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Bogomolnaia and Moulin (2001) showed that the mechanism that satisfies
sd—efficiency and equal treatment of equals cannot be sd—strategy—proof. Also,
Mennle and Seuken (2017) showed a decomposition result of strategy—proofness
and presented partial strategy—proofness, which is a weak notion of
strategy —proofness used by Mennle and Seuken's paper. In this paper, we show
other strategy—proofness notion under the random assignment problem. In this
paper, we present a weakened notion of strategy—proofness which is related to
the upper—contour set, upper—contour strategy—proofness. Our main result is
even though sd—strategy —proofness 1s weakened to upper—contour
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1. Introduction

We consider the problem of allocating indivisible goods or objects among a group of
agents without transfering money and each agent can receive at most one of them. For
example, housing allocation of universities” dormitory, allocating assignment to workers and
student placement in schools can be examples of allocating indivisible goods without mone-
tary transfer. Each agent has a complete, transitive, and strict binary relation over objects.

Achieving fairness is one of the important aims of assignment. However, under the
circumstance of allocating deterministic objects, it is very difficult to satisfy the fairness
condition. For example, suppose there are two desirable objects to be allocated to two
agents and they prefer the same object. It is clear that each of the two possible allocations
will violate any reasonable notion of fairness. Therefore, instead of allocating deterministic
objects, we assign a probability of each object for each agent. This way of assignment is
called the random assignment.

A mechanism designer usually wants to achieve three goals. The three goals are efficiency,
strategy-proofness and fairness. A mechanism is strategy-proof if truth-telling is a dominant
strategy of the preference revelation game. However, achieving strategy-proofness is not easy
because it makes the conflict with other properties. Zhou (1990) showed that there does not
exist random assignment mechanism achieving strategy-proofness, efficiency with respect to
cardinal utility, and equal treatment of equals.

Because we must give up some efficiency or fairness property in order to achieve strategy-
proofness, mechanism designers are interested in studying non-strategy-proof mechanisms.
Also, they have a weaker version strategy-proofness to make mechanism which is compatible
with efficiency and fairness property. In this study, we suggest weaker strategy-proofness and
show that even though strategy-proofness is weakened, the impossibility result still holds.

The assignment problem has attracted much attention after Hylland and Zeckhauser
(1979). They proposed pseudomarkets and they associated them with the random assignment
problem. Also, they showed that even though there exists competitive equilibrium when the
agents have the same incomes, this mechanism is not strategy-proof.

The papers which have close relationships with our paper are as follows. Bogomolnaia
and Moulin (2001) introduced the probabilistic serial mechanism and sd-efficiency. Also,
they showed that when the number of agents is three, the mechanism that satisfies this
efficiency and equal treatment of equals can be strategy-proof. However, when the number
of agents is larger than three, these axioms are not compatible. These results also hold
when strategy-proofness in their paper is weakened. Mennle and Seuken (2017) showed a

decomposition result of strategy-proofness and presented partial strategy-proofness, which



is a weak notion of strategy-proofness. In this paper, we show that another decomposition
result about weakened strategy-proof axiom. Nesterov (2017) suggested impossibility results
when rules in the model satisfy strategy-proofness. One of the results is that when the agents
are at least three, ex-post efficiency, lower invariance, which is one of the axioms related to
strategy-proofness, and upper envy-free, which is one of fairness axioms. This paper suggests
that when the agents are more than three, impossibility result can be derived using weak
axiom compared to upper envy-free.

There have been two representative ways to weaken the previous sd-strategy-proofness
notion. One way is to use weak sd-strategy-proofness axiom. Because stochastic dominance
relation is a partial ordering, we can make weakened axiom which requires the lottery where
each agent tell the truth not to be stochastically dominated by any other lotteries. In contrast
to weak sd-strategy-proofness, sd-strategy-proofness requires the lottery to be stochastically
dominate any other lotteries. In other word, weak sd-strategy-proofness requires each agent
should not benefit by misreporting his preferences. Bogomolnaia and Moulin (2001) shows
that the probabilistic serial rule satisfies weak sd-strategy-proofness. Second way is to lessen
the number of the misreport cases and pairs of probabilities to be considered. One example
is limited invariance. It rules out profitable misrepresentation for certain types of preference,
but not all of preference. With all other agents’ preferences fixed, assume that the preference
of an agent changes but the rankings from his most preferred object down to a certain object
do not change. In this case, the probability of his receiving the object remain the same. This
axiom is mainly used in order to characterize the probabilistic serial rule, which means the
probabilistic serial rule satisfies limited invariance (Hashimoto et al., 2014; Heo, 2014; Heo
and Yilmaz, 2015). In this paper, we focus on this type of weaking and we strengthen
limited invariance axiom. Upper-contour strategy-proofness weaken the condition of limited
invariance that the rankings must be the same. Instead, it requires the condition that the
upper contour sets at an object must be the same. Therefore, the fact that upper-contour
strategy-proofness implies limited invariance is obvious.

This paper is constructed as follows. In section 2, we introduce the model and three
properties. Also, we introduce a new notion of strategy-proofness, upper-contour strategy-
proofness. In section 3, after we propose the decomposition result of upper-contour strategy-
proofness, we present the main impossibility results and characterization results. In section

4, we consider variations in the random assignment problem.



2. The model

First we define the random assignment problem proposed by Bogomolania and Moulin.
Let I ={1,2,...,n} be the set of agents and A ={1,2,...,n} be the set of objects. We assume
that |I|=|A| = n. Each agent i is equipped with a complete, transitive and antisymmetric
binary relation P; over A. Let R denote the set consisting of all strict preferences over A.
Because we fix I and A, we write a problem as a list R € RY.

Given P, € R and a € A, let r(P;), k = 1, ..., n, denote the k-th ranked object according
to P;, and U(P;,a) = {x € A|zrR;a} denote the upper contour set of a in P;. Also, let
L(P;,a) = {z € AlaR;x} denote the lower contour set of a in P;. Also, let rank(F;,a)
denote the a’s ranking according to F;.

Let A(A) denote the set of lotteries, or probability distributions over A. Given A € A(A),
A denotes the probability assigned to object a.

A (random) assignment is a bi-stochastic matrix L = [L;a)icr.ac4, namely a non-negative
square matrix of which elements in each row and each column sum to unity. Let £ denotes
the set of all bi-stochastic matrices.

Given P; € R and lotteries \, N € A(A), X stochastically dominates N according to P;,
denoted ARSN, if Y0 Arypy = D1y Al p, for all 1 < k < n. Analogously, given R € R",
an assignment L stochastically dominates L’ according to R, denoted LR*!L’, if L; R:*L. for
all 7 € .

A rule is a mapping ¢ : R" — L. Given R € R", p;,(R) denotes the probability of agent
i receiving object a, and thus ¢;(R) denotes the lottery assigned to agent i.

We introduce requirements imposed on rules. First condition is efficiency. An assignment
L is sd-efficient if it is not stochastically dominated by any other assignment L’. Accordingly,
a rule ¢ is sd-efficient if the assignment p(R) is sd-efficient for all R € R™. A rule ¢ is ex-
post efficient if each assignment induced by the rule can be represented as a probability
distribution over efficient deterministic assignments. In this model, sd-efficient rule implies
ex-post efficient rule but the converse is not true.

Second condition is strategy-proofness. Agents cannot have an incentive to misreport
their preferences in order to improve their utilities. A rule ¢ is sd-strategy-proof if for all
i€l all PPl €R,and all P_; € R"Y, (P, P_y)R3%pi(P], P_;).

Final condition is fairness. An assignment L is sd-envyfree if L;R{?L; for all i,j € I.
Accordingly, a rule ¢ : R™ — L is sd-envyfree if p(R) is sd-envyfree for all R € R™. A rule
@ : R™ — Lis upper envyfree iffor alli,j € I, R € R"and alla,b € A, it U(P;,a) = U(P;,a),
then ¢;o(R) = ¢;qo(R). A rule ¢ satisfies strong equal treatment of equals if for all ¢, j € 1, all
P, P; € R and all object a € A, if U(P,;,a) = U(P;,a) and rank(P;, k) = rank(P;, k) for all
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k € U(P;,a), then p;x(R) = ¢jx(R). An assignment L € L satisfies equal treatment of equals
if for all 4,5 € I, [P, = Pj] = [L; = L;|. Similarly, a rule ¢ satisfies equal treatment of equals
if o(R) satisfies equal treatment of equals for all R € R™. In this model, sd-envyfree rule
implies upper envyfree rule but the converse is not true. upper envyfree implies strong equal
treatment of equals but the converse is not true. Strong equal treatment of equals imples
equal treatment of equals but the converse is not true. The proofs of these relationships are
written in Nesterov (2017).

In this study, we present a relaxed notion of strategy-proofness which is related to the

upper contour set.

Definition 1. A rule ¢ is upper-contour strategy-proof if for alli € I, all P;, P/ € R,
all Py € R™Y, and all a,b € A, if U(P;,a) = U(P.,b), then Y15 oy oy (P Py) =
ZZ?MPM Diry(p1y) (P}, P—y).

