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Abstract 

 

 

In this thesis, our synthetic efforts toward marine natural product mardeirolide 

A are described. Madeirolide A is a biologically active polyketide that belongs to a 

group of macrolides. Madeirolide A have three bicyclic ether units embedded 

within a stereochemically decorated macrolactone scaffold. The bioactivity and 

structural complexity make madeirolide A an attractive target for total synthesis. 

Our approach for the synthesis of madeirolide A is based on the assembly of four 

fragments – C1-C10 fragment (A ring), C13-C19 fragment (B ring), C20-C27 

fragment (C ring), and cinerulose fragment. Constructions of three oxacycles have 

been carried out through radical cyclization using a visible-light-induced 

transformation rapidly developed area in the past decade. 

Chapter 1 contains the background about madeirolide A, biological activity and 

structure features. Also, presented briefly are all published synthetic studies.  

Chapter 2 discusses all of the efforts that have been carried out in the laboratory 

towards a total synthesis of madeirolde A.  
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Chapter 1: Marine Macrolide Madeirolide A  

 

1.1 Isolation, structure and biological activity 

Various natural products found in sponges have been frequently studied as 

precursors of marketed drugs due to their valuable biological activities such as 

antibiotic and anticancer potency.1 As these noble compounds, three marine natural 

product families, leiodelides, leiodermatolides and madeirolides have been newly 

reported since the mid 2000’s from the sponges of genus Leiodermatium which 

have been less studied due to their deep water habitat. Leiodelide A was shown to 

have a significant cytotoxicity against HL-60 leukemia and OVCAR-3 ovarian 

cancer cells with a GI50 value of 250 nM.2 Leiodermatolide A was found to exhibit 

potent antimitotic activity (IC50 <10 nM) against a range of human cancer cell lines 

and the total synthesis was also reported by Paterson’s group.3  

 

	    

Figure 1.1 Marine natural products from Leiodermatium sp	  
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Madeirolides were extracted from a Leiodermatium sp. by Wright and Winder 

in 2009 as a part of their program to discover bioactive marine natural products. 

Madeirolide A (1.1) and B (1.2) were shown to be effective inhibitors against the 

fungal pathogen Candida albicans (fungicidal MIC = 12.5 µg/mL, 1.1/ 25 µg/mL, 

1.2).4 When tested for anticancer effects against the PANC-1 pancreatic cancer cell 

line, 44% inhibition of proliferation was observed at 10 µg / mL. Structurally, 1.1 

is a macrolide consisting of a cinerulose monosaccharide and a 24-membered 

macrolactone core featuring stereochemically decorated three bicyclic ether units, 

two 2,6-cis-tetrahydropyrans and one 2,5-cis-tetrahydrofuran.  

 

 

Figure 1.2 Highest probability structures as determined by the DP4 method 
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centers to vary, each tetrahydropyrans were considered as a single variable, and 

each stereocenters of C15-C18 tetrahydrofuran were handled as a variable, as were 

C9 and C19 centers. With these eight variables, DP4 calculation concluded that 9-

epi-diastereomer 1.1 was shown to have the highest probability 99.65%, and 

second probable structure was 9-18-bis-epi-diastereomer 1.4 at 0.35%.  

 

1.2 Synthesis of C1-C10 subunit of madeirolide A 

Thus far, three partial syntheses of C1-C10 subunit, including our own, have 

been published. Both the Paterson6 and the Carter7 group were able to construct the 

2,6-cis-THP-ring using the diastereoselective addition reaction of a hydroxyl group 

to the pi-bonding orbital. In the following section, all published results will be 

presented briefly.  

 

1.2.1 Paterson’s Approach	  	  
	  

	   	  
Scheme 1.1 Paterson’s approach to madeirolide A 
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The Paterson group reported the first fragment synthesis of madeirolide A in 

2013 (Scheme 1.1). The synthetic route toward fragment 1.11 began with 

commercially available Roche ester having the appropriate stereochemistry at C9. 

The syn-adduct 1.7 possessing suitable C5 and C6 stereocenters was obtained by 

the asymmetric aldol reaction from ketone 1.5 and aldehyde 1.6 using (-)-

(ipc)2BOTf, a chiral boron reagent. After stereocontrolled reduction of syn-aldol 

product 1.7 under Evans-Tishchenko condition, resulting diol was subjected to 

sequential manipulations to give aldehyde 1.8 having requisite stereochemistry at 

C7. Condensation of aldehyde 1.8 and phosphonate 1.9 through a HWE reaction 

generated Michael acceptor 1.10 which was then cyclized under acid catalyzed 

acetonide deprotection conditions to give 2,6-cis-THP 1.11 with high 

diastereoselectivity. Interestingly, subjection of methyl ester 1.12 to a basic 

condition provided exclusively 2,6-trans-THP 1.13 (scheme 1.2). Computational 

investigations about this selectivity revealed that intramolecular-hydrogen bonding 

of the C5 hydroxyl group with C7 alkoxide group stabilized the boat-like transition 

state under basic condition, which led to the 2,6-trans-THP product.7 

 

 

Scheme 1.2 Unexpected trans-cyclization of enoate 1.12  
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1.2.2 Carter’s Approach 

The Carter Group has been steadily conducting research on the synthesis of 

related natural products through the dihydrofuran construction via the silver 

catalyzed cyclization (AgCC) developed by the group. As an extension of this 

synthetic strategy, the same protocol was applied to the synthesis of 2,6-cis-

dihydropyran, to produce the core structure of C1-C10 fragment of madeirolide A. 

In the mechanism (scheme 1.3), allene 1.15 was derived from ester 1.14, which has 

a stereocenter at the propargylic position, by stereospecific rearrangement using 

the silver catalyst as alkyne activator. Then, 2,6-cis-dihydropyran 1.16 is formed 

by addition of the hydroxy group to the allene activated by silver. 

 

	    

Scheme 1.3 Metal catalyzed THP synthesis from propargyl benzoate 
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cyclization, 2,6-cis-dihydropyran 1.19 was generated as major product along with 

dihydrofuran 1.20 in a 1.4:1 ratio. The generation of the undesired DHF 1.20 might 

be ascribed to slow rearrangement of the propargyl benzoate due to steric 

congestion at C6. 

 

 

Scheme 1.4 Carter’s approach to madeirolide A 
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Chapter 2. Synthetic Studies Toward Madeirolide A 

 

2.1 Synthetic plan 

 

 

Scheme 2.1 Retrosynthetic analysis of madeirolide A, I 
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Scheme 2.2 Glycosylation of Paterson group 

 

The Paterson group2 found that acidic reaction of alcohol 2.7 and cinerulose 

derivative 2.6, formed through Achmatowicz rearrangement of (S)-2-furyl ethanol 
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Scheme 2.3 Palladium catalyzed glycosylation 
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groups of O’Doherty and Lee independently reported palladium-catalyzed 

glycosylation methods using reactive allylic acetate derivatives. In the O’Doherty 

method,3 Boc-pyranone 2.10 was used as a substrate and the anomeric 

stereochemistry was controlled by stereochemistry of substrate (Scheme 2.3a). On 

the other hand, in the process developed by the Lee group,4 the stereochemistry of 

glycosylation of glycal 2.13 was controlled by choice of the catalyst (Scheme 2.3b). 

Therefore, we envisioned that α-cinerulose 5,1′-glycosidic linkage would be built 

through the Pd-catalyzed glycosylation and subsequent hydrogenation of the C2'-

C3 'alkene. 

 

	    

Scheme 2.4 Retrosynthetic analysis of madeirolide A, II 
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strategy toward 2.3, the C19-C20 bond formation reaction is considered as a key 

union step. Although the coupling of C19 and C20 is a challenging task, it is 

synthetically advantageous that a construction of complex all-cis-THP skeleton of 

C ring could be performed in early stages. More details will be discussed in the 

later part of the chapter, section 2.5. 

	  

	  
Scheme 2.5 Retrosynthetic analysis of madeirolide A, III 
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Scheme 2.6 Diastereoselectivity of radical cyclization 

 

The radical cyclization of β-alkoxyacrylates can be achieved efficiently with 

high diastereoselectivity, which has been applied in a great number of natural 

product syntheses (Scheme 2.6).6b In this synthesis we plan to utilize visible-light-

induced transformation for radical generation, an approach rapidly developed in 

the past decade.7 Since poor 2,3-stereoselectivity was found in photo-induced free 

radical cyclization in our group8 (Scheme 2.7), we need a solution to the additional 

diastereoselectivity issue encountered in the B and C rings. More details will be 

discussed in sections 2.3 and 2.4 of the chapter. 

	  

	  
Scheme 2.7 Reductive cyclization of organohalide in Lee group 
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2.2 Synthesis of C1-C10 subunit, A ring 

 

2.2.1 Retrosynthetic analysis 

 

 

Scheme 2.8 Retrosynthetic analysis of C1-C10 subunit, A-ring 

 

We proposed that the 2,6-cis-THP skeleton of 2.29 would be constructed 

through free radical cyclization of iodide 2.19 under visible-light-induced 

photoredox condition (scheme 2.8). After cyclization, the α-cinerulose 5,1′-

glycosidic linkage would be built via palladium-catalyzed glycosylation with 

pyranone 2.30. For the preparation of 2.19, acrylation on secondary alcohol of diol 

2.31 followed by iodination on primary alcohol is a straightforward as well as the 

most plausible route. Three stereogenic centers, C5-C7, would be established 

through a sequence of stereospecific Ireland-Claisen rearrangement and 

diastereoselective iodolactonization from aldol product 2.32.  
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2.2.2 Construction of stereogenic centers of 2.31 

 

	  	  	  	  	    

Scheme 2.9 Construction of stereogenic centers 

 

In the forward direction, the synthesis of allylic glycolate 2.38 began with 
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Ireland-Claisen rearrangement occurred smoothly to give rise to two carbon-

elongated acid 2.39 having three-stereogenic centers with excellent 

stereoselectivity10. In order to introduce stereo-controlled C7-hydroxy group, acid 

2.39 was subjected to iodolactonization at various conditions. In the literature 

review, halolactonization of γ, δ-unsaturated acid with α or/and β substituents was 

known to have high π-facial selectivity11. After considerable experiments, we were 

able to obtain iodide 2.40c with excellent yield (85% over two steps) and 

diastereoselectivity (dr = 9:1) through performing the reaction at – 40 °C using 

acetonitrile as solvent. When this reaction was carried out at high temperature or 

using other solvent such as, THF, DCM and toluene, we could only observe low 

diastereoselectivity (scheme 2.9). 

 

	  	  	    

Entry SM Conditions Yield [%] 

1 2.40a TTMSS, AIBN, 80 °C 54 

2 2.40a [Ir(PPy)2(dtbbpy)]PF6, DIPEA, 2 W blue led complex  

mixture 

3 2.40b [Ir(PPy)2(dtbbpy)]PF6, DIPEA, 2 W blue led 20 (SM, 62%) 

4 2.40c TTMSS, AIBN, 80 °C 55 

5 2.40c Ir(PPy)3, NBu3, Hantzsch ester, 2 W blue led 71 

6 2.40c fac-Ir(mPPy)3, DIPEA, p-toluenethiol, 2 W blue 

led 

69 

7 2.40c [Ir(PPy)2(dtbbpy)]PF6, DIPEA, Hantzsch ester, 

2 W blue led 

81 

Table 2.1 Reductive-deiodination reactions 

TBDPSO
O

O

OP

I

conditions
TBDPSO

O
O

OP

2.40a (P = PMB)
2.40b (P = TBDPS)
2.40c (P = Bn )

2.41a (P = PMB)
2.41b (P = TBDPS)
2.41c (P = Bn )
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With iodides 2.40a-c, varying protection on C5-hydroxy group, in hand, 

radical-mediated hydrodeiodination was performed under various conditions 

(Table 1). Interestingly, PMB-iodide 2.40a was observed to be particularly 

unstable compared to TBDPS-iodide 2.40b under visible-light-induced photoredox 

condition by our group, probably due to the presence of a methoxy-aryl group that 

could participate in the redox process (entry 2, entry 3). In the reductive 

deiodination reaction with Bn-iodide 2.40c that was more stable for redox-problem, 

photocatalytic conditions gave higher yields of lactone 2.41c than traditional 

organosilane based condition (entry 4, entry 5-7). After considerable experiments, 

lactone 2.41c was obtained in 81% yield when the reaction was performed using 

the combination of [Ir(ppy)2(dtbbpy)]PF6 catalyst and both DIPEA and Hantzsch 

ester as the reductants.  

 

 

Scheme 2.10 Determination of relative C7 stereochemistry 
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After establishing the sequence involving Ireland-Claisen, iodolactonization 

and hydrodeiodination, the synthesis of minor lactone 2.42 commenced with 

slightly modified condition to ensure the structure of major lactone 2.41c. Starting 

from acid 2.38, γ, δ-unsaturated acid 2.39 was prepared and further reacted with 

iodine in situ in the presence of H2O and NaHCO3 at room temperature to provide 

inseparable mixture of iodide 2.40c (1.4 : 1), which was converted to major lactone 

2.41c and minor lactone 2.42 by radical mediated transformation (Scheme 2.10). 

With two isomers 2.41c and 2.42 in hand, determination of the relative C7 

stereochemistry was realized through nOe analysis. Irradiation of H7 in 2.41c 

showed nOe enhancements to H5 (2%) and H28 (2%) and irradiation of H7 in 2.42 

showed nOe enhancements to H6 (4%) (Scheme 2.10). Based on this analysis, we 

concluded that major lactone 2.41c has (R)-C7-configuration. 

 

2.2.3 Completion of C1-C10 subunit, A ring 

After the construction of C4-C10 subunit 2.41c possessing four stereocenters, 

we turned our attention into β-alkoxyacrylate 2.19 for the radical cyclization 

(scheme 2.11). Following reduction of lactone 2.41, the resulting diol 2.44 was 

silylated selectively at the primary hydroxyl group to give TBS ether 2.43, which 

was then subjected to well-established protocols for the Michael reaction with 

propiolates. However, the Michael reaction of alcohol 2.40 at various conditions 

met with failure, producing the β-alkoxyacrylate 2.45 product in low yields (<5%), 

probably due to steric congestion around the C7 alcohol. To overcome this 

problem, we attempted to introduce cyclic acetal 2.46 that could generate β-

alkoxyacrylate 2.47, using the reactive primary alcohol of 2.44.  
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Scheme 2.11 Synthesis of C1-C10 aglycon 

 

As planned, transacetalization between diol 2.44 and acetal 2.48 gave a good 

yield of cyclic acetal 2.46, which was then converted to 2.47 by selective β-

elimination of lithium enolate.12 By producing iodide 2.19 with an Appel reaction, 

we were ready for radical mediated cyclization. In the presence of the iridium 

catalyst in conjunction with DIPEA, irradiation of 2.19 with a 2 W blue LED 

(λmax = 454 nm) strip led to clean reductive cyclization giving rise to the targeted 

tetrahydropyran 2.48 in 70% yield with complete 2,6-cis-selectivity.  
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Scheme 2.12 Completion of C1-C10 glycoside 2.29 

 

Having C1-C10 aglycon 2.48 in hand, our attention was turned to 

stereoselective formation of an α-glycosidic linkage (Scheme 2.12). Following 

reductive removal of benzyl group from 2.48, the resulting alcohol 2.49 was 

subjected to palladium-catalyzed glycosylation with pyranone 2.3013 to generate α-

glycoside 2.50 as single anomer. Finally, hydrogenation of C2’-C3’ alkene in the 

cinerulose furnished desired glycoside 2.29 in good yield with small amount (15%) 

of deglycosidic alcohol 2.49.  
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regions. In addition, chemical correlation was also conducted by converting methyl 

ester 2.48 to thioester 2.512 (Scheme 2.12), a key intermediate in the related 

synthesis reported by the Paterson group. All spectroscopic data of thioester 2.51 

corresponded to the reported values in all aspects, indicating the identity of the 

structure. 

 

 

 

Figure 2.1 NMR comparison of the C1-C10 glycoside 2.29 with madeirolide A (2.1) 
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2.3 Synthesis of C13-C19 subunit, B ring 

 

2.3.1 Synthetic plan 

 

Scheme 2.13 Retrosynthetic analysis of C13-C19 subunit, B ring 

 

 Because of the aforementioned poor 2,3-stereoselectivity of radical cyclization 

from alkyl iodide 2.52, we proposed exo-methylene-THF 2.53 as an alternative 

target which did not have stereochemical issue on C16. In mandelalide A syntheses, 

Smith’s group1g and Carter’s group1f found that 3-exo-methylene tetrahydrofuran 

skeleton of 2.53 was hydrogenated by Rh/H2 condition in a stereocontrolled 

fashion, possessing the requisite stereochemistry at C16. We assumed that exo-

methylene 2.53 would be obtained by free radical cyclization of vinyl iodide 2.54 

under visible-light-induced photoredox condition (Scheme 2.13). 

In the classical tin-mediated cyclization of vinyl radical, interesting features 
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alkene 2.61 could not be prevented.15b In total synthesis of (-)-amphidinolide K, 

Lee’s group reported that alkyne 2.62 was subjected to triethylborane-initiated 

radical cyclization condition to produce exo-methylene THF 2.63 via stannylated 

vinyl radical (scheme 2.14).15c Based on these results, visible-light-induced 

photoredox condition would be explored in an effort toward exo-methylene THF 

skeleton of 2.53 from vinyl iodide and/or alkyne moieties. 

 

 

Scheme 2.14 Tin-mediated cyclization of vinyl radical 
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2.3.2 Substrate synthesis 

Enyne 2.62 was prepared by the reported route15c starting with the commercially 

available (R)-glycidol possessing appropriate configuration at C18 (Scheme 2.15). 

After protection with TBDPSCl, epoxide opening, followed by selective 

deprotection of TMS-acetylide furnished homo-propargylic alcohol 2.64 in 85% 

yield.  

	  	  	  	  

	  

Scheme 2.15 Substrate synthesis for radical cyclization, I 
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Scheme 2.16 Substrate synthesis for radical cyclization, II 

 

After following the Lee group route, we endeavored to construct our own 

synthetic route toward vinyl iodide 2.65. In order to introduce C18 alcohol with 

stereocontrol, we attempted a diastereoselective allylation of chiral auxiliary-

bearing glycolate17 2.68 with allylic iodide 2.67 (Scheme 2.16). Active iodide 2.67 

was obtained by a simple sequence of hydroiodination18 and Appel type iodination 
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may participate in single electron transfer to I2 which was produced by 

uncontrollable pathway from reactive iodide 2.67 or itself. The resulting radical 

2.72 and enolate 2.71 might get coupled via radical addition to furnish anionic 

radical intermediate, which was then oxidized via single electron transfer to 

generate dimer 2.70. Finally, after a sequence involving deprotection of the TES-

ether and a reductive removal of the auxiliary, resulting diol was silylated 

selectively to give mono-protected alcohol 2.65. 

 

	  	    

Scheme 2.17 Proposed mechanism for the generation of dimer 2.70 
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Scheme 2.18 Radical cyclization of B ring, I 

 

In the photoredox reaction using Ir[dF(CF3)ppy]2(dtbbpy)PF6 as catalyst, 

MacMillan’s group reported that single-electron oxidation of a bromide anion by a 

photoexcited catalyst produced electrophilic bromine radical which could then 

abstract hydrogen atoms from Si-H bond to generate the stable silyl radical 

intermediate of TTMSS.20 Following this protocol, the reaction was performed 

with the combination of Ir[dF(CF3)ppy]2(dtbbpy)PF6 catalyst (3 mol%), tetrabutyl-

ammonium bromide (25 mol%) and TTMSS (1.5 equiv) to obtain oxolane 2.73 in 

92% yield (Scheme 2.18).  

 

	    

Scheme 2.19 Radical cyclization of B ring, II 
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With the success of the cyclization of alkyne 2.62, photo-induced 

transformation of vinyl iodide 2.66 was next investigated (Scheme 2.19). Using the 

condition developed by our group ([Ir(ppy)2(dtbbpy)]PF6, DIPEA, acetonitrile and 

5 W blue LED), vinyl iodide 2.66 was reductively cyclized giving rise to the 

targeted exo-methylene THF 2.63 in 60% yield with simple alkene 2.74 as a minor 

product. This observation indicated that rapid hydrogen abstraction due to the 

reactivity of vinyl radicals was a challenging problem. A brief survey of literature 

suggested that photoinduced transformation using THF as solvent would suppress 

the generation of simple reduction products from organohalides.21 When the radical 

cyclization was carried out through standard condition with THF/H2O as solvent, 

we observed a slight increase in yield of exo-methylene THF 2.63 without the 

generation of simple alkene 2.74.  

 

2.3.4 Completion of C13-C19 subunit and conclusion 

In an effort to include 2.73 in the synthetic route, the reactions aimed at the 

vinyl TTMS group of 2.73 such as hydrodemetallation and hydrogenation all failed. 

Therefore, we concluded that the cyclization strategy from alkyne 2.62 using an 

assistant radical should be practiced with an easily detachable group. With exo-

methylene 2.63 in hand, the synthesis of C13-C19 subunit entered the final stage in 

which the construction of 2,3,5-cis-tetrahydrofuran-skeleton was carried out 

through the stereocontrolled hydrogenation on C16-C30 alkene (Scheme 2.20). 

Reduction of the ester, followed by protection of the resulting alcohol, furnished 

alkene 2.76 in 81% yield. Finally, the rhodium-catalyzed hydrogenation of C16-

C30 alkene cleanly generated the fully elaborated C13-C19 fragment 2.77 in 83% 

yield with small amount of minor isomer 2.78. 
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Scheme 2.20 Completion of C13-C19 subunit 
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2.4 Synthesis of C19-C27 subunit, C-ring 

2.4.1 Synthetic plan 

 

Scheme 2.21 (a) Synthetic issue of all-cis-THP 2.16 (b) Radical precursors 

	  

The C19-C27 fragment 2.16 has a complex and unusual all-cis-substituted 

tetrahydropyran core, a rare structure in natural products. From the viewpoint of 

the construction of oxacycles through visible-light-induced radical cyclization, 

some considerations should be made in terms of the diastereoselectivity issue and 

substrate structure as radical precursor (Scheme 2.21a). More specifically, it is 

challenging whether the THP core possessing requisite stereochemistry at C21-C22 

could be established by the cyclization of radical precursor 2.21 having an 

appropriate functional group (X). In the literature study on suitable precursors, 

three α-oxyradical precursors were reported by the MacMillan group22a,22b and the 

Overman group22c in visible-light-induced photoredox-reaction. The photoredox-
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reactions using the acid 2.79 or the active-ester 2.81 as a radical precursor had 

reliable chemoselectivity. However, in the case of ether 2.80, which was converted 

into radicals through hydrogen abstraction by a thiol-radical, chemoselectivity 

could not be assured in the presence of C-H bonds having similar reactivity, and 

thus ether 2.80 was excluded as a precursor (Scheme 2.21b).	  

