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Abstract 

 

 

Experimental and Analytical Study of 

RHS X-Joints under Axial Compression 

 

Kim, Jeong Hyun 
Department of Architecture and Architectural Engineering 

The Graduate School 

Seoul National University 

Applying high-strength steel to rectangular hollow section (RHS) joints can 

bring about many technological advantages from design to erection. However, 

the application of high-strength steel to RHS joints is forbidden or permitted 

with high-strength penalty in most representative international standards. 

To examine the appropriateness of the strength reduction penalty 

imposed on high-strength steels, six RHS X-joint specimens fabricated from 

high-strength and ordinary steels were tested under axial compression. The 

key parameters of this experimental test included brace to chord width ratios 

and grade of steels. All high-strength steel specimens exhibited sufficient 

strength compared to the EC3 strength criteria; their strengths were even 

higher than the EC3 unreduced nominal strength. Significantly different post-

elastic joint behavior was observed depending upon the brace to chord width 

ratio and grade of steels. It was also found that the formulation of sidewall 



ii 

buckling strength in current EC3 is inaccurate (too conservative) and needs to 

be improved. 

Although improved strength formula was recently suggested by Becque 

and Cheng (2016), it is still conservative and inaccurate to evaluate the 

strength of RHS X-joints fabricated from high-strength steel. A new design 

formula for RHS X-joint experiencing sidewall buckling was proposed in this 

thesis. When the new normalized plate slenderness ratio proposed in this 

study is used in combination with the column curve “c” of EC3, the accuracy 

and consistency in strength predictions were much improved compared to 

strength formulae currently available. 

Keywords: Rectangular hollow section; X-joints; High-strength steel; 

Ultimate strength formula; Full scale test 
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Introduction 

 

 

 

1.1. Research background 

 

The uses of hollow sections have been increased as the structural efficiencies 

have become obvious to most structure engineers. Especially as a structural 

member of column or truss loaded under compression or torsion, hollow 

sections show outstanding resistant performances due to their characteristics 

of closed sections. 

There are two major types of hollow sections that have been applied to 

structural members. One is a circular hollow section (CHS) and the other is a 

rectangular hollow section (RHS). CHSs give an efficient distribution of steel 

about the centroidal axes, as well as the minimum possible resistance to fluid 

(CIDECT 1992). However, despite of these advantages, it is not simple to 

weld circular shapes together that needs a specialized manufacturing. 

Therefore, RHSs have emerged as a practical alternative. 
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RHS, one of the major types of hollow sections, is easy to connect their 

flat faces. Furthermore, trusses fabricated from hollow sections are lighter 

than their counterparts composed of non-tubular sections. In consequence, the 

use of RHS as a column or a truss member has been progressively increased. 

With those favorable structural features of hollow sections, the 

application of high-strength steel on those sections could have an opportunity 

to bring significant reduction of total amount of steel and their self-weight 

which can give an aesthetic view to the buildings. However, current design 

standards such as KBC (2016) and AISC (2010) forbid applying the steels 

whose yield stress exceeds 360 MPa to rectangular hollow section joints. 

Even Eurocode3 (2005), the only structural standard allowing high-strength 

steels of which nominal yield stress up to 700 MPa to be applied on RHS 

joints, suggests that the nominal strengths of RHS joints should be calculated 

with multiplying the strength reduction factors. 

Indeed, these conservative restrictions and penalties are based on weak 

engineering backgrounds. One of the backgrounds of this limitation is due to 

less ductile characteristics of high-strength steels. Figure 1.1 shows the 

comparison between ordinary steel (SM490) and high-strength steel 

(HSA800). As shown in those curves, ordinary steels show clear yield plateau 

which could absorb energy without increment of stress while high-strength 

steel gradually lost its stiffness before reaching at the peak of stress. Moreover, 

while ordinary steels could undergo quite large deformations after the peak 

stress, the stress of a specimen fabricated from high-strength steel rapidly 

decrease until the fracture of material. Therefore, this study was primarily 
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motivated to investigate the appropriateness of the current strength reduction 

factors for high-strength RHS X-joints. 

 

 

Figure 1.1 Strain-stress relation of ordinary and high-strength steels 

 

 

1.2. Objectives and scope 

 

For RHS X-joints, two failure modes mainly govern the behavior and the 

strength. One is a chord plastification which appears at the range of relatively 

low value of β which is a geometric parameter which represents a width ratio 

between a brace and a chord, and the other is a chord sidewall buckling which 

occurs on equal-width (β = 1) RHS X-joints. Thus, in this thesis, these two 

failure modes are mainly discussed and the others will be briefly introduced. 

The main objective of this thesis is to investigate the appropriateness of 

RHS X-joints strength equations suggested in current design standards, thus, 

S
tr

es
s 

σ
, 

M
P

a 

Strain ε, dimensionless 
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the strengths of RHS are experimentally and analytically examined. A total of 

six RHS X-joints specimens were tested under axial compression and 

compared with key parameters, β and fy, the yield strength of applied material, 

to investigate the behavior of joints depending on these parameters. 

Rectangular hollow sections are primarily used as truss members loaded 

in compression or tension, and even bending moments could be transferred by 

the members. The connection strength decreases when loads (also moments) 

are applied on a chord member. For this reason, the strengths of RHS joints 

failure modes; chord plastification and chord sidewall buckling, take into 

account a chord stress state. As suggested in representative design standards, a 

strength reduction caused by chord stresses is considered as a chord stress 

function multiplied in chord plastification and chord sidewall buckling failure 

modes strength equations derived from theoretical models. In other words, the 

strength equations could be independently investigated without considering of 

chord stress states. Furthermore, practically, it is hard to conduct the 

experiments with considering the chord stress effect simultaneously. 

Therefore, in this thesis, the chord stresses were neglected in the investigation 

of the strength and the behavior of RHS X-joints. 

 

 

1.3. Outline of thesis 

 

This thesis contains five chapters. 

Chapter 1 gave an introduction, objectives and scopes of this research 

work. 
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Chapter 2 reviews the current design codes and the previous studies on 

the static behavior of the rectangular hollow section joints. 

Chapter 3 shows the experimental testing of RHS X-joints under axial 

compression. 

Chapter 4 proposes a new strength equation of sidewall buckling failure 

mode derived from a plate buckling model. 

Chapter 5 summarizes and gives conclusions of this thesis. 
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Equation Chapter (Next) Section 1 

 

 

 

 Review of Design Chapter 2

Standards and Previous Studies 

 

Review of Design Standards and 

Previous Studies 

 

 

2.1. Current design codes 

 

In the 1980s and early 1990s, design guides for statically-loaded welded 

connections of rectangular hollow sections were mainly developed by the 

leadership of Wardenier (1982) and CIDECT (1992). The recommendations 

these works were also included in Eurocode3 (2005). As a consequence, the 

strength equations and the failure modes of current structural design guides 

are almost identical to each other. 

This section gives the information about a joint configuration, a range of 

applicability about materials and geometries of RHS joints, the chord stress 

function which considers the influence of chord stress states affecting the 

strength of joints and failure modes suggested in current design standards. 
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2.1.1. Joint configuration 

Various types of RHS joints have been applied in different shapes of 

structures. These types could be classified in two major categories which are 

called as a uniplanar joint and a multiplanar joint. A uniplanar joint is a joint 

with members situated in a single plane (see Figure 2.1). K, Y and X joints are 

general types with an arbitrary value of the angle between a chord and the 

other members represented by θi. (Subscript i represents i
th
 brace. For example, 

θ2 is the angle between a chord and 2
nd

 brace.) N and T joints are respectively 

the special cases of K and Y joints: these types include one brace member 

perpendicular to a chord member. A DK joint has K joints on chord upper and 

lower faces. Similarly, a DY joint has Y joints on chord faces. 

 

 

Figure 2.1 Types of uniplanar joints 

Otherwise, members of a multiplanar joint are situated in more than one 

plane. Figure 2.2 shows the configurations for the multiplanar joints. 

K joint KT joint N joint 

X joint (θ1≠90˚) 

T joint X joint (θ1=90˚) Y joint 

DK joint DY joint 
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Figure 2.2 Types of multiplanar joints 

In Eurocode3 (2005), a configuration of a uniplanar RHS joint is 

suggested to be determined by a physical appearance of a joint. However, in 

CIDECT (2009) and AISC (2010), the classification of hollow section joints 

as K (which includes N), Y (which includes T) or X joints is based on the 

method of force transfer in the joints. The following descriptions from 

CIDECT (2009) explain the classification method: 

 

1. When the normal component of a force transferred by a brace member is 

equilibrated by shear force (and bending moment) in a chord member 

(see Figure 2.3(a)), the joint is classified as a Y joint. Especially, the joint 

is classified as a T joint when the brace member is perpendicular to the 

chord. 

2. When the normal force component is transmitted through the chord 

member and is equilibrated by a brace member (or members) on the 

opposite side, the joint is classified as an X joint (see Figure 2.3(b)). 

3. When the normal component of a force from a brace is essentially 

equilibrated (within 20%) by the normal force component of another 

KK joint TT joint XX joint 
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brace member (or members) on the same side of the joint, the joint is 

classified as a K joint (see Figure 2.3(c)). The relevant gap is between 

the primary brace members whose loads equilibrate. A K joint with a 

brace perpendicular to the chord are classified as a N joint (see Figure 

2.3(d)). 

 

 

Figure 2.3 Basic joint configurations (T, X and K joints) 

In this thesis, RHS X-joints classified as a uniplanar joint will be 

discussed. Generally, with same magnitude of forces, the strength capacities 

of joints are critical when the joints are loaded in compression due to their 

instabilities. Thus, the strength and behavior of RHS X-joints under axial 

(b) X joint

b1 h1

b0

h0

t0

θ1

N1

N1

(a) T joint

b0

h0

t0

t1

h1

b1

θ1=90˚ N1

(c) K gap joint

h2b2
h1

b1

t1

t2g b0

h0

-e

θ1 θ2

t0

(d) N overlap joint

hj

bj hibi

ti
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compression will be investigated as a main topic of this study. 

 

2.1.2. Range of applicability 

Material limitations 

A yield stress and a yield ratio of high-strength steel of RHS joints are 

restricted or given penalties by structural standards. Table 2.1 shows their 

range of applicability. For hollow section joints, AISC (2010) allows applying 

the steel whose yield strength and yield ratio are within 360 MPa and 0.8, 

respectively. This limitation implies that the application of high-strength steels, 

defined as the steel whose yield stress exceeds 355 MPa in CIDECT (2009), 

to the joints of hollow sections is forbidden. 

 

Table 2.1 Range of applicability: material 

Standards Yield stress (fy) Yield ratio (fy/fu) 

KBC 

(2016) 
fy < 360 MPa 0.80 

AISC 

(2010) 

CIDECT 

(2009) 

The strength reduction factor should 

be multiplied as the conditions below: 

 

i. 1.0 for fy < 355 MPa 

ii. 0.9 for 355 MPa ≤ fy < 460 MPa 

0.80 

 

When yield ratio exceeds 

0.8, fy should be taken as 

0.8fu 

Eurocode3 

(2005) 

The strength reduction factor should 

be multiplied as the conditions below: 

 

i.1.0 for fy < 355 MPa 

ii.0.9 for 355 MPa ≤ fy < 460 MPa 

iii.0.8 for 460 MPa ≤ fy ≤ 700 MPa 

i. 0.91 

ii.460 MPa ≤ fy ≤ 700 MPa 

(from S460 up to S700): 

0.95 

 

The joint resistances given in CIDECT (2009) are applicable for those 

steels with nominal yield strength of up to 355 MPa. The strengths of joints 
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with the steel whose nominal yield strengths are greater than this value should 

be obtained from formulae multiplied by 0.9. However, a nominal yield stress 

should not exceed 460 MPa. Furthermore, if a yield stress exceeds 80% of an 

ultimate stress of material fu, the design yield stress used for the prediction of 

connection strengths should be taken by 0.8fu, 80% of the value of the 

ultimate stress. 

For RHS joints fabricated from high-strength steel compatible with S700 

whose nominal yield stress is about 700 MPa, Eurocode3 (2005) gives 

additional rules to allow to apply this steel. The reduction factor of 0.8 should 

be multiplied in the nominal strength instead of the factor of 0.9 which is used 

for the strength formula of joints fabricated from the high-strength steel 

whose yield stress is greater than 355 MPa, but less than 460 MPa. In addition, 

the applicable range of the yield ratio (fy/fu) is expanded up to 0.95. 

 

Geometric parameters 

 

 

Figure 2.4 Geometric configuration of RHS X-joints 

A general geometric configuration of RHS X-joints is shown as Figure 2.4: 

b1 h1

b0

h0

t0

θ1

N1

N1

t1
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where N1 is a force applied on brace, b is a width of sections, h is a height of 

sections, t is a thickness of sections and θ1 is an acute angle between a chord 

and a brace. Subscript 0 and 1 represent a chord and a brace section, 

respectively. 

Representative design standards such as Eurocode3 (2005), CIDECT 

(2009) and AISC (2010), prohibit using the RHS X-joints with the geometric 

parameters which are out of the ranges of applicability to avoid the occurrence 

of unexpected failure modes. 

 

Table 2.2 Range of applicability for welded joints between RHS brace and 

RHS chord members 

Standards AISC (2010) CIDECT (2009) Eurocode3 (2005) 

Brace section 

slenderness 

ratio, 

b1/t1 and h1/t1 

b1/t1 ≤ 35, 

h1/t1 ≤ 35 

and 

b1/t1 ≤ 1
1.25 /

y
E f , 

h1/t1 ≤ 1
1.25 /

y
E f  

b1/t1 ≤ 40, 

h1/t1 ≤ 40 

and 

class 1 or 2 

b1/t1 ≤ 35, 

h1/t1 ≤ 35 

and 

class 1 or 2 

Chord and 

brace section 

aspect ratio, 

h0/b0 and hi/bi 

0.5 ≤ h0/b0 ≤ 2.0 

and 

0.5 ≤ h1/b1 ≤ 2.0 

Chord section 

slenderness 

ratio, 

b0/t0 and h0/t0 

b0/t0 ≤ 35 

and 

h0/t0 ≤ 35 

b0 / t0 ≤ 40, 

h0 / t0 ≤ 40 

and 

class 1 or 2 

b0/t0 ≤ 35, 

h0/t0 ≤ 35 

and 

class 1 or 2 

Width ratio, 

b1/b0 and h1/b0 

0.25 ≤ b1/b0 

and 

0.25 ≤ h1/b0 

0.1+0.01b0/t0 ≤ b1/b0 

but 

0.25 ≤ b1/b0 

0.25 ≤ b1/b0 

Angle 

between 

chord and 

brace, θ1 

30˚ ≤ θ1 
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Table 2.2 shows the range of applicability of the section of the RHS X-

joints suggested in international structural specifications. For a chord and a 

brace section, the compact section condition is used to limit their geometries 

such as section slenderness ratio (bi/ti or hi/ti, where subscript i represent a 

chord section with 0 and a brace section with 1). The section classification 

suggested in Eurocode3 (2005) is shown as Table 2.3. 