When a rule satisfies upper-contour strategy-proofness, if upper contour set of P; and
upper contour set of P/ are the same regardless of the objects preference ordering, then the
sum of probability to get these objects in the upper contour set must be the same. Suppose,
for example, that an agent misreports his preferences but his upper contour set of some
objects remains the same. There is a possibility that this agent finds objects at least as
good as the objects much more desirable than the remaining objects . If he is assigned a
greater probability of getting these objects, then he is obviously better off misrepresenting
his preferences; if he is assigned a smaller probability for the same object, then a similar
argument applies by switching his true preferences and his misrepresented preference. There-
fore, upper-contour strategy-proofness rules out such a profitable misrpresentaion by making
the sum of probability to get these objects the same.

When we consider sd-strategy-proofness, we have to consider all possible misreports and
all probabilities of getting at least kth ranked objects for all k. However when we consider
upper-contour strategy-proofness, we only consider some of these misreports and probabili-
ties. When the number of agents is three and we consider sd-strategy-proofness, each agent
has to consider five misreports and compare ten pairs of probabilities. On the other hand,
when we consider upper-contour strategy-proofness, each agent only considers two misre-
ports and compares two pairs of probabilities. When the number of agents is four and we
consider sd-strategy-proofness, each agent has to consider twenty three misreports and com-
pare sixty nine pairs of probabilities. On the other hand, when we consider upper-contour
strategy-proofness, each agent only considers ten misreports and compares fourteen pairs
of probabilities. However, we show that previous results in other papers hold even though

we replace sd-strategy-proofness with upper-contour strategy-proofness in section 3. By
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definition, sd-strategy-proofness implies upper-contour strategy-proofness. Also, it is not
difficult to find a rule which satisfies upper-contour strategy-proofness but does not satisfy
sd-strategy-proofness. However, when the number of agents is two, we cannot consider the
case where two different preferences have the same upper-contour set. Therefore, every rule
in the model satisfies upper-contour strategyproofness trivially. Therefore, from now on, we

consider the number of agents is at least three.

Example 1. Let A = {a,b,c} and I = {1,2,3}. Assume that agent 1’s allocation according
to her preference is as follows and the others’ allocations are fixed regardless of their prefer-
ences.

oP! : aPbPic

oP? : aPicPb

P} : bPiaPc

oP! : bPcPa

oP} : cPaPb

PP : cPbPia

Then, for all Py, Py € R, the lottery assigned to agent 1 is as follows.

er(PL PPy = (1 1 1) o(PL PPy = (4 1 L)
PPy PP = (5 4L o(PLE Py = (1 1 1)
p(PL PPy = (1 1 1) o(PE PPy = (30 1)

Because agent 2 and agent 3 cannot affect the result of the rule, we consider only agent
1’s allocation. This rule satisfies upper-contour strategy-proofness but does not satisfy sd-
strategy-proofness. Because when the agent 1s preference ordering is PS, she may have
incentive to misreport her preference as PP. It is because the probability to receive ¢ or b is %
under PP compared to L under PS. The probability to receive ¢ or b is higher under PP than

2
under Pp.

3. Main results

Mennle and Seuken (2017) showed that strategy-proofness can be decomposed into three
axioms. First, for each pair P;, P/ € R, P! is adjacent to P; if P/ is obtained from P; only by
switching two consecutively ranked objects. In other words, when we compare P; with P/,

- " . .
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just two consecutive objects ranks are swapped and other objects ranks are the same. First
axiom is swap monotonicity. For all agents and all other agents preferences, if one agent
changed her report into another report which is adjacent to original report, then either the
agent’s lotteries of the two cases are the same or she has to receive higher probabilities to get
her more preferred object in her report. Second axiom is upper invariance. Upper invariance
guarantees that agents cannot influence their probabilities to obtain more-preferred objects
by changing the ranks of less-preferred objects. Similarly, lower invariance, which is third
axiom, guarantees that agents cannot influence their probabilities to obtain less preferred

objects by changing the ranks of more-preferred objects.

Definition 2. A rule ¢ is swap monotonic if for alli € I, all P;, P! € R, all P_; € R"!,
and all a,b € A, if P! is adjacent to P;, P; : aP;b and P! : bP!a then either ¢;(P;, P_;) =
©i( P}, P_3) or @ia(Pi, P_i) > pia( P/, P—;).

Definition 3. A rule ¢ is upper invariant if for alli € I, all P, P! € R, all P_; € R"!,
and all a,b € A, if P! is adjacent to P;, P, : aPb and P! : bPla then ¢y (P;, P—;) =
vik(P!, P_;) for all k € U(P;,a)\ {a}.

Definition 4. A rule ¢ is lower invariant if for alli € I, all P;, P/ € R, all P_; € R" !,
and all a,b € A, if P! is adjacent to P;, P; : aPb and P! : bPla then @y (P;, P_;) =
wi(P, P_;) for all k € L(P;,b) \ {b}.

In Mennle and Seuken (2017), they showed that a rule ¢ is sd-strategy-proof if and only
if it is swap monotonic, upper invariant, and lower invariant. Here, we show that upper-
contour strategy-proofness is equivalent to upper invariance and lower invariance. Therefore,
upper-contour strategy-proofness ensures that agents cannot influence their probabilities to

obtain objects of which ranks are not changed.

Proposition 1. A rule ¢ is upper-contour strateqy-proof if and only if it is upper invariant

and lower tnvariant.

Proof.

In this proof, we denote objects by o4, 0p, ... , 0,.

(=) Assume to the contrary that ¢ is upper-contour strategy-proof but not upper invariant.

Then, there exist some agent ¢ € I, some preference profiles P, and P/ and object o, and o,

such that P/ is adjacent to P;, P, : 04 > 0p and P/ : 0, > 0, and ;o (P, P—;) # @io, (P}, P_;)

for some oy € U(P;,04) \ {0} = U(P/,05) \ {0p}. Also, because ¢ is upper-contour strategy-

proof, for all o.,04 € A, if U(P;,0.) = U(P/,04), then ;Z?MPZ"OC) Gitmp) (P, P-i) =
J LoD oy (Pl P U(Pry0a) \ {oa} = U(P/,05) \ {05} and their ranks in this

3 y 1 |
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upper contour set are also the same because there is just one swap between o, and o,.
Also, the above statement and the fact that o € U(P;,0,) \ {0.} = U(F/,0p) \ {0p} mean
U(P;,0r) = U(P/,0r). Therefore, by using U(FP;, 0,) = U(P/, o) and upper-contour strategy-

proofness,
rank(P;,o0 rank(P},o0
PO ey (P Poi) = Sy ) oy (PP -+ (1)

Let rank(P;, op)=w

If w=1, the above equation is contradiction because of above assumption, @;,, (P;, P—;) #
Gion (P, P-s).

Also, if w > 2, let r,_1(P;) = 0;. Then the following two equations hold.

rank(P;,o rank(P;,0;

=1 (Fion) Spl(rl(Pi))(P’h P_i) — ¢io, (B, P—z) = 2ui=1 (o) 901(7‘1(132‘))(Pi7 P_;)
rank(P],0 rank(P/,

PO o) (Pl Pi) = @iog (P, P—g) = S0 ooy (P PLy).

Therefore by subtracting ¢;,, (FP;, P-;) from left side of (1) and ¢ (P/, P—;) from right side
of (1) and using @, (P, P—;) # @io, (P, P_;), we can get the equation

rank(P;,0; rank( P
10 ooy (P Po) # St 0 iy (P PL).

However, because U(P;,0,;) = U(P/,0;) and by the upper-contour strategy-proofness,
rank(P;,0; rank( P
=1 (Pios) Qi) (Pi, P=i)=> 14 z(rl(Pi’))(Pi/a P_;)

Contradiction.
Similarly, we can prove the case of lower invariance. Assume to the contrary that ¢ is
upper-contour strategy-proof but not lower invariant. Then, there exist some agent i € I,

some preference profiles P; and P/ and object o, and o, such that P/ is adjacent to P,

P, o0, = op and P! : 0 = 0, and @, (P, P_;) # ©io, (P, P_;) for some o, € L(P;,0) \
{op} = L(P!,04) \ {0a}. Also, because ¢ is upper-contour strategy-proof, for all o., 04 € A,
if U(P;,0.) = U(Pl,04), then Y75 ) i)y (P P) = 025 i oy (P Py).
Because U(P;,0,) = U(FP/,0,) and their ranks in L(P;,05) \ {oo} = L(F/,04) \ {0.} are
also the same, U(P;,0r) = U(P!,0x). Therefore, by using U(FP;,05) = U(P/, 0) and upper-

contour strategy-proofness,
rank(P;,o0 rank(P},o0
D oy (P Poi) = Sy ™0™ iy (P Poi) + - (2)

Let rank(P;, op)=w
Let r,—1(F;) = 0;. Then the following two equations hold.
rank: P;,0 rank(P;,0;)
(Fion) gpl(rl(Pi))(Ph P ) Pioy, (Pla P ) =1 ! Sol(rl(Pi))(Ph P*i)
rank P ,0 rank( P
[ o) (Pl Poi) = @iog (Pl Pg) = Y420 ) Gitrieny (Pl Poy).



