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Abstract

P—Nonconforming Quadrilateral Finite Space
with Periodic Boundary Condition and
Its Application to Multiscale Problems

Jaeryun Yim

The Interdisciplinary Program in
Computational Science and Technology
The Graduate School

Seoul National University

We consider the Pj—nonconforming quadrilateral finite space with periodic
boundary condition, and investigate characteristics of the finite space and
discrete Laplace operators in the first part of this dissertation. We analyze
dimension of the finite element spaces in help of concept of minimally essential
discrete boundary conditions. Based on the analysis, we classify functions in a
basis for the finite space with periodic boundary condition into two types. And
we introduce several Krylov iterative schemes to solve second-order elliptic
problems, and compare their solutions. Some of the schemes are based on
the Drazin inverse, one of generalized inverse operators, since the periodic
nature may derive a singular linear system of equations. An application to the
Stokes equations with periodic boundary condition is considered. Lastly, we
extend our results for elliptic problems to 3-D case. Some numerical results
are provided in our discussion.

In the second part, we introduce a nonconforming heterogeneous multi-
scale method for multiscale problems. Its formulation is based on the P;—

nonconforming quadrilateral finite element, mainly with periodic boundary



condition. We analyze a priori error estimates of the proposed scheme by
following general framework for the finite element heterogeneous multiscale
method. For numerical implementations, we use one of the proposed iterative
schemes for singular linear systems in the previous part. Several numerical

examples and results are given.

Keywords: Py—nonconforming quadrilateral finite element, periodic bound-
ary condition, minimally essential discrete boundary conditions, singular linear
system, Drazin inverse, heterogeneous multiscale method, numerical homoge-
nization

Student Number: 2012-20414
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Chapter 1

Introduction

After the P;—nonconforming quadrilateral finite element was introduced in
[44], there have been a lot of studies about this finite element for fluid dynam-
ics, elasticity, electromagnetics [35], 27, 42, 40, 43| 47, 16l 28]. Most of those
works are focused on the finite element space with Dirichlet and/or Neumann
boundary conditions. Altmann and Carstensen [7] show the dimension of, and
a basis for the finite element space with inhomogeneous Dirichlet boundary
conditions which share similar discrete nature with Neumann boundary case.
On the other hand, the finite element space with periodic boundary condition
has not been investigated more than other boundary conditions. For instance,
it is not known that the dimension of the finite space with periodic boundary

condition as well as its basis functions.

In many cases, the solution of periodic problem is unique upto additive
constant. The discrete formulation of such problem yields a corresponding

matrix system which is singular. In a mathematical theory, we can deal a



singular matrix system using generalized inverses. There are various kinds of
generalized inverses of a matrix. We concentrate on the Drazin inverse which
is one of them. One of the most important properties which the Drazin inverse
of a matrix satisfies is the expressibility as a polynomial in the given matrix.
As well known, the Krylov iterative method for a nonsingular matrix equation
is established on this property. The Krylov scheme can be applied to a singular

matrix system as well under proper consistency conditions [311, [34] 50, 151 [, [9].

In this thesis, we mainly investigate the P;—nonconforming quadrilateral
finite element spaces with periodic boundary condition. In chapter 2, we give
brief explanation for the P,—nonconforming quadrilateral finite element and
the Drazin inverse. We investigate the dimension of the finite spaces with
various boundary conditions, including periodic condition which is our main
concern, in chapter 3. For the analysis, we introduce the concept of mini-
mally essential discrete boundary conditions to understand precise effect of
given boundary condition on the dimension of the corresponding finite space.
In chapter 4, we discuss a basis for the finite space, of which the majority
are node based functions after identification between boundary nodes. And a
complementary basis consisting of a few alternating functions is considered.
After that, we propose several numerical schemes for solving a second-order
elliptic problem with periodic boundary condition. Each scheme may give a
solution of a singular matrix equation corresponding to the weak formulation.
We use an efficient iterative method based on the Krylov space in help of
the Drazin inverse of the corresponding singular matrix. The relationship be-
tween solutions of the schemes will be discussed. We apply this approach to
the Stokes equations with periodic boundary condition in chapter 5. The dis-
crete stability of the formulation is proved based on the result of the Dirichlet

boundary case. Based on the Drazin inverse, we introduce a variant of Uzawa



method for a singular indefinite system with a positive semi-definite block on
diagonal. Finally, we extend all our results for the elliptic problem to 3-D case

in chapter 6.
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Chapter 2

Preliminaries

2.1 P,—nonconforming quadrilateral finite element

The P;-nonconforming quadrilateral finite space in R? is a set of all piece-
wise linear polynomials on a quadrilateral mesh (d = 2) or a hexahedral mesh
(d = 3), which fulfill the integral-continuity across all (d — 1)-dimensional in-
terior faces. The integral-continuity is described precisely as follows: if f is a
(d — 1)-dimensional face which is shared by two adjacent elements K* and
K™, then every function v in the finite space satisfies [; v|s = [; v]—.
Since we consider piecewise linear functions, the above relation is equivalent
to the continuity of function at the midpoint (d = 2) or at the center point
(d = 3, parallelepipedal mesh) of f. Thus degrees of freedom (DoF's) of the
Py—nonconforming quadrilateral finite element are function values at the mid-
points (or center points) of all (d — 1)-dimensional faces.

There are 4 midpoints in a quadrilateral, and 6 center points in a paral-

lelepiped. As mentioned above, the value at each midpoint (or center point)



corresponds to DoF of the finite element. On the other hand, just (d + 1) co-
efficients are enough to determine a unique linear function in a d-dimensional
space. Such difference concludes the existence of a linear relation between DoF's
in local, so called, the dice rule. For a given linear function which is defined in
a quadrilateral in 2-D space, the sum of two function values at the midpoints
of the edge pair on opposite sides is always equal to the sum of those at the
midpoints of the other edge pair. An analog relation in 3-D space holds, as an
ordinary dice.

Due to the dice rule, a set of specially designed functions is used to con-
struct a global basis for the finite space with Dirichlet or Neumann boundary
conditions. Since each of them corresponds a node in the triangulation, we call
them node based functions. The specific construction of node based functions
will be explained in the section for notations.

For more details on the P;—nonconforming quadrilateral finite element, see

4],

2.2 Drazin inverse

The Drazin inverse is a generalized inverse of linear transformations or matri-
ces. Here, we introduce the Drazin inverse in brief.

Let A be a linear transformation on C". Let k be the smallest nonnegative
integer such that Im A% > Tm A O -+ D> Im A¥~! © Im A% = Im AFF! = ...,
It is equivalent to ker A C ker A C --- C ker A¥=! C ker A*¥ = ker AF*!1 = ...
due to the dimension theorem. k is called the index of A, and denoted by
Ind (A). Then the vector space C can be decomposed as the sum of the image

space and the kernel space of A*:

Lemma 2.2.1 ([15]). C" = Im A* 4 ker A*.



It yields that, restricted on Im A¥, the transformation A becomes an in-
vertible linear transformation. Thus we can define a linear transformation A”
on C" as follows: for u = v + w € C" where v € Im A* and w € ker A*,
APy = A|I_I§Ak v. AP is called the Drazin inverse of A. When A is a complex
matrix in C"*", AP is defined as the matrix of the Drazin inverse of induced
linear transform with respect to the standard basis of C™.

One of the most important properties of the Drazin inverse matrix is that

the Drazin inverse matrix of A is expressible as a polynomial in A:

Theorem 2.2.2 ([15]). If A € C"*", then there ezists a polynomial p(x) such
that AP = p(A).

We know that for given nonsingular matrix A the possibility to express its
inverse as a polynomial in A is closely related with Krylov iterative methods.
Similarly, even if A is a singular matrix system, a unique Drazin inverse so-
lution can be found using Krylov iterative method under proper consistency

condition.

Theorem 2.2.3 ([31]). Let m be the degree of the minimal polynomial for A,
and let i be the index of A. If b € Im A, then the linear system Ax =b has a
unique Krylov solution x = APb € Kp,_i(A,b). If b & Im A, then Az = b does

not have a solution in the Krylov space KCr,(A,b).

For details, see [15, [31].

2.3 Notations

Assume Q C R? is a d-dimensional rectangular domain where d = 2 or 3. Let
Tn be a triangulation of € consisting of d-dimensional cubes. h denotes the

mesh parameter. N, N, and NNV, are the number of elements in 7}, along -, y-,



and z-direction, respectively. Let Fy, f,i, .7-"}2, and .F,?’Op P denote the set of all
(d — 1)-dimensional faces, of all interior faces, of all boundary faces, and of all
pairs consisting of two boundary faces on opposite position, respectively. Let
N, denote the set of all nodes in 77,. We introduce several standard Sobolev
spaces and discrete function spaces for the P;—nonconforming quadrilateral

finite element:

C.(Q) = the subset of C*°(R?) of Q-periodic functions,

per

H! .(9) = the closure of C°°.(Q) in H'-norm,

T @)/R = v e Ho@) | [ v=0}
V' ={op € L(Q) | oy € PUK)VK € T, ([only, 1), = 0V € Fi},
Vot ={on € V" | (op, 1) =0 Vf € Fp},
Vi ={vn € V| (on, 1), = (o, 1), V(1. fo) € FpPPY,

‘G}ZT/R:{UhGV;)Zr| /th:O}v

where Py (K) denotes the set of all linear polynomials on K and [-]¢ the jump
across (d — 1)-dimensional face f. Let || - ||o, | - [1, and | - |1 5 denote the stan-
dard L2-norm, H!-(semi-)norm, and mesh-dependent energy norm in €2, re-
spectively.

Here we define the concept of node based functions. For a given node z in
Th, let F(.y denote the set of all (d — 1)-dimensional faces containing 2. Then

we can construct a function ¢, € V" associated with z such that

0.5 if f € Fzy,
Pz(my) =
0 else,

where my is the midpoint of (d — 1)-dimensional face f in Fj. We call ¢,

10



the node based function associated with z. In the case of periodic boundary
condition with rectangular €2, of course, we identify two side boundary nodes
in every opposite periodic position, and four nodes at corners. Using the node
based functions, we introduce a discrete function space and a set of functions

which we mainly use in after:

‘G)%r;'h = {'Uh € ‘/;7]—:37. | Uh S Span{gf)z}zeN}zL)er}’

B ={0.}.c e« the set of all node based functions in vh

per>

where NP denotes the set of all nodes after periodic identifying. Clearly,

due to their definitions, SpanB = Vp%’h c Vvh

per*

But B may not be linearly
independent. It is worth to note that |B| = N,N, in 2-D case, N, N, N, in
3-D case, due to identification between nodes on boundary.

For a given set &, suppose a vector v of size |S| is given. Then we denote
a linear combination of &, whose representation vector with respect to & is
v, by v&. If a scalar-valued (integrable) function f is given, [, f& denotes
a vector, size of |G|, such that each component is the integral of the product
of f and the corresponding element in & over the domain D. 1g denotes a

vector, size of |S|, consisting of 1 for all components.

11
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Chapter 3

Dimension of the Finite Spaces

3.1 Induced relation between boundary DoF values

We firstly consider the case of d = 2. The higher dimensional case will be
covered in Chapter@ Let N¢g denote the number of all elements in 7j,. Let Ny,
N‘Z}, and N‘b/ denote the number of all vertices, of all interior vertices, and of all
boundary vertices, respectively. Similarly Nz, Nfg, and N}’; denote the number
of all edges, of all interior edges, and of all boundary edges, respectively. Our

consideration starts from a partition of all vertices.

Lemma 3.1.1. There exists a partition of all vertices in Ty, into two groups,
Red and Black, such that any two vertices connected by an edge are not con-

tained in the same group.

Proof. Suppose there is no such partition. It means that there are two vertices
and two different paths connecting them such that one path consists of edges

in even number and the other path consists of edges in odd number. Without

13 .
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Figure 3.1. An example of dice rules on elements under the same orientation

loss of generality, we assume that these two paths do not share any edge as
their common segment. Then the union of two paths composes the boundary
of a simply connected domain €’ consisting of quadrilaterals and the boundary
of € consists of edges in odd number. However, a counting formula for the

number of edges in ' is
44 (elements) = 2# (interior edges) + #(boundary edges), (3.1)

and it implies that the number of boundary edges of ' must be even. This

contradiction completes the claim. ]

Remark 3.1.2. Lemma holds for any simply connected domain and
any triangulation with quadrilaterals. If a domain is not simply connected,

then such partition of vertices may not exist.

If is applied to the domain 2, we easily get a simple fact that the
number of boundary edges in Tj, is always even. Each edge contains a midpoint
and each midpoint is associated with DoF. Thus we have DoF values in even
number along boundary edges in 7;. We want to claim a relation between
these boundary DoF values.

Choose an orientation and apply it to all elements in 7. On each element,

14 3



we define the direction of each edge along given orientation. If an edge has a
direction from Red to Black, then we impose the plus sign on the edge. Else
if from Black to Red, the minus sign will be imposed. This rule determines
the sign of edges locally. Indeed, every interior edge gets two local signs cor-
responding two adjacent elements, respectively. It can be observed that two
local signs on each interior edge are always opposite because all elements share
the same orientation. Figure [3.1] shows an example of such construction with
clockwise orientation.

According to the local sign on each edge, we can get a relation which is
another form of the dice rule on each element. In other word, if we add 4 DoF
values at edge midpoints in each element with the signs corresponding to, then

it has to be 0:
op(mE) — o (M) + v (mE) —vop(mE) =0 VYo, e VI VK € T

Thus we can get the-number-of-elements relations by employing the local signs.
Note that the value on each interior edge appears in exactly two equations, but
with opposite sign. Therefore, by summing up all equations, we get a single
relation which only contains DoF values on boundary with alternating sign.

Note that the number of boundary edges in Ty is always even.

Lemma 3.1.3. There exists a way to give alternating sign on boundary edges.
Moreover, an alternating sum of boundary DoF values of v, € V" is always

ZET0.

We want to emphasize that the relation between boundary DoF values
is induced by the dice rule. In other words, the characteristic of the P;—
nonconforming quadrilateral element enforces the relation on boundary, even

in the case of Dirichlet boundary problems. A combination of imposing bound-

15 .



ary DoF values violating the relation on boundary is not allowed.

Conversely, this relation can help to impose discrete boundary condition.
For instance, in order to impose homogeneous Dirichlet condition on the
boundary we do not need to set all boundary DoF values to zero. Zero DoF
values at all boundary midpoints except any one of them are just enough be-
cause the appropriate last DoF value is naturally given as zero by the relation
on the boundary. Such a role of the relation leads to concept of minimally

essential discrete boundary conditions.

3.2 Minimally essential discrete boundary conditions

As mentioned in the previous section, a combination of the dice rules on all
elements induces a relation on boundary DoF values. This relation means a
compatibility condition for boundary DoF values in order to be in the discrete
function space appropriately. And the induced relation between boundary DoF
values can help to impose boundary DoF values associated with given bound-
ary condition. Therefore we do not need to impose given essential boundary
condition to all boundary DoF's independently. A subset of essential boundary
DoF values will be enough. We call a set of discrete boundary conditions min-
imally essential if essential boundary DoF values in the set induce all other
essential boundary DoF values naturally, but any proper subset of the set does
not.

The P;—nonconforming quadrilateral element satisfies the dice rule on each
element and inter-element continuity at each interior edge midpoint. Since the
dice rule on each element is equivalent to a single relation between DoFs
in 2-D case, without considering boundary conditions, the dimension of the
discrete function space is equal to the number of all edges subtracted by the

number of elements. When a boundary condition is considered, each essential

16 .



boundary DoF removes the dimension of the space by 1. Therefore, the number
of subtracted degrees of freedom due to essential boundary conditions is just

equal to the number of minimally essential discrete boundary conditions.
Lemma 3.2.1. The following relation holds.

(dimension of finite space)

= #(edges) — #(elements)

— #(minimally essential discrete boundary conditions).

Proposition 3.2.2. (Neumann and Dirichlet B.C.) It holds that

# (minimally essential discrete boundary conditions)

0 if the case of Neumann B.C.,

N% — 1 if the case of homogeneous Dirichlet B.C.

Consequently,

dim V" = Ng — Ng = Ny — 1, (3.2a)

dim V' = Ng — Ng — (N§ — 1) = N (3.2b)

Now we consider the case of periodic boundary conditions. In contrast with
the case of Dirichlet boundary condition, periodic boundary conditions enforce
two boundary DoF values on two opposite boundary edges to be equal. Thus,
in this case, the concept of minimally essential discrete boundary conditions
means a smallest set of periodic relations between opposite boundary edges

which induce all such periodic relations.

The behavior is quite different, which depends on the parity of N, and N,,.

17
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Figure 3.2. Induced relation between boundary DoF values

Suppose both N, and N, are even. Then we can easily derive the last periodic
relation from the other periodic relations with the help of the relation between
boundary DoF's in Lemma It means that a set of all periodic relations
except any one of them is minimally essential. On the other hand, if either N,
or Ny is odd, then we can not get such a natural induction, and a set of all

periodic relations itself is minimally essential, see Figure [3.2
Proposition 3.2.3. (Periodic B.C.) In case of periodic B.C. on N, x N,

rectangular mesh,

# (minimally essential discrete boundary conditions)

Ny + Ny —1 if both N, and Ny are even,

Ny + Ny otherwise.

