

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Simulating Object Placement in

Heterogeneous Memory System using

Context-Aware Object Profiling Information

컨텍스트를 인지하는 객체 프로파일링 정보를 이용한

이기종 메모리 시스템에서의 객체 배치 시뮬레이션

FEBRUARY 2018

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Hwajung Kim

M.S. THESIS

Simulating Object Placement in

Heterogeneous Memory System using

Context-Aware Object Profiling Information

컨텍스트를 인지하는 객체 프로파일링 정보를 이용한

이기종 메모리 시스템에서의 객체 배치 시뮬레이션

FEBRUARY 2018

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Hwajung Kim

Simulating Object Placement in Heterogeneous

Memory System using Context-Aware Object Profiling

Information

컨텍스트를 인지하는 객체 프로파일링 정보를 이용한

이기종 메모리 시스템에서의 객체 배치 시뮬레이션

지도교수 염헌영

이 논문을 공학석사 학위논문으로 제출함

2017 년 11 월

서울대학교 대학원

컴퓨터 공학부

김화정

김화정의 공학석사 학위논문을 인준함

2018 년 01 월

위 원 장 엄현상 (인)

부위원장 염헌영 (인)

위 원 전병곤 (인)

Abstract

Phase change memory (PCM) is one of the promising non-volatile memory

(NVM) technologies since it provides both high capacity and low idle power con-

sumption. However, relatively slow access latency is one of the major challenges

in using PCM as main memory. Therefore, in recent researches, it is attempt-

ing to construct heterogeneous memory systems by combining such NVM with

DRAM. One of the major problems with using those systems is placing the data

in the appropriate type of memory. In this paper, we propose an object place-

ment method to address data placement problem in heterogeneous memory

systems. With context-aware object profile information, we could dynamically

detect memory access patterns of objects and determine the proper memory to

place the objects on. We demonstrate the effectiveness of the proposed method

by simulating memory access latency and energy consumption using the four

selected workloads of the SPEC benchmark.

Keywords: Object Placement, Heterogeneous Memory System, Context-Aware

Object Profiling

Student Number: 2016-21198

i

Contents

Abstract i

Chapter 1 Introduction 1

Chapter 2 Background and Motivation 3

2.1 Heterogeneous Memory Systems 3

2.2 Context-Aware Memory Profiling 4

2.3 Object Profiling and Placement 4

Chapter 3 Object Placement Modeling 7

3.1 Basic Assumptions . 7

3.2 Latency Modeling . 8

3.3 Energy Consumption Modeling 9

3.4 Idle Power Consumption Modeling 10

3.5 Object Placement Decision . 10

Chapter 4 Simulation 12

4.1 Simulation Methodology . 12

4.2 Program Profiling Results . 13

4.3 Simulation of Latency . 15

ii

4.4 Simulation of Energy Consumption 16

4.5 Simulation of Idle Power Consumption 16

Chapter 5 Conclusion 21

Bibliography 22

초록 24

iii

List of Figures

Figure 2.1 Context-Aware Memory Dependence Profiling Example . 6

Figure 2.2 Context-Aware Object Trace using LLVM 6

Figure 4.1 Simulation of Object Load/Store Latency with various

threshold . 18

Figure 4.2 Simulation of Object Load/Store Latency with various

memory composition ratios 18

Figure 4.3 Simulation of Object Load/Store Energy Consumption

with various threshold 19

Figure 4.4 Simulation of Object Load/Store Energy Consumption

with various memory composition ratios 19

Figure 4.5 Simulation of Idle Power Consumption with various thresh-

old . 20

Figure 4.6 Simulation of Idle Power Consumption with various mem-

ory composition ratios 20

iv

List of Tables

Table 2.1 Latency and Energy Consumption Comparison between

DRAM and PCM access 4

Table 4.1 Object Profiling Details 14

Table 4.2 Object Placement Details (threshold = median value) . . 14

v

Chapter 1

Introduction

Phase change memory (PCM) is one of the emerging non-volatile memory

(NVM) devices. PCM has a longer access latency than DRAM and consumes

much energy to read and write data [1, 2, 3]. Despite its limitations in la-

tency and bandwidth, it still offers appealing attributes. Its density is much

higher than DRAM and provides near-zero idle power consumption. Thus, sev-

eral studies have been done to construct heterogeneous memory systems to

overcome performance overhead and take advantage of NVM [4, 5].

S.R. Dulloor et al. [4] proposed data classification and tiering techniques

under hybrid memory architecture. Researchers in [4] used an offline profiling

tool (PIN) to understand access patterns of different data structures of applica-

tions. On the other hand, Kai Wu et al. [5] introduced Unimem to dynamically

place objects on heterogeneous memory systems. Unimem focuses on memory

access patterns of applications that operate in iterative structures. It manages

data placement based on runtime profiling and performance models and targets

high-performance computing (HPC) systems.

1

In this paper, we propose an object placement modeling method using the

knowledge of access patterns of objects to the memory. To capture memory

access patterns of objects allocated by an application, we use CAMP [6] frame-

work. It is a framework that provides context-aware memory dependency infor-

mation, and we will provide a more detailed description in Section 2.2. Using

CAMP framework, we could collect memory access information of each object

and allocate to appropriate memory at the compiler-level. We propose a model-

ing method that demonstrates the effect of placing objects on various memory

systems in terms of latency and energy consumption, depending on the memory

access patterns of the objects allocated by the application. To verify the effect of

object placement, several simulations were performed assuming different mem-

ory systems. Simulation results show that appropriate objects placement in a

heterogeneous memory system could achieve a DRAM-like latency while mini-

mizing the overall energy consumption of the system.

2

Chapter 2

Background and Motivation

This chapter briefly describes the structure of the heterogeneous memory system

used in this paper. Also, we introduce the profiling tool and methods that are

used to capture the behavior of objects allocated to applications during runtime.

2.1 Heterogeneous Memory Systems

Different to DRAM, PCM has asymmetric read and write characteristics, as has

been shown in previous studies [1, 2, 3]. Table 2.1 compares latency and energy

consumption for DRAM and PCM access [3, 7]. Using PCM instead of DRAM

requires up to 50 times the latency and 6 times the energy for a single write

operation. However, PCM has some attractive characteristics in spite of such

performance limitations. First of all, PCM maintains data persistently even

in the event of a power failure. PCM also has a higher density than DRAM

and has near-zero idle power consumption. Therefore, several studies have been

conducted to compose heterogeneous memory systems utilizing PCM as well as

3

a DRAM [8, 9].

DRAM PCM

Page Size 64 B 64 B

Read Latency 20-50 ns ∼ 50 ns

Write Latency 20-50 ns ∼ 1 µs

Read Energy 0.8 J/GB 1 J/GB

Write Energy 1.2 J/GB 6 J/GB

Idle Power ∼ 100 mW/GB ∼ 1 mW/GB

Table 2.1: Latency and Energy Consumption Comparison between DRAM and

PCM access

2.2 Context-Aware Memory Profiling

The CAMP framework is a Context-Aware Memory Profiling framework that

traces program memory dependencies using full context information of a pro-

gram, such as a call site stack and loop nesting levels. The CAMP statically

detects all possible contexts in the program and assigns a unique ID to each

context. It also generates a static context tree for the program, as shown in the

Figure 2.1. Figure 2.1b shows the context tree for the example program shown

in Figure 2.1a.