Therefore by subtracting ¢;,, (P;, P—;) from left side of (2) and ;,, (P}, P—;) from right side
of (1) and using @i, (Pi, P-;) # ©io, (P!, P_;), we can get the equation

rank(P;,0; rank(P/,05)
ok J)%(n( ) (i, Poi) #3020 Pitr(p) (P P-i).

However, because U(P;,0;) = U(P/,0;) and by the upper-contour strategy-proofness,
rank(P;,0; rank(P/,0;
0 i ey (Poy Po)=52121 " i oy (P Pi)

Contradiction.

(<) Assume that ¢ is upper invariant and lower invariant but not upper-contour strategy-
proof. Then, there exist some agent i € I, some preference profiles P; and P/ and object o,
and o, such that when U(P;,0,) = U(P!, 0p),

rank(P;,0q rank(P,op)
=1 ( )901( 1(P; (PuP ) # Zl 1 ’ ’(TZ(P{))(Pi/ani)- - (3)

Then by swapping two adjacent ranks in U(P/,0,) finite times, we can always make new
preference profile P/ such that rank(P;, o) = rank(P!, o) for all o, € U(FP;,0,). In this

)

case, by lower invariance, the agent i cannot affect the sum of probabilities to get one of
A\ U(P;,0,). That means

rank( P ,0a) rank( P ,0a)

L=2 o Ciry(p) (L, P=i) =1 — = Pir(py) (B P-3).
rank P ,0a rank P ,0q
py Girp) (P Pi) = D211 Pitr(pry) (P Py).
rank(P],op) , . rank(P}’,0q) 1/
Therefore, by replacing >, Pi(ry(pry) (P, P—i) in (3) with 37,0 Girpy (P P-i),

rank(P;,0q rank(P]’,0q)
[P0 oy (Piy Poi) # e Diry(pry (P Poi). -+ (4)

Similarly, by changing two adjacent ranks in A \ U(P;, 0,) finite times, we can change P/
to P/ such that rank(P;, 0,,) = rank(P", o0y,) for all o, € A\ U(F;,0,). Also, by upper

2

invariance, the agent i cannot affect the probability to get U(FP;, 0,). Therefore,

rank(P/’,04) rank(P}" ,0q)
=1 Soi(’l’l(P{/))('F)i”’P—i) = =1 SD’L(’T‘Z(P/”))(P/” P )
Therefore, by repl rank(Flo) o, P!, P_) in (4) with 3,0 000 o PP
yreplacing ) i, Pitr(pyy (B Pi) in (4) with Pitr () (B Pi),

rank(P;,0q rank(P]"
=1 ( )901( (P (P“P i) #F D1 Z(Tz(P”’))(P P_y).

When we compare P; and P/”, all ranks in two preference profiles are the same. Therefore,
P, = P!". Then,

rank(P;,0q rank(P;,0q)
=1 ( )()01(7“1( (Ra P ) 7A Z ( PLi(ry (P, ))(Pza P_ )



Contradiction. [

An important solution to the random assignment problem is the random serial dicta-
torship. The random serial dictatorship orders the agents with equal probability and the
first agent receives her most preferred good, the next agent obtains her most preferred good
among the remaining ones, and so on. The random serial dictatorship is known to satisfy
sd-strategy-proofness and ex-post efficiency. In Bogomolnaia & Moulin (2001), they showed
when n = 3, the random serial dictatorship is characterized by the combination of three
axioms: sd-efficiency, sd-strategy-proofness, and equal treatment of equals. Here, we show
that even though sd-strategy-proofness is weakened to upper-contour strategy-proofness,
their characterization result still holds. It means that swap monotonicity is redundant in

this characterization result.

Proposition 2. Assume n = 3. Then the random serial dictatorship is characterized by
the combination of three axioms: sd-efficiency, equal treatment of equals, and upper-contour

strategy-proofness.

Proof.
For n = 3, there are six types of preference profiles (Bogomolnaia and Moulin, 2001). Actu-
ally, any other preference profiles in the same type can be represented as one of these types

after renaming agents and objects. These preference profiles are as follows.

aPi (b, c) ( aPybPic

Type 1 (48 profiles)  bPs(a, c) Type 2 (6 profiles) ¢ aPybPsc
cPs(a,b) | aP3bPsc

( aPibPic ( aPicPib

Type 3 (18 profiles) {  aP»bPsc Type 4 (36 profiles) ¢ aPycPyb
| aPscPsb [ 0Ps(a,c)

( aPibPic ( aPbPic

Type 5 (36 profiles) ¢ aPybPsc Type 6 (72 profiles) ¢ aPscPsb
[ 0Ps(a,c) | 0Ps(a,c)

Type 1 : By sd-efficiency, ¢14(R') = p(R') = ¢3.(R) = 1.

p(R") =

o O =
o = O
_— o O



for all 7.

wl=

Type 2 : By equal treatment of equals, p;,(R?) = @i(R?) = @i(R?) =

p(R?) =

Wl W= W=
W= W= W=
Wl W~ W

Type 3 : By upper-contour strategy-proofness from type 2, ps,(R?) = % By sd-efficiency,

@3(R?) = 0. Therefore, @3.(R?) = 2. We can easily derive other elements by equal treatment

of equals.

p(R*) =

W= W= W=
O NI =
W D~ =

Also, we can consider R* in Type 3. R¥ : For i = 1,3, aP,bPc. aPycPsb.
As we wrote above, any other preference profiles in the same type can be represented as one

of these types after renaming agents using the same logic above.

p(RY) =

Wl Wik Wl
N O N
D= WIN D=

Type 4 : By sd-efficiency, ps,( R?) = 1. We can easily derive other elements by equal treat-

ment of equals.

p(RY) =

O DI NI
_ o O
O DI NI

Type 5-1 : Assume that bPsaP;c. By upper-contour strategy-proofness from type 2,
@3.(R) = 5. By sd-efficiency, @3,(R*™") = 0. Therefore, ¢3(R°) = 2. We can easily

derive other elements by equal treatment of equals.

(R =

O = D=
WIN D~ D=
Wl Wl Wik

Type 5-2 : Assume that bP3cPsa. By sd-efficiency, o3,(R°2) = 0. By upper-contour-

strategyprrofness from type 5-1, ¢s,(R*?) = 2. Therefore, p3.(R*7%) = 1. We can casily

derive other elements by equal treatment of equals.
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p(R°?) =

O NI N
WD O~ O
Wl Wl Wl

Type 6-1 : Assume that bP3aPsc. By upper-contour strategy-proofness from R¥, ¢3.(R6™1) =
&, By sd-efficiency, ¢3,(R°"!) = 0. Therefore, ¢3,(R™) = 2. By upper-contour strategy-

proofness from type 5-1, @oq(RS™!) = L. By sd-efficiency, @g(R%"!) = 0. Therefore,

2
9020(R6_1) = %

1011
2 6 3
PR =13 0 3
5 1
0 %5 &

Type 6-2 : Assume that bP3cP3a. By upper-contour strategy-proofness from type 6-1,

©3(R°?) = 2. By sd-efficiency, ¢3,(R%2) = 0. Therefore, ¢3.(R°?) = t. By upper-
contour strategy-proofness from type 5-2, psq(R°"?) = 1. By sd-efficiency, @a(R*72) = 0.

Therefore, @o.(R*?) = 1.

1 1 1

7 6 3
PR =1 5 0 3
5 1

0 %5 &

However, when the agent’s number is larger than three, their characterization result does
not hold anymore. They showed that when the number of agent is larger than three, there
is no rule meeting the three following axioms: sd-efficiency, sd-strategy-proofness, and equal
treatment of equals. Also, the same impossibility result is true with upper-contour strategy-
proofness, not sd-strategy-proofness. It means that swap monotonicity is redundant not only

in characterization result but also in impossibility result.

Theorem 1. Assume n > 4. Then there is no rule meeting the three following axioms:

sd-efficiency, equal treatment of equals, and upper-contour strateqy-proofness.

Proof.

Suppose that there exists a rule that satisfies sd-efficiency, equal treatment of equals, and
upper-contour strategy-proofness. We will reach a contradiction after considering preference
profiles and assginments induced by the rule satisfies above three desirable axioms. First,
assume that n = 4 and the case n > 4 will be proved using the impossibility result in case

n = 4.

11 =T} @



We use Fact 1 (Bogomolnaia and Moulin, 2001) throughout the proof of Theorem 1 and
Theorem 2.

Fact 1 (Bogomolnaia and Moulin, 2001). Suppose that bP,a, while aP;b for all j # i. Then
sd-efficiency implies ¢;, = 0. Also, let bP;a for i € I, while aP;b for j ¢ I. Then sd-efficiency
implies ¢;, =0 for all i € I or p;, =0 for all j ¢ 1.

Profile 1. R!' : For all i, aP,bP;cPd.

By equal treatment of equals, this result is trivial.