 

Table 2.3 Eurocode3 section classification: RHS section subject to bending 

and compression 

Internal compression parts 

 

 

Class 1 2 3 

Part subject to 

bending 
c/t ≤ 72ε c/t ≤ 83ε c/t ≤ 124ε 

Part subject to 

compression 
c/t ≤ 33ε c/t ≤ 38ε c/t ≤ 42ε 

235 /
y

f   
fy, MPa 235 275 355 420 460 

ε 1.00 0.92 0.81 0.75 0.71 

 

 

2.1.3. Chord stress function 

As mentioned in section 1.2, the strength equations of chord plastification and 

chord sidewall buckling suggested in the representative structural standards 

reflect the chord stress effect, reducing the strength of joints, by multiplying 

the chord stress function. 

c
t

c
t

c
t

Axis of

bending
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The chord stress functions of Eurocode3 (2005) and AISC (2010) are 

identical to each other. This function neglects the effect of tensile stress of the 

chord. Thus, the chord stress function of Eurocode3 (2005) and AISC (2010) 

is equal to unity which means that there are no stress effects consideration 

when the chord is in tension. 

On the other hand, the compressive stresses induced by the axial load 

and the bending moment applied on chord section is taken into account to this 

chord stress function. With small β value, the influence of chord stresses is 

more sensitively reflected in the chord stress function. 

 
,E&A

0.4
1.3 1f

n
Q


     (2.1) 

where Qf,E&A is the chord stress function suggested in Eurocode3 (2005) and 

AISC (2010), n is the factor considering the chord stress induced by applied 

forces and moments. The equation of n used in equation 2.1 is shown as the 

following equation: 

 0 0

c g c

P M
n

F A F S
    (2.2) 

where Fc is the available axial strength, Ag is the gross area of the chord, S is 

the section modulus of the chord, and P0 and M0 are the axial load and the 

moment applied on chord which are determined on the side of the joint that 

has the higher compression stress, respectively. If the value of n is positive, it 

represents that the tensile stresses are applied on a chord member while the 

negative value of n shows that the compressive stresses are acted on a chord 
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member. Figure 2.5 shows the relationship between the chord stress function 

of Eurocode3 (2005) and AISC (2010) and factor n representing the chord 

stress state. 

 

 

Figure 2.5 Chord stress functions suggested in Eurocode3 

(2005) and AISC (2010) 

CIDECT (2009) considers the axial compression stress and the moment 

applied on the chord similar to AISC (2010), but the formula of chord stress 

function is different from that of Eurocode3 (2005) and AISC (2010). The 

following equation shows the equation of the chord stress function: 

   1

,CIDECT 1
C

fQ n    (2.3) 

where Qf,CIDECT is the chord stress function suggested in CIDECT (2009) and 

C1 = 0.6 – 0.5β for X-joints. This C1 factor also considers the influence of β 

C
h
o
rd

 s
tr

es
s 

fu
n
ct

io
n
 Q

f,
A

&
E
 

Factor n representing chord stress state 

Chord in 

compression 
Chord in 

tension 

β=0.4 

β=1.0 

β=0.6 

β=0.8 
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with different form, but shows consideration of β analogous to previous chord 

stress functions. As the value of β increases, the value of n representing the 

chord stress state is more insensitively reflected to chord stress function. 

Figure 2.6 shows the chord stress function of CIDECT (2009), Qf,CIDECT. 

 

 

Figure 2.6 Chord stress function suggested in CIDECT (2009) 

 

2.1.4. Failure modes and strength formulae 

Representative design standards such as Eurocode3 (2005), CIDECT (2009) 

and AISC (2010) suggest identical failure modes of RHS X-joints with 

slightly different form of strength formulae. The failure modes and the 

strengths of X-joints depend on values of β, a width ratio between a brace and 

a chord. 

A width ratio between a brace and a chord β is one of the important 

Chord in 
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Joint in tension 



 
                    Chapter 2. Review of Design Standards and Previous Studies 

 

18 

 

geometric parameters for RHS X-joints since the force transfer mechanisms of 

the joints are depending on this parameter. As a value of β becomes larger 

(becomes closer to unity), the part of chord resisting the most of the forces 

move from chord upper and lower face to chord sidewalls. Therefore, the 

governing failure mode of the joint also changes from chord plastification to 

chord sidewall buckling. 

Due to the range of applicability for β, β value could vary in the range of 

0.25 to 1. Thus, in the following paragraphs, the failure modes will be 

introduced depending on the range of β. 

 

1. RHS X-joints with β in the range of 0.25 to 0.85 

For the joints with β value greater than 0.25 and less than 0.85, its 

strength is governed by the limit state of chord plastification. 

 

 

Figure 2.7 Chord plastification failure mode 

Figure 2.7 shows the general drawing of chord plastification of X-

joints. The strength equation of chord plastification for current design 

standards is shown as equation 2.4: 

 
2

0 0 1 0

1 1

1

2 /
sin 4 1

1 sin

y

f

f t h b
N Q 

 

 
    

  

   (2.4) 
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where N1 is the force applied on brace, b0 is the width of chord section, h1 

is the height of brace section, t0 is the thickness of chord section, fy0 is the 

yield stress of chord, β is the width ratio between brace and chord, θ1 is 

the acute angle between a chord and a brace and Qf is the chord stress 

function which takes account of the influence of chord longitudinal 

compressive stresses. Subscript 0 and 1 represent a chord and a brace 

section, respectively. The only difference of the chord plastification 

strength equations among the design standards is the chord stress function, 

as mentioned in previous section. In this study, no chord stresses were 

applied and considered for RHS X-joints, thus, the value of Qf is unity. 

 

2. RHS X-joints with β = 1 

Chord sidewall buckling 

 

 

Figure 2.8 Chord sidewall buckling failure mode 

RHS X-joints with β = 1, which represents equal-width X-joints, are 

governed by the chord sidewall buckling. The general illustration of this 

failure mode is shown in Figure 2.8. 

The following equation shows the strength formula of chord sidewall 

buckling suggested in Eurocode3 (2005) and CIDECT (2009). 
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 1
1 0 0 0

1

2
0.8 10

sin
y f

h
N f t t Q



 
   

 

 (2.5) 

where N1 is a force applied on brace, fy0 is the yield stress of the chord, t0 

is the thickness of the chord, h1 is the height of the brace, θ1 is the acute 

angle between brace and chord, Qf is the chord stress function identical to 

the function introduced in previous paragraph and χ is the buckling stress 

reduction factor obtained from EN 1993-1-1 using the relevant buckling 

curve depending on manufacturing process and grades of steels, and a 

normalized   determined from: 

 00

0 1

1 1
3.46 2

sin

yfh

t E


 

 
   

 

   (2.6) 

where h0 is the height of the chord, t0 is the thickness of the chord, θ1 is 

the acute angle between brace and chord, fy0 is the yield stress of the 

chord and E is the elastic modulus of the material applied to the chord. 

In this equation, the factor of 0.8 is multiplied. This factor is used 

for X-joints while other joints use the value of unity instead. The factor of 

0.8 is originated from 1/(γmγc). γm and γc are partial safety factors 

suggested in work of Wardenier (1982), where γm is a material factor and 

γc is a factor to take account of the nature of the structure and its behavior 

and the seriousness of attaining a limit state. For structures with steel, the 

material factor γm have the value of unity. The value of γc, 1.25 was set 

due to the lower plasticity of X-joints. 

As mentioned in previous paragraph, there are no chord stresses 

considered for RHS X-joints in this thesis, thus, the value of Qf is unity. 
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Web crippling of RHS 

In AISC (2010), web crippling of RHS should be considered as the 

failure mode of β = 1 RHS X-joints while other design standards suggest 

to use the sidewall buckling equation for equal-width RHS X-joints. 

Indeed, web crippling of RHS and chord sidewall buckling are identical 

failure mode causing a bulging at the mid-height of the chord sidewalls, 

however, the strength equations were different. The following equation 

shows the formula of RHS web crippling strength. 

 
3

0
1 1 0

0 0

48
sin

3
y f

t
N Ef Q

h t


 
  

 

   (2.7) 

where N1 is the force applied on brace, h0 is the height of chord, t0 is the 

thickness of chord, E is the elastic modulus of steel, fy0 is the yield stress 

of the chord and Qf is the chord stress function suggested in AISC (2010). 

 

Chord yield strength and the strength of RHS X-joints with β = 1 

suggested in AISC (2010) 

In Eurocode3 (2005) and CIDECT (2009), the chord yield strength is 

considered in the chord sidewall buckling equation for the chord sidewall 

comprised of stocky sections. For β = 1 RHS X-joints with the 

normalized slenderness   of the chord section less than 0.2, the value of 

buckling reduction factor χ should be unity. Then the chord sidewall 

buckling equation shows the strength identical to the chord yielding 

strength without the factor 0.8 originated from partial safety factors. On 

the other hand, AISC (2010) only considers the elastic buckling 
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analogous to web crippling. Thus, to determine the strength of β = 1 RHS 

X-joints with stocky sidewall sections could be determined as the 

following equation derived from chord yielding model: 

 1
1 1 0 0 0

1

2
sin 15

sin
y

h
N f t t



 
  

 

 (2.8) 

where N1 is a force applied on brace, θ1 is the acute angle between the 

chord and the brace, fy0 is the yield stress of the chord, h1 is the height of 

the brace and t0 is the thickness of the chord. 

In summary, the strength of β = 1 RHS X-joints suggested in AISC 

(2010) could be determined by the given function: 

 
3

0 1
1 1 0 0 0 0

0 0 1

48 2
sin min , 15

3 sin
y f y

t h
N Ef Q f t t

h t




  
       

  (2.9) 

 

3. RHS X-joints with β greater than 0.85 less than unity 

Mixed failure mode 

In the range of β between 0.85 and 1, several failure modes should be 

considered. One of the failure modes is a mixed mode of chord 

plastification and chord sidewall buckling. The strength of the joint with 

β in this range is determined by the linearly interpolated value between 

the strength of chord plastification at β = 0.85 and the chord sidewall 

buckling strength at β = 1. The interpolated strength could be expressed 

by the following equation: 

  1, 1 1, 0.85

1 1, 0.850.85
1 0.85

N N
N N

 


 




   


  (2.10) 
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where N1,β=1 is the capacity of X-joints with β = 1 calculated by the 

sidewall buckling strength formula, N1,β=1 is the capacity of X-joints with 

β = 0.85 calculated by the chord plastification strength formula and β is a 

width ratio between brace and chord. 

 

Brace failure 

 

 

Figure 2.9 Brace failure 

Another failure mode is a brace failure. The illustration of brace failure 

occurred at a RHS X-joint is shown in Figure 2.9. The formula for this 

failure mode could be expressed as the following equation:  

  1 1 1 1 12 4 2  y effN f t h t b   (2.11) 

where fy1 is the yield stress of the brace, t1 is the thickness of the brace, h1 

is the height of the brace and beff is the effective width for a brace 

member to chord connection determined from: 

 
0 0

1

0 0 1 1

10

/

y

eff

y

f t
b b

b t f t
   (2.12) 

where bi is the width of the member, ti is the thickness of the member and 
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fyi is the yield stress of the member. Subscript i implies the different 

member with different numbers: 0 represents a chord member and 1 

represents a brace member. 

  

Punching shear failure 

 

 

Figure 2.10 Punching shear failure 

The other failure mode is a punching shear failure. This failure mode 

occurs in RHS X-joints with the range of β greater than 0.85 but not 

exceeding (1-1/γ). The strength equation for punching shear failure 

suggested in Eurocode3 (2005) is shown as the following equation: 

 0 0 1
1 1 1

1 0 0

2 20
sin

sin /3

yf t h
N b

b t




 
  

 

  (2.13) 

where h1 is the height of the brace, b0 is the width of the chord, b1 is the 

width of the brace, respectively, t0 is the thickness of the chord, θ1 is the 

acute angle between brace and chord and fy0 is the yield stress of the 

chord. The factors of 0.6 and 0.58 are used in AISC (2010) and CIDECT 

(2009), respectively, instead of 1 / 3  suggested in Eurocode3 (2005) 

Since brace failure and punching shear failure are the failure modes 
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occur at brace sections, the chord stress function is not multiplied to the 

strength equations of these two failure modes. 

 

2.1.5. Design example of RHS X-joints per Eurocode3 

 

 

Figure 2.11 EC3 X-joint strength depending on β 

As mentioned in previous paragraph, the failure modes and strengths of X-

joints changes with the value of β, the width ratio between brace and chord. 

Figure 2.11 shows an example of an X-joint strength variation depending 

upon β value. As shown in this Figure, the strengths of failure modes such as 

chord plastification, chord sidewall buckling and a mixed failure mode mainly 

governs the strengths of X-joints while the other failure modes show 

relatively large values of strengths. 
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As reported in article 2.1.4, the strength formula of a mixed failure mode 

between chord plastification and chord sidewall buckling is just a linearly 

interpolated equation of those two strength equations. In this thesis, the 

method predicting strength of a mixed failure mode by the linearly 

interpolated formula is not evaluated; however, assuming that this method is 

reasonable enough, the appropriateness of this method only depends on the 

accuracy of the strength formula of chord plastification and sidewall buckling. 

For accurate strength predictions, the theoretical models based on reasonable 

assumptions should be established. As a consequence, in this thesis, the 

theoretical models of the chord plastification and chord sidewall buckling will 

be examined in detail and investigated in respect to the appropriateness of 

those models. 

