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Abstract

P1–Nonconforming Quadrilateral Finite Space

with Periodic Boundary Condition and

Its Application to Multiscale Problems

Jaeryun Yim
The Interdisciplinary Program in

Computational Science and Technology
The Graduate School

Seoul National University

We consider the P1–nonconforming quadrilateral finite space with periodic

boundary condition, and investigate characteristics of the finite space and

discrete Laplace operators in the first part of this dissertation. We analyze

dimension of the finite element spaces in help of concept of minimally essential

discrete boundary conditions. Based on the analysis, we classify functions in a

basis for the finite space with periodic boundary condition into two types. And

we introduce several Krylov iterative schemes to solve second-order elliptic

problems, and compare their solutions. Some of the schemes are based on

the Drazin inverse, one of generalized inverse operators, since the periodic

nature may derive a singular linear system of equations. An application to the

Stokes equations with periodic boundary condition is considered. Lastly, we

extend our results for elliptic problems to 3-D case. Some numerical results

are provided in our discussion.

In the second part, we introduce a nonconforming heterogeneous multi-

scale method for multiscale problems. Its formulation is based on the P1–

nonconforming quadrilateral finite element, mainly with periodic boundary



condition. We analyze a priori error estimates of the proposed scheme by

following general framework for the finite element heterogeneous multiscale

method. For numerical implementations, we use one of the proposed iterative

schemes for singular linear systems in the previous part. Several numerical

examples and results are given.

Keywords: P1–nonconforming quadrilateral finite element, periodic bound-

ary condition, minimally essential discrete boundary conditions, singular linear

system, Drazin inverse, heterogeneous multiscale method, numerical homoge-

nization

Student Number: 2012-20414
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Chapter 1

Introduction

After the P1–nonconforming quadrilateral finite element was introduced in

[44], there have been a lot of studies about this finite element for fluid dynam-

ics, elasticity, electromagnetics [35, 27, 42, 40, 43, 47, 16, 28]. Most of those

works are focused on the finite element space with Dirichlet and/or Neumann

boundary conditions. Altmann and Carstensen [7] show the dimension of, and

a basis for the finite element space with inhomogeneous Dirichlet boundary

conditions which share similar discrete nature with Neumann boundary case.

On the other hand, the finite element space with periodic boundary condition

has not been investigated more than other boundary conditions. For instance,

it is not known that the dimension of the finite space with periodic boundary

condition as well as its basis functions.

In many cases, the solution of periodic problem is unique upto additive

constant. The discrete formulation of such problem yields a corresponding

matrix system which is singular. In a mathematical theory, we can deal a

3



singular matrix system using generalized inverses. There are various kinds of

generalized inverses of a matrix. We concentrate on the Drazin inverse which

is one of them. One of the most important properties which the Drazin inverse

of a matrix satisfies is the expressibility as a polynomial in the given matrix.

As well known, the Krylov iterative method for a nonsingular matrix equation

is established on this property. The Krylov scheme can be applied to a singular

matrix system as well under proper consistency conditions [31, 34, 50, 15, 8, 9].

In this thesis, we mainly investigate the P1–nonconforming quadrilateral

finite element spaces with periodic boundary condition. In chapter 2, we give

brief explanation for the P1–nonconforming quadrilateral finite element and

the Drazin inverse. We investigate the dimension of the finite spaces with

various boundary conditions, including periodic condition which is our main

concern, in chapter 3. For the analysis, we introduce the concept of mini-

mally essential discrete boundary conditions to understand precise effect of

given boundary condition on the dimension of the corresponding finite space.

In chapter 4, we discuss a basis for the finite space, of which the majority

are node based functions after identification between boundary nodes. And a

complementary basis consisting of a few alternating functions is considered.

After that, we propose several numerical schemes for solving a second-order

elliptic problem with periodic boundary condition. Each scheme may give a

solution of a singular matrix equation corresponding to the weak formulation.