10101 1
4 4 4 4
10101 1

N _ | 4 4 4 4

pR) =1 111
4 4 4 4
10101 1
4 4 4 4

Profile 2. R? : Fori =1,2,3, aPbP,cP,d. For i = 4, bP,aP,cP,d
By upper-contour strategy-proofness from Profile 1, p4.(R?) = @uq(R?) = }1. By Fact 1,
¢14(R?) = 0. Therefore, ¢u(R*) = 5. We can easily derive other elements by equal treat-

ment of equals.

11011
3 6 4 4
11011

2\ _ | 3 6 4 4

PE=1 1 7 1
3 6 4 4
1 1 1
0244

Profile 3. R? : For i = 1,2, aP,bP,cP;d. For i = 3,4, bP,aP,cP,d

By upper-contour strategy-proofness from Profile 2 and equal treatment of equals, p3.(R?) =
©34(R?) = uc(R®) = @ua(R?) = 1. By equal treatment of equals, p1.(R?) = ¢14(R?) =
ac(R?) = aa(R?) = 1. By Fact 1, p15(R?) = @ (R?) = ¢34(R*) = ¢uq(R?) = 0. Therefore,

Qpla(Rg) = 902a(R3> - 903b<R3) = 9045(R3) = %

1 11
3 01 3

19 11

3v | 2 1 1
2 4 4

11 1

0 3 1 1

Profile 4. R*: For i = 1,2,3, aP;bP;cP,d. For i = 4, bP,cP,aP;d

By upper-contour strategy-proofness from Profile 2, p4q(R*) = 1 and ¢4 (R*) = 5. By Fact
1, p1qa(R*) = 0. Therefore, s (R*) = 3. We can easily derive other elements by equal
treatment of equals.

A0 "
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o(RY) =

O Wi Wl Wl
N[—= D= D= D=

Ll Ll SN LN N o
L Ll N LN i o

Profile 5. R° : For i = 1,2, aP;bP;cP,d. For i = 3, bP,aP;cP;d. For i = 4, bP,cP,aP;d

By upper-contour strategy-proofness from Profile 4, ¢3.(R%) = ¢34(R®) = 1. By upper-

contour strategy-proofness from Profile 3, ¢4 (R°) = 5 and ¢44(R°) = ;. By Fact 1(a and

¢), 1a(R%) = 0. Then, ps.(R%) = 1. By equal treatment of equals, ¢1.(R%) = ¢14(R?) =

02c(R®) = pog(R®) = %1. By Fact 1(a and b), ¢15(R?) = @op(R®) = p34(R°) = 0.

1 1 1

2 03 3
1o 11

5y _ | 2 4 4
2 4 4

1 1 1

0 3 7 1

Profile 6. RS : For i = 1,2, aP,bP,cP;d. For i = 3,4, bP,cP,aP,d

By upper-contour strategy-proofness from Profile 5 and equal treatment of equals, ps,( R®) =
par(R%) = 5 and @34(R%) = @ua(R®) = ;. Then, 15(R°) = @u(R®) = 0 and ¢14(R%) =
@2a(RS) = 1. By Fact 1(a and c), 3.(R%) = @i (R®) = 0. We can easily derive other

elements.

1 1 1
3 07 3
g L1
6y | 2 4 4
2 4 4
1 1 1
03 7 1

Profile 7. R” : For i = 1,2,3, aP,bP;cP,d. For i = 4, bP,cP;dP;a
By upper-contour strategy-proofness from Profile 4, g (R7) = % and @ (R7) = }L. By Fact
1(a and b), ¢4,(R7) = 0. Therefore, 4q9(R") = 1. We can easily derive other elements by

equal treatment of equals.

11011
3 6 4 4
11011
N _ | 3 6 4 4
PE)=1 7 7 )
3 6 4 4
1 1 1
0 3 7 1

Profile 8. R® : For i = 1,2, aP,bP,cP;d. For i = 3, bP,aP;cP;d. For i = 4, bP,cP,dP;a

By upper-contour strategy-proofness from Profile 7, ¢3.(R?) = p34(R®) = i. By upper-

13 N =



contour strategy-proofness from Profile 5, ¢u(R*) = 3 and ¢4 (R®) = 1.. By Fact 1(a and

b), w15(R®) = 0o (R®) = 34(R®) = 0.

p(R®) =

O O vl -
== O O
N e N N N
N L N N N N

Profile 8. R¥ : For i = 1, bP;aPcP,d. For 1 = 2,3, aP;bP;,cP;d. For i = 4, bP;,cP,dP;a
By the same logic from Profile 1 to Profile 8, we can derive p(R¥).

1 1 1
03 7 1
1011
sy | 2 11
P(R7) = 1 g 11
2 4 4
1 1 1
03 7 1

Profile 8. R*" : For i = 1,3, aP,bP;cPd. For i = 2, bP,aP,cP,d. For i = 4, bP,cP;dP;a
By the same logic from Profile 1 to Profile 8, we can derive o(R®").

p(RY") =

O vk O NI
o= O = O
N N N N
N e N N N

Profile 9. R° : For i = 1,2,3,4, bP,aPicPd.

By equal treatment of equals, this result is trivial.

p(RY) =

e Ll N LN
i LN TN
i N TN

N S N TN

Profile 10. R'Y : For i = 1,2,3, bP,aP;cP,d. For i = 4, bP;,cP;aP;d.
By upper-contour strategy-proofness from Profile 9, ¢4(R™) = 1 and @4q(R™) = 1. By

Fact 1, psq(R'") = 0. Therefore, ¢4.(R') = 1. We can easily derive other elements by equal

treatment of equals.

3 11 7
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p(R") =

O Wik Wl Wl
N P N e N I N
N[—= D= D= D
N L N N TN

Profile 11. R : For i = 1,2,3, bP,aP,cP,d. For i = 4, bP,cP;dP;a.
By upper-contour strategy-proofness from Profile 10, ¢4(R") = 1 and ¢4 (R'") = 5. By
Fact 1, p4q(R'") = 0. Therefore, p4q(R™) = . We can easily derive other elements by equal

treatment of equals.

1111
3 4 6 4
1111
11y _ | 3 4 6 4
PR =157 1 1
3 4 6 4
1 1 1
0424

Profile 12. R'? : For i = 1,2,4, bP,aP;cP,d. For i = 3, aP,bP;cP;d.
By upper-contour strategy-proofness from Profile 9, ¢s.(R') = 1 and ¢3q(R'?) = ;. By
Fact 1, p3,(R'2) = 0. Therefore, p3,(R'?) = 1. We can easily derive other elements by equal

treatment of equals.

11 1 1
6 3 4 4
11 1 1
12\ __ 6 3 4 4
2 4 4
11 1 1
6 3 4 4

Profile 13. R'3 : For i = 1,2, bP,aP,cP,d. For i = 3, aP,bP,cP,d. For i = 4, bP,cP,dP;a.
By upper-contour strategy-proofness from Profile &', ¢y.(R') = @4(R"™) = 1. By upper-
contour strategy-proofness from Profile 8", ¢1.(R™3) = p1q(R3) = %L By upper-contour
strategy-proofness from Profile 11, p3.(R") = ¢ and ¢3q(R') = 1. By Fact 1(a and b),
e3(R'™). By Fact 1(a and d) @4 (R"™) = 0. Then, p3,(R™) = 5. Also, ¢1,(P") = 2.
1
5

By upper-contour strategy-proofness from Profile 12, g (R') = Then, by equal treat-

ment of equals, ¢1,(R™) = @(R"™) = 5. However, Y, o1e(R™) = 3,04 (R?) =
2—54 + % + % + i > 1. Contradiction.

501 1 1
24 3 4 4
501 01 1
13\ 24 3 4 4
P(R7) = 79 L1 1
12 6 4
1
03

If n > 4, we can construct a preference profile by making the agent &£ who is newly added

15 .-:rx | -kl-l- 1_-li ."‘.ll



prefer the object [ which is newly added to any other objects. Also, we can make the other
agents’s worst object be [. Then, by sd-efficiency, ¢ (R) = 1. Therefore, the assignment
problem is reduced to the first four agents. Hence, it is enough to consider the case n = 4.
OJ

Serial dictatorship satisfies sd-efficiency, upper invariance and lower invariance. Random
serial dictatorship satisfies equal treatment of equals, upper invariance, and lower invari-
ance. Probabilistic serial rule satisfies sd-efficiency, equal treatment of equals and upper
invariance. The existence of a rule which satisfies sd-efficiency, equal treatment of equals,
and lower invariance is an open question. Also, because the domain which is used for this

proof is single-peaked preferences domain, the following corollary is also true.

Corollary 1. Assume n > 4. In single-peaked preferences domain, there is no rule meet-
ing the three following axioms: sd-efficiency, ucs-strateqy-proofness, and equal treatment of

equals.

