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Abstract

Phase change memory (PCM) is one of the promising non-volatile memory
(NVM) technologies since it provides both high capacity and low idle power con-
sumption. However, relatively slow access latency is one of the major challenges
in using PCM as main memory. Therefore, in recent researches, it is attempt-
ing to construct heterogeneous memory systems by combining such NVM with
DRAM. One of the major problems with using those systems is placing the data
in the appropriate type of memory. In this paper, we propose an object place-
ment method to address data placement problem in heterogeneous memory
systems. With context-aware object profile information, we could dynamically
detect memory access patterns of objects and determine the proper memory to
place the objects on. We demonstrate the effectiveness of the proposed method
by simulating memory access latency and energy consumption using the four

selected workloads of the SPEC benchmark.

Keywords: Object Placement, Heterogeneous Memory System, Context-Aware
Object Profiling
Student Number: 2016-21198
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Chapter 1

Introduction

Phase change memory (PCM) is one of the emerging non-volatile memory
(NVM) devices. PCM has a longer access latency than DRAM and consumes
much energy to read and write data [1, 2, 3]. Despite its limitations in la-
tency and bandwidth, it still offers appealing attributes. Its density is much
higher than DRAM and provides near-zero idle power consumption. Thus, sev-
eral studies have been done to construct heterogeneous memory systems to
overcome performance overhead and take advantage of NVM [4, 5].

S.R. Dulloor et al. [4] proposed data classification and tiering techniques
under hybrid memory architecture. Researchers in [4] used an offline profiling
tool (PIN) to understand access patterns of different data structures of applica-
tions. On the other hand, Kai Wu et al. [5] introduced Unimem to dynamically
place objects on heterogeneous memory systems. Unimem focuses on memory
access patterns of applications that operate in iterative structures. It manages
data placement based on runtime profiling and performance models and targets

high-performance computing (HPC) systems.



In this paper, we propose an object placement modeling method using the
knowledge of access patterns of objects to the memory. To capture memory
access patterns of objects allocated by an application, we use CAMP [6] frame-
work. It is a framework that provides context-aware memory dependency infor-
mation, and we will provide a more detailed description in Section 2.2. Using
CAMP framework, we could collect memory access information of each object
and allocate to appropriate memory at the compiler-level. We propose a model-
ing method that demonstrates the effect of placing objects on various memory
systems in terms of latency and energy consumption, depending on the memory
access patterns of the objects allocated by the application. To verify the effect of
object placement, several simulations were performed assuming different mem-
ory systems. Simulation results show that appropriate objects placement in a
heterogeneous memory system could achieve a DRAM-like latency while mini-

mizing the overall energy consumption of the system.



Chapter 2
Background and Motivation

This chapter briefly describes the structure of the heterogeneous memory system
used in this paper. Also, we introduce the profiling tool and methods that are

used to capture the behavior of objects allocated to applications during runtime.

2.1 Heterogeneous Memory Systems

Different to DRAM, PCM has asymmetric read and write characteristics, as has
been shown in previous studies [1, 2, 3]. Table 2.1 compares latency and energy
consumption for DRAM and PCM access [3, 7]. Using PCM instead of DRAM
requires up to 50 times the latency and 6 times the energy for a single write
operation. However, PCM has some attractive characteristics in spite of such
performance limitations. First of all, PCM maintains data persistently even
in the event of a power failure. PCM also has a higher density than DRAM
and has near-zero idle power consumption. Therefore, several studies have been

conducted to compose heterogeneous memory systems utilizing PCM as well as
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a DRAM [8, 9].

’ H DRAM PCM
Page Size 64 B 64 B
Read Latency 20-50 ns ~ 50 ns

Write Latency 20-50 ns ~ 1 ps

Read Energy 0.8 J/GB 1J/GB

Write Energy 1.2 J/GB 6 J/GB
Idle Power ~ 100 mW/GB | ~ 1 mW/GB

Table 2.1: Latency and Energy Consumption Comparison between DRAM and
PCM access

2.2 Context-Aware Memory Profiling

The CAMP framework is a Context-Aware Memory Profiling framework that
traces program memory dependencies using full context information of a pro-
gram, such as a call site stack and loop nesting levels. The CAMP statically
detects all possible contexts in the program and assigns a unique ID to each
context. It also generates a static context tree for the program, as shown in the
Figure 2.1. Figure 2.1b shows the context tree for the example program shown

in Figure 2.1a.

2.3 Object Profiling and Placement

We use the CAMP framework [6] to understand memory access patterns of ap-
plications. The CAMP framework is implemented on top of the LLVM compiler
infrastructure [10]. With the LLVM infrastructure, it is easy to apply compiler-
level optimization features. The original CAMP framework provides profiling

results for all possible load and store dependencies of objects allocated by the

: (e A=l 8



application. We added a few lines of code to the CAMP framework to identify
all objects access patterns in the application. We also implemented additional
optimization pass in the CAMP framework to dynamically place objects on the
heterogeneous memory system at the compiler-level.