 

	    

Scheme 2.22 Stereoselectivity of radical cyclization  

 

Diastereoselectivity, which was generally found high in the cyclization of α-

oxyradicals, was next surveyed in literature (Scheme 2.22). When aldehyde 2.82 

was exposed to SmI2 to generate the α-hydroxy radical, the radical cyclization 

proceeded by way of 6-membered transition state with all-equatorial substituents, 

which led to furnish 2,3-anti-THP 2.83. 23a Thus, such α-hydroxy radicals are not 

suitable for the generation of 21,22-cis-THP 2.16 in a stereocontrolled fashion. In 

another example, the cyclization reaction was carried out using active ester 2.84, 

from which α-oxyradical was generated at a rigid oxirane, to give cis-fused bicycle 

2.85 with excellent selectivity.23b This encouraging result seemed to hold promise 

for the construction of the cis-diol at C22-C23. 
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Scheme 2.23 Retrosynthetic analysis of C19-C27 subunit  

 

In light of the aforementioned reports, we proposed that the all-cis-THP 

skeleton of 2.86 would be constructed through free radical cyclization of ester 

derivative 2.87 under visible-light-induced photoredox condition. The requisite 

stereochemistry of THP 2.86 would be installed by way of transition state A, where 

rigidity of dioxolane structure may play a prominent role for cis-configuration at 

C22-C23. For the preparation of 2.87, Sharpless asymmetric dihydroxylation from 

enoate 2.88 would generate a diol product with appropriate C23 stereocenter. Two 

stereogenic centers, C24-C25, of enoate 2.88 would be established through the 

Evans aldol reaction. 
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2.4.2 Substrate synthesis 

	    

Scheme 2.24 Substrate synthesis of C19-C27 subunit, I 

 

In the forward direction, the synthesis of ester 2.96 began with chiral auxiliary-

bearing imide 2.89 which was subjected to a syn-aldol reaction with readily 

available aldehyde 2.90 to provide alcohol 2.91 with excellent diastereoselectiviy. 

After reductive removal of chiral auxiliary using DIBAL, the resulting aldehyde 

was exposed to Hornor-Wadsworth-Emmons conditions to give rise to two carbon-

elongated enoate 2.92 in 85% yield over two steps. When the Sharpless 

asymmetric dihydroxylation reaction was conducted without protection of the 

hydroxy group at C25, the resulting triol transformed to a six-membered lactone or 

was hydrolyzed to form a free acid. Thus, protection of enoate 2.92 with TESCl 

and subsequent Sharpless asymmetric dihydroxylation gave diol 2.93 having 

suitable stereochemistry at C23-C25 in good yield. Resulting diol 2.93 was 
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condition in the presence of dimethoxypropane to produce 5-membered acetonide 

2.94 as a major product. The conjugate addition of alcohol 2.94 to the activated 

triple bond of 2.95 was carried out under standard base-catalyzed condition5 to 

furnish β-alkoxyacrylate 2.96. For the synthesis of active ester 2.98, acrylate 2.96 

was subjected to selective methyl ester hydrolysis under various conditions. After 

failure to obtain the monoacid product under basic conditions using LiOH or 

KOTMS, the use of Me3SnOH led to successful mono hydrolysis. The resulting 

acid was condensed with 2.97 to give active ester 2.98 in moderate yield due to its 

instability to silica gel chromatography. 

 

 

Scheme 2.25 Substrate synthesis of C19-C27 subunit, II 

 

2.4.3 Visible-Light-Induced radical cyclization of C-ring 

Having active ester 2.98 in hand, our attention was turned to visible-light-

induced radical cyclization (Scheme 2.26). In the standard condition of our group 

([Ir(ppy)2(dtbbpy)]PF6, DIPEA, acetonitrile and 5 W blue LED), the reductive 
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diastereomers along with complex byproducts. Only two of the four theoretically 

possible diastereomers were observed, albeit with low diastereoselectivity. 

 

	  	   	  	  

Scheme 2.26 Radical cyclization of C19-C27 subunit 

 

Photo-induced oxidation of carboxylic acids for generation of α-oxy radicals 

was also employed to perform the radical cyclization. Hydrolysis of ester 2.96 was 

performed using Me3SnOH, then the resulting carboxylic acid was irradiated with 

30 W blue LED in the presence of the iridium catalyst in conjunction with K2HPO4 

to produce THP 2.99 in 70% yield as a 4.4:1 mixture of diastereomers. In order to 

correctly analyze these results, it was important to find out the structure of the two 

diastereoisomers. Two diastereomers could be purified by repeated column 

chromatography. Fortunately, X-ray crystallographic analysis revealed that the 

major diastereomer 2.99a had an all-cis-substituted THP structure (Figure 2.2).  
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Figure 2.2 X-ray crystallography of 2.99a 

 

After identifying the exact structure of THP 2.99a, 1-D nOe analysis was 

conducted to elucidate the structure of the minor THP 2.99b (figure 2.3). 

Irradiation of H21 in 2.99a showed nOe enhancements at H23 and H25, whereas 

irradiation of H21 in 2.99b showed nOe enhancements at H26 (Figure 2.3). Based 

on this analysis, we concluded that the minor THP 2.99b has (S)-C21-

configuration. 

 

 

Figure 2.3 1D-nOe correlation of 2.99a and 2.99b  
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Scheme 2.27 Epimerization process of THP 2.99, I 

 

After determining the exact structure of each isomer, epimerizations of 2.99a 

and 2.99b were carried out for further understanding the stereoselectivity of the 

photoredox induced radical cyclization (Scheme 2.27). The minor THP 2.99b, 

when enolized under basic conditions of KOtBu at 0 °C, provided THP 2.99a as 

the major product in a 4.3:1 ratio. In the meanwhile, epimerization of 2.99a also 

gave similar results. Two diastereomers of THP 2.99 could reach thermodynamic 

equilibrium through an elimination-addition process under basic conditions 

(Scheme 2.28). Based on these results, we could estimate the thermodynamic ratio 

of the two isomers to be around 4.3: 1. 
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Scheme 2.28 Epimerization process of THP 2.99, II 

 

Before determining whether the selectivity of the two radical cyclizations was 

due to thermodynamic or kinetic preference, we would need to consider the 

mechanism of each reaction. In the carboxylate oxidation approach (Scheme 2.29), 

carboxylate potassium salt 2.96-K, produced from ester 2.96, is subjected to single 

electron oxidation by the visible-light excited photocatalyst *IrIII to generate the 

carboxyl radical species which immediately release CO2 give α-oxy radical A. The 

cyclization of α-oxy radical A, subsequent SET reduction of resulting α-acyl 

radical B by IrII, which was reduced by carboxylate 2.96-K, finally produce 

potassium enolate 2.99-K. If the lifetime of enolate 2.99-K is long enough due to 

the slow rate of proton transfer between enolate 2.99-K and KH2PO4, THP 2.99 is 

able to reach thermodynamic equilibrium according to the process in Scheme 2.28. 
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Scheme 2.29 Proposed mechanism of decarboxylative radical cyclization, free acid 

 

The reductive cyclization of active ester 2.98 may follow a slightly different 

mechanism (Scheme 2.30). Following the SET reduction of active ester 2.98 by 

IrII, which was generated by the redox process between excited photocatalyst *IrIII 

and DIPEA, homolytic fragmentation and decarboxylation of the resulting radical 

anion releases phthalimide, CO2 and α-oxy radical A. Subsequently, after the 

cyclization to α-acyl radical B, unlike the above case where radical B was 

converted into enolate 2.99-K through a reductive quenching process, neutral THP 

2.99 is directly generated through the hydrogen abstraction with the aminyl radical. 

Based on this, the selectivity of the reaction with active ester 2.98 could arise from 

the kinetic preference of the ring closure event. However, unlike the theoretical 

predictions, experimental results suggest that the quenching process of the final α-
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acyl radical B in the reductive radical cyclization can be carried out in two 

different ways depending on the conditions, the hydrogen abstraction process and 

the reduction process.25 Thus, in order to measure the definite kinetic ratio, 

additional experimentation would be required under conditions that would exclude 

the SET reduction process, such as classic Barton decarboxylation. In conclusion, 

the desired all-cis-terahydropyran 2.99a could be effectively synthesized in good 

yield and selectivity through visible-light induced radical cyclization of ester 2.96. 

 

	  	   	  

Scheme 2.30 Proposed mechanism of decarboxylative radical cyclization, active ester 
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2.5 Synthesis of C13-C27 subunit 

2.5.1 Substrate synthesis 

	    

Scheme 2.31 [a] Synthetic plan of C13-C27 subunit [b] Materials in our hand 

 

After the construction of B-C ring core structures, we combined the C13-C19 

subunit 2.77 and C19-C27 subunit 2.99a. We attempted to utilize the carbon 

skeleton of C19-C22 to combine the two subunits as discussed (Scheme 2.31). 

Furthermore, Michael reaction and decarboxylative transformation were applied, 

respectively, for the union of B and C ring domains. The Michael donor, alcohol 

2.94, was ready to be used, but we had to prepare the Michael acceptor ynone 2.17 

from THF 2.77. Another approach for the C13-C27 subunits 2.3 was to be explored 

by converting the ester group of THP 2.99a to an active ester and conducting 

functional group manipulations of THF 2.77 for decarboxylative coupling. 
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Scheme 2.32 Substrate preparation for C13-C27 subunit 

 

The synthetic sequence for preparation of the required precursors is outlined in 

Scheme 2.32. After desilylating THF 2.77, subsequent Parikh-Doering oxidation 

produced aldehyde 2.100. Following a Grignard reaction with acetylide 2.101, the 

resulting alcohol was then oxidized with DMP to produce ynone 2.17 in 79% yield 

over two steps. In addition, enone 2.102, which could be used as a precursor for 

forming β-alkoxyenone via condensation, was also prepared through methanol 

addition using a nucleophilic catalyst. To prepare the precursor for the 

decarboxylative coupling reaction, a Pinnick oxidation was conducted on aldehyde 

2.100 to furnish acid 2.103, which was then subjected to condensation under 

Corey-Nicolaou macrolactonization conditions (disulfide 2.104, PPh3) to generate 

thioester 2.105. 
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Scheme 2.33 Substrate preparation for C13-C27 subunit, II 

 

After functional group manipulations of THF 2.77, the active ester was 

prepared for the decarboxylation coupling reaction. Hydrolysis of THP 2.99a using 

LiOH, followed by the condensation of the resulting acid with 2.97, then furnished 

active ester 2.106 in 87% yield over 2 steps. 
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2.5.2 Michael reaction approach 

 

Entry Acceptor Conditions Results 

1 2.17 DABCO (0.1 equiv.), Hexane, RT, 1 h 2.108, 25% 

2 2.17 PPh3AuCl, AgOTf, DCM, 0 °C, 1 h, then, RT 2.109, 40% 

3 2.17 PPh3AuNTf2, DCM, RT, 24 h No reaction 

4 2.17 CSA, DCM, RT, 24 h No reaction 

5 2.107 NaH, THF, then, 2.107 2.110, 50% 

6 2.102 PPTS (cat.), benzene, 20 mbar, 50 h 2.108, 20% 

Table 2.2 Results of Michael reaction approach  

 

The overall results for the Michael reaction of alcohol 2.94 and electrophiles are 

shown in Table 2.2. An attempted conjugate addition reaction of alcohol 2.94 with 

ynone 2.17 led to low conversion to the desired β-alkoxyenone 2.108 under 

standard base-catalyzed conditions5 (entry 1). The problem with the reaction yield 

might be attributed to the greatly diminished reactivity of the hydroxyl group of 

2.94 as Michael donor due to steric congestion around O25. In addition, the base-

catalyzed reaction met with difficulty due to rapid formation of inseparable dimeric 

byproducts from ynone 2.17. Consequently, Michael reactions using either π-acid26 

or Brønsted acid catalysts led to little or no consumption of both starting materials 

over prolonged reaction times with inconsistent triol 2.109 formation (entry 2-4). 

OH

OBnMe2OC

O
O + O

OBnMe2OC

O
O

R

O

2.108

OH

OBnMe2OC

2.94

2.17

2.109

O
O

PivO

O

I
OBn

2.107

conditions

OO

O

OBn

O

2.110
O

O

2.102

PivO

MeO

HO
OH

25



	   50 

When a sodium alkoxide was employed in order to overcome the low reactivity of 

alcohol 2.94, only lactone 2.110 was obtained through intramolecular condensation 

(entry 5). Finally, condensation under acidic conditions with enone 2.102 led to 

conversion about 20% along with the formation of dimeric byproducts from 2.102 

(entry 6). Based on these results, we concluded that the Michael reaction approach 

using alcohol 2.94 was deemed unsuitable for the fragment union. 

 

2.5.3 Decarboxylative NHK approach 

 

Scheme 2.34 Decarboxylative union strategy, I 

 

A first attempt of decarboxylative coupling was a Nozaki-Hiyama-Kishi 

reaction27 (Scheme 2.34). The NHK reaction is a nickel/chromium-mediated 

coupling reaction that forms an alcohol from the reaction of an aldehyde with an 

organohalide. Recently, the Baran group reported that alkyl esters activated by N-
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reactions, we proposed that the decarboxylative NHK reaction could be 

accomplished by a mechanistic sequence involving the oxidative addition of nickel 

into the active ester, transmetallation of nickel with chromium, and nucleophilic 

addition of organochromium with aldehyde. We expected that this method could 

not only unite active ester 2.106 and aldehyde 2.100, but also introduce requisite 

stereochemistry at C19 under asymmetric NHK reaction conditions29. 

 

	   	  

Scheme 2.35 Decarboxylative NHK approach 
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confirmed that the decarboxylative NHK reaction was successfully accomplished 

with 4 equivalents of CrCl2 to produce alcohol 2.113 with an acceptable yield. This 

reaction was found to be possible without nickel and cobalt, which were commonly 

O

O
N

O

O

H

O

+
CrCl2 4 equiv.

DMF,1 h

OH

CrCl2 4 equiv.

DMF

NiCl2DME 5 mol%
or 
Vitamin B12 10 mol%

CrCl2 4 equiv.
DMF

OH

OBn

O

O

2.114
80%

HO

O

PivO

O

OBn

O

O

O

O
N

+O

O

2.106 2.100

2.112 2.113
60%

OO

O OBn

CrCl2

2.115



	   52 

used to activate organohalides. On the other hand, the reaction was inefficient 

under chromium-catalyzed conditions using zinc or manganese as a reducing agent. 

Based on these basic results, the coupling reaction of active ester 2.106 with 

aldehyde 2.100 was carried out. While the reaction under already established 

conditions did not proceed, the same conditions using Ni(II) or Co(II) as an 

additional catalyst led to the complete consumption of active ester 2.106 with 

exclusive formation of alkene 2.114. The generation of alkene 2.114 might be 

attributed to the β-alkoxy-elimination process from intermediate 2.115, which was 

obtained through the sequence involving oxidative addition and transmetallation. A 

similar transformation from organozinc intermediates has been reported as a 

standard reaction to a pyran-ring opening strategy.30 In conclusion, although the 

decarboxylative NHK reaction was found to be possible under simple reaction 

conditions, it could not be applied to active ester 2.106 due to the strong 

nucleophilicity of carbone-chromium bonds. 

 

2.5.4 Reductive cross coupling: decarboxylative ketone synthesis 

	  	   	  

Scheme 2.36 Decarboxylative union strategy, II 
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were cognizant of the reactivity of 2.106 under nickel-mediated catalysis. A brief 

literature review revealed that nickel intermediates might not cause a ring opening 

process unlike with the chromium intermediate.31 Thus, we continued to focus on 

nickel catalyzed cross coupling of active ester 2.106 for the fragment assembly. 

 

 

Scheme 2.37 Selected examples of Ni-catalyzed ketone synthesis 

 

The Weix group reported that a nickel catalyzed reductive cross coupling of 

organohalides with acyl electrophiles like carboxylic acid chlorides and (2-

pyridyl)thioesters produces dialkyl ketones with good yield.32a In subsequent 

studies, a similar transformation was reproduced using the esters activated by N-

hydroxyphthalimide instead of organohalides32b (Scheme 2.37a). From the vantage 

point of natural product synthesis, the Kishi group dramatically improved the 

coupling of more complex substrates in the presence of Cp2ZrCl2 (Scheme 2.37b). 
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Consequently, the decarboxylative ketone synthesis strategy was performed based 

on these two results. 

 

	  	   	  

Scheme 2.38 Decarboxylative ketone synthesis approach 

 

In a test reaction, active ester 2.106 was subjected to the nickel-catalyzed cross 

coupling with pivaloyl chloride under the Weix condition to produce ketone 2.118 

in good yield. On the other hand, when the same condition was applied to the 

coupling of ester 2.106 with acyl chloride 2.116, only the hydrodecarboxylation 

product 2.119 was obtained. This failure was attributed to the low concentration of 

the reaction due to a careful handling of chloride 2.116. Finally, cross-coupling 

was carried out using a more stable electrophile, thioester 2.105, as an alternative 

to 2.116 under Kishi’s group conditions to produce ketone 2.117 at 51% yield. In 
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conclusion, it was possible to successfully assemble the two fragments by 

connecting the C19 of the B ring and the C20 of the C ring through the nickel-

catalyzed decarboxylative cross-coupling. 

 

2.5.4 Completion of C13-C27 subunit  

	  	    

Scheme 2.39 Completion of C13-C27 subunit 

 

The synthesis of the eastern fragment 2.122 began with ketone 2.117 where all 

of the C13-C27 carbon skeletons were already in place. Subsequent to a Felkin-

Anh selective L-selectride addition to ketone 2.117, the resulting alcohol was 

directly silylated to give TBDPS ether 2.120 as a single diastereomer. The 

reductive detachment of the benzyl group and DMP oxidation furnished ketone 
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2.121 in good yield. After acidic deprotection of the acetonide group, the resulting 

diol was acylated with acetyl chloride selectively at the equatorial hydroxyl group 

to afford a mono-acylation product, thus suggesting this esterification reactivity 

might lend itself to the strategic step in the final stage of the total synthesis. Finally, 

desilylation with HF/pyridine synthesized the C13-C27 subunit 2.122. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 NMR comparison of the C13-C27 subunit 2.122 with madeirolide A (2.1) 

 

Detailed NMR comparisons of C13-C27 fragment 2.122 with madeirolide A are 

summarized in Figure 2.4. While there are some deviations observed in the C13-

C15/C19-C20 regions, which differed from the madeirolide A regions in terms of 

conformational freedom, a high degree of homology was noted in all NMR signals 

from the C21−C27 region. 

 

 

-‐2	  
-‐1	  
0	  
1	  
2	  
3	  
4	  
5	  

14	   15	   16	   17	   18	   19	   20	   21	   22	   23	   24	   25	   26	   27	   30	   31	   1	  

Δδ
	  o
f	  1
3 C
	  	  

-‐0.4	  

-‐0.2	  

0	  

0.2	  

0.4	  

0.6	  

14a	   14b	   15	   16	   17a	   17b	   18	   19	   20a	   20b	   21	   22	   23	   24	   25	   27	   30	   31	  

Δδ
	  o
f	  1
H
	  



	   57 

2.6 Conclusion 

 

Scheme 2.40 Summary 

 

In summary, the syntheses of C1-C10 fragment 2.29 and C13-C27 fragment 

2.120 have been successfully achieved for the total synthesis of madeirolide A 

(Scheme 2.32). Utilizing readily available starting materials bearing chiral 

auxiliary, our concise routes provided three distinct cyclic domains through the 

diastereo- and enantio-selective processes that included Abiko-Masamune anti 

aldol reaction, Ireland-Claisen reaction, iodolactonization, Evans alkylation, Evans 

aldol reaction, Sharpless asymmetric dihydroxylation, and radical cyclizations. 

Notably, three oxacycles were constructed by iridium catalyzed photo-induced 

radical cyclization with stereospecificity. In attempts to assemble the B ring and C 
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nickel-catalyzed decarboxylative ketone synthesis, formulated from Weix and 

Kishi reactions, allowed the successful construction of the C13-C27 subunit 2.120. 
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2.8 Experimental section 

2.8.1 General information 

NMR spectra were obtained on a Bruker DPX-300 (300 MHz), an Agilent 400-

MR DD2 Magnetic Resonance System (400 MHz) and a Varian/Oxford As-500 

(500 MHz) spectrophotometer. Chemical shift values were recorded as parts per 

million (δ) relative to tetramethylsilane as an internal standard unless otherwise 

indicated, and coupling constants in Hertz (Hz). The following abbreviations (or 

combinations thereof) were used to explain the multiplicities: s = singlet, d = 

doublet, t = triplet, q = quartet, m = multiplet, b = broad. IR spectra were measured 

on a Thermo Scientific Nicolet 6700 spectrometer. High resolution mass spectra 

were recorded from the Organic Chemistry Research Center (Seoul) on a Bruker 

Compact using electrospray ionization (ESI) method. 

The progress of the reaction was checked on thin layer chromatography (TLC) 

plates (Merck 5554 Kiesel gel 60 F254), and the spots were visualized under 254 

nm UV light and/or charring after dipping the TLC plate into a vanillin solution 
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(15.0 g of vanillin and 2.5 mL of concentrated sulfuric acid in 250 mL of ethanol), 

a KMnO4 solution (3.0 g of KMnO4, 20.0 g of K2CO3, and 5.0 mL of 5% NaOH 

solution in 300 mL of water), a ceric ammonium molybdate solution (0.5 g of 

Ceric ammonium sulfate, 12 g of ammonium molybdate and 15 mL of 

concentrated H2SO4 in 235 mL of H2O) or a phosphomolybdic acid solution (250 

mg phosphomolybdic acid in 50 mL ethanol). Column chromatography was 

performed on silica gel (Merck 9385 Kiesel gel 60). All solvents were obtained by 

passing through activated alumina columns of solvent purification systems from 

Glass Contour. Commercially available reagents were obtained from Sigma-

Aldrich, Strem, TCI, Acros, or Alfa Aesar. 