In Nesterov (2017), he shows that when the number of agents is at least three, there is
no rule meeting the three following axioms: ex-post efficiency, lower invariance, and upper
envyfree. However, when the number of agents is three, there exists rule meeting three
following axioms: ex-post efficiency, upper invariance, and upper envyfree. It means that
even though upper invariance and lower invariance look similar, lower invariance is more
restrictive than upper invariance when we use these axioms with other desirable axioms.
Also, by changing upper envyfree into sd-envyfree, we can characterize the probabilistic
serial rule when the number of agents is three. You can find a formal definition of the
probabilistic serial rule in Bogomolnaia & Moulin (2001).

We introduce the probabilistic serial rule briefly. Before introducing the probabilistic
serial rule, we introduce eating algorithm. Each object is suppoesed as being infinitely
divisible. A quantity of object a, given to agent i, represents the probability with which
agent ¢ is assigned object a. For each agient i, let w; : [0,1] — R, be a function such that
fol wi(t)dt = 1. The eating algorithm lets agent i eat his favorite available object at the
speed w;(t): the objects a, b, ¢, ... have been entirely eaten and objects z,¥, z, ... have not, he
eats his favorite object among x,v, z, ... at the speed w;(t). The probabilistic serial rule is
obtained by choosing uniform eating speeds: for each agent i, and for 0 <t < 1, w;(t) = 1.
The probabilistic serial rule satisfies sd-efficiency and sd-envyfree, but it does not satisfy

sd-strategy-proofness. Bogomolnaia and Heo (2012) show that the probabilistic serial rule
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is characterized by sd-efficiency, sd-envyfree, and bounded invariance. Bounded invariance
requires a rule that changing the ranks of less preferred objects cannot influence that each
agents’ probabilities to get more preferred objects. Therefore, bounded invariance implies
upper invariance. This result implies that when we weaken bounded invariance to upper
invariance, the characterization result only holds when the number of agents is three. Note

that when the number of agents is three, sd-efficiency is equivalent to ex-post efficiency.

Proposition 3. Assume n = 3. Then the probabilistic serial rule is characterized by the

combination of three axioms: ex-post efficiency, sd-envyfreeness and upper invariance.

Proof.
For n = 3, there are six types of preference profiles (Bogomolnaia and Moulin, 2001). These

preference profiles are as follows.

aPy(b,c) ( aPbPic

type 1 (48 profiles) < bPs(a, c) type 2 (6 profiles) ¢ aPybPsc
cPs(a,b) | aPsbPsc

( aPlelc ( aPlcPlb

type 3 (18 profiles) ¢ aPybPsc type 4 (36 profiles) ¢ aPycPsb
| aPscPsb [ 0Ps(a,c)

( aPlbplc ( aPlelc

type 5 (36 profiles) ¢ aPobPsc type 6 (72 profiles) ¢ aPycPsb
| 0Ps(a,c) | 0Ps(a,c)

Type 1 : By ex-post efficiency, ¢1,(R') = p(RY) = @3.(R') = 1.

p(R) =

o O =
oS = O
—_ O O

Type 2 : By sd-envyfree, p;o(R?) = @i(R?) = ¢ic(R?) = 3 for all 4.

p(R?) =

W= W= Wl
W= W= Wl
Wl Wl Wl

Type 3 : By sd-envyfree, 014(R?) = @2,(R?) = ¢3,(R?) = 3. By sd-efficiency, ¢3,(R?) = 0.

Therefore, p3.(R3) = % We can easily derive other elements by sd-envyfree.

- - 5
¥ [ -1l = —
A = = [ .
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Wik Wik Wi
O NI= NI
WIN D= D=

p(R’) = (
1

Type 4 : By ex-post efficiency, p3,(R*) = 1. We can easily derive other elements by sd-

envyfree.

p(R) =

O NI N
O NI NI

1

Type 5-1 : Assume that bPsaPsc By ex-post efficiency, ¢3,(R>™!) = 0. By sd-envyfree,
©1a(R*71) = @aa(R*1) = 1. Also, by sd-envyfree, o1.(R*™") = pac(R*!) = @3, (R*™!) = 3.
We can easily derive other elements.

p(R) =

O NI N
WIN D~ D
Wl Wl Wl

Type 5-2 : Assume that bP3cPza. By ex-post efficiency, ¢s,(R572) = 0. By sd-envyfree,

©1a(R*%) = 24,(R°72?) = 1. By upper invariance from type 5-1,p3,(R>"%) = 2. Therefore,

03.(R°7?) = % We can easily derive other elements by sd-envyfree.

p(R?) =

O NI =
W D~ D=
Wl Wik Wl

Type 6-1 : Assume that bPzaPsc. By ex-post efficiency, ¢3,(R°"!) = 0. By sd-envyfree,
Sola(RG_l) = 902a(R6_1> = %
By ex-post efficiency, ¢o,(R%™*) = 0. Therefore, @o.(R™) = 3. By sd-envyfree, 1.(R™!) =

@3.(R1) = 1. We can easily derive other elements.

p(R) =

O NI =
=W O k=
I TSN

Type 6-2 : Assume that bP3cP3a. By upper invariance from type 6-1, os3,( R672) = %. By

1

ex-post efficiency, ¢3,(R°7?) = 0. Therefore, p3.(R°?) = ;. By sd-envyfree, ¢1,(R°?) =
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©2a(R572) = 1. By ex-post efficiency, @op(R%?) = 0. Therefore, ¢o.(R*?) = 1.

p(R?) =

O NI N
Bl O e
ST IR

O

However, we use lower invariance instead of upper invariance, we can derive an impossibility
result. As we wrote above, Nesterov (2017) shows that when the number of agents is at
least three, there is no rule meeting the three following axioms: ex-post efficiency, lower
invariance, and upper envyfree. We show that when n > 4, impossibility result can be still
derived from even weaker fairness axiom than upper envyfree. We can show impossibility
result by using strong equal treatment of equals and sd-efficiency. The random priority rule
does not satisfies upper invariance but satisfies strong equal treatment of equals. However,

when n is at least 4, the random priority rule does not satisfies sd-efficiency.

Theorem 2. Assume n > 4. Then there is no rule meeting the three following axioms:

sd-efficiency, strong equal treatment of equals, and lower invariance.

Proof.

Similar to Theorem 1, we suppose that there exists a rule that satisfies sd-efficiency, strong
equal treatment of equals, and lower invariance. We will reach a contradiction after consid-
ering preference profiles and assginments induced by the rule satisfies above three desirable
axioms. First, assume that n = 4 and the case n > 4 will be proved using the impossibility
result in case n = 4.

Profile 1. R' : For i = 1,2,3, aP,cPbP,d. For i = 4, aP,dP;cP;b.

By Fact 1, ou(R') = p4(R') = 0. By strong equal treatment of equals, p1,(R') =
P2 (RY) = @3a(R') = @ua(R') = 1. Then, @4(R') = 3. We can easily derive other ele-

ments by strong equal treatment of equals.

1111
4 3 3 12
111 1

N | 4 3 3 12

pR)=171 171 1
4 3 3 12
;1 00 %

Profile 2. R? : For i = 1,2, aP;,cP,bP;,d. For i = 3, aP,bP,cP,d. For i = 4, aP,dP,cP;b.

By Fact 1, pu(R?) = ¢4.(R?) = 0. By lower invariance from Profile 1, 34(R?*) = 4. By
1

strong equal treatment of equals, 14,(R?) = 2,(R?*) = @3,(R?) = @4a(R?) = ;. Then,
¢1a(R?) = 3. By Fact 1(b and ¢), p3.(R*) = 0. Then, @s(R?) = 2. We can easily derive
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other elements by strong equal treatment of equals.

11 1 1
4 6 2 12
1 1 1
2\ __ 4 6 2 12
4 3 12
100 %

Profile 2. R? : Fori =1, aPbP,cPd. For i = 2,3, aP,cP;bP;d. For i = 4, aP,dP;cP;b.
By the same logic from Profile 1 to Profile 2, we can derive ¢(R?).

p(R”) =

e N N N T
O ol ol Wi
O NI N= O

= — =

wleo D= = l-

Profile 3. R® : For i = 1,2, aP,cP,bP;d. For i = 3, bP,aP;cP;d. For i = 4, aP,dP;cP;b.

By Fact 1, pu(R?) = ¢4.(R?) = 0. By lower invariance from Profile 2, ¢3.(R*) = 0 and
@3a(R*) = 5. By Fact 1, @3,(R?) = 0. Then, @3,(P?) = 11. By strong equal treatment of
equals, ©14(R?) = p2q(R?) = @ua(R?*) = 1. Then, p4q(R?) = 2. We can casily derive other

elements by strong equal treatment of equals.

101 1 1
3 24 2 8
11011

3\ 3 24 2 8
12 12
3 00 3

Profile 4. R*: Fori =1,2,3, bP,aP;cP,d. For i = 4, aP,dP;cP;b.
By Fact 1, pu(R*Y) = @4.(R*) = 0. By strong equal treatment of equals, ¢1,(R?) = @9 (R?) =
pa(RY) = 5 and @1(RY) = 02e(RY) = ps(RY) = 5.

p(RY) =

O Wik Wi Wl
O Wik Wl Wl

Profile 5. R’ : For i = 1,2, bP,aP;cP;d. For i = 3, aP,bP,cP;d. For i = 4, aP,dP;cP;b.
By Fact 1, ¢u(R°) = @uc(R®) = 0. By lower invariance from Profile 4, ¢3.(R%) = 3. By
1

strong equal treatment of equals, ©1.(R”) = @2 (R°) = 3
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p(R°) =

O Wi Wl Wl

0

Profile 6. R : Fori =1,2,3, aPbP,cP,d. For i = 4, aP,dP,cP;b.