We named the additional pass as ctx-obj-placement. The pass automatically
allocates objects to the heterogeneous memory system, which are transparent
to the application. In the pass, it first reads the object access pattern profil-
ing results generated by the previous dynamic profiling execution. The pass
then calculates the amount of write access to each object and determines the
threshold at which to place the object on the heterogeneous memory system.
During the runtime of the application, the pass automatically catches memory
allocation requests from the application and allocates space in the appropriate
memory.

Figure 2.2 summarizes the application profiling process of the CAMP frame-

work.



1 int getValue (Node =n) {

2 return n->value; // LD1
3}

N

s void setValue (Node #n, int v) {

6 if(isValid(v)) // ¢s7
7 n->value = v; // STl

s}

10 int work (Node =n) {

i int vl = getValue(n); // Cs4a
1”2 int v2 = update(vl); // C85
13 setValue(n, v2); // Csé

14 return v2;
15}

16 I cs1 |01xID:_ 3 I cs2 | CXID: 4
17 void main() { Offset: +1 Offset: +2
18 for(int t = 0; t < T; t++) { // L1
19 for(int i 0; i < N; i++) { // L2

CtxID: 9

[ css Offset: +7

20 int s getValue (sum[t]); // Cs1
, : - s an:s] CIID:S] CiD: 7
; ;ni Z N :?rk (nodes[il); x :Sé I cs4 lOf?set: +1 I Ccss [Of:sel: +2 I cs6é Of)f(sel: +3
2 setValue (sum([t], s); // cs3
24 }
25 }
%}
(a) Example Program (b) Context Tree for the Example Program

Figure 2.1: Context-Aware Memory Dependence Profiling Example

clang++ loopOpted.exe

loopOpted.s

llvm-link

linked.bc

-loop-simplify

loopOpted.bc

clang++ ctx_objtrace.exe

object profiling data

clang++ ctx_objplace.exe

Figure 2.2: Context-Aware Object Trace using LLVM




Chapter 3

Object Placement Modeling

In this chapter, we explain the modeling method to simulate the performance
of the application in terms of latency and energy consumption on the het-
erogeneous memory system. Depending on the modeling method, a detailed
description of how to determine the appropriate memory to allocate for each

object in the application is provided at the end of this chapter.

3.1 Basic Assumptions

To simplify the object placement problem, we establish following assumptions.

Assumption 1. Caching effects on objects are the same in various memory

systems.

Assumption 2. The difference in access latency between DRAM and PCM is
mazimum. That is, we set the DRAM read and write to 20 ns and the PCM to

50 ns and 1 ps.
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Assumption 3. The application latency is proportional to the memory access
latency of objects referenced during runtime. Thus, the performance comparison
between different types of memory is based on the memory access pattern of all

objects allocated by the application.

3.2 Latency Modeling

From the dynamic profiling results of each object, we can figure out how many
times each object is loaded and stored while the application is running. With
the size of the allocated object, latency prediction modeling is as follows. The
Equation 3.1 and the Equation 3.2 represent the load and store latency for each
object allocated to a heterogeneous memory system.

The load latency of an object (LatLD,y;) is determined by the read la-
tency of DRAM (LatLDpranr), the number of load instructions for DRAM
of object (NumLDpran), the read latency of PCM (LatLDpcyy), and the
number of load instructions for PCM of object (NumLDpcyy). Likewise, the
store latency of an object (LatSTy;) is determined by the write latency of
DRAM (LatSTpran), the number of store instructions for DRAM of object
(NumSTpran), the write latency of PCM (LatSTpcys), and the number of

store instructions for PCM of object (NumSTpcar).

LatLDobj = LatLDDRAM X NUTTLLDDRAM + LatLDp(;M X N'LLmLDpCM
(3.1)

LatSTobj = LatSTpram X NumSTpran + LatSTpopy X NumSTpoy (3.2)

The Equation 3.3 represents the latency of an application. It is the sum of

load and store latency of each object allocated while the application is running.



Latencyapplication = Z(LatLDobj + LatSTy;) (3.3)
obj

3.3 Energy Consumption Modeling

Energy consumption modeling considers the size of each object allocated to the
heterogeneous memory system, as opposed to the latency prediction modeling
introduced in Section 3.2. The Equation 3.4 and the Equation 3.5 represent the
load and store energy consumption of each object allocated to the heterogeneous
memory system.

The load energy consumption of an object (EnergyLDgy;) is determined
by the load energy consumption of DRAM (EnergyLDpran), the number of
load instructions for DRAM of the object (NumLDppran), the size of the ob-
ject allocated on DRAM (Sizepran), the load energy consumption of PCM
(EnergyLDpcar), the number of load instructions for PCM of the object
(NumLDpcar), and the size of the object allocated on PCM (Sizepcar). Like-
wise, the store energy consumption of an object (EnergyST,;) is determined
by the store energy consumption of DRAM (EnergySTpran), the number
of store instructions for DRAM of the object (NumSTpran), the size of
the object allocated on DRAM (Sizepran), the store energy consumption of
PCM (EnergySTpcar), the number of store instructions for PCM of the object
(NumSTpcar), and the size of the object allocated on PCM (Sizepcnr).