Consequently,

NyNy+1 if both N, and N, are even,
dim V" = (3.3)

per
NN, otherwise.

18



Chapter 4

Deeper Look on the Finite Space
with Periodic B.C.

We derive the dimension of Vp’ér which depends on the parity of discretizations

in 7y in Chapter [3] In the first two parts of this chapter, we investigate basis
for V1

. A natural guess to basis for periodic finite space is B, the set of all
per g

node based functions in V. . It is a result of natural inference from the case

per*
of Dirichlet boundary condition. The set of all interior node based functions
becomes a basis for VJ'. However, in general, 8 may not be a basis for Vp}ér.

It may be linearly dependent and even fail to span Vp}ér in some cases.

4.1 Linear dependence of ‘B

We write B = {¢1, ¢2,- -, §n|}. Define a surjective linear map BY . RIBI —
Voo by BE(c) = >, ¢j¢j where ¢ = (c;) € RI®!. Then ker B is the set of all

nontrivial representations of the zero function. Before investigation on global

19



+1 -1

—1 +1

Figure 4.1. A nontrivial representation for the zero function on a square

representations, let us consider local representations in detail.

On a single element, there is a single degree of freedom for the zero rep-
resentation. Figure shows such a representation of coefficients for node
based functions. The value at each vertex represents a coefficient for the cor-
responding node based function in 8. By extension of local coefficients, global
coefficient representations for ker B;? can be obtained. To match coefficients
on adjacent elements, the only way to extend local representation is repetition
of local representation with alternating sign. The extension is possible only if
the number of discretization on each coordinate is even due to the periodicity.
Moreover such extension is unique. On the other hand, if N, is odd, the alter-
nating extension along z-direction implies the trivial representation because

we identify some nodes on the boundary. The case of odd N, is similar.

Proposition 4.1.1. (The dimension of ker BP and Vﬁ;«h) It holds that

1 if both N, and N, are even,
dim ker BP = (4.1)

0 else,

and any |B| — 1 functions in B form a basis for Vp%,ih when both N and N,

are even, whereas B itself is a basis for qu;r’h when either Ny or Ny is odd.
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Consequently,

NN, —1 if both N, and N, are even,
dim VB = |B| — dim ker B ={ =’ ’ !

per

NN, else.

(4.2)

4.2 A Basis for V"

per

For the first case, we suppose both N, and N, are even. Propositions [3.2.3]
and imply that 8 is linearly dependent and Vpgih is a proper subset of
Vh

per- The difference between the dimensions of Vp%,’«h and V! s equal to 2. It

per

means that there exist two complementary basis functions for V})her which do

not belong to V}};lh.

Let 1, denote a piecewise linear function in V" whose DoF values on

per

vertical edges are all 1 with alternating sign in vertical and horizontal direction,
and DoF values on horizontal edges are all 0 (Figure 4.2/ (a)). ¥, is well-defined
since N, is even. Note that piecewise partial derivative of 1, in z-direction

forms a checkerboard pattern, but piecewise partial derivative in y-direction

B,h

is always zero. To show v, & Vper ', define a linear functional J? : Vp}ér - R

as follows. For given v, € V2, J'(v) is the sum of DoF values of v, on all

per>
vertical edges with the alternating sign same to that of .. It is easily shown
that, if N, is even, J;} maps every node based function ¢; to zero. However
J (1) is nonzero, which means 1, can not be constructed by any linear
combination of node based functions. In other words, ¥, ¢ V,;f;h. Similarly,
we can find another piecewise linear function 1, in Vp}ém not belonging to V},%Lh
(Figure (0)).

The second is the case either N, or N, is odd. Propositions and

imply that B is linearly independent and dim Vﬁr’h = dim V" . Therefore

per:
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Figure 4.2. An example of two alternating functions (a) 1, and (b) vy

V}a%%h = VZ,ZT and B, the set of all node based functions, is a basis for V;,’ér.

Theorem 4.2.1. (A complementary basis for Vpher )

1. If both Ny and N, are even, then Vp%ih is a proper subset of Vp’ér. And

{1z, 1y} is a complementary basis for VZ}ET, not belonging to V}E;h.

2. Else if either N, or Ny is odd, then Vﬁ,’qh =Vh

per*

4.3 Stiffness matrix associated with ‘B
Even though it may not be a basis for Vp’ér, B is still a useful set of functions to

understand V" . The dimension result in previous sections claims that Vfg;h,

per:*
the span of B, occupies almost of VZfor' Furthermore, the node based functions
are easy to handle in implementation viewpoint. We study about B in this
section.

Let S? be the |B|-by-|®| stiffness matrix associated with B = {¢;}.

CHIES / Vo Ve dx 1<k <|B]. (4.3)
KeT, VK
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Figure 4.3. The stencil for S%‘

The local stencil for the stiffness matrix associated with 8 is shown in Fig-

ure Obviously, S? is symmetric and positive semi-definite.

Lemma 4.3.1. Let v, = ), v;¢; for v = (v;) € RI®. Then v € kerSP if

and only if vy is a constant function in €.

Proof. By the definition of SP, 3> [, |Vus|* dx = vISPv. If v € ker SP,
KeTy,
then vy, is constant in €2, due to the weak continuity across each edge. Con-

versely if vy is constant, then VTS;?V = 0. Since S? is symmetric positive

semi-definite, it has its square root matrix. Thus we get S?v =0. O
Next claims reveal the relation between ker S% and ker Bh%.
Lemma 4.3.2. ker B? C ker S%.

Proof. Let v = (vj) be in ker BY, i.e., > v;j¢; = 0. The claim is a simple
J
consequence of Lemma [4.3.1 ]

Proposition 4.3.3. ker S% can be decomposed as
ker SP = ker B @ Span 1. (4.4)

Consequently, dim ker S? = dim ker B}? + 1.
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Proof. Note that both ker B,? and Span 1 are subsets of ker S%, and ker B;LB N
Spanl = {0} due to Lemmas and Thus it is enough to show that
any v in ker S? can be expressed as a sum of two vectors which are in ker B,?
and Span 1y, respectively.

Suppose v = (v;) € ker SP. Lemma implies that there exists a con-
stant @ € R such that Zj v;j¢; = a. Note that B is a partition of unity,
i.e., Zj ¢; = 1. We can rewrite as Z(vj — a)¢; = 0, which implies that
v — aly € ker B?. Therefore v can bejdecomposed asv=(v—alyg)+aly

and it completes the proof. ]

Remark 4.3.4. Lemmas[{.5.1 and[{.3.3, and Proposition[{.3.3 are also valid

in 3-D case.

The following is a simple consequence of Propositions and

Proposition 4.3.5. (The dimension of ker SF)

2 if both N, and N, are even,
dim ker 8P = (4.5)

1 else.

4.4 Numerical schemes for elliptic problems with pe-

riodic boundary condition

Consider an elliptic problem with periodic boundary condition

—Au = fin Q, (4.6a)

u is periodic, (4.6b)

/ udx =0, (4.6¢)
Q
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with the compatibility condition [, f = 0. The zero-integral condition (4.6c])
is quite natural since the governing equation is invariant to additive constant

on the variable. The weak formulation is as follows: find u € H;ET(Q) such that

/ Vu-Vv dx = / fodx Wve H;GT(Q), (4.7a)
Q Q
/ u dx = 0. (4.7b)
Q
And the corresponding discrete weak formulation is as follows: find up, € Vgé,,
such that
an(un, vp) = / fop dx Vo, € Vi, (4.8a)
Q
/ up dx =0, (4.8b)
Q

where ap(up,vp) = ZKeTh fK Vuy, - Vuy, dx.

Throughout this section, we assume that both N, and NN, are even. The
other case which considers odd N, and/or N, is easy to handle because foér is
just equal to Vp%;«h. Due to Proposition we can find B°, a proper subset of
B, which is a basis for Vo', It clearly holds that |8°| = dim Vyer" = |B| — 1.
Without loss of generality, we take B° = {¢y, - - ; @|—1}- We want to recall
Y, and 1)y, the two complementary basis functions for VZQT which are not
belonging to Vﬁ;«h, in Section Let 2 denote the set consisting of these two
functions, {15, 1, }. Consider two extended sets € := BUL, and ¢ = B U
Remark that ¢ is a basis for V" . The characteristics of B°, B, @, and € are

per-
summarized in Table .11

For a vector v of size |&|, let v|y and v|y denote vectors consisting of the

first |B| components, and of the last |2(| components, respectively. Similarly,
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S | |S| | Span S | dim SpanS

B | N,N, — 1
B NiNz Voei' | NolNy =1
& [ NN, +1
¢ NZNz+2 Vi, | NoN,+1

Table 4.1. Summary of characteristics of B8°, B, €, ¢ when both N, N, are
even

notations v|g, and v|y are used for a vector v of size |€’|. Several properties

of functions in *B and 2A are observed.

Lemma 4.4.1. Let B and A be as above. Then the followings hold.
1. ap(p, ) =0 Vo e BV € 2.
2. an(Yu, ) =0 Vb, ¢, € A such that p # v.
3 Job=0 Yyel

4. There exists an h-independent constant C' such that ||¢]o < C and
[l <C/h Vip e L

Next, we introduce a stiffness matrix associated with another set of func-
tions, and its variant. Let S?b be the |B°|-by-|B”| stiffness matrix associated

with 8°,
(ST )= an(dn, 65) 1<,k < |8, (4.9)

and g?b be the matrix same as S?b, but the last row is modified in order to

impose the zero-integral condition. Because all the integrals fQ ¢; are same
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for all ¢; in ‘B, every entry in the last row is replaced by 1.

) ; Dol
(S%b)jk - ah(qbknd)j) J 7& | |7 (410)

1 j=|%B.

Note that S?b is nonsingular whereas both S? and S?b are singular with rank
deficiency 2 and 1, respectively. For the complementary part, let S,%l be the

|2(|-by-|2(| stiffness matrix associated with A,
(Sh)jk = an(r, ) 1<,k < |2, (4.11)

S%l is a nonsingular diagonal matrix due to Lemma In followings we
introduce 4 numerical approaches to solve (|4.8]).

4.4.1 Option 1: S = & for a nonsingular nonsymmetric system

Since € is a basis for V" | & is a natural choice as a set of trial and test

per>
functions to assemble a matrix equation corresponding to (4.8]). The numerical

solution uy, € VZ;T is uniquely expressed, associated with ¢ as

up = € (4.12)
where @ is the solution of the system of equations associated with &

. S o f
L’%b W= | " T (4.13a)
0o S £
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with

5 ;| ; ;Bb
(f); = Jogi 37 ¥ , fy= / f2L. (4.13b)
O7 ] — |%b’ Q

Due to Lemma [4.4.1) we get a block-diagonal system as above. The system
matrix is nonsingular, but nonsymmetric due to modification of the last row of
S®" which is derived from the zero-integral condition. We can use any known
numerical scheme for general matrix systems, for instance GMRES, to solve

(T.13).

4.4.2 Option 2: S = ¢ for a symmetric positive semi-definite

system with rank deficiency 1

In the previous approach, the zero-integral condition is imposed in a system
of equations directly. In a consequence, the associated system matrix becomes
nonsymmetric due to modification of just a single row. If we use a numerical
scheme which conserves symmetry of the system, then we can enjoy advantages

of the symmetry.

An alternative approach is a way to impose the zero-integral condition
indirectly in order to conserve symmetry of the assembled system matrix. We
make our solution satisfying the zero-integral condition in post-processing. On
the other hand, nonsingularity of the matrix can not be maintained any longer
in this approach. We have to find out a solution of a singular matrix problem.

Fortunately the system matrix is at least positive semi-definite.

Consider a system of equations for (4.8) associated with & without any
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modification,

s¥ 0
L= |" W= / Fe. (4.14)
0o S} 0
Note that the above system matrix is singular, and symmetric positive semi-

definite. We find the solution u” of the system such that
W] - 1ggo = 0 (4.15)

since fQ ve& = 0 if and only if V|gs - 1y = 0, and the numerical solution

u?l € VDZT of this scheme is obtained by
uw = u’e. (4.16)

As mentioned in Section [2.2] we can find a unique Drazin inverse solution
of a singular system using Krylov iterative methods under proper condition.
When a symmetric positive semi-definite system Az = b is given, as our formu-
lation, the Conjugate Gradient method (CG) gives a unique Krylov solution
if consistency condition b € Im A holds. The general solution is obviously

obtained upto its kernel space.

The kernel space of the system matrix in is closely related with the
kernel space of S?b. A simple analog of Section implies that the dimension
of ker S‘fb is 1, and v € ker S?b if and only if v¥8° is a constant function in
Q. Note that B is not a partition of unity, whereas 9B is. Let Wy denote a
unique vector in RI%’| such that W%b%b = 1in Q. Then the kernel space of the
system matrix in is simply represented by Span wg, where wg, € RI€|
is the trivial extension of wg, as [ng 0} T. Therefore in post-processing we

add a multiple of wg, to the Krylov solution to satisfy (4.15]).
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We have the numerical solution u% as follows.
1. Take a vector u® € RI€! for an initial guess.

2. Solve the singular symmetric positive semi-definite system (4.15]) by the

CG and get the Krylov solution u’ = u™.

3. Add a multiple of wg to u’ in order to enforce the zero-integral condi-

tion (4.15]) as

!/
u b+ Loas
'l.].b = u/ — 7|‘B B W@b.
W%b’l%b

4. The numerical solution is obtained as u?l = ue.

Let u” and @ be the solutions as in Sections and respectively.
Note that two linear systems (£.13)) and (4.14) coincide except |B°|-th row.

Even on |8’|-th row,

/
~ob u b+ Loap
(LE ub) = 1%b A u = MW@;
‘%"‘ Wb - 1%b Bb

/
u|gms - Ly
g (] = W e
B B 1 B
W;Bb‘%b

=0.

f%b
£
gular. Therefore two schemes give the same numerical solution.

P S ~ - - s .
Thus E,f w = = L’,@l @°, and it implies u” = @ because E,@l is nonsin-

30 -
ME gk



4.4.3 Option 3: § = € for a symmetric positive semi-definite

system with rank deficiency 2

Although symmetry and positive semi-definiteness of the system matrix are
key factors for an efficient numerical scheme, we can not enjoy full benefits in
the previous scheme. We need the extra post-processing to impose the zero-
integral condition. The defect in the previous approach comes from the fact
that the Riesz representation vector for the integral functional does not belong
to the kernel space of the system matrix. As shown above, the kernel space of
the system matrix is closely related with the coefficient vector for the unity
function. If these two vectors coincide, we can get our solution without any
post-processing. The imbalance of B° for the linear independence is also a

disadvantage to numerical implementation.

In this approach, we find the numerical solution uEl € V;,’;r such that
uEl —u'e (4.17)

where uf is a solution of a system of equations for (4.8)) associated with full &,

S? 0
Louf = | 7" uh_/fe (4.18)
0o s¥ Q
with
g -1y =0, (4.19)

since fQ veE = 0 if and only if v|p - 1s = 0. The numerical solution u? is
unique because solution of the matrix system is unique upto additive nontrivial

representation for the zero function in 8. We want to emphasize that, unlike
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the previous scheme, 19 belongs to the kernel space of S% as shown in .
It implies that, without any extra post-processing, we can find the solution of
the linear system which satisfies the zero-integral condition if an initial
guess is chosen to satisfy the same condition.

We have the numerical solution uEL as follows.

1. Take an initial vector u(® e RI®l which satisfies u(0)|x3 -1y = 0.

2. Solve the singular symmetric positive semi-definite system (4.18]) by the
CG and get the Krylov solution u? = u(™.

3. The numerical solution is obtained as uEL =u’¢.

Let u? and u” be the solutions as in Sections and |4 respectively.
Clearly uf|y = u’|y. Therefore it is enough to show uh|%% = ub]%b B to prove
the equality of two solutions uEL and u';l Note that u% has been already proven
to be equal to up.

W o5

Let be a trivial extension of ub|%b into a vector in RI®! by padding
0

a single zero. Note that Zlm (SP)jr = 0 for all 1 < k < |B]. Due to the
definition of u’, we have
b
S? ub|%b _ S% ub|%"
0 [P 1m0 0 g

Jo I

— 2 [SE 1y @l
J#|B|

Jo 1%’

B
Z' l[ ];,1\@\“ |og

Jo /B Jo /B
- |%| B " :/f%’
fQ fé; fQ ¢|%| —1) @
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since B is a partition of unity and fQ f = 0. On the other hand, the def-

ub‘%b

inition of u’ implies S%uh]% = Jo fB. Thus uly — is in the ker-

nel space of S%, which is decomposed as Proposition m Due to the zero-

ub‘%b

integral condition in each scheme, | u®|p — g =ufy -1y —ub|%b .

ub|

1y = 0. Therefore uu|% — must belong to ker B}?, and consequently

ub|%b

u|p — B = uf|yB — |y B’ is equal to 0. This concludes our

claim.