2.3 Object Profiling and Placement

We use the CAMP framework [6] to understand memory access patterns of ap-

plications. The CAMP framework is implemented on top of the LLVM compiler

infrastructure [10]. With the LLVM infrastructure, it is easy to apply compiler-

level optimization features. The original CAMP framework provides profiling

results for all possible load and store dependencies of objects allocated by the

4

application. We added a few lines of code to the CAMP framework to identify

all objects access patterns in the application. We also implemented additional

optimization pass in the CAMP framework to dynamically place objects on the

heterogeneous memory system at the compiler-level.

We named the additional pass as ctx-obj-placement. The pass automatically

allocates objects to the heterogeneous memory system, which are transparent

to the application. In the pass, it first reads the object access pattern profil-

ing results generated by the previous dynamic profiling execution. The pass

then calculates the amount of write access to each object and determines the

threshold at which to place the object on the heterogeneous memory system.

During the runtime of the application, the pass automatically catches memory

allocation requests from the application and allocates space in the appropriate

memory.

Figure 2.2 summarizes the application profiling process of the CAMP frame-

work.

5

(a) Example Program (b) Context Tree for the Example Program

Figure 2.1: Context-Aware Memory Dependence Profiling Example

.c / .cpp / .cc

.bc

linked.bc

loopOpted.bc

-loop-simplify

-indvars

loopOpted.bc

metadata.bc

loopOpted.s loopOpted.exe

-load=LLVM_PASS_LIBS

objtrace.bc objtrace.s ctx_objtrace.exe

-ctx-objtrace

objplace.bc objplace.s ctx_objplace.exe

-ctx-obj-placement

clang/clang++

llvm-link

opt

opt -metadata-namer

opt

opt

llc clang++

llc clang++

llc clang++

object profiling data

Figure 2.2: Context-Aware Object Trace using LLVM

6

Chapter 3

Object Placement Modeling

In this chapter, we explain the modeling method to simulate the performance

of the application in terms of latency and energy consumption on the het-

erogeneous memory system. Depending on the modeling method, a detailed

description of how to determine the appropriate memory to allocate for each

object in the application is provided at the end of this chapter.

3.1 Basic Assumptions

To simplify the object placement problem, we establish following assumptions.

Assumption 1. Caching effects on objects are the same in various memory

systems.

Assumption 2. The difference in access latency between DRAM and PCM is

maximum. That is, we set the DRAM read and write to 20 ns and the PCM to

50 ns and 1 µs.

7

Assumption 3. The application latency is proportional to the memory access

latency of objects referenced during runtime. Thus, the performance comparison

between different types of memory is based on the memory access pattern of all

objects allocated by the application.

3.2 Latency Modeling

From the dynamic profiling results of each object, we can figure out how many

times each object is loaded and stored while the application is running. With

the size of the allocated object, latency prediction modeling is as follows. The

Equation 3.1 and the Equation 3.2 represent the load and store latency for each

object allocated to a heterogeneous memory system.

The load latency of an object (LatLDobj) is determined by the read la-

tency of DRAM (LatLDDRAM), the number of load instructions for DRAM

of object (NumLDDRAM), the read latency of PCM (LatLDPCM), and the

number of load instructions for PCM of object (NumLDPCM). Likewise, the

store latency of an object (LatSTobj) is determined by the write latency of

DRAM (LatSTDRAM), the number of store instructions for DRAM of object

(NumSTDRAM), the write latency of PCM (LatSTPCM), and the number of

store instructions for PCM of object (NumSTPCM).

LatLDobj = LatLDDRAM ×NumLDDRAM + LatLDPCM ×NumLDPCM

(3.1)

LatSTobj = LatSTDRAM ×NumSTDRAM +LatSTPCM ×NumSTPCM (3.2)

The Equation 3.3 represents the latency of an application. It is the sum of

load and store latency of each object allocated while the application is running.

8

Latencyapplication =
∑
obj

(LatLDobj + LatSTobj) (3.3)

3.3 Energy Consumption Modeling

Energy consumption modeling considers the size of each object allocated to the

heterogeneous memory system, as opposed to the latency prediction modeling

introduced in Section 3.2. The Equation 3.4 and the Equation 3.5 represent the

load and store energy consumption of each object allocated to the heterogeneous

memory system.

The load energy consumption of an object (EnergyLDobj) is determined

by the load energy consumption of DRAM (EnergyLDDRAM), the number of

load instructions for DRAM of the object (NumLDDRAM), the size of the ob-

ject allocated on DRAM (SizeDRAM), the load energy consumption of PCM

(EnergyLDPCM), the number of load instructions for PCM of the object

(NumLDPCM), and the size of the object allocated on PCM (SizePCM). Like-

wise, the store energy consumption of an object (EnergySTobj) is determined

by the store energy consumption of DRAM (EnergySTDRAM), the number

of store instructions for DRAM of the object (NumSTDRAM), the size of

the object allocated on DRAM (SizeDRAM), the store energy consumption of

PCM (EnergySTPCM), the number of store instructions for PCM of the object

(NumSTPCM), and the size of the object allocated on PCM (SizePCM).

EnergyLDobj =EnergyLDDRAM ×NumLDDRAM × SizeDRAM

+ EnergyLDPCM ×NumLDPCM × SizePCM

(3.4)

9

EnergySTobj =EnergySTDRAM ×NumSTDRAM × SizeDRAM

+ EnergySTPCM ×NumSTPCM × SizePCM

(3.5)

The Equation 3.6 represents the energy consumption of an application. It is

the sum of EnergyLDobj and EnergySTobj for all objects allocated while the

application is running.

Energyapplication =
∑
obj

(EnergyLDobj + EnergySTobj) (3.6)

3.4 Idle Power Consumption Modeling

We also simulated the idle power consumption of the memory system while an

application is running, based on the simulated latency of the application and

the total object size allocated during application runtime. The Equation 3.7

represents the idle power consumption of the memory system.

In the equation, Latencyapplication is calculated from the Equation 3.3. SizeDRAM

and SizePCM are the total object size allocated to DRAM and PCM while the

application is running.

IdlePowermemory =Latencyapplication × IdlePowerDRAM × SizeDRAM

+ Latencyapplication × IdlePowerPCM × SizePCM

(3.7)

3.5 Object Placement Decision

As mentioned in previous chapters, the performance difference between DRAM

and PCM depends primarily on the total amount of write instructions of the

application. Therefore, we determine object placement based on the number and

10

the size of write instructions for each object. For all objects allocated by the

application, we first calculate the total amount of write access to the memory

of each object. We then choose proper value as the threshold.

The compiler pass first scans through all objects and compare the total

amount of write access of each object to the threshold value during initialization

of the application. The object is placed in DRAM when the total amount is

greater than the threshold, otherwise, it is placed in PCM. Table 4.2 presents

the result of object placement based on profiling information with the median

value as the threshold.

Thresholds can vary depending on the characteristics of the application.

In the paper, we simulated with two different threshold values, zero and the

median. All simulation results are given in Chapter 4.

11

Chapter 4

Simulation

We used four workloads in the SPEC CINT2006 benchmark suites [11]. We

performed profiling and baseline experiments on the Intel Xeon E5630 server

equipped with 16GB of memory.

4.1 Simulation Methodology

The simulations consist of the following phases: the profiling phase and the

object placement phase.

Profiling Phase To identify the number and memory access patterns of all

objects in an application, we first profile each application statically and dynam-

ically. With static profiling, the CAMP profiler detects all possible contexts in

the application, assigns unique context IDs, and generates its own context tree.

After detecting contexts and assigning IDs, dynamic profiling is performed to

identify the memory access patterns of the application.