EnergyLD,,; =EnergyLDpray X NumLDpray X Sizepram (3.4)
3.4
+ EnergyLDpcoy X NumLDpoy X Sizepon



EnergySTuy; =EnergySTpram X NumSTpram X Sizepram (3.5)
3.5
+ EnergySTpon X NumSTpopy X Sizepons

The Equation 3.6 represents the energy consumption of an application. It is
the sum of EnergyLD.,,; and EnergySTy; for all objects allocated while the

application is running.

Energyapplication = Z(EnergyLDobj + EnergySTy,) (3.6)
obj

3.4 Idle Power Consumption Modeling

We also simulated the idle power consumption of the memory system while an
application is running, based on the simulated latency of the application and
the total object size allocated during application runtime. The Equation 3.7

represents the idle power consumption of the memory system.

In the equation, Latencyappiication is calculated from the Equation 3.3. Sizepray

and Sizepcoys are the total object size allocated to DRAM and PCM while the

application is running.

Idle Poweryemory =Latencyappiication X IdlePowerpran X Sizepram

(3.7)

+ Latencyapplication X IdlePowerpcy X Sizepcy

3.5 Object Placement Decision

As mentioned in previous chapters, the performance difference between DRAM
and PCM depends primarily on the total amount of write instructions of the

application. Therefore, we determine object placement based on the number and

! % A & o



the size of write instructions for each object. For all objects allocated by the
application, we first calculate the total amount of write access to the memory
of each object. We then choose proper value as the threshold.

The compiler pass first scans through all objects and compare the total
amount of write access of each object to the threshold value during initialization
of the application. The object is placed in DRAM when the total amount is
greater than the threshold, otherwise, it is placed in PCM. Table 4.2 presents
the result of object placement based on profiling information with the median
value as the threshold.

Thresholds can vary depending on the characteristics of the application.
In the paper, we simulated with two different threshold values, zero and the

median. All simulation results are given in Chapter 4.
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Chapter 4

Simulation

We used four workloads in the SPEC CINT2006 benchmark suites [11]. We
performed profiling and baseline experiments on the Intel Xeon E5630 server

equipped with 16GB of memory.

4.1 Simulation Methodology

The simulations consist of the following phases: the profiling phase and the

object placement phase.

Profiling Phase To identify the number and memory access patterns of all
objects in an application, we first profile each application statically and dynam-
ically. With static profiling, the CAMP profiler detects all possible contexts in
the application, assigns unique context IDs, and generates its own context tree.
After detecting contexts and assigning IDs, dynamic profiling is performed to

identify the memory access patterns of the application.

E (25 A=l



Object Placement Phase Using the profiling result of the application, we
estimate the effects of object placement on different types of memory. We first
allocate all objects in each application to the homogeneous memory system
which only composed of DRAM or PCM. Then we estimate the memory access
latency and the energy consumption for all objects in each application accord-

ing to the equations introduced in the Section 3.2 and 3.3.

We performed object placement simulation to verify the effects of various
thresholds and the effects of various memory composition ratios within the
heterogeneous memory system. The results of the simulation under various
situations are shown in the following sections. We take the simulation results
in the DRAM-only system as the baseline, and all other simulation results are
normalized to the baseline. We first provide profiling results for each workload
and then show simulation results for different memory systems in terms of

memory access latency and energy consumption.

4.2 Program Profiling Results

Each workload used in the simulation has different characteristics. For example,
401.bzip2 allocates a small number of objects during runtime, but the sum of
the sizes of all allocated objects is the largest of all workloads. However, our
modeling method could reflect the various characteristics of the workloads since
placement model considers the size of the object as well as the access patterns
of all objects.

Table 4.1 summarizes the characteristics of objects allocated during each

workload runtime. For efficient profiling in terms of time and memory space,

. % A & o



Benchmark H # of Object | # of Load | # of Store | Total Object Size

401.bzip2 12 9661190K | 5942637K 205.74 MB
433.milc 80 2285696 K 511474K 18.69 MB
456.hmmer 36 1818391K 24623K 1.42 MB
462.libquantum 10 26735K 8762K 6.32 MB

Table 4.1: Object Profiling Details

(K means Thousands)

we adjusted the input arguments for each workload in the benchmark suite.
With the object profiling results and the modeling methods described in
Chapter 3, we simulate object placement to different types of memory. Since
our modeling method reflects runtime behavior of accessing memory in different
workloads, each workload has its own threshold for placing objects on heteroge-
neous memory systems. Objects that cause a big amount of store instructions
are placed in DRAM to reduce the memory access latency and power overhead.
Objects that are allocated at a large size but do not issue a store instruction

are placed on PCM because there is no overhead due to the write operation.