We use an efficient iterative method based on the Krylov space in help of

the Drazin inverse of the corresponding singular matrix. The relationship be-

tween solutions of the schemes will be discussed. We apply this approach to

the Stokes equations with periodic boundary condition in chapter 5. The dis-

crete stability of the formulation is proved based on the result of the Dirichlet

boundary case. Based on the Drazin inverse, we introduce a variant of Uzawa

4



method for a singular indefinite system with a positive semi-definite block on

diagonal. Finally, we extend all our results for the elliptic problem to 3-D case

in chapter 6.
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Chapter 2

Preliminaries

2.1 P1–nonconforming quadrilateral finite element

The P1–nonconforming quadrilateral finite space in Rd is a set of all piece-

wise linear polynomials on a quadrilateral mesh (d = 2) or a hexahedral mesh

(d = 3), which fulfill the integral-continuity across all (d− 1)-dimensional in-

terior faces. The integral-continuity is described precisely as follows: if f is a

(d − 1)-dimensional face which is shared by two adjacent elements K+ and

K−, then every function v in the finite space satisfies
∫
f v|K+ =

∫
f v|K− .

Since we consider piecewise linear functions, the above relation is equivalent

to the continuity of function at the midpoint (d = 2) or at the center point

(d = 3, parallelepipedal mesh) of f . Thus degrees of freedom (DoFs) of the

P1–nonconforming quadrilateral finite element are function values at the mid-

points (or center points) of all (d− 1)-dimensional faces.

There are 4 midpoints in a quadrilateral, and 6 center points in a paral-

lelepiped. As mentioned above, the value at each midpoint (or center point)
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corresponds to DoF of the finite element. On the other hand, just (d+ 1) co-

efficients are enough to determine a unique linear function in a d-dimensional

space. Such difference concludes the existence of a linear relation between DoFs

in local, so called, the dice rule. For a given linear function which is defined in

a quadrilateral in 2-D space, the sum of two function values at the midpoints

of the edge pair on opposite sides is always equal to the sum of those at the

midpoints of the other edge pair. An analog relation in 3-D space holds, as an

ordinary dice.

Due to the dice rule, a set of specially designed functions is used to con-

struct a global basis for the finite space with Dirichlet or Neumann boundary

conditions. Since each of them corresponds a node in the triangulation, we call

them node based functions. The specific construction of node based functions

will be explained in the section for notations.

For more details on the P1–nonconforming quadrilateral finite element, see

[44].

2.2 Drazin inverse

The Drazin inverse is a generalized inverse of linear transformations or matri-

ces. Here, we introduce the Drazin inverse in brief.

Let A be a linear transformation on Cn. Let k be the smallest nonnegative

integer such that ImA0 ⊃ ImA ⊃ · · · ⊃ ImAk−1 ⊃ ImAk = ImAk+1 = · · · .

It is equivalent to kerA0 ⊂ kerA ⊂ · · · ⊂ kerAk−1 ⊂ kerAk = kerAk+1 = · · · ,

due to the dimension theorem. k is called the index of A, and denoted by

Ind (A). Then the vector space C can be decomposed as the sum of the image

space and the kernel space of Ak:

Lemma 2.2.1 ([15]). Cn = ImAk + kerAk.
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It yields that, restricted on ImAk, the transformation A becomes an in-

vertible linear transformation. Thus we can define a linear transformation AD

on Cn as follows: for u = v + w ∈ Cn where v ∈ ImAk and w ∈ kerAk,

ADu := A|−1
ImAk v. A

D is called the Drazin inverse of A. When A is a complex

matrix in Cn×n, AD is defined as the matrix of the Drazin inverse of induced

linear transform with respect to the standard basis of Cn.

One of the most important properties of the Drazin inverse matrix is that

the Drazin inverse matrix of A is expressible as a polynomial in A:

Theorem 2.2.2 ([15]). If A ∈ Cn×n, then there exists a polynomial p(x) such

that AD = p(A).