4.4.4 Option 4: § = *B for a symmetric positive semi-definite

system with rank deficiency 2

Consider a system of equations associated only with B for (4.8) with V}%ﬁh

rather than V"

per?
LPa = s%ﬁh:/f%. (4.20)
Q

Starting from an initial vector u(® € RI®! which satisfies u(® - 193 = 0, let @

be the Krylov solution of the linear system. The numerical solution ﬂi € foér

is obtained by

@ = B, (4.21)

Let u? and @? be the solutions as in Sections and respectively.
Note that u’ly = @% and ufly = diag (ah(wx,wx),ah(iﬁvay))_l fQ A<
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Ch? fQ f2 due to Lemma A simple inequality

1/2 1/2
2 2
Aﬁwsc(ﬁuw> (Aww) <Clflo Ve

implies that each component of |y is bounded by O(h?). It estimates the dif-
ference between uEL and EEL in L?- and H'!-(semi-)norm. The following theorem

states the relation between all numerical solutions discussed above.

Theorem 4.4.2 (Relation between numerical solutions). Let uy, u?l, uEL, QEL be

the numerical solutions of (4.6) as (4.12)), (4.16)), (4.17)), (4.21)), respectively.

Then up = u% = uEL, and

[ud — @ llo < CR2|| Fllo, |uf —u|1p < Chl|f]lo-

4.5 Numerical results

For the scheme option 1 in numerical tests, we use the restarted GMRES
scheme in MGMRES library provided by Ju and Burkardt [33]. We emphasize
that we replace one of essentially linearly dependent rows of S}?b by the zero-
integral condition in order to make g?b nonsingular.

The first example is the problem on the domain 2 = (0,1)? with the

exact solution u(x,y) = s(z)s(y) where

3
sty =Y M sin (2(2k — 1)), (4.22)

k=1

a truncated Fourier series for the square wave. For each option, the error in
energy norm and L2-norm are shown in Table We can observe that all
schemes give a very similar numerical solution.

The second example is the same problem with the exact solution u(z,y) =

34 M2 H el
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s(z)s(y) where

s(t) = exp <_1_(21t_1)2> 2(1—1)+C, (4.23)
with a constant C satisfying f[o,l] s = 0. Table shows numerical results
in each option, and all options give almost the same result, as the previous
example. The iteration number and elapsed time in each option in case of
h = 1/256 are shown in Table We can observe decrease of the iteration
number and elapsed time in option 3 compared to option 2. Decrease from
option 3 to option 4 is quite natural because we only use the node based

functions as trial and test functions in option 4.
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Opt 1 Opt 2
h |[u—up|1,, order [Jlu—wupllo order | |u—upli,p, order |lu—wupllo order
1/8 1.123E+01 - 4.230E-01 - 1.123E+01 - 4.230E-01 -
1/16 5.466E-00 1.039 8.607E-02  2.297 5.466E-00 1.039 8.607E-02  2.297
1/32 2.832E-00 0.949 2.216E-02  1.957 2.832E-00 0.949 2.216E-02  1.957
1/64 1.429E-00 0.987  5.585E-03  1.989 1.429E-00 0.987  5.585E-03  1.989
1/128 7.160E-01 0.997 1.399E-03  1.997 7.160E-01 0.997 1.399E-03  1.997
1/256 3.582E-01 0.999 3.499E-04  1.999 3.582E-01 0.999 3.499E-04 1.999
Opt 3 Opt 4
h [u—wupli,,  order Jlu—wupllo order | Ju—wupli,n, order [lu—wupflo order
1/8 1.123E+01 - 4.230E-01 - 1.123E+01 - 4.230E-01 -
1/16 5.466E-00 1.039 8.607E-02  2.297 5.466E-00 1.039 8.607E-02  2.297
1/32 2.832E-00 0.949 2.216E-02  1.957 2.832E-00 0.949 2.216E-02  1.957
1/64 1.429E-00 0.987  5.585E-03  1.989 1.429E-00 0.987 5.585E-03  1.989
1/128 7.160E-01 0.997 1.399E-03  1.997 7.160E-01 0.997 1.399E-03  1.997
1/256 3.582E-01 0.999 3.499E-04 1.999 3.582E-01 0.999 3.499E-04 1.999

Table 4.2. Numerical results for the exact solution with s(¢) as in (4.22)

Opt 1 Opt 2
h |u—wup|i,, order [Jlu—wupllo order | |u—wupli,p, order |lu—wpllo order
1/8 1.225E-03 - 5.649E-05 - 1.225E-03 - 5.649E-05 -
1/16 6.024E-04 1.024 1.033E-05 2.450 6.024E-04 1.024 1.033E-05 2.450
1/32 3.045E-04 0.984 1.949E-06  2.406 3.045E-04  0.984 1.949E-06  2.406
1/64 1.527E-04 0.996 4.682E-07  2.058 1.527E-04  0.996  4.682E-07  2.058
1/128 7.642E-05 0.999 1.171E-07  1.999 7.642E-05 0.999 1.171E-07  1.999
1/256 3.822E-05 1.000  2.929E-08  2.000 3.822E-05 1.000  2.929E-08  2.000
Opt 3 Opt 4
h |u—wup|i,, order [Jlu—wupllo order | |u—wupli,p, order |lu—wupllo order
1/8 1.225E-03 - 5.649E-05 - 1.225E-03 - 5.649E-05 -
1/16 6.024E-04 1.024 1.033E-05 2.450 6.024E-04 1.024 1.033E-05 2.450
1/32 3.045E-04  0.984 1.949E-06  2.406 3.045E-04  0.984 1.949E-06  2.406
1/64 1.527E-04 0.996 4.682E-07  2.058 1.527E-04 0.996 4.682E-07  2.058
1/128 7.642E-05 0.999 1.171E-07 1.999 7.642E-05 0.999 1.171E-07  1.999
1/256 3.822E-05 1.000  2.929E-08  2.000 3.822E-05 1.000  2.929E-08  2.000

Table 4.3. Numerical results for the exact solution with s(¢) as in (4.23)

Table 4.4. Iteration number and elapsed time in each option when h = 1/256

solver iter  time (sec.)
Opt 1 | GMRES(20) 4944 61.52
Opt 2 CG 817 3.30
Opt 3 CcG 437 1.80
Opt 4 ca 318 1.33
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Chapter 5

Application to Stokes Equations

Suppose Q = (0,1)2 ¢ R2. Consider the incompressible Stokes equations with

periodic boundary condition:

—Au+Vp=f£f in Q, (5.1a)

V:u=0 inQ, (5.1b)

u is periodic and / udx =0, (5.1c)
Q

p is periodic and / pdx =0 (5.1d)
Q

with the compatibility condition fQ f = 0. The corresponding weak formula-

tion is as follows: find (u,p) € [HL,,(2)/R]? x LE(Q) such that

per

/Vu:Vv dx—/pV~vdx:/f-vdx VVE[H;ST(Q)/]R]z, (5.2a)
Q Q Q

/qV~udX:O Vg € L3(Q) (5.2b)
Q
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where L3() := {v € L*(Q) | [,v = 0}. Then we can easily show that the

inf-sup stability of [H1,,.(Q)/R]? x LZ(Q2): there exists 8 > 0 such that

per

AV
inf wp  JodVY
g€L3(Q) verm,, (/&2 VI llallo

per

> 3, (5.3)

since Hj(Q) C Hp.,.() and [Hg(2)]? x L§(9) is inf-sup stable [29]. Thus there

exists a unique solution (u,p) € [H,,,.(Q)/R]* x L§(Q) of (5.2).

5.1 Discrete inf-sup stability

Assume that 7}, consists of uniform squares with same even number N, and

N,. We need to define several discrete function spaces for velocity and pressure:

1
Vbh/R—{thVh\vh—wh—m’/wh, wheVOh},
Q
= {pn € L*(Q) | pnlx € Po(K) VK € Tp},
R ={meP"| [ po=o,

= {pn € P} | Z/phv vy, dx = 0 Vv, € [VI2,
KET,

PC}} = the L?(Q)-orthogonal complement of P in PgL .

We denote the standard basis of P" by B. Define two bilinear forms ay,(-, -) :
(VA2 x [VF]2 — R, and by (-, -) : [V?]2 x P" — R corresponding to the Laplace
operator and the divergence operator, respectively, as follows: for all v, wj, €

[Vh]2 and ¢, € P",

ah(Vh,Wh)i / VVh VWh dX bh Vh,qh
KeTy

Z/qhv vy, dx.

KeTy
Consider the following discrete weak formulation: find (up,pp) € [V, /RI*x P§!
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such that

an(up, vi) + bp(Ve, pn) = / f-vy,dx Vv,e€ [V;)ZT/R]Q, (5.4a)
Q

bh(uh, qh) =0 Vg€ P(? (5.4b)

Our goal of this section is to prove the following theorem for discrete inf-sup

stability.

Theorem 5.1.1. [V, /R]? x P} is uniformly discrete inf-sup stable, i.e., there

exists a positive constant 8 which is independent of h such that

b
By := inf sup M >p>0.
wn€P vewi, ez [Vilinllanllo

We can prove the above theorem in help of results from the discrete for-
mulation of the Stokes equations with homogeneous Dirichlet boundary con-
dition. For the Stokes equations with homogeneous Dirichlet boundary condi-
tion, there exists the lowest order uniformly discrete inf-sup stable space pair

as follows.

Theorem 5.1.2. (Theorem 2.2, [35]) [VI? x PC}} satisfies the uniform discrete

inf-sup condition.
We quote the Subspace Theorem of Qin, which is useful in the proof.

Theorem 5.1.3. ([{3]) Given X" x M", let X1 and Xs be two subspaces
of X" and M, and My be two subspaces of M". Assume the following three

conditions hold:

1. M" = My + M>,
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2. there exist 3; > 0, j = 1,2, which are independent of h such that

b . .
sup n(vj, ;)

> Billgillo  Vq; € Mj,
VjEXj |v.7

)

3. there exist a; > 0, j = 1,2, such that
bn (v, a6)| < alvilinllarllo Vv € X, VYa, € My, k # j,
with

aran < 1 52.

Then, X" x M" satisfies the inf-sup condition with the inf-sup constant de-

pending only on ay, ag, B, 2.

Proof of Theorem[5.1.1]. Let us consider two subspaces of [VZ@T /R]?, namely,
[V{#/R]? and [Span®2l]2. We use Theorem where X; = [VJ!/R]?, Xp =
[Span2A]? and M; = Pchf, My = Pl Since Pchf is a subspace of P} which is
complementary to Pf, the first condition holds.

For given vy, in [VJ!]?, let ¥, denote v, — ﬁ Jo Vi, a trivial correspondent
of v, belonging to [V /R]2. Since by, (¥4, qn) = bn(Vh, qn) Yagn € P" and [¥3]1 =
|Vi|1, simple modification of Theorem implies that [V /R]? x PC}} is also
uniformly discrete inf-sup stable.

On the other hand, we know that the dimension of Pf is just equal to
1, and it is generated by a global checkerboard pattern cp, where ch]ij =
(—1)7t* see [42]. Take wj, = (¢, 0) in [Span®2]2. The definition of v, yields
V- wp = 0, /0x = (=1)7*2/h on Qji.. Thus |by(wh,cp)| = 20,k fij 2h =
2/h. Furthermore, ||cs||3 = 2o fij 1=1,and |wp|? = a5 fij |Vip|? =
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Zij fij(awx/ax)Z = Zij 4 = 4/h?%. Therefore, for ¢y,

bn(Vi,cn) _ [bn(Wa,cn)|
sup > =1.
vhelspan202 [Val1 llenllo — [wali [lenllo

Since P! is generated by ¢y, it implies the uniform discrete inf-sup stability

of [Span (] x P

For the last condition, recall that by, (v}, qs) = 0 for all vi, € [VJ']? and ¢, €
P! Note that every function in [VJ'/R]? is represented as v}, = v}, — ﬁ Java
for some vy, in [V§*]2. Thus by, (Vp, qn) = 0 for all ¥, € [VJ/R]? and ¢, € P It
implies a; = 0, so the last condition is satisfied. Therefore we conclude that

[V;}BT /R]? x Pl satisfies the uniform discrete inf-sup condition. O

Theorem leads the following error estimates [29] [12].

Theorem 5.1.4. There exists a unique solution (up,py) € [V, /R]? x P of

, and

lu—up|in + |lp — prllo < Ch(lul2 + [pl1)-

5.2 Numerical scheme: Uzawa variant with a semi-
definite block

Consider the set of trial and test functions consisting of & for each component
of the velocity variable as the option 3 in Section and the standard basis
B of PP for the pressure variable. It leads to the following system of equations

in form of

A BT| |u f
B 0] |p g
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where A is a symmetric positive semi-definite matrix with dimker A = 4. If
the incompressible Stokes equations are considered, g in the right hand side
vector becomes 0. We can easily show that the linear system ([5.5|) satisfies the

following assumptions.

Assumption 5.1. Let assume the followings.
1. A is symmelric positive semi-definite.
2. ker A C ker B.
3. felmA and g € Im B.

Recall the relation between the Drazin inverse and a Krylov solution of the
equation Ax = b. Let k be the index of A which is the smallest nonnegative
integer such that C* = Im A*¥ + ker A*. If b € Im A*, then the equation has
a unique Krylov solution as 2 = APb, i.e., APb is genuinely a solution of
Az = b and is belonging to the Krylov space K,,(A,b). When A is symmetric
or diagonalizable, the index of A is equal to 1. This leads the consistency
condition b € Im A for the existence of the Krylov solution.

Return to the our problem. Let AP be the Drazin inverse of A. The equa-
tion in the first block in is simplified as

Au= f — BTp. (5.6)

For any value p, the right hand side belongs to the image space of A because
Im BT c Im AT =Im A from Assumption The matrix equation with
respect to the variable u is symmetric and consistent. Thus, starting from an
initial guess in Im A, the equation has a unique Krylov solution associated with

p, namely uX(p) = AP (f — BTp) € Im A. We can write the general solution of
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(5.6) associated with p as

u(p) = u(p) + u°, u° € ker A. (5.7)

We put the above expression into the equation in the second block in (5.5).
Due to Assumption [5.1], it gives an equation which is containing variable p

without u°,
BAPBTp = BAPf —yq. (5.8)

We can easily observe that BAP BT is also symmetric positive semi-definite.
Furthermore, we can show the consistency of . Suppose x € ker BAP BT,
Then 7 BAP BTz = 0 and thus we get BTz € (Im A)* due to the characteris-
tic of AP. But Assumption implies (Im A)* = ker A C ker B = (Im BT)*.
Therefore B2 = 0 and we get ker BAP BT C ker B”. Since the converse is
trivial, we conclude that ker BAP BT = ker BT. As a consequence, we also get
Im BAP BT =1Im B, and is consistent. Therefore starting from an initial
guess in Im B, there exists a unique Krylov solution p* = (BAP BT)P(BAP f—
g) € Im B. The general solution of is

p=pF+p° p° cker BT (5.9)

Let uX denote uX(pX), the Krylov solution of (5.6)) associated with p/*.

Note that the approach discussed above is a Uzawa variant for a singular
block system. The numerical scheme to get (uf,pf) is described in Algo-

rithm [

Now we discuss about properties of the solution obtained from the scheme.

Recall that (up, pp) € [V, /R]? x P} is the solution of (5.4). Define the nu-
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Algorithm 1 Uzawa method with conjugate directions and the Drazin inverse

1: po < initial guess in Im B

2: up + AP(f — BTpy) > Use CG with an initial guess in Im A
3:q1 < g— Bu

4: di + —q1

5: while k =1,2,--- do

6: Sk BTdk

7: hi + APy > Use CG with an initial guess in Im A
& g+ (afaw)/(sq )

9: P Pr—1 + apdg

10: Uk41 < Uk — akhk

11: g1 ¢ g — Bugp

122 By (gl o)/ (@ ax)

130 dpy1 < —Qre1 + Brdk

14: end while

merical solution (ui,pi) corresponding to (u’,pf) by uEl = (ufxé, u @)

*’y
and pEZ = pP where v = (u’fx,u’fy) Clearly, (ui,pi) € [%@T]Q x P".

Lemma 5.2.1. (u, p’) truly solves (5.5).

Proof. Note that the symmetry of A implies Ind (A) = 1, thus AAPb = b for
all b € Im A [15]. Therefore we have

Au + BTl = AAP(f — BTpE) + BTp!
= AAPf 4+ (I - AAP)BTp = §,
Bul = BAP(f — B"p)
= BAP f — BAPBTpX

= BAPf - (BAPf—g) =g¢.

O]

The following lemma shows that (5.7]) and ([5.9) truly represent the general
solution of ([5.5)).
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BT

Lemma 5.2.2. (v,q) is in the kernel space of if and only if v €

ker A, q € ker BT

Proof. Suppose v € ker A and ¢ € ker BT. Since ker A C ker B from Assump-
tion we immediately get Av + BTq =0 and Bv = 0.