12

Object Placement Phase Using the profiling result of the application, we

estimate the effects of object placement on different types of memory. We first

allocate all objects in each application to the homogeneous memory system

which only composed of DRAM or PCM. Then we estimate the memory access

latency and the energy consumption for all objects in each application accord-

ing to the equations introduced in the Section 3.2 and 3.3.

We performed object placement simulation to verify the effects of various

thresholds and the effects of various memory composition ratios within the

heterogeneous memory system. The results of the simulation under various

situations are shown in the following sections. We take the simulation results

in the DRAM-only system as the baseline, and all other simulation results are

normalized to the baseline. We first provide profiling results for each workload

and then show simulation results for different memory systems in terms of

memory access latency and energy consumption.

4.2 Program Profiling Results

Each workload used in the simulation has different characteristics. For example,

401.bzip2 allocates a small number of objects during runtime, but the sum of

the sizes of all allocated objects is the largest of all workloads. However, our

modeling method could reflect the various characteristics of the workloads since

placement model considers the size of the object as well as the access patterns

of all objects.

Table 4.1 summarizes the characteristics of objects allocated during each

workload runtime. For efficient profiling in terms of time and memory space,

13

Benchmark # of Object # of Load # of Store Total Object Size

401.bzip2 12 9661190K 5942637K 205.74 MB

433.milc 80 2285696K 511474K 18.69 MB

456.hmmer 36 1818391K 24623K 1.42 MB

462.libquantum 10 26735K 8762K 6.32 MB

Table 4.1: Object Profiling Details

(K means Thousands)

we adjusted the input arguments for each workload in the benchmark suite.

With the object profiling results and the modeling methods described in

Chapter 3, we simulate object placement to different types of memory. Since

our modeling method reflects runtime behavior of accessing memory in different

workloads, each workload has its own threshold for placing objects on heteroge-

neous memory systems. Objects that cause a big amount of store instructions

are placed in DRAM to reduce the memory access latency and power overhead.

Objects that are allocated at a large size but do not issue a store instruction

are placed on PCM because there is no overhead due to the write operation.

Benchmark # of Object # of Load # of Store Total Object Size

401.bzip2
DRAM 6 9660994K 5942571K 3.81 MB

PCM 6 196K 65K 201.93 MB

433.milc
DRAM 39 2148786K 494774K 7.34 MB

PCM 41 136910K 16700K 11.35 MB

456.hmmer
DRAM 18 1818391K 24623K 1.42 MB

PCM 18 686 31 0.00 MB

462.libquantum
DRAM 4 25154K 8761K 4.13 MB

PCM 6 1581K 173 2.20 MB

Table 4.2: Object Placement Details (threshold = median value)

(K means Thousands)

14

Table 4.2 shows an example of object placement for each workload when we

set threshold as the median value.

4.3 Simulation of Latency

The Figure 4.1 shows the simulation results of memory access latency according

to object placement in different memory systems. As can be seen, the latency

difference between DRAM and PCM is from 3.13 times to 20.59 times. The

simulation results show that object placement with proposed method could

achieve the similar latency on heterogeneous memory system to that of the

DRAM-only system. The reason is that some objects in those workloads are

never issuing write instructions. On the other hand, the simulation result for

the 433.milc workload is 1.37 times the latency of the DRAM-only system,

slightly higher latency difference than other workloads. This is because the

amount of the write access to PCM is higher than other workloads. We expected

that further adjustment of the threshold to a value other than the median

could achieve performance improvements for the 433.milc, too. To verify our

assumption, we performed another simulation by setting the threshold to zero,

and the results are shown together in the Figure 4.1. For the 433.milc and

the 462.libquantum workloads, threshold adjustment improves performance by

reducing the number of writes to PCM.

We also simulated object placement under various memory composition

ratios within the system. The Figure 4.2 presents the simulation results of

memory access latency under various DRAM size limitations. For the 401.bzip2

and the 456.hmmer workloads, memory configuration does not affect latency

because small DRAMs are sufficient to allocate objects that issue many write

instructions. However, the latency increases for the 462.libquantum workload

15

when changing DRAM ratio from 50% to 25%, due to an object which issues the

largest number of write instructions. The object is allocated to DRAM when its

ratio is set to 50% but moved to PCM when DRAM ratio is changed to 25%,

which causes latency increment. The simulation results of 433.milc workload

show latencies that meet our expectations. The 433.milc workload allocates

many objects at various sizes during runtime, allowing for fine-grained object

placement in various memory configurations.

4.4 Simulation of Energy Consumption

The Figure 4.3 shows the simulation results of total energy consumption based

on object placement in different memory systems. The main reason for the

difference in energy consumption between DRAM and PCM is the high write

energy of the PCM. From the result of object placement modeling, objects

that have few write instructions are placed on PCM. Different to the latency

modeling, energy consumption modeling also considers the size of an object.

Therefore, placing objects on heterogeneous memory system could reduce en-

ergy consumption differences to nearly zero on all workloads in the benchmark,

even with different threshold values. However, energy consumption could be

varied with different memory configurations. As shown in the Figure 4.4, the

performance gap is similar to latencies.

4.5 Simulation of Idle Power Consumption

The Figure 4.5 shows simulation results of idle power consumption of memory

systems based on the object allocation in different memory systems. Idle power

consumption is one of the most attractive characteristics of PCM. The simula-

tion is based on the assumption that all objects allocated to the application are

16

maintained during application runtime. In other words, we simulate the maxi-

mum idle power consumption of memory systems with different configurations.

Idle power consumption is proportional to the total object size allocated to dif-

ferent memory during application runtime. Idle power consumption increases

corresponding to the allocation size when objects are placed to heterogeneous

memory systems compared with the PCM-only system. However, the 401.bzip2

workload reduces idle power consumption when using heterogeneous memory

system. This abnormal result is caused by the object characteristics allocated

during workload runtime. The 401.bzip2 workload allocates objects of large size

during runtime, but there are near zero reads and writes instructions to those

objects. The object placement result shown in table 4.2 demonstrates this.

We also simulated idle power consumption of memory system under vari-

ous memory configurations as in previous Sections. The simulation results are

presented in the Figure 4.6. Unlike latency and energy consumption results,

the idle power consumption of the memory system differs greatly depending on

the memory configurations. Since the idle power difference between DRAM and

PCM is 100 times according to the table 2.1, the allocation of one object to

another memory has a significant impact on overall power consumption.

17

1.00 1.00 1.00 1.001.00 1.02 1.00 1.001.00 1.37 1.00 1.07

20.59

11.19

3.13

14.22

0.00

5.00

10.00

15.00

20.00

25.00

401.bzip2 433.milc 456.hmmer 462.libquantum

DRAM-only Object Placement
(Zero:NonZero)

Object Placement
(Median)

PCM-only

Figure 4.1: Simulation of Object Load/Store Latency with various threshold

1.00 1.00 1.00 1.001.00 1.14 1.00 1.031.00

2.48

1.00

14.10

1.00

2.43

1.00

14.10

1.00

3.07

1.00

14.10

20.59

11.19

3.13

14.22

0.00

5.00

10.00

15.00

20.00

25.00

401.bzip2 433.milc 456.hmmer 462.libquantum

DRAM-only DRAM:PCM (50:50) DRAM:PCM (25:75) DRAM:PCM (20:80) DRAM:PCM (10:90) PCM-only

Figure 4.2: Simulation of Object Load/Store Latency

with various memory composition ratios

18

1.00 1.00 1.00 1.001.00 1.00 1.00 1.001.00 1.04 1.00 1.00

3.10

2.34

1.42

2.54

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

401.bzip2 433.milc 456.hmmer 462.libquantum

DRAM-only Object Placement
(Zero:NonZero)