 

 

2.2. Backgrounds of current design standards 

 

2.2.1. Background of chord plastification 

Theoretical model 

The strength equation of chord plastification is derived from the simplified 

yield line model. As shown in Figure 2.12, a yield line model with twelve 

yield lines is established to describe the chord plastification and determine the 

strength of this failure mode. This theoretical model is based on the 

assumptions of rigid perfectly plastic material model and small deflection 

which are general conditions for theoretical models. Due to small deflection 

assumption, membrane action and strain hardening effects are ignored. 
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Figure 2.12 Simplified yield line model with twelve yield lines 

 

Application of the Work Method 

Figure 2.13 shows the simplified yield line model of chord plastification in 

detail. The strength equation of chord plastification could be derived from this 

yield line model with the Work Method. 

The Word Method assumes that the potential energy expended by 

external loads to move the chord face downward must be equal to the energy 

dissipated (or work done) by rotated yield lines at failure of this model. 

Therefore, the following equation could be derived: 

    ext d i i pE E N l m        (2.14) 

where Eext is the potential energy (work) expended by external load(s), Ed is 

the energy dissipated by the rotations of yield lines, N is the load(s) acting 

within a particular region, δ is the vertical displacement of the load(s) N on 

each region expressed as a fraction of unity, li is the length of i
th
 yield line, Φi 

is the rotation of the region about its axis of rotation and mp is the plastic 

moment about horizontal axis per unit length which could be expressed the 

equation of fy0t0
2
/4. 
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Figure 2.13 Yield line model for RHS joints 
 

 

Dissipated energy calculation 

The total energy participated in the yield lines 1 to 5 is as follows: 
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Yield lines 3: 1 0 1
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4(tan cot ) pm      

where mp = fy0t0
2
/4 and η = h1/b0 

 
5

1 1

8 1
tan

1 tan sin

p

d i i i p

i

m
E n l m

  


  

  
      

  
   (2.15) 

The energy by the external load is N1sinθ1δ that is equal to the 

participated energy in the yield lines which gives: 
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  (2.16) 

N1 has minimum value when tan 1    which could be obtained by the 

partial derivative equation derived from the principle of stationary potential 

energy given as: 

 1 0
N
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
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Substituting 1   to tan  yields to the chord plastification strength 

formula expressed as the following equation: 
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1 1
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sin 4 1

1 sin

yf t h b
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 

 
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  (2.18) 

Taking into account the chord stress states by multiplying a chord stress 

function, it gives the identical equation expressed as Equation 2.4 mentioned 

in previous chapter. 

 

2.2.2. Theoretical model of chord sidewall buckling 

 

 

Figure 2.14 Theoretical model: simplistic column buckling approach 

 

A chord sidewall in this model was assumed as a simply supported 

column which ignores the boundary condition in the longitudinal direction. 

The stresses transferred from braces are assumed to be distributed into 

sidewalls with the ratio between a width and a height of 2.5:1 (see Figure 
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2.14). Then the width of the column bw could be determined as h1/sinθ1+5t0. 

 

 

Figure 2.15 Buckling of simplistic column with unit width 

If the simplistic column buckles as Figure 2.15, the moment of inertia I 

could be obtained by a simple equation to calculate a moment of inertia of 

rectangular sections: 

 
3 3

0

12 12

wbh b t
I     (2.19) 

where bw is the width of the column and t0 is the thickness of the column 

section. Then the elastic buckling strength of one sidewall assumed as 

simplistic column is shown as the equation below: 
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where bw is the width of the column, t0 is the thickness of the column and Lb is 

the buckling length for this model. From the assumption of this model, the 

influence of the angle variable is neglected. 
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The yield strength of a sidewall could be simply obtained as equation 

2.21: 

 
1 0 0 0siny y y wN f A f t b    (2.21) 

From this equation, the slenderness ratio used for the chord sidewall buckling 

could be derived from its definition: 

0 0 00

2 3 2

0 0

1
3.46 2

/12

y y w y

cr w b

N f t b fh

N Eb t L t E


 

 
     

 
  

 (2.22) 

Therefore, the sidewall buckling strength equation derived from the 

simplistic column buckling model is shown as the following equation: 
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    (2.23) 

where χ is the buckling stress reduction factor obtained from EN 1993-1-1 

using the relevant buckling curve and a normalized slenderness  . 

 

 

2.2.3. Web crippling strength equation suggested in AISC (2010) 

Equation 2.8 which represents the strength formula for AISC (2010) web 

crippling is repeated here: 
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where N1 is a force applied on brace, h0 is the height of the chord, t0 is the 

thickness of the chord, E is the elastic modulus of steel, fy0 is the yield stress 
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of the chord and Qf is the chord stress function suggested in AISC (2010). 

This equation is originated from the equation of web compression 

buckling strength expressed as below: 

 
3

24 w
n yw

t
R Ef

h
   (2.24) 

where h is the clear distance between flanges less the fillet or corner radius for 

rolled shapes; distance between adjacent lines of fasteners or the clear 

distance between flanges when welds are used for built-up shapes. 

For RHS cross connections, h could be assumed as h0-3t0 when the 

bending radius is considered, and the properties (thickness and yield strength) 

for web could be adjusted to the chord of RHS cross connections. Then, the 

strength equation of web compression buckling for a sidewall of the chord of 

RHS cross connection could be expressed as the following equation: 
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Since a pair of sidewall of RHS X-joint resists the load transferred from 

braces, to obtain the web crippling strength of RHS X-joint, equation 2.25 

should be doubled. Moreover, the chord stress factor Qf should be multiplied 

to consider the effects of chord stress. Then the web crippling strength 

equation of RHS X-joint could be derived as:  
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Background of web crippling strength equation 

AISC web crippling strength equation is based on the buckling strength of the  

simply supported rectangular plate compressed by two equal and opposite 

forces, introduced in Timoshenko and Gere (1961). 

 

 

Figure 2.16 Simply supported rectangular plate compressed 

by two equal and opposite forces 

As shown in the Figure above, the length of the plate is represented as 

the letter a and the height of the plate is expressed by the letter b. A pair of 

concentrated compressive forces is loaded at the center of the plate. All edges 

are regarded to be simply supported. To derive the buckling strength of the 

plate, the buckled shape of the plate is assumed as following series: 
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Then the elastic buckling strength of the plate model shown in Figure 

2.16 could be obtained by the following equation: 
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where β is a/b and D is a flexural rigidity. The buckling strength Pcr could be 

expressed as the equation shown below: 
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f(β) rapidly converges to 8/π as β increases to ∞. Therefore, the buckling 

strength for the long plate (β = ∞) becomes: 
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Chen and Oppenheim (1970) found from observations of the test results 

in their tests; it appears that far more than in the elastic range, the plastic 

behavior of the web plate is primarily a local matter and does not depend too 

much upon geometry and loading of the entire column. Therefore, they 

suggested that the concentrated load acts only across an effective width, and 

this width forms a square panel whose size is dc by dc. Thus the critical 

buckling stress becomes: 
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where E is the elastic modulus, dc is the column web depth between toes of 
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fillets, tw is the thickness of the web and ν is the Poisson’s ratio. From the 

observation in previous test results, a critical strength of web suggested in this 

research work is assumed to be proportional to the term / 36yf  where fy is 

yield stress of applied steel in the unit of ksi. Then the modified critical 

buckling strength could be obtained as: 
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To fit the most critical test result, the buckling strength equation yields to: 
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This equation is unbalanced due to the number 36 included in the term 

/ 36yf , thus, square root of the value of elastic modulus E (about 29000ksi) 

is multiplied to denominator and numerator of this equation. Then the 

balanced buckling strength formula yields to the following equation: 
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AISC (2010) suggests determining the capacity of equal-width RHS X-

joints by the minimum value of the strengths corresponding to two different 

failure modes. These failure modes are the web crippling and the chord local 

yielding. However, there are no considerations of the RHS X-joints in the 

range of inelastic buckling. The actual behavior of the joints, in fact, could 

never be perfectly plastic or elastic. Therefore, some method to take account 
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of inelastic buckling should be considered to make the strength equation more 

accurately. 

 

 

2.3. Previous studies 

 

2.3.1. Research works about high-strength steel 

As mentioned in article 2.1.2, the nominal strength of RHS X-joints fabricated 

from the steel whose yield stress exceeds 355 MPa should be reduced by 

factor of 0.8 or 0.9 which is determined by the range of yield stress of the 

steel. However, the mechanical background of this limitation is weak 

compared to its strict strength penalty. 

According to the work of Becque and Wilkinson (2012), most of 

justification for the reduction factor of 0.9 originates from experimental work 

conducted on gapped K joints. Kurobane (1981) was first to demonstrate that 

the ultimate capacity of CHS K gap connections fabricated from S460 steel is 

in relative terms 18% lower compared to the joints in S235 with the identical 

geometry. Noordhoek et al. (1996) similarly found that CHS K gap 

connections of S460 have lower joint strength capacity factors than S235.  

However, Puthli et al. (2010) carried out tests on CHS X-joints in S460 

and observed that the experimental strength of joints exceeded the nominal 

strengths calculated without the factor of 0.9. The numerical analysis 

following experimental results supported this observation. As a consequence, 

some justification of the strength equation including a reduction factor of 0.9 

currently used was insisted to be conservative for X-joints. 
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Becque and Wilkinson (2012) investigate the results of an experimental 

program carried out at the University of Sydney to reassess the need for 

reduction factors multiplied in the strength equations of X and T joints 

fabricated from C450 steel. The reduction factor of 0.9 should be used for 

RHS joints in C450 (fy = 450 MPa) whose nominal yield stress is in the range 

of greater than 355 MPa, less than 460 MPa. As a result, most of the 

normalized strengths of tested specimens exceed 1.0. The experimental 

strengths normalized by nominal strength without the strength reduction 

factor due to application of high-strength steel also exceed 1.0 or give the 

values slightly less than unity. 

Based on test results, the conclusive evidence is not currently presented 

to support the inclusion of an additional safety factor of 0.9. Therefore, in this 

thesis, the appropriateness of the reduction factor of 0.8, multiplied in the 

strength equation of RHS joints with steel whose yield stress exceeds 460 

MPa, will be assessed by experimental results. 

 

2.3.2. Research works about chord sidewall buckling strength 

Some researchers mentioned that the strength equation derived from 

simplistic column buckling model suggested in Wardenier (1982) to predict 

the strength of RHS X-joint with equal-width is too conservative and 

inaccurate in their works. 

Packer (1984, 1987) carried out experimental studies and suggested a 

design method to RHS equal-width X-joints. In Packer (1984), a total of 31 

cross joint tests (14 of them were RHS to RHS X-joint specimen), all having 

width ratios β of 1.0, and either plate or RHS branch members welded to an 
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RHS chord member have been tested under compression. In this research 

work, the strength equation obtained from CIDECT (1992) and IIW (1981) 

was evaluated to be far too conservative and inaccurate; the chord sidewall 

buckling equation suggested by Wardenier (1982) was proved to be an 

approximate lower bound, but has an extremely high mean value of 1.90, with 

a very wide scatter (COV = 0.61). 

 

 

Figure 2.17 Correlation between test results and predictions by 

Wardenier (1982) 

Figure 2.17 shows the correlation  between RHS test data collected by 

Packer and the equation derived by Wardenier (1982). Experimental strength 

normalized by Wardenier’s sidewall buckling equation for 32% of RHS X-

joint database specimens were exceeded 2.00 which means that the measured 

actual strengths are 200% of the strength equation of Wardenier. 

As mentioned in previous section, Becque and Wilkinson (2012) tested a 

total of 15 connections including 4 T-joints and 11 X-joints. Four specimens; 

X2, X3, X10 and X11 were RHS to RHS X-joints with β = 1. These 

specimens were failed by chord sidewall buckling and exceeded the predicted 
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capacity by at least a factor of 2.0. Specimen X2 and X11 were equal-width 

X-joints with a sidewall slenderness of 50, which is well outside the CIDECT 

limits (b0/t0 ≤ 35). Nevertheless, these specimens exceeded the capacities 

predicted by CIDECT by factors of 3.5 to 4.0, the largest margins in their test 

program. 

Due to the inaccuracy of the current design strength equation, an 

alternative design equation of chord side wall buckling was derived from plate 

buckling model and validated by experimental (A total of 5 full-scale test 

specimens) and numerical test results in Becque and Cheng (2016). Specimen 

X1 through X5 was fabricated from S355 with hot finished square hollow 

sections of which chord width was 100mm. The alternative equation derived 

in Becque and Cheng (2016) will be introduced in the following article. 

 

2.3.3. Design equation suggested in Becque and Cheng (2016) 

Theoretical model: shape function assumption 

A plate with thickness t0, which extends to infinity on both sides (see Figure. 

2.18). The plate was thereby assumed to be made of a linear elastic and 

homogeneous material. 

The loads and boundary conditions were idealized as follows: 

 

1. The distributed load p transferred from the brace sidewall into the 

chord sidewall was assumed to be uniformly acting over the brace 

width h1. The total load N carried by the connection (comprised with 

two sidewalls) is then given by N = 2ph1 = 2σt0h1 where the stress σ 

= p/t0. 
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2. The plate is hinged along the longitudinal edges. Thus, no restraints 

provided the chord upper and lower faces and by the welded 

connection to the brace members are considered in this model. This is 

an obviously conservative assumption which could give the 

underestimated but safe predicted strengths. 

 

 

Figure 2.18 Chord sidewall buckling model: plate buckling 

approach from Becque and Cheng (2016) 

A Rayleigh-Ritz method was used to obtain assumed shape function of 

this plate buckling model. The elastic plate buckling strength could be derived 

by substituting the assumed shape function; a multiplicative function 

consisted of a trigonometric function and a truncated Fourier series to a 

potential energy equation. However, to describe the localized function with 

sufficient accuracy, large number of Fourier terms would be needed which is 

not effective to obtain the equation with closed form. Therefore, the 

exponential Gauss function is instead chosen to represent the longitudinal 

shape of the buckle. This function is an ideal candidate to capture the 

localized nature of the failure mode, since its ordinates approach zero almost 

immediately when leaving a localized area around the origin. When a half-
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sine wave solution is also adopted in the transverse direction (across the depth 

of the chord wall), the proposed deformed shape is expressed by the following 

function: 
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  (2.35) 

where w is again the out-of-plane displacement of the plate, while Δ and B are 

(presently undetermined) parameters. Δ determines the amplitude of the 

displacements, while B is related to the length of the buckle. 