Conversely, suppose (v, ¢) belongs to the kernel space of the block matrix.
It leads that v is a solution of the equation Az = —B7¢q, which is consistent.
Thus v = —APBT ¢ + v° for some v° € ker A. If we plug it into the second
equation Bv = 0, we get BAPBTq = 0. Therefore g belongs to ker BAP BT
which is equal to ker BT, as mentioned in lines above . It implies that v
belongs to ker A. O

Lemma 5.2.3. (uEL,pEL) € [V, /R]? x P}

Proof. 1t is enough to show that [, uEZ =0, and [, pEZ = 0. Note that these

are equivalent to 1y - ufx‘% =0,13-u =0, and 1y .piC = 0.

Sl
*,9 |8

Since 1 € ker SP and u’f,m’%

immediately. Since by (vp,1) = 0 for all v € [VJQT

€ Im S?, the first two conditions are proved
]2, we have 1y € ker BT,
Therefore 1y - P = 0 because pX belongs to Im B, the space which is orthog-
onal to ker BT . O

The system of equations (5.5 is consistent with the system of equations
derived from (5.4)). Lemmas |5.2.1| and |5.2.3| imply (ui,pi) is a solution of
(5.4) in [V;fér /R]? x P}. Due to the uniqueness in Theorem we have the

equivalence between two solution pairs.

Theorem 5.2.4. Let (ui,pi) be the corresponding function to the Krylov so-
lution (u, p’) of (5.5) which is derived from the incompressible Stokes equa-
tions with periodic boundary condition (5.1)). Then (uEZ,pEL) is the solution of

6, e, = w, and g}, = i
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Next, we describe the discrete inf-sup constant of [Vp}ér /R]? x PP in Theo-
rem in terms of A and B in (5.5)). This is an analog of the work in [41]

to a singular system.

Lemma 5.2.5. Suppose DTz = 0. Then inf ..., sup,r,—1 Yy’ Dw is the
yTy=1
square root of the second smallest eigenvalue of DD

Proof. Without loss of generality, we assume that z is a unit vector. For fixed
y, it is easily shown that sup,r,_;y"Dw = (y"DDTy)/2. We can find a

unitary matrix U, and a nonnegative diagonal matrix ¥ such that

DT =UxU”
0 2T
d2 Ug
= [z ug - un]
i dn | _ug_
Since z -y = 0 implies y € Span{usg,--- ,uy}, the claim is derived in conse-
quence. O

Theorem 5.2.6. Let M € R¥XFl pe the mass matriz associated with the
standard basis B for P", with the Cholesky decomposition M = GGT. Then
the discrete inf-sup constant of [Vp}éT/R]2 x Pl is the square root of the second

smallest eigenvalue of G'BAPBTG—T.

X
Proof. Consider a nontrivial function v, = O € [V /R]?. There exists
Un
,UCL’
a vector v = € RZ% such that vf = v*€ and v] = VY€ Let v* =

ny
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v . The zero-integral conditions [ vf = [,vi = 0
va vy

imply 1g - v = 1o - v% = 0. Furthermore, without loss of generality, we can
assume that vy and U% are orthogonal to the kernel space of Bh% because the
representation is unique upto ker Bh% (Section . Due to Proposition m
we conclude that v is orthogonal to the kernel space of A, or equivalently
v € Im A. Conversely, any v € Im A corresponds to vy, in [VZ;T /R]2. Similarly,
for every qp, € Pél, there exists the corresponding ¢ € RI®! such that 1p-q =0,
and vice versa. Thus,

inf sup br(Vh, an). = inf sup ¢ B (5.10)

anePy vpevi, /r2 [VILnllanllo  ger™®I egoiel (T Av)/2(qTMq)l/?
13-¢=0 ycIm A

Let XAXT be the eigendecomposition of A, where X € R2I€*2(€l ig 4 unitary
matrix, and A € R2I¢*2/€ ig a diagonal matrix with nonnegative entries. Since

dim ker A = 4, we can rewrite as

1A xr
}m ™= XA X

o [XE

where X, € R2E*CE-1) and A, € REIE-HD*CIE-1) with positive diagonals.

Note that Im A is equal to the column space of X,,,. Therefore,

(15.10)) inf QTBU
. = mn su
geRI®I, veR}‘)e', (UTXmAmXZ;U)l/Q(qTGGTQ)l/Z

1p-¢=0 ycIm A
" yTG_lBvam
= in sup
yeRIFI Vi ER2IEI4, (U;;LX%XmAmX%XmUm)l/Q (yTy)1/2
y=GTq, v=XmUm
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y'G 'BX,,um

= inf sup
yme’ vy ER2IEI-4 (U,%;Amvm)lﬂ(yTy)lﬂ
(G_ lqg)~y=0
_ —1/2
= inf sup yTG 1B)(mAm/ W,

T 1/2(, T N\1/2 °
yeR®l - cR2lel-4, (whwm) 2 (yTy)Y/
(GT1g)y=0, _A1/2,

m

Simple calculation shows 1y is an eigenvector of M, and also that of M -1

Thus it holds that

(GT'BX AT (G ) = (AT XEBTGTG 1y
_ (A'rinl/Q)TXg;BTMillm
1

= X(A;LI/Q)TX;LBTlm =0.

In the last line, we use Bqug = 0, since by(vp,1) = — ZKeTh fK V- v, dx =
— Y ket Jox v - Vi ds = 0 for all v, € [V, /R]?. Due to Lemma the
discrete inf-sup constant in (5.10) is equal to the square root of the second

smallest eigenvalue of

(G'BXu A Y (G BX ALY T = GEBX A XEBTGT

=G 'BAPBTGT.

We refer to [I5] for the matrix representation of the Drazin inverse used in the

last line. ]
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5.3 Numerical results

On Q = (0,1)2, consider the periodic incompressible Stokes equations (5.1

with the exact solution pair for the velocity and pressure

u(z,y) =V x (sin(27rz)s(y)),

p(z,y) = sin(27x) cos(2my)

where s(t) = exp (—%) (1 — (2t — 1)?)+C with a constant C satisfying
f[071} s = 0. The results on Table show optimal convergence order in various
norms.

We compute the discrete inf-sup constant of [VZ@T /R]? x P} as in Theo-
rem [5.2.6 And, for a comparison, we also consider the trial and test func-
tions based on the option 4 in Section just B instead of €& for each
component of the velocity. This combination of functions corresponds to the
space pair [Vﬁ,ﬂh /R]%? x Pl The numerically computed 4 smallest eigenvalues
M < A2 < A3 < M\ of GT'BAPBTG-T | and the discrete inf-sup constant
By, = /A2 for each option are shown in Table We can observe that the
discrete inf-sup constant based on the option 3 is bounded below by a positive
number which does not depend on the mesh size, as expected. The results
confirm our theoretical claims for the inf-sup stability in Theorem On
the other hand, the second smallest numerically computed eigenvalue in the
scheme based on the option 4 is comparable to the machine epsilon, which
means nearly zero. Thus we can conclude that the discrete inf-sup constant
of [Vp%,lh /R]? x Pl is almost equal to zero. It is a consequence of the simple
fact that by (v, cp) = 0 for all v, € [%%;h]2, where ¢, is a piecewise constant

function in global checkerboard pattern.
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Opt 3

velocity pressure

h [u—upli,, order |lu—upllo order | |[p—pnrl|lo order
1/8 3.018E-00 - 9.105E-02 - 5.686E-01 -
1/16 1.449E-00 1.058 1.655E-02 2.460 | 9.541E-02 2.575
1/32 7.462E-01  0.957 4.869E-03 1.765 | 4.550E-02 1.068
1/64 3.733E-01  0.999 1.169E-03 2.058 | 2.057E-02 1.145
1/128 | 1.868E-01  0.999 2.937E-04 1.993 | 1.009E-02 1.028
1/256 | 9.341E-02  1.000 7.347E-05 1.999 | 5.019E-03  1.007

Table 5.1. Numerical results based on the option 3 for the Stokes equations

ho ] A1 A2 A3 Aa | Bn

Opt 3

1/8 9.437E-16 1.000 1.000 1.000 | 1.000

1/16 | -2.776E-16 1.000 1.000 1.000 | 1.000

1/32 | -2.331E-15 1.000 1.000 1.000 | 1.000

1/64 | -1.144E-14 1.000 1.000 1.000 | 1.000
Opt 4

1/8 -4.594E-16  1.527E-17  1.000 1.000 | (= 0)

1/16 | -6.708E-16 -3.284E-16 1.000 1.000 | (= 0)

1/32 | -1.703E-15 -1.516E-15 1.000 1.000 | (= 0)

1/64 | -2.223E-16  2.443E-15 1.000 1.000 | (= 0)

Table 5.2. Numerically computed eigenvalues and discrete inf-sup constant
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Chapter 6

3-D Case

In this chapter, we consider the case of d = 3. Following similar discussions as

in 2-D case, we will get 3-D results.

6.1 Dimension of finite spaces in 3-D

The following lemma is 3-D analog of Lemma [3.2.1

Lemma 6.1.1. For Q C R3,

(dimension of finite space)

= #(faces) — 2#(cells)

— #(minimally essential discrete boundary conditions).

Proof. We can rewrite the dice rule in a single 3-D cubic cell K € T, into two

o1



separated relations:

op(mf) = vp(my ) + vp(mg ) — vp(mg ) =0,

op(mi*) — vn(mg ) + va(mE) — vp(mf) =0

for all v, € V" where mJK is the center point of a face fJK of K, and the faces
are arranged to satisfy that the sum of indices in opposite faces is equal to
7, as an ordinary dice. Since each relation reduces the number of degrees of
freedom in the finite space by 1, same as 2-D case, the claim is derived in

consequence. 0

Proposition 6.1.2. (Neumann and Dirichlet B.C. in 3-D)

#(minimally essential discrete boundary conditions)

0 in the case of Neumann B.C.,
= Y 2(NyNy + NyN. + N.N,)
— (N + Ny + N,) +1

in the case of homo. Dirichlet B.C.

Consequently,

dim V" = N,N,N, + NN, + N,N, + N.N,, (6.1a)

dim V' = (N, — 1)(N, — 1)(N, — 1). (6.1b)

Proof. It is enough to consider the homogeneous Dirichlet boundary case since
there is nothing to prove in the Neumann case. Suppose that the homogeneous
Dirichlet boundary condition is given. Similar to the argument in 2-D, we
need to investigate induced relations on boundary DoF values. Consider z-

direction first, and classify all cells into N, groups by their position in .
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Figure 6.1. An example of a strip

Then each group consists of Ny x N cells which are attached in y- and z-
direction. For each cell in a group, the dice rule in 3-D implies a relation
between 4 DoFs on faces which are parallel to xy- or zz-plane. A collection
of such relations from all cells in a group derives a single relation between
DoF values on a set of boundary faces, called a strip perpendicular to z-axis,
similarly to the 2-D case. Precisely speaking, an alternating sum of 2N, 421V,
boundary DoF values on the strip is equal to zero. This induced relation on
the strip is well-defined because the number of faces in the strip is always even.
Figurel[6.I]shows an example of a strip perpendicular to z-axis. The signs on the
strip represent the alternating sum of boundary DoF values. For z-direction,
there are N, relations between DoFs on boundary faces corresponding to IV,
strips perpendicular to z-axis, respectively. We can continue to discuss similar
arguments for y- and z-direction. Consequently, we can find totally N, + N, +

N, strips and corresponding relations between boundary DoF's.

However, it is not true that these induced relations are linearly indepen-
dent. Choose a cube K at one of corners in 7j,. There are three strips o, o,

0% which are attached to K, and perpendicular to z-, y-, z-axis, respectively.
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Let each of these strips call the standard strip for each axis. There are two
options to give proper alternating sign to DoF values on each standard strip
in order to make corresponding alternating relation between boundary DoFs.
For each standard strip, we choose an option for alternating sign in the rela-
tion to cancel out all boundary DoF's belong to K when summing up all three
relations on three standard strips. We call them the standard choices. Consider
o, a strip among others, which is obviously parallel to one of these standard
strips, without loss of generality, % . There are also two options for alternating
sign in the relation on o. One option is same to the standard choice on 0% in
this option, the sign for each boundary DoF on o is equal to the sign for the
corresponding boundary DoF in the standard choice on o% . The other option
is just opposite to the standard choice. We make a choice on ¢ depending on
the distance from o¥%-. If o is adjacent to 0%, or is away from o% by an even
number of faces in z-direction, then we choose an option for alternating sign
on o to be opposite to the standard choice on o7 . Else if o is away from o
by an odd number of faces in z-direction, then the same alternating sign as
the standard choice is chosen on ¢. Under this rule, we can make all choices
for alternating sign in the induced relations on all N, 4+ IV, + N, strips. And
it can be easily shown that the sum of all induced relations on all strips with
chosen alternating sign becomes a trivial relation. It implies that there is a

single linear relation between those induced relations on all strips. Therefore,

#(minimally essential discrete boundary conditions)
= #(boundary faces) — #(independent relations)

=2(NyNy + NyN, + N.N;) — (N + Ny + N, — 1).
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Proposition 6.1.3. (Periodic B.C. in 3-D) Let ¢; := (1 + (=1)7)/2. In case

of periodic boundary condition,
#(minimally essential discrete boundary conditions)
= (NzNy + NyN, + N.N,)

— (N:pGNyENZ + NyeNmeNz + NZENQCENy) + EN,EN,EN, -
Consequently,

NzNyN, + (Ny + Ny + N,) —1 if all Ny, Ny, N, are even,
dim V., = ¢ N,N,N. + N, if only N, is odd,
NyNyN, else.

(6.2)

Proof. Note that ¢; is equal to 1 for even j and 0 for odd. Due to the same
reason discussed in 2-D case, an induced relation between boundary DoFs on
a strip perpendicular to z-axis can help to impose periodic boundary condi-
tion only when both N, and N, are even. In this case, coincidence of two
DoF values of the last boundary face pair is naturally achieved by pairwise
coincidence of DoF values of other boundary face pairs in the strip. Conse-
quently, totally N, periodic boundary conditions can hold naturally due to
other periodic boundary conditions and induced boundary relations on strips
perpendicular to z-axis. Similar claims hold for induced boundary relations

on strips perpendicular to y-, and z-directional axis.

However, as discussed in the case of Dirichlet boundary condition, due to
the linear dependence between N, + N, + N, induced relations on all strips
we have to consider 1 redundant relation when all N, + N, + N, strips are

meaningful, i.e., all N, Ny, and N, are even. It completes the claims. ]
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6.2 Linear dependence of B in 3-D

In this section, we identify a global coefficient representation for node based
functions in B with a vector in RI®!. With this identification, we use a vector
c € RI®I to represent a global coefficient representation on given 3-D grid 7.
In this sense, we denote the local coefficients of ¢ in a cube @ € Ty, by c| o- For
the sake of simple description, we use this abusive notation as long as there is
no chance of misunderstanding. A surjective linear map B?f . RIBI Vp%’nh is
defined as in Chapter |4} but for 3-D case.

As shown in Figure there are exactly 4 kinds of local coefficient rep-
resentation for the zero function in a single cube. The value at each vertex
represents the coefficient for the corresponding node based function in B. If
any global coefficient representation for the zero function is restricted in a
cube, then it has to be a linear combination of these 4 elementary representa-
tions which are denoted by A, X, ) and Z, respectively. In other words, any
global representation for the zero function is obtained by consecutive extension
of local representation in appropriate way.

Define the following subspaces consisting of global representations:

Sxyza = {c e RIZI | c]Q € Span{X, Y, Z, A} VQ € 771} )

S = {c eRP | ¢|, € Span{X, A} VQ € Th} ,
Sy = {c e RIBI | c|g € Span{¥, A} VQ € 77L} ,
Sza = {c e R | c|, € Span{Z, A} VQ € Th} :

Sq:={ceR® clg € Span{A} VQ € ’ﬁl}

Remark 6.2.1. Sxyza, Sxa, Sya, Sza, and S are truly vector spaces.
Remark 6.2.2. The definition of B,? implies ker B;ZB =SxyzA.
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Figure 6.2. Nontrivial representations for the zero function in a cube: A, X,

Y, Z

Lemma 6.2.3. Let c € Sxyza, and cgk,c%k, cizjk, c;;‘k denote coefficients of c

in a cube Qi € Tp, for X, Y, Z, A, respectively, i.e., C|Qijk =ct X+c

ijk

W Z + i A Then for all1 <i < Np, 1<j <N, 1<k<N,

X A _ X A
Cijk — Cijk = Cli+1)ik T Cliv1)jk

= —Cy

i+1)jk’
z Z
Cijk = —C(i+1)jk
57 1

Yy

(6.3a)
(6.3b)

(6.3¢)



Ci)j'k = _Cfg]url)ka (6.4a)

A A

ik = Gk = Gk T GGR (6.4b)
ik = _CiZZjJrl)k? (6.4c)

X X
Cijk = ~Cij(k+1)s (6.5a)

Yy Y
Cijk = ~Cij(k+1) (6.5b)

Z A Z A

Cijk ~ Cijk = Cij(k+1) T Cij(k+1)- (6.5¢)

Here all indices are understood in modulo N, Ny, N, respectively, due to the

periodicity.