Benchmark H # of Object | # of Load | # of Store | Total Object Size
DRAM 6 9660994K | 5942571K 3.81 MB

401.bzip2
PCM 6 196K 65K 201.93 MB
DRAM 39 2148786K 494774K 7.34 MB

433.milc
PCM 41 136910K 16700K 11.35 MB
DRAM 18 1818391K 24623K 1.42 MB

456.hmmer
PCM 18 686 31 0.00 MB
DRAM 4 25154K 8761K 4.13 MB

462.libquantum

PCM 6 1581K 173 2.20 MB

Table 4.2:

(K means Thousands)

Object Placement Details (threshold = median value)
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Table 4.2 shows an example of object placement for each workload when we

set threshold as the median value.

4.3 Simulation of Latency

The Figure 4.1 shows the simulation results of memory access latency according
to object placement in different memory systems. As can be seen, the latency
difference between DRAM and PCM is from 3.13 times to 20.59 times. The
simulation results show that object placement with proposed method could
achieve the similar latency on heterogeneous memory system to that of the
DRAM-only system. The reason is that some objects in those workloads are
never issuing write instructions. On the other hand, the simulation result for
the 433.milc workload is 1.37 times the latency of the DRAM-only system,
slightly higher latency difference than other workloads. This is because the
amount of the write access to PCM is higher than other workloads. We expected
that further adjustment of the threshold to a value other than the median
could achieve performance improvements for the 433.milc, too. To verify our
assumption, we performed another simulation by setting the threshold to zero,
and the results are shown together in the Figure 4.1. For the 433.milc and
the 462.libquantum workloads, threshold adjustment improves performance by
reducing the number of writes to PCM.

We also simulated object placement under various memory composition
ratios within the system. The Figure 4.2 presents the simulation results of
memory access latency under various DRAM size limitations. For the 401.bzip2
and the 456.hmmer workloads, memory configuration does not affect latency
because small DRAMs are sufficient to allocate objects that issue many write

instructions. However, the latency increases for the 462.libquantum workload

L % A &)



when changing DRAM ratio from 50% to 25%, due to an object which issues the
largest number of write instructions. The object is allocated to DRAM when its
ratio is set to 50% but moved to PCM when DRAM ratio is changed to 25%,
which causes latency increment. The simulation results of 433.milc workload
show latencies that meet our expectations. The 433.milc workload allocates
many objects at various sizes during runtime, allowing for fine-grained object

placement in various memory configurations.

4.4 Simulation of Energy Consumption

The Figure 4.3 shows the simulation results of total energy consumption based
on object placement in different memory systems. The main reason for the
difference in energy consumption between DRAM and PCM is the high write
energy of the PCM. From the result of object placement modeling, objects
that have few write instructions are placed on PCM. Different to the latency
modeling, energy consumption modeling also considers the size of an object.
Therefore, placing objects on heterogeneous memory system could reduce en-
ergy consumption differences to nearly zero on all workloads in the benchmark,
even with different threshold values. However, energy consumption could be
varied with different memory configurations. As shown in the Figure 4.4, the

performance gap is similar to latencies.

4.5 Simulation of Idle Power Consumption

The Figure 4.5 shows simulation results of idle power consumption of memory
systems based on the object allocation in different memory systems. Idle power
consumption is one of the most attractive characteristics of PCM. The simula-

tion is based on the assumption that all objects allocated to the application are
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maintained during application runtime. In other words, we simulate the maxi-
mum idle power consumption of memory systems with different configurations.
Idle power consumption is proportional to the total object size allocated to dif-
ferent memory during application runtime. Idle power consumption increases
corresponding to the allocation size when objects are placed to heterogeneous
memory systems compared with the PCM-only system. However, the 401.bzip2
workload reduces idle power consumption when using heterogeneous memory
system. This abnormal result is caused by the object characteristics allocated
during workload runtime. The 401.bzip2 workload allocates objects of large size
during runtime, but there are near zero reads and writes instructions to those
objects. The object placement result shown in table 4.2 demonstrates this.
We also simulated idle power consumption of memory system under vari-
ous memory configurations as in previous Sections. The simulation results are
presented in the Figure 4.6. Unlike latency and energy consumption results,
the idle power consumption of the memory system differs greatly depending on
the memory configurations. Since the idle power difference between DRAM and
PCM is 100 times according to the table 2.1, the allocation of one object to

another memory has a significant impact on overall power consumption.
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Chapter 5