The Gauss function is prominently featured in statistics and from the 

study of the Gaussian (normal) distribution it is known that only 0.27% of the 

points in the distribution are more than three standard deviations (3s) removed 

from the average. The general expression of the Gaussian distribution is 

shown as equation 2.36: 

  
2 2( ) /21

, ,
2

x s
f x s e

s




 
    (2.36) 

where μ is the average and s is the standard deviation, an approximate length 

of the buckle can be determined as Lb = 6s. 

 

Elastic buckling strength derivation 

By the principle of stationary total potential energy, the derivatives of the total 

energy (U + V) with respect to s and Δ are set equal to zero: 
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where U is the elastic strain energy and V is the potential energy of the applied 

stresses. By solving this system of partial derivative equations, the 

calculations result could be given in the following equations: 
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 (2.38) 

A plate with thickness t0, which extends to infinity on both sides, the 

plate was thereby assumed to be made of a linear elastic and homogeneous 

material. Substituting the value of E = 205000 MPa and ν = 0.3, equation 

yields to: 
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t

h h
     (2.39) 

where t0 is the thickness of the chord, h0 is the height of the chord and h1 is the 

height of the brace. All these variables are in unit of millimeter. 

 

Yield strength of chord sidewalls and slenderness ratio 

A chord sidewall yield load can be calculated as the following equation: 

  , 0 1 0 0 1 01.2 1.2 2 2.4proposed y y y yN N f h t f h t       (2.40) 

where fy0 is the yield stress of the chord, h1 is the height of brace and t0 is the 

thickness of the chord. The factor 1.2 thereby takes into account that a small 

part of the load follows an alternative load path through the chord top and 

bottom faces and then spreads out into the chord sidewalls. 
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Therefore, a non-dimensional slenderness can be defined as: 
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Using λ above, buckling strength could be calculated by: 
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where  is defined as: 
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In this method, the value of the imperfection factor α is taken as 0.08. 

The imperfection factor α of each buckling curve is shown in Table 2.4 

and the buckling curves with imperfection factor reported in Table 2.4 are 

shown in Figure 2.19. 

 

Table 2.4 Imperfection factors for buckling curves 

Buckling curve 
Becque and 

Cheng 
a0 a b c d 

Imperfection 

factor α 
0.08 0.13 0.21 0.34 0.49 0.76 
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Figure 2.19 Multiple curves suggested in EC3 and Rondal-

Maquoi equation with imperfection factor α of 0.08 

 

 

2.4. Database collected from previous experimental 

studies 

 

Since the chord sidewall buckling strength equation suggested in Eurocode3 

(2005) and CIDECT (2009) was evaluated as a conservative and inaccurate, 

the experimental test results of RHS X-joints with β = 1 are collected from 

available previous research works to examine the appropriateness of this 

equation and the restrictions and penalties on the joints fabricated from high-

strength steels. 

The following Tables (Table 2.5 through 2.7) show the information of a 

total of 23 β = 1 RHS X-joint specimens tested under compression in Packer 

(1984), Becque and Wilkinson (2012) and Becque and Cheng (2016). The 
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information reported in these Tables include section geometries of the chord 

section and the brace sections in a format of (width) × (height) × (thickness), 

measured material properties such as yield stress fy and ultimate stress fu of the 

steels applied to the experimental specimens, and ultimate (peak) strengths of 

the tested X-joint specimens. 

 

Table 2.5 Database RHS X-joints with β = 1 reported in Packer (1984) 

Total: 31 Specimens, β = 1 RHS X-joints: 14 Specimens 

Specimen 

Chord section 

(b0×h0×t0), 

mm× mm×mm 

Brace section 

(b1×h1×t1), 

mm× mm×mm 

θ1 
fy, 

MPa 

fu, 

MPa 

Nexp, 

kN 

D1121 101.7×77.6×5.08 101.7×77.6×5.08 90˚ 303  - 403 

D1122 77.8×101.8×4.93 77.8×101.8×4.93 90˚  358  - 445 

D1222 77.8×101.8×4.93 77.8×101.8×4.93 45˚  358  - 476 

D1322 77.8×101.8×4.93 77.8×101.8×4.93 60˚  358  - 459 

D2121 304.4×204.1×7.21 304.4×204.1×7.21 90˚  406  - 1315 

D2122 204.1×304.4×7.21 204.1×304.4×7.21 90˚  406  - 1230 

D2222 204.1×304.4×7.21 204.1×304.4×7.21 45˚  406  - 1675 

D3121 203.2×153.6×4.83 203.2×153.6×4.83 90˚  392  - 649 

D3122 153.6×203.2×4.83 153.6×203.2×4.83 90˚  412  - 530 

D3221 203.2×153.6×4.83 203.2×153.6×4.83 44˚  392  - 693 

D3222 153.6×203.2×4.83 153.6×203.2×4.83 44˚  412  - 694 

D4132 254.1×254.1×9.35 254.1×254.1×9.35 90˚  406  - 2183 

D4223 254.1×254.1×9.35 254.1×254.1×9.35 45˚  406  - 2429 

D4323 254.1×254.1×9.35 254.1×254.1×9.35 60˚  406  - 2215 
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Table 2.6 Database for RHS X-joints with β = 1 

reported in Becque and Wilkinson (2012) 

Total: 15 Specimens, β = 1.0 RHS X-joints: 4 Specimens 

Specimen 

Chord section 

(b0×h0×t0), 

mm× mm×mm 

Brace section 

(b1×h1×t1), 

mm× mm×mm 

θ1 
fy, 

MPa 

fu, 

MPa 

Nexp, 

kN 

X2 150×250×5 150×150×5 90˚  438 514 413 

X3 150×150×6 150×150×6 90˚  433 502 831 

X10 250×350×10 250×250×10 90˚  444 534 1770 

X11 300×400×8 300×300×8 90˚  458 546 1291 

 

Table 2.7 Database for RHS X-joints with β = 1 

reported in Becque and Cheng (2016) 

Total: 5 Specimens, β = 1.0 RHS X-joints: 5 Specimens 

Specimen 

Chord section 

(b0×h0×t0), 

mm× mm×mm 

Brace section 

(b1×h1×t1), 

mm× mm×mm 

θ1 
fy, 

MPa 

fu, 

MPa 

Nexp, 

kN 

X1 100.5×100.3×2.92 100.2×100.3×2.73 90˚  330 388 176  

X2 100.4×100.1×3.84 100.4×100.2×3.69 90˚  330 404 302  

X3 100.3×99.8×4.89 100.1×99.9×4.70 90˚  400 437 373  

X4 99.6×99.6×5.80 99.8×99.7×5.46 90˚  370 425 560  

X5 99.9×99.7×7.92 100.1×99.6×7.68 90˚  345 392 783  
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Equation Chapter (Next) Section 1 

 

 

 

 Experimental Program Chapter 3
 

 

Experimental Program 

 

 

 

In this chapter, the behavior of high-strength steel RHS (rectangular hollow 

section) X-joints was investigated through experimental testing. As mentioned 

in chapter 2, the application of high-strength steel to RHS joints is permitted 

in EC3 with a joint strength reduction factor of 0.8 or 0.9 depending upon the 

yield stress of the steel applied to hollow section joints. To examine the 

appropriateness of the strength reduction penalty imposed on high-strength 

steels, six RHS X-joint specimens fabricated from high-strength and ordinary 

steels were tested under axial compression. 

 

 

3.1. Test program 

 

3.1.1. Key testing parameters 

The key parameters were the width ratio β and grade of steels (see Table 3.1). 
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Note that β values tested were 0.625, 0.85, and 1.0. Two grades of steels, 

SM490 and HSA800, were chosen to include ordinary and high strength steels. 

These parameters were determined to investigate the behaviors and strengths 

of RHS X-joints depending on the grades of steels and the value of β. For this 

test program, the value of θ1, the acute angle between the chord and the braces 

was not considered. 

 

Table 3.1 Experimental program of RHS X-joints 

Specimen 

Angle between 

chord and 

brace, ˚ 

Chord 

width, mm 

Brace 

width, mm 

Grade of 

steel 

X90–325–

0.625–26.7 
90 400 250 

SM490 

X90–650–

0.625–26.7 
HSA800 

X90–325–

0.850–26.7 
90 400 340 

SM490 

X90–650–

0.850–26.7 
HSA800 

X90–325–

1.000–26.7 
90 400 400 

SM490 

X90–650–

1.000–26.7 
HSA800 

 

The identification of specimens was conducted as the rule explained by 

an example. For X90–650–0.625–26.7 specimen, the character X means that 

the specimen is classified as X-joints, the number 90 stands for the angle 

between the chord and the brace, the number 650 shows the yield stress of the 

steel applied to the specimen in MPa unit, 0.625 shows the value of β, the 

width ratio between braces and a chord and 26.7 is the value of chord 
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slenderness ratio represented as the symbol 2γ = b0/t0. 

 

3.1.2. Drawings of specimens 

Figure 3.2 through 3.4 shows the geometries of all specimens conducted for 

experimental tests. A length of a chord is 2500 mm and lengths of braces are 

600 mm which is about 1.5 times of the largest width of the brace, 400 mm. 

 

 

Figure 3.1 Drawing of the geometry of specimen #1 and specimen #2 

 

 

Figure 3.2 Drawing of the geometry of specimen #3 and specimen #4 
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Figure 3.3 Drawing of the geometry of specimen #5 and specimen #6 

The length of the braces was designed to spread out the load transferred 

from the braces. The length of the chord should be long enough to distribute 

stresses. The welded lines at the center of the chord section were positioned to 

investigate the negative effect of welded parts. The bearing plates with a 

thickness of 25 mm welded at the ends of the braces of specimens were 

fabricated from SM490. 

 

 

3.2. Fabrication and test setup 

 

3.2.1. Fabrication of specimens 

The sections of the chord and the braces were 2-seam RHS assembled by two 

channel section. Figure 3.4 shows the drawing of the 2-seam RHS section. As 

shown in the Figure, two channel sections are welded using different weld rod 

depending on the steel applied to RHS. For the ordinary steel SM490, weld 

rod named K71T is used to weld two channel sections together. For HSA800 

steel, weld rod PKW900 is used instead of K71T which is not be applicable to 
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weld high-strength steel because of the differences of ultimate strength 

between the steel and the weld rod. The ultimate stress of PKW900 is about 

900 MPa which could be used for overmatching welding with HSA800 steels. 

 

 

Figure 3.4 2-seam RHS section with a width and height of 400 mm 

 

 

Figure 3.5 Bending procedure of channel sections (for brace section) 

Channel sections to assemble chords and braces were bent by pressing 

machine with inner radius of 30mm. The press bending procedures of the 

channel sections for chord and braces are shown in Figure 3.5 and Figure 3.6. 

The plate is bent as the ram of the pressing machine moves downward to die. 
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Repeating this step for several times, the plate is formed to be a channel 

section. 

 

 

Figure 3.6 Bending procedure of channel sections (for chord section) 
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3.2.2. Compression test setup 

The axial compression tests of RHS X-joints were carried out by using a 

10,000kN UTM (abbreviation of Universal Testing Machine). As shown in the 

Figure 3.7, UTM head was placed at the top surface of the specimen’s bearing 

plate to apply a force. 

 

 

Figure 3.7 Test setup of RHS X-joints under axial compression  

 

 

3.3. Test results 

 

3.3.1. Material test results 

The properties of steels applied on the specimens were measured by tensile 

tests. A total of six tensile test coupons were cut out from two plates before 

manufacture process of the specimens. Three test coupons were obtained from 

the plate made up of ordinary steel SM490 while the others were cut out from 

the plate consisted of HSA800. Figure 3.8 shows six stress-strain curves 

measured from tensile tests of steels. The stress-strain curves shown as solid 

lines were obtained from the tensile test results of ordinary steel and dotted 
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lines represent the stress-strain relations of high-strength steel 

 

 

Figure 3.8 Stress-strain relations measured from tensile tests 

of steels (SM490 and HSA800) 

The stress-strain relations of ordinary steels show clear yield plateau 

which could absorb energy without increment of stress. Strain hardening was 

observed from the strain over 0.018 (1.8%) until the test specimens were 

fractured at about the strain of 0.1 (10%). Otherwise, the tested coupons of 

high-strength steel gradually lost its stiffness before reaching at the peak of 

stress. Moreover, while ordinary steels could undergo more deformations after 

the peak stress, the stress of the specimens fabricated from high-strength steel 

rapidly decrease. The areas enclosed by the stress-strain curves, representing 

the energy absorbed by the material, of HSA800 specimens were clearly 

smaller than those of SM490. 

Table 3.2 shows the material properties of steels measured from test 

results. The yield stresses reported in the Table were determined by 0.2% 
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offset method. 

 

Table 3.2 Summary of tensile test results 

Steel 

Elastic 

modulus, 

MPa 

Measured 

yield stress, 

MPa 

Measured 

tensile 

stress, MPa 

Measured 

yield ratio 

(σy/σu) 

Yield strain 

εy, % 

SM490 

(15T) 

236828 338 501 0.67 0.150 

232580 336 500 0.67 0.156 

224135 341 498 0.68 0.214 

HSA800 

(15T) 

228184 729 827 0.88 0.500 

222909 737 827 0.89 0.570 

218748 680 812 0.84 0.570 

*NOTE: Nominal yield stress and tensile stress of the steels 

i. SM490: σy,n = 325 MPa / σu,n = 490 MPa 

ii.HSA800: σy,n = 650 MPa / σu,n = 800 MPa 

 

3.3.2. Test results of specimens with β = 0.625 

i. X90–325–0.625–26.7 

 

 

Figure 3.9 Chord plastification (X90–325–0.625–26.7) 
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As shown in Figure 3.9, chord plastification was observed from β = 0.625 

specimen with SM490. The calculated nominal strength was 751 kN and the 

experimental strength was determined by 3% indentation criteria (Lu et al. 

1994). 

 

ii. X90–650–0.625–26.7 

For β = 0.625 specimen of HSA800 also shows chord plastification behavior 

at relatively small indentation. The specimen with HSA800 failed much 

earlier than SM490 specimen, due to fracture (see Figure 3.10) at deformation 

about 10% of b0. Despite of fracture occurred due to the low ductility of the 

chord face fabricated from HSA800, the experimental strength was 1270 kN 

which exceeds EC3 nominal strength about 30%. 