Remark 6.2.4. Conversely, local relations (6.3])—(6.5) in Lemma for all
1 <i< N, 1 <5 <Ny, 1<k <N, imply well-definedness of ¢ € Sxyza,

i.e., on each face shared by two adjacent cubes the vertex values are matching.

Proof of Lemma[6.2.3. These relations are nothing, but just the matching con-
ditions on every face which is shared by two adjacent cubes.

Two cubes Qjjx and Q;41);; are adjacent in z-direction, and sharing a
common face perpendicular to z-axis. Thus the vertex values on the right face
of the left cube @;;r have to be matched with the vertex values on the left
face of the right cube (Q(;41);,- Since there are 4 nodes in the common face,

we have 4 equations in 8 variables:

—cggk + C%k + cizjk + c;-‘]l-k = _cz\;—i-l)jk - C:();—&—l)jk — ciﬂ)jk — céﬂ)jk, (6.6a)
c{?k + C?;-k, - cizjk - cg‘;k = Cg+1)jk — C%;-‘rl)jk? + C(Z;_H)jk + céﬂ)jk, (6.6b)
ook — C%'k + el — ijl'k = Cg-l-l)jk: + C%;-&-l)jk - Cg+1)gk + Céﬂ)gk» (6.6¢)

_Cfgk - C%’k - Cizjk + Cﬁ'k = _Cg-i-l)jk + C%;+1)jk + Cgﬂ)jk - Cé-ﬁ-l)jk‘ (6.6d)
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Simple calculation shows that are equivalent to ([6.3]). Similarly, consid-
ering faces perpendicular to y- and z-direction, we get (6.4]) and (6.5)). O

The next decomposition theorem is essential for the dimension analysis in

3-D case.

Theorem 6.2.5 (Decomposition Thoerem). The quotient space Sxyz.a/Sa

can be decomposed as

Sxyza/Sa = Sxa/S54® Sya/Sa®Sza/Sa. (6.7)

Proof. Clearly S4 C Sxa,Sya,Sz4 C Sxyza and Sx aANSys = SyaNSza =
SzaNSxa = S4. Thus it is enough to show that for any ¢ € Sxyyz.a, there
exist u € Sy a4, veESys, weSzasuchthatceu+v+w+Sy.

Let Ci)](-k, C%k, cizjk, cg‘}k denote the coefficients of ¢ in a cube Q;;, € Ty, for
X, YV, Z, A, respectively, i.e., C|Qijk = cf](-ké\,’ + c%ky + cgkz + c;‘]‘-k/l. Due to
Lemma the relations f hold. Now we construct u, v, and w.
First, define u € RI®! by

X A X X A i+k A
u‘Qz;k = Ulij + ul]k‘A where u’L]k‘ = Cijk,uijk = (_1)]—"_ Ci11- (68)
The above definition naturally implies that u% = uik = 0. We can check the

followings.

1. u is well-defined, and belongs to Syyz.4: See Remark For a face
shared by two adjacent cubes Q;jx and Q;11)k,
Z;l'k = — (—1)7 R

= (_1)0%—1)1@ - (_1)j+kcﬁ1

X
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(—D)Y Ve, — (1) e,

:( 1)(3 1)+1 X ( 1)]+k A

il(k—1) i1

—1)U=DHE=D X (q)itheA

X A
Ci11 — Cm)

(Cgﬂ)n + Céﬂ)n)

k X j+k A
i Clirn1r T (=1 Cli+1)11

x itk A
=l + D

X A
= Uit1)jk T Uit1)jk-

Thus u is matching on all faces perpendicular to z-axis. For the faces

perpendicular to y-axis, it holds that

X _ X _ X _ X
Uijk = Cijk = ~CGG+0k — — Wi(+1)k

_ J4k A JHIAR A A
—ujy, = — (=1 i = (=) e = w

and similar for the faces perpendicular to z-axis. Therefore u is also

matching along y- and z-direction.
2. u € Sxy4: it is trivial due to the definition of u and Sy 4.

Similarly above, we define v and w € RI®l by

- A y _ Y A i+k A
V‘Qijk = vl.jky +vfj A where Uik = Cijpo Vijh = (=), (6.9)

W‘Qijk = wf;kZ + w;;‘kA where wf;-k = c{?k,w;;‘k = (- 1)’”0’141 (6.10)
Then both v and w are well-defined, and v € Sy 4, w € Sz4. Thus ¢ — (u +
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v+ W) € Sxyyz.4, and for each cube Qi it holds that
c—(u+v+wy = (cgk — (1) Redy — (1)l - (_1)i+ﬂ‘cf‘1k) A.
Therefore we conclude that ¢ — (u+ v +w) € Sg. O

Corollary 6.2.6. dim ker B = dim Sy 4 +dim Sy 4+ dim Sz 4 — 2dim S4.

The following lemmas explain the dimension of subspaces which depends

on parity of the discretization numbers.

Lemma 6.2.7. (The dimension of Sx.a, Sya, Sza)

N, if both N, and N, are even,
dim Sy 4 = (6.11a)

0 else.

Ny if both N, and N, are even,

0 else.

N, if both N, and Ny are even,
dim Sz4 = (6.11c)

0 else.

Proof. 1t is enough to show the claim for Sy 4, since the others can be shown
similarly. Let ¢ € Sy 4 where C|Qijk = cf](-kX + cg}‘k.A in each cube Q;;r € Tj.
By applying matching conditions (6.4)) and (6.5)) consecutively, it is shown

X i+k X i+k
Cijk = (—1)j+ ¢ii and ijl'k = (—1)]+ Cﬁl-

Consider N; +1 combined surfaces such that each of them consists of N, x IV,
faces in 7y, and is lying on the same hyperplane perpendicular to z-axis.

The above relations imply that on each surface the coefficients for node based
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Figure 6.3. Construction of a global representation for a function in Sy 4

functions are all the same, but with alternating sign like a checkerboard pattern
at nodes, not on faces. Due to the identification between boundary nodes in
y- and z-direction, all coefficients vanish unless both IV, and N, are even.
Under the case of even IV, and N, we consider a basis checkerboard pattern
at nodes on a combined surface consisting of +1 and —1, alternatively, as
Figure (a) shows. In the figure, the plus and minus sign at nodes represent
the positive value one, and the negative value one, respectively. We get N, + 1
checkerboard patterns on N + 1 combined surfaces in series (Figure (b)).
Based on the basis checkerboard pattern described in above, we can represent
all coefficients on each combined surface by a single factor in real number. Due
to the identification between boundary nodes in z-direction, two factors for
the first and the last combined surface must be identical. Then the series of
N, + 1 checkerboard patterns compose a global representation for a function
in Sy (Figure (c)). Conversely, for the N, + 1 combined surfaces which
are perpendicular to z-axis and the basis checkerboard pattern at nodes on
surfaces, suppose N, + 1 factors are given, where the first and the last of
them are equal. Then we can determine unique cf](-k and c;;‘k, for all Qi € Tp.-
Therefore, only in the case when both N, and N, are even, Sy 4 is equivalent

to {v € RN=*1 | v; = vy, 11}, and consequently dim Sy 4 = N,. O
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Lemma 6.2.8. (The dimension of Sy)

1 if all Ny, Ny, N, are even,
dim Sy = (6.12)

0 else.

Proof. Let ¢ € S4 where C|Qijk = c;-;‘-k.A in each cube Q;;;. By applying
matching conditions (6.3))—(6.5)) consecutively, it is shown

A i+j+k+1 A
Cijk = (=1)"™ C111-

Due to the identification of boundary nodes in z-, y-, and z-direction, all
coefficients vanish unless all N;, N, and N, are even. In the case of all even
Nz, Ny and N, it is easily shown that the coefficients form a multiple of the
3-D checkerboard pattern at nodes. Therefore dim S4 = 1. O

Proposition 6.2.9. (The dimension of ker B,?, V}%h in 3-D)
Ny + Ny + N, -2 if all N, Ny, N, are even,
dim ker B}? =3N, if only N, is odd, (6.13)

0 else.

Consequently,
dim V2" = |B| — dim ker By
NyNyN, — (Ny+ Ny + N,)+2 ifall Ny, Ny, N, are even,
=\ NzN,N. — N, if only N, is odd,
NyNyN, else.

(6.14)

Proof. Direct consequences of Corollary Lemmas and O
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6.3 A basis for V" in 3-D

per

Propositions |6.1.3| and |6.2.9| imply that Vp%ih is a proper subset of V! if at

per

most one of N, Ny, and N is odd. Furthermore, if all N, N,,, and N, are even,

then there exist 2(N, + Ny + N.) — 3 complementary basis functions for Vvh

per?

not belonging to Vp%ih. If only N, is odd, then the number of complementary

is 2N,. In other cases, V},%lh is equal to V" . We will

basis functions for V" er-

per
discuss about the complementary basis functions below.

For the first case, suppose that all N;, Ny, and N, are even. Consider IV,
strips o, 1 <7 < N,, which are perpendicular to x-axis. Each strip o} defines
a subdomain 2, the union of IV, x N, cubes which are wrapped up with of.
Let (¢7¥), denote a piecewise linear function in Vp};r whose support is 2F as
follows. Within Y it has nonzero DoF values only on faces perpendicular to
y-axis, and all the nonzero DoF values are 1 with alternating sign in y- and z-
direction, as similar to the alternating function 1, in 2-D case (Figure|6.4] (a),
(b)). The alternating function (1), is obtained by trivial extending to Q (Fig-
ure[6.4] (c)). A similar argument as in 2-D case, it is easily shown that (¢), is

well-defined, and not belonging to Vﬁ;h since N, and N, are even. A similar

T

property holds for (¢

; whose support

. . . . . h
)z, a piecewise linear function in V.

is €27 and which has nonzero DoF values as 1 only on faces perpendicular to
z-axis with alternating sign in y- and z-direction. Thus totally there exist 2N,

alternating functions {(¢7)y, (¥7): }<i<n, for V!, associated with strips per-

per

pendicular to z-axis. By considering other strips perpendicular to y- or z-axis,

we can find out 2(N, + N, + N) alternating functions for V"

per>
80 Voer's {07 )ys (8)z, (W9 ), ()2, (87 )as (VE)y h1<icNe 1< Ny 1<k,

However, there is a single relation between the alternating functions in each

not belonging

direction on subscript. An alternating sum of (¢7), in 1 <1i < N, is equal to

that of (¢), in 1 < j < N,. And any N,+N,—1 among all (¢7), and (4¥). are
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Figure 6.4. Construction of an alternating function in 3-D

linearly independent due to their supports. Similarly, any N, + N, — 1 among
all (wé’)x and (17), are linearly independent, and so any N, + N, — 1 among
all (¢f)y and (¢F), are. Consequently, suitably chosen 2(N, + N, + N.) — 3
alternating functions form a complementary basis for VZ;T.

In the case of only one odd N, (and even N,,, N, ), the set of all alternating

functions associated to the strips perpendicular to (-axis, {(¢§)uv W})u}lngNn

are meaningful because N, and N, are even.
Theorem 6.3.1. (A complementary basis for V. in 3-D)

1. If all N, Ny, and N are even, then V;f?lh is a proper subset of Vp’éT.

The union of
o any N, + Ny — 1 among 2, := {(¢7), (¥¥): h<i<n.1<j<n,
e any N, + N, — 1 among 2, := {(@/Jﬁ’)z, (Vi)eb1<j<N,1<k<N,, and

o any N: + Ny — 1 among Ay := {(V)y, (V7 )y hr<i<ne1<ren.
s a complementary basis for V;)’fzr, not belonging to Vp%’«h.

2. If only N, is odd (and N,, N, are even), then Vﬁ;h s a proper subset of
Vp’éT. And {(V%)u, (V5)vhi<j<n, is a complementary basis for Vh . not

per?

belonging to Vﬁr’h.

3. Else, Vp%r’h =Vh

per:
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Figure 6.5. The stencil for S? in 3-D

6.4 Stiffness matrix associated with 8 in 3-D

The stiffness matrix SP is defined as in (4.3)) but in 3-D space. See Figure

for the 3-D local stencil for the stiffness matrix associated with B.

Proposition 6.4.1. (The dimension of ker SP in 3-D)

Ny + Ny+ N, -1 ifall N., Ny, N, are even,

dim ker S% =94N,+1 if only N, is odd, (6.15)
1 else.
Proof. 1t is a direct consequence of Propositions and O

We numerically assemble S% for various combinations of N, Ny, and N..
The rank deficiency can be computed in help of well-known numerical tools
or libraries, for instance MATLAB or LAPACK. Table [6.1] shows numerically
obtained rank deficiency of the stiffness matrix associated with 25 in 3-D space.
Numbers in red represent the case of all even discretizations. Blue is for the
case of odd discretization in only one direction, and black for the other cases.

These numerical results confirm our theoretical result in Proposition [6.4.1
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— Ny —

Nx=2 2 3 4 5 6 7 8 Nx=3 2 3 4 5 6 7 8
N, | 2] 5 2

31 4 1 3 1

4 7 4 9 4 1 4

5/ 6 1 6 1 5 1 1 1

6| 9 4 11 6 13 6 1 4 1 4

7|8 1 8 1 8 1 7 11 1 1 1

8|11 4 13 6 15 8 17 8 1 4 1 4 1 4
Nz =4 2 3 4 5 6 7 8 Nz=35 2 3 4 5 6 7 8

2 2

3 3

4 11 4

5 6 1 5 1

6 13 6 15 6 1

7 8 1 8 1 7 1 1 1

8 15 6 17 8 19 8 1 1 6

Table 6.1. Numerically obtained rank deficiency of S? in 3-D

6.5 Numerical schemes in 3-D

Consider again an elliptic problem with periodic boundary condition
with the compatibility condition fQ f = 0, the corresponding weak formu-
lation , and the corresponding discrete weak formulation in 3-D.
Throughout this section, we assume that all N, N,, and N, are even. Bb

again denotes a basis for V" | a proper subset of B. Note that we have known

per>

what the cardinality of B is, but the way to find B’ is not constructive yet.
Let 2 and 2” be the set of all alternating functions, and a complementary

basis for V" which consists of alternating functions as in Theorem re-

per

spectively. Without loss of generality, we write B” = {gbj}'%b' B = {qﬁj}‘%'

=1’ =1
b
A = {wj}‘jill, and 2 = {wj}‘jill. Define two extended sets € := B U2, and
@ := B’ UA". Even in 3-D case, €’ is a basis for Vp}ér.

Remark 6.5.1. Unlike 2-D case, 2 may not be linearly independent in 3-D

case. Thus we use A°, a linearly independent subset, instead of A to construct
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S | |S] | SpanS | dim Span S
8" [ N,NyN. — (N, + Ny + N.) +2
B | N.NyN.

¢ | NyNyN. 4+ (N, + N, +N.)—1
¢ NyNyN, + 2(N; + Ny, + N.)

Vgt | NeNyN. — (No + Ny + N.) +2

Vi, | NeNyN. + (Ns+ Ny +N.) -1

Table 6.2. Summary of characteristics of B°, B, €, ¢ in 3-D when all N,, Ny,
N, are even

& as a basis for Vp}ér.
Lemma 6.5.2. Let B and 2 be as above. Then the followings hold.
1. ap(p,9) =0 Vo € B Vi € 2.

2. [ =0 VyeL

3. There exists an h-independent constant C such that ||¢]o < Ch'/? and
[l < Ch7Y2 W e,

Remark 6.5.3. The second equation in Lemma does not hold in 3-D

case. If p= v, then ap((¥")u, (V1),) does not vanish in general.

For 3-D case, we define S%b, g%b, and S% as in 7, respectively.
Furthermore we define S%lb, the stiffness matrix associated with 2” in similar
manner. Define the linear systems E,fb, E%b as in , , with slight
modification since @ is equal to B° U2’ in 3-D case. Other linear systems
E%, E? are defined as in , . The solutions @, u’, uf, @, and the
numerical solutions up,, uf,, u, @ are defined as in ([{13)~([@15), [@E18)-(@20),
(4.12), (4.16), (4.17), (4.21).