Conclusion

In this paper, we propose an object placement modeling method on heteroge-
neous memory system with object profiling with full program context informa-
tion. The compiler uses memory access patterns and the size of each object to
dynamically determine the appropriate memory for each object to be placed.
Proper placement of objects on heterogeneous memory systems could reduce
system-wide energy consumption while maintaining DRAM-like application la-
tency. By deciding object allocation at the compiler-level, applications could
use heterogeneous memory systems transparently. Furthermore, since context-
aware memory profiler provides memory access pattern information at object-
granularity, allowing the system to manage memory in more fine-grained fash-

ion.
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Abstract

Phase change memory (PCM) is one of the promising non-volatile memory
(NVM) technologies since it provides both high capacity and low idle power con-
sumption. However, relatively slow access latency is one of the major challenges
in using PCM as main memory. Therefore, in recent researches, it is attempt-
ing to construct heterogeneous memory systems by combining such NVM with
DRAM. One of the major problems with using those systems is placing the data
in the appropriate type of memory. In this paper, we propose an object place-
ment method to address data placement problem in heterogeneous memory
systems. With context-aware object profile information, we could dynamically
detect memory access patterns of objects and determine the proper memory to
place the objects on. We demonstrate the effectiveness of the proposed method
by simulating memory access latency and energy consumption using the four

selected workloads of the SPEC benchmark.

Keywords: Object Placement, Heterogeneous Memory System, Context-Aware
Object Profiling
Student Number: 2016-21198
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Chapter 1

Introduction

Phase change memory (PCM) is one of the emerging non-volatile memory
(NVM) devices. PCM has a longer access latency than DRAM and consumes
much energy to read and write data [1, 2, 3]. Despite its limitations in la-
tency and bandwidth, it still offers appealing attributes. Its density is much
higher than DRAM and provides near-zero idle power consumption. Thus, sev-
eral studies have been done to construct heterogeneous memory systems to
overcome performance overhead and take advantage of NVM [4, 5].

S.R. Dulloor et al. [4] proposed data classification and tiering techniques
under hybrid memory architecture. Researchers in [4] used an offline profiling
tool (PIN) to understand access patterns of different data structures of applica-
tions. On the other hand, Kai Wu et al. [5] introduced Unimem to dynamically
place objects on heterogeneous memory systems. Unimem focuses on memory
access patterns of applications that operate in iterative structures. It manages
data placement based on runtime profiling and performance models and targets

high-performance computing (HPC) systems.



In this paper, we propose an object placement modeling method using the
knowledge of access patterns of objects to the memory. To capture memory
access patterns of objects allocated by an application, we use CAMP [6] frame-
work. It is a framework that provides context-aware memory dependency infor-
mation, and we will provide a more detailed description in Section 2.2. Using
CAMP framework, we could collect memory access information of each object
and allocate to appropriate memory at the compiler-level. We propose a model-
ing method that demonstrates the effect of placing objects on various memory
systems in terms of latency and energy consumption, depending on the memory
access patterns of the objects allocated by the application. To verify the effect of
object placement, several simulations were performed assuming different mem-
ory systems. Simulation results show that appropriate objects placement in a
heterogeneous memory system could achieve a DRAM-like latency while mini-

mizing the overall energy consumption of the system.



Chapter 2
Background and Motivation

This chapter briefly describes the structure of the heterogeneous memory system
used in this paper. Also, we introduce the profiling tool and methods that are

used to capture the behavior of objects allocated to applications during runtime.

2.1 Heterogeneous Memory Systems

Different to DRAM, PCM has asymmetric read and write characteristics, as has
been shown in previous studies [1, 2, 3]. Table 2.1 compares latency and energy
consumption for DRAM and PCM access [3, 7]. Using PCM instead of DRAM
requires up to 50 times the latency and 6 times the energy for a single write
operation. However, PCM has some attractive characteristics in spite of such
performance limitations. First of all, PCM maintains data persistently even
in the event of a power failure. PCM also has a higher density than DRAM
and has near-zero idle power consumption. Therefore, several studies have been

conducted to compose heterogeneous memory systems utilizing PCM as well as
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a DRAM [8, 9].

’ H DRAM PCM
Page Size 64 B 64 B
Read Latency 20-50 ns ~ 50 ns

Write Latency 20-50 ns ~ 1 ps

Read Energy 0.8 J/GB 1J/GB

Write Energy 1.2 J/GB 6 J/GB
Idle Power ~ 100 mW/GB | ~ 1 mW/GB

Table 2.1: Latency and Energy Consumption Comparison between DRAM and
PCM access

2.2 Context-Aware Memory Profiling

The CAMP framework is a Context-Aware Memory Profiling framework that
traces program memory dependencies using full context information of a pro-
gram, such as a call site stack and loop nesting levels. The CAMP statically
detects all possible contexts in the program and assigns a unique ID to each
context. It also generates a static context tree for the program, as shown in the
Figure 2.1. Figure 2.1b shows the context tree for the example program shown

in Figure 2.1a.

2.3 Object Profiling and Placement

We use the CAMP framework [6] to understand memory access patterns of ap-
plications. The CAMP framework is implemented on top of the LLVM compiler
infrastructure [10]. With the LLVM infrastructure, it is easy to apply compiler-
level optimization features. The original CAMP framework provides profiling

results for all possible load and store dependencies of objects allocated by the

: (e A=l 8



application. We added a few lines of code to the CAMP framework to identify
all objects access patterns in the application. We also implemented additional
optimization pass in the CAMP framework to dynamically place objects on the
heterogeneous memory system at the compiler-level.