Object Placement
(Median)

PCM-only

Figure 4.3: Simulation of Object Load/Store Energy Consumption

with various threshold

1.00 1.00 1.00 1.001.00 1.01 1.01 1.001.00

1.16
1.03

2.53

1.00

1.18

1.03

2.53

1.00

1.30

1.03

2.53

3.10

2.34

1.42

2.54

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

401.bzip2 433.milc 456.hmmer 462.libquantum

DRAM-only DRAM:PCM (50:50) DRAM:PCM (25:75) DRAM:PCM (20:80) DRAM:PCM (10:90) PCM-only

Figure 4.4: Simulation of Object Load/Store Energy Consumption

with various memory composition ratios

19

1.00 1.00 1.00 1.00

0.03

0.62

1.00

0.66

0.03

0.54

1.00

0.71

0.21

0.11

0.03

0.14

0.00

0.20

0.40

0.60

0.80

1.00

1.20

401.bzip2 433.milc 456.hmmer 462.libquantum

DRAM-only Object Placement
(Zero:NonZero)

Object Placement
(Median)

PCM-only

Figure 4.5: Simulation of Idle Power Consumption with various threshold

1.00 1.00 1.00 1.00

0.37

0.57

0.38 0.38

0.06

0.63

0.07

0.85

0.06

0.50

0.07

0.85

0.06

0.33

0.07

0.85

0.21

0.11

0.03

0.14

0.00

0.20

0.40

0.60

0.80

1.00

1.20

401.bzip2 433.milc 456.hmmer 462.libquantum

DRAM-only DRAM:PCM (50:50) DRAM:PCM (25:75) DRAM:PCM (20:80) DRAM:PCM (10:90) PCM-only

Figure 4.6: Simulation of Idle Power Consumption

with various memory composition ratios

20

Chapter 5

Conclusion

In this paper, we propose an object placement modeling method on heteroge-

neous memory system with object profiling with full program context informa-

tion. The compiler uses memory access patterns and the size of each object to

dynamically determine the appropriate memory for each object to be placed.

Proper placement of objects on heterogeneous memory systems could reduce

system-wide energy consumption while maintaining DRAM-like application la-

tency. By deciding object allocation at the compiler-level, applications could

use heterogeneous memory systems transparently. Furthermore, since context-

aware memory profiler provides memory access pattern information at object-

granularity, allowing the system to manage memory in more fine-grained fash-

ion.

21

Bibliography

[1] P. Chi, W. C. Lee and Y. Xie., “Adapting B+ -Tree for Emerging

Nonvolatile Memory-Based Main Memory”, in IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 35, No.

9, 2016.

[2] ZHOU, P., ZHAO, B., YANG, J., AND ZHANG, Y., “A Durable and

Energy Efficient Main Memory Using Phase Change Memory Technology”,

in Proceedings of the 36th annual International Symposium on Computer

Architecture (ISCA), 2009.

[3] P. Chi, W.-C. Lee, and Y. Xie., “Making B+-Tree Efficient in PCM-Based

Main Memory”, in Proceedings of ISLPED’14, 2014.

[4] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran, J.

Jackson, and K. Schwan., “Data Tiering in Heterogeneous Memory Sys-

tems”, in Proceedings of the Eleventh European Conference on Computer

Systems (EuroSys’16), 2016.

[5] Kai Wu, Yingchao Huang, and Dong Li., “Unimem: Runtime Data Man-

agement on Non-Volatile Memory-based Heterogeneous Main Memory”, in

Proceedings of SC’17, 2017.

22

[6] J. Kim, “Context -Aware Memory Dependence Profiling”, Master’s Thesis,

CSE Department, POSTECH, 2017.

[7] E. Doller., Phase change memory and its impacts on memory hierarchy,

http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf.

[8] Soyoon Lee, and Hyokyung Bahn, and Sam H. Noh., “CLOCK-DWF: A

Write-History-Aware Page Replacement Algorithm for Hybrid PCM and

DRAM Memory Architectures”, in IEEE Transactions on Computers, Vol.

63. No. 9, 2014.

[9] Ramos, Luiz E. and Gorbatov, Eugene and Bianchini, Ricardo., “Page

Placement in Hybrid Memory Systems”, in Proceedings of the International

Conference on Supercomputing (ICS ’11), 2011.

[10] C. Lattner and V. Adve., “Llvm: A compilation framework for lifelong

program analysis & transformation”, in Proceedings of the International

Symposium on Code Generation and Optimization, 2004.

[11] Standard Performance Evaluation Corporation, http://www.spec.org.

23

초록

PCM 은 대용량 및 낮은 소비 전력이라는 장점을 가지는 NVM 기술 중 하나이다.

그러나 상대적으로 느린 메모리 접근 시간은 PCM 을 DRAM 과 같은 메인 메모

리로사용하는데에있어주요걸림돌중하나로작용한다. DRAM의빠른메모리

접근 시간과 PCM 의 낮은 소비 전력이라는 장점을 극대화하기 위해, DRAM 과

PCM 을 활용한 이기종 메모리 시스템을 구성하는 연구들이 최근 진행되어 왔다.

이러한이기종메모리시스템을사용함에있어주요문제점중하나는적절한유형

의 메모리에 데이터를 배치하는 것이다. 본 논문에서는 이기종 메모리 시스템에서

객체 단위의 데이터를 적절한 메모리에 배치하는 방법을 제안한다. 컨텍스트를

인지하는 객체 프로파일링 정보를 이용하여 객체의 메모리 접근 패턴을 동적으로

감지하고 객체를 배치할 적절한 메모리를 결정한다. 선정된 4 개의 SPEC 벤치

마크 프로그램에 대한 메모리 접근 시간 및 소비 전력량 시뮬레이션 결과를 통해

제안된 방법의 효과를 입증한다.

주요어: 객체 배치, 이기종 메모리 시스템, 컨텍스트를 인지하는 객체 프로파일링

학번: 2016-21198

24

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Simulating Object Placement in

Heterogeneous Memory System using

Context-Aware Object Profiling Information

컨텍스트를 인지하는 객체 프로파일링 정보를 이용한

이기종 메모리 시스템에서의 객체 배치 시뮬레이션

FEBRUARY 2018

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Hwajung Kim

M.S. THESIS

Simulating Object Placement in

Heterogeneous Memory System using

Context-Aware Object Profiling Information

컨텍스트를 인지하는 객체 프로파일링 정보를 이용한

이기종 메모리 시스템에서의 객체 배치 시뮬레이션

FEBRUARY 2018

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Hwajung Kim

Simulating Object Placement in Heterogeneous

Memory System using Context-Aware Object Profiling

Information

컨텍스트를 인지하는 객체 프로파일링 정보를 이용한

이기종 메모리 시스템에서의 객체 배치 시뮬레이션

지도교수 염헌영

이 논문을 공학석사 학위논문으로 제출함

2017 년 11 월

서울대학교 대학원

컴퓨터 공학부

김화정

김화정의 공학석사 학위논문을 인준함

2018 년 01 월

위 원 장 엄현상 (인)

부위원장 염헌영 (인)

위 원 전병곤 (인)

Abstract

Phase change memory (PCM) is one of the promising non-volatile memory

(NVM) technologies since it provides both high capacity and low idle power con-

sumption. However, relatively slow access latency is one of the major challenges

in using PCM as main memory. Therefore, in recent researches, it is attempt-

ing to construct heterogeneous memory systems by combining such NVM with

DRAM. One of the major problems with using those systems is placing the data

in the appropriate type of memory. In this paper, we propose an object place-

ment method to address data placement problem in heterogeneous memory

systems. With context-aware object profile information, we could dynamically

detect memory access patterns of objects and determine the proper memory to

place the objects on. We demonstrate the effectiveness of the proposed method

by simulating memory access latency and energy consumption using the four

selected workloads of the SPEC benchmark.