In the following, we compare these numerical solutions as in Section [£.4]
The equality between uy and u?l is clear. The next is for comparison between

u?l and uEL
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Since B’ is a basis for Vp%ih, there exist tp; € R for 1 < ¢ < |B| — 8| and
1 < j <|®’|, such that

|%B° |

¢|%b|+€ - Ztgjqu. (616)
j=1

Thus ZKGTh Vor -V <¢|%b|+e — Z'ﬁbl' tgj¢j> dx = 0 for all k, and it is sim-
plified as (S?)|‘Bb|+£7k = Zlﬁbll te;(SP) k. Let T denote a matrix of size (|B] —
B°[) x |B°| such that (T)s; = t¢;. Then the last equation for 1 < £ < |B]—|B"|

and 1 < k < |%B°| can be expressed as a matrix equation

B B
[SK T 1211200 = TISK 100, 1:0- (6.17)
|
B .. ,b B> - .
Note that [Sp’]. @) 1.0 1 Just equal to S;™. Let be a trivial extension
0

of ub\%b into a vector in RI®l by padding zeros. Then

b b
gB ublw . S? ub|%b B S% ub’%b o Jo B’
h - - b -
0 [Sh%]\%b\+1:|%|,1;|%b|ub‘%b TS? ub|%b TfQ Py

. b : .
since S? ub|%b = fQ f9B°. We can easily derive

fQ [ fQ f Zﬁ:‘ t159; fQ f¢\%b\+1
T[weT| i |- s -
Q

|B°|

Jo To1) Jo I20520 twe 85 Jo form)

which implies that
% ub|%b
0 Q

69

X -kr-r_]' e
| =2 "1/



'Llb |mb

In the same way we obtain that S%‘ = Jo fU. Therefore we can con-

clude the equality of uEl and u% by the same argument in 2-D case.

For the last, consider the difference between uEL and EEL We can easily

observe that uEl — aEl = uh‘le, and ah(ui — ai,w) = [ fo for all ¢ € 2
Thus

2 = an (o 0, )

= /ﬂ Flul, — @) < Cllfllo lluf, — @ llo = Ch |l fllo uf, — @}l

due to the following lemma, and we immediately obtain the difference in mesh-

dependent norm, and in L?-norm.

Lemma 6.5.4. Let ./\/l% be the mass matrixz associated with A. Then there
exists an h-independent constant C' such that M* = Ch28,%[. In a consequence,

|vnllo = CY2hlvg|1p for all vy, € Span L.

Proof. Remind that (ij) u is the alternating function such that the support is
Q; and the nonzero DoF values are only lying on faces perpendicular to p-axis.
Thus only p-component of the piecewise gradient of (%), survives. It implies
that ap((¥5)p, (¥)y) = 0 if u # v. Therefore we can consider Sp as a block

diagonal matrix:

St 0 0
St=10 S* o],
0o o0 S*

where 2, 2, 2, are defined as in Theorem and S}QL‘”, S}Ql[y, S;‘f[z are the

stiffness matrices associated with the respective sets.
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We can also consider M% as a block diagonal matrix in the same structure,

since the following observation: if p # A, then

(@), = @ ax= 3 / W) (W)

QETL(R

= Y / (¥4)u dﬂ/ (1), dv = 0.

QETH(R)
We write
Az
M} o My 0 |,
A
o 0 M

A,y . . . .
where M=, M, M,Qllz are the mass matrices associated with the respective

sets. Therefore, it is enough to show M%“ = C’hQS}QL[“ for each pu € {z,vy,z}.

First, we consider the blocks associated with A, = {W?)xa(ﬂ)/i)x} for
1<35 <Ny, 1<k<N,. The proof for other blocks is similar. For any two

alternating functions (¢}), and (Y)z in Ay,

1. if ¢ = X (let them be equal to y, without loss of generality), then

o (@ 000) = 3 [ eVl dx

QeTr(Q?)

= > /2/h dx = 4N, N,hép,,

QETH( QmeZ)

since the number of cubes in ij is N;IN.. Here, 03, denotes the Kronecker

delta.
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2. if v # X (let © = y and X\ = z, without loss of generality), then

an (W0 1)) = 3 / V), - V(). dx

QETH(Q

= Z /2/h dx = 4N,h,

QEeTh( Qymﬂz

since the number of cubes in Qg N is Ny.

On the other hand, we can easily observe that

(W) = 3 / (e (W)

QETH(Q2

= Z / (W) (W})a fN N.h3§j%, and

QeTh( Q”mﬂ“

(@), = 3 [ @D

QeTh(Y)
= > /wy (7). dx—ho?’
QEeThH( Qymﬂz
Therefore M%‘” = %th}?x, and the proof is completed. O

Theorem 6.5.5 (Relation between numerical solutions in 3-D). Let uy, u?l,

’LLEL, ﬂEl be the numerical solutions of (4.6) in 3-D as (4.12)), (4.16), (4.17),
, respectively, with & = B UA°. Then uy, = UZ = uEL, and

[uf — @ lo < CR2[|fllo, |1 — @ |1n < Ch|f]lo-
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6.6 Numerical results

As mentioned before, we can not construct a basis B° for Vp%lh in 3-D explicitly.

We only use the scheme option 4 for our numerical test. The exact solution
is u(z,y, z) = sin(27x) sin(27y) sin(27z). The numerical results on Table

confirm our theoretical results.

Opt 4

h |lu—un|i,n,  order | [lu—wupllo order
1/8 1.505E-00 - 3.848E-02 -
1/16 7.550E-01  0.995 | 9.716E-03 1.986
1/32 3.777E-01  0.999 | 2.434E-03 1.997
1/64 1.889E-01  1.000 | 6.089E-04 1.999
1/128 | 9.443E-02 1.000 | 1.523E-04 2.000

Table 6.3. Numerical result of the elliptic problem in 3-D with the scheme
option 4
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Chapter 1

Introduction

Finite element method (FEM) is one of successful methods to approximate
the solution of partial differential equations derived in various fields of studies.
However it has a drawback when we treat a problem containing heterogeneity.
For instance, when the coefficient tensor of the problem is highly oscillatory
in micro scale, we need to consider a sufficiently refined mesh consisting of
elements which are comparable with the micro scale in order to get a numerical
solution sufficiently close to the exact solution. Such a refinement increases the
number of unknowns in the corresponding system of equations. It is, of course,

a critical burden on solving the equation numerically.

To overcome this shortage of the standard FEM, several efficient meth-
ods have been proposed and developed in decades. Multiscale finite element
method (MsFEM) [30, 26, 25] employs basis functions representing multi-
scale features whereas a local shape function in the standard FEM is just a

plain polynomial. In each macro element, the multiscale shape function is con-
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structed by solving a discrete harmonic equation associated with given mul-
tiscale coefficient. Generalized multiscale finite element method (GMsFEM)
reduces the number of degrees of freedom in the discrete model by considering
a few dominant modes of the corresponding generalized eigenvalue problem
[23, 24]. Heterogeneous multiscale method (HMM) numerically estimates the
homogenized coefficient using the micro scale structure. Especially, the finite
element heterogeneous multiscale method (FEHMM) is a HMM framework

which is based on finite element implementation [I], 2, [6], 3 [4), 21].

Most of the above works employ the conforming finite element approach,
while nonconforming elements have prominence for their numerical stability in
various problems [I8], 14 [35] 146, T3], 20} 11 [38]. Recently, there are some works
in MsFEM based on the nonconforming approach [36l, 37, [19]. Lee and Sheen
[39] proposed a nonconforming GMsFEM framework for elliptic problems.

In this thesis, we propose a FEHMM scheme based on nonconforming finite
elements for multiscale elliptic problems. As a prototype of nonconforming
elements, we employ the Pj—nonconforming quadrilateral finite element, which
is the lowest-order element on quadrilateral or rectangular mesh (in 2-D case),
and hexahedral mesh (in 3-D case). Thus this finite element shares the same
nature of the well-known Crouzeix-Raviart element on triangular mesh. We
would like to emphasize the advantage of rectangular elements over simplicial
elements on mesh construction, especially in 3-D space. Each micro problem in
the proposed FEHMM scheme may derive a singular linear equation due to its
periodic nature. By using results from recent analysis for Pj—nonconforming
quadrilateral finite element with periodic boundary condition, we formulate

the singular linear equation firmly, and solve it efficiently.

This thesis is organized as follows. In chapter 2, we state in brief pre-

liminaries and notations for our discussion. We introduce a nonconforming
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FEHMM scheme in chapter 3. Chapter 4 is devoted to prove main theorem
for a priori error estimates of the proposed method. We give several numerical

results in chapter 5.
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Chapter 2

Preliminaries

Let Q@ ¢ RY (d = 2,3) be a bounded domain with smooth boundary 9.

Denote x = (x1,--- ,24) € R%. Consider a multiscale elliptic problem
-V (AE(X)VU‘E(X)) = f(x) in €, (2.1a)
u® =0 on 01}, (2.1b)

where € < 1 is a scale parameter. Here, the coefficient tensor A® € [L>°(2)]?*4

is assumed to be symmetric, uniformly elliptic and bounded, i.e., there exist
A, A > 0 which do not depend on x such that A|¢]? < A%(x) £ - & < A[¢)? for
all € € R?,

2.1 Homogenization

Let Y = HZ:1[0a ¢y for given {¢;}¢_, and e; be the standard unit basis of R?

corresponding to the j-th component. Suppose that A¢(x) := A(x,x/e) for a
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Y -periodic function A(-,-) with respect to the second variable, i.e., a function
A : R x R — RIX? satisfies that A(x,y) = A(x,y + lgep) for 1 < k < d.

Then, the following result is well known [17], 32].

Theorem 2.1.1 (Periodic case). Suppose that Af(x) := A(x,x/c) where
A(x,y) is Y-periodic for the variable y = (y1,--- ,yaq). Let f € L*(Q). Then

there exists a homogenized coefficient tensor AY such that

uf — u® weakly in HL (),

AVUE — AVl weakly in [L*(Q)]4,

0

where u° s a unique solution in H&(Q) of the homogenized problem:

V. (AO(X)VUO(X)> = f(x) inQ,
uw =0 on 0L2.
In fact, the homogenized coefficient A = (A%) is given by
1 d ox?
A?~x:/ Aii(x,y) + Ap(x,y)=— | dy,

k=1

where |Y| denotes the volume of Y, and x? = x?(x,y) the solution of the cell

problem:

—Vy- (Ax,y)VyX!) =Vy - (A(x,y) €) inY,

Y’ is Y -periodic,

/dey:O.
Y
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2.2 Notations

Let D be a bounded open domain in R? (d = 2,3). Denote by L?(D), H'(D),
and H{ (D) the standard Sobolev spaces on D with the standard Sobolev norms
Il llo.p, |- |l1,p, and (semi-)norm |-|1 p, respectively. By C2%,.(D) designate the

per

set of smooth periodic functions on D and by H;eT(D) the closure of C2%,.(D)

per

with respect to the norm || - ||1,p in H'(D). W}.,.(D) is a subspace of H},,.(D)
which consists of functions whose mean value on D are zero. We will mean
by (-,-)p the L?(D) inner product. In the case of D = ), the subscript D on
notations of norms and inner product is omitted. For (d — 1)-dimensional face

f, (,-); indicates the L?(f) inner product.

By |D| we denote the volume of the domain D. For an integrable function
v € LY(D), the mean value on D is denoted by Mp(v) := ﬁ [ v. Throughout
this thesis C' denotes a generic constant and its value varies depending on the
position where it appears.

Consider a family of triangulations {73, (D)}o<n<1 for the domain D con-
sisting of quadrilateral elements. Let 82,52, and 52’07’ P denote the sets of all
interior edges, of all boundary edges, and of all pairs consisting of two bound-

ary edges on opposite position, respectively. Set

viPY(D) = {v € L*(D)

V| € P1(K) VK € Th(D), ([v]e, 1), =0 Ve € 5;;},
(2.3)

V(D) = {v c VPI(D) ' (v,1),=0 Vec 5,’;}, (2.4)

Vthpler(D) = {U € VhPI(D)

(0,1, = (v,1),, Y(er,e2) € EXP, (0,1)p = o},

(2.5)
where P;(K) denotes the set of linear polynomials on K, and []. the jump
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across edge e. Let | - |1, p denote mesh-dependent energy norm on V;'1(D).

The standard error analysis for nonconforming elements implies a priori error

estimate, see [44, 20],

u — uh|1 h < ChHUHQ

)

L=

-
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Chapter 3

FEHMM Based on

Nonconforming Spaces

In this chapter we introduce a FEHMM scheme based on nonconforming finite
spaces for the multiscale elliptic problem . We follow the framework of
FEHMM [IJ, 2] with slight modification for nonconforming function spaces.
Here and in what follows, we only treat the case of d = 2. Let Ty := T (Q)
be a regular triangulation of €2 with quadrilaterals. Define the macro mesh
parameter H := maxge7;, diam(K). For each macro element Ky € Ty, let
E(Kp) denote the set of its edges. The set of all edges, of all interior edges
and of all boundary edges are denoted by &, 6}'{ and 5521, respectively. Let
Fr,, - K> K g be a bilinear transformation from the reference domain onto

KH. Set

V =Hj(Q) and Vy=ViHQ) (3.1)
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and denote the macro mesh-dependent (semi-)norm on V + Vg by ||| 4 :=
1/2
2
(ZKHGTH | : I,KH) :
To formulate the FEHMM scheme, we need a quadrature formula which
consists of I points with corresponding weights (x;,w;)._; on each element

Ky € Ty such that

I
> wilVoxi)? = Clli g, v € Pi(Kn),
=1

I
Zinv(xi) -Vw(x;) = Vo - Vw dx Vo, w € Pi1(Kq).
i=1 Kn
Remark 3.0.1. The above characteristics of the quadrature formula are useful
to prove the existence and uniqueness of the solution as well as optimal error

estimates in Chapter[{}

On each element Ky € Ty we define I sampling domains Ks; = x; +
[—~8/2,5/2]? corresponding to each quadrature point x; for given § < 1. The
size of the sampling domains § should be chosen to be comparable with .
The most trivial case is § = &, but not always. The effect of various § will
be mentioned in Section On each sampling domain we consider a micro
triangulation to deal a bundle of micro problems on it. Let 7,(Ks;) be a
uniform triangulation of a sampling domain Kj; consisting of quadrilateral
elements and h = maxger, (k;,) diam(K) the micro mesh parameter. Each
micro element Kj € Tp(Ks;) has a bilinear transformation F, : K- K h
such that F, (IA( ) = Kj. Let denote the set of all edges, of all interior edges
and of all boundary edges in Tj, by &, £ and P, respectively. £(K},) denotes
the set of edges of K.

On each sampling domain Ks; we will consider two micro function spaces,

namely, a continuous function space W (Kj,;) and a discrete space W (K ;)
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(a) (b) (c)

Figure 3.1. The hierarchy of geometric objects in FEHMM scheme

which are determined by a choice of macro-micro coupling condition we use. If
the coefficient tensor A® in has a periodic property, then we can impose
periodic coupling condition. On the other hand, Dirichlet coupling condition
can be used for general cases. Respective to the choice we define two micro

function spaces by

W (Ks.), periodic case,

W(Ké,z’) = e ! (3.3a)
H}(Ks;), Dirichlet BC case,
VhppleT(Ka,i) periodic case,

Wi (Ks;:) = ’ (3.3b)
ViE(Ks) Dirichlet BC case.

The micro mesh-dependent (semi-)norm on W (Ks;) + Wy (Ks;) is defined

1/2
by 1l ., == (ZKheTh |2 Kh) in both periodic and Dirichlet BC
coupling cases. The expression Ks; in notations will be omitted if there is no

ambiguity of choice for sampling domains.

Figure[3.1]shows the hierarchy of geometric objects in the FEHMM scheme
at a glance: (a) domain € and its triangulation 7z, (b) macro element K, (c)
sampling domain Kj; surrounding a quadrature point x; and its triangulation
Tr, consisting of micro elements Kj,.

For the sake of convenience, introduce the two bilinear forms, o’
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HY(Ks;) x HY(Ks;) — R and ahK“ : VPY(Ks ;) x VPL(Ks;) — R by

asi (u,v) = AfVu-Vodx Vu,v € H(Ks;),
Ks,i
ahK‘S’i(uh,vh) = Z A®Vuy, - Vo, dx  Yuy, vy € VhPI(K57,~).
K €T (Ks0) ” 5n

Also define two bilinear forms ay and ay : Vg x Vg — R as follows: for all

ug,vg € VH,

ATVU™ - Vo™ dx, (3.4a)

I

HuHavH E E

aH UH,’UH E g
=y

51‘ K(;

> / ASVu - Vol dx - (3.4b)

61‘ Ky, 6771 K5

where u™, v, u3", v are the solutions of the continuous and discrete micro
problems with constraints ug and vy, respectively, on each sampling domain
Ks;in Ky € Ty defined as follows: for given wy € Vi, w™ € wy + W(K5;)
and wy’ € wy + Wp(Ks,;) fulfill

CLK‘M(wm,Z) -0 VZEW(K(M), (3.5&)

AWt z) = 0 Yz, € Wh(Ksy). (3.5b)

In the above expressions wy +W (K5,;) and wg + Wi (Ks,;), wy actually means
w| K0 the function restricted onto the domain Ks;. However, here and in
what follows, we use this abusive notation for the sake of simple expressions

if context determines proper range of given function.

Remark 3.0.2. By following a typical FEHMM framework, one needs to con-
sider wﬁ”, a linearization of wy at x;, instead of wy itself in order to get w™

and wy® in (3.5). In our discussion, however, such a linearization is unnec-
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essary because the finite element space which we are considering consists of

piecewise linear functions.