We know that for given nonsingular matrix A the possibility to express its

inverse as a polynomial in A is closely related with Krylov iterative methods.

Similarly, even if A is a singular matrix system, a unique Drazin inverse so-

lution can be found using Krylov iterative method under proper consistency

condition.

Theorem 2.2.3 ([31]). Let m be the degree of the minimal polynomial for A,

and let i be the index of A. If b ∈ ImAi, then the linear system Ax = b has a

unique Krylov solution x = ADb ∈ Km−i(A, b). If b ̸∈ ImAi, then Ax = b does

not have a solution in the Krylov space Kn(A, b).

For details, see [15, 31].

2.3 Notations

Assume Ω ⊂ Rd is a d-dimensional rectangular domain where d = 2 or 3. Let

Th be a triangulation of Ω consisting of d-dimensional cubes. h denotes the

mesh parameter. Nx, Ny, and Nz are the number of elements in Th along x-, y-,
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and z-direction, respectively. Let Fh, F ih, Fbh, and F
b,opp
h denote the set of all

(d− 1)-dimensional faces, of all interior faces, of all boundary faces, and of all

pairs consisting of two boundary faces on opposite position, respectively. Let

Nh denote the set of all nodes in Th. We introduce several standard Sobolev

spaces and discrete function spaces for the P1–nonconforming quadrilateral

finite element:

C∞
per(Ω) = the subset of C∞(Rd) of Ω-periodic functions,

H1
per(Ω) = the closure of C∞

per(Ω) in H
1-norm,

H1
per(Ω)/R = {v ∈ H1

per(Ω) |
∫
Ω
v = 0},

V h = {vh ∈ L2(Ω) | vh|K ∈ P1(K)∀K ∈ Th, ⟨[vh]f , 1⟩f = 0∀f ∈ F ih},

V h
0 = {vh ∈ V h | ⟨vh, 1⟩f = 0 ∀f ∈ Fbh},

V h
per = {vh ∈ V h | ⟨vh, 1⟩f1 = ⟨vh, 1⟩f2 ∀(f1, f2) ∈ F

b,opp
h },

V h
per/R = {vh ∈ V h

per |
∫
Ω
vh = 0},

where P1(K) denotes the set of all linear polynomials on K and [·]f the jump

across (d− 1)-dimensional face f . Let ∥ · ∥0, | · |1, and | · |1,h denote the stan-

dard L2-norm, H1-(semi-)norm, and mesh-dependent energy norm in Ω, re-

spectively.

Here we define the concept of node based functions. For a given node z in

Th, let F(z) denote the set of all (d− 1)-dimensional faces containing z. Then

we can construct a function ϕz ∈ V h associated with z such that

ϕz(mf ) =


0.5 if f ∈ F(z),

0 else,

where mf is the midpoint of (d − 1)-dimensional face f in Fh. We call ϕz

10



the node based function associated with z. In the case of periodic boundary

condition with rectangular Ω, of course, we identify two side boundary nodes

in every opposite periodic position, and four nodes at corners. Using the node

based functions, we introduce a discrete function space and a set of functions

which we mainly use in after:

V B,h
per = {vh ∈ V h

per | vh ∈ Span{ϕz}z∈N per
h
},

B = {ϕz}z∈N per
h

: the set of all node based functions in V h
per,

where N per
h denotes the set of all nodes after periodic identifying. Clearly,

due to their definitions, SpanB = V B,h
per ⊆ V h

per. But B may not be linearly

independent. It is worth to note that |B| = NxNy in 2-D case, NxNyNz in

3-D case, due to identification between nodes on boundary.