Keywords: Object Placement, Heterogeneous Memory System, Context-Aware

Object Profiling

Student Number: 2016-21198

i

Contents

Abstract i

Chapter 1 Introduction 1

Chapter 2 Background and Motivation 3

2.1 Heterogeneous Memory Systems 3

2.2 Context-Aware Memory Profiling 4

2.3 Object Profiling and Placement 4

Chapter 3 Object Placement Modeling 7

3.1 Basic Assumptions . 7

3.2 Latency Modeling . 8

3.3 Energy Consumption Modeling 9

3.4 Idle Power Consumption Modeling 10

3.5 Object Placement Decision . 10

Chapter 4 Simulation 12

4.1 Simulation Methodology . 12

4.2 Program Profiling Results . 13

4.3 Simulation of Latency . 15

ii

4.4 Simulation of Energy Consumption 16

4.5 Simulation of Idle Power Consumption 16

Chapter 5 Conclusion 21

Bibliography 22

초록 24

iii

List of Figures

Figure 2.1 Context-Aware Memory Dependence Profiling Example . 6

Figure 2.2 Context-Aware Object Trace using LLVM 6

Figure 4.1 Simulation of Object Load/Store Latency with various

threshold . 18

Figure 4.2 Simulation of Object Load/Store Latency with various

memory composition ratios 18

Figure 4.3 Simulation of Object Load/Store Energy Consumption

with various threshold 19

Figure 4.4 Simulation of Object Load/Store Energy Consumption

with various memory composition ratios 19

Figure 4.5 Simulation of Idle Power Consumption with various thresh-

old . 20

Figure 4.6 Simulation of Idle Power Consumption with various mem-

ory composition ratios 20

iv

List of Tables

Table 2.1 Latency and Energy Consumption Comparison between

DRAM and PCM access 4

Table 4.1 Object Profiling Details 14

Table 4.2 Object Placement Details (threshold = median value) . . 14

v

Chapter 1

Introduction

Phase change memory (PCM) is one of the emerging non-volatile memory

(NVM) devices. PCM has a longer access latency than DRAM and consumes

much energy to read and write data [1, 2, 3]. Despite its limitations in la-

tency and bandwidth, it still offers appealing attributes. Its density is much

higher than DRAM and provides near-zero idle power consumption. Thus, sev-

eral studies have been done to construct heterogeneous memory systems to

overcome performance overhead and take advantage of NVM [4, 5].

S.R. Dulloor et al. [4] proposed data classification and tiering techniques

under hybrid memory architecture. Researchers in [4] used an offline profiling

tool (PIN) to understand access patterns of different data structures of applica-

tions. On the other hand, Kai Wu et al. [5] introduced Unimem to dynamically

place objects on heterogeneous memory systems. Unimem focuses on memory

access patterns of applications that operate in iterative structures. It manages

data placement based on runtime profiling and performance models and targets

high-performance computing (HPC) systems.

1

In this paper, we propose an object placement modeling method using the

knowledge of access patterns of objects to the memory. To capture memory

access patterns of objects allocated by an application, we use CAMP [6] frame-

work. It is a framework that provides context-aware memory dependency infor-

mation, and we will provide a more detailed description in Section 2.2. Using

CAMP framework, we could collect memory access information of each object

and allocate to appropriate memory at the compiler-level. We propose a model-

ing method that demonstrates the effect of placing objects on various memory

systems in terms of latency and energy consumption, depending on the memory

access patterns of the objects allocated by the application. To verify the effect of

object placement, several simulations were performed assuming different mem-

ory systems. Simulation results show that appropriate objects placement in a

heterogeneous memory system could achieve a DRAM-like latency while mini-

mizing the overall energy consumption of the system.

2

Chapter 2

Background and Motivation

This chapter briefly describes the structure of the heterogeneous memory system

used in this paper. Also, we introduce the profiling tool and methods that are

used to capture the behavior of objects allocated to applications during runtime.

2.1 Heterogeneous Memory Systems

Different to DRAM, PCM has asymmetric read and write characteristics, as has

been shown in previous studies [1, 2, 3]. Table 2.1 compares latency and energy

consumption for DRAM and PCM access [3, 7]. Using PCM instead of DRAM

requires up to 50 times the latency and 6 times the energy for a single write

operation. However, PCM has some attractive characteristics in spite of such

performance limitations. First of all, PCM maintains data persistently even

in the event of a power failure. PCM also has a higher density than DRAM

and has near-zero idle power consumption. Therefore, several studies have been

conducted to compose heterogeneous memory systems utilizing PCM as well as

3

a DRAM [8, 9].

DRAM PCM

Page Size 64 B 64 B

Read Latency 20-50 ns ∼ 50 ns

Write Latency 20-50 ns ∼ 1 µs

Read Energy 0.8 J/GB 1 J/GB

Write Energy 1.2 J/GB 6 J/GB

Idle Power ∼ 100 mW/GB ∼ 1 mW/GB

Table 2.1: Latency and Energy Consumption Comparison between DRAM and

PCM access

2.2 Context-Aware Memory Profiling

The CAMP framework is a Context-Aware Memory Profiling framework that

traces program memory dependencies using full context information of a pro-

gram, such as a call site stack and loop nesting levels. The CAMP statically

detects all possible contexts in the program and assigns a unique ID to each

context. It also generates a static context tree for the program, as shown in the

Figure 2.1. Figure 2.1b shows the context tree for the example program shown

in Figure 2.1a.

2.3 Object Profiling and Placement

We use the CAMP framework [6] to understand memory access patterns of ap-

plications. The CAMP framework is implemented on top of the LLVM compiler

infrastructure [10]. With the LLVM infrastructure, it is easy to apply compiler-

level optimization features. The original CAMP framework provides profiling

results for all possible load and store dependencies of objects allocated by the

4

application. We added a few lines of code to the CAMP framework to identify

all objects access patterns in the application. We also implemented additional

optimization pass in the CAMP framework to dynamically place objects on the

heterogeneous memory system at the compiler-level.

We named the additional pass as ctx-obj-placement. The pass automatically

allocates objects to the heterogeneous memory system, which are transparent

to the application. In the pass, it first reads the object access pattern profil-

ing results generated by the previous dynamic profiling execution. The pass

then calculates the amount of write access to each object and determines the

threshold at which to place the object on the heterogeneous memory system.

During the runtime of the application, the pass automatically catches memory

allocation requests from the application and allocates space in the appropriate

memory.

Figure 2.2 summarizes the application profiling process of the CAMP frame-

work.

5

(a) Example Program (b) Context Tree for the Example Program

Figure 2.1: Context-Aware Memory Dependence Profiling Example

.c / .cpp / .cc

.bc

linked.bc

loopOpted.bc

-loop-simplify

-indvars

loopOpted.bc

metadata.bc

loopOpted.s loopOpted.exe

-load=LLVM_PASS_LIBS

objtrace.bc objtrace.s ctx_objtrace.exe

-ctx-objtrace

objplace.bc objplace.s ctx_objplace.exe

-ctx-obj-placement

clang/clang++

llvm-link

opt

opt -metadata-namer

opt

opt

llc clang++

llc clang++

llc clang++

object profiling data

Figure 2.2: Context-Aware Object Trace using LLVM

6

Chapter 3

Object Placement Modeling

In this chapter, we explain the modeling method to simulate the performance

of the application in terms of latency and energy consumption on the het-

erogeneous memory system. Depending on the modeling method, a detailed

description of how to determine the appropriate memory to allocate for each

object in the application is provided at the end of this chapter.