 

2.8.2 Experimental procedures and compound characterization 

 

Into a flame-dried round-bottom flask were placed ester 2.331 (1.30 g, 2.7 mmol), 

NEt3 (0.75 mL, 6.5 mmol) and CH2Cl2 (13.5 mL) under nitrogen. The solution was 

cooled to -78 °C and a solution of dicyclohexylboron triflate (0.9 M in hexane, 6 

mL, 5.4 mmol) was added dropwise. The resulting mixture was stirred at -78 °C 

for 2 h, after which crotonaldehyde (0.28 mL, 3.3 mmol) was slowly added over 1 

h. After stirred at -78 °C for 1 h, warmed to room temperature over 1 h, the 

reaction mixture was quenched by addition of pH 7 buffer solution (10 mL) and 

hydrogen peroxide (34.5% aqueous solution, 4 mL), and was diluted with methanol 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Inoue, T.; Liu, J. F.; Buske, D. C.; Abiko, A. J. Org. Chem. 2002, 67, 5250.	  
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(25 mL). The whole mixture was stirred overnight and concentrated. The residue 

was partitioned between water and dichloromethane, and the aqueous layer was 

extracted with dichloromethane 3 times. The combined organic layers were washed 

with water and brine, and dried over with sodium sulfate. The filtered organic 

solution was concentrated. Flash chromatography (Hexane-EtOAc 20:1) gave aldol 

2.34 (1.22 g, 2.2 mmol, 83%), and 160 mg (0.33 mmol) of starting material was 

recovered. [α]!!" = 28.0 (c 1.25, CHCl3); IR (neat) 3519, 3028, 2981, 2938, 1738, 

1604, 1454, 1496, 1379, 1321, 1206, 1152, 1055, 1013, 967, 929, 858, 758, 730, 

699, 661 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.36 – 7.13 (m, 8H), 6.89 (s, 2H), 

6.83 (d, J = 7.9 Hz, 2H), 5.81 (d, J = 4.0 Hz, 1H), 5.78 – 5.65 (m, 1H), 5.42 (ddd, J 

= 15.2, 7.5, 1.2 Hz, 1H), 4.80 (d, J = 16.6 Hz, 1H), 4.57 (d, J = 16.6 Hz, 1H), 4.16 

– 4.02 (m, 2H), 2.51 (s, 6H), 2.49 – 2.44 (m, 1H), 2.29 (s, 3H), 1.69 (d, J = 6.5 Hz, 

3H), 1.15 (d, J = 7.0 Hz, 3H), 1.07 (d, J = 7.2 Hz, 3H); 13C NMR (101 MHz, 

CDCl3) δ 174.4, 142.7, 140.4, 138.8, 138.4, 133.6, 132.3, 131.1, 129.6, 128.5, 

128.5, 128.0, 127.7, 127.3, 126.0, 78.4, 75.0, 56.9, 48.4, 45.8, 23.1, 21.0, 17.9, 

14.2, 13.5; HRMS (ESI) m/z calc. for [C32H39NO5S+Na]: 572.2447, found: 

572.2441. 

 

	    

LAH (70 mg, 1.8 mmol) and THF (10 mL) were added to a dry round-bottom flask 

equipped with a magnetic stirring bar. The mixture was cooled to 0 °C and stirred 

for 10 min. To this suspension was added dropwise a THF solution (5 mL) of aldol 

2.34 (830 mg, 1.5 mmol). After stirring was continued at room temperature for 1 h, 

OHOH
2.35
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the reaction mixture was quenched with aqueous solution of Rochelle salt 

(saturated, 60 mL) and stirred overnight. The resulting slurry was partitioned 

between water and Et2O, and the aqueous layer was extracted 5 times with Et2O. 

The combined organics were dried over Na2SO4, filtered and concentrated. 

Purification by flash column chromatography (SiO2) provided diol 2.35 (176 mg, 

90%) as a colorless liquid. Rf 0.06 (hexane-EtOAc, 2:1); [α]!!" = +9.27 (c 1.0, 

CHCl3); IR (neat, vmax) 3355, 2961, 2881, 1672, 1450, 1378, 1333, 1261, 1082, 

1007, 967, 927, 759 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.66 (dt, J = 15.6, 6.3 Hz, 

1H), 5.47 (dd, J = 15.2, 7.7 Hz, 1H), 3.91 (td, J = 7.9, 2.3 Hz, 1H), 3.70 (dd, J = 

10.8, 3.4 Hz, 1H), 3.58 (dd, J = 11.0, 7.6 Hz, 1H), 3.31 (br s, 1H), 3.08 (br s, 1H), 

1.83 – 1.72 (m, 1H), 1.69 (d, J = 6.4 Hz, 3H), 0.78 (d, J = 7.0 Hz, 3H); 13C NMR 

(100 MHz, CDCl3): δ 132.8, 128.3, 79.0, 67.6, 40.1, 17.7, 13.5; HRMS (ESI) m/z 

calc. for [C7H14O2+Na]: 153.0891, found: 153.0886. 

 

 

TBDPSCl (1.7 mL, 6.6 mmol) was added to a solution of 2.35 (783 mg, 6.0 mmol) 

and imidazole (531mg, 7.8 mmol) in CH2Cl2 (60 mL) at 0 °C. After stirring for 1 h, 

the reaction mixture was partitioned with H2O and EtOAc. The organic phase was 

washed with brine, dried over Na2SO4, filtered, and concentrated. Purification by 

flash column chromatography (SiO2) provided alcohol 2.36 (2.25 g, 98%) as a 

colorless liquid. Rf 0.44 (hexane-EtOAc, 5:1); [α]!!"  = +15.96 (c 1.0, CHCl3); IR 

(neat, vmax) 3443, 3071, 2959, 2931, 2858, 1471, 1428, 1390, 1362, 1188, 1111, 

1007, 967, 928, 863, 823, 741, 702, 613 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.88 – 

OHTBDPSO

2.36
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7.61 (m, 4H), 7.56 – 7.31 (m, 6H), 5.73 (dq, J = 15.1, 6.4 Hz, 1H), 5.50 (dd, J = 

15.3, 7.3 Hz, 1H), 4.06 (t, J = 7.2 Hz, 1H), 3.79 (dd, J = 10.2, 4.1 Hz, 1H), 3.63 

(dd, J = 10.5, 7.1 Hz, 1H), 3.6 (s, 1H), 1.84 (ddd, J = 14.3, 7.2, 4.2 Hz, 1H), 1.73 

(d, J = 6.5 Hz, 3H), 1.08 (s, 9H), 0.81 (d, J = 7.0 Hz, 3H); 13C NMR (101 MHz, 

CDCl3) δ 135.7, 135.7, 134.9, 133.0, 132.7, 129.9, 127.9, 127.8, 77.8, 68.7, 40.3, 

26.9, 19.2, 17.9, 13.5; HRMS (ESI) m/z calc. for [C23H32O2Si+Na]: 391.2069, 

found: 391.2064. 

 

 

Benzyl alcohol (4.31 mL, 41.6 mmol) was added to a suspension of NaH (60% 

dispersion in mineral oil, 3.2 g, 80 mmol) in THF (80 mL) at 0 °C. After the gas 

evolution ceased (ca. 5 min), a solution of bromoacetic acid (2.89 g, 20.8 mmol) in 

THF (10 mL) was added dropwise and the resulting mixture was heated under 

reflux for overnight. The reaction mixture was cooled to room temperature, 

quenched with water, and partitioned with saturated NaHCO3 solution and EtOAc. 

The aqueous layer was washed away with EtOAc (2 times), and 12 N HCl was 

added to acidify the aqueous phase (pH < 4). The aqueous layer was extracted with 

EtOAc (3 times) and the combined organics were dried over Na2SO4 and filtered. 

Concentration gave acid 2.37 (3.37g, 98% yield) as a yellow liquid. Rf 0.12 

(hexane-EtOAc-AcOH, 80:20:1); 1H NMR (400 MHz, CDCl3): δ 9.74 (br s, 1H), 

7.41-7.32 (m, 5H), 4.67 (s, 2H), 4.17 (s, 2H). 13C NMR (100 MHz, CDCl3): δ 

175.9, 136.6, 128.6, 128.2, 128.1, 73.4, 66.5.  

 

 

HO
OBn
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A suspension of EDAC·HCl (1.07 g, 5.6 mmol) in CH2Cl2 (5 mL) was added to a 

mixture of alcohol 2.36 (1.48 g, 4.0 mmol), acid 2.37 (800 mg, 4.8 mmol), DMAP 

(48 mg, 0.4 mmol) and CH2Cl2 (20 mL) at 0 °C. The reaction mixture was stirred 

at room temperature for 13 h, poured into water and extracted with EtOAc. The 

organic layers were washed with saturated NaHCO3 solution 3 times, saturated 

NH4Cl solution 2 times, and brine once, dried over anhydrous MgSO4, filtered, and 

concentrated under reduced pressure. Purification by flash column chromatography 

(SiO2) provided ester 2.38 (1.98 g, 93%) as a colorless liquid. Rf 0.60 (hexane-

EtOAc, 5:1); [α]!!"  = +3.52 (c 1.0, CHCl3); IR (neat, vmax) 3069, 2960, 2932, 2858, 

1752, 1471, 1428, 1390, 1262, 1198, 1112, 1028, 967, 823, 741, 702, 615 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 7.66 – 7.62 (m, 4H), 7.43 – 7.29 (m, 11H), 5.83 – 5.72 

(m, 1H), 5.46 – 5.32 (m, 2H), 4.58 (s, 2H), 3.99 (s, 2H), 3.53 (d, J = 5.6 Hz, 2H), 

2.04 – 1.95 (m, 1H), 1.68 (dd, J = 6.5, 1.5 Hz, 3H), 1.06 (s, 9H), 0.92 (d, J = 7.0 

Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 169.4, 135.6, 131.2, 129.6, 128.4, 128.0, 

127.6, 126.8, 77.3, 73.2, 67.3, 65.0, 39.5, 26.8, 19.2, 17.8, 12.6; HRMS (ESI) m/z 

calc. for [C32H40O4Si+Na]: 539.2594, found: 539.2588. 

 

 

Freshly distilled TMSCl (0.29 mL, 2.3 mmol) was added to a solution of ester 2.38 

(300 mg, 0.58 mmol) in THF (15 mL) at -78 °C. After stirring at -78 °C for 20 min, 

O

O
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KHMDS (0.5 M in toluene, 1.2 mL, 2.3 mmol) was added dropwise. After stirring 

at -78 °C for 30 min, the reaction mixture was allowed to warm up to room 

temperature and stirred for additional 2 h, after which it was poured into a 1:1 

mixture of saturated aqueous NH4Cl and 1 M HCl solutions. After extraction with 

EtOAc (3 times), the combined organic extracts were washed with brine, dried 

over MgSO4, filtered and concentrated under reduced pressure to provide crude 

acid 2.39 (305 mg) as yellowish sticky oil. The crude acid was dissolved in CH3CN 

(10 mL) and mixed with sat. aq. NaHCO3 (487 mg, 5.8 mmol). To this solution 

cooled to -40 °C was added dropwise a solution (10 mL) of iodine (589 mg, 2.3 

mmol) in CH3CN (10 mL). After stirring at -40 °C for 24 h, the reaction mixture 

was diluted with Et2O and quenched by addition of sat. aq. Na2S2O3 solution. The 

mixture was extracted with Et2O (3 times) and the combined organic extracts were 

washed with brine, dried over Na2SO4, filtered and concentrated under reduced 

pressure. Purification by flash column chromatography (SiO2) provided an 

inseparable diastereomeric mixture (dr = 9:1) of iodide 2.40c (321 mg, 85%) as a 

colorless liquid.  

 

2.39 [α]!!"  = -10.34 (c 1.00, CHCl3); IR (neat, νmax) 3030, 2958, 2930, 2857, 1717, 

1589, 1567, 1458, 1427, 1387, 1214, 1111, 1027, 1027, 972, 939, 823, 739, 702, 

612 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.67 – 7.65 (m, 4H), 7.43 – 7.29 (m, 11H), 

5.53 – 5.42 (m, 2H), 4.67 (d, J = 12.1 Hz, 1H), 4.45 (d, J = 12.1 Hz, 1H), 3.88 (d, J 

= 4 Hz, 1H), 3.54 (dd, J = 9.6, 6.4 Hz, 1H), 3.46 (dd, J = 9.6, 6.8 Hz, 1H), 2.72 – 

2.64 (m, 1H), 2.41 – 2.31 (m, 1H), 1.07 (d, J = 7.2 Hz, 3H), 1.05 (s, 9H), 1.01 (d, J 

= 6.8 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 175.3, 137.0, 137.0, 135.8, 134.5, 

134.4, 134.1, 130.5, 130.5, 129.7, 128.6, 128.3, 128.3, 128.2, 127.7, 82.1, 73.4, 
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68.8, 40.0, 39.3, 27.0, 19.5, 16.8, 15.1.; HRMS (ESI) m/z calc. for 

[C32H40O4Si+Na]: 539.2594, found: 539.2589. 

2.40c Rf 0.55 (hexane-EtOAc, 5:1); [α]!!"  = -35.57 (c 1.0, CHCl3); IR (neat, νmax) 

3069, 2959, 2931, 2858, 1786, 1589, 1459, 1427, 1388, 1324, 1183, 1107, 979, 

824, 807, 741, 700, 639, 613 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.80 – 7.58 (m, 

4H), 7.58 – 7.27 (m, 11H), 4.94 (d, J = 12.1 Hz, 1H), 4.75 (d, J = 12.1 Hz, 1H), 

4.36 (dd, J = 9.9, 4.5 Hz, 1H), 3.73 (d, J = 4.8 Hz, 1H), 3.51 (dd, J = 10.2, 5.3 Hz, 

1H), 3.38 (t, J = 9.7 Hz, 1H), 2.71 – 2.36 (m, 1H), 1.84 – 1.50 (m, 1H), 1.25 (d, J = 

7.2 Hz, 3H), 1.04 (s, 9H), 0.79 (d, J = 6.5 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 

173.9, 136.9, 135.8, 135.6, 133.4(2), 129.9, 129.8, 128.7, 128.4, 128.3, 127.9, 

127.8, 85.6, 79.3, 72.3, 68.1, 43.7, 42.5, 36.3, 26.9, 19.3, 17.9, 13.6; HRMS (ESI) 

m/z calc. for [C32H39IO4Si+Na]: 665.1560, found: 665.1555. 

 

	    

To a 10 mL round-bottom flask equipped with a magnetic stir bar were placed 

iodide 2.40c (20 mg, 0.031 mmol), Hantzsch ester (16 mg, 0.062 mmol) and 

[Ir(ppy)2(dtbbpy)]PF6 (1 mg, 1 µmol). The flask was then flushed with a stream of 

argon before the addition of CH3CN (1 mL) and DIPEA (10 µL, 0.062 mmol). The 

resulting yellow solution was placed in an irradiation apparatus equipped with a 2 

W blue light-emitting diode (LED) strip, and stirred at room temperature for 2 h, at 

which point the TLC analysis indicated complete consumption of the starting 

iodide. The reaction mixture was passed through a bed of silica gel by elution with 

O
O

OBn

OTBDPS

2.41c
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ethyl acetate. The filtrate was concentrated and purified by flash column 

chromatography on silica gel to furnish lactone 2.41c (13 mg, 81%) as a colorless 

liquid. Rf 0.26 (hexane-EtOAc, 10:1); [α]!!" = -36.4 (c 1.0, CHCl3); IR (neat, νmax) 

3069, 2960, 2932, 2858, 1781, 1460, 1428, 1390, 1226, 1183, 1111, 1029, 978, 

824, 743, 703, 615 cm-1; 1H NMR (400 MHz, cdcl3) δ 7.73 – 7.57 (m, 4H), 7.50 – 

7.28 (m, 11H), 5.11 (d, J = 11.7 Hz, 1H), 4.79 (d, J = 11.7 Hz, 1H), 3.96 (ddd, J = 

9.8, 9.8, 2.3 Hz, 1H), 3.81 (d, J = 10.6 Hz, 1H), 3.50 (d, J = 5.2 Hz, 2H), 2.22 – 

2.08 (m, 1H), 2.08 – 1.94 (m, 1H), 1.76 (ddd, J = 14.2, 10.1, 3.8 Hz, 1H), 1.49 

(ddd, J = 14.4, 9.9, 2.3 Hz, 1H), 1.09 (d, J = 6.6 Hz, 3H), 1.05 (s, 9H), 0.95 (d, J = 

6.7 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 175.2, 137.4, 135.7, 135.7, 133.8, 

133.8, 129.7, 128.6, 128.34 128.2, 127.8, 80.4, 79.6, 72.5, 68.9, 43.5, 37.3, 32.4, 

27.0, 19.4, 16.2, 14.2; HRMS (ESI) m/z calc. for [C32H40O4Si+Na]: 539.2594, 

found: 539.2588. 

 

 

O

O
OBn

KHMDS, TMSCl
THF, -78 °C ~ RT, 2 h

then,  I2, NaHCO3, H2O
RT, 24 h, 91 %

[Ir(dtbbpy)(PPy)2](PF6)
DIPEA, Hantzsch ester
ACN, 2 W blue LED, 2 h

+

2.38

O
O

OBn

OTBDPS

2.41c
33%

O
O

OBn

ITBDPSO

2.40c
(dr = 1.4 : 1)

O
O

OBn

OTBDPS

2.42
28%

TBDPSO



	   70 

Following the previous procedure for the Ireland-Claisen rearrangement, ester 2.38 

(400 mg, 0.77 mmol) in THF (15 mL) was reacted with TMSCl (0.4 mL, 3.1 mmol) 

and KHMDS (0.5 M in toluene, 6 mL, 3 mmol). After TLC monitoring indicated 

complete consumption of the starting ester, H2O (0.14 mL, 7.7 mmol) and 

NaHCO3 (647 mg, 7.7 mmol) were added to the reaction mixture. After 10 min, 

iodine (780 mg, 3.1 mmol) was added, and the stirring was continued at room 

temperature for 24 h. The reaction mixture was diluted with Et2O and quenched by 

addition of saturated Na2S2O3 solution. After extraction with ether (3 times), the 

combined organic extracts were washed with brine, dried over Na2SO4, filtered and 

concentrated under reduced pressure. Purification by flash column chromatography 

(SiO2) provided iodide 2.40c (450 mg, 91%, dr = 1.4:1, inseparable mixture) as a 

colorless liquid. Rf 0.55 (hexane-EtOAc, 5:1).  

To a 10 mL round-bottom flask equipped with a magnetic stir bar were placed 

iodide 2.40c (446 mg, 0.69 mmol), Hantzsch ester (350 mg, 1.38 mmol) and 

[Ir(ppy)2(dtbbpy)]PF6 (32 mg, 0.035 mmol). The flask was then flushed with a 

stream of argon before the addition of CH3CN (50 mL) and DIPEA (0.24 mL, 1.38 

mmol). The resulting yellow solution was placed in an irradiation apparatus 

equipped with a 2 W blue light-emitting diode (LED) strip, and stirred at room 

temperature for 2 h, at which point the TLC analysis indicated complete 

consumption of the starting iodide. The reaction mixture was passed through a pad 

of silica gel by elution with ethyl acetate. The filtrate was concentrated and 

purified by flash column chromatography on silica gel to furnish isomeric lactones 

2.41c (120 mg, 33%) and 2.42 (97 mg, 28%) both as colorless liquid.  

2.42 Rf 0.29 (hexane-EtOAc, 10:1); [α]!!" = -65.6 (c 1.0, CHCl3); IR (neat, νmax) 

3070, 2959, 2931, 2858, 1775, 1459, 1427, 1389, 1341, 1203, 1110, 1026, 976, 
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938, 823, 756, 703, 614 cm-1; 1H NMR (499 MHz, CDCl3) δ 7.96 – 7.55 (m, 4H), 

7.55 – 7.28 (m, 11H), 4.99 (d, J = 11.7 Hz, 1H), 4.72 (d, J = 11.7 Hz, 1H), 4.67 

(ddd, J = 10.4, 6.5, 4.1 Hz, 1H), 3.78 (d, J = 6.3 Hz, 1H), 3.61 (dd, J = 10.1, 4.9 Hz, 

1H), 3.51 (dd, J = 10.1, 5.7 Hz, 1H), 2.62 – 2.44 (m, 1H), 1.94 – 1.83 (m, 1H), 

1.79 (ddd, J = 14.1, 7.3, 4.1 Hz, 1H), 1.32 (ddd, J = 14.1, 10.3, 6.1 Hz, 1H), 1.07 (s, 

9H), 1.01 (d, J = 7.0 Hz, 3H), 0.99 (d, J = 7.0 Hz, 3H); 13C NMR (126 MHz, 

CDCl3) δ 174.9, 137.3, 135.7, 135.7, 133.8, 133.7, 129.8, 128.6, 128.3, 128.2, 

127.8, 127.8, 127.8, 80.2, 79.5, 72.2, 67.7, 39.8, 33.8, 32.7, 27.0, 19.4, 17.9, 11.5; 

HRMS (ESI) m/z calc. for [C32H40O4Si+Na]: 539.2594, found: 539.2588. 

 

  

A solution of LiBH4 (2 M in THF, 0.23 mL, 0.46 mmol) was added to a stirred 

solution of lactone 2.41c (234 mg, 0.45 mmol) in THF (5 mL) at 0 °C. The 

reaction mixture was stirred at 50 °C for 3 h, cooled to 0 °C, quenched by sat. aq. 

NH4Cl (10 mL), and extracted with EtOAc (3 x 10 mL). The combined organics 

were washed with brine, dried over sodium sulfate, filtered, and concentrated in 

vacuo. Purification of the residue by flash column chromatography (SiO2) afforded 

diol 2.44 (220 mg, 95%) as a colorless liquid. Rf 0.21 (hexane-EtOAc, 2:1); [α]!!" 

= +13.8 (c 1.0, CHCl3); IR (neat, νmax) 3433, 3069, 2931, 2858, 1470, 1389, 1361, 

1216, 1110, 1028, 824, 756, 703, 615 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.79 – 

7.66 (m, 4H), 7.51 – 7.28 (m, 11H), 4.80 – 4.63 (m, 2H), 3.80 (m, 2H), 3.76 – 3.72 

(m, 1H), 3.72 – 3.64 (m, 1H), 3.55 (d, J = 6.0, 2H), 2.49 (s, 2H), 2.07 – 1.94 (m, 

1H), 1.92 – 1.79 (m, 1H), 1.57 – 1.47 (m, 1H), 1.47 – 1.37 (m, 1H), 1.10 (s, 9H), 

OTBDPS

OH OBn

2.44

OH
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1.00 – 0.92 (m, 6H); 13C NMR (101 MHz, CDCl3) δ 138.3, 135.7, 133.7, 129.7, 

128.6, 128.6, 128.0, 127.9, 127.7, 82.1, 72.7, 72.0, 70.1, 62.6, 40.5, 40.1, 33.0, 

27.0, 19.4, 17.0, 12.7; HRMS (ESI) m/z calc. for [C32H44O4Si+Na]: 543.2907, 

found: 543.2901. 