By Fact 1, @u(R%) = p4(RS) = 0. By strong equal treatment of equals, 1,(R®) =
©2a(R°) = ©34(R°) = @4a(R°) = 1. Then, @4q(R®) = 2. We can easily derive other ele-
ments by strong equal treatment of equals.

1111
4 3 3 12
1101 1

6y | 4 3 3 12

P =1 7 7 7
4 3 3 12
;00 %

Profile 7. R” : For i = 1,2, aP,bP,cP,d. For i = 3, bP,aP;cP,d. For i = 4, aP,dP;cP;b.

By Fact 1, pg(R7) = 04.(R7) = 0. By Fact 1, ¢3,(R") = 0. By strong equal treatment of
equals, p14(R") = p2q(R") = paa(R") = 5. Then, ¢4(R") = 2. By lower invariance from
Profile 6 ,¢3.(R7) = 3 and ¢34(R") = 75.Then, ¢3,(R") = 5. We can casily derive other

elements by strong equal treatment of equals.

15 1 1

3 24 3 8

5 1 1

N 3 24 3 8
12 3 12

3 00 3

Profile 7. R™ : For i = 1,3, aP,bP,cPd. For i = 2, bP,aP;cP;d. For i = 4, aP,dP,cP;b.
By the same logic from Profile 1 to Profile 7, we can derive ¢(R").

15 101

3 24 3 8

, o - 1 L

Y 12 3 12
PED)=1 1 51
3 24 3 8

1 2

3 O O 3

Profile 7. R"" : For i = 1, bP,aP,cP,d. For i = 2,3, aP,bP,cP,d. For i = 4, aP,dP,cP;b.
By the same logic from Profile 1 to Profile 7, we can derive @(R™").

] O ]
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7 1 1

0 12 3 12

15 1 1

7N 3 24 3 8
PR =17 5
3 24 3 8

1 2

3 0 0 3

Profile 5. R’ : For i = 1,2, bP,aP;cP;d. For i = 3, aP,bP,cP,d. For i = 4, aP,dP,cP;b.

Using above results, we can fix the other elements of p(R®). By lower invariance from

Profile 7, ¢14(R?) = §. By lower invariance from Profile 77, ¢4(R?) = 5. By Fact 1(a

and b), ¢35 (R®) = 0. By strong equal treatment of equals, p1,(R”) = ¢9y(R®) = 3. Then,
©1a(R®) = 2q(R®) = ;. By strong equal treatment of equals, ¢3,(R”) = ¢u,(R°) = 5. We

can easily derive other elements.

1 1101 1
3 24 2 3 8

1 1 1 1 1

5\ _ 3 5\ 24 2 3 8

3 24 3 24

11 13

0 0 51 0 0 53

Profile 5. R* : For i = 1,3, bP,aP;cPd. For i = 2, aP;bP,cP;d. For i = 4, aP,dP;cP;b.
By the same logic from Profile 1 to Profile 7, we can derive ¢(R").

1111
24 2 3 8

u 5 1 5

5N 24 3 24
PR =17 17
24 2 3 8

11 13

24 O O 24

Profile 8. R® : aP,bPcP,d. aPycPobPyd. bPsaPscPsd. aPydPycPyb.

By Fact 1, o4 (R®) = p4.(R?) = 0. By Fact 1, ¢3,(R®) = 0. By strong equal treatment of

equals, p1(R%) = p2q(R®) = pua(R®) = 3. Then, @i(R®) = 2. By lower invariance from

Profile 3, p14(R®) = %. By lower invariance from Profile 7, @oq(R®) = %. By lower invariance

from Profile 2/, @s4(R®) = .

1 1
3 8

1 1

p(B)=| 2 B
12

5 00 3

Profile 8’. RSI . bPlaPlcPld. CLPQCPQbPQd. anngchd. CLP4dP4CP4b.
By the same logic from Profile 1 to Profile 8, we can derive ¢(R®).

] 1 3
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p(RY) =

Wl Wi Wi O
@i ol ol 5=

0 0

Profile 9. R? : For i = 1,3, aP;bP;cP;d. aPycPybPyd. aPydPscPyb.

By Fact 1, pu(R?) = ¢s(R?) = 0. By lower invariance from Profile 8, ¢34(R%) = .
By lower invariance from Profile 8, ¢14(R?) = 15. By strong equal treatment of equals,
801a(Rg) = 902a(39) = S03a(Rg) = 904a(39) = %- Then, ‘;04d(R9) = % and ‘Pzd(Rg) = % By
Fact 1(b and c¢), ¢ (R?) = 0. By strong equal treatment of equals, ¢1,(R?) = ¢3(R?) = 1.

We can easily derive other elements.

1111
4 2 6 12
1 g1 1
N _ | 4 3 12
PR)=171 11 1
4 2 6 12
100 %

Profile 10. R'?: For i = 1,3, bP,aP;cP,d. aPocPobPsod. aPydPycPyb.
By Fact 1, @u(RY) = p4(RY) = 0. By lower invariance from Profile 8, ¢14(RY) = 1.

8
By lower invariance from Profile &', p34(R1?) = %. By lower invariance from Profile 5,
©2a(RY) = 2. Then, @4q(R'") = 32. Then, ¢4,(R"Y) = 5. By strong equal treatment of

equals, @9, (RY) = %. Then, ¢1,(R") = 3.(R™) = 5;. By Fact 1(b and ¢), ¢ (R") = 0.

Then, @q.(R"Y) = % We can easily derive other elements.

1101 1
24 2 3 8
oy _ | 2 03 %
PR =15 1 13
24 2 3 38
11 1
2 000 5
Profile 8. RS . aPlbplcpld. CLPQCPQbPQd. ngCLPgCPgd. (lP4dP4CP4b.
By lower invariance from Profile 9, ¢3.(R%) = #. By lower invariance from Profile 10,
©1.(R®) = 5. Then, @3(R®) = 2 and ¢1,(R®) = 2. Also, @ (R®) = 57 and ¢o (R®) = 3.

However, by Fact 1(b and ¢), (1) pa(R®) and @g,(R®) must be 0 or (2) p1.(R?) and p3.(R®)
must be 0. If not, we can find assignment which stochastically dominates this assignment.

Therefore, contradiction.
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3 8 3 24 3 8

1 1 11 1 1

8\ __ 3 8 8\ __ 3 24 2 8
12 4 6 12

1ogo 2 1 g o 2

If n > 4, we can construct a preference profile by making the agent k£ who is newly added
prefer the object [ which is newly added to any other objects. Also, we can make the other
agents’s worst object be [. Then, by sd-efficiency, ¢ (R) = 1. Therefore, the assignment
problem is reduced to the first four agents. Hence, it is enough to consider the case n = 4.
O

Serial dictatorship satisfies sd-efficiency and lower invariance. The probabilistic serial
rule satisfies sd-efficiency and strong equal treatment of equals. Random serial dictatorship

satisfies strong equal treatment of equals and lower invariance.

4. Discussion

As other papers considering variations in the random assignment problem, we discuss

whether our main impossibility results will be changed by extentions in the problem.

4.1.  Indifference over objects

In this case, we add new indifference relation to strict binary relation. So, we can prove
our main results using the same preference profile in this case. Also, as Katta and Sethu-
raman (2006), a possibility result in original domain can be changed into an impossibility

result when we permit indifference over objects.

4.2.  Multi-unit demands

In this case, we consider each agent has multi-unit demands. Each agent is supposed to
receive ¢ € Z objects(q > 1). Also, we assume that preferences have additive representations,
which means that the utility of each agent can be determined by the sum of each objects they
receive. We can also show that the impossibility results still hold. As Kojima (2009)’s result,
for ¢ > 2, we can add new objects of which cardinality is the same with the number of the
agents. Also, each agent has the same preferences about the new objects and always prefers
the orignial objects to the new objects. By making each agent receive equal probabilities
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of these new objects at the preference list, we can derive the same impossibility results.
Furthermore, when n > 2 and ¢ > 2, Aziz and Kasajima (2017) showed that there is no rule
meeting the three following axioms: sd-efficiency, equal treatment of equals, and sd-strategy-
proofness. The proof of this result still holds when we replace sd-strategy-proofness with
upper-contour strategy-proofness. Therefore, when each agent receive at least two objects,

Theorem 1 holds with just two agents.

4.3.  Different number of agents and objects, opting out

If the number of agents is smaller than the number of objects, there exist objects which
no longer are allocated to exactly one agent. In this case, we can make all agents prefer
|A| — |I] objects least. Then, by sd-efficiency, the probability to get these objects is zero and
impossibility results still hold.