 

 

Figure 3.10 Fracture occurred at the chord lower face (X90–650–0.625–26.7) 
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Fracture 
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iii. Comparison of test results of two specimens 

 

 

Figure 3.11 Experimental load–indentation curves of β = 0.625 specimens 

fabricated from SM490 (left) and HSA800 (right) 

Figure 3.11 shows the load-indentation curves. Graph on the left shows the P-

Δ curve of specimen X90–325–0.625–26.7 and graph on the right shows the 

P-Δ curve of specimen X90–650–0.625–26.7. Table 3.3 shows the results of 

the test specimens with β = 0.625. 

 

Table 3.3 Test results summary (specimens with β = 0.625) 

Specimen 
Measured 

yield stress fy, 

MPa 

EC3 nominal 

strength NEC3, 

kN 

Experimental 

strength Nexp, 

kN 

Nexp/NEC3, 

% 

X90–325 

–0.625–26.7 
388 751 880 118 

X90–650 

–0.625–26.7 
715 

1270 

(1587)
†
 

1644 
129 

(104)
‡
 

† Without applying strength reduction factor 

‡ Strength ratio without applying strength reduction factor 

 

As shown in Table 3.3, the experimental strengths of the specimens with 

β = 0.625 were 118% (SM490) and 129% (HSA800) of EC3 nominal strength 
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according to 3% indentation criteria. Note that the unreduced EC3 nominal 

strength of X90–650–0.625–26.7 (HSA800) is very close to the experimental 

strength (just 4% difference). 

 

3.3.3. Test results of specimens with β = 0.850 

i. X90–325–0.850–26.7 

 

 

Figure 3.12 Bulging occurred at the mid-height of the chord 

sidewall (X90–325–0.850–26.7) 

As shown in Figure 3.12, a bulging occurred at the mid-height of the chord 

sidewall. It seems that the specimen failed by the mixed failure mode of chord 

plastification and chord sidewall buckling. The measured strength of the 

specimen was 2257 kN which exceeds EC3 nominal strength of 1649 kN. 

However, the peak strength of this specimen was observed at 1% of 

indentation deformation, the experimental strength was determined by the 

peak strength. It was clearly verified that the behavior of RHS X-joints 
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depends on the value of β. 

 

ii. X90–650–0.850–26.7 

A bulging was observed as occurred in specimen X90–325–0.850–26.7. The 

failure mode of this specimen seems to be identical with the other specimen 

fabricated from SM490. EC3 nominal strength calculated by chord 

plastification strength equation was 2788kN while the experimental strength 

determined by the peak value of the load-indentation graph was 4003 kN. 

 

.  

Figure 3.13 Bulging occurred at the mid-height of the chord 

sidewall (X90–650–0.850–26.7) 

 

iii. Strength comparison 

The relations between experimental strengths and the indentation deformation 

measured in compression test of RHS X-joints β = 0.85 were shown as the 

following graphs. The graph on the left side shows the P-Δ relationship of 
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specimen fabricated from ordinary steel (SM490) and the other shows the P-Δ 

of the test specimen fabricated from high-strength steel (HSA800). 

 

 

Figure 3.14 Experimental load–indentation curves of β = 0.85 specimens 

fabricated from SM490 (left) and HSA800 (right) 

Table 3.4 shows the results of the test specimens with β = 0.850. The 

experimental strengths of two specimens with β = 0.85 were 137% (SM490) 

and 144% (HSA800) of EC3 nominal strengths, implying the conservatism in 

current EC3. Even without applying the strength reduction factor 0.8, the 

experimental strength of HSA800 specimen was higher than EC3 nominal 

strength by about 15%. 

 

Table 3.4 Test results summary (specimens with β = 0.850) 

Specimen 
Measured 

yield stress fy, 

MPa 

EC3 nominal 

strength NEC3, 

kN 

Experimental 

strength Nexp, 

kN 

Nexp/NEC3, 

% 

X90–325 

–0.850–26.7 
388 1647 2257 137 

X90–650 

–0.850–26.7 
715 

2788 

(3485)
†
 

4003 
144 

(115)
‡
 

† Without applying strength reduction factor 

‡ Strength ratio without applying strength reduction factor 
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3.3.4. Test results of specimens with β = 1.0 

i. X90–325–1.000–26.7 

The sidewalls of X90–325–1.000–26.7 deformed inward from their original 

positions while the other specimens show the bulging at the center of the 

chord sidewalls. Figure 3.15 shows the buckled shapes of the chord sidewalls. 

The experimental strength of specimen X90–325–1.000–26.7 determined by 

the peak value obtained from the P-Δ curve was 4553 kN while the strength 

predicted by EC3 was only 1860 kN. EC3 clearly gives a conservative 

prediction to β = 1 RHS X-joints. 

 

 

Figure 3.15 The chord sidewall indented at the mid-height of the 

specimen (X90–325–1.000–26.7) 

 

ii. X90–650–1.000–26.7 

The sidewalls of X90–650–1.000–26.7 deformed inward and outward from 

their original positions. The buckled shapes of the chord sidewalls were 
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shown in the following photos. EC3 nominal strength was calculated as the 

value of 1845 kN which severely underestimate the experimental strength of 

this specimen determined by the peak strength of 8895 kN. 

 

 

Figure 3.16 The chord sidewall buckled inward and outward 

(X90–650–1.000–26.7) 

 

iii. Strength comparison 

The experimental results are compared in this paragraph. Figure 3.17 shows 

the load-deformation relationships of specimens with β = 1 while Table 3.5 

shows the summary of the test results. 

The experimental strengths normalized by EC3 nominal strengths were 

respectively 245% for X90–325–1.000–26.7 (SM490) and 482% for X90–

650–1.000–26.7 (HSA800), clearly indicating that current EC3 strength 

formula for chord sidewall buckling limit state is unacceptably conservative 

and should be improved. 
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Figure 3.17 Experimental load–indentation curves of β = 1.0 specimens 

fabricated from SM490 (left) and HSA800 (right) 

 

Table 3.5 Test results summary (specimens with β = 1.000) 

Specimen 
Measured 

yield stress fy, 

MPa 

EC3 nominal 

strength NEC3, 

kN 

Experimental 

strength Nexp, 

kN 

Nexp/NEC3, 

% 

X90–325 

–0.850–26.7 
388 1860 4553 245 

X90–650 

–0.850–26.7 
715 

1845 

(2307)
†
 

8895 
482 

(386)
‡
 

† Without applying strength reduction factor 

‡ Strength ratio without applying strength reduction factor 

 

3.3.5. Load-deflection characteristics 

In this article, the graphs representing normalized load-deflection 

relationships are shown to investigate the behavior of RHS X-joints with 

identical geometric and different grades of steels. 

As can be seen in the left curve of Figure 3.18, the specimen with 

HSA800 failed much earlier than SM490 specimen due to the fracture of the 

chord lower face occurred at 10% normalized indentation deformation. On the 
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other hand, the specimens with β = 0.625 exceed the 3% ultimate deformation 

limit. While the specimen with ordinary steel could undergo more 

deformations without losing its strength, it seems that the specimen fabricated 

from high-strength steel (HSA800) also has enough ductility to resist 

deformations. 

On the other hand, as shown in the right curve of Figure 3.18, the 

specimens with β = 0.625 show an almost identical behavior. The peak 

strength of the two specimens with β = 0.85 was reached at about 1% 

indentation. These joints are much more stiff and brittle than those with β = 

0.625. 

 

 

Figure 3.18 Normalized experimental load–indentation curves: specimens 

with β = 0.625 (left) and β = 0.850 (right) 

Figure 3.19 shows the normalized experimental load versus normalized 

indentation deformation curve obtained from the experimental test of β = 1 

specimens. As shown in right graph of Figure 3.18, the behaviors of these 

specimens are almost identical to each other. The peak strengths of these two 

specimens were reached at about 0.5% indentation deformation. The stiffest 
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and brittlest behaviors among the experimental tests were observed from these 

two specimens. 

 

 

Figure 3.19 Normalized experimental load–indentation curve: 

specimens with β = 1.00 

 

 

3.4. Comparative analysis of RHS X-joints with β = 1 

 

After collecting test data available in the literature as shown in section 2.4 and 

this experimental program, a comparison was tried in this section with 

Eurocode3 (2005) and AISC (2010) formula and that suggested by Becque 

and Cheng (2016). 

 

3.4.1. Sidewall buckling strength equation in Eurocode3 (2005) 

To evaluate the sidewall buckling strength formula of Eurocode3 (2005), test 

data was collected from available literatures and the buckling strengths were 

normalized by yield strength equation suggested in Wardenier (1982). The 

normalized strengths (Nb/Ny) were fitted on “c” curve of Eurocode3 (2005) 
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multiple column curves. Figure 3.11 shows the relation between the buckling 

reduction factor χ and the normalized slenderness ratio  . 

 

 

Figure 3.20 Comparison between β = 1 RHS X-joints experimental strengths 

normalized by EC3 chord sidewall buckling strength 

The solid line and the dotted line in Figure 3.20 represent the multiple 

curve “c” of Eurocode3 (2005) multiple column curves and the elastic column 

buckling curve, respectively. 

 

Table 3.6 Comparative analysis of EC3 chord sidewall buckling equation 

Nexp / Nb 
Maximum minimum Mean MSE COV 

6.25 1.50 3.81 3.32 0.87 

 

The statistic parameters were calculated for the evaluation purpose as 

shown in Table 3.6. Mean square error (MSE) was calculated by equation 3.1: 
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  
2

1

1
MSE

n

i i

i

y y
n 

    (3.1) 

where yi is the normalized experimental strength and 
i

y  is the true value. 

When the experimental strength is equal to the strength determined by EC3 

sidewall buckling equation, yi is equal to unity. Therefore, in this comparison, 

the true value 
i

y  is set as a unity. 

The maximum value and the mean value of the normalized experimental 

strengths were 6.25 and 3.44 respectively, which imply that EC3 sidewall 

buckling strength gives extremely conservative predictions. Even the 

minimum value was 1.50; this formula still underestimates the actual strength. 

Moreover, a large scatter indicated by the high coefficient of variation 

(COV=0.81). From these parameters calculated here, it is obvious that EC3 

sidewall buckling strength equation needs to improve. 

 

3.4.2. Web crippling strength suggested in AISC (2010) 

As mentioned in the article 2.1.3, AISC (2010) suggest to determine the 

strength of X-joints with β = 1 by the chord yield strength and the RHS web 

crippling strength. The minimum value between these strengths becomes the 

strength of β = 1 RHS X-joints. 

Therefore, in Figure 3.21, the data plotted as black squares represents the 

experimental strength normalized by the chord sidewall yielding strength 

while the data plotted as the symbol × represents the experimental strength 

normalized by the web crippling strength. The strengths of X-joints with 

relatively heavy sections (with low h0-t0 ratio) were mostly determined by 

chord yielding strength while joints with light sections were governed by web 
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crippling behavior. 

 

 

Figure 3.21 Comparison between β = 1 RHS X-joints experimental strengths 

normalized by AISC β = 1 RHS X-joints strength 

The maximum value and the mean value of the normalized experimental 

strengths were 2.12 and 0.59 respectively. The accuracy of the prediction was 

better than that of EC3 strength equation; however, it was not sufficient 

enough. Furthermore, actual strengths of several specimens were 

overestimated by the web crippling strength equation. COV for this 

comparison was 0.42 which is greater value than that of EC3 (see Table 3.7). 

As a consequence, the formula suggested in AISC (2010) gives the 

normalized strength closer to value of unity than that of EC3, but it often 

gives a unsafe prediction which means that this method is not appropriate to 

use as a strength formula in structural codes. 
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Table 3.7 Comparative analysis of AISC (2010) RHS 

X-joints strength with β = 1  

Nexp / Nb 
Maximum minimum Mean MSE COV 

2.12 0.59 1.36 0.57 0.42 

 

 

3.4.3. Sidewall buckling strength equation proposed by Becque and 

Cheng (2016) 

The experimental strengths were evaluated by the equation suggested in 

Becque and Cheng (2016). 

 

 

Figure 3.22 Comparison between β = 1 RHS X-joints experimental strengths 

normalized by strength equation of Becque and Cheng (2016) 

The maximum value and the mean value of the normalized experimental 

strengths were 1.91 and 0.89 respectively. The accuracy of the prediction was 

the best among the current design strengths. However, quite high value of 

COV (= 0.34) was observed for this method which shows the large deviation 
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of prediction of strengths. The statistical parameters calculated in this article 

are shown in Table 3.8. 

 

Table 3.8 Comparative analysis of the strength for RHS X-joints with β = 1 

suggested in Becque and Cheng (2016) 

Nexp / Nb 
Maximum minimum Mean MSE COV 

1.91 0.89 1.39 0.48 0.34 

 

 

3.5. Summary 

 

A total of six RHS X-joint specimens were tested under compression with β 

values and grades of steel as the key test variables. The results can be 

summarized as follows. 

 

1. The experimental strengths of the high-strength RHS X-joint specimens 

with β = 0.625 and β = 0.850 was more reasonably but still 

conservatively predicted by the EC3 chord plastification equation when 

the strength reduction factor 0.8 was neglected. 

2. As β value becomes higher beyond 0.6, the joint strength is determined 

by the peak strength criteria, not by the 3% indentation criteria, and the 

joint becomes less ductile. 

3. For the case of β = 1.00, the test results of this study clearly showed that 

current sidewall buckling strength equations have an insufficient 

accuracy and should be improved based on different strength formulation. 
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Equation Chapter (Next) Section 1 

 

 

 

 New Design Formula for Chapter 4

Sidewall Buckling 

 

New Design Formula for Sidewall 

Buckling 

 

 

4.1. Introduction 

 

As mentioned in previous chapters, CIDECT (2009) and Eurocode3 (2005) 

are based on the column model suggested by Wardenier (1982), and AISC 

(2010) is based on the plate buckling model derived in the work of Chen and 

Newlin (1971). However, nominal strengths of RHS X-joints with equal-

width evaluated by the representative design standards are too conservative 

and inaccurate. To evaluate the actual strengths of RHS X-joints with β = 1 

more accurately, Becque and Cheng (2016) suggested alternative design 

equation but it needs to be improved for more consistency and accuracy. 

Therefore, in this chapter, the new design equation for β = 1 RHS X-joints 

will be derived based on the theoretical model of plate buckling. 

To derive an accurate sidewall buckling equation, the elastic buckling 

strength and the yield strength of equal-width RHS X-joints should be defined 
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as exactly as possible. 