 

	    

To a solution of diol 2.44 (130 mg, 0.25 mmol) in toluene (5 mL) were added 

methyl 3,3-dimehoxypropionate (0.11 mL, 0.75 mmol) and pyridinium p-

toluenesulfonate (3 mg, 0.013 mmol) at room temperature. After heated to reflux 

for 12 h, the reaction mixture was concentrated under reduced pressure. 

Purification of the residue by flash column chromatography (SiO2) afforded acetal 

2.46 (128 mg, 85%, inseparable diastereomeric mixture, dr = 1: 1.7) as a colorless 

liquid. Rf 0.17 (hexane-EtOAc, 10:1); [α]!!" = -10.2 (c 1.0, CHCl3); IR (neat, νmax) 

2933, 2860, 1744, 1429, 1388, 1259, 1255, 1194, 1130, 1102, 1069, 824, 751, 704 

cm-1; 1H NMR (400 MHz, CDCl3) δ 7.67 (d, J = 6.3 Hz, 4H), 7.48 – 7.27 (m, 11H), 

5.24 (t, J= 6 Hz, 0.4H), 5.17 (t, J = 5.8 Hz, 0.6H), 4.71 – 4.59 (m, J = 11.5 Hz, 1H), 

4.51 (d, J = 11.4 Hz, 1H), 4.04 (dd, J = 11.6, 4.0 Hz, 0.4H), 3.76 (m, 1.6H), 3.69 (s, 

1.9H), 3.69 (s, 1.1H), 3.64 – 3.34 (m, 4H), 3.12 (m, 1H), 2.71 – 2.56 (m, 1.6H), 

2.52 (dd, J = 14.9, 5.1 Hz, 0.4H), 1.99 – 1.83 (m, 0.6H), 1.83 – 1.69 (m, 0.4H), 

1.67 – 1.57 (m, 1H), 1.57 – 1.47 (m, 1H), 1.42 – 1.31 (m, J = 10.7, 7.9, 2.4 Hz, 1H), 

1.07 (s, 9H), 1.00 – 0.88 (m, 6H); 13C NMR (101 MHz, CDCl3) δ 170.2, 138.3, 

135.8, 135.8, 135.7, 134.1, 134.0, 129.6, 128.5, 128.1, 128.1, 127.9, 127.7, 99.1, 

OTBDPS

O O
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97.6, 83.5, 82.5, 77.6, 73.0, 72.6, 70.4, 69.8, 67.4, 61.5, 51.9, 51.8, 44.8, 44.7, 39.8, 

39.6, 37.3, 36.9, 31.6, 31.5, 27.0, 19.5, 19.4, 16.5, 16.3, 15.4, 15.2; HRMS (ESI) 

m/z calc. for [C36H48O6Si+Na]: 627.3118, found: 627.3112. 

  

 

LHMDS (0.93 mL, 1 M in hexane) was added to a solution of acetal 2.46 (120 mg, 

0.20 mmol) in THF (4 mL) at -78 °C. After stirring for 3 h at -78 °C, the reaction 

was quenched by addition of MeOH (1 mL) and saturated aqueous NaHCO3 (3 

mL). The quenched reaction mixture was warmed to room temperature and 

extracted with Et2O (3 x 10 mL). The combined organics were washed with brine, 

dried over Na2SO4, filtered, and concentrated in vacuo. Purification of the residue 

by flash column chromatography (SiO2) afforded alcohol 2.47 (100 mg, 82%) as a 

colorless liquid. Rf 0.33 (hexanes-EtOAc, 2:1); [α]!!" = -19.6 (c 1.0, CHCl3); IR 

(neat, νmax) 3482, 3069, 2954, 2858, 1711, 1637, 1471, 1429, 1390, 1332, 1292, 

1211, 1138, 1110, 1054, 825, 756, 703, 615 cm-1; 1H NMR (400 MHz, CDCl3) δ 

7.65 (dd, J = 7.8, 1.4 Hz, 4H), 7.48 (d, J = 12.3 Hz, 1H), 7.45 – 7.28 (m, 11H), 

5.32 (d, J = 12.3 Hz, 1H), 4.63 (d, J = 11.5 Hz, 1H), 4.55 (d, J = 11.5 Hz, 1H), 4.06 

(dd, J = 11.8, 4.5 Hz, 1H), 3.79 – 3.62 (m, 4H), 3.53 (dd, J = 9.3, 4.7 Hz, 1H), 3.50 

– 3.42 (m, 2H), 2.13 – 1.98 (m, 1H), 1.91 – 1.73 (m, 2H), 1.44 (s, 1H), 1.35 – 1.19 

(m, 1H), 1.06 (s, 9H), 0.96 (d, J = 7.0 Hz, 3H), 0.90 (d, J = 6.6 Hz, 3H); 13C NMR 

(101 MHz, CDCl3) δ 168.6, 163.0, 138.5, 135.7, 135.7, 133.9, 133.9, 129.7, 128.6, 

127.9, 127.8, 127.8, 97.1, 83.4, 79.7, 72.8, 69.3, 62.8, 51.1, 39.0, 34.8, 32.0, 27.0, 
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19.4, 16.4, 10.5; HRMS (ESI) m/z calc. for [C36H48O6Si+Na]: 627.3118, found: 

627.3112. 

 

 

To a solution of alcohol 2.47 (75 mg, 0.12 mmol) in THF (5 mL) were added PPh3 

(130 mg, 0.5 mmol), imidazole (68 mg, 1 mmol), and I2 (126 mg, 0.5 mmol) at 0 

°C. The reaction mixture was stirred at 0 °C for 2 h, diluted with ether and 

quenched by addition of saturated aqueous Na2S2O3 solution. After extraction with 

ether, the combined organic extracts were washed with brine, dried over Na2SO4, 

filtered and concentrated under reduced pressure. Purification by flash column 

chromatography (SiO2) provided iodide 19 (84 mg, 95%) as a colorless liquid. Rf 

0.33 (hexanes-EtOAc, 10:1); [α]!!" = -0.7 (c 1.0, CHCl3); IR (neat, νmax) 3069, 

2952, 2858, 1712, 1638, 1460, 1429, 1390, 1331, 1207, 1136, 1111, 1028, 961, 

825, 756, 703, 615 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.71 – 7.60 (m, 4H), 7.38 – 

7.28 (m, 12H), 5.31 (d, J = 12.3 Hz, 1H), 4.65 (d, J = 11.4 Hz, 1H), 4.43 (d, J = 

11.4 Hz, 1H), 3.98 (t, J = 8.6 Hz, 1H), 3.80 – 3.64 (m, 4H), 3.46 (dd, J = 10.9, 6.3 

Hz, 2H), 3.43 – 3.34 (m, 1H), 3.14 (t, J = 9.6 Hz, 1H), 2.37 – 2.19 (m, 1H), 1.92 – 

1.73 (m, 2H), 1.41 – 1.30 (m, 1H), 1.06 (s, 9H), 0.89 (d, J = 6.9 Hz, 6H); 13C NMR 

(101 MHz, CDCl3) δ 168.5, 163.1, 138.1, 135.8, 135.7, 133.9, 129.7, 128.6, 128.0, 

127.8, 127.8, 97.2, 84.2, 78.2, 72.2, 69.3, 51.1, 40.1, 35.5, 31.9, 27.0, 19.4, 16.5, 

9.1, 5.1; HRMS (ESI) m/z calc. for [C36H47IO5Si+Na]: 737.2135, found: 737.2130. 
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To a 10 mL round-bottom flask equipped with a magnetic stir bar were placed 

iodide 2.19 (80 mg, 0.11 mmol) and [Ir(ppy)2(dtbbpy)]PF6 (5 mg, 6 µmol). The 

flask was then flushed with a stream of argon before the addition of CH3CN (1 mL) 

and DIPEA (0.2 mL, 1.1 mmol). The resulting yellow solution was placed in an 

irradiation apparatus equipped with a 2 W blue light-emitting diode (LED) strip. 

After stirred at room temperature for 5 h, at which point a TLC analysis indicated 

complete consumption of the starting iodide, the mixture was filtered through a bed 

of silica gel by eluting with ethyl acetate. The filtrate was concentrated and 

purified by flash column chromatography on silica gel to furnish THP 2.48 (45 mg, 

70%) as colorless liquid. Rf 0.2 (hexanes-EtOAc, 10:1); [α]!!" = -17.5 (c 1.0, 

CHCl3); IR (neat, νmax) 3070, 2953, 2857, 1741, 1470, 1429, 1389, 1360, 1264, 

1207, 1153, 1110, 1087, 1009, 824, 756, 703, 614 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 7.78 – 7.62 (m, 4H), 7.45 – 7.27 (m, 11H), 4.67 (d, J = 11.5 Hz, 1H), 

4.45 (d, J = 11.4 Hz, 1H), 3.82 – 3.70 (m, 1H), 3.68 (s, 3H), 3.55 (dd, J = 9.7, 5.3 

Hz, 1H), 3.44 (dd, J = 9.6, 6.4 Hz, 1H), 3.17 (td, J = 10.5, 4.6 Hz, 1H), 3.05 (td, J 

= 9.6, 3.3 Hz, 1H), 2.59 (dd, J = 15.0, 8.3 Hz, 1H), 2.44 (dd, J = 14.9, 5.2 Hz, 1H), 

2.21 (ddd, J = 12, 4.4, 1.2 Hz, 1H), 1.96 (m, 1H), 1.54 – 1.36 (m, 3H), 1.30 (ddd, J 

= 11.6, 11.6, 11.2 Hz, 1H), 1.06 (s, 9H), 0.95 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 6.4 

Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 171.8, 138.6, 135.8, 135.7, 134.2, 134.2, 

129.6, 128.5, 127.9, 127.7, 127.7, 80.4, 78.9, 72.2, 70.7, 69.8, 51.7, 42.4, 41.3, 
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36.9, 36.4, 32.0, 27.0, 19.5, 15.9, 13.2; HRMS (ESI) m/z calc. for [C36H48O5Si+Na]: 

611.3169, found: 611.3163. 

 

 

Palladium hydroxide on carbon (20% w/w, 7 mg, 0.01 mmol) was added to a 

solution of THP 2.48 (21 mg, 0.036 mmol) in EtOAc (1.5 mL). The reaction 

mixture was stirred with hydrogen balloon at room temperature. After 10 h, the 

reaction mixture was filtered with a pad of celite and eluted with EtOAc. After 

concentration of the filtrate, purification of the residue by flash column 

chromatography (SiO2) provided alcohol 2.49 (16 mg, 91%) as colorless liquid. Rf 

0.23 (hexanes-EtOAc, 2:1); [α]!!" = +7.6 (c 1.0, CHCl3); IR (neat, νmax) 3428, 3071, 

2933, 2857, 1740, 1471, 1429, 1374, 1389, 1318, 1262, 1212, 1146, 1110, 1009, 

823, 759, 704, 614 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.74 – 7.62 (m, 4H), 7.49 – 

7.31 (m, 6H), 3.84 – 3.71 (m, 1H), 3.66 (s, 3H), 3.53 (dd, J = 9.6, 5.3 Hz, 1H), 3.44 

(dd, J = 9.6, 6.5 Hz, 1H), 3.38 (td, J = 10.5, 4.6 Hz, 1H), 3.03 (td, J = 9.6, 3.3 Hz, 

1H), 2.55 (dd, J = 14.9, 8.4 Hz, 1H), 2.42 (dd, J = 14.9, 5.1 Hz, 1H), 2.02 (ddd, J = 

12.1, 4.5, 1.4 Hz, 1H), 1.99 – 1.88 (m, 1H), 1.65 (s, 1H), 1.50 – 1.36 (m, 2H), 1.30 

(ddd, J = 11.6, 11.6, 11.2 Hz, 1H), 1.25 – 1.13 (m, 1H), 1.05 (s, 9H), 0.94 (d, J = 

6.6 Hz, 3H), 0.92 (d, J = 6.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 171.8, 135.8, 

135.7, 134.2, 134.2, 129.6, 127.7, 78.6, 73.6, 72.2, 69.8, 51.7, 44.4, 41.2, 40.8, 

36.3, 32.0, 27.0, 19.5, 15.9, 12.9; HRMS (ESI) m/z calc. for [C29H42O5Si+Na]: 

521.2699, found: 521.2694. 
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Pyranone 2.30 was prepared according to the procedure described in the reference 

literature.2 

[α]!!" = +99.0 (c 1.0, CHCl3); IR (neat, νmax) 2984, 1750, 1702, 1372, 1396, 1333, 

1277, 1258, 1158, 1105, 1057, 1029, 944, 861, 841, 791, 758, 737 cm-1; 1H NMR 

(400 MHz, CDCl3) δ 6.86 (dd, J = 10.2, 3.7 Hz, 7H), 6.32 (d, J = 3.6 Hz, 6H), 6.19 

(d, J = 10.2 Hz, 6H), 4.63 (q, J = 6.7 Hz, 8H), 1.51 (s, 55H), 1.40 (d, J = 6.7 Hz, 

17H); 13C NMR (101 MHz, CDCl3) δ 195.9, 152.0, 141.1, 128.6, 89.3, 83.8, 72.3, 

27.8, 15.4; HRMS (ESI) m/z calc. for [C11H16O5+Na]: 251.0895, found: 251.0890. 

 

 

To a solution of alcohol 2.49 (25 mg, 0.05 mmol) and pyranone 2.30 (23 mg, 0.1 

mmol) in CH2Cl2 (0.8 mL) was added a solution of Pd2(dba)3•CHCl3 (1.3 mg, 1 

µmol) and PPh3 (1.3 mg, 5 µmol) in CH2Cl2 (0.2 mL) at 0 °C. The reaction mixture 

was stirred at 0 °C for 5 h, quenched with saturated aqueous NaHCO3 solution, 

extracted with Et2O, dried (Na2SO4) and concentrated under reduced pressure. 

Purification by flash column chromatography (SiO2) provided enone 2.50 (27 mg, 

89%) as a colorless liquid. [α]!!" = +24.8 (c 1.0, CHCl3); IR (neat, νmax) 2934, 2858, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  Wu, B.;

 
Li, M.; O’Doherty, G. A. Org. Lett. 2010, 12, 5466.	  
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1740, 1701, 1470, 1429, 1391, 1374, 1233, 1210, 1156, 1108, 1082, 1025, 823, 

808, 759, 704, 615 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.65 (dd, J = 6.5, 1.3 Hz, 

4H), 7.53 – 7.31 (m, 5H), 6.76 (ddd, J = 10.2, 3.5, 0.8 Hz, 1H), 6.10 (d, J = 10.2 

Hz, 1H), 5.34 (d, J = 3.4 Hz, 1H), 4.61 (qd, J = 6.8, 0.8 Hz, 1H), 3.83 – 3.71 (m, 

1H), 3.67 (s, 3H), 3.60 (td, J = 10.3, 4.4 Hz, 1H), 3.53 (dd, J = 9.0, 5.4 Hz, 1H), 

3.44 (dd, J = 9.3, 6.8 Hz, 1H), 3.09 (td, J = 9.6, 2.8 Hz, 1H), 2.59 (dd, J = 15.0, 7.9 

Hz, 1H), 2.43 (dd, J = 15.0, 5.0 Hz, 1H), 2.17 (dd, J = 11.8, 4.3 Hz, 1H), 2.02 – 

1.88 (m, 1H), 1.52 – 1.34 (m, 6H), 1.33 – 1.20 (m, 1H), 1.05 (s, 9H), 0.94 (d, J = 

6.6 Hz, 3H), 0.92 (d, J = 6.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 197.0, 171.5, 

143.8, 135.8, 135.7, 134.1, 134.1, 129.6, 127.7, 127.5, 89.3, 78.8, 77.9, 71.9, 70.6, 

69.7, 51.8, 42.1, 41.2, 36.4, 36.4, 32.0, 27.0, 19.5, 16.0, 15.3, 13.3; HRMS (ESI) 

m/z calc. for [C35H48O7Si+Na]: 631.3067, found:631.3062. 

 

 

Palladium on activated carbon (10% w/w, 8 mg, 8 µmol) was added to a solution 

of enone 2.50 (24 mg, 0.04 mmol) in EtOAc (1 mL). The resulting suspension was 

stirred with hydrogen balloon at room temperature. After 30 min, the reaction 

mixture was filtered with a short pad of celite by eluting with ethyl acetate. After 

concentration of the filtrate, purification of the residue by flash column 

chromatography (SiO2) provided glycoside 2.29 (17 mg, 70%) as colorless liquid 

and alcohol 2.49 (3 mg, 15 %). Rf 0.23 (hexane-EtOAc, 10:1); [α]!!" = -112.2 (c 

0.5, CHCl3); IR (neat, νmax) 2938, 2856, 1736, 1429, 1372, 1211, 1110, 1051, 1033, 
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1008, 825, 759, 705, 616 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.75 – 7.59 (m, 4H), 

7.47 – 7.31 (m, 6H), 5.17 (t, J = 5.2 Hz, 1H), 4.30 (q, J = 6.7 Hz, 1H), 3.81 – 3.70 

(m, 1H), 3.66 (s, 3H), 3.59 – 3.49 (m, 2H), 3.43 (dd, J = 9.4, 6.6 Hz, 1H), 3.08 (td, 

J = 9.7, 2.8 Hz, 1H), 2.57 (dd, J = 14.9, 8.0 Hz, 1H), 2.53 – 2.37 (m, 3H), 2.35 – 

2.23 (m, 1H), 2.15 (dd, J = 11.6, 3.9 Hz, 1H), 2.03 – 1.85 (m, 2H), 1.53 – 1.14 (m, 

5H), 1.29 (d, J = 6.8 Hz, 3H), 1.04 (s, 9H), 0.91 (d, J = 6.5 Hz, 6H); 13C NMR (101 

MHz, CDCl3) δ 211.2, 171.7, 135.8, 135.8, 134.2, 134.2, 129.6, 127.7, 92.5, 78.8, 

76.0, 72.0, 71.2, 69.8, 51.8, 42.1, 41.3, 36.4, 36.3, 33.8, 32.0, 28.8, 27.0, 19.5, 16.0, 

15.0, 13.3; HRMS (ESI) m/z calc. for [C35H50O7Si+Na]: 633.3224, found: 

633.3218. CDCl3 

 

 

 

 

LiOH (34 mg, 1.4 mmol) was added to a solution of THP methyl ester 2.48 (40 mg, 

0.068 mmol) in THF/MeOH/H2O (2:2:1, 5 mL). The mixture was stirred at room 

temperature overnight (ca. 10 h) and then washed away with EtOAc. The aqueous 

layer was acidified to pH 1-2 with 1 M aqueous HCl and extracted with EtOAc. 
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The combined organic phases were washed with brine, dried over MgSO4, and 

concentrated to provide acid S1 (38 mg, 97%) as a colorless liquid. [α]!!" = -16.5 (c 

1.0, CHCl3); IR (neat, νmax) 2962, 1712, 1453, 1427, 1392, 1217, 1156, 1109, 1074, 

901, 824, 757, 702, 615 cm-1; 1H NMR (499 MHz, CDCl3) δ 7.67 (d, J = 6.9 Hz, 

4H), 7.51 – 7.27 (m, 11H), 4.67 (d, J = 11.5 Hz, 1H), 4.44 (d, J = 11.5 Hz, 1H), 

3.80 – 3.65 (m, 1H), 3.53 (dd, J = 9.6, 5.6 Hz, 1H), 3.46 (dd, J = 9.6, 6.2 Hz, 1H), 

3.17 (td, J = 10.4, 4.4 Hz, 1H), 3.09 (dd, J = 13.8, 5.6 Hz, 1H), 2.60 (dd, J = 15.7, 

8.0 Hz, 1H), 2.49 (dd, J = 15.6, 4.9 Hz, 1H), 2.20 (dd, J = 11.8, 3.4 Hz, 1H), 2.02 – 

1.89 (m, J = 5.8, 3.7 Hz, 1H), 1.58 – 1.21 (m, 4H), 1.06 (s, 9H), 0.94 (d, 6.5 Hz, 

3H), 0.92 (d, 6.5 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 175.9, 138.5, 135.8, 

135.8, 134.2, 134.1, 129.6, 128.5, 127.9, 127.8, 127.7, 80.1, 79.3, 71.8, 70.7, 69.7, 

42.3, 41.0, 36.7, 36.5, 32.0, 27.0, 19.5, 16.0, 13.3; HRMS (ESI) m/z calc. for 

[C35H46O5Si+Na]: 597.3012, found: 597.3007. 

 

 

EDC!HCl (18 mg, 0.096 mmol) was added to a solution of acid S1 (137 mg, 0.064 

mmol), DMAP (1 mg, 3 µmol), DIPEA (17 µL, 0.096 mmol), and toluenethiol (12 

mg, 0.096 mmol) in CH2Cl2 (3 mL) at 0 °C. After stirred at room temperature for 

18 h, the reaction mixture was diluted with EtOAc, washed successively with 

saturated aqueous NH4Cl, NaHCO3 and NaCl, dried over Na2SO4, filtered, and 

concentrated under reduced pressure. Purification of the residue by flash 
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chromatography (SiO2) gave thioester S2 (22 mg, 50%) as a white solid. Rf 0.24 

(hexanes-EtOAc, 10:1); [α]!!" = -35.8 (c 0.5, CHCl3); IR (neat, νmax) 3028, 2934, 

2855, 1703, 1494, 1469, 1427, 1360, 1215, 1110, 1010, 975, 807, 758, 702, 619 

cm-1; 1H NMR (499 MHz, CDCl3) δ 7.71 – 7.65 (m, 4H), 7.46 – 7.30 (m, 11H), 

7.29 (d, J = 8.0 Hz , 2H), 7.20 (d, J = 8.0 Hz, 2H), 4.67 (d, J = 11.5 Hz, 1H), 4.44 

(d, J = 11.5 Hz, 1H), 3.89 – 3.73 (m, J = 14.7, 8.5 Hz, 1H), 3.57 (dd, J = 9.7, 5.3 

Hz, 1H), 3.46 (dd, J = 9.6, 6.7 Hz, 1H), 3.16 (td, J = 10.4, 4.5 Hz, 1H), 3.06 (td, J 

= 10.2, 2.3 Hz, 1H), 2.93 (dd, J = 14.6, 8.4 Hz, 1H), 2.68 (dd, J = 14.6, 4.6 Hz, 1H), 

2.37 (s, 3H), 2.21 (dd, J = 11.6, 3.8 Hz, 1H), 2.17 – 2.04 (m, 1H), 1.54 – 1.23 (m, 

4H), 1.07 (s, 9H), 0.94 (d, J = 6.7 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 196.0, 

139.8, 138.6, 135.8, 135.8, 134.6, 134.2, 134.2, 130.2, 129.6, 128.5, 127.9, 127.8, 

127.7, 124.4, 80.3, 78.9, 72.5, 70.7, 69.9, 49.9, 42.5, 36.9, 36.6, 32.0, 27.0, 21.5, 

19.5, 16.1, 13.2; HRMS (ESI) m/z calc. for [C42H52O4SSi+Na]: 703.3253, found: 

703.3248. 