For a given set S, suppose a vector v of size |S| is given. Then we denote

a linear combination of S, whose representation vector with respect to S is

v, by vS. If a scalar-valued (integrable) function f is given,
∫
D fS denotes

a vector, size of |S|, such that each component is the integral of the product

of f and the corresponding element in S over the domain D. 1S denotes a

vector, size of |S|, consisting of 1 for all components.
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Chapter 3

Dimension of the Finite Spaces

3.1 Induced relation between boundary DoF values

We firstly consider the case of d = 2. The higher dimensional case will be

covered in Chapter 6. Let NQ denote the number of all elements in Th. Let NV ,

N i
V , and N

b
V denote the number of all vertices, of all interior vertices, and of all

boundary vertices, respectively. Similarly NE , N
i
E , and N

b
E denote the number

of all edges, of all interior edges, and of all boundary edges, respectively. Our

consideration starts from a partition of all vertices.

Lemma 3.1.1. There exists a partition of all vertices in Th into two groups,

Red and Black, such that any two vertices connected by an edge are not con-

tained in the same group.

Proof. Suppose there is no such partition. It means that there are two vertices

and two different paths connecting them such that one path consists of edges

in even number and the other path consists of edges in odd number. Without

13
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Figure 3.1. An example of dice rules on elements under the same orientation

loss of generality, we assume that these two paths do not share any edge as

their common segment. Then the union of two paths composes the boundary

of a simply connected domain Ω′ consisting of quadrilaterals and the boundary

of Ω′ consists of edges in odd number. However, a counting formula for the

number of edges in Ω′ is

4#(elements) = 2#(interior edges) + #(boundary edges), (3.1)

and it implies that the number of boundary edges of Ω′ must be even. This

contradiction completes the claim.

Remark 3.1.2. Lemma 3.1.1 holds for any simply connected domain and

any triangulation with quadrilaterals. If a domain is not simply connected,

then such partition of vertices may not exist.

If (3.1) is applied to the domain Ω, we easily get a simple fact that the

number of boundary edges in Th is always even. Each edge contains a midpoint

and each midpoint is associated with DoF. Thus we have DoF values in even

number along boundary edges in Th. We want to claim a relation between

these boundary DoF values.

Choose an orientation and apply it to all elements in Th. On each element,

14



we define the direction of each edge along given orientation. If an edge has a

direction from Red to Black, then we impose the plus sign on the edge. Else

if from Black to Red, the minus sign will be imposed. This rule determines

the sign of edges locally. Indeed, every interior edge gets two local signs cor-

responding two adjacent elements, respectively. It can be observed that two

local signs on each interior edge are always opposite because all elements share

the same orientation. Figure 3.1 shows an example of such construction with

clockwise orientation.

According to the local sign on each edge, we can get a relation which is

another form of the dice rule on each element. In other word, if we add 4 DoF

values at edge midpoints in each element with the signs corresponding to, then

it has to be 0:

vh(m
K
1 )− vh(mK

2 ) + vh(m
K
3 )− vh(mK

4 ) = 0 ∀vh ∈ V h, ∀K ∈ Th.

Thus we can get the-number-of-elements relations by employing the local signs.

Note that the value on each interior edge appears in exactly two equations, but

with opposite sign. Therefore, by summing up all equations, we get a single

relation which only contains DoF values on boundary with alternating sign.

Note that the number of boundary edges in Th is always even.

Lemma 3.1.3. There exists a way to give alternating sign on boundary edges.

Moreover, an alternating sum of boundary DoF values of vh ∈ V h is always

zero.

We want to emphasize that the relation between boundary DoF values

is induced by the dice rule. In other words, the characteristic of the P1–

nonconforming quadrilateral element enforces the relation on boundary, even

in the case of Dirichlet boundary problems. A combination of imposing bound-
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ary DoF values violating the relation on boundary is not allowed.

Conversely, this relation can help to impose discrete boundary condition.

For instance, in order to impose homogeneous Dirichlet condition on the

boundary we do not need to set all boundary DoF values to zero. Zero DoF

values at all boundary midpoints except any one of them are just enough be-

cause the appropriate last DoF value is naturally given as zero by the relation

on the boundary. Such a role of the relation leads to concept of minimally

essential discrete boundary conditions.