In section 4.2, a theoretical model based on plate buckling is established 

and the elastic buckling stress was derived by the principle of stationary total 

potential energy obtained from the assumed shape function. 

Section 4.3 shows the conditions assumed in section 4.2 were 

numerically validated with the ABAQUS finite element analysis models. . 

Finally, section 4.4 gives a proposal of new sidewall buckling strength 

formula. The derivations of the new slenderness ratio and the inelastic 

sidewall buckling strength equation will be introduced and the comparative 

analysis results will be described in this section. 

 

 

4.2. Theoretical model: elastic plate buckling model 
 

4.2.1. Basic assumptions 

 

 

Figure 4.1 General RHS β = 1 X-joints 
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A theoretical model was developed by Becque and Cheng (2016) representing 

the chord sidewall by a plate with thickness t0, which extends to infinity on 

both sides, as can be seen in Figure 4.2. 

 

 

Figure 4.2 Theoretical model of β = 1 RHS X-joints based on plate buckling  

The load p transferred from the brace sidewall into the chord sidewall is 

uniformly distributed over the brace width h1. The total load N carried by the 

connection (comprising two sidewalls) is then given by: 

 
1 0 12 2N ph t h   (4.1) 

Even though the actual boundary conditions of the edges supported by 

the braces are not exactly same as the clamped supported condition, for the 

simplicity of the buckling stress equation and the flexural rigidity of the 

braces supporting the edges to behave rigidly, a fixed supported condition is 

assumed to the transverse edges while the edges are assumed to be simply 

supported in Becque and Cheng (2016). 

For the longitudinal direction, as assumed in the work of Becque and 

Cheng (2016), the exponential Gauss function is chosen to represent the 

h0 

h1 

y 

x 

p=σt
0
 

p=σt
0
 

–∞ +∞ 
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buckling shaped. This function is an ideal candidate to capture the localized 

nature of the failure mode, since its ordinates approach zero almost 

immediately when leaving a localized area around the origin. 

 

4.2.2. Composition of buckled shape function 

The buckled shape of the sidewalls could be expressed as in the following 

equation: 

      , x yw x y w x w y   (4.2) 

where w is the shape function of the buckled plate, wx is the x-direction 

(longitudinal direction of the chord) components of the shape function, and wy 

is the y-direction (transverse direction of the chord) components of the shape 

function. Equation 4.2 representing the buckled shape function as a multiplied 

form of two functions with different variables, is based on the concept 

regarding the buckled shape of the plate behaves independently with the 

directions transverse to each other. 

Therefore, the proposed deformed shape is expressed by the following 

function: 

  
2 2

/2

0

1
, 1 cos 2

2

x s

x y

y
w x y w w e

h


  
        

  

  (4.3) 

where h0 is the height of the chord, s is the parameter in length dimension 

having mathematical meaning of the standard deviation, and Δ is the 

amplitude of the buckled shape. 

The variables x and y are in the range of (–∞, ∞) and [–h0/2, h0/2] 
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respectively. Figure 4.3 shows the assumed buckling shape function in general 

view and the buckled shape in top view is shown in Figure 4.4. 

 

Figure 4.3 Assumed buckling shape function (general view) 

 

 

Figure 4.4 Assumed buckling shape function (top view) 

 

4.2.3. Calculation of total potential energy of buckled plate 

Timoshenko and Gere (1961) introduce the equation of strain energy in 

bending of plates. The strain energy U could be expressed as the following 

equation: 

 
0

0

2 2 2
2 2 2 2 2

/2

2 2 2 2/2
2 2 1 d d

2

h

h

D w w w w w
U y x

x y x y x y
 



 

             
             

               
 

  

(4.4) 

where w is a deformed shape of a plate, and D is the flexural rigidity of the 

plate given by: 

 
 

3
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2
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where E is the elastic modulus of the plate, t0 is the thickness of the chord. 

This equation is derived in the case of bending of a plate submitted to the 

simultaneous action of transverse loads and of forces applied in the middle 

plane of the plate. Substituting the buckled shape function to this equation 

eventually leads to the following equation: 

 
3 2

2 40

2 3

0 0

1 9

64 4

h s s
U D

s s h h


 

     
             

      

  (4.6) 

The potential energy V of the applied stresses is given by: 

 
1 0

1 0

2
/2 /2

0

/2 /2
d d

2

h h

h h

t w
V y x

y


 

 
   

 
    (4.7) 

where σ is the uniformly distributed stress applied on the chord. Using the 

shape function of the buckled plate, the equation of the potential energy yields 

to: 

 
2

2 1
0

0

erf
4 2

s h
V t

h s

 


 
     

 
  (4.8) 

where erf is the error function (also called the Gauss error function) defined as: 

  
2 2

0

1 2
erf d d

x x
t t

x
x e t e t

 

 


     (4.9) 

 

4.2.4. Buckling stress calculation by the energy principle 

By the principle of stationary total potential energy, the derivatives of the total 

energy (U + V) with respect to B and Δ are set equal to zero: 
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 

0
U V 




 and 
 

0
U V

s

 



 (4.10) 

i. 
 

0
U V 




 

Substituting equation 4.6 and equation 4.8 into the equation above, the 

relationship between two unknowns were obtained as the followings: 

4 2
2 2

40 1
03

0 0 0

9
2 erf 0

64 4 2 2

h s s s h
D t

s h h h s

  
  

      
             

        

If Δ = 0, the shape function for the buckled plate w = 0. This condition 

yields w to trivial solution. Therefore, the equation 
 

0
U V 




with Δ ≠ 0 

yields to the following equations: 

 

4 2

2 40 0

2 2
10 0

9
4

1 16

erf
2

cr

h h

D s s

ht h

s

 




   
    

    
 
 
 

  (4.11) 

ii. 
 

0
U V

s

 



 

As similar to the previous derivation, substituting energy equation U and V 

(equation 4.6 and 4.8, respectively) to 
 

0
U V

s

 



 yields the equation to: 

  2 4 2 2
14 2 20 0

4 4 2

0 0 0

erf / 227
4

4 16 4

s h sD h s s t

s h h h s

  
  

  
       

   

2
1

22 4 2 2 4
4 2 20 0 1 1

4 4 2

0 0 0

27
4 erf 0

4 16 4 2

h

sD h s s t h h e

s h h h s s

  
  



 
    

             
    

 

(4.12) 
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If Δ = 0, the shape function for the buckled plate w = 0. This condition 

yields w to trivial solution. Therefore, the critical stress term σcr is derived as 

the following equation: 

 
2 2
1

4 2

2 40 0

2 2
/41 10 0

27
4

1 16

erf
2

cr
h s

h h

D s s

h ht h
e

ss

 








   
    

    
 

  
 

  (4.13) 

Equation 4.11 and equation 4.13 represent the identical term, the critical stress 

σcr. Therefore, let right sides of these equations are equal to each other; the 

equation to obtain the parameter s could be derived as: 

2 2
1

4 2 4 2

2 4 2 40 0 0 0

2 2 2 2
/41 1 10 0 0 0

9 27
4 4

1 116 16

erf erf
2 2
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s ss
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 





       
          

         
   

   
   
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       
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   

   
   

  

 (4.14) 

Solution: General case 

Let h1 = αh0. Then the equation to obtain s value yields to: 

 
2 2 2

0

4 2 4 2

2 4 2 40 0 0 0

/40 0 0
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  (4.15) 
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Substituting c to h0/s could simplify this equation as: 

 
 

2 2 /4 3 2

4 2 2 4

36 32

9 16 64erf / 2

ce c c

c cc
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

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 

  (4.16) 

The plate buckling stress could be determined by the value of c (= h0/s) 

and α. The equation for the plate buckling stress σcr is equal to: 

 
 

3 2
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2 22
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12 1


 


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cr

Et D
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h t h t
 (4.17) 

where k is a numerical factor given by: 
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        
   
   
     

This factor k reflects the influence of h1/h0 affecting elastic buckling 

stresses of the theoretical model of β = 1 RHS X-joints. 

Buckling stress could be calculated by substituting the solutions of two 

variables, α and c, obtained from equation 4.16 to equation 4.17. Since there 

are two unknown variables s and α in the equation of k factor, equation 4.17 

could be solved with one of the variables determined. MATLAB fsolve 

command was used to solve this system of equations. The values of α were 

chosen before solving this equation and then s values could be obtained. As a 

result, the relationship between h0/h1 (=1/α) and k are shown as the following 

Figure and Table. The source codes of this command are reported in appendix 

A.  
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Table 4.1 Analytical solution of k at definite h0/h1 values 

1/α (h0/h1) 0.25 0.5 1 2 4 

k (analytical) 4.126 4.401 5.241 7.565 13.140 

 

 

Figure 4.5 Relationship between k and h0/h1  

By EC3 RHS X-joint geometric limitations, the ratio between the height 

and the width of the section should satisfy the following inequality: 

0.5 / 2i ih b     (subscript i: 0 for a chord and n (n ≠ 0) for a brace) 

Since this is the buckling model of equal-width RHS X-joint, the width of the 

chord b0 should be equal to the width of the braces b1. Thus, aforementioned 

inequality limiting the height ratio between the chord and the brace could be 

modified as the following: 

Height ratio between braces and chord 

h0/h1 (=1/ α), dimensionless 

k,
 d

im
en

si
o
n
le

ss
 

Numerical exact solution of k 

Geometric limits (EC3) 
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1 00.25 / 4h h   (4.18) 

where h0 and h1 are the height of the chord and the braces respectively. 

To express the numerical exact solution of k by the simple equation, 

some functions were assumed and evaluated assessed with their simplicity and 

errors compared to the actual value of k in the range shown in equation 4.18. 

In Table 4.2, 1
st
, 2

nd
 and 3

rd
 order polynomials and the exponential function 

obtained from regression analysis were compared with the analytical k value. 

 

Table 4.2 Comparison among approximated k values depending on 1/α (h0/h1) 

Height ratio between chord and 

brace 1/α (=h0/h1), dimensionless 
0.25 0.5 1 2 4 

Numerical value of k, 

dimensionless 
4.126 4.401 5.241 7.565 13.140 

1
st
 order 

polynomial 

Equation 2.186(h0/h1)+3.347 

Approximated k 3.894 4.440 5.533 7.719 12.091 

Error, % 5.62 0.89 5.57 2.04 7.98 

2
nd

 order 

polynomial 

Equation 0.288(h0/h1)
2
+1.293(h0/h1)+3.718 

Approximated k 4.059 4.436 5.298 7.454 13.492 

Error, % 1.62 0.80 1.09 1.47 2.68 

3
rd

 order 

polynomial 

Equation -0.08(h0/h1)
3
+0.725(h0/h1)

2
+0.710(h0/h1)+3.887 

Approximated k 4.109 4.413 5.240 7.547 13.048 

Error, % 0.41 0.27 0.02 0.24 0.70 

Exponential 

form 

Equation  0 10.32 / 1
5.241




h h
e  

Approximated k 4.123 4.466 5.241 7.218 13.689 

Error, % 0.07 1.48 0.00 4.59 4.18 

2
nd

 and 3
rd

 order polynomials are too complicated to use as approximated 
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solutions. Then 1
st
 order polynomial and equation with exponential term could 

simply approximate the numerical solution of k. However, the accuracy of 1
st
 

order polynomial is not sufficient enough to describe k values (maximum 8% 

error occurs). Thus, the equation with exponential form is selected as an 

alternative. The exponential function is shown at Figure 4.6 compared with 

analytical solution k depending on h0/h1 value. 

 

 

Figure 4.6 Analytical solution k and the approximated k depending on h0/h1 

Substituting the approximated k function to equation 4.18, the elastic buckling 

strength equation could be obtained as shown in the equation below: 
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Numerical exact solution of k 

Approximated solution of k 

Geometric limits (EC3) 

Height ratio between chord and brace 1/α 

(h0/h1), dimensionless 
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This buckling stress can be compared with the buckling strength suggested in 

the work done by Becque and Cheng (2016). 

 
 

2 2

0
, 2

0 1

1.346
12 1

cr Becque

E t

h h








  (4.20) 

As the equations shown above, the elastic stress derived in Becque and Cheng 

(2016) is inversely proportional to h0 and h1 and directly proportional to the 

square term of t0. However in the proposed elastic buckling stress equation, 

the stress is not inversely proportional to h1 value. Instead, the height ratio 

between the chord and the braces h0/h1 is included in exponential function. 

For the case of h0 = h1, the exponential term yields to unity which has no 

influence to the value of elastic buckling stress. Then the equations yields to: 

   

2 2 2 2

0 0
, ,2 22 2

0 0

1.346 and 5.2415
12 1 12 1

cr Becque cr proposed

E t E t

h h

 
 

 
 

 
 

Therefore, the ratio between σcr,proposed / σcr,Becque could be obtained as: 

, ,

5.2415
/ 3.89

1.346
cr proposed cr Becque      

Since σcr,proposed is derived by the assumption that the shape function 

transverse to the chord direction is fixed, the buckling stress of it is about four 

times of σcr,Becque which is based on the simply supported condition assumption 

of the shape function whose direction is transverse to the chord. 
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4.3. Validation by numerical analysis 

 

An investigation of validity of the assumptions suggested in previous section 

will be discussed in the following section. In the first article of this section, 

finite element analysis models will be established and their validities are 

proved by comparison with the load-deformation curve obtained from the 

experimental results. Then the validations of the assumed shape function and 

the elastic buckling strength equation will be discussed in article 4.3.2 and 

4.3.3, respectively. 

 

4.3.1. Establishment of finite element analysis model 

Material properties 

 

 

Figure 4.7 Stress-strain curve of tensile test and data for numerical analysis 

Figure 4.7 shows the stress-strain curves obtained from tensile test results. 

The curves were obtained from one of the material tests done for SM490 and 

Strain ε, dimensionless 

S
tr

es
s 

σ
, 

M
P

a 



 
                        Chapter 4. New Design Formula for Sidewall Buckling 

 

87 

 

HSA800. From this graph, the yield stress and plastic strain data is collected 

to apply on numerical analysis. The collected data is shown in Table 4.3. The 

data in this Table was used to increase the accuracy of the analysis simulating 

the post-elastic behavior of the material and the analysis models. 