 

 

BCl3 (0.14 mL, 1 M in CH2Cl2, 0.14 mmol) was added dropwise to a solution of 

thioester Ss (20 mg, 0.029 mmol) in CH2Cl2 (3 mL) at -78 °C. After stirring at -

78 °C for 5 h, the reaction mixture was quenched by addition of saturated NaHCO3 

(3 mL) solution. The solution was warmed to room temperature and the aqueous 

layer extracted with Et2O (3 times). The combined organics were washed with 

brine, dried over Na2SO4, filtered, and concentrated in vacuo. Purification of the 
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residue by flash column chromatography (SiO2) afforded alcohol S3 (14 mg, 82%) 

as a colorless liquid. Rf 0.29 (hexane-EtOAc, 2:1); [α]!!" = -18.7 (c 0.5, CHCl3); IR 

(neat, νmax) 3490, 2930, 2856, 1703, 1493, 1469, 1427, 1389, 1330, 1216, 1110, 

1015, 974, 904, 807, 758, 704, 616 cm-1; 1H NMR (499 MHz, CDCl3) δ 7.67 (dt, J 

= 8.1, 1.6 Hz, 4H), 7.46 – 7.32 (m, 6H), 7.26 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 8.1 

Hz, 2H), 3.93 – 3.76 (m, 1H), 3.55 (dd, J = 9.7, 5.4 Hz, 1H), 3.45 (dd, J = 9.7, 6.6 

Hz, 1H), 3.37 (td, J = 10.5, 4.7 Hz, 1H), 3.04 (td, J = 10.1, 2.6 Hz, 1H), 2.88 (dd, J 

= 14.6, 8.5 Hz, 1H), 2.65 (dd, J = 14.6, 4.6 Hz, 1H), 2.35 (s, 3H), 2.15 – 2.05 (m, J 

= 9.9, 6.0, 3.6 Hz, 1H), 2.02 (ddd, J = 12.1, 4.6, 1.5 Hz, 1H), 1.54 – 1.45 (m, 1H), 

1.44 (s, 1H), 1.42 – 1.29 (m, 2H), 1.24 – 1.15 (m, 1H), 1.06 (s, 9H), 0.95 (d, 6.5 Hz, 

3H), 0.93 (d, 6.5 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 195.9, 139.8, 135.8, 

135.8, 134.5, 134.2, 134.2, 130.2, 129.6, 127.7, 124.3, 78.6, 73.5, 72.5, 69.9, 49.8, 

44.5, 40.8, 36.5, 32.0, 27.1, 21.5, 19.5, 16.1, 12.9; HRMS (ESI) m/z calc. for 

[C35H46O4SSi+Na]: 613.2784, found: 613.2778. 

 

 

HF·pyridine (0.08 mL, HF 3 mmol, pyridine 0.33 mmol) was added to a solution 

of TBDPS ether S3 (13 mg, 0.022 mmol) and pyridine (0.15 mL, 0.19 mmol) in 

THF (1 mL) at 0 °C. The resulting mixture was stirred at room temperature for 8 h, 

diluted with EtOAc, and neutralized with saturated aqueous NaHCO3 solution. 

After extraction with EtOAc (2 times), the combined organic phases were washed 
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successively with saturated aqueous NH4Cl, NaHCO3 and NaCl, dried over Na2SO4, 

filtered, and concentrated. Purification by flash column chromatography (SiO2) 

afforded diol 2.52, the Paterson intermediate (7 mg, 90%) as a colorless liquid. Rf 

0.13 (hexane-EtOAc, 1:1); [α]!!" = -13.9 (c 0.33, CHCl3); IR (neat, νmax) 3380, 

2924, 2870, 1701, 1493, 1462, 1374, 1260, 1215, 1148, 1072, 1027, 976, 807, 759, 

666, 647, 624 cm-1; 1H NMR (499 MHz, CDCl3) δ 7.29 (d, J = 8.2 Hz, 2H), 7.22 (d, 

J = 7.9 Hz, 2H), 3.89 (dddd, J = 11.4, 8.2, 4.7, 1.9 Hz, 1H), 3.52 (dd, J = 10.7, 5.3 

Hz, 1H), 3.43 (dd, J = 10.7, 5.9 Hz, 1H), 3.37 (ddd, J = 10.9, 10.0, 4.7 Hz, 1H), 

3.11 – 3.01 (m, 1H), 2.91 (dd, J = 14.9, 8.3 Hz, 1H), 2.70 (dd, J = 14.9, 4.7 Hz, 

1H), 2.37 (s, 3H), 2.02 (ddd, J = 12.3, 4.7, 1.9 Hz, 1H), 1.88 (td, J = 12.6, 6.6 Hz, 

1H), 1.50 (t, J = 6.7 Hz, 2H), 1.36 (ddd, J = 11.3, 11.3, 11.3 Hz, 1H), 1.31 – 1.17 

(m, 1H), 0.98 (d, J = 6.5 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H).; 13C NMR (126 MHz, 

CDCl3) δ 195.6, 139.9, 134.6, 130.2, 124.2, 80.0, 73.3, 72.3, 68.5, 49.6, 44.2, 40.7, 

36.9, 33.5, 21.5, 17.3, 13.2; HRMS (ESI) m/z calc. for [C19H28O4S+Na]: 375.1606, 

found: 375.1600. 

 

 

PPh3 (8.66 g, 33 mmol), imidazole (2.25 g, 33 mmol), and I2 (8.38 g, 33 mmol) 

were added to a stirred solution of 2-iodoprop-2-en-1-ol3 (5.8g, 32 mmol) in THF 

(50 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 2 h, diluted with 

hexane (100ml) and filtered through a pad of silica gel. The filtrate was 

concentrated, diluted with hexane (100 ml) and filtered through a pad of silica gel 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  Kamiya, N.; Chikami, Y.; Ishii, Y. Synlett, 1990, 675.	  
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to give iodide 2.67 (6.92 g, 73%) as a light brown oil that was used without further 

purification. Rf 0.85 (hexanes-EtOAc, 5:1); 1H NMR (400 MHz, CDCl3) δ 6.41 (dt, 

J = 2 Hz, 1 Hz, 1H), 5.76 (d, J = 2 Hz, 1H), 4.29 (d, J = 1 Hz, 2H); 13C NMR (101 

MHz, CDCl3) δ 129.6, 105.4, 16.4. 

 

 

A solution of LHMDS (6.84 mL, 1.0 M in THF, 6.84 mmol) was added dropwise 

to a stirred solution of (R)-4-benzyl-3-(triethylsilanoxyacetyl)-oxazolidin-2-one4 

(1.84 g, 5.26 mmol) in THF (30 mL) at -78 °C and the mixture was stirred for 30 

min. Then, a solution of iodide 2.67 (4 g, 2.6 mmol) in THF (10 mL + 5 mL × 2 to 

rinse) was added to the enolate solution and the resulting mixture was stirred for 8 

h with warming to -45 °C. The reaction mixture was quenched with sat. aq. 

NaHCO3 and extracted with Et2O (3 times). The combined organic extracts were 

dried (MgSO4), filterd, concentrated in vacuo and purified by flash column 

chromatography to give imide 2.69c (2.30 g, 4.47 mmol, 85%) as a colorless oil. Rf 

0.44 (hexane-EtOAc, 5:1); [α]!!" = -43.6 (c 1.0, CHCl3); IR (neat, νmax) 2956, 2914, 

2878, 1784, 1714, 1391, 1350, 1286, 1243, 1214, 1139, 1108, 1014, 982, 747, 703 

cm-1; 1H NMR (400 MHz, CDCl3) δ 7.32 (m, 3H), 7.29 (d, J = 6.8 Hz, 1H), 7.20 (d, 

J = 7.9 Hz, 2H), 6.25 (s, 1H), 5.88 (s, 1H), 5.59 (dd, J = 8.7, 3.6 Hz, 1H), 4.77 – 

4.68 (m, 1H), 4.29 (t, J = 8.6 Hz, 1H), 4.22 (dd, J = 9.2, 3.5 Hz, 1H), 3.27 (dd, J = 

13.4, 3.4 Hz, 1H), 2.93 (dd, J = 14.0, 3.7 Hz, 1H), 2.80 – 2.60 (m, 2H), 0.97 (t, J = 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4	  Lee, C. B.; Wu, Z.; Zhang, F.; Chappell, M. D.; Stachel, S. J.; Chou, T.-C.; Guan, Y.; 
Danishefsky, S. J. Am. Chem. Soc 2001, 123, 5249.	  
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7.9 Hz, 9H), 0.66 (q, J = 7.9 Hz, 6H); 13C NMR (101 MHz, CDCl3) δ 173.1, 153.1, 

134.9, 130.1, 129.5, 129.1, 127.6, 103.9, 69.6, 66.9, 55.2, 50.0, 38.0, 6.9, 4.9; 

HRMS (ESI) m/z calc. for [C21H30INO4Si+Na]: 538.0886, found: 538.0883. 

 

 

AcOH (9 mL) was added to a stirred solution of imide 2.69c (410 mg, 0.8 mmol) 

in THF/H2O (1:1, 6 mL) and the reaction mixture was stirred at room temperature 

for 2 h. The reaction mixture was diluted with EtOAc (100 mL), washed with sat. 

aq. NH4Cl (70 mL × 3) and the organic extract was dried (MgSO4), filtered, 

concentrated in vacuo and purified by flash column chromatography to give 

alcohol S4 (319 mg, 0.77 mmol, 97%) as a colorless oil. Rf 0.21 (hexane-EtOAc, 

2:1); [α]!!" = -41.4 (c 1.00, CHCl3); IR (neat, νmax) 3485, 1783, 1696, 1614, 1497, 

1479, 1454, 1391, 1354, 1294, 1214, 1118, 1052, 1012, 977, 904, 762, 702 cm-1; 

1H NMR (400 MHz, CDCl3) δ 7.35 (t, J = 7.2 Hz, 2H), 7.30 (t, J = 7.0 Hz, 1H), 

7.20 (d, J = 7.3 Hz, 2H), 6.27 (s, 1H), 5.93 (s, 1H), 5.22 (td, J = 8.4, 3.5 Hz, 1H), 

4.83 – 4.68 (m, 1H), 4.34 (t, J = 8.6 Hz, 1H), 4.27 (dd, J = 9.2, 3.4 Hz, 1H), 3.51 (d, 

J = 8.2 Hz, 1H, OH), 3.32 (dd, J = 13.5, 3.5 Hz, 1H), 3.04 (dd, J = 14.8, 3.5 Hz, 

1H), 2.82 (dd, J = 13.5, 9.5 Hz, 1H), 2.70 (dd, J = 14.8, 8.6 Hz, 1H); 13C NMR 

(101 MHz, CDCl3) δ 173.3, 153.4, 134.7, 129.7, 129.5, 129.2, 127.7, 103.5, 70.0, 

67.5, 55.3, 48.8, 38.1; HRMS (ESI) m/z calc. for [C15H16INO4+Na]: 424.0022, 

found: 424.0037. 
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A solution of LiBH4 (0.83 mL , 2.0 M in THF, 1.65 mmol) was added to a stirred 

solution of alcohol S4 (330 mg, 0.82 mmol) and MeOH (0.07 mL, 1.65 mmol) in 

THF (8 mL) at 0 °C. After 2 h, the reaction mixture was then quenched with sat. aq. 

NH4Cl (10 mL) and extracted with Et2O (3 times). The combined organic extracts 

were dried (MgSO4), filtered, concentrated in vacuo to give crude diol 13 with 

Evans auxiliary. Crude S5 was used without further purification. Rf 0.11 (hexane-

EtOAc, 1:1); [α]!!" = -2.3 (c 1.00, CHCl3); IR (neat, νmax) 3374, 2927, 1618, 1417, 

1344, 1199, 1123, 1090, 1030, 899, 862, 677 cm-1; 1H NMR (400 MHz, CDCl3) δ 

6.20 (s, 1H), 5.87 (s, 1H), 4.08 – 3.93 (m, 1H), 3.73 (ddd, J = 11.3, 6.2, 3.3 Hz, 

1H), 3.55 (dt, J = 11.5, 6.1 Hz, 1H), 2.57 (d, J = 6.4 Hz, 2H), 2.10 (d, J = 3.9 Hz, 

1H, OH), 1.85 (t, J = 6.0 Hz, 1H, OH); 13C NMR (101 MHz, CDCl3) δ 129.0, 

106.6, 70.6, 65.5, 48.8; HRMS (ESI) m/z calc. for [C5H9IO2+Na]: 250.9545, found: 

250.9541. 

 

 

TBDPSCl (0.21 mL, 0.82 mmol) was added to a stirred solution of crude diol S5 

and imidazole (110 mg, 1.65 mmol) in CH2Cl2 (6 mL) at 0 °C. After 3 h, the 

reaction mixture was then quenched with sat. aq. NH4Cl (10 mL) and extracted 

with Hexane (3 times). The combined organic extracts were dried (MgSO4), 
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filtered, concentrated in vacuo and purified by flash column chromatography to 

give alcohol 2.65 (325 mg, 0.70 mmol, 85% over 2 steps) as a colorless oil. Rf 0.34 

(hexane-EtOAc, 10:1); [α]!!" = -1.6 (c 1.00, CHCl3); IR (neat, νmax) 3448, 2930, 

2956, 2892, 2857, 1617, 1470, 1427, 1390, 1361, 1263, 1196, 1111, 898, 823, 799, 

740, 702 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 7.1 Hz, 4H), 7.48 – 7.36 

(m, 5H), 6.12 (s, 1H), 5.79 (s, 1H), 4.07 – 3.94 (m, 1H), 3.72 (dd, J = 10.2, 4.0 Hz, 

1H), 3.60 (dd, J = 10.2, 6.3 Hz, 1H), 2.56 (d, J = 6.4 Hz, 2H), 2.43 (d, J = 4.4 Hz, 

1H, OH), 1.09 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 135.7, 134.9, 133.1, 133.1, 

130.0, 128.4, 128.0, 127.8, 106.7, 70.5, 66.6, 48.8, 27.0, 19.4; HRMS (ESI) m/z 

calc. for [C21H27IO2Si+Na]: 489.0723, found: 489.0718. 

 

 

A solution of Iodo-9-BBN (4.5 mL, 1 M in hexane, 4.5 mmol) was added to a 

stirred solution of alkyne 2.62 (760 mg, 2.24 mmol) in hexane (20 mL) at -25 °C 

and the reaction mixture was stirred at -10 °C for 6 h. AcOH was added and the 

mixture was stirred at 0 °C for 2 h. The reaction mixture was then quenched with 

aq. Na2S2O3/Na2CO3 (1:1, 40 mL) and the mixture was stirred vigorously for 30 

min, while warming to room temperature. The mixture was then extracted with 

EtOAc (3 times) and the combined organic extracts were dried (MgSO4), filtered, 

concentrated in vacuo and purified by flash column chromatography to give 

alcohol S8 (897 mg, 1.97 mmol, 88%) as a colorless oil. 
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A solution of methyl propiolate (5 mL, 0.32 M in hexane, 1.6 mmol) was added 

dropwise via syringe pump over 1 h to a stirred solution of alcohol 2.65 (713 mg, 

1.53 mmol) and DABCO (17 mg, 0.15 mmol) in hexane (10 mL) at room 

temperature. The reaction mixture was stirred for additional 1 h, then concentrated 

in vacuo and the resulting crude mixture was purified by flash column 

chromatography to give acrylate 2.66 (800 mg, 1.45 mmol, 95%) as a colorless oil. 

Rf 0.41 (hexane-EtOAc, 10:1); [α]!!" = -22.6 (c 1.00, CHCl3); IR (neat, νmax) 2950, 

2930, 2858, 1713, 1641, 1621, 1471, 1429, 1363, 1329, 1290, 1201, 1130, 1113, 

949, 901, 824, 799, 741, 703 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.73 – 7.60 (m, 

4H), 7.56 (d, J = 12.3 Hz, 1H), 7.49 – 7.33 (m, 6H), 6.11 (s, 1H), 5.79 (s, 1H), 5.28 

(d, J = 12.3 Hz, 1H), 4.29 – 4.16 (m, 1H), 3.71 (d, J = 4.9 Hz, 2H), 3.69 (s, 3H), 

2.78 – 2.56 (m, 2H), 1.05 (s, 9H); 13C NMR (101 MHz, CDCl3) δ168.3, 163.1, 

135.7, 132.9, 130.0, 129.5, 128.0, 104.6, 97.5, 97.5, 82.6, 64.7, 51.2, 51.1, 46.5, 

26.8, 19.3; HRMS (ESI) m/z calc. for [C25H31IO4Si+Na]: 573.0934, found: 

573.0931. 

 

 

A 50 mL round-bottom flask was charged with acrylate 2.66 (70 mg, 0.13 mmol), 

[Ir(ppy)2(dtbbpy)]PF6 (4 mg, 4 µmol) and a magnetic stir bar. The flask was then 

flushed with a stream of argon before the addition of THF/H2O (7:1, 13 mL, 

OTBDPS
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I
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degassed by 3 times freeze-pump-thaw) and DIPEA (0.22 mL, 1.3 mmol). The 

reaction mixture was irradiated with 30 W blue led (at approximately 2 cm away 

from the light source) at room temperature for 24 h. The reaction mixture was 

concentrated in vacuo, diluted with sat. aq. NH4Cl (10 mL) and EtOAc (10 mL) 

and the phases separated. The aqueous phase was further extracted with EtOAc (2 

times). The combined organic extracts were dried (MgSO4), filtered, concentrated 

in vacuo and purified by flash column chromatography to give oxolane 2.63 (39 

mg, 0.092 mmol, 72%) as a colorless oil. Rf 0.36 (hexane-EtOAc, 10:1); [α]!!" = -

23.0 (c 1.00, CHCl3); IR (neat, νmax) 2953, 2929, 2892, 2857, 1740, 1667, 1471, 

1428, 1389, 1361, 1307, 1266, 1164, 1133, 1110, 1051, 988, 959, 890, 823, 796, 

741, 703 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.76 – 7.63 (m, 4H), 7.48 – 7.32 (m, 

6H), 5.03 (s, 1H), 4.88 (s, 1H), 4.77 (br t, J = 6.8 Hz, 1H), 4.18 – 4.00 (m, 1H), 

3.79 – 3.59 (m, 5H), 2.67 – 2.56 (m, 4H), 1.06 (s, 9H); 13C NMR (101 MHz, 

CDCl3) δ 171.7, 150.4, 135.8, 135.7, 134.9, 133.7, 133.6, 129.8, 129.7, 127.8, 

105.5, 78.9, 77.4, 65.8, 51.8, 41.1, 35.1, 26.9, 19.4; HRMS (ESI) m/z calc. for 

[C25H32O4Si+Na]: 447.1968, found: 447.1964. 

 

 

A 25 mL round-bottom flask was charged with alkyne 2.625 (50 mg, 12 mmol), 

Ir[dF(CF3)ppy]2(dtbbpy)PF6 (3 mg, 3 µmol), tetrabutylammonium bromide (10 mg, 

30 µmol), (SiMe3)3SiH (0.06 mL, 0.19 mmol) and a magnetic stir bar. The flask 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5	  Ko, H. M. et. al. Angew. Chem., Int. Ed. 2009, 121, 2400.	  
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was then purged with 3 cycles of argon/vacuum before the addition of DME (5 mL) 

The reaction mixture was irradiated with 30 W blue led (at approximately 2 cm 

away from the light source) at room temperature for 24 h. The reaction mixture 

was concentrated in vacuo, diluted with H2O (10 mL) and Et2O (10 mL) and the 

phases separated. The aqueous phase was further extracted with Et2O (2 times). 

The combined organic extracts were dried (MgSO4), filtered, concentrated in vacuo 

and purified by flash column chromatography to give oxolane 2.73 (73 mg, 0.1 

mmol, 91%) as a colorless oil. Rf 0.57 (hexane-EtOAc, 10:1); [α]!!" = +1.0 (c 1.00, 

CHCl3); IR (neat, νmax) 2951, 2894, 2859, 1744, 1472, 1429, 1392, 1361, 1306, 

1245, 1164, 1112, 834, 740, 703, 688cm-1; 1H NMR (400 MHz, CDCl3) δ 7.74 – 

7.58 (m, 4H), 7.47 – 7.30 (m, 6H), 5.37 (d, J = 2.2 Hz, 1H), 4.74 (t, J = 6.5 Hz, 

1H), 4.16 – 4.00 (m, 1H), 3.79 (dd, J = 10.4, 4.1 Hz, 1H), 3.73 – 3.62 (m, 1H), 

3.67 (S, 3H), 2.66 – 2.49 (m, 4H), 1.04 (s, 9H), 0.20 (s, 27H).; 13C NMR (101 MHz, 

CDCl3) δ 171.7, 159.1, 135.8, 135.7, 133.6, 133.6, 129.8, 129.7, 127.8, 127.8, 

111.5, 79.9, 79.4, 65.8, 51.8, 41.9, 37.2, 26.9, 19.4, 1.3.; HRMS (ESI) m/z calc. for 

[C34H58O4Si5+Na]: 693.3079, found: 693.3072. 