3.2 Minimally essential discrete boundary conditions

As mentioned in the previous section, a combination of the dice rules on all

elements induces a relation on boundary DoF values. This relation means a

compatibility condition for boundary DoF values in order to be in the discrete

function space appropriately. And the induced relation between boundary DoF

values can help to impose boundary DoF values associated with given bound-

ary condition. Therefore we do not need to impose given essential boundary

condition to all boundary DoFs independently. A subset of essential boundary

DoF values will be enough. We call a set of discrete boundary conditions min-

imally essential if essential boundary DoF values in the set induce all other

essential boundary DoF values naturally, but any proper subset of the set does

not.

The P1–nonconforming quadrilateral element satisfies the dice rule on each

element and inter-element continuity at each interior edge midpoint. Since the

dice rule on each element is equivalent to a single relation between DoFs

in 2-D case, without considering boundary conditions, the dimension of the

discrete function space is equal to the number of all edges subtracted by the

number of elements. When a boundary condition is considered, each essential

16



boundary DoF removes the dimension of the space by 1. Therefore, the number

of subtracted degrees of freedom due to essential boundary conditions is just

equal to the number of minimally essential discrete boundary conditions.

Lemma 3.2.1. The following relation holds.

(dimension of finite space)

= #(edges)−#(elements)

−#(minimally essential discrete boundary conditions).

Proposition 3.2.2. (Neumann and Dirichlet B.C.) It holds that

#(minimally essential discrete boundary conditions)

=


0 if the case of Neumann B.C.,

N b
E − 1 if the case of homogeneous Dirichlet B.C.

Consequently,

dim V h = NE −NQ = NV − 1, (3.2a)

dim V h
0 = NE −NQ − (N b

E − 1) = N i
V . (3.2b)

Now we consider the case of periodic boundary conditions. In contrast with

the case of Dirichlet boundary condition, periodic boundary conditions enforce

two boundary DoF values on two opposite boundary edges to be equal. Thus,

in this case, the concept of minimally essential discrete boundary conditions

means a smallest set of periodic relations between opposite boundary edges

which induce all such periodic relations.

The behavior is quite different, which depends on the parity of Nx and Ny.
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Figure 3.2. Induced relation between boundary DoF values

Suppose both Nx and Ny are even. Then we can easily derive the last periodic

relation from the other periodic relations with the help of the relation between

boundary DoFs in Lemma 3.1.3. It means that a set of all periodic relations

except any one of them is minimally essential. On the other hand, if either Nx

or Ny is odd, then we can not get such a natural induction, and a set of all

periodic relations itself is minimally essential, see Figure 3.2.

Proposition 3.2.3. (Periodic B.C.) In case of periodic B.C. on Nx × Ny

rectangular mesh,

#(minimally essential discrete boundary conditions)

=


Nx +Ny − 1 if both Nx and Ny are even,

Nx +Ny otherwise.

Consequently,

dim V h
per =


NxNy + 1 if both Nx and Ny are even,

NxNy otherwise.

(3.3)
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Chapter 4

Deeper Look on the Finite Space

with Periodic B.C.

We derive the dimension of V h
per which depends on the parity of discretizations

in Th in Chapter 3. In the first two parts of this chapter, we investigate basis

for V h
per. A natural guess to basis for periodic finite space is B, the set of all

node based functions in V h
per. It is a result of natural inference from the case

of Dirichlet boundary condition. The set of all interior node based functions

becomes a basis for V h
0 . However, in general, B may not be a basis for V h

per.

It may be linearly dependent and even fail to span V h
per in some cases.

4.1 Linear dependence of B

We write B = {ϕ1, ϕ2, · · · , ϕ|B|}. Define a surjective linear map BB
h : R|B| →

V B,h
per by BB

h (c) =
∑

j cjϕj where c = (cj) ∈ R|B|. Then kerBB
h is the set of all

nontrivial representations of the zero function. Before investigation on global
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Figure 4.1. A nontrivial representation for the zero function on a square

representations, let us consider local representations in detail.