In some examples, an agent may prefer null object, say ¢, to some of the objects. In this
case, if the number of objects is smaller than the number of agents, we can make |I| — | A|
agents prefer null object to any other objects. Then, by sd-efficiency, they must not get
positive probability to get one of all objects. Therefore, impossibility results in this paper
still hold.

First, we define an unacceptable object. a is unacceptable if for all ©+ € I, P, € R, ¢P,a.
Given P; € R, let Un(P;) denote the set of unacceptable objects in P;. Given P; € R, let m
denote a rank of the least acceptable object, which means maxye a\vn(p,rank(F;, k). Then,
we can redefine the stochastic dominance relation in case of opting out. Given P; € R and
lotteries A\, X' € A(A), X stochastically dominates X' according to P;, denoted AR\, if
len >Zl1 ) forall 1 <k <m,

Zlm Tz(P)<Zlm npy forallm < k < [A].

Furthermore, we can get another impossibility result with weak fairness axiom, weak
sd-envyfree. A rule ¢ is weak sd-envyfree if for all i,j € I, R € R", if p;(R)R%p;(R),
then ¢:(R) = ¢, (R).

Theorem 3. Assume |I| > 4 and |A| > 3. Then there is no rule meeting the three following

axioms: sd-efficiency, weak sd-envyfreeness, and upper-contour strategy-proofness.

Proof.
Suppose ¢ is sd-efficient, weak sd-envyfree, and upper-contour strategyproof. Consider
the following subset of the full preference domain: agent n > 4 prefer null obects to any
other objects and n € {1,2, 3,4} think x ¢ {a,b, ¢} unacceptable. Then, by sd-efficiency, we
can make the problem reduced to a problem with 4 agents and 3 objects. Thus, it is enough

to think only the case where |A| = 3 and |I| = 4.
25 S Eas



First, for all R € R/l for all k € A, and for all i € I, v (R) = 0 if k € Un(P;) because
of sd-efficiency.

7 00 110 i3 0
(Rll)_ }LOO (R12)_ %LOO (R13)_ i%o
v 100 v 100 v 00
100 100 00
100 110 110
L'oo0 L0 0 100
e(R*) =] 4 e(RY) =(R") [ 4 e(R) =] 14
100 00 200
103 103 7 00
i3 0 I3 oq i3 q
8 119 1 11 - 119
R:42 R:42 R:42
o(R°) 1o o o(R) 1o o (R™) g o
1 0§ 100 i 0§

Profile 1-1. RY : aP;¢ for all i.

First, by weak sd-envyfreeness, p1,(R") = @ou(R") = @3,(R") = @4 (RYM). If not,
assume that ¢1,(R"M) > @9, (R"). Then, ¢;(R") stochastically dominates ¢o(R") be-
cause p1x(RM) = pop(RM) = 0 for k € {b,c,d}. Therefore by weak sd-envyfreeness,
o1x(R1Y) = @or(RM) for all k. Contradiction. We can apply this logic for all pairs of
agents. Also, by sd-efficiency, @14(R™) + @oa(RM") + ¢034(R'") + 04a(R'") = 1. Therefore, By
weak sd-envyfreeness and sd-efficiency, ¢1,(R™) = @aq(R'") = @34(R") = psa(R") = 1.
Profile 1-2. R : aP,bP,¢. aP;¢ for i = 2,3, 4.

By upper-contour strategy-proofness from Profile 1-1, ¢1,(R'?) = 1. Using the same logic in
Profile 1-1, by weak sd-envyfreeness and sd-efficiency, @aq(R'?) = 3q(R"?) = @u4q(R") = 1.
By sd-efficiency, ¢1,(R"?) = 2.

Profile 1-3. R* : aPbP;¢ for i = 1,2. aP;¢ for i = 3, 4.

By upper-contour strategy-proofness from Profile 1-2, ¢q,(R'3) = %. By permutating the
agent 1 and agent 2 in Profile 1-2 and upper-contour strategy-proofness from this profile,
¢1a(R') = 1. By weak sd-envyfreeness and sd-efficiency, ¢15(R') = ¢a(R') = 3. By weak
sd-envyfreeness, p3q,(R™) = @4(R™) = 1.

Profile 1-4. R' : aPi¢ for i = 1,2,3. aPycPyb.

] © 11 =
2



By upper-contour strategy-proofness from Profile 1-1, 4, (R) = %L. By weak sd-envyfreeness,

©1a(R™) = p2q(R™) = @3,(R™") = 1. By sd-efficiency, ¢s.(R™) = 3.

Profile 1-5. RY : aP,bP,¢. aP;¢ for i = 2,3. aPycPyb.

By upper-contour strategy-proofness from Profile 1-4, p1,(RY) = %. By upper-contour
1

strategy-proofness from Profile 1-2, ¢4, (R'") = ;. By weak sd-envyfreeness, @q,(R") =

©34(R') = 1. By sd-efficiency, ¢s.(R'®) = 3. By sd-efficiency, ¢1,(R*) = 2.
Profile 1-6. R' : aP,bPc. aP;¢ for i = 2,3, 4.

By upper-contour strategy-proofness from Profile 1-2, 1, (R®) = }1. By weak sd-envyfreeness,
P22 (R'%) = @34(R'°) = p1a(R'°) = %1- By sd-efficiency, ¢1,(R'%) = %

Profile 1-7. R'" : aPbPic. aP;¢ for i = 2,3. aPycPyb.

By upper-contour strategy-proofness from Profile 1-5, ¢1,(R'7) = 1 and ¢1,(R'") = 3. By

upper-contour strategy-proofness from Profile 1-6, ¢,,(R'7) = %. By weak sd-envyfreeness,
©02a(RY) = 3,(R'7) = %. By sd-efficiency, ps.(R'7) = %.
Profile 1-8. R : aPbP;¢ for i = 1,2. aPs¢. aP,cP,b.

1

By upper-contour strategy-proofness from Profile 1-5, ¢1,(R'®) = ;. By permutating the

agent 1 and the agent 2 in Profile 1-5 and upper-contour strategy-proofness from this pro-

file, @9, (R®) = }L. By upper-contour strategy-proofness from Profile 1-3, @4,(R'®) = %.
By sd-efficiency, ¢3q(R'™) = 1. By sd-efficiency, ¢s.(R') = 3. By sd-efficiency and weak
sd-envyfreeness, o (R'™®) = @3 (R™®) = 3.

Profile 1-9. RY : aPbPic. aPbPyd. aP;¢ for i = 3, 4.
By upper-contour strategy-proofness from Profile 1-3 and the same logic from Profile 1-3,

©1a(RY) = 2,(R"Y) = 7 and ¢1(R"Y) = 9 (RY¥) = 1. By sd-efficiency, ¢1.(R"Y) = 1. By

weak sd-envyfreeness, @s,(R'Y) = p1q(RY) = 1.

Profile 1-10. RQO . aPlelc. aP2bP2¢. (ngQb. (IP4CP4b.

By upper-contour strategy-proofness from Profile 1-7, q,(R*) =

strategy-proofness from Profile 1-5, ¢1,(R*) = 1 and ¢1,(R*) =

strategy-proofness from Profile 1-6, (p4,(R?°) = }l. By sd-efficiency, ¢1.(R?") = }1. By sd-
efficiency, ps.(R*) = 1 and @u(R*) = 3.

By upper-contour

DO

By upper-contour

3 00 3 3 0 3 20
0 0 & 0 0 & 0 0 1L
R21: 2 R22: 2 R23: 2
(R™) 1o g (R*) g o (R™) Lo o
00 3 00 3 00 %
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3 00 3 3 0 3 3 0
o 1 1 o 1 1 o 1 1
R24: 2 2 R25_ 2 2 R26_ 2 2
P(R™) 1o o p(R™) 1o o P(R™) 1 g o
00 2 00 2 00 2
3 00 3 3 0 3 3 0
o 1 1 o 1 1 o 1 1
R27: 2 2 R28: 2 2 R29_ 2 2
PRD=1 1 ARI=1 1 PED= 10§
00 3 00 1 00 3

Profile 2-1. R*' : aPi¢ for i = 1,3. cP¢ for i = 2,4.

By weak sd-envyfreeness and sd-efficiency, p14(R*) = @3,(R?') = 3 and 2.(R?') = p4(R?) =

1

1
Profile 2-2. R* : aP,bP,¢. aPs¢. cPi¢ for i = 2, 4.

By upper-contour strategy-proofness from Profile 2-1, ¢y,(R*) = 1
and sd-efficiency, ¢3,(R*) = 3 and ps.(R*) = p4(R*) = 3. By sd-efficiency, ¢1,(R*?) = 3.
Profile 2-3. R% : aP,bPc. aPs¢. cP¢ for i = 2, 4.

By upper-contour strategy-proofness from Profile 2-2, ¢1,(R*) = ¢1,(R*

. By weak sd-envyfreeness

sd-envyfreeness and sd-efficiency, ¢3,(R*) = 5 and @ac(R®) = @u(R®) =
Profile 2-4. R* : aPi¢ for i = 1,3. cPb. cPyo.
By upper-contour strategy-proofness from Profile 2-1, py.( R?*) = % By weak sd-envyfreeness
and sd-efficiency, psc(R*) = § and @14(R**) = @3,(R*') = 1. By sd-efficiency, @ (R**) = 3.
Profile 2-5. R% : aP,bP,¢. cPybPy¢. aPs¢. cPy.