 

 

A solution of LiBH4 (4.7 mL, 2.0 M in THF, 9.4 mmol) was added to a stirred 

solution of oxolane 2.63 (2 g, 4.7 mmol) and MeOH (0.38 mL, 9.4 mmol) in THF 

(50 mL) at 0 °C. The reaction mixture was stirred at room temperature for 4 h, then 

quenched with sat. aq. NH4Cl (70 mL) and extracted with Et2O (3 times). The 

combined organic extracts were dried (MgSO4), filtered and concentrated in vacuo 

O
TBDPSO OH
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to give crude alcohol S6 (1.57 g, 3.9 mmol, 84%) as a colorless oil. Rf 0.33 

(hexane-EtOAc, 5:1); [α]!!" = -37.4 (c 1.00, CHCl3); IR (neat, νmax) 3444, 3072, 

2931, 2859, 1472, 1428, 1390, 1361, 1186, 1112, 1060, 977, 887, 824, 741, 703 

cm-1; 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 6.8 Hz, 4H), 7.51 – 7.32 (m, 6H), 

5.01 (br s, 1H), 4.84 (br s, 1H), 4.52 (br d, J = 7.9 Hz, 1H), 4.12 – 3.99 (m, 1H), 

3.90 – 3.77 (m, 2H), 3.77 – 3.61 (m, 2H), 2.74 (br t, J = 5.7 Hz, 1H, OH), 2.67 – 

2.47 (m, 2H), 2.08 – 1.95 (m, 1H), 1.85 – 1.72 (m, 1H), 1.06 (s, 9H); 13C NMR 

(101 MHz, CDCl3) δ 150.8, 135.7, 133.5, 133.5, 129.8, 127.8, 105.1, 81.2, 79.0, 

65.6, 61.0, 37.0, 35.2, 26.9, 19.4; HRMS (ESI) m/z calc. for [C24H32O3Si+Na]: 

419.2018, found: 419.2015. 

 

 

Trimethylacetyl chloride (0.56 mL, 4.5 mmol) was added to a stirred solution of 

alcohol S6 (1.5 g, 3.8 mmol), triethylamine (1.59 mL, 11.4 mmol) and DMAP (50 

mg, 0.38 mmol) in CH2Cl2 (40 mL) at room temperature. The reaction mixture was 

stirred at room temperature for 16 h, then quenched with sat. aq. NH4Cl (40 mL) 

and extracted with Et2O (3 times). The combined organic extracts were dried 

(MgSO4), filtered, concentrated in vacuo and purified by flash column 

chromatography to give pivalate 2.76 (1.78 g, 3.7 mmol, 97%) as a colorless oil. Rf 

0.75 (hexane-EtOAc, 5:1); [α]!!" = -28.6 (c 1.00, CHCl3); IR (neat, νmax) 2960, 

2932, 2859, 1729, 1477, 1429, 1284, 1157, 1112, 977, 889, 824, 741, 704 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 7.77 – 7.59 (m, 4H), 7.52 – 7.30 (m, 6H), 5.01 (q, J = 

2.3 Hz, 1H), 4.87 (q, J = 2.3 Hz, 1H), 4.41 (br d, J = 8.7 Hz, 1H), 4.31 – 4.13 (m, 

O
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2H), 4.13 – 3.99 (m, 1H), 3.79 – 3.68 (m, 2H), 2.68 – 2.49 (m, 2H), 2.07 – 1.93 (m, 

1H), 1.91 – 1.76 (m, 1H), 1.20 (s, 9H), 1.06 (s, 9H); 13C NMR (101 MHz, CDCl3) 

δ 178.6, 151.0, 135.7, 133.7, 133.6, 129.8, 127.8, 105.0, 78.8, 77.9, 65.9, 61.5, 

38.8, 35.3, 34.9, 27.3, 26.9, 19.4; HRMS (ESI) m/z calc. for [C29H40O4Si+Na]: 

503.2594, found: 503.2589. 

 

 

Wilkinson’s catalyst (340 mg, 0.37mmol) was added to a stirred solution of 

pivalate 2.76 (1.78 g, 3.7 mmol) in toluene (40 mL) at room temperature and the 

flask was purged with 3 cycles of H2/vacuum. The reaction mixture was stirred 

under H2 atmosphere (balloon) at room temperature. After stirring for 16 h, the 

reaction mixture was concentrated in vacuo and purified by flash column 

chromatography, eluting with 9% Et2O/Hexane to give oxolane 2.77 (1.47 g, 3.0 

mmol, 82%) as a colorless oil and oxolane 2.78 (230 mg, 0.47 mmol, 13%) as a 

colorless oil.  

2.77 Rf 0.27 (hexane-Et2O, 10:1, 3 times); [α]!!" = -24.2 (c 1.00, CHCl3); IR (neat, 

νmax) 2961, 2932, 2859, 1728, 1476, 1428, 1391, 1363, 1284, 1155, 1110, 1032, 

998, 937, 823, 803, 740, 703 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.72 – 7.64 (m, 

4H), 7.47 – 7.31 (m, 6H), 4.27 – 4.10 (m, 2H), 4.05 – 3.96 (m, 1H), 3.93 (q, J = 6.8 

Hz, 1H), 3.73 – 3.61 (m, 2H), 2.43 – 2.22 (m, 1H), 2.08 (dt, J = 12.5, 7.3 Hz, 1H), 

1.70 (q, J = 6.9 Hz, 2H), 1.49 (dt, J = 12.4, 8.1 Hz, 1H), 1.19 (s, 8H), 1.05 (s, 9H), 

0.93 (d, J = 7.0 Hz, 3H).; 13C NMR (101 MHz, CDCl3) δ 178.7, 135.8, 135.7, 

133.8, 133.7, 129.7, 127.8, 79.1, 78.4, 66.7, 62.5, 38.8, 36.0, 35.8, 30.4, 27.4, 27.0, 
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19.4, 15.1.; HRMS (ESI) m/z calc. for [C29H42O4Si+Na]: 505.2750, found: 

505.2746. 

2.78 Rf 0.31 (hexane-Et2O, 10:1, 3 times); [α]!!" = -12.8 (c 1.00, CHCl3); IR (neat, 

νmax) 2960, 2932, 2859, 1729, 1477, 1461, 1428, 1392, 1363, 1157, 1111, 1032, 

938, 823, 741, 703 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.75 – 7.60 (m, 4H), 7.46 – 

7.33 (m, 6H), 4.29 – 4.20 (m, 1H), 4.20 – 4.14 (m, 1H), 4.13 – 4.05 (m, 1H), 3.67 – 

3.56 (m, 2H), 3.46 (td, J = 8.3, 3.4 Hz, 1H), 2.14 – 2.04 (m, 1H), 1.95 – 1.82 (m, 

2H), 1.79 – 1.67 (m, 1H), 1.65 – 1.56 (m, 1H), 1.19 (s, 9H), 1.06 (s, 9H), 1.01 (d, J 

= 6.6 Hz, 3H).; 13C NMR (101 MHz, CDCl3) δ 178.6, 135.8, 133.8, 129.7, 129.7, 

127.8, 83.1, 78.4, 66.7, 62.1, 38.8, 38.5, 36.5, 33.8, 27.3, 27.0, 19.4, 17.1.; HRMS 

(ESI) m/z calc. for [C29H42O4Si+Na]: 505.2750, found: 505.2747. 

 

 

A solution of TBAF (4.6 mL, 1.0 M in THF, 4.6 mmol) was added to a stirred 

solution of oxolane 2.77 (1.47 g, 3.0 mmol) in THF (30 mL) at 0 °C. The reaction 

mixture was stirred at room temperature for 3 h, then quenched with sat. aq. NH4Cl 

(30 mL) and extracted with Et2O (3 times). The combined organic extracts were 

dried (MgSO4), filtered, concentrated in vacuo and purified by flash column 

chromatography to give alcohol S7 (730 mg, 2.98 mmol, 98%) as a colorless oil. Rf 

0.28 (hexane-EtOAc, 2:1); [α]!!" = -42.8 (c 1.00, CHCl3); IR (neat, νmax) 3442, 

2963, 2934, 2875, 1727, 1480, 1460, 1397, 1366, 1285, 1228, 1157, 1097, 1032, 

941, 923, 859, 772 cm-1; 1H NMR (400 MHz, CDCl3) δ 4.29 (ddd, J = 10.8, 7.4, 

5.5 Hz, 1H), 4.10 (dt, J = 10.9, 7.4 Hz, 1H), 4.03 – 3.95 (m, 1H), 3.92 (ddd, J = 9.0, 
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6.7, 4.7 Hz, 1H), 3.74 (ddd, J = 11.7, 6.2, 3.1 Hz, 1H), 3.49 (dt, J = 11.8, 6.0 Hz, 

1H), 2.47 – 2.29 (m, 1H), 2.12 – 2.00 (m, 2H), 1.81 – 1.61 (m, 2H), 1.41 (dt, J = 

12.5, 8.2 Hz, 1H), 1.19 (s, 9H), 0.96 (d, J = 7.0 Hz, 3H).; 13C NMR (101 MHz, 

CDCl3) δ 178.8, 79.1, 78.6, 65.2, 62.4, 38.8, 36.1, 35.0, 30.4, 27.3, 15.1.; HRMS 

(ESI) m/z calc. for [C13H24O4 +Na]: 267.1572, found: 267.1568. 

 

 

A solution of SO3!Py (8 mL, 0.88 M in DMSO, 7.1 mmol) was added to a stirred 

solution of alcohol S7 (575 mg, 2.35 mmol) and DIPEA (2.5 ml, 14.1 mmol) in 

CH2Cl2 (40 mL) at 0 °C. The reaction mixture was stirred for 3 h at 0 °C before 

being quenched with sat. aq. NH4Cl (40 mL) and the phases separated. The 

aqueous phase was further extracted with Et2O (3 times) and the combined organic 

extracts were dried (MgSO4), filtered and concentrated in vacuo to give crude 

aldehyde 2.100 as a pale yellow oil that was used without further purification. A 

sample was further purified by flash column chromatography for characterization. 

Rf 0.55 (hexane-EtOAc, 2:1); [α]!!" = -84.5 (c 1.00, CHCl3); IR (neat, νmax) 2970, 

2934, 2908, 2879, 1729, 1481, 1460, 1422, 1397, 1368, 1286, 1230, 1159, 1093, 

1062, 1034, 938 cm-1; 1H NMR (400 MHz, CDCl3) δ 9.69 (s, 1H), 4.33 – 4.10 (m, 

3H), 4.06 (dt, J = 9.6, 5.2 Hz, 1H), 2.45 – 2.28 (m, 2H), 1.78 (dq, J = 8.5, 6.2, 5.5 

Hz, 2H), 1.74 – 1.63 (m, 1H), 1.20 (s, 9H), 0.89 (d, J = 6.7 Hz, 3H).; 13C NMR 

(101 MHz, CDCl3) δ 203.3, 178.6, 82.0, 80.0, 62.0, 38.8, 36.2, 35.5, 30.0, 27.3, 

14.4.; HRMS (ESI) m/z calc. for [C13H22O4+Na]: 265.1416, found: 265.1412. 
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To a stirred solution of crude aldehyde 2.100 (as prepared above) in THF/H2O (5:2, 

21 mL) were added NaH2PO4!2H2O (1.83 g, 11.8 mmol), 2-methyl-2-butene (1.2 

mL, 11.8 mmol) and NaClO2 (850 mg, 9.4 mmol) at room temperature. After 

stirring for 2 h, the reaction mixture was then quenched with sat. aq. Na2SO3 (20 

mL) and extracted with EtOAc (4 times). The combined organic extracts were 

dried (MgSO4), filtered and concentrated in vacuo to give crude acid 2.103 as a 

pale yellow oil that was used without further purification. PPh3 (904 mg, 3.45 

mmol) and dipyridyl disulfide (760 mg, 3.45 mmol) were added to a stirred 

solution of crude acid 2.103 in CH2Cl2 (24 mL) at room temperature. After stirring 

for 6 h, the reaction mixture was concentrated in vacuo and purified by flash 

column chromatography to give thioester 2.105 (607 mg, 1.73 mmol, 74% over 3 

steps) as a pale yellow oil. Rf 0.11 (hexane-EtOAc, 5:1); [α]!!" = -127.5 (c 1.00, 

CHCl3); IR (neat, νmax) 2967, 2932, 2876, 1748, 1725, 1617, 1570, 1560, 1479, 

1447, 1417, 1396, 1368, 1284, 1200, 1159, 1141, 1066, 1033, 986, 759 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 8.63 (dd, J = 4.9, 1.8 Hz, 1H), 7.72 (td, J = 7.7, 1.9 Hz, 

1H), 7.56 (d, J = 7.9 Hz, 1H), 7.27 (dd, J = 7.1, 4.7 Hz, 1H), 4.53 (t, J = 7.5 Hz, 

1H), 4.43 – 4.26 (m, 2H), 4.20 (ddd, J = 10.0, 6.3, 3.7 Hz, 1H), 2.55 – 2.31 (m, 

2H), 2.10 – 1.65 (m, 3H), 1.20 (s, 9H), 1.03 (d, J = 6.9 Hz, 3H).; 13C NMR (101 

MHz, CDCl3) δ 201.5, 178.6, 151.7, 150.6, 137.1, 130.7, 123.5, 83.2, 80.7, 62.0, 

38.9, 38.5, 35.9, 30.3, 27.3, 14.6.; HRMS (ESI) m/z calc. for [C18H25NO4S+Na]: 

374.1402, found: 374.1399. 
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TfOH (0.65 mL, 7.3 mmol) was added to a stirred solution of BEt3 (7 mL, 1 M, 7 

mmol) in hexane at 0 °C. After stirring at 40 °C for 1 h, the reaction mixture was 

diluted with CH2Cl2 (24 mL) at -78 °C. A solution of imide 2.89 (1.48 g, 6.3 mmol) 

in CH2Cl2 (4mL + 2 mL × 2 to rinse) and NEt3 (1.33 mL, 9.6 mmol) were added to 

the stirred solution of Et2BOTf at -78 °C. The resulting mixture was allowed to 

warm to 0 °C and stirred for 0.5 h. A solution of aldehyde 2.906 (1.15 g, 7 mmol) 

in CH2Cl2 (4mL + 2 mL × 2 to rinse) was added slowly to the enolate solution at -

78 °C. After stirring at -78 °C for a further 2 h, the reaction mixture was allowed to 

warm to 0 °C and stirred for additional 1 h. The reaction mixture was then 

quenched with pH 7 phosphate buffer (20 mL). MeOH/30% aq. H2O2 solution (2:1, 

18 mL) was added slowly, and the mixture was stirred vigorously for 1 h, while 

warming to room temperature. The mixture was then extracted with Et2O (3 times) 

and the combined organic extracts were dried (MgSO4), filtered, concentrated in 

vacuo and purified by flash column chromatography to give aldol 2.91 (2.25 g, 5.7 

mmol, 90%) as a white solid. Rf 0.41 (hexane-EtOAc, 2:1); [α]!!" = -36.7 (c 1.00, 

CHCl3); IR (neat, νmax) 3492, 3029, 2974, 2931, 1778, 1693, 1497, 1454, 1384, 

1351, 1210, 1105, 1072, 1029, 972, 746, 699, 507, 460 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 7.36 – 7.24 (m, 8H), 7.18 (d, J = 7.2 Hz, 2H), 4.65 (d, J = 11.5 Hz, 1H), 

4.58 – 4.48 (m, 1H), 4.41 (d, J = 11.4 Hz, 1H), 4.16 – 4.02 (m, 2H), 3.95 – 3.87 (m, 

2H), 3.50 (p, J = 6.3 Hz, 1H), 3.20 (dd, J = 13.4, 3.4 Hz, 1H), 2.82 (d, J = 3.7 Hz, 

1H), 2.74 (dd, J = 13.4, 9.5 Hz, 1H), 1.32 (d, J = 6.1 Hz, 3H), 1.23 (d, J = 7.0 Hz, 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6	  Enders, D.; Berg, S. von; Jandeleit, B. Org. Synth. 2002, 78, 177.	  
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3H).; 13C NMR (101 MHz, CDCl3) δ 177.5, 152.9, 138.4, 135.2, 129.5, 129.0, 

128.5, 127.9, 127.7, 127.5, , 75.5, 74.6, 70.8, 66.0, 55.0, 39.4, 37.9, 16.1, 12.2.; 

HRMS (ESI) m/z calc. for [C23H27NO5 +Na]: 420.1487, found: 420.1782. 

 

 

A solution of DIBAL-H (19.3 mL, 1 M in hexane, 19.3 mmol) was added to a 

stirred solution of aldol 2.91 (2.95 g, 7.4 mmol) in THF (120 mL) at -78 °C and the 

resulting mixture was stirred for 5 h. The reaction mixture was then quenched with 

sat. aq. Rochelle’s salt (70 mL), diluted with Et2O (120 mL) and stirred vigorously 

for 2 h with warming to room temperature. The phases separated and the aqueous 

phase was extracted with Et2O (3 times). The combined organic extracts were dried 

(MgSO4), filtered and concentrated in vacuo to give crude aldehyde as a pale 

yellow oil that was immediately used without further purification. A 250 mL 

round-bottom flask was charged with LiBr (2.57 g, 29.6 mmol) and a magnetic stir 

bar. The flask was then dried by heating with a hairdryer under vacuum for 3 min 

before the addition of THF (110 mL) and methyl diethylphosphonoacetate (1.63 

mL, 8.9 mmol). The reaction mixture was stirred at room temperature for 30 min 

and NEt3 was added to the mixture. After stirring for 30 min, a solution of the 

crude aldehyde in THF (5mL + 2 mL × 2 to rinse) was added to the stirred solution 

and the resulting mixture was stirred at room temperature for 16 h. The reaction 

mixture was quenched with sat. aq. NH4Cl (70 mL) and extracted with Et2O (3 

times). The combined organic extracts were dried (MgSO4), filtered, concentrated 

in vacuo and purified by flash column chromatography to give enoate 2.92 (1.76 g, 
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O
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6.3 mmol, 85% over 2 steps) as a colorless oil. Rf 0.25 (hexane-EtOAc, 5:1); [α]!!" 

= +0.9 (c 1.00, CHCl3); IR (neat, νmax) 3478, 2971, 2876, 1721, 1653, 1454, 1435, 

1276, 1195, 1178, 1150, 1094, 1062, 1028, 988, 863, 736, 698, 607, 420 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 7.39 – 7.26 (m, 4H), 6.86 (dd, J = 15.7, 8.7 Hz, 1H), 

5.85 (d, J = 15.7 Hz, 1H), 4.58 (d, J = 11.5 Hz, 1H), 4.46 (d, J = 11.5 Hz, 1H), 3.73 

(s, 3H), 3.65 (dt, J = 7.3, 3.4 Hz, 1H), 3.54 – 3.44 (m, 1H), 2.60 – 2.42 (m, 1H), 

2.25 (br s, 1H), 1.19 (d, J = 6.2 Hz, 3H), 1.14 (d, J = 6.7 Hz, 3H).; 13C NMR (101 

MHz, CDCl3) δ 167.0, 150.7, 138.3, 128.6, 127.9, 127.8, 121.2, 76.1, 75.6, 70.8, 

51.7, 39.1, 15.8, 13.3.; HRMS (ESI) m/z calc. for [C16H22O4+Na]: 301.1416, found: 

301.1412. 

 

 

TESCl (0.55 mL, 2.44 mmol) was added to a stirred solution of enoate 2.92 (340 

mg, 1.22 mmol) and 2,6-lutidine (0.57 ml, 4.88 mmol) in CH2Cl2 (12 mL) at 0 °C. 

After stirring at 0 °C for 1 h, the reaction mixture was then quenched with sat. aq. 

NaHCO3 (10 mL) and extracted with Et2O (3 times). The combined organic 

extracts were dried (MgSO4), filtered, concentrated in vacuo and purified by flash 

column chromatography to give TES ether S8 (463 mg, 1.18 mmol, 97%) as a 

colorless oil. Rf 0.52 (hexane-EtOAc, 10:1); [α]!!" = +5.8 (c 1.00, CHCl3); IR (neat, 

νmax) 2955, 2910, 2878, 1726, 1658, 1455, 1435, 1383, 1336, 1273, 1235, 1193, 

1176, 1156, 1107, 1063, 1012, 801, 736, 697 cm-1; 1H NMR (400 MHz, CDCl3) δ 

7.40 – 7.26 (m, 5H), 6.93 (dd, J = 15.8, 8.1 Hz, 1H), 5.80 (d, J = 15.7 Hz, 1H), 

4.55 (d, J = 11.6 Hz, 1H), 4.41 (d, J = 11.6 Hz, 1H), 3.73 (s, 3H), 3.67 (t, J = 5.2 
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Hz, 1H), 3.46 – 3.36 (m, 1H), 2.63 – 2.49 (m, 1H), 1.16 (d, J = 6.2 Hz, 3H), 1.05 

(d, J = 6.8 Hz, 3H), 0.94 (t, J = 7.9 Hz, 9H), 0.61 (q, J = 7.9 Hz, 6H).; 13C NMR 

(101 MHz, CDCl3) δ 167.1, 152.4, 138.7, 128.4, 127.8, 127.6, 120.6, 78.3, 76.5, 

70.8, 51.6, 51.5, 40.4, 15.0, 14.6, 7.1, 5.4.; HRMS (ESI) m/z calc. for 

[C16H22O4+Na]: 415.2281, found: 415.2278. 

 

 

MeSO2NH2 (333 mg, 3.51 mmol) was added to a stirred solution of K2OsO4!2H2O 

(9 mg, 24 µmol), (DHQD)2PHAL (73 mg, 94 µmol), K2CO3 (485 mg, 3.51 mmol) 

and K3Fe(CN)6 (1.16 g, 3.51 mmol) in H2O/tBuOH (2:1, 12 mL) at room 

temperature. After stirring for 30 min, a solution of TES ether S8 (460 mg, 1.17 

mmol) in tBuOH (2mL + 1 mL × 2 to rinse) was added to the resulting mixture at 

0 °C and the reaction was further stirred at 0 °C for 16 h. The reaction mixture was 

quenched with Na2SO3 (1.7 g), then stirred for 1 h with warming to room 

temperature, diluted with H2O (10 mL) and extracted with Et2O (3 times). The 

combined organic extracts were dried (MgSO4), filtered, concentrated in vacuo and 

purified by flash column chromatography to give diol 2.93 (470 mg, 1.1 mmol, 

94%) as a colorless oil. Rf 0.12 (hexane-EtOAc, 5:1); [α]!!" = +17.5 (c 1.00, 

CHCl3); IR (neat, νmax) 3469, 2954, 2911, 2876, 1742, 1454, 1274, 1238, 1160, 

1098, 1035, 1009, 737, 697 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.38 – 7.27 (m, 

5H), 4.59 (d, J = 11.6 Hz, 1H), 4.45 (d, J = 11.6 Hz, 1H), 4.17 (d, J = 7.8 Hz, 1H), 

3.93 (dd, J = 5.9, 2.6 Hz, 1H), 3.88 (dd, J = 10.4, 4.8 Hz, 1H), 3.82 (s, 3H), 3.72 (d, 

J = 5.0 Hz, 1H), 3.66 (p, J = 6.1 Hz, 1H), 2.96 (d, J = 7.8 Hz, 1H), 2.29 – 2.11 (m, 
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1H), 1.28 (d, J = 6.1 Hz, 3H), 0.97 (t, J = 7.9 Hz, 9H), 0.92 (d, J = 7.1 Hz, 3H), 

0.66 (q, J = 7.9 Hz, 6H).; 13C NMR (101 MHz, CDCl3) δ 174.4, 138.5, 128.4, 

127.9, 127.6, 78.4, 75.9, 75.0, 71.6, 70.8, 52.7, 38.5, 16.8, 12.8, 7.0, 5.1.; HRMS 

(ESI) m/z calc. for [C22H38O6Si+Na]: 449.2332, found:449.2335. 