A nonconforming FEHMM weak formulation of the problem (2.1 is now

ready to be stated as follows:

(Main Weak Formulation) find ug € Vi such that
af(um,wy) = (f,wn) Ywn € V. (3.6)

For analysis in Chapter |4, we introduce several micro functions. Let w,{ =

wi(x) € Wi(Ks4),7 =1,---,d, the solution of the following micro problem

K
ap " (W4, 2n) = — Z

Kn€Tn(Ks,:)

Asej -Vz, dx Vz, € Wh(K57i). (3.7)
Ky,

Also, for j =1,--- ,d, let 7 = I(x) € W(Ks;) be the solution of

a7l 2) = — Afe; - Vzdx Vze W(K;;). (3.8)

Ks;
Later, 1/1{%, j =1,---,d, play as basis functions for the solution space of the
micro problem (3.5). We will also use the following functions denoted by

cpfl(x) = 1/1?1(X) + 2 and ¢’ (x) := ¥/ (x) + x; on each sampling domain Ks.

Remark 3.0.3. Indeed, v/ and wgb are nothing but ¥ = (z;)™ — z; and
fL = (x;)i" — x;, respectively, with the superscript ‘m’ as in (3.5)). Moreover
m

@ = ()™ and gp{l = ()"

We also introduce several weak formulations which are used for analysis.
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(Weak Formulation of Homogenized Problem) A weak formulation of

the homogenized problem is given as to find u® € V such that
a®(Wl,v) = (f,v) Yo eV,
where
a(v,w) = /QAO(X)VU -Vw dx Yo, w € V. (3.9)

(Weak Formulation with Quadrature Rule in Macro Scale) A weak
formulation of the homogenized problem ({2.2]) with quadrature rule in macro
scale, corresponding to (3.6]), can be defined as to find u}; € Vyy fulfilling

ay(uly,vn) = (f,vm) Yom € Vi,

a%(vH,wH) = Z Zwi Ao(xi)VvH(xi) -Vwg(x;) Yog,wy € Vg.

(3.10)

(Semi-discrete FEHMM) A semi-discrete FEHMM solution is defined as

uy € Vg such that

ag(ug,vyg) = (f,vg) Yog € V. (3.11)
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Chapter 4

Fundamental Properties of
Nonconforming HMM

4.1 Existence and uniqueness

For the beginning of analysis, we prove the existence and uniqueness of solution

of the equation.

Lemma 4.1.1. Let v} be the solution of the micro problem (3.5b)) with con-

straint vy on a sampling domain Ks;. Then
m A
oalrs, < Worlln e, < 5 lom ks,

Proof. Utilizing the fact that vy is linear on K for all K € Ty and (3.3b]), we

have

0< Y / V(" — o) - VI — o) dx
KneThn Kn
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= Z /K ‘VUITP - ’VUHIZ — 2V (vpt —vg) - Vog dx
KreTy h

= Z Vo2 dx—/ |Vog|? dx
KneT;, ” Kn Ks,i

- QVUH . Z / ng, (1)21 - UH) ds

Kh e7-h aKh

where ng, denotes the unit outward normal to K},. Since v} —vy € Wj,(Ks;),

the last term in the above equation vanishes. Consequently, we get

Vog|? dx < / Vol'|? dx.
/KM\ | > [ v

KneTh
On the other hand, due to the ellipticity of A¢, we have
0< Z AV (vpt —vp) - V(vpt — o) dx
= > AVuy - Vog — AV - Vol
+ AV (v —vg) - Vo' + AV - V(v —vp) dx.

Due to the definition of v} in (3.5) and symmetry of A®, the last two terms

vanish. Thus we get

Z AVt - Vot dx < A*Vuy - Vog dx.
KneT, Ky Ks;

The uniform ellipticity and boundedness of A® imply the desired inequality.
O

Due to the properties of the quadrature formula, the bilinear form ag is

bounded and coercive in Vg. Therefore the existence and uniqueness of the
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solution ug to (3.6) is guaranteed by the Lax-Milgram Lemma. Thus, we have
Theorem 4.1.2. There exists a unique solution ug to the problem (3.6)).

Similarly, the coercivity and boundedness of the bilinear form ay can be
obtained immediately, and thus one also get the existence and uniqueness of

the solution wy as stated below.

Theorem 4.1.3. There exists a unique solution ug to the problem (3.11]).

4.2 Recovered homogenized tensors

. -0 . .
Recovered homogenized tensors A%é_ and A . on a sampling domain Kj;
3 El )

are defined by

O 1

A= > Af(x) (I+37) dx, (4.1a)
t Kl K.
Kn€Tn(Kss) " 0
Ay, = ! Af(x) (I+37) dx, (4.1b)
o ’K6,i| Ks;

where Jy, and Jy are d x d matrices defined by

ol .
respectively. The following proposition shows the essential characteristic of

two recovered homogenized tensors.

Proposition 4.2.1. Let uj* and v;* be the solutions of the discrete micro
problem (3.5b|) corresponding to the macro constraints ug and vy, respectively,
on Ks;. Then the following holds.

1 m m
KR ETH(Ks,) T
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Similarly, let u™ and v™ be the solutions of the continuous micro problem
(3.5a) corresponding to the macro constraints wy and vy, respectively, on
Ks;. Then the following also holds.

1

—— [ A*Vu" Vo™ dx = Ay, Vug - Vg, (4.3)
| K4 Ks. "

Proof. We will show (4.2) only, since (4.3]) follows immediately by a similar
argument. Since u}" is the solution of (3.5b)), and v}* —vy € W} (K5,), it holds

1 1
AVup' - Vo' dx = T
5i

KyeT, ” Kn

AEVUZL . VUH dx.

| K. Koo

(4.4)

Since Vuy is constant, u}® is represented by a linear combination of the basis

functions v as

d
=1

By plugging the above representation into (4.4)), we have

9
A® | Vuy + th M Ty dx
K e7;, ” Kn
1 / T
= > Af (I+J},) Vug - Vog dx
ien KneT, ) Kn

=A%, . Vuy - Vo
This completes the proof. O

Remark 4.2.2. Proposition implies that A(}(M indeed plays a role as

the homogenized tensor on each sampling domain Ks; numerically.
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4.3 The case of periodic coupling

In this section, main ingredients of error analysis are provided under periodic
assumptions. Recall the definitions of 1/ and ¢’ in Chapter [3| The following

two assumptions will be taken into our discussion in this section.
Assumption 4.1 (H1. Periodic coupling).

1. A%(x) = A(x,%) where A(x,-) is Y-periodic with Y = [0,1]* and
A(x,-) € Whee(Y).

2. On each sampling domain Ks;, solution of the micro problem (3.8)) with
periodic coupling (3.3a)) has reqularity v’/ € H?(Ks;) and A*Vyl €
[H' (Ks))*

First, we have the following result.
Lemma 4.3.1. Under Assumption V- (A6V<pj) =0 on Ks; a.c.

Proof. From the definition of ¢, it holds

AV Vzdx=0  Vze Wy (Ksy).
Ks,i

Let 1;, be the characteristic function on Ks;. Since v — MK&,i(’U)]‘Ké,i €

WL, (Ks;) for all v € H}(Ks,;), we have

per

AV - Vo dx =0 Yo € Hy(Ks;).
Ks;

The integration by parts gives V - (AEVij) =0 a.e. O

Lemma 4.3.2. Under Assumption it holds

ATV |1 ks, < ClEG,| e (4.5)
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Proof. Taking z = 1/ in (3.8)), we have
AV -Vl dx = — Ace; - Vi dx.
Ks; Ks;

Due to the ellipticity of A® and Assumption [4.1], it holds that

)\Wjﬁ,l(é,i <

/ Afe; - Vi)l dx
Ks.,i

1/2
< </ |A%e;|? dx) (/
K(;’i Ks

< C|K6,i|1/2 |¢j|17K¢s,z"

1/2
V72 dx)

S0

Thus it implies [¢7 ]y k5, < C|Ks;]*/2, and therefore 07|15, < W7 |1k, +

1zj]1,55, < C|K 5,i|1/ 2. Furthermore, the regularity of the problem implies that,

see also Remark 5.1 in [2],
[ ]2,1¢5, < Ol sl 26, (4.6)

The above results give the desired bound as follows.

1/2
_ o FANE
AV g, < C / 2 <A€m> dx
| # s, Ks.i sz;n dxp \ " Oy,
< C “km 77 e ¥ |4
B /KM sz;n Oxy, Oz, ’ M 92k OTm *

: C(HVAEHo,oo,Ks,Z-Iw"ll,Ka,i + 1A% lo,00,5, 17

2»K5,7;>

< C|Ks; Y271
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The following proposition is a discretization error estimation of the micro

basis function 7.
Proposition 4.3.3. Under Assumption it holds

[l =i, <cnaer. @)

Proof. The Second Strang Lemma ([48, [10]) for the micro problems (3.7]) and
(3.8) implies that

I <C inf g
H’w wh’Hh,K&i - ’UhEV%/h(K(g’i) ‘Hw hIHh7K6’i
™ (0, wn) = a ™ (0, wn)
+ sup
whEWh(Kg’i) ‘”wh‘”h,K&i

The first term represents the best approximation error of 1. It is bounded
by the micro mesh parameter h due to the standard approximation property of
nonconforming element spaces. The second term, so-called the consistency er-
ror, is for nonconformity of the finite element space. Let denote the numerator

of the second term by L(wp). The definitions of w{t and ¢’ imply

Lwn)] = = |ag ™ (6, wn) = ap ™ (6], )|

=y ATVY - Vwy, dx+ Y Afe; - Vuy, dx
= Z AV - Vuy, dx

= Z / nKh-(ASVng) wy, ds — Z V- (AEVgpj) wy, dx| .
KTy, Y OKn KneT, 7 Kn
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The integration by parts is used in the last equation. Due to Lemma it
is bounded by

Z / ng, - AV wy, ds| = Z Z /nKh AV wy, ds
3]

KueT, ” 9Kn Kr€Th ecE(Ky)

Z /ne - AV [wy]e ds

ecly,

IN

Let denote K™ and K~ two adjacent elements that share a common interior
edge e. Let define the average of wy over the edge e as wy = ‘—; fe w;{ =
é J.w;, where wj = wy|g. for o = +,—. Note that the integral value of a
function in W} (K;) on each interior edge is well-defined due to the definition

of the nonconforming finite space. The regularity in Assumption implies

/ne-A5Vgpj [wp]e ds

€

= /ne - AV [wy, — wy), ds

= /ne . (AEVgoj - M, (AEVij)) [wp, — wp),, ds

< 3 ([1awe - Mo (av) P as) ([ - milas)

L=+,

Due to the trace theorem and Poincaré inequality on the reference domain K

with the standard scaling argument, the first term is bounded by

st ansont [ (we2)

~ . -~ . 2
<o faws e (v
con i ()

2
1% o~ 12
< Ch ‘Afwﬂ‘lﬁ < Ch|ATVI[}
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for each + = 4+, —. Here we use a simple fact that the bilinear transformation
Fy, linearly transforms an edge € of the reference domain onto e. Note that
the average value of a function is preserved by a linear transformation. The

second term is bounded by

[k~ wnf as < e [ (@~ wil* s < COn - wl
e e

12 2
< O} & < Chluf? g
Consequently, we have

IL(wp)| < C Y hATVY |y i, w1,

KpeTy
1/2 1/2
<Ch| > AV g, > Jwnli,
KpeTy, KneTy
= ChlA*VY |1k, llwnlly g, -

Finally, Lemma and (4.6) imply the desired error estimate:

H‘lw B ¢{1H‘h K <Ch (|¢j|2,K5,i + ’Aevsojh,h,Ks,i) < Ch‘K&i‘l/zgil'
K

Remark 4.3.4. In a similar way, we can obtain (4.7) for the case of d = 3,

under an additional assumption such that F, is a linear transformation.

The following proposition shows difference between the recovered homog-

enized tensors.
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Proposition 4.3.5. Under Assumption it holds

2
e h
igpuAK&,.—A%wumc( ) | (48)

5 €

Proof. For given sampling domain Kj;, definition of the recovered homoge-

nized tensors (4.1]) implies

o : -0
and a similar expression for [A g, ]k Thus

—0
‘[Ag(,s,i]jk B [AKS,z‘]jk‘

1 . :
= Vel Z i AVF -Vl — A°Veh - V! dx
’ K’LEWL h
1 . .
~ligg X f, AV (eh-) v (e -+)
6,1 Kh67’h Kh

+AVY -V (soi; - wj) +AV (@i - sok) Vg dx

§|K1M| $ /KhAEV(so’z—so’“)-V(soi;—soj) dx

KreTy,
+7]K | Z— V-(AEVng) (gpgl—goj)dx+/ nKh-AEchka%—goj)ds
(5,7, KheﬁL Kh 6Kh
1 . ,
| 2] V(AT (¢Z<pk)dX+/ ni, ATV (of— ") ds|.
|K5,Z| KneTh Ky 0Ky
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The last inequality is due to the integration by parts and the symmetry of A€,
By Lemmas [£.3.1] and [£.3:2] Proposition [£.3.3] and using a similar technique,
it is bounded by

Jo_ . J
|K5Z ‘Soh v H’hkéyi Ph P H‘h,K&i
1 € k J J
+ Z ng, - A*Vop (goh—ap)ds
1Kol | oo Jor,

1 / (kK
+ ng, - AV ( _ ) ds
|K5,i| Z oK, K Z\PnT e

KneTh
J_ A
|K5Z ‘Sph 4 Wmh Y H‘thz
v dl A% l
|K | 90 ‘1K§1 Sph SO hK(SZ ’K(Sz" SO ’].Kgl Soh (10 ]‘LK&Z‘

o)’

4.4 The case of Dirichlet coupling

In this section we consider the following assumptions and Dirichlet coupling

condition for micro problems.
Assumption 4.2 (H2. Dirichlet coupling).

1. A%(x) € Who(Kg) with |AS; 000k, < C and |VAS, 0,00, < C/e for
all Ky € Ty

2. On each sampling domain Ks;, solution of the micro problem (3.8|) with
Dirichlet coupling (3.38) has regularity 17 € H*(Ks;) and AVl €
[H (K5:))%.
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The definition of ¢/ implies

AV - Vzdx=0 Vzec Hj(Ks;).
Ks;

Applying the integration by parts, we have V - (AEVgaj ) = 0 a.e. It implies
the same results in Propositions and under Assumption [4.2] instead
of Assumption

4.5 A priori error estimate
4.5.1 Macro error

Under sufficient regularity of «°, for instance H?, the standard analysis for
nonconforming finite elements and approximation by quadrature formulas [49]

imply that

H|u0 — U%H‘H < CH”UOHQ. (4.9)
4.5.2 Modeling error

Due to the uniform ellipticity of azr, we have

MUH — ’LLHWH <ag(u® — g, v —ag)

u%,uH — uH) — aH(HH,u(}{ — EH)

m

m

ap(
ay(uly, uly —uy) — (f, uly — Up)
( 0

ap(uly, uly —ug) — ay(uly, uly — ).
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Note that the definitions of wy and u%[ are applied successively in the above

equations. Dividing by a factor }HUOH —ug H} 7 implies a Strang-type inequality

= 0 _ 40 (,,0
oy sy 2] =y i)

(4.10)
wygEVhy H|wH”|H

Proposition [£.2.1] implies that the numerator is bounded as

| (uly, wi) — aly (uhy, wy)|

I I
= Z Zwixg(&yu% -Vwy — E Zwi A%(x;)Vul (%) - Vwg (x;)

KHETHizl KHETH’izl

<Y Y

KpeTy i=1

(ABk,, — A%(xi)) Vs - Vaoy |

< sup |[A%, , — Ax)ll2 [[[u%f ||,y Nwmlly,
5,1

and we have

9 — anl||, SC’ingX(I)(M — A%(xi)]|2. (4.11)
8,1

The analysis in [22] reads the difference between two homogenized tensors,
one from the homogenization theory and the other from micro problems with

sampling domains of size §. If we assume the local periodicity of A€, then

Ce if periodic coupling with
supHAO—K(;(MHg < §/e € Nis used for (3.5), (4.12)
Ks.i 7 C (g + (5) if Dirichlet coupling or
L d/e & N is used.
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4.5.3 Micro error

Due to the uniform ellipticity of ag, we have

Tm — unlly < aw(@m — ww, Gy — ug)

Up, Uy —up) — ag (U, Uy — )
u

ag(Up,uy —ug) — (f,0g — ug)

(
ap(
(
=ag(@p,ug —ug) —ag (U, g — um).

Therefore it holds

s — ully < s 120 0r0) = G )
= wyg EVy |HwH|||H

(4.13)

Propositions and imply that the numerator is bounded as

lag (T, wy) — ag (U, wy)|

1 1
. -0 _
= E E Wi A%MVUH . VwH — E E W AKMVUH . VwH
KHETH =1 KHETH =1

<Y Y

KpeTy i=1

(A%M - K(;(m) Vg - V'IUH‘

-0 _
<sup||Ak,, — Ak, ll2 @l lwnlly
6,1

h 2
< (%) Tully loully,

and we have

h 2
o unly < (%) - (1.14)
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4.6 Main theorem for error estimates

The Aubin-Nitsche duality argument gives L? error estimates, see [22].