On a single element, there is a single degree of freedom for the zero rep-

resentation. Figure 4.1 shows such a representation of coefficients for node

based functions. The value at each vertex represents a coefficient for the cor-

responding node based function in B. By extension of local coefficients, global

coefficient representations for kerBB
h can be obtained. To match coefficients

on adjacent elements, the only way to extend local representation is repetition

of local representation with alternating sign. The extension is possible only if

the number of discretization on each coordinate is even due to the periodicity.

Moreover such extension is unique. On the other hand, if Nx is odd, the alter-

nating extension along x-direction implies the trivial representation because

we identify some nodes on the boundary. The case of odd Ny is similar.

Proposition 4.1.1. (The dimension of kerBB
h and V B,h

per ) It holds that

dim kerBB
h =


1 if both Nx and Ny are even,

0 else,

(4.1)

and any |B| − 1 functions in B form a basis for V B,h
per when both Nx and Ny

are even, whereas B itself is a basis for V B,h
per when either Nx or Ny is odd.
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Consequently,

dim V B,h
per = |B| − dim kerBB

h =


NxNy − 1 if both Nx and Ny are even,

NxNy else.

(4.2)

4.2 A Basis for V h
per

For the first case, we suppose both Nx and Ny are even. Propositions 3.2.3

and 4.1.1 imply that B is linearly dependent and V B,h
per is a proper subset of

V h
per. The difference between the dimensions of V B,h

per and V h
per is equal to 2. It

means that there exist two complementary basis functions for V h
per which do

not belong to V B,h
per .

Let ψx denote a piecewise linear function in V h
per whose DoF values on

vertical edges are all 1 with alternating sign in vertical and horizontal direction,

and DoF values on horizontal edges are all 0 (Figure 4.2 (a)). ψx is well-defined

since Nx is even. Note that piecewise partial derivative of ψx in x-direction

forms a checkerboard pattern, but piecewise partial derivative in y-direction

is always zero. To show ψx ̸∈ V B,h
per , define a linear functional Jhx : V h

per → R

as follows. For given vh ∈ V h
per, J

h
x (vh) is the sum of DoF values of vh on all

vertical edges with the alternating sign same to that of ψx. It is easily shown

that, if Ny is even, Jhx maps every node based function ϕj to zero. However

Jhx (ψx) is nonzero, which means ψx can not be constructed by any linear

combination of node based functions. In other words, ψx ̸∈ V B,h
per . Similarly,

we can find another piecewise linear function ψy in V
h
per, not belonging to V B,h

per

(Figure 4.2 (b)).

The second is the case either Nx or Ny is odd. Propositions 3.2.3 and 4.1.1

imply that B is linearly independent and dim V B,h
per = dim V h

per. Therefore
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Figure 4.2. An example of two alternating functions (a) ψx and (b) ψy

V B,h
per = V h

per and B, the set of all node based functions, is a basis for V h
per.

Theorem 4.2.1. (A complementary basis for V h
per)

1. If both Nx and Ny are even, then V B,h
per is a proper subset of V h

per. And

{ψx, ψy} is a complementary basis for V h
per, not belonging to V B,h

per .

2. Else if either Nx or Ny is odd, then V B,h
per = V h

per.

4.3 Stiffness matrix associated with B

Even though it may not be a basis for V h
per, B is still a useful set of functions to

understand V h
per. The dimension result in previous sections claims that V B,h

per ,

the span of B, occupies almost of V h
per. Furthermore, the node based functions

are easy to handle in implementation viewpoint. We study about B in this

section.

Let SB
h be the |B|-by-|B| stiffness matrix associated with B = {ϕj}.

(SB
h )jk =

∑
K∈Th

∫
K
∇ϕk · ∇ϕj dx 1 ≤ j, k ≤ |B|. (4.3)
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Figure 4.3. The stencil for SB
h

The local stencil for the stiffness matrix associated with B is shown in Fig-

ure 4.3. Obviously, SB
h is symmetric and positive semi-definite.