 

Table 4.3 Yield stress and plastic strain applied in numerical analysis 

Data 

SM490 (ordinary steel) HSA800 (high-strength steel) 

Yield stress, 

MPa 

Plastic strain, 

dimensionless 

Yield stress, 

MPa 

Plastic strain, 

dimensionless 

1 336.4899 0 600.4089 0 

2 340.699 0.017493 650.6953 0.000421 

3 359.0531 0.019147 682.3573 0.000825 

4 406.5352 0.029502 710.0799 0.001463 

5 465.7334 0.048633 732.9557 0.002334 

6 511.7087 0.072105 748.3549 0.003266 

7 542.6111 0.09589 762.0667 0.004632 

8 564.0034 0.121073 781.5816 0.007543 

9 581.6204 0.14895 804.0899 0.012509 

10 596.0511 0.178815 832.0685 0.02182 

11 601.493 0.199643 856.5803 0.034904 

12 - - 865.1321 0.048724 

 

Analysis conditions 

For this investigation, the numerical analysis models were established as the 

following conditions: 

 

1. The element type of the models was solid and 20-nodes element 

integrated by reduced integration. 
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2. The lower and upper ends of the braces were fixed by supported 

condition in the ABAQUS software, restrained by six degrees of freedom. 

The x, y and z direction displacements (represented by U1, U2 and U3 in 

analysis software) and rotations (represented by R1, R2 and R3 in 

analysis software) are set to be zero value. 

3. Riks analysis was done to simulate the experiments of β = 1 RHS X-

joints under axial compression. 

 

Figure 4.8 Finite element analysis model of β = 1 RHS X-joints 

 

Result comparison 

From numerical analysis results shown in Figure 4.9, relations of applied 

compressive force versus normalized indentation were obtained. In elastic 

range of RHS X-joints, regardless of steel grades, experimental result and 

numerical analysis result correspond to each other. However, the curves 

obtained by numerical analysis had the peak strength values slightly lower 

than the peak strengths of experimental results. Furthermore, the curves 
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obtained by numerical analysis lost its strength more rapidly than the strength 

curves of experimental results. 

 

 

Figure 4.9 Compressive force versus normalized indentation relationships for 

both experimental and numerical analysis results 

Table 4.4 shows the comparison between the experimental results and the 

numerical analysis results. The peak strength values of experimental results 

were 4553 kN and 8895 kN for SM490 and HSA800, respectively, while the 

peak strengths obtained from numerical analysis were 4341 kN and 8188 kN 

for ordinary steel and high-strength steel, respectively. These results just show 

the error within 8%. 

 

Table 4.4 Comparison between experimental and numerical analysis results 

Specimen 

Experimental Numerical Peak 

load 

error, % 
Indentation,

% 

Load, 

kN 

Indentation,

% 

Load, 

kN 

X90-325-

1.000-26.7 
0.403 4553 0.275 4341 4.66 

X90-650-

1.000-26.7 
0.433 8895 0.447 8188 7.95 

Since the welding parts were not included in these numerical analysis 
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models, the peak strengths of numerical analysis results are slightly (about 

10%) less than the strength obtained from experimental results. It is just a 

conservative result with negligible difference that these models could be used 

for eigenvalue analysis. 

Therefore, the numerical models and their analysis conditions could be 

regarded as reasonable. In the later articles, these conditions are applied on 

eigenvalue analysis to obtain the elastic buckling strength of β = 1 RHS X-

joints. 

 

4.3.2. Validation of assumed shape function 

Numerical analysis program 

This analysis was done by RHS X-joints model with different geometries. The 

key parameter of this analysis program is h1 over b1, the aspect ratio of the 

brace sections which could controls the strength of the restraint effect caused 

by the welded braces. 

 

Table 4.5 Numerical analysis program 

Model 1 2 3 

t0 and t1, mm 15 

Chord 

section 

b0, mm 250 

λ =(b0-2t0)/t0, 

dimensionless 
14.7 

Brace 

section 

h1, mm 125 250 500 

λ =(h1-2t1)/t1, 

dimensionless 
6.3 14.7 31.3 

Section classification Class 2 

NOTE: 1. Class 2 requirement: λ ≤ 32.3 

NOTE: 2. fy0 = fy1 = 325 MPa 

The numerical analysis program is shown in Table 4.5. Because EC3 
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restrained the aspect ratio of the brace section h1 / b1 in the range of 0.5 to 2, 

the analysis models were conducted to satisfy this limitation. 

 

 

Figure 4.10 General views of numerical eigenvalue analysis 

results (deformation amplification factor: 50) 

Figure 4.10 shows the general views for the deformed shapes of the 

model analyzed by numerical analysis. As a red area show the deformation 

close to unity, the deformations caused by buckling are concentrated at the 

center of the chord for these analysis models. 

 

Shape data obtained from FEA eigenvalue analysis 

Three deformed shapes of each eigenvalue analysis result were plotted to be 

compared with the assumed shape function. These shapes were measured to 

investigate the restraint effect of braces which resist the out-of-plane 

deformation of chord sidewalls. Obtained buckling shape functions were 

numerically differentiated by Central Difference Method. The equations of 

Central Difference Method for slope and curvature of deformed shape at xi 

distance from zero point are shown as the following equations: 

  
   

 
 

     
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 

 
 (4.21) 

where f(xi) is the deformed shape obtained from FEA at xi 
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As the distance from the brace walls on the planes orthogonal to the 

longitudinal direction of the chord become larger, the resisting strengths 

caused by the brace walls are getting less. Thus, at the center of the chord, the 

weakest restraint effects caused by the braces width direction walls are 

induced. The deformed shapes at the weakest part of chord sidewalls will be 

shown in the following paragraphs. 

Deformed shapes visualized by finite element analysis program 

(ABAQUS) are shown in Figure 4.11 through 4.13. The deformed shapes 

obtained by FEM eigenvalue analysis are represented by eigenvector whose 

maximum value is unity. 

 

 

Figure 4.11 Deformed shape of transverse and longitudinal cross section 

obtained from FEA eigenvalue analysis with h1/b1 = 0.5 (deformation 

amplifying factor: 50) 

 

 

Figure 4.12 Deformed shape of transverse and longitudinal cross section 

obtained from eigenvalue analysis of FEA model with h1/b1 = 1 (deformation 

amplifying factor: 50) 
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Figure 4.13 Deformed shape of transverse and longitudinal cross section 

obtained from eigenvalue analysis of FEA model with h1/b1 = 2 (deformation 

amplifying factor: 50) 

As shown in Figures 4.11, 4.12 and 4.13, the deformations occurred at 

the chord upper and lower faces are getting larger with increment of h1/b1. As 

a consequence, with relatively large value of h1-b1 ratio, the support 

conditions of chord sidewalls in transverse direction become similar to simply 

supported rather than fixed supported. This proposition will be investigated in 

the later paragraph. 

 

Buckled shape and its 1
st
 and 2

nd
 derivatives obtained from FEA 

eigenvalue analysis 

For analysis model with h1/b1 = 0.5, the restraint effects of the braces is the 

strongest among these analysis models. The model which the weakest 

restraint effects acted on the chord sidewall is the one with h1/b1 = 2. It is 

clearly observed that the supported conditions of chord sidewalls for the 

transverse direction of the chord are in between fixed support condition and 

hinged support condition. However, it is shown to be much closer to fixed 

than hinged. The deformed shape function obtained from numerical analysis 

and its 1
st
 and 2

nd
 derivatives calculated by numerical differentiation will be 

shown in Figure 4.14 through 4.16. 
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i. Analysis model with h1/b1 = 0.5 

 

Figure 4.14 Buckled shape and its 1
st
 and 2

nd
 derivatives compared with half 

sine curve and full cosine curve with half amplitude (h1-b1 ratio: 0.5) 
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ii. Analysis model with h1/b1 = 1-  

 

Figure 4.15 Buckled shape and its 1
st
 and 2

nd
 derivatives compared with half 

sine curve and full cosine curve with half amplitude (h1-b1 ratio: 1) 

 

Distance from the center of the chord 
(direction transverse to chord) 

D
ef

o
rm

at
io

n
 y

(x
) 

Distance from the center of the chord 
(direction transverse to chord) 

C
u

rv
at

u
re

 y
′′(

x)
 

Distance from the center of the chord 
(direction transverse to chord) 

0.0

0.2

0.4

0.6

0.8

1.0

-125 -100 -75 -50 -25 0 25 50 75 100 125

0.0

0.2

0.4

0.6

0.8

1.0

-125 -100 -75 -50 -25 0 25 50 75 100 125

Buckled shape Half sine curve Full cosine curve with half amplitude

-0.02

-0.01

0.00

0.01

0.02

-125 -100 -75 -50 -25 0 25 50 75 100 125

0.0

0.2

0.4

0.6

0.8

1.0

-125 -100 -75 -50 -25 0 25 50 75 100 125

Buckled shape Half sine curve Full cosine curve with half amplitude

-0.00050

-0.00025

0.00000

0.00025

0.00050

-125 -100 -75 -50 -25 0 25 50 75 100 125

0.0

0.2

0.4

0.6

0.8

1.0

-125 -100 -75 -50 -25 0 25 50 75 100 125

Buckled shape Half sine curve Full cosine curve with half amplitude

G
ra

d
ie

n
t 

y′
(x

) 



 
                        Chapter 4. New Design Formula for Sidewall Buckling 

 

96 

 

iii. Analysis model with h1/b1 = 2 

 

Figure 4.16 Buckled shape and its 1
st
 and 2

nd
 derivatives compared with half 

sine curve and full cosine curve with half amplitude (h1-b1 ratio: 2) 
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4.3.3. Validation of elastic buckling strength equation 

To validate the elastic buckling strength equations obtained from theoretical 

models, numerical analysis programs were conducted with the key parameters. 

A aspect ratio of brace section, h1/b1 was set as a key parameter of a numerical 

program that controls the strength of restraint effects caused by braces. FEM 

eigenvalue analysis with this parameter could show the accuracy of the elastic 

buckling strength equations depending on restraint effects. In the other 

numerical analysis program, thicknesses of brace and chord section t0 and t1 

identical to each other are used as a key variable. This parameter was used to 

investigate the scale effect that could be caused by thicknesses of sections. 

 

For different h1-b1 ratio 

Table 4.6 Elastic buckling strengths obtained from different theoretical 

models and comparison with FEA results (Parameter: h1/b1) 

Index Model 

h1-b1 

ratio 

Proposed 

model 

Becque’s 

model 

Simplistic 

column model 
FEA result 

Buckling load, kN 

0.5 
18055 

(72.1%)  

6733 

(26.9%) 

4703 

(18.8%) 

25036 

(100%) 

1 
26221 

(84.6%) 

6733 

(21.7%) 

7642 

(24.7%) 

30986 

(100%) 

2 
44688 

(132.6%) 

6733 

(20.0%) 

13521 

(40.1%) 

33692 

(100%) 

*NOTE: Data in parentheses shows the elastic buckling strength normalized 

*NOTE: by the strength obtained from FEA results. 

Table 4.6 in article 4.3.2 showed the FEM eigenvalue analysis to simulate the 

actual behavior of RHS X-joints with equal-width. Using the identical models 

mentioned in previous article, the elastic buckling strengths could be obtained 
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from FEA results. The elastic buckling strengths obtained from the other 

theoretical models were reported in Table 4.6. The results of FEM eigenvalue 

analysis are shown in Figure 4.17 with the elastic buckling strengths of 

theoretical models. The parameter of this analysis was h1/b1. 

 

 

Figure 4.17 Comparative analysis of FEM eigenvalue analysis results with 

elastic buckling strengths of theoretical models (parameter: h1/b1) 

 

For different thicknesses 

Buckled shapes are determined by the relative flexural stiffness between the 

braces and the chord sidewall. Thus, the numerical analysis models were 

conducted to verify this statement. In this paragraph, the elastic buckling 

strengths obtained from the eigenvalue analysis for different thicknesses with 
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same thickness ratio between sections of a chord and braces (t0 = t1, where t0 

is the thickness of the chord section and t1 is the thickness of the brace section) 

were compared with different elastic buckling strength equations of β = 1 

RHS X-joints. 

Table 4.7 shows the numerical analysis program conducted to obtain 

elastic buckling strengths. Identical geometric configuration of experimental 

specimen with β = 1 was applied to these models. Only difference between 

these models and experimental specimen was the thicknesses of sections. 

 

Table 4.7 Numerical analysis program to obtain elastic buckling strength 

Model number 1 2 3 4 

Brace 

and chord 

section 

bi and hi, 
mm 

400 

ti, mm 12 15 18 25 

(bi-2ti)/ti 31.3 24.7 20.2 14.0 

*NOTE: Subscript i: 0 for a chord section and 1 for a brace section 

 

Figure 4.18 shows the results of FEM eigenvalue analysis. As shown in 

this Figure, the elastic buckling strengths of simplistic column derived in 

Wardenier (1982) and plate model established in Becque and Cheng (2016) 

underestimate and also inaccurately predict the elastic buckling strength of β 

= 1 RHS X-joints. On the other hand, the elastic buckling formula derived in 

this chapter slightly underestimate the elastic buckling strength of β = 1 RHS 

X-joints. Table 4.8 shows the elastic buckling strengths obtained from 

different theoretical models compared with FEA results. 
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Figure 4.18 Comparative analysis of FEM eigenvalue analysis results with 

elastic buckling strengths of theoretical models (parameter: t0 (=t1)) 

 

Table 4.8 Elastic buckling strengths obtained from different theoretical 

models and comparison with FEA results (parameter: t0 (=t1)) 

Index Model 

t0=t1, 

mm 

Proposed 

model 

Becque’s 

model 

Simplistic 

column model 
FEA result 

Buckling load, kN 

12 
8391 

(89.8%) 

2155 

(23.1%) 

1896 

(20.3%) 

9345 

(100%) 

15 
16388 

(90.6%) 

4208 

(23.3%) 

3949 

(21.8%) 

18087 

(100%) 

18 
28319 

(91.1%) 

7272 

(23.4%) 

7273 

(23.4%) 

31071 

(100%) 

25 
75871 

(92.5%) 

19483 

(23.8%) 

22581 

(27.5%) 

82027 

(100%) 

*NOTE: Data in parentheses shows the elastic buckling strength normalized 

by the strength obtained from FEA results. 
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4.4. Proposal of new sidewall buckling strength formula 

 

The derivation and the validation of the alternative design method were done 

in the previous clauses. As a consequence, the new equation of sidewall 

buckling failure mode derived in this thesis will be introduced here. In this 

section, the elastic buckling strength and the yielding strength of the chord 

sidewall are determined as accurately as possible such that normalized plate 

slenderness ratio could be obtained reasonably. Then, the evaluation of this 

method was done by β = 1 RHS X-joints database collected from available 

literatures. 