3.1 Basic Assumptions

To simplify the object placement problem, we establish following assumptions.

Assumption 1. Caching effects on objects are the same in various memory

systems.

Assumption 2. The difference in access latency between DRAM and PCM is

maximum. That is, we set the DRAM read and write to 20 ns and the PCM to

50 ns and 1 µs.

7

Assumption 3. The application latency is proportional to the memory access

latency of objects referenced during runtime. Thus, the performance comparison

between different types of memory is based on the memory access pattern of all

objects allocated by the application.

3.2 Latency Modeling

From the dynamic profiling results of each object, we can figure out how many

times each object is loaded and stored while the application is running. With

the size of the allocated object, latency prediction modeling is as follows. The

Equation 3.1 and the Equation 3.2 represent the load and store latency for each

object allocated to a heterogeneous memory system.

The load latency of an object (LatLDobj) is determined by the read la-

tency of DRAM (LatLDDRAM), the number of load instructions for DRAM

of object (NumLDDRAM), the read latency of PCM (LatLDPCM), and the

number of load instructions for PCM of object (NumLDPCM). Likewise, the

store latency of an object (LatSTobj) is determined by the write latency of

DRAM (LatSTDRAM), the number of store instructions for DRAM of object

(NumSTDRAM), the write latency of PCM (LatSTPCM), and the number of

store instructions for PCM of object (NumSTPCM).

LatLDobj = LatLDDRAM ×NumLDDRAM + LatLDPCM ×NumLDPCM

(3.1)

LatSTobj = LatSTDRAM ×NumSTDRAM +LatSTPCM ×NumSTPCM (3.2)

The Equation 3.3 represents the latency of an application. It is the sum of

load and store latency of each object allocated while the application is running.

8

Latencyapplication =
∑
obj

(LatLDobj + LatSTobj) (3.3)

3.3 Energy Consumption Modeling

Energy consumption modeling considers the size of each object allocated to the

heterogeneous memory system, as opposed to the latency prediction modeling

introduced in Section 3.2. The Equation 3.4 and the Equation 3.5 represent the

load and store energy consumption of each object allocated to the heterogeneous

memory system.

The load energy consumption of an object (EnergyLDobj) is determined

by the load energy consumption of DRAM (EnergyLDDRAM), the number of

load instructions for DRAM of the object (NumLDDRAM), the size of the ob-

ject allocated on DRAM (SizeDRAM), the load energy consumption of PCM

(EnergyLDPCM), the number of load instructions for PCM of the object

(NumLDPCM), and the size of the object allocated on PCM (SizePCM). Like-

wise, the store energy consumption of an object (EnergySTobj) is determined

by the store energy consumption of DRAM (EnergySTDRAM), the number

of store instructions for DRAM of the object (NumSTDRAM), the size of

the object allocated on DRAM (SizeDRAM), the store energy consumption of

PCM (EnergySTPCM), the number of store instructions for PCM of the object

(NumSTPCM), and the size of the object allocated on PCM (SizePCM).

EnergyLDobj =EnergyLDDRAM ×NumLDDRAM × SizeDRAM

+ EnergyLDPCM ×NumLDPCM × SizePCM

(3.4)

9

EnergySTobj =EnergySTDRAM ×NumSTDRAM × SizeDRAM

+ EnergySTPCM ×NumSTPCM × SizePCM

(3.5)

The Equation 3.6 represents the energy consumption of an application. It is

the sum of EnergyLDobj and EnergySTobj for all objects allocated while the

application is running.

Energyapplication =
∑
obj

(EnergyLDobj + EnergySTobj) (3.6)

3.4 Idle Power Consumption Modeling

We also simulated the idle power consumption of the memory system while an

application is running, based on the simulated latency of the application and

the total object size allocated during application runtime. The Equation 3.7

represents the idle power consumption of the memory system.

In the equation, Latencyapplication is calculated from the Equation 3.3. SizeDRAM

and SizePCM are the total object size allocated to DRAM and PCM while the

application is running.

IdlePowermemory =Latencyapplication × IdlePowerDRAM × SizeDRAM

+ Latencyapplication × IdlePowerPCM × SizePCM

(3.7)

3.5 Object Placement Decision

As mentioned in previous chapters, the performance difference between DRAM

and PCM depends primarily on the total amount of write instructions of the

application. Therefore, we determine object placement based on the number and

10

the size of write instructions for each object. For all objects allocated by the

application, we first calculate the total amount of write access to the memory

of each object. We then choose proper value as the threshold.

The compiler pass first scans through all objects and compare the total

amount of write access of each object to the threshold value during initialization

of the application. The object is placed in DRAM when the total amount is

greater than the threshold, otherwise, it is placed in PCM. Table 4.2 presents

the result of object placement based on profiling information with the median

value as the threshold.

Thresholds can vary depending on the characteristics of the application.

In the paper, we simulated with two different threshold values, zero and the

median. All simulation results are given in Chapter 4.

11

Chapter 4

Simulation

We used four workloads in the SPEC CINT2006 benchmark suites [11]. We

performed profiling and baseline experiments on the Intel Xeon E5630 server

equipped with 16GB of memory.

4.1 Simulation Methodology

The simulations consist of the following phases: the profiling phase and the

object placement phase.

Profiling Phase To identify the number and memory access patterns of all

objects in an application, we first profile each application statically and dynam-

ically. With static profiling, the CAMP profiler detects all possible contexts in

the application, assigns unique context IDs, and generates its own context tree.

After detecting contexts and assigning IDs, dynamic profiling is performed to

identify the memory access patterns of the application.

12

Object Placement Phase Using the profiling result of the application, we

estimate the effects of object placement on different types of memory. We first

allocate all objects in each application to the homogeneous memory system

which only composed of DRAM or PCM. Then we estimate the memory access

latency and the energy consumption for all objects in each application accord-

ing to the equations introduced in the Section 3.2 and 3.3.

We performed object placement simulation to verify the effects of various

thresholds and the effects of various memory composition ratios within the

heterogeneous memory system. The results of the simulation under various

situations are shown in the following sections. We take the simulation results

in the DRAM-only system as the baseline, and all other simulation results are

normalized to the baseline. We first provide profiling results for each workload

and then show simulation results for different memory systems in terms of

memory access latency and energy consumption.

4.2 Program Profiling Results

Each workload used in the simulation has different characteristics. For example,

401.bzip2 allocates a small number of objects during runtime, but the sum of

the sizes of all allocated objects is the largest of all workloads. However, our

modeling method could reflect the various characteristics of the workloads since

placement model considers the size of the object as well as the access patterns

of all objects.

Table 4.1 summarizes the characteristics of objects allocated during each

workload runtime. For efficient profiling in terms of time and memory space,

13

Benchmark # of Object # of Load # of Store Total Object Size

401.bzip2 12 9661190K 5942637K 205.74 MB

433.milc 80 2285696K 511474K 18.69 MB

456.hmmer 36 1818391K 24623K 1.42 MB

462.libquantum 10 26735K 8762K 6.32 MB

Table 4.1: Object Profiling Details

(K means Thousands)

we adjusted the input arguments for each workload in the benchmark suite.