 

 

TsOH!H2O (21 mg, 0.11 mmol) was added to a stirred solution of diol 2.93 

(470mg, 1.1 mmol) and dimethoxypropane (1.35 ml, 11 mmol) in CH2Cl2 (11 mL) 

at room temperature. After stirring for 60 h, the reaction mixture was then 

quenched with sat. aq. NaHCO3 (10 mL) and extracted with Et2O (3 times). The 

combined organic extracts were dried (MgSO4), filtered, concentrated in vacuo and 

purified by flash column chromatography to give acetonide 2.94 (352 mg, 1.0 

mmol, 91%) as a colorless oil. Rf 0.12 (hexane-EtOAc, 5:1); [α]!!" = +35.6 (c 1.00, 

CHCl3); IR (neat, νmax) 3516, 2985, 2936, 1754, 1454, 1438, 1382, 1372, 1259, 

1208, 1168, 1096, 1027, 988, 869, 739, 698, 472, 442, 427 cm-1; 1H NMR (400 

MHz, CDCl3) δ 7.42 – 7.21 (m, 5H), 4.66 (d, J = 11.6 Hz, 1H), 4.42 (d, J = 9.3 Hz, 

1H), 4.39 (d, J = 4.9 Hz, 1H), 4.27 (dd, J = 7.1, 4.8 Hz, 1H), 3.78 (s, 3H), 3.78 – 

3.73 (m, 1H) 3.54 (p, J = 6.1 Hz, 1H), 2.65 (d, J = 4.3 Hz, 1H), 2.36 (q, J = 6.9 Hz, 

1H), 1.48 (s, 3H), 1.41 (s, 3H), 1.31 (d, J = 6.0 Hz, 3H), 0.96 (d, J = 7.1 Hz, 3H).; 

13C NMR (101 MHz, CDCl3) δ 172.4, 138.6, 128.5, 127.8, 127.7, 110.9, 82.9, 76.8, 

75.2, 73.9, 70.8, 52.6, 36.2, 27.1, 25.4, 16.3, 9.8.; HRMS (ESI) m/z calc. for 

[C19H28O6+Na]: 375.1784, found: 375.1780. 
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A solution of benzyl propiolate7 (5 mL, 1.08 M in hexane, 5.4 mmol) was added 

dropwise via syringe pump over 1 h to a stirred solution of acetonide 2.94 (953mg, 

2.7 mmol) and DABCO (30 mg, 0.27 mmol) in hexane (22 mL) at room 

temperature. The reaction mixture was stirred for additional 1 h, then concentrated 

in vacuo and the resulting crude mixture was purified by flash column 

chromatography to give acrylate 2.96 (1.26 g, 2.5 mmol, 91%) as a colorless oil. Rf 

0.35 (hexane-EtOAc, 5:1); [α]!!" = +7.5 (c 1.00, CHCl3); IR (neat, νmax) 3032, 2984, 

2938, 2886, 1754, 1707, 1638, 1496, 1454, 1438, 1374, 1325, 1276, 1203, 1165, 

1120, 1023, 956, 916, 871, 833, 740, 697 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.59 

(d, J = 12.2 Hz, 1H), 7.42 – 7.27 (m, 10H), 5.39 (dd, J = 12.1, 1.1 Hz, 1H), 5.18 (d, 

J = 12.5 Hz, 1H), 5.12 (d, J = 12.4 Hz, 1H), 4.65 (d, J = 11.6 Hz, 1H), 4.42 (d, J = 

11.6 Hz, 1H), 4.22 (d, J = 6.4 Hz, 1H), 4.13 (dd, J = 8.1, 2.1 Hz, 1H), 4.03 (dd, J = 

9.3, 6.4 Hz, 1H), 3.76 (s, 3H), 3.69 – 3.59 (m, 1H), 2.37 – 2.17 (m, 1H), 1.44 (s, 

3H), 1.37 (s, 3H), 1.24 (d, J = 6.1 Hz, 3H), 0.86 (d, J = 6.9 Hz, 3H).; 13C NMR 

(101 MHz, CDCl3) δ 171.8, 167.9, 164.6, 138.0, 136.6, 128.6, 128.5, 128.2, 128.1, 

127.9, 111.4, 97.5, 86.8, 80.2, 78.7, 73.1, 70.8, 65.6, 52.6, 38.1, 27.3, 25.7, 16.4, 

9.4.; HRMS (ESI) m/z calc. for [C29H36O8+Na]: 535.2308, found: 535.2302. 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7	  Fan, Y. C.; Kwon, O. Org. Lett. 2012, 14, 3264.	  
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Me3SnOH (2.25 g, 12.4 mmol) was added to a stirred solution of acrylate 2.96 

(1.26 g, 2.5 mmol) in 1,2-dichloroethane (50 mL) at room temperature and the 

reaction mixture was stirred at 65 °C for 5 h. The reaction mixture was cooled to 

room temperature, concentrated in vacuo and diluted with EtOAc (100 mL). The 

organic layer was washed with aq. KHSO4 (0.01 N, 100 mL × 3), dried (MgSO4), 

filtered, concentrated in vacuo to give crude acid S9 (1.26 g, 2.5 mmol, 91%) as a 

colorless oil that was immediately used without further purification. Rf 0.5 (CHCl3-

MeOH, 10:1); [α]!!" = +9.8 (c 1.00, CHCl3); IR (neat, νmax) 3064, 3032, 2983, 2937, 

1708, 1679, 1636, 1496, 1454, 1382, 1327, 1277, 1206, 1121, 1025, 955, 914, 871, 

833, 738, 697 cm-1; 1H NMR (400 MHz, CDCl3) δ 10.31 (s, 1H), 7.60 (d, J = 12.1 

Hz, 1H), 7.42 – 7.26 (m, 10H), 5.40 (d, J = 12.1 Hz, 1H), 5.18 (d, J = 12.5 Hz, 1H), 

5.12 (d, J = 12.4 Hz, 1H), 4.65 (d, J = 11.6 Hz, 1H), 4.42 (d, J = 11.6 Hz, 1H), 4.26 

(d, J = 6.2 Hz, 1H), 4.14 (dd, J = 8.1, 2.1 Hz, 1H), 4.04 (dd, J = 9.3, 6.3 Hz, 1H), 

3.71 – 3.57 (m, 1H), 2.42 – 2.21 (m, 1H), 1.45 (s, 3H), 1.38 (s, 3H), 1.25 (d, J = 

6.0 Hz, 3H), 0.91 (d, J = 6.9 Hz, 3H).; 13C NMR (101 MHz, CDCl3) δ 175.9, 168.1, 

164.7, 138.0, 136.5, 128.6, 128.6, 128.2, 128.2, 128.0, 128.0, 111.8, 97.5, 86.7, 

80.2, 78.3, 73.1, 70.8, 65.8, 38.4, 27.3, 25.6, 16.4, 9.5.; HRMS (ESI) m/z calc. for 

[C28H34O8 +Na]: 521.2151, found: 521.2144. 
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A 1 L round-bottom flask was charged with crude acid S9 (as prepared above, < 

2.5 mmol), Ir[dF(CF3)ppy]2(dtbbpy)PF6 (140 mg, 0.13 mmol), K2HPO4 (871 mg, 5 

mmol) and a magnetic stir bar. The flask was then purged with 3 cycles of 

argon/vacuum before the addition of DMF (500 mL) The reaction mixture was 

irradiated with 30 W blue led (at approximately 2 cm away from the light source) 

at room temperature for 24 h. The reaction mixture was concentrated in vacuo, 

diluted with sat. aq. NH4Cl (250 mL) and Et2O (250 mL) and the phases separated. 

The aqueous phase was further extracted with Et2O (2 times). The combined 

organic extracts were dried (MgSO4), filtered, concentrated in vacuo and purified 

by flash column chromatography to give oxane 2.99a (630 mg, 1.4 mmol, 56% 

over 2 steps) as a white solid and oxane 2.99b (162 mg, 0.36 mmol, 14% over 2 

steps) as a colorless oil.  

2.99a Rf 0.34 (hexane-EtOAc, 5:1); [α]!!" = +44.4 (c 1.00, CHCl3); IR (neat, νmax) 

2961, 2932, 2859, 1728, 1476, 1428, 1391, 1363, 1284, 1155, 1110, 1032, 998, 

937, 823, 803, 740, 703 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.45 – 7.08 (m, 10H), 

5.15 (s, 2H), 4.61 (d, J = 11.3 Hz, 1H), 4.35 (d, J = 11.3 Hz, 1H), 4.29 (t, J = 6.6 

Hz, 1H), 4.18 (ddd, J = 8.5, 5.0, 3.4 Hz, 1H), 4.05 (dd, J = 6.2, 3.4 Hz, 1H), 3.61 – 

3.47 (m, 1H), 3.06 (dd, J = 8.9, 2.2 Hz, 1H), 2.84 (dd, J = 16.2, 8.5 Hz, 1H), 2.72 

(dd, J = 16.2, 5.1 Hz, 1H), 2.41 – 2.28 (m, 1H), 1.49 (s, 3H), 1.28 (s, 3H), 1.23 (d, 

J = 5.9 Hz, 3H), 0.89 (d, J = 7.2 Hz, 3H).; 13C NMR (101 MHz, CDCl3) δ 171.1, 

138.4, 136.0, 128.6, 128.5, 128.3, 128.3, 128.0, 127.8, 108.5, 80.8, 75.3, 73.6, 73.4, 
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72.8, 70.8, 66.4, 36.6, 31.7, 25.6, 25.6, 17.0, 10.1.; HRMS (ESI) m/z calc. for 

[C27H34O6+Na]: 477.2253, found: 477.2249. 

2.99b Rf 0.38 (hexane-EtOAc, 5:1); [α]!!" = -9.1 (c 1.00, CHCl3); IR (neat, νmax) 

2960, 2932, 2859, 1729, 1477, 1461, 1428, 1392, 1363, 1284, 1157, 1111, 1032, 

938, 822, 741, 703 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.49 – 7.17 (m, 10H), 5.14 

(s, 2H), 4.58 (d, J = 11.1 Hz, 1H), 4.39 (d, J = 11.0 Hz, 1H), 4.26 (t, J = 5.3 Hz, 

1H), 4.08 – 3.93 (m, 1H), 3.87 (td, J = 8.7, 3.3 Hz, 1H), 3.80 (dd, J = 8.6, 5.7 Hz, 

1H), 3.42 (dd, J = 9.2, 4.7 Hz, 1H), 2.71 (dd, J = 14.8, 3.4 Hz, 1H), 2.52 – 2.36 (m, 

2H), 1.49 (s, 3H), 1.35 (s, 3H), 1.21 (d, J = 6.0 Hz, 3H), 1.14 (d, J = 7.5 Hz, 3H).; 

13C NMR (101 MHz, CDCl3) δ 171.1, 138.5, 136.0, 128.6, 128.4, 128.4, 128.3, 

128.0, 127.6, 109.5, 77.5, 77.2, 76.9, 76.8, 75.7, 75.4, 74.5, 70.7, 69.3, 66.5, 39.3, 

33.2, 27.9, 25.8, 16.7, 13.2.; HRMS (ESI) m/z calc. for [C27H34O6+Na]: 477.2253, 

found: 477.2250. 

 

 

Me3SnOH (530 mg, 2.9 mmol) was added to a stirred solution of acrylate 2.96 

(300 mg, 0.59 mmol) in 1,2-dichloroethane (12 mL) at room temperature and the 

reaction mixture was stirred at 65 °C for 5 h. The reaction mixture was cooled to 

room temperature, concentrated in vacuo and diluted with EtOAc (20 mL). The 

organic layer was washed with aq. KHSO4 (0.01 N, 15 mL × 3), dried (MgSO4), 

filtered, concentrated in vacuo to give crude acid S9 as a colorless oil that was 
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immediately used without further purification. EDC!HCl (170 mg, 0.89 mmol) was 

added to a stirred solution of crude acid (as prepared above, < 0.59 mmol), N-

hydroxyphthalimide (144 mg, 0.89) and DMAP (7 mg, 0.06 mmol) in CH2Cl2 (6 

mL) at room temperature. After stirring for 3 h, the reaction mixture was 

concentrated in vacuo and purified by flash column chromatography to give active 

ester 2.98 (217 mg, 0.34 mmol, 57% over 2 steps) as a white solid. Rf 0.43 

(hexane-EtOAc, 2:1); [α]!!" = -11.6 (c 1.00, CHCl3); IR (neat, νmax) 3032, 2984, 

2937, 1815, 1789, 1736, 1708, 1639, 1496, 1466, 1455, 1374, 1325, 1277, 1206, 

1186, 1123, 1079, 1025, 964, 913, 876, 785, 742, 696 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 7.88 (dd, J = 5.4, 3.1 Hz, 2H), 7.79 (dd, J = 5.6, 3.1 Hz, 2H), 7.61 (d, J = 

12.2 Hz, 1H), 7.42 – 7.27 (m, 10H), 5.42 (d, J = 12.2 Hz, 1H), 5.18 (d, J = 12.5 Hz, 

1H), 5.12 (d, J = 12.5 Hz, 1H), 4.66 (d, J = 11.6 Hz, 1H), 4.57 (d, J = 6.3 Hz, 1H), 

4.43 (d, J = 11.6 Hz, 1H), 4.28 (dd, J = 9.1, 6.3 Hz, 1H), 4.15 (dd, J = 8.1, 2.1 Hz, 

1H), 3.73 – 3.60 (m, 1H), 2.48 – 2.29 (m, 1H), 1.49 (s, 3H), 1.44 (s, 3H), 1.27 (d, J 

= 6.0 Hz, 3H), 0.99 (d, J = 7.0 Hz, 3H).; 13C NMR (101 MHz, CDCl3) δ 168.3, 

167.9, 164.5, 161.5, 138.0, 136.6, 135.0, 128.9, 128.6, 128.2, 128.1, 128.0, 127.9, 

124.2, 112.5, 97.7, 97.7, 86.6, 80.8, 76.8, 73.1, 70.9, 65.6, 38.2, 27.1, 25.2, 16.4, 

9.7.; HRMS (ESI) m/z calc. for [C36H37NO10+Na]: 666.2309, found: 666.2315. 
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A 25 mL round-bottom flask was charged with active ester 2.98 (80 mg, 0.12 

mmol), [Ir(ppy)2(dtbbpy)]PF6 (4 mg, 4 µmol) and a magnetic stir bar. The flask 

was then flushed with a stream of argon before the addition of CH3CN (4 mL, 

degassed by 3 times freeze-pump-thaw) and DIPEA (0.22 mL, 1.3 mmol). The 

reaction mixture was irradiated with 6 W blue led (at approximately 2 cm away 

from the light source) at room temperature for 12 h. The reaction mixture was 

concentrated in vacuo, diluted with sat. aq. NH4Cl (10 mL) and EtOAc (10 mL) 

and the phases separated. The aqueous phase was further extracted with EtOAc (2 

times). The combined organic extracts were dried (MgSO4), filtered, concentrated 

in vacuo and purified by flash column chromatography to give oxane 2.99 (17 mg, 

0.037 mmol) in 31% yield as a 2:1 mixture of diastereomers along with complex 

byproducts. 

 

 

KOtBu (40 mg, 0.36 mmol) was added to a stirred solution of oxane 2.99b (150 

mg, 0.33 mmol) in THF (4 mL) at 0 °C and the reaction mixture was stirred at 0 °C 

for 4 h. The reaction mixture was then quenched with sat. aq. NH4Cl (6 mL) and 

extracted with Et2O (3 times). The combined organic extracts were dried (MgSO4), 

filtered, concentrated in vacuo and purified by flash column chromatography to 

give oxane 2.99b (24 mg, 0.052 mmol, 16%) as a colorless oil and oxane 2.99a (96 

mg, 0.21 mmol, 64%) as a white solid. 
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LiOH!2H2O (180 mg, 4.3 mmol) was added to a stirred solution of oxane 2.99a 

(490 mg, 1.08 mmol) in THF/H2O/MeOH (2:1:1, 20 mL) at 0 °C and the reaction 

mixture was stirred at room temperature for 3 h. The reaction mixture was then 

quenched with pH 6 phosphate buffer (120 mL) and extracted with EtOAc (4 

times). The combined organic extracts were dried (MgSO4), filtered, concentrated 

in vacuo to give crude acid S10 as a pale yellow oil that was used without further 

purification. A sample was further purified by flash column chromatography for 

characterization. Rf 0.5 (CHCl3-MeOH, 10:1); [α]!!" = +53.1 (c 1.00, CHCl3); IR 

(neat, νmax) 2980, 2926, 2885, 1711, 1453, 1380, 1309, 1285, 1244, 1208, 1150, 

1137, 1095, 1061, 1025, 1007, 991, 971, 941, 911, 871, 829, 738, 697 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 7.42 – 7.22 (m, 5H), 4.63 (d, J = 11.3 Hz, 1H), 4.37 (d, 

J = 11.3 Hz, 1H), 4.32 (t, J = 6.6 Hz, 1H), 4.15 (ddd, J = 8.3, 5.0, 3.4 Hz, 1H), 4.08 

(dd, J = 6.3, 3.4 Hz, 1H), 3.65 – 3.51 (m, 1H), 3.11 (dd, J = 8.8, 2.4 Hz, 1H), 2.83 

(dd, J = 16.5, 8.3 Hz, 1H), 2.73 (dd, J = 16.4, 5.0 Hz, 1H), 2.46 – 2.26 (m, 1H), 

1.51 (s, 3H), 1.33 (s, 3H), 1.28 (d, J = 5.9 Hz, 3H), 0.91 (d, J = 7.2 Hz, 3H).; 13C 

NMR (101 MHz, CDCl3) δ 176.7, 138.3, 128.5, 128.0, 127.8, 108.6, 80.8, 75.3, 

73.5, 73.3, 72.8, 70.8, 36.4, 31.6, 25.6, 25.6, 17.0, 10.2.; HRMS (ESI) m/z calc. for 

[C20H28O6+Na]: 387.1784, found: 387.1780. 
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EDC!HCl (263 mg, 1.6 mmol) was added to a stirred solution of crude acid S10 

(as prepared above, < 1.08 mmol), N-hydroxyphthalimide and DMAP (26 mg, 0.21 

mmol) in CH2Cl2 (11 mL) at room temperature. After stirring for 3 h, the reaction 

mixture was concentrated in vacuo and purified by flash column chromatography 

to give active ester 2.106 (474 mg, 0.93 mmol, 87% over 2 steps) as a white solid. 

Rf 0.49 (hexane-EtOAc, 2:1); [α]!!" = +44.2 (c 1.00, CHCl3); IR (neat, νmax) 2983, 

2928, 1817, 1789, 1745, 1466, 1454, 1379, 1310, 1244, 1209, 1186, 1146, 1082, 

1062, 1009, 988, 969, 876, 746, 721, 697cm-1; 1H NMR (400 MHz, CDCl3) δ 7.89 

(dd, J = 5.5, 3.1 Hz, 2H), 7.79 (dd, J = 5.5, 3.1 Hz, 2H), 7.39 – 7.26 (m, 5H), 4.64 

(d, J = 11.3 Hz, 1H), 4.38 (d, J = 11.2 Hz, 1H), 4.34 (t, J = 6.6 Hz, 1H), 4.27 (ddd, 

J = 8.4, 5.1, 3.4 Hz, 1H), 4.14 (dd, J = 6.2, 3.4 Hz, 1H), 3.68 – 3.54 (m, 1H), 3.20 

– 3.09 (m, 2H), 3.04 (dd, J = 16.4, 5.1 Hz, 1H), 2.45 – 2.31 (m, 1H), 1.53 (s, 3H), 

1.35 (s, 3H), 1.33 (d, J = 5.9 Hz, 3H), 0.93 (d, J = 7.2 Hz, 3H).; 13C NMR (101 

MHz, CDCl3) δ 167.5, 161.8, 138.4, 134.9, 129.0, 128.5, 128.0, 127.8, 124.1, 

108.8, 81.0, 75.2, 73.5, 73.0, 72.4, 70.8, 33.7, 31.6, 25.6, 17.0, 10.1.; HRMS (ESI) 

m/z calc. for [C28H31NO8+Na]: 532.1947, found: 532.1944. 
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To a stirred solution of active ester 2.112 (50 mg, 0.17 mmol) and benzaldehyde 

(33 mg, 0.31 mmol) in DMF (2 mL) was added CrCl2 (84 mg, 0.68 mmol) at room 

temperature and the reaction mixture was stirred at room temperature for 1 h. The 

reaction mixture was then quenched with 1 M potassium serinate solution (1 g of 

serine and 1g of KHCO3 in 10 mL of H2O), diluted with EtOAc (10 mL) and the 

mixture was stirred vigorously for 1 h. The mixture was then extracted with EtOAc 

(3 times) and the combined organic extracts were dried (MgSO4), filtered, 

concentrated in vacuo and purified by flash column chromatography to give 

alcohol 2.113 (21 mg, 0.10 mmol, 60%) as a colorless oil. Rf 0.26 (hexane-EtOAc, 

10:1); 1H NMR (400 MHz, CDCl3) δ 7.42 – 7.22 (m, 5H), 4.79 (dd, J = 8.7, 5.1 Hz, 

1H), 1.86 – 1.56 (m, 6H), 1.57 – 1.48 (m, 1H), 1.48 – 1.36 (m, 1H), 1.31 – 1.08 (m, 

3H), 1.04 – 0.80 (m, 2H). 