 

4.4.1. Derivation of slenderness ratio 

The slenderness of β = 1 RHS X-joints to consider an inelastic behavior could 

be derived by its definition: 

 
y

cr

N

N
     (4.22) 

where Ny and Ncr is the yield strength and the elastic buckling strength of β = 

1 RHS X-joints, respectively. Thus, the yield strength and the elastic buckling 

strength should be determined to obtain the slenderness ratio of β = 1 RHS X-

joints. 

 

Yield strength of β = 1.0 RHS X-joints 

As shown in Figure 4.19, the load is applied on the braces. The strength of 

chord sidewall yielding in area compressed by braces Ny could be expressed 
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as the following equation: 

 
0 1 02y yN f h t  (4.23) 

where fy0 is the yield stress of chord member, h1 is the height of the section of 

the braces and t0 is the thickness of the chord section. 

 

 

Figure 4.19 β = 1 RHS X-joints chord sidewalls loaded by 

force Py transferred from braces 

For the new design method, yield strength equation is modified as shown 

in the equation: 

  , 0 1 0 0 1 01.2 1.2 2 2.4proposed y y y yN N f h t f h t      (4.24) 

The factor of 1.2 thereby takes into account that a small part of a load follows 

an alternative load path through chord top and bottom faces, and spreads onto 

chord sidewalls. This factor was suggested in the work of Becque and Cheng 

h0

fy0

fy0

h1

Ny

Ny
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(2016) 

 

New elastic buckling strength equation 

The elastic stress derived in the previous section is repeated in here. 
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Then the elastic strength equation of β = 1 RHS X-joints could be obtained as 

shown below: 
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 (4.25) 

where D is a flexural rigidity of the plate defined as Et0
3
/(12(1-ν

2
)) and k is a 

numerical factor obtained in section 4.2.4 by MATLAB program which could 

be expressed as 5.2415·exp[0.32(h0/h1-1)]. A height ratio between a chord and 

braces h1/h0 considers the influence of restraints caused by braces. 

 

Slenderness ratio 

As equation 4.22 in the beginning of this article, the slenderness ratio could be 

given by: 

 

 
0 1

0 1 0

32
0.32 / 1 1 0

22
0

2.4

10.483
12 1

y y

h hcr

N f h t

h tN E
e

h








 

 


 



 
                        Chapter 4. New Design Formula for Sidewall Buckling 

 

104 
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      (4.26) 

where h0 is the height of the chord section, h1 is the height of the brace section, 

t0 is the thickness of the chord section, ν is Poisson’s ratio (generally, the 

value of 0.3 is used.), fy0 is the yield stress of the chord and E is the elastic 

ratio of the steel. If the value of 0.3 for ν is used, the slenderness ratio λ yields 

to: 

  0 10.16 / 1 0 0

0

1
1.581

h h yf h
e

E t




 
       (4.27) 

for E = 205000 MPa, the equation could be simplified as: 

    0 1 0 10.16 / 1 0.16 / 10 0
0 0

0 0

1 1

899.61 900

h h h h

y y

h h
e f e f

t t


   
    (4.28) 

 

4.4.2. Derivation of chord sidewall buckling strength formula 

As suggested in Becque and Cheng (2016), inelastic buckling strength of β = 

1 RHS X-joints could be obtained by the yield strength equation multiplied by 

the buckling stress reduction factor χ. Thus, the equation proposed in this 

section could be expressed by: 

 
0 1 02.4cr yN f h t     (4.29) 

where χ is the buckling stress reduction factor, fy0 is the yield stress of the 

chord section, h1 is the height of the brace section and t0 is the thickness of the 

chord section. 

This equation implies the nature of buckling behaviors. Inelastic 
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buckling strength could not exceed the yield strength since the range of the 

buckling stress reduction factor χ is zero to unity. Therefore, for the maximum 

value of χ, the equation of Ncr yields to be the identical equation of Ny. 

To determine the buckling strength reduction factor, the slenderness ratio 

λ derived in the previous section should be applied to the buckling curve. The 

proposed method recommends using “c” curve of EC3 multiple curves which 

is used to determine χ value in EC3 chord sidewall buckling strength formula. 

 

4.4.3. Evaluation of new joint strength formula 

 

 

Figure 4.20 Relationship between buckling stress reduction factor and 

normalized slenderness ratio 

As a result, comparative analysis of the new joint strength formula was done 

by database collected in previous experimental studies. Figure 4.20 shows the 
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results of comparative analysis. Dotted line is elastic column buckling curve 

which is inversely proportional to normalized slenderness ratio, and solid line 

is “c” curve of the multiple curves suggested in Eurocode3 (2005) 

The experimental strength normalized by the sidewall buckling strength 

derived in this thesis (Nexp / Nb) is used to evaluate the results. Table 4.9 shows 

the statistic parameters of this comparison. 

 

Table 4.9 Statistic parameters of the comparative analysis 

Nexp / Nb 
Maximum minimum Mean MSE COV 

1.48 0.87 1.09 0.17 0.16 

 

Since the true value of this normalized experimental strength is unity, 

mean square error which could express the deviation of this method could be 

calculated by its definition: 

  
2

1

1
MSE

n

i i

i

y y
n 

     (4.30) 

where yi is the normalized experimental strength of one specimen in database 

and 
i

y  is the true value 1 when the experimental strength Nexp is equal to the 

design strength Nb. COV is the coefficient of variation which could be 

calculated by the following equation: 

 COV=
m


  (4.31) 

where σ is the standard deviation and m is the mean value. 

The maximum and minimum values of normalized experimental strength 
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are 1.48 and 0.87, respectively. The mean value of Ncr/Nb is 1.09 which means 

that newly suggested strength equation only underestimate the experimental 

strength about 9%. Mean square error value representing the deviation of 

Ncr/Nb obtained by the new sidewall buckling strength equation is the least 

value among current design equations. Also COV, which represents dispersion 

of data, is the minimum value among the other methods. 

 

 

4.5. Summary 

 

1. The sidewall buckling formula proposed by the plate buckling model 

predicts the strength more accurately than by the simplistic column 

buckling model. But the equation of Becque and Cheng still 

conservatively predicts the experimental strengths of RHS X-joints 

fabricated from high-strength steels. 

2. The boundary condition of the chord sidewall was shown to be much 

closer to fixed than hinged. In order to define more reasonable 

normalized plate slenderness, therefore, fixed boundary conditions were 

used to derive elastic buckling strength formula of the chord sidewall by 

the Work Method. 

3. When the new normalized slenderness ratio proposed in this study is 

used in combination with the curve “c” of EC3, the accuracy and 

consistency in strength predictions was much improved compared to 

other methods available. 
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Summary and Conclusions 

 

 

In this thesis, the behavior of rectangular hollow section (RHS) X-joints was 

investigated by experimental, analytical and numerical analysis. Most of RHS 

X-joints with general geometries are governed by the failure modes of chord 

plastification, chord sidewall buckling and the mixed mode of these two 

modes. 

These failure modes are determined by transfer mechanisms of loads 

which come from braces, distributed to chord upper/lower face. Load transfer 

mechanisms are mainly governed by a geometric parameter β, a width ratio 

between braces and a chord. Therefore, the value of β was set to key 

parameter in experimental study. 

Another key parameter was grades of steels. From design to construction 

of structures, applying high-strength steel to rectangular hollow section joints 

can be an effective way to reduce total amount of structural steel and to give 

an aesthetic view to the buildings. Despite of these benefits, RHS X-joints 
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fabricated from high-strength steel whose yield stress exceeds 355 MPa are 

restricted in KBC (2016) and AISC (2010). Eurocode3 (2005) which gives 

quite general design standards for high-strength steels, suggests multiplying 

the strength reduction factor of 0.8 or 0.9 to the nominal strength formula of 

RHS X-joints fabricated from high-strength steel. 

To examine the penalty imposed on high-strength steels, six test 

specimens those consist of cold-formed channel sections fabricated from 

high-strength steel (HSA800, fy = 650 MPa) and ordinary steel (SM490, fy = 

325 MPa) were tested under axial compression. The strengths of test 

specimens were determined by the maximum strength within 3% indentation, 

widely-accepted criteria. As a result of the experiment, all of the high-strength 

steel RHS X-joint specimens satisfied EC3’s nominal strength with sufficient 

margin. Also, the experimental strengths exceeded the strength before 

applying strength reduction factor 0.8. Overall, RHS X-joints with high-

strength steel show satisfactory performances just slightly inferior to that of 

the X-joints fabricated from ordinary steel, in respect to their ductility and 

serviceability. However, it is clearly shown that the strength of β = 1 RHS X-

joints determined by sidewall buckling strength equations suggested in current 

EC3 and CIDECT, originally proposed based on simply supported column 

analogy, are too conservative and need to be improved. 

After collecting test data available in the literature and this experimental 

program, a comparative analysis was conducted to compare the experimental 

strengths with Eurocode3, AISC and the formula proposed by Becque and 

Cheng. The sidewall buckling formula proposed by the plate buckling model 
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predicts the strength more accurately than by the simplistic column buckling 

model, but it is still inaccurate. AISC strength equation shows the largest 

scatter among these equations which could overestimate the actual strengths. 

Becque-Cheng’s method gives more reliable strengths but it is still too 

conservative for the joints fabricated from high-strength steels. 

Numerical analysis models were established with boundary conditions 

validated by load-indentation relations obtained from the experimental results. 

Eigenvalue analysis with FEA models was conducted to determine the 

reasonable and simple shape functions. From these results, the boundary 

conditions of the chord sidewall were shown to be much closer to fixed than 

hinged. By using the buckled shape function which is consistent with this 

observation, the elastic buckling strength formula of the chord sidewall was 

obtained using the Work Method in order to define more reasonable 

normalized plate slenderness. When the proposed normalized slenderness 

ratio is used in combination with “c” curve of EC3 multiple buckling curves, 

the accuracy and consistency of strength predictions were much improved 

compared to other methods available. 
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MATLAB Source Codes to Calculate 

Buckling Stress 

 

 

1. Main function, ‘Plate_Buckling.m’ source code 

 

clear; 

 

% Variables declaration 

global alpha 

  

% Variables initialization 

q_crs = zeros(5001,1); 

alpha_s = zeros(5001,1); 

c_s = zeros(5001,1); 

  

% 'for' command to solve nonlinear equation 

% Variable alpha is in the range of (0.25 <= alpha <= 4) 

for count = 1:5001 
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    alpha = 0.25 + ((4 - 0.25) / 5000) * (count - 1); 

     

    % alpha solution value assignment 

    alpha_s(count) = alpha; 

     

    % c solve 

    c = fsolve(@PB, 1); 

     

    % Assignment of solved c value 

    c_s(count) = c; 

     

    % q_cr calculation 

    q_crs(count) = (9 / (16 * (pi^4))) * (c^4) + ( 1 / (pi^2) ) * (c ^2) + 4; 

    q_crs(count) = q_crs(count) / erf(alpha * c / 2); 

end 

  

disp('Solution Obtained') 

 

 

2. Main function, ‘Plate_Buckling.m’ source code 

 

function = PB 

  

global alpha; 
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LL = ( alpha * exp( - (alpha^2 * c^2) / 4) ) / (sqrt(pi) * erf( alpha * c / 2)); 

RR = ( 36 * (c^3) + 32 * (pi^2) * c ) / (9 * (c^4) + 16 * (pi^2) * (c^2) + 64 * 

(pi^4)); 

  

difference = RR - LL; 

end
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Abstract (in Korean) 

최근 건축물은 물론 해양구조물에도 적용되는 강관은 기둥과 트러스로 

널리 사용되고 있다. 그중에서 각형강관은 강관의 제작과 용접이 간단하여 

원형강관을 대체하는 단면으로 활용되고 있다. 각형강관에 고강도강관을 

사용하면 설계부터 제작, 운반, 시공뿐 아니라 미학적 측면으로도 많은 

이점을 취할 수 있다. 그러나 고강도 강재를 적용하는 데 있어 가장 관대한 

기준인 유로코드에서조차 고강도 강재를 적용한 각형강관 접합부의 강도를 

산정할 때에는 사용되는 강재의 항복강도에 따라 0.8 또는 0.9의 

강도감소계수를 곱하도록 제한하고 있다. 

본 연구에서는 유로코드에서 제안하는 강도감소계수의 적절성을 

검증하기 위해 각형강관 X형 접합부에 압축력을 가하는 실험을 계획하였다. 

실험변수는 2가지로 강재의 항복강도(fy)와 지관과 주관 사이의 폭 

비율(β)이다. 총 6개의 실험체를 제작하였으며, 실험결과, 접합부의 

탄성구간 이후 거동은 지관과 주관의 폭 비율에 따라 굉장한 차이를 

보였다. 모든 실험체가 유로코드 공칭강도를 초과하는 실험강도를 보였으며, 

발현된 실험강도들은 0.8의 강도감소계수가 적용되지 않은 유로코드 

공칭강도조차도 상회하였다. 한편, 지관과 주관의 폭이 동일한 X형 접합부 

실험체에 적용되는 주관측벽 좌굴강도식은 실험강도를 지나치게 

보수적으로 예측하였기에 그 정확도를 개선해야한다. 선행연구 중에는 

개선된 주관측벽 좌굴강도식을 제안하는 연구도 있었으나, 이 연구에서 
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제안한 식을 통해 얻은 예측강도는 고강도 강재를 적용한 실험체의 강도를 

여전히 보수적으로 평가하였다. 

그러므로 본 연구에서는 새로운 주관측벽 좌굴강도식을 제안하였다. 이 

식은 판 좌굴에 근거한 이론적 모델에서 유도되었으며, 수치해석을 통해 그 

유효성을 검증하였다. 또한, 선행 연구들로부터 수집한 실험강도 데이터를 

통해 본 연구에서 제시한 식과 현행 주관측벽 좌굴강도식들을 비교하였다. 

결론적으로, 본 연구에서 새롭게 정의한 세장비를 유로코드 기둥좌굴 곡선 

중 하나인 “c”곡선에 적용한다면 현존하는 다른 강도식보다 더 일관성 

있고 정확한 예측강도를 얻을 수 있다. 

주요어: 각형강관; X형 접합부; 고강도 강재; 극한강도식; 실대형 실험 
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