We named the additional pass as ctx-obj-placement. The pass automatically
allocates objects to the heterogeneous memory system, which are transparent
to the application. In the pass, it first reads the object access pattern profil-
ing results generated by the previous dynamic profiling execution. The pass
then calculates the amount of write access to each object and determines the
threshold at which to place the object on the heterogeneous memory system.
During the runtime of the application, the pass automatically catches memory
allocation requests from the application and allocates space in the appropriate
memory.

Figure 2.2 summarizes the application profiling process of the CAMP frame-

work.



1 int getValue (Node =n) {

2 return n->value; // LD1
3}

N

s void setValue (Node #n, int v) {

6 if(isValid(v)) // ¢s7
7 n->value = v; // STl

s}

10 int work (Node =n) {

i int vl = getValue(n); // Cs4a
1”2 int v2 = update(vl); // C85
13 setValue(n, v2); // Csé

14 return v2;
15}

16 I cs1 |01xID:_ 3 I cs2 | CXID: 4
17 void main() { Offset: +1 Offset: +2
18 for(int t = 0; t < T; t++) { // L1
19 for(int i 0; i < N; i++) { // L2

CtxID: 9

[ css Offset: +7

20 int s getValue (sum[t]); // Cs1
, : - s an:s] CIID:S] CiD: 7
; ;ni Z N :?rk (nodes[il); x :Sé I cs4 lOf?set: +1 I Ccss [Of:sel: +2 I cs6é Of)f(sel: +3
2 setValue (sum([t], s); // cs3
24 }
25 }
%}
(a) Example Program (b) Context Tree for the Example Program

Figure 2.1: Context-Aware Memory Dependence Profiling Example

clang++ loopOpted.exe

loopOpted.s

llvm-link

linked.bc

-loop-simplify

loopOpted.bc

clang++ ctx_objtrace.exe

object profiling data

clang++ ctx_objplace.exe

Figure 2.2: Context-Aware Object Trace using LLVM




Chapter 3

Object Placement Modeling

In this chapter, we explain the modeling method to simulate the performance
of the application in terms of latency and energy consumption on the het-
erogeneous memory system. Depending on the modeling method, a detailed
description of how to determine the appropriate memory to allocate for each

object in the application is provided at the end of this chapter.

3.1 Basic Assumptions

To simplify the object placement problem, we establish following assumptions.

Assumption 1. Caching effects on objects are the same in various memory

systems.

Assumption 2. The difference in access latency between DRAM and PCM is
mazimum. That is, we set the DRAM read and write to 20 ns and the PCM to

50 ns and 1 ps.
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Assumption 3. The application latency is proportional to the memory access
latency of objects referenced during runtime. Thus, the performance comparison
between different types of memory is based on the memory access pattern of all

objects allocated by the application.

3.2 Latency Modeling

From the dynamic profiling results of each object, we can figure out how many
times each object is loaded and stored while the application is running. With
the size of the allocated object, latency prediction modeling is as follows. The
Equation 3.1 and the Equation 3.2 represent the load and store latency for each
object allocated to a heterogeneous memory system.

The load latency of an object (LatLD,y;) is determined by the read la-
tency of DRAM (LatLDpranr), the number of load instructions for DRAM
of object (NumLDpran), the read latency of PCM (LatLDpcyy), and the
number of load instructions for PCM of object (NumLDpcyy). Likewise, the
store latency of an object (LatSTy;) is determined by the write latency of
DRAM (LatSTpran), the number of store instructions for DRAM of object
(NumSTpran), the write latency of PCM (LatSTpcys), and the number of

store instructions for PCM of object (NumSTpcar).

LatLDobj = LatLDDRAM X NUTTLLDDRAM + LatLDp(;M X N'LLmLDpCM
(3.1)

LatSTobj = LatSTpram X NumSTpran + LatSTpopy X NumSTpoy (3.2)

The Equation 3.3 represents the latency of an application. It is the sum of

load and store latency of each object allocated while the application is running.



Latencyapplication = Z(LatLDobj + LatSTy;) (3.3)
obj

3.3 Energy Consumption Modeling

Energy consumption modeling considers the size of each object allocated to the
heterogeneous memory system, as opposed to the latency prediction modeling
introduced in Section 3.2. The Equation 3.4 and the Equation 3.5 represent the
load and store energy consumption of each object allocated to the heterogeneous
memory system.

The load energy consumption of an object (EnergyLDgy;) is determined
by the load energy consumption of DRAM (EnergyLDpran), the number of
load instructions for DRAM of the object (NumLDppran), the size of the ob-
ject allocated on DRAM (Sizepran), the load energy consumption of PCM
(EnergyLDpcar), the number of load instructions for PCM of the object
(NumLDpcar), and the size of the object allocated on PCM (Sizepcar). Like-
wise, the store energy consumption of an object (EnergyST,;) is determined
by the store energy consumption of DRAM (EnergySTpran), the number
of store instructions for DRAM of the object (NumSTpran), the size of
the object allocated on DRAM (Sizepran), the store energy consumption of
PCM (EnergySTpcar), the number of store instructions for PCM of the object
(NumSTpcar), and the size of the object allocated on PCM (Sizepcnr).