Lemma 4.3.1. Let vh =
∑

j vjϕj for v = (vj) ∈ R|B|. Then v ∈ kerSB
h if

and only if vh is a constant function in Ω.

Proof. By the definition of SB
h ,

∑
K∈Th

∫
K |∇vh|

2 dx = vTSB
h v. If v ∈ kerSB

h ,

then vh is constant in Ω, due to the weak continuity across each edge. Con-

versely if vh is constant, then vTSB
h v = 0. Since SB

h is symmetric positive

semi-definite, it has its square root matrix. Thus we get SB
h v = 0.

Next claims reveal the relation between kerSB
h and kerBB

h .

Lemma 4.3.2. kerBB
h ⊂ kerSB

h .

Proof. Let v = (vj) be in kerBB
h , i.e.,

∑
j
vjϕj = 0. The claim is a simple

consequence of Lemma 4.3.1.

Proposition 4.3.3. kerSB
h can be decomposed as

kerSB
h = kerBB

h ⊕ Span1B. (4.4)

Consequently, dim kerSB
h = dim kerBB

h + 1.
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Proof. Note that both kerBB
h and Span1B are subsets of kerSB

h , and kerBB
h ∩

Span1 = {0} due to Lemmas 4.3.1 and 4.3.2. Thus it is enough to show that

any v in kerSB
h can be expressed as a sum of two vectors which are in kerBB

h

and Span1B, respectively.

Suppose v = (vj) ∈ kerSB
h . Lemma 4.3.1 implies that there exists a con-

stant α ∈ R such that
∑

j vjϕj ≡ α. Note that B is a partition of unity,

i.e.,
∑

j ϕj ≡ 1. We can rewrite as
∑
j
(vj − α)ϕj = 0, which implies that

v − α1B ∈ kerBB
h . Therefore v can be decomposed as v = (v − α1B) + α1B

and it completes the proof.

Remark 4.3.4. Lemmas 4.3.1 and 4.3.2, and Proposition 4.3.3 are also valid

in 3-D case.

The following is a simple consequence of Propositions 4.1.1 and 4.3.3.

Proposition 4.3.5. (The dimension of kerSB
h )

dim kerSB
h =


2 if both Nx and Ny are even,

1 else.

(4.5)

4.4 Numerical schemes for elliptic problems with pe-

riodic boundary condition

Consider an elliptic problem with periodic boundary condition

−∆u = f in Ω, (4.6a)

u is periodic, (4.6b)∫
Ω
u dx = 0, (4.6c)
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with the compatibility condition
∫
Ω f = 0. The zero-integral condition (4.6c)

is quite natural since the governing equation is invariant to additive constant

on the variable. The weak formulation is as follows: find u ∈ H1
per(Ω) such that

∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx ∀v ∈ H1

per(Ω), (4.7a)∫
Ω
u dx = 0. (4.7b)

And the corresponding discrete weak formulation is as follows: find uh ∈ V h
per

such that

ah(uh, vh) =

∫
Ω
fvh dx ∀vh ∈ V h

per, (4.8a)∫
Ω
uh dx = 0, (4.8b)

where ah(uh, vh) :=
∑

K∈Th
∫
K ∇uh · ∇vh dx.

Throughout this section, we assume that both Nx and Ny are even. The

other case which considers odd Nx and/or Ny is easy to handle because V h
per is

just equal to V B,h
per . Due to Proposition 4.1.1, we can findB♭, a proper subset of

B, which is a basis for V B,h
per . It clearly holds that |B♭| = dim V B,h

per = |B| − 1.

Without loss of generality, we take B♭ = {ϕ1, · · · , ϕ|B|−1}. We want to recall

ψx and ψy, the two complementary basis functions for V h
per which are not

belonging to V B,h
per , in Section 4.2. Let A denote the set consisting of these two

functions, {ψx, ψy}. Consider two extended sets E := B∪A, and E♭ := B♭∪A.