With the object profiling results and the modeling methods described in

Chapter 3, we simulate object placement to different types of memory. Since

our modeling method reflects runtime behavior of accessing memory in different

workloads, each workload has its own threshold for placing objects on heteroge-

neous memory systems. Objects that cause a big amount of store instructions

are placed in DRAM to reduce the memory access latency and power overhead.

Objects that are allocated at a large size but do not issue a store instruction

are placed on PCM because there is no overhead due to the write operation.

Benchmark # of Object # of Load # of Store Total Object Size

401.bzip2
DRAM 6 9660994K 5942571K 3.81 MB

PCM 6 196K 65K 201.93 MB

433.milc
DRAM 39 2148786K 494774K 7.34 MB

PCM 41 136910K 16700K 11.35 MB

456.hmmer
DRAM 18 1818391K 24623K 1.42 MB

PCM 18 686 31 0.00 MB

462.libquantum
DRAM 4 25154K 8761K 4.13 MB

PCM 6 1581K 173 2.20 MB

Table 4.2: Object Placement Details (threshold = median value)

(K means Thousands)

14

Table 4.2 shows an example of object placement for each workload when we

set threshold as the median value.

4.3 Simulation of Latency

The Figure 4.1 shows the simulation results of memory access latency according

to object placement in different memory systems. As can be seen, the latency

difference between DRAM and PCM is from 3.13 times to 20.59 times. The

simulation results show that object placement with proposed method could

achieve the similar latency on heterogeneous memory system to that of the

DRAM-only system. The reason is that some objects in those workloads are

never issuing write instructions. On the other hand, the simulation result for

the 433.milc workload is 1.37 times the latency of the DRAM-only system,

slightly higher latency difference than other workloads. This is because the

amount of the write access to PCM is higher than other workloads. We expected

that further adjustment of the threshold to a value other than the median

could achieve performance improvements for the 433.milc, too. To verify our

assumption, we performed another simulation by setting the threshold to zero,

and the results are shown together in the Figure 4.1. For the 433.milc and

the 462.libquantum workloads, threshold adjustment improves performance by

reducing the number of writes to PCM.

We also simulated object placement under various memory composition

ratios within the system. The Figure 4.2 presents the simulation results of

memory access latency under various DRAM size limitations. For the 401.bzip2

and the 456.hmmer workloads, memory configuration does not affect latency

because small DRAMs are sufficient to allocate objects that issue many write

instructions. However, the latency increases for the 462.libquantum workload

15

when changing DRAM ratio from 50% to 25%, due to an object which issues the

largest number of write instructions. The object is allocated to DRAM when its

ratio is set to 50% but moved to PCM when DRAM ratio is changed to 25%,

which causes latency increment. The simulation results of 433.milc workload

show latencies that meet our expectations. The 433.milc workload allocates

many objects at various sizes during runtime, allowing for fine-grained object

placement in various memory configurations.

4.4 Simulation of Energy Consumption

The Figure 4.3 shows the simulation results of total energy consumption based

on object placement in different memory systems. The main reason for the

difference in energy consumption between DRAM and PCM is the high write

energy of the PCM. From the result of object placement modeling, objects

that have few write instructions are placed on PCM. Different to the latency

modeling, energy consumption modeling also considers the size of an object.

Therefore, placing objects on heterogeneous memory system could reduce en-

ergy consumption differences to nearly zero on all workloads in the benchmark,

even with different threshold values. However, energy consumption could be

varied with different memory configurations. As shown in the Figure 4.4, the

performance gap is similar to latencies.

4.5 Simulation of Idle Power Consumption

The Figure 4.5 shows simulation results of idle power consumption of memory

systems based on the object allocation in different memory systems. Idle power

consumption is one of the most attractive characteristics of PCM. The simula-

tion is based on the assumption that all objects allocated to the application are

16

maintained during application runtime. In other words, we simulate the maxi-

mum idle power consumption of memory systems with different configurations.

Idle power consumption is proportional to the total object size allocated to dif-

ferent memory during application runtime. Idle power consumption increases

corresponding to the allocation size when objects are placed to heterogeneous

memory systems compared with the PCM-only system. However, the 401.bzip2

workload reduces idle power consumption when using heterogeneous memory

system. This abnormal result is caused by the object characteristics allocated

during workload runtime. The 401.bzip2 workload allocates objects of large size

during runtime, but there are near zero reads and writes instructions to those

objects. The object placement result shown in table 4.2 demonstrates this.

We also simulated idle power consumption of memory system under vari-

ous memory configurations as in previous Sections. The simulation results are

presented in the Figure 4.6. Unlike latency and energy consumption results,

the idle power consumption of the memory system differs greatly depending on

the memory configurations. Since the idle power difference between DRAM and

PCM is 100 times according to the table 2.1, the allocation of one object to

another memory has a significant impact on overall power consumption.

17

1.00 1.00 1.00 1.001.00 1.02 1.00 1.001.00 1.37 1.00 1.07

20.59

11.19

3.13

14.22

0.00

5.00

10.00

15.00

20.00

25.00

401.bzip2 433.milc 456.hmmer 462.libquantum

DRAM-only Object Placement
(Zero:NonZero)

Object Placement
(Median)

PCM-only

Figure 4.1: Simulation of Object Load/Store Latency with various threshold

1.00 1.00 1.00 1.001.00 1.14 1.00 1.031.00

2.48

1.00

14.10

1.00

2.43

1.00

14.10

1.00

3.07

1.00

14.10

20.59

11.19

3.13

14.22

0.00

5.00

10.00

15.00

20.00

25.00

401.bzip2 433.milc 456.hmmer 462.libquantum

DRAM-only DRAM:PCM (50:50) DRAM:PCM (25:75) DRAM:PCM (20:80) DRAM:PCM (10:90) PCM-only

Figure 4.2: Simulation of Object Load/Store Latency

with various memory composition ratios

18

1.00 1.00 1.00 1.001.00 1.00 1.00 1.001.00 1.04 1.00 1.00

3.10

2.34

1.42

2.54

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

401.bzip2 433.milc 456.hmmer 462.libquantum

DRAM-only Object Placement
(Zero:NonZero)

Object Placement
(Median)

PCM-only

Figure 4.3: Simulation of Object Load/Store Energy Consumption

with various threshold

1.00 1.00 1.00 1.001.00 1.01 1.01 1.001.00

1.16
1.03

2.53

1.00

1.18

1.03

2.53

1.00

1.30

1.03

2.53

3.10

2.34

1.42

2.54

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

401.bzip2 433.milc 456.hmmer 462.libquantum

DRAM-only DRAM:PCM (50:50) DRAM:PCM (25:75) DRAM:PCM (20:80) DRAM:PCM (10:90) PCM-only

Figure 4.4: Simulation of Object Load/Store Energy Consumption

with various memory composition ratios

19

1.00 1.00 1.00 1.00

0.03

0.62

1.00

0.66

0.03

0.54

1.00

0.71

0.21

0.11

0.03

0.14

0.00

0.20

0.40

0.60

0.80

1.00

1.20

401.bzip2 433.milc 456.hmmer 462.libquantum

DRAM-only Object Placement
(Zero:NonZero)

Object Placement
(Median)

PCM-only

Figure 4.5: Simulation of Idle Power Consumption with various threshold

1.00 1.00 1.00 1.00

0.37

0.57

0.38 0.38

0.06

0.63

0.07

0.85

0.06

0.50

0.07

0.85

0.06

0.33

0.07

0.85

0.21

0.11

0.03

0.14

0.00

0.20

0.40

0.60

0.80

1.00

1.20

401.bzip2 433.milc 456.hmmer 462.libquantum

DRAM-only DRAM:PCM (50:50) DRAM:PCM (25:75) DRAM:PCM (20:80) DRAM:PCM (10:90) PCM-only

Figure 4.6: Simulation of Idle Power Consumption

with various memory composition ratios

20

Chapter 5

Conclusion

In this paper, we propose an object placement modeling method on heteroge-

neous memory system with object profiling with full program context informa-

tion. The compiler uses memory access patterns and the size of each object to

dynamically determine the appropriate memory for each object to be placed.