EnergyLD,,; =EnergyLDpray X NumLDpray X Sizepram (3.4)
3.4
+ EnergyLDpcoy X NumLDpoy X Sizepon



EnergySTuy; =EnergySTpram X NumSTpram X Sizepram (3.5)
3.5
+ EnergySTpon X NumSTpopy X Sizepons

The Equation 3.6 represents the energy consumption of an application. It is
the sum of EnergyLD.,,; and EnergySTy; for all objects allocated while the

application is running.

Energyapplication = Z(EnergyLDobj + EnergySTy,) (3.6)
obj

3.4 Idle Power Consumption Modeling

We also simulated the idle power consumption of the memory system while an
application is running, based on the simulated latency of the application and
the total object size allocated during application runtime. The Equation 3.7

represents the idle power consumption of the memory system.

In the equation, Latencyappiication is calculated from the Equation 3.3. Sizepray

and Sizepcoys are the total object size allocated to DRAM and PCM while the

application is running.

Idle Poweryemory =Latencyappiication X IdlePowerpran X Sizepram

(3.7)

+ Latencyapplication X IdlePowerpcy X Sizepcy

3.5 Object Placement Decision

As mentioned in previous chapters, the performance difference between DRAM
and PCM depends primarily on the total amount of write instructions of the

application. Therefore, we determine object placement based on the number and
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the size of write instructions for each object. For all objects allocated by the
application, we first calculate the total amount of write access to the memory
of each object. We then choose proper value as the threshold.

The compiler pass first scans through all objects and compare the total
amount of write access of each object to the threshold value during initialization
of the application. The object is placed in DRAM when the total amount is
greater than the threshold, otherwise, it is placed in PCM. Table 4.2 presents
the result of object placement based on profiling information with the median
value as the threshold.

Thresholds can vary depending on the characteristics of the application.
In the paper, we simulated with two different threshold values, zero and the

median. All simulation results are given in Chapter 4.
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Chapter 4

Simulation

We used four workloads in the SPEC CINT2006 benchmark suites [11]. We
performed profiling and baseline experiments on the Intel Xeon E5630 server

equipped with 16GB of memory.

4.1 Simulation Methodology

The simulations consist of the following phases: the profiling phase and the

object placement phase.

Profiling Phase To identify the number and memory access patterns of all
objects in an application, we first profile each application statically and dynam-
ically. With static profiling, the CAMP profiler detects all possible contexts in
the application, assigns unique context IDs, and generates its own context tree.
After detecting contexts and assigning IDs, dynamic profiling is performed to

identify the memory access patterns of the application.

E (25 A=l



Object Placement Phase Using the profiling result of the application, we
estimate the effects of object placement on different types of memory. We first
allocate all objects in each application to the homogeneous memory system
which only composed of DRAM or PCM. Then we estimate the memory access
latency and the energy consumption for all objects in each application accord-

ing to the equations introduced in the Section 3.2 and 3.3.

We performed object placement simulation to verify the effects of various
thresholds and the effects of various memory composition ratios within the
heterogeneous memory system. The results of the simulation under various
situations are shown in the following sections. We take the simulation results
in the DRAM-only system as the baseline, and all other simulation results are
normalized to the baseline. We first provide profiling results for each workload
and then show simulation results for different memory systems in terms of

memory access latency and energy consumption.

4.2 Program Profiling Results

Each workload used in the simulation has different characteristics. For example,
401.bzip2 allocates a small number of objects during runtime, but the sum of
the sizes of all allocated objects is the largest of all workloads. However, our
modeling method could reflect the various characteristics of the workloads since
placement model considers the size of the object as well as the access patterns
of all objects.

Table 4.1 summarizes the characteristics of objects allocated during each

workload runtime. For efficient profiling in terms of time and memory space,

. % A & o



Benchmark H # of Object | # of Load | # of Store | Total Object Size

401.bzip2 12 9661190K | 5942637K 205.74 MB
433.milc 80 2285696 K 511474K 18.69 MB
456.hmmer 36 1818391K 24623K 1.42 MB
462.libquantum 10 26735K 8762K 6.32 MB

Table 4.1: Object Profiling Details

(K means Thousands)

we adjusted the input arguments for each workload in the benchmark suite.
With the object profiling results and the modeling methods described in
Chapter 3, we simulate object placement to different types of memory. Since
our modeling method reflects runtime behavior of accessing memory in different
workloads, each workload has its own threshold for placing objects on heteroge-
neous memory systems. Objects that cause a big amount of store instructions
are placed in DRAM to reduce the memory access latency and power overhead.
Objects that are allocated at a large size but do not issue a store instruction

are placed on PCM because there is no overhead due to the write operation.