Theorem 4.6.1. Let u® and ug be the solutions of ([2.2) and (3.6). Then,
the followings hold under various assumptions:

1. under Assumption if periodic coupling with §/e € N is used, then

h 2

[’ = ugl|,; <C (H +e+ <5> > : (4.15a)
h 2

Ju’ —ugllo < C (H2 +e+ <5> > ; (4.15b)

2. under Assumption if periodic coupling with §/e & N is used, then

0 € h\?

o = unllly < {H+(5+6)+(2) ). (4.16a)
0 2 € h\?

10 — ugllo < C | H? + (3 +6) + =) ) (4.16D)

3. under Assumption[4.1] and Assumption[4.3, if Dirichlet coupling is used,

then

0 € h\?

l[u —unll, <cH+(G+6)+(Z) | (4.17a)
0 2 € h\>

[ —unlo < C | B2+ (5+38)+ (=) ) (4.17b)

4. under Assumption [{.3, if Dirichlet coupling is used, then

. B 2
=l < 0 (14 s~ s+ ()] coasm
8,1

. R\ 2
Ks,i ’
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Chapter 5

Numerical Results

When one uses periodic coupling condition for the micro problems, the corre-
sponding algebraic system of equations for each micro problem must be con-
structed to consider two important properties — periodicity and zero-integral
property. Technically, one can enforce the solution to satisfy these properties

through either the discrete function space or the formulation for the problem.

In [5] these two properties are imposed through the formulation, by use of a
Lagrange multiplier and a constraint matrix. This approach is quite simple to
implement. However, it requires to solve an expanded indefinite linear system
of equations. Furthermore, the authors solve the linear system with a direct
method because its structure is not suitable to use efficient iterative methods

for the saddle point problems.

In order to overcome such disadvantages, we can alternatively use the
numerical schemes recently proposed for the P;—nonconforming quadrilateral

finite element with periodic boundary condition. These alternatives are based
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on a simple iterative method without any help of a Lagrange multiplier or
a constraint matrix, since they enforce the discrete function space with the
periodic property. The zero-integral condition is also treated in efficient ways.

For micro problems in all numerical examples, we employ one of these
alternative approaches: the option 2, whose trial and test functions are &
for a symmetric positive semi-definite system. We will investigate efficiency
of the alternative approach for micro problems in Section Furthermore,
we use 2-point Gauss-Legendre quadrature formula for each coordinate in all

numerical examples.

5.1 Periodic diagonal example

The first example is the multiscale elliptic problem of which the coefficient

tensor has anisotropic periodicity in micro scale. On Q = (0,1)?, we consider
V2 + sin(27z1 /¢) 0

0 V2 + sin(27as /¢)
where ¢ is 1073, By the homogenization theory, it can be easily shown that

the problem (2.1) with A®(x) =

the associated homogenized tensor A is equal to I, the identity tensor. f(x)
is set to satisfy that the associated homogenized elliptic problem has the exact
solution u”(x) = sin(mz1) sin(rxs). For the sake of simplicity we use the macro
and the micro mesh consisting of uniform squares. The size parameter § of each
sampling domain is set to be same as €. We use periodic coupling for micro
problems.

Table shows error in energy norm, and in L?-norm, and the difference
between two observable homogenized tensors A? and A(}(M in the Frobenius
norm. Note that the matrix 2-norm for a finite dimensional matrix is equivalent
to the Frobenius norm. The theoretical error estimates depend on H

as well as h. We can observe that the error is decreasing as H is decreasing,
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but there is a critical H value where the error does not decrease anymore

for fixed h, as particularly in L?-norm. Furthermore, in order to observe the

convergence rate as in (4.15) we have to consider simultaneous reduction of H

and h in different orders, since the theorem shows the dependency on H and

h with their own convergence orders. For instance, simultaneous reduction of

H in the second-order and h in the first-order gives convergence order of 2 in

energy norm, as observed in the table. The error in L?-norm is similar. The

numerical results confirm (4.15)) in Theorem the main convergence result

for periodic cases.

H [h/e=1/4  1/8 1/16 1/32 1/64
[ sl
1/2 [ 1.33E-00 1.35E-00 1.36E-00 1.36E-00 1.36E-00
1/4 | 6.98E-01 6.99E-01 7.03E-01 7.04E-01 7.05E-01
1/8 | 3.75E-01 3.55E-01 3.54E-01 3.55E-01 3.55E-01
1/16 | 2.77E-01 1.84E-01 1.78E-01 1.78E-01 1.78E-01
1/32 | 1.54E-01 1.04E-01 8.98E-02 8.90E-02 8.90E-02
1/64 | 1.93E-01 6.79E-02 4.66E-02 4.46E-02 4.45E-02
[u” —uplo
1/2 [ 1.21E-01 1.20E-01 1.20E-01 1.21E-01 1.21E-01
1/4 | 4.58E-02 3.22E-02 3.04E-02 3.04E-02 3.04E-02
1/8 | 3.50E-02 1.41E-02 8.21E-03 7.64E-03 7.60E-03
1/16 | 4.96E-02 1.20E-02 3.69E-03 2.06E-03 1.91E-03
1/32 | 2.88E-02 1.25E-02 3.20E-03 9.31E-04 5.16E-04
1/64 | 4.23E-02 1.16E-02 3.17E-03 8.09E-04 2.33E-04
supg;, [[AY — A% Ir
1/2 [ 1.00E-01 3.47E-02 9.02E-03 2.27E-03 5.68E-04
1/4 | 1.07E-01 3.42E-02 9.02E-03 2.27E-03 5.68E-04
1/8 | 1.04E-01 3.44E-02 9.02E-03 2.27E-03 5.68E-04
1/16 | 1.56E-01 3.43E-02 9.02E-03 2.27E-03 5.68E-04
1/32 | 8.65E-02 3.62E-02 9.02E-03 2.27E-03 5.68E-04
1/64 | 1.44E-01 3.37E-02 9.02E-03 2.27E-03 5.68E-04

Table 5.1. Error table of the example in Section
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Figure 5.1. Error plots of the example in Section

5.1.1 Comparison between approaches to solve micro problem

As mentioned in the beginning of this chapter, we mainly use the alternative
iterative approach based on the Conjugate Gradient method (CG) for micro
problems with Dirichlet coupling as well as periodic coupling condition. Here
we investigate the efficiency of the alternative iterative approach over the direct
solver for the periodic coupling case.

We consider three approaches for implementation of the FEHMM scheme.
They only differ in way for setting and solving linear systems corresponding
to micro problems. We describe these approaches in brief.

The first approach uses the @) bilinear conforming element to assemble
a linear system for each micro problem. As mentioned in [5], the assembled
system is indefinite due to blocks for constraints. The number of rows of the
system matrix is equal to n? 4 4n + 3, where n is the number of discretization
in each coordinate of each sampling domain. A direct solver from LAPACK
is used to solve the indefinite system numerically. We name this approach
‘DirQ1’.

The second approach, denoted by ‘DirP1NC’, assembles a linear system

using the P;—nonconforming quadrilateral element in similar manner as the

110 ;4 _CI:I : ]_-_]

| 7=

=

!

11’



previous approach. The only difference between two approaches is kind of used
finite elements. Thus the system matrix in this approach is also indefinite, and
has the size of n? + 4n 4 2. This system is solved by the same direct solver as

the previous approach.

The last approach, denoted by ‘IterPINC’ and mainly used throughout
the whole numerical implementations in our discussion, also uses the P;—
nonconforming quadrilateral element but in different manner unlike two previ-
ous approaches. This approach uses a basis for the discrete function space with
periodic property, and assembles a corresponding symmetric positive semi-
definite system with rank 1 deficiency. The zero-integral property is imposed
as a post-processing procedure. The size of the system matrix is n? + 1, less
than previous, due to the absence of constraint blocks. We solve this semi-

definite system in iterative way, by use of the CG.

For the comparison between three approaches, we again consider the same
multiscale elliptic problem in Section Each of three approaches is used
to solve micro problems numerically, and (sum of) the elapsed time for mi-
cro solver is measured. Table shows the elapsed time in seconds for each
approach in various combinations of macro and micro mesh size. We can ob-

serve the elapsed time in IterP1NC approach is much less than other direct

approaches.
h/e =1/32 h/e =1/64
H | DirQl DirPINC TIterPINC | DirQl DirPINC TIterPINC
1/2 6.8 4.2 1.6 326.0 295.5 12.8
1/4 20.3 16.4 6.3 | 1303.3 1164.1 52.1
1/8 73.9 66.8 25.8 | 5147.1 5143.5 213.9
1/16 | 288.8 260.8 102.5 | 20943.3 18845.1 845.5

Table 5.2. Elapsed time for micro solvers
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5.2 Periodic example with off-diagonal terms

In this example we take a tensor whose components are all nonzero with
single directional periodicity. For ¢ = 1073, consider the problem (2.1 with
V2 +sin(2rzi/e) 5+ ﬁ sin(27z /¢)

a multiscale tensor Af(x) =
% + ﬁ sin(2mxy /€) 2 + sin(27xy /€)

1 1
and the associated homogenized tensor A%(x) = . 172\/35 . We set f(x)
2v2 8

to satisfy that the exact homogenized solution u®(x) = sin(7x1) sin(7zz). As
the previous example, we use the macro and the micro mesh consisting of
uniform squares, and § = ¢ with periodic coupling for each micro problem.
Table shows that similar results can be obtained in more general periodic

case.

5.3 Example with noninteger-c-multiple sampling do-

main and Dirichlet coupling

This example, which is originated from [, is to investigate the effect of Dirich-
let coupling on micro problems. Consider the multiscale elliptic problem with

mixed boundary condition

V- (AT VEER)) = F(x) in Q= (0,1,
u€|FD =0,

where I'p = {(z1,22) | z1 = 0or 1} N9Q and I'y = 92 \ I'p. We use the
multiscale coefficient tensor A¢(x) = (2 4 cos(27z1/€))I where e = 1073, the

associated homogenized tensor A%(x) = diag(v/3,2), and f = 1 which admits
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H | h/e=1/4 1/8 1/16 1/32 1/64

[[w” = wal[

1/2 | 1.35E-00 1.36E-00 1.36E-00 1.36E-00 1.36E-00
1/4 | 6.98E-01 7.02E-01 7.04E-01 7.05E-01 7.05E-01
1/8 | 3.56E-01 3.54E-01 3.55E-01 3.55E-01 3.55E-01
1/16 | 1.96E-01 1.78E-01 1.78E-01 1.78E-01 1.78E-01
1/32 | 1.01E-01 9.12E-02 8.91E-02 8.90E-02 8.90E-02
1/64 | 8.72E-02 4.86E-02 4.48E-02 4.45E-02 4.45E-02

[u” — ugllo

1/2 | 1.20E-01 1.20E-01 1.21E-01 1.21E-01 1.21E-01
1/4 | 3.30E-02 3.06E-02 3.04E-02 3.04E-02 3.04E-02
1/8 | 1.54E-02 8.83E-03 7.68E-03 7.60E-03 7.60E-03
1/16 | 2.00E-02 4.91E-03 2.25E-03 1.92E-03 1.90E-03
1/32 | 1.13E-02 4.80E-03 1.29E-03 5.63E-04 4.81E-04
1/64 | 1.68E-02 4.45E-03 1.21E-03 3.25E-04 1.41E-04

supr,, A" — A% s

1/2 | 7.99E-02 2.76E-02 7.17E-03 1.80E-03 4.52E-04
1/4 | 8.54E-02 2.72E-02 7.17E-03 1.80E-03 4.52E-04
1/8 | 8.26E-02 2.74E-02 7.17E-03 1.80E-03 4.52E-04
1/16 | 1.24E-01 2.73E-02 7.17E-03 1.80E-03 4.52E-04
1/32 | 6.88E-02 2.88E-02 7.17E-03 1.80E-03 4.52E-04
1/64 | 1.15E-01 2.68E-02 7.18E-03 1.80E-03 4.52E-04

Table 5.3. Error table of the example in Section

Error in |-|1 H Error in ”'”o

i —o—h/e=1/4 |1 3 —o—h/e=1/4

——h/e=1/8 107 ¢ ——h/e=1/8

—=—h/e=1/16 —=—h/e=1/16

—+—h/e=1/32 —+—h/e=1/32

——hle=1/64 —o—h/e=1/64
‘ 1 0 10»4 2 ‘ 1 0
10° 10 10 10° 10

H H
Figure 5.2. Error plots of the example in Section
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the exact homogenized solution u®(x) = —ﬁxl(xl — 1). We use Dirichlet
coupling on each micro problem. We have three options for sampling domain
size § which are not multiple of ¢; § = 1.1¢, 3.1¢ and /e. The last option
is deduced from for the optimal convergence. The number of micro
elements is fixed sufficiently large to guarantee that the micro error can

not disrupt the tendency of the total error.

We can observe that error varies depending on size of sampling domains.
As shown in Table the bigger size of sampling domains gives the more

accurate results.

H | 0=1.1¢c (Diri) 3.1e (Diri) /z (Diri.,512)

[[4” — un]
1/2 8.41E-02 8.34E-02 8.33E-02
1/4 4.22E-02 4.17E-02 4.17E-02
1/8 2.51E-02 2.14E-02 2.09E-02
1/16 1.50E-02 1.11E-02 1.04E-02
1/32 1.14E-02 6.33E-03 5.28E-03
[u” —uplo
1/2 1.60E-02 1.41E-02 1.34E-02
1/4 5.07E-03 3.91E-03 3.33E-03
1/8 5.11E-03 2.29E-03 1.20E-03
1/16 3.56E-03 1.38E-03 3.57E-04
1/32 2.84E-03 1.03E-03 2.39E-04
supg, , [AY — A%, |Ir
1/2 1.59E-01 5.34E-02 1.16E-02
1/4 8.45E-02 2.97E-02 4.82E-03
1/8 1.78E-01 6.01E-02 1.64E-02
1/16 1.42E-01 4.79E-02 8.22E-03
1/32 1.74E-01 5.88E-02 1.55E-02

Table 5.4. Error table of the example in Section with 6 = 1.1e, 3.1¢, /¢
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Figure 5.3. Error plots of the example in Section with 6 = 1.1e, 3.1¢, /¢

5.4 Example on mixed domain

The last example is a problem on a domain which consists of distinct coeffi-
cients. Let Q0 = (0,1)?, and disjoint subdomains € = {(z1,z2) € Q | xp >
0.5 and 2o < 0.5} and Qo = Q\ ©Q;. We consider the second-order elliptic
problem with the coefficient tensor
A (x) = 1.1+ 61 sin(27z Je) 0 i xeq,
0 1.1 + O 1 sin(27zy /e)

with ¢ = 1073, Here d;; denotes the standard Kronecker delta. We impose
homogeneous Neumann boundary condition on the upper and lower boundary,
and Dirichlet boundary condition on the left and right boundary: value 1 on
the left and 0 on the right. Any mesh used in this example consists of uniform

squares. We use periodic coupling for micro problems with § = €. By using
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the associated homogenized tensor

v0.21 0
for x € 1,
0 1.1
A%(x) =
1.1 0
for x € Qo,
0 1.1

the reference solution u?e 7 on 1024 x 1024 mesh is obtained.

Contour plots of the solutions are drawn in Figure for comparison.
The plot on top is for the FEM solution u, 2 and the middle plot is for the
FEM solution u?, f of the homogenized problem. Both solutions are obtained
on 512 x 512 uniform square mesh. The plot on bottom is for the FEHMM
solution uz from the macro mesh with 8 x 8 uniform squares, and the micro
mesh with 16 x 16 uniform squares. The contour plots show the resemblance
of the FEHMM solution to the solution of the homogenized problem as well
as the solution of the original multiscale problem. Table [5.5| shows error of
FEHMM solutions to the reference solution in energy norm, and in L?-norm.
We can observe the reduction of error due to decreasing H and h, but not as

much as the purely periodic case.
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FEM Solution uf

R 11 0000 0

FEM Solution u%s

R 411 1001400

FEHMM Solution uy

AR 41110010100

7 . 5
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H | h/e=1/16  1/32 1/64

0
’U,ref - uH

1/2 9.02E-02 9.07E-02 9.09E-02
1/4 5.32E-02 5.34E-02 5.35E-02
1/8 3.07E-02 3.04E-02 3.04E-02
1/16 | 1.78E-02 1.69E-02 1.69E-02
1/32 | 1.11E-02 9.32E-03 9.21E-03
1/64 | 8.31E-03 5.21E-03 4.97E-03
[ul,; — umllo

1/2 9.45E-03 9.84E-03 9.97E-03
1/4 2.86E-03 2.83E-03 2.90E-03
1/8 1.53E-03 8.31E-04 8.20E-04
1/16 | 1.48E-03 4.11E-04 2.32E-04
1/32 | 1.50E-03 3.86E-04 1.06E-04
1/64 | 1.58E-03 3.91E-04 9.73E-05

Table 5.5. Error of the example in Section
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