Proper placement of objects on heterogeneous memory systems could reduce

system-wide energy consumption while maintaining DRAM-like application la-

tency. By deciding object allocation at the compiler-level, applications could

use heterogeneous memory systems transparently. Furthermore, since context-

aware memory profiler provides memory access pattern information at object-

granularity, allowing the system to manage memory in more fine-grained fash-

ion.

21

Bibliography

[1] P. Chi, W. C. Lee and Y. Xie., “Adapting B+ -Tree for Emerging

Nonvolatile Memory-Based Main Memory”, in IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 35, No.

9, 2016.

[2] ZHOU, P., ZHAO, B., YANG, J., AND ZHANG, Y., “A Durable and

Energy Efficient Main Memory Using Phase Change Memory Technology”,

in Proceedings of the 36th annual International Symposium on Computer

Architecture (ISCA), 2009.

[3] P. Chi, W.-C. Lee, and Y. Xie., “Making B+-Tree Efficient in PCM-Based

Main Memory”, in Proceedings of ISLPED’14, 2014.

[4] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran, J.

Jackson, and K. Schwan., “Data Tiering in Heterogeneous Memory Sys-

tems”, in Proceedings of the Eleventh European Conference on Computer

Systems (EuroSys’16), 2016.

[5] Kai Wu, Yingchao Huang, and Dong Li., “Unimem: Runtime Data Man-

agement on Non-Volatile Memory-based Heterogeneous Main Memory”, in

Proceedings of SC’17, 2017.

22

[6] J. Kim, “Context -Aware Memory Dependence Profiling”, Master’s Thesis,

CSE Department, POSTECH, 2017.

[7] E. Doller., Phase change memory and its impacts on memory hierarchy,

http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf.

[8] Soyoon Lee, and Hyokyung Bahn, and Sam H. Noh., “CLOCK-DWF: A

Write-History-Aware Page Replacement Algorithm for Hybrid PCM and

DRAM Memory Architectures”, in IEEE Transactions on Computers, Vol.

63. No. 9, 2014.

[9] Ramos, Luiz E. and Gorbatov, Eugene and Bianchini, Ricardo., “Page

Placement in Hybrid Memory Systems”, in Proceedings of the International

Conference on Supercomputing (ICS ’11), 2011.

[10] C. Lattner and V. Adve., “Llvm: A compilation framework for lifelong

program analysis & transformation”, in Proceedings of the International

Symposium on Code Generation and Optimization, 2004.

[11] Standard Performance Evaluation Corporation, http://www.spec.org.

23

초록

PCM 은 대용량 및 낮은 소비 전력이라는 장점을 가지는 NVM 기술 중 하나이다.

그러나 상대적으로 느린 메모리 접근 시간은 PCM 을 DRAM 과 같은 메인 메모

리로사용하는데에있어주요걸림돌중하나로작용한다. DRAM의빠른메모리

접근 시간과 PCM 의 낮은 소비 전력이라는 장점을 극대화하기 위해, DRAM 과

PCM 을 활용한 이기종 메모리 시스템을 구성하는 연구들이 최근 진행되어 왔다.

이러한이기종메모리시스템을사용함에있어주요문제점중하나는적절한유형

의 메모리에 데이터를 배치하는 것이다. 본 논문에서는 이기종 메모리 시스템에서

객체 단위의 데이터를 적절한 메모리에 배치하는 방법을 제안한다. 컨텍스트를

인지하는 객체 프로파일링 정보를 이용하여 객체의 메모리 접근 패턴을 동적으로

감지하고 객체를 배치할 적절한 메모리를 결정한다. 선정된 4 개의 SPEC 벤치

마크 프로그램에 대한 메모리 접근 시간 및 소비 전력량 시뮬레이션 결과를 통해

제안된 방법의 효과를 입증한다.

주요어: 객체 배치, 이기종 메모리 시스템, 컨텍스트를 인지하는 객체 프로파일링

학번: 2016-21198

24

	Chapter 1 Introduction
	Chapter 2 Background and Motivation
	2.1 Heterogeneous Memory Systems
	2.2 Context-Aware Memory Profiling
	2.3 Object Profiling and Placement

	Chapter 3 Object Placement Modeling
	3.1 Basic Assumptions
	3.2 Latency Modeling
	3.3 Energy Consumption Modeling
	3.4 Idle Power Consumption Modeling
	3.5 Object Placement Decision

	Chapter 4 Simulation
	4.1 Simulation Methodology
	4.2 Program Profiling Results
	4.3 Simulation of Latency
	4.4 Simulation of Energy Consumption
	4.5 Simulation of Idle Power Consumption

	Chapter 5 Conclusion
	Bibliography
	초록
	Chapter 1 Introduction
	Chapter 2 Background and Motivation
	2.1 Heterogeneous Memory Systems
	2.2 Context-Aware Memory Profiling
	2.3 Object Profiling and Placement

	Chapter 3 Object Placement Modeling
	3.1 Basic Assumptions
	3.2 Latency Modeling
	3.3 Energy Consumption Modeling
	3.4 Idle Power Consumption Modeling
	3.5 Object Placement Decision

	Chapter 4 Simulation
	4.1 Simulation Methodology
	4.2 Program Profiling Results
	4.3 Simulation of Latency
	4.4 Simulation of Energy Consumption
	4.5 Simulation of Idle Power Consumption

	Chapter 5 Conclusion
	Bibliography
	초록

<startpage>10
Chapter 1 Introduction 1
Chapter 2 Background and Motivation 3
 2.1 Heterogeneous Memory Systems 3
 2.2 Context-Aware Memory Profiling 4
 2.3 Object Profiling and Placement 4
Chapter 3 Object Placement Modeling 7
 3.1 Basic Assumptions 7
 3.2 Latency Modeling 8
 3.3 Energy Consumption Modeling 9
 3.4 Idle Power Consumption Modeling 10
 3.5 Object Placement Decision 10
Chapter 4 Simulation 12
 4.1 Simulation Methodology 12
 4.2 Program Profiling Results 13
 4.3 Simulation of Latency 15
 4.4 Simulation of Energy Consumption 16
 4.5 Simulation of Idle Power Consumption 16
Chapter 5 Conclusion 21
Bibliography 22
초록 24
</body><startpage>10
Chapter 1 Introduction 1
Chapter 2 Background and Motivation 3
 2.1 Heterogeneous Memory Systems 3
 2.2 Context-Aware Memory Profiling 4
 2.3 Object Profiling and Placement 4
Chapter 3 Object Placement Modeling 7
 3.1 Basic Assumptions 7
 3.2 Latency Modeling 8
 3.3 Energy Consumption Modeling 9
 3.4 Idle Power Consumption Modeling 10
 3.5 Object Placement Decision 10
Chapter 4 Simulation 12
 4.1 Simulation Methodology 12
 4.2 Program Profiling Results 13
 4.3 Simulation of Latency 15
 4.4 Simulation of Energy Consumption 16
 4.5 Simulation of Idle Power Consumption 16
Chapter 5 Conclusion 21
Bibliography 22
초록 24
</body>