Benchmark H # of Object | # of Load | # of Store | Total Object Size
DRAM 6 9660994K | 5942571K 3.81 MB

401.bzip2
PCM 6 196K 65K 201.93 MB
DRAM 39 2148786K 494774K 7.34 MB

433.milc
PCM 41 136910K 16700K 11.35 MB
DRAM 18 1818391K 24623K 1.42 MB

456.hmmer
PCM 18 686 31 0.00 MB
DRAM 4 25154K 8761K 4.13 MB

462.libquantum

PCM 6 1581K 173 2.20 MB

Table 4.2:

(K means Thousands)

Object Placement Details (threshold = median value)
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Table 4.2 shows an example of object placement for each workload when we

set threshold as the median value.

4.3 Simulation of Latency

The Figure 4.1 shows the simulation results of memory access latency according
to object placement in different memory systems. As can be seen, the latency
difference between DRAM and PCM is from 3.13 times to 20.59 times. The
simulation results show that object placement with proposed method could
achieve the similar latency on heterogeneous memory system to that of the
DRAM-only system. The reason is that some objects in those workloads are
never issuing write instructions. On the other hand, the simulation result for
the 433.milc workload is 1.37 times the latency of the DRAM-only system,
slightly higher latency difference than other workloads. This is because the
amount of the write access to PCM is higher than other workloads. We expected
that further adjustment of the threshold to a value other than the median
could achieve performance improvements for the 433.milc, too. To verify our
assumption, we performed another simulation by setting the threshold to zero,
and the results are shown together in the Figure 4.1. For the 433.milc and
the 462.libquantum workloads, threshold adjustment improves performance by
reducing the number of writes to PCM.

We also simulated object placement under various memory composition
ratios within the system. The Figure 4.2 presents the simulation results of
memory access latency under various DRAM size limitations. For the 401.bzip2
and the 456.hmmer workloads, memory configuration does not affect latency
because small DRAMs are sufficient to allocate objects that issue many write

instructions. However, the latency increases for the 462.libquantum workload

L % A &)



when changing DRAM ratio from 50% to 25%, due to an object which issues the
largest number of write instructions. The object is allocated to DRAM when its
ratio is set to 50% but moved to PCM when DRAM ratio is changed to 25%,
which causes latency increment. The simulation results of 433.milc workload
show latencies that meet our expectations. The 433.milc workload allocates
many objects at various sizes during runtime, allowing for fine-grained object

placement in various memory configurations.

4.4 Simulation of Energy Consumption

The Figure 4.3 shows the simulation results of total energy consumption based
on object placement in different memory systems. The main reason for the
difference in energy consumption between DRAM and PCM is the high write
energy of the PCM. From the result of object placement modeling, objects
that have few write instructions are placed on PCM. Different to the latency
modeling, energy consumption modeling also considers the size of an object.
Therefore, placing objects on heterogeneous memory system could reduce en-
ergy consumption differences to nearly zero on all workloads in the benchmark,
even with different threshold values. However, energy consumption could be
varied with different memory configurations. As shown in the Figure 4.4, the

performance gap is similar to latencies.

4.5 Simulation of Idle Power Consumption

The Figure 4.5 shows simulation results of idle power consumption of memory
systems based on the object allocation in different memory systems. Idle power
consumption is one of the most attractive characteristics of PCM. The simula-

tion is based on the assumption that all objects allocated to the application are
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maintained during application runtime. In other words, we simulate the maxi-
mum idle power consumption of memory systems with different configurations.
Idle power consumption is proportional to the total object size allocated to dif-
ferent memory during application runtime. Idle power consumption increases
corresponding to the allocation size when objects are placed to heterogeneous
memory systems compared with the PCM-only system. However, the 401.bzip2
workload reduces idle power consumption when using heterogeneous memory
system. This abnormal result is caused by the object characteristics allocated
during workload runtime. The 401.bzip2 workload allocates objects of large size
during runtime, but there are near zero reads and writes instructions to those
objects. The object placement result shown in table 4.2 demonstrates this.
We also simulated idle power consumption of memory system under vari-
ous memory configurations as in previous Sections. The simulation results are
presented in the Figure 4.6. Unlike latency and energy consumption results,
the idle power consumption of the memory system differs greatly depending on
the memory configurations. Since the idle power difference between DRAM and
PCM is 100 times according to the table 2.1, the allocation of one object to

another memory has a significant impact on overall power consumption.
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Chapter 5

Conclusion

In this paper, we propose an object placement modeling method on heteroge-
neous memory system with object profiling with full program context informa-
tion. The compiler uses memory access patterns and the size of each object to
dynamically determine the appropriate memory for each object to be placed.
Proper placement of objects on heterogeneous memory systems could reduce
system-wide energy consumption while maintaining DRAM-like application la-
tency. By deciding object allocation at the compiler-level, applications could
use heterogeneous memory systems transparently. Furthermore, since context-
aware memory profiler provides memory access pattern information at object-
granularity, allowing the system to manage memory in more fine-grained fash-

ion.
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