

Variables Min Max Mean Std dv 

AOD 0.001 3.095 0.497 0.322 

BLH 0.118 2.587 1.120 0.487 

RH 17.9 96.7 58.9 18.2 

PM2.5 5 701 56 38.671 

Table5.1, descriptive statistics of dataset 
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Index AOD PBLH RH 

AOD 1 0.067 -0.116 

BLH 0.067 1 -0.192 

RH -0.116 -0.192 1 

Table5.2, Person correlation among all input variables in this study 

 

We had reviewed relationship of PM2.5 between BLH and RH in section 2 

from perspective of AOD definition. The person correlation result showed that 

correlation of AOD between BLH and RH are low and no collinearity exists.  

 

 Mean PM2.5 Mean AOD SD PM2.5 SD AOD 

Spring 54.30 0.48 42.65 0.321 

Summer 41.87 0.47 40.19 0.287 

Autumn 52.91 0.53 47.90 0.298 

Winter 87.33 0.55 55.12 0.311 

Table5.3, descriptive statistics of seasonal dataset 

5.2 Model Validation 

We fit our model on a daily scale, totally 365 models were trained for each day 

from Oct 1st, 2016 to Sep 31st, 2017. All parameters in our Bayesian hierarchical 

framework model were updated using the Metropolis-Hastings algorithm. For 

instance, in one daily model Oct 20th, 2016, we set the number of iteration (n 
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samples) equal to 500, 5,000 to see how each parameter would react using the 

Metropolis-Hastings algorithm.  

Changes were plotted for all the parameters over time to determine the 

appropriate number of iterations due to limitation on computing resource. An 

iteration number as small as possible meanwhile ensuring parameters converge in 

all 365-daily model is what we want. Notably, the trace of all the parameters does 

not go steady in 500 sample iterations and still varies drastically, which meant that 

500 iterations were not sufficient for the parameters to converge. The 5000 samples 

trace showed a stable trend in all parameters. The mean of intercept and beta does 

not differ greatly in two sample results though, means of other three 

hyperparameters were quite different. Moreover, in second figure the trace 

reminded steady after 1000 iterations. Compared with trace of more iterations, we 

find that use of more iterations will not increase stability. In order not to hinder 

further application on large dataset of all daily models, we use mean of 1000 

samples to estimate the parameter and predict unknown locations. 
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Figure5.1, parameters trace plot after 500 iterations 

 

Scatter plot in Figure showed performance of our predictive model. The figure 

indicates that PM25-Predict match points in our model is centralized near the ideal 

line y=x. The R2 and RSME was 0.88 and 14.89, showing a pretty precise 

performance of fitting data. 

Over fit problem is common in AOD-PM25 modeling study, which means 

model performs well in training data but does not work in test data. To validate 

whether our Gaussian process model has over-fit problem, a 10-fold cross 

validation was conducted in our training-test dataset. Because the long iterating 

time consumed by MCMC algorithm for parameter estimation, we only used 1/30 

daily dataset. 



 

 

 

 

 

55 

 

 

Figure5.2, parameters trace plot after 5000 iterations 

 

The R2 and RMSE was 0.70 and 49.07 respectively, showing that Gaussian 

processes in the Bayesian hierarchical setting may provide an improved description 

of daily spatial variations and generate more precise model results, given 

appropriate data. The high R2 and small RMSE figures were found in recent 

machine learning AOD-PM2.5 estimation study. 

In contrast with GWR and the SVR model, our GPR is more strongly over-
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fitted. The value of R2 of GPR dropped from 0.88 to 0.70, whereas GWR showed a 

slightly small variation from 10-fold cross validation to one data set training. 

However, both the result of 10-fold cross validation and one data set training of our 

GPR model is better than the result of GWR one data set training. Nevertheless, 

previous studies of GWR on AOD-PM2.5 estimation showed a much more precise 

estimation result, in our study, the robust decays in large 400 sites national scale 

daily dataset.   

 

Model N R2 RMSE (µg/m3 ) 

GPR  37960 0.88  14.89 

GWR 37960 0.68 56.48 

SVR 37960 0.57 98.41 

Table 5.4 Statistical results of all daily models 
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Figure5.3, Scatter plot of predict values and real PM2.5 

 

To detect the seasonal variation of AOD-PM2.5, we applied Gaussian process 

model to seasonal mean dataset. The overall spatial patterns and local details of our 

model-estimated values are satisfactorily consistent with the ground-based 

recording data from monitoring sites in a seasonal scale. The contrast of spatial 

coverage showed that though satellite-retrieved AOD is not able to cover all china 

territory but possess better spatial coverage than ground-based PM2.5 monitoring 

sites can do. Covered area was lifted by a substantial extension in both spatial and 

temporal term using valid PM2.5 data on the national grid rather than air quality 

ground-based monitoring network only. 
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Figure5.4, 10-fold validation scatter plot of predict values and real PM2.5 