 

 

NiBr2!dtbbpy8 (11 mg, 23 µmol), Zn dust (80 mg, 1.2 mmol) and CpZrCl2 (117 mg, 

0.4 mmol) were added to a stirred solution of active ester 2.106 (76 mg, 150 µmol) 

and thioester 2.105 (66 mg, 190 µmol) in DMI (0.5 mL, degassed by 3 times 

freeze-pump-thaw, pre-stirred with 3 Å M.S. for 1 h) at room temperature. After 

stirring for 2 h, the reaction mixture was filtered through a pad of silica gel 

(hexane-EtOAc, 2:1, 500 mL), concentrated in vacuo and purified by flash column 

chromatography to give ketone 2.117 (43 mg, 77 µmol, 51) ) as a colorless oil. Rf 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8	  Ai, Y.; Ye, N.; Wang, Q.; Yahata, K.; Kishi, Y.; Angew. Chem. Int. Ed. 2017, 56, 10791.	  
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0.52 (hexane-acetone, 5:1); [α]!!" = -4.2 (c 1.00, CHCl3); IR (neat, νmax) 2970, 2930, 

2876, 1725, 1479, 1455, 1417, 1380, 1366, 1308, 1284, 1244, 1209, 1154, 1095, 

1062, 1005, 971, 883, 869, 737, 698 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.38 – 

7.27 (m, 5H), 4.61 (d, J = 11.4 Hz, 1H), 4.35 (d, J = 11.1 Hz, 1H), 4.33 – 4.18 (m, 

4H), 4.08 (dd, J = 6.3, 3.4 Hz, 1H), 4.02 (q, J = 6.0 Hz, 1H), 3.57 – 3.47 (m, 1H), 

3.11 – 2.99 (m, 2H), 2.85 (dd, J = 17.3, 6.0 Hz, 1H), 2.42 – 2.26 (m, 3H), 1.77 (q, J 

= 6.7 Hz, 2H), 1.74 – 1.65 (m, 1H), 1.49 (s, 3H), 1.29 (s, 3H), 1.25 (d, J = 5.8 Hz, 

3H), 1.20 (d, J = 1.0 Hz, 9H), 0.95 – 0.85 (m, 6H); 13C NMR (101 MHz, CDCl3) δ 

δ 209.1, 178.6, 138.4, 128.5, 128.0, 127.8, 108.3, 82.8, 80.7, 79.8, 75.2, 73.6, 72.8, 

72.7, 70.8, 62.2, 40.0, 38.9, 36.7, 35.6, 31.7, 30.1, 27.3, 25.7, 25.6, 17.1, 14.6, 

10.1.; HRMS (ESI) m/z calc. for [C32H48O8+Na]: 583.3247, found: 583.3244. 

 

 

A solution of L-selectride (0.19 mL , 1.0 M in THF, 0.19 mmol) was added to a 

stirred solution of ketone 2.117 (35 mg, 62 µmol) in THF (3 mL) at -78 °C and the 

reaction mixture was stirred at -78 °C for 4 h. The reaction mixture was then 

quenched with 2 N NaOH/30% aq. H2O2 solution (1:1, 6 mL) and the mixture was 

stirred vigorously for 1 h, while warming to room temperature. The mixture was 

then extracted with Et2O (3 times) and the combined organic extracts were dried 

(MgSO4), filtered, concentrated in vacuo and purified by flash column 

chromatography to give alcohol S11 (33 mg, 59 µmol, 93%) as a colorless oil. Rf 

0.12 (hexane-acetone, 7:1); [α]!!" = -0.9 (c 1.00, CHCl3); IR (neat, νmax) 3513, 2967, 

S11

O

OBn

O

O

OH
O OPiv



	   111 

2930, 2876, 1726, 1495, 1479, 1455, 1380, 1366, 1285, 1254, 1244, 1209, 1154, 

1101, 1066, 1029, 1005, 985, 889, 864, 829, 792, 772, 736, 699 cm-1; 1H NMR 

(400 MHz, CDCl3) δ 7.35 – 7.26 (m, 5H), 4.62 (d, J = 11.2 Hz, 1H), 4.36 (d, J = 

11.3 Hz, 1H), 4.28 (t, J = 6.5 Hz, 1H), 4.24 (t, J = 6.1 Hz, 1H), 4.13 (dt, J = 10.9, 

7.4 Hz, 1H), 4.07 (dd, J = 6.2, 3.3 Hz, 1H), 3.98 (td, J = 6.8, 3.1 Hz, 1H), 3.95 – 

3.88 (m, 1H), 3.78 (q, J = 7.3 Hz, 1H), 3.70 – 3.62 (m, 1H), 3.62 – 3.54 (m, 1H), 

3.10 (dd, J = 8.8, 2.4 Hz, 1H), 2.89 (s, 1H), 2.45 – 2.28 (m, 2H), 2.09 (dt, J = 12.5, 

7.3 Hz, 1H), 1.94 – 1.81 (m, 2H), 1.78 – 1.62 (m, 2H), 1.50 (s, 3H), 1.40 – 1.29 (m, 

1H), 1.32 (s, 3H), 1.29 (d, J = 6.0 Hz, 3H), 1.19 (s, 9H), 0.95 (d, J = 6.9 Hz, 3H), 

0.91 (d, J = 7.2 Hz, 3H).; 13C NMR (101 MHz, CDCl3) δ 178.7, 138.4, 128.5, 

128.0, 127.8, 108.3, 81.8, 81.0, 78.5, 75.3, 75.1, 73.5, 73.0, 72.7, 70.9, 62.4, 38.8, 

36.1, 35.7, 34.6, 31.9, 30.4, 27.3, 25.7, 25.7, 17.3, 15.2, 10.2.; HRMS (ESI) m/z 

calc. for [C32H50O8+Na]: 584.3403, found: 585.3399. 

 

 

TBDPSCl (24 µL, 87 µmol) was added to a stirred solution of alcohol S11 (30 mg, 

53 µmol) and imidazole (36 mg, 0.54 mmol) in DMF (0.5 mL) at room 

temperature. After stirring for 24 h, additional TBDPSCl (24 µL, 87 µmol) was 

added at room temperature. After stirring for a further 24 h, the reaction mixture 

was then quenched with sat. aq. NH4Cl (10 mL) and extracted with Et2O (3 times). 

The combined organic extracts were dried (MgSO4), filtered, concentrated in vacuo 

and purified by flash column chromatography to give TBDPS ether 2.120 (42 mg, 
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51 µmol, 98%) as a colorless oil. Rf 0.13 (hexane-EtOAc, 10:1); [α]!!" = +10.7 (c 

1.00, CHCl3); IR (neat, νmax) 2961, 2930, 2897, 2857, 1727, 1474, 1456, 1427, 

1380, 1364, 1284, 1254, 1244, 1208, 1153, 1105, 1030, 1004, 938, 871, 822, 740, 

701 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.76 – 7.65 (m, 4H), 7.45 – 7.26 (m, 11H), 

4.61 (d, J = 11.3 Hz, 1H), 4.35 (d, J = 11.2 Hz, 1H), 4.10 – 3.88 (m, 4H), 3.87 – 

3.79 (m, 1H), 3.79 – 3.67 (m, 2H), 3.53 – 3.41 (m, 1H), 3.08 (dd, J = 6.3, 3.3 Hz, 

1H), 2.77 (dd, J = 8.9, 2.1 Hz, 1H), 2.32 – 2.16 (m, 2H), 2.06 (dt, J = 12.6, 7.3 Hz, 

1H), 1.93 – 1.82 (m, 1H), 1.82 – 1.72 (m, 1H), 1.67 – 1.55 (m, 2H), 1.38 (s, 3H), 

1.32 – 1.26 (m, 1H), 1.23 (d, J = 5.9 Hz, 3H), 1.20 (s, 6H), 1.06 (s, 6H), 1.04 (s, 

2H), 0.82 (d, J = 7.0 Hz, 2H), 0.79 (d, J = 7.1 Hz, 2H).; 13C NMR (101 MHz, 

CDCl3) δ 178.6, 138.4, 136.3, 136.1, 134.6, 134.0, 129.7, 129.6, 128.5, 128.0, 

127.8, 127.7, 127.5, 107.8, 81.6, 80.8, 78.1, 75.1, 73.5, 73.5, 73.4, 72.2, 70.9, 62.5, 

38.8, 35.9, 35.7, 35.3, 31.7, 30.4, 27.4, 27.1, 25.6, 25.4, 19.8, 17.3, 15.4, 10.0.; 

HRMS (ESI) m/z calc. for [C48H68O8Si+Na]: 823.4581, found: 823.4579. 

 

 

Palladium on activated carbon (10 mg, 10% w/w, 9 µmol) was added to a stirred 

solution of ether 2.120 (40 mg, 50 µmol) in EtOAc (2 mL) at room temperature 

and the flask was purged with 3 cycles of H2/vacuum. The reaction mixture was 

stirred under H2 atmosphere (balloon) at room temperature. After stirring for 36 h, 

the reaction mixture was filtered through a pad of celite (eluting with EtOAc) and 

concentrated in vacuo, The crude mixture was purified by flash column 
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chromatography to give alcohol S12 (32 mg, 45 µmol, 90%) as a colorless. Rf 0.4 

(hexane-EtOAc, 2:1); [α]!!" = -15.6 (c 1.00, CHCl3); IR (neat, νmax) 3444, 2961, 

2930, 2856, 1727, 1474, 1459, 1427, 1381, 1363, 1285, 1253, 1208, 1155, 1106, 

1086, 1063, 1011, 938, 871, 822, 793, 772, 740, 703, 688 cm-1; 1H NMR (400 

MHz, CDCl3) δ 7.76 – 7.64 (m, 4H), 7.45 – 7.29 (m, 6H), 4.00 (dddd, J = 28.4, 

15.2, 9.9, 6.2 Hz, 4H), 3.84 – 3.73 (m, 3H), 3.70 (td, J = 6.7, 3.0 Hz, 1H), 3.20 (dd, 

J = 6.5, 3.1 Hz, 1H), 2.79 (dd, J = 7.5, 3.0 Hz, 1H), 2.31 – 2.18 (m, 1H), 2.13 – 

2.00 (m, 2H), 1.85 (ddd, J = 11.1, 7.2, 3.5 Hz, 1H), 1.80 – 1.71 (m, 2H), 1.64 – 

1.56 (m, 2H), 1.38 (s, 3H), 1.35 – 1.23 (m, 1H), 1.20 (d, J = 6.1 Hz, 3H), 1.19 (s, 

9H), 1.08 (s, 3H), 1.06 (s, 9H), 0.93 (d, J = 7.2 Hz, 3H), 0.81 (d, J = 7.0 Hz, 3H).; 

13C NMR (101 MHz, CDCl3) δ 178.6, 136.3, 136.1, 134.6, 134.0, 129.7, 129.6, 

127.6, 127.5, 108.0, 81.5, 81.3, 78.1, 75.3, 73.4, 72.9, 72.7, 67.3, 62.5, 38.8, 35.9, 

35.7, 35.1, 31.6, 30.4, 27.4, 27.1, 25.6, 25.4, 21.2, 19.8, 15.3, 10.7.; HRMS (ESI) 

m/z calc. for [C41H62O8Si Si+Na]: 733.4112, found: 733.4106. 

 

 

Dess-Martin periodinane (36 mg, 84 µmol) was added to a cloudy solution of 

alcohol S12 (30 mg, 42 µmol) and NaHCO3 (35 mg, 420 µmol) in CH2Cl2 (1 mL) 

at room temperature and the reaction mixture was stirred for 1 h. The reaction 

mixture was then quenched with sat. aq. NaHCO3 (10 mL) and extracted with Et2O 

(3 times). The combined organic extracts were dried (MgSO4), filtered, 

concentrated in vacuo and purified by flash column chromatography to give 
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Ketone 2.121 (28 mg, 39 µmol, 93%) as a colorless oil. Rf 0.33 (hexane-EtOAc, 

5:1); [α]!!" = +22.3 (c 1.00, CHCl3); IR (neat, νmax) 2959, 2931, 2857, 1724, 1475, 

1459, 1427, 1381, 1361, 1284, 1256, 1240, 1208, 1151, 1107, 1065, 1007, 937, 

875, 822, 770, 740, 703 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.78 – 7.64 (m, 4H), 

7.45 – 7.29 (m, 6H), 4.05 (q, J = 6.5 Hz, 2H), 4.01 – 3.92 (m, 2H), 3.83 (q, J = 9.1, 

7.2 Hz, 2H), 3.72 (td, J = 6.5, 2.8 Hz, 1H), 3.46 (d, J = 4.1 Hz, 1H), 3.31 (dd, J = 

6.6, 3.0 Hz, 1H), 2.34 – 2.21 (m, 1H), 2.19 – 2.12 (m, 1H), 2.14 (s, 3H), 2.07 (dd, J 

= 13.4, 6.5 Hz, 1H), 1.88 (q, J = 6.1, 5.3 Hz, 2H), 1.66 – 1.58 (m, 2H), 1.39 (s, 3H), 

1.32 (dt, J = 12.6, 8.0 Hz, 1H), 1.19 (s, 9H), 1.11 (s, 3H), 1.06 (s, 9H), 0.83 (d, J = 

7.3 Hz, 3H), 0.81 (d, J = 7.3 Hz, 3H).; 13C NMR (101 MHz, CDCl3) δ 210.2, 178.6, 

136.3, 136.1, 134.6, 129.7, 129.7, 127.6, 127.5, 108.4, 82.9, 81.3, 78.1, 74.6, 73.2, 

72.6, 62.5, 38.8, 35.9, 35.7, 34.9, 33.0, 30.4, 27.8, 27.4, 27.1, 25.6, 25.2, 19.8, 15.4, 

11.4.; HRMS (ESI) m/z calc. for [C41H60O8Si+Na]: 731.3955, found: 731.3953. 

 

 

CF3CO2H/H2O (4:1, 100 µmol) was added to a stirred solution of ketone 2.121 (27 

mg, 38 µmol) in CH2Cl2 (1 mL) at 0 °C and the reaction mixture was stirred at 0 °C 

for 2 h. The reaction mixture was then quenched with sat. aq. NaHCO3 (10 mL) 

and extracted with Et2O (3 times). The combined organic extracts were dried 

(MgSO4), filtered, concentrated in vacuo and purified by flash column 

chromatography to give diol S13 (24 mg, 36 µmol, 94%) as a colorless oil. Rf 0.1 

(hexane-EtOAc, 2:1); [α]!!" = -1.8 (c 1.00, CHCl3); IR (neat, νmax) 3443, 2960, 
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2930, 2856, 1716, 1460, 1427, 1390, 1355, 1285, 1228, 1156, 1104, 1037, 1003, 

938, 917, 879, 857, 821, 775, 740, 702, 689 cm-1; 1H NMR (400 MHz, CDCl3) δ 

7.74 – 7.62 (m, 4H), 7.46 – 7.30 (m, 6H), 4.13 (dt, J = 10.9, 6.4 Hz, 1H), 4.02 – 

3.92 (m, 2H), 3.88 (q, J = 5.8 Hz, 1H), 3.86 – 3.79 (m, 1H), 3.49 – 3.38 (m, 2H), 

3.24 (t, J = 6.7 Hz, 1H), 3.16 (d, J = 3.3 Hz, 1H), 2.49 (s, 1H), 2.39 – 2.28 (m, 1H), 

2.28 – 2.17 (m, 1H), 2.14 – 2.08 (m, 1H), 2.11 (s, 3H), 2.04 – 1.91 (m, 1H), 1.81 

(dt, J = 14.2, 5.9 Hz, 1H), 1.67 – 1.60 (m, 2H), 1.48 – 1.36 (m, 1H), 1.18 (s, 9H), 

1.05 (s, 9H), 0.90 (d, J = 7.0 Hz, 3H), 0.83 (d, J = 7.1 Hz, 3H).; 13C NMR (101 

MHz, CDCl3) δ 209.2, 178.7, 136.1, 136.0, 134.4, 133.7, 129.9, 129.9, 127.7, 

127.7, 84.5, 81.0, 78.3, 76.0, 71.8, 71.0, 69.6, 62.4, 38.8, 36.1, 35.6, 35.2, 34.3, 

30.4, 27.7, 27.3, 27.1, 19.6, 15.4, 8.2.; HRMS (ESI) m/z calc. for [C38H56O8Si +Na]: 

691.3641, found: 691.3638. 

 

 

Acetyl chloride (11 µL, 165 µmol) was added to a stirred solution of diol S13 (22 

mg, 33 µmol) in pyridine/CH2Cl2 (1:4. 1 mL) at -20 °C and the reaction mixture 

was stirred at 0 °C for 2 h. The reaction mixture was then quenched with sat. aq. 

NH4Cl (10 mL) and extracted with Et2O (3 times). The combined organic extracts 

were dried (MgSO4), filtered, concentrated in vacuo and purified by flash column 

chromatography to give ester S14 (21 mg, 30 µmol, 90%) as a colorless oil. Rf 0.43 

(hexane-EtOAc, 2:1); [α]!!" = +3.8 (c 1.00, CHCl3); IR (neat, νmax) 3472, 2962, 

2929, 2856, 1720, 1459, 1427, 1362, 1285, 1234, 1157, 1101, 1035, 997, 932, 881, 
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844, 821, 791, 769, 740, 703, 688 cm-1; 1H NMR (400 MHz, CDCl3) δ δ 7.77 – 

7.61 (m, 4H), 7.45 – 7.29 (m, 6H), 4.57 (dd, J = 5.5, 3.3 Hz, 1H), 4.11 (dt, J = 11.9, 

6.4 Hz, 1H), 3.97 (dt, J = 12.1, 7.7 Hz, 2H), 3.88 – 3.76 (m, 2H), 3.53 (d, J = 2.7 

Hz, 1H), 3.41 (t, J = 6.6 Hz, 1H), 3.15 (s, 1H), 2.47 – 2.36 (m, 1H), 2.36 – 2.24 (m, 

1H), 2.12 (s, 3H), 2.10 (s, 3H), 2.14 – 2.08 (m, 1H), 1.98 – 1.89 (m, 1H), 1.88 – 

1.79 (m, 1H), 1.63 (q, J = 7.2 Hz, 2H), 1.36 (dt, J = 12.6, 8.4 Hz, 1H), 1.19 (s, 9H), 

1.05 (s, 9H), 0.88 (d, J = 7.1 Hz, 6H); 13C NMR (101 MHz, CDCl3) δ 208.2, 178.7, 

169.7, 136.2, 136.0, 134.4, 133.7, 129.8, 127.7, 127.7, 110.2, 84.2, 81.1, 78.1, 75.9, 

73.8, 72.4, 67.9, 62.5, 38.8, 35.7, 35.5, 34.3, 33.5, 30.5, 27.6, 27.3, 27.1, 21.2, 19.7, 

15.3, 9.0.; HRMS (ESI) m/z calc. for [C40H58O9Si+Na]: 733.3748, found: 733.3744. 

 

 

HF!Pyridine complex (1.8 mL, 70% HF) was added to a stirred solution of ester 

S14 (20 mg, 28 µmol) in pyridine/THF (1:1. 3.6 mL) in polypropylene tube at 0 °C 

and the reaction mixture was stirred at room temperature for 48 h. The reaction 

mixture was slowly quenched with sat. aq. NaHCO3 (30 mL) and extracted with 

Et2O (3 times). The combined organic extracts were dried (MgSO4), filtered, 

concentrated in vacuo and purified by flash column chromatography to give diol 

2.122 (12 mg, 25 µmol, 91%) as a white solid. Rf 0.43 (hexane-acetone, 2:1); [α]!!" 

= -18.5 (c 1.00, CHCl3); IR (neat, νmax) 3491, 2963, 2929, 2876, 1710, 1480, 1460, 

1416, 1364, 1286, 1238, 1176, 1121, 1094, 1059, 1035, 926, 847, 793, 679 cm-1; 

1H NMR (400 MHz, CDCl3) δ 4.95 (dd, J = 5.5, 3.4 Hz, 1H), 4.26 (ddd, J = 10.9, 

2.122

O

O

OH
O OPiv

HO

O

O
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7.5, 5.1 Hz, 1H), 4.10 (dt, J = 10.8, 7.5 Hz, 1H), 4.00 – 3.85 (m, 3H), 3.84 – 3.71 

(m, 2H), 3.71 – 3.61 (m, 1H), 2.58 – 2.47 (m, 1H), 2.40 (p, J = 7.1 Hz, 1H), 2.21 (s, 

3H), 2.16 – 2.05 (m, 1H), 2.13 (s, 3H), 2.01 – 1.85 (m, 2H), 1.75 – 1.58 (m, 2H), 

1.35 (dt, J = 12.6, 8.5 Hz, 1H), 1.19 (s, 9H), 1.02 (d, J = 7.1 Hz, 3H), 0.96 (d, J = 

7.0 Hz, 3H).; 13C NMR (101 MHz, CDCl3) δ 208.0, 178.8, 169.9, 84.5, 81.8, 78.5, 

77.4, 76.7, 73.9, 71.9, 68.1, 62.4, 38.9, 36.4, 35.7, 34.3, 33.8, 30.5, 27.6, 27.3, 21.2, 

15.0, 9.1.; HRMS (ESI) m/z calc. for [C24H40O9+Na]: 495.2570, found: 495.2566. 
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국문  초록  

 

해양천연물 마데이롤라이드 에이의 합성을 위한 연구를 진행하였다. 

마데이롤라이드 에이는 16 개의 입체중심과 세 개의 산소고리를 포함하는 

21 각 마크로락톤고리와 단당류인 씨너룰로즈로 구성된 마크롤라이드의 

하나로 생리활성적으로, 구조적으로 모두 매력적인 천연물 이다. 

이미 알려진 간단한 시작 물질로 부터 입체특이적인 반응을 연속적으로 

사용하여 마데이롤라이드 에이의 16 개의 입체중심을 효율적으로 도입하였다. 

가시광선에 의해 유도된 광촉매 반응을 이용한 라디칼 고리화반응을 통해 세 

개의 산소고리구조를 입체선택적으로 합성하였다. 마지막으로 전이금속을 

이용한 교차짝지음 반응을 통해 부분구조의 결합에 대한 다양한 전략을 

연구했다. 

 

 

 

 

 

주제어: 마데이롤라이드 에이, 천연물, 라디칼 고리화 반응, 광산화환원, 전합성 

학번: 2009-20318 
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