1

By upper-contour strategy-proofness from Profile 2-4, p,(R?) = 5. By upper-contour
strategy-proofness from Profile 2-2, o.(R?) = 1. By weak sd-envyfreeness, ¢4.(R*) = §

and @3,(R*) = . By sd-efficiency, ¢1,(R?®) = @ (R?) = 3.

Profile 2-6. R?*® : aPbPic. cPybPyd. aPsd. cPyo.

By upper-contour strategy-proofness from Profile 2-5, 1,(R?%) = ¢y,( R*®) = % By upper-
contour strategy-proofness from Profile 2-3, . (R?*®) = % By weak sd-envyfreeness, ©4.(R?®)

3 and ¢3,(R?%) = 1. By sd-efficiency, pa(R?®) = 3.

Profile 2-7. R* : aP;¢ for i = 1,3. cPbPa. cPyo.

By upper-contour strategy-proofness from Profile 2-4, o (R*) = @o.(R*") = 1. By weak

sd-envyfreeness and sd-efficiency, pu.(R*") = 5 and ¢1,(R*") = @3,(R?") = 1.

2
Profile 2-8. R28 . G,Plbplqb. CPQbPQCL. CLP3¢. CP4¢.

] 1 3
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By upper-contour strategy-proofness from Profile 2-5, @o,(R*) = o (R?®) = % By upper-

contour strategy-proofness from Profile 2-7, ¢1,(R*®) = L. By sd-efficiency, p,(R%) =

2
P3a(R%®) = p1c(R?) = 3.

Profile 2-9. R¥ : aP,bPic. cP,bPya. aPs¢. cPyo.

By upper-contour strategy-proofness from Profile 2-6, @o,(R?) = @o.(R?) = % By upper-

contour strategy-proofness from Profile 2-8, ¢1,(R*) = ¢1,(R?) = L. By sd-efficiency,

2
§03a(R29) = S04C(R29) = %

1 12 1 2
s 00 5 3 0 5 3 0
100 100 L'oo0
R31 — 3 R32 — 3 R33 3
p(R”) g o p(R™) 1 g p(R™) g g
0 01 0 01 0 01
- . by
34 520 35 5 2 36 A
R7) = R>®) = R36) =
p(R™) Lo o p(R™) 1y g P(R™) 1o o
00 1 0 0 00 2
Profile 3-1. R3' : aP¢ for i = 1,2,3. cPyo.
By weak sd-envyfreeness and sd-efficiency, ¢1,(R*) = 02,(R*) = ¢3,(R*) = . By sd-

efficiency, p4.(R?') = 1.
Profile 3-2. R3 : aP,bP,¢. aP;¢ for i = 2,3. cPyo.

By upper-contour strategy-proofness from Profile 3-1, p1,(R*?) = % By weak sd-envyfreeness

and sd-efficiency, p2q(R*?) = p34(R*?) = 5. By sd-efficiency, ¢1,(R*) = 2 and ¢4.(R*) = 1.
Profile 3-3. R : aP,bPic. aP;¢ for i = 2,3. cPy¢.

By upper-contour strategy-proofness from Profile 3-2, ¢1,(R*) = 3 and ¢,(R¥) = 2.
By weak sd-envyfreeness and sd-efficiency, ¢oq(R33) = ¢3,(R*) = % By sd-efficiency,
0ac(R33) = 1.
Profile 3-4. R3 : aPbP;¢ for i = 1,2. aP3¢. cPyo.

1

By upper-contour strategy-proofness from Profile 3-2, ¢1,(R*') = @2,(R*') = 5. By weak
sd-envyfreeness, @s,(R3*) = % By sd-efficiency, p4.(R3*') = 1. By sd-efficiency and weak
sd-envyfreeness, p1,(R*) = o (R3) = 1.

Profile 3-5. R% : aP,bPic. aP,bPyp. aPsd. cPyo.

By upper-contour strategy-proofness from Profile 3-4, p1,(R3®) = @9, (R*) = % and @1 (R¥) =
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-1

5. By weak sd-envyfreeness, 3,(R*) = 5 and g (R%) = 1

Profile 3-6. R3% : aPbPic for i = 1,2. aP3¢. cPyo.

By upper-contour strategy-proofness from Profile 3-5, 1,(R3®) = 9, (R3®) =
oo (R3%) = % By upper-contour strategy-proofness from Profile 2-9, 1.(R3%) = o (R3®) =
&. By weak sd-envyfreeness, p3,(R*) = . By sd-efficiency, p4(R%) = 2.

1 1 2 1 2
3 00 3 3 0 3 3 0
100 100 100
p(R") = | 3 p(R*?) = | 3 p(R®) = 3
oo 100 1oo
00 1 0 0 1 00 1
5 30 5 3 5036
" 11y - 11 y 1011
Ry =] 3 2 R¥®Y=1] 3 2 R¥®Y—=] 3 2 6
(R™) Lo o (R™) 1o e(R7) 1o o
00 1 0 0 00 2

Profile 4-1. R* : aP¢ for i = 1,2,3. cPyaP,b.
By upper-contour strategy-proofness from Profile 3-1, p4.(R*) = 1. By weak sd-envyfreeness

and sd-efficiency, p14(R*") = 2q(R") = @3,(RY) = 3.

Profile 4-2. R*? : aP,bP,¢. aP;¢ for i = 2,3. cPyaPyb.

By upper-contour strategy-proofness from Profile 3-2, p4.(R*?) = 1. By upper-contour

strategy-proofness from Profile 4-1, ¢1,(R*?) = i. By weak sd-envyfreeness, g, (R*?) =

3
©34(R*) = 3. By sd-efficiency, ¢1,(R*?) = 2.

Profile 4-3. R* : aP,bPic. aP;¢ for i = 2,3. cPyaPyb.

By upper-contour strategy-proofness from Profile 3-3, ¢4.(R*) = 1. By upper-contour
strategy-proofness from Profile 4-2, ¢1,(R*) = £ and ¢1,(R**) = 2. By weak sd-envyfreeness,
902a(R43) = (103a(R43) = %

Profile 4-4. R* : aP,bP;¢ for i = 1,2. aP3¢. cPuaPyb.

By upper-contour strategy-proofness from Profile 3-4, ¢4.(R*) = 1. By upper-contour

strategy-proofness from Profile 4-2, ¢1,(R*) = ¢9,(R*) = L. By weak sd-envyfreeness,

3
¢3a(R*) = 3. By sd-efficiency and weak sd-envyfreeness, p1,(R*) = @9 (R*) = 1.

Profile 4-5. R45 . aPlb.Plc. aPQbP2¢. CLPng. CP4CLP4b.

By upper-contour strategy-proofness from Profile 4-4, p1,(R*) = @2,(R*) = 3 and ¢y,(R*) =

@ (R*) = 1. By weak sd-envyfreeness, @s,(R*) = 3.

Profile 4-6. R : aPbPic for i = 1,2. aPs¢. cPyaPyb.
2

By upper-contour strategy-proofness from Profile 3-6, ¢,.(R*) = 3. By upper-contour

] O 1
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strategy-proofness from Profile 4-5, 01,(R*) = ©34(R*) = 3 and o1, (R*) = @ (R*) =

. By sd-efficiency and weak sd-envyfreeness, ¢1.(R*®) = ¢s.(R*) = 1. By weak sd-
envyfreeness, p3q,(R*) = 3.

10101 111 10101
4 2 1 1 2 1 1 2 1
11 1 11 1 11 1
Rhy—| * 2 1 Ry —| 1 2 1 Ry=| % 2 1
om)=| 18 omy=| 15 wm=| 1
;00 105 70 3
Profile 5-1. R®' : aPbPic. aPybPsc. aP;¢p for i = 3, 4.
zll and (R =

By upper-contour strategy-proofness from Profile 1-9, 1,(R%!) = 9, (R%) =

@ (R?) = 5. By sd-efficiency and weak sd-envyfreeness, ¢1.(R*") = ¢a.(R*') = 1. By weak

sd-envyfreeness, p3q,(R) = @, (R%) = 1.

Profile 5-2. R*? : aP,bPic. aPybPsc. aPs¢. aP,cPb.
1

By upper-contour strategy-proofness from Profile 1-10, ¢1,(R) = ¢2,(R*?) = ; and

©2q(R™) = o (R*?) = % By upper-contour strategy-proofness from Profile 5-1, ¢ ,(R%?) =
}1. By weak sd-envyfreeness, ps,(R%?) = }1. By upper-contour strategy-proofness from Pro-
file 4-6, p1q(R*?) 4 psc(R?) = 2. Therefore, @4(R™?) = 3. By sd-efficiency and weak
sd-envyfreeness, ¢1.(R*) = p2.(R*?) = ;. However, ¢(R?) is stochastically dominated by

w(R'). Contradiction.
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