 

Monitoring network are mainly concentrated in Beijing, Tinjing Hebei area and 

eastern coastal areas. Whereas our predicted value showed a more comprehensive 

coverage of the whole area of China. This indicates that a better spatial and 

temporal coverage is in our AOD-PM2.5 compared to the ground-based 

monitoring network. 
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Figure5.5, Seasonal distributions of PM2.5 concentrations estimated using the 

Bayesian Gaussian process model 

 

As for the difference in the seasonal trends, winter has the highest seasonal 

average PM2.5 value of all the seasons, with a value of 89.62 µg/m3. Spring and 

autumn has close values of 44.10 µg/m3 and 43.06 µg/m3, nevertheless summer is 
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the lowest among four seasons with average equal to 18.08 µg/m3. One notable 

reason can be inferred is the employment of heating system powered by coal fire. 

The spatial socio-economic development imbalance and diversity of Chinese 

landscape lead to an apparent geographic variation among the various parts of 

China. The central eastern coastal regions, central plain regions, as well as North 

China Plain and the Sichuan Basin, compared to other area, remarkably possess 

worse air quality.  

Additionally, although fitting hierarchical models can be time-consuming 

owing to the large sample size and high cost of matrix decomposition, which is 

known as a “large-N” problem. Our model run on a PC with i7 6700k CPU and 

8GB memory, 1000 iteration MCMC algorithm computation for each daily model 

takes 30mins, which is acceptable.   
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Chapter 6. Conclusions and Limitations 

6.1 Conclusion 

This study aimed to improve the modeling performance on PM2.5-AOD 

relationship. We implied the Gaussian process regression Bayesian hierarchical 

AOD-PM2.5 model on a year scaled dataset and analyzed the performance of 

model, seasonal and spatial variation of PM2.5 values. The key findings 

responding to each specific objective are summarized below. 

 

Explanation of sources of PM2.5 variation 

We discussed relationship between AOD data and PM2.5. and selected 

Planetary boundary layer and relative humidity were chose as predictor factors 

among meteorology variables in our model by reviewing definition of AOD. We 

also discussed feasibility of MODIS AOD data in china is conducted through 

literature review. We used a hierarchical setting to help explain various sources of 

variations in PM2.5 with a linear group of intercept and coefficients of AOD, 

planetary boundary layer and relative humidity, and a spatial random effect to 

capture the geographic variation and a non-spatial random effect. 

 

MCMC algorithm runs efficiently for Bayesian hierarchical model on China 

national scale dataset 

Spatial relationships in our research were considered as random variables and 
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simulated by Gaussian process through giving a hierarchical explanation of 

multiple sources of PM2.5 variation. Although fitting the hierarchical models is 

always considered time-consuming owing to the large sample size and high cost of 

matrix decomposition, our research showed that MCMC algorithm performed 

computed effectively on a national scaled data with over 300 inputs in daily model. 

 

Model performance of Gaussian process regression 

Gaussian process model in this study exhibited remarkable performance. 

Compared to the commonly way of modeling such relationship, Geographic 

weighted regression, the Gaussian process model increased the model cross-

validation R2. The Bayesian hierarchical setting helped we estimated a spatial 

random effect that captured the spatial variance in the non-stationary spatial data.  

 

Seasonal and spatial analysis of PM2.5 estimation result 

We trained our model with seasonal mean values and gave a specific analysis 

on seasonal and spatial variation of PM2.5 concentration. The seasonal estimation 

with a large spatial AOD coverage showed a high consistency with spatial patterns 

of PM2.5 ground monitoring data. The seasonal and spatial distribution and its 

contribution factors also been discussed. 
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6.2 Limitation of this study 

Near the Earth’s surface, ground-level PM2.5 are recorded while aerosol 

represents its whole distribution in atmosphere. However, we directly used AOD 

data regardless of the vertical structure and components of aerosol, which might 

reduce accuracy of estimation  

If the Terra MODIS AOD was also explored and mosaic with Aqua data to 

generate a complete dataset of AOD, the non-retrieved day’s AOD might be 

reduced and the PM2.5 might be estimated with a higher accuracy and a greater 

coverage.  

Supplementary data like more meteorological parameters, population density, 

GDP, local industrial output and land use information were not wildly used in our 

Gaussian process model. More variables are expected to explain more details 

spatial variation and seasonal variation via model fitting. This is a limitation that 

needs to be further examined in our future research work.  

Also, the computing consumption of Bayesian hierarchical solution need to be 

reduced by improving in an efficient programming perspective. 
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