Remark that E♭ is a basis for V h
per. The characteristics of B

♭, B, E♭, and E are

summarized in Table 4.1.

For a vector v of size |E|, let v|B and v|A denote vectors consisting of the

first |B| components, and of the last |A| components, respectively. Similarly,
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S |S| SpanS dim SpanS
B♭ NxNy − 1

V B,h
per NxNy − 1

B NxNy

E♭ NxNy + 1
V h
per NxNy + 1

E NxNy + 2

Table 4.1. Summary of characteristics of B♭, B, E♭, E when both Nx, Ny are
even

notations v|B♭ and v|A are used for a vector v of size |E♭|. Several properties

of functions in B and A are observed.

Lemma 4.4.1. Let B and A be as above. Then the followings hold.

1. ah(ϕ, ψ) = 0 ∀ϕ ∈ B ∀ψ ∈ A.

2. ah(ψµ, ψν) = 0 ∀ψµ, ψν ∈ A such that µ ̸= ν.

3.
∫
Ω ψ = 0 ∀ψ ∈ A.

4. There exists an h-independent constant C such that ∥ψ∥0 ≤ C and

|ψ|1,h ≤ C/h ∀ψ ∈ A.

Next, we introduce a stiffness matrix associated with another set of func-

tions, and its variant. Let SB♭

h be the |B♭|-by-|B♭| stiffness matrix associated

with B♭,

(SB♭

h )jk := ah(ϕk, ϕj) 1 ≤ j, k ≤ |B♭|, (4.9)

and S̃B♭

h be the matrix same as SB♭

h , but the last row is modified in order to

impose the zero-integral condition. Because all the integrals
∫
Ω ϕj are same
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for all ϕj in B, every entry in the last row is replaced by 1.

(S̃B♭

h )jk :=


ah(ϕk, ϕj) j ̸= |B♭|,

1 j = |B♭|.
(4.10)

Note that S̃B♭

h is nonsingular whereas both SB
h and SB♭

h are singular with rank

deficiency 2 and 1, respectively. For the complementary part, let SA
h be the

|A|-by-|A| stiffness matrix associated with A,

(SA
h )jk := ah(ψk, ψj) 1 ≤ j, k ≤ |A|. (4.11)

SA
h is a nonsingular diagonal matrix due to Lemma 4.4.1. In followings we

introduce 4 numerical approaches to solve (4.8).

4.4.1 Option 1: S = E♭ for a nonsingular nonsymmetric system

Since E♭ is a basis for V h
per, E

♭ is a natural choice as a set of trial and test

functions to assemble a matrix equation corresponding to (4.8). The numerical

solution uh ∈ V h
per is uniquely expressed, associated with E♭, as

uh = ũ♭E♭ (4.12)

where ũ♭ is the solution of the system of equations associated with E♭

L̃E♭

h ũ♭ :=

S̃B♭

h 0

0 SA
h

 ũ♭ =

f̃B♭

fA

 (4.13a)
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with

(f̃B♭)j =


∫
Ω fϕj , j ̸= |B♭|

0, j = |B♭|
, fA =

∫
Ω
fA. (4.13b)

Due to Lemma 4.4.1, we get a block-diagonal system as above. The system

matrix is nonsingular, but nonsymmetric due to modification of the last row of

S̃B♭
which is derived from the zero-integral condition. We can use any known

numerical scheme for general matrix systems, for instance GMRES, to solve

(4.13).

4.4.2 Option 2: S = E♭ for a symmetric positive semi-definite

system with rank deficiency 1

In the previous approach, the zero-integral condition is imposed in a system

of equations directly. In a consequence, the associated system matrix becomes

nonsymmetric due to modification of just a single row. If we use a numerical

scheme which conserves symmetry of the system, then we can enjoy advantages

of the symmetry.

An alternative approach is a way to impose the zero-integral condition

indirectly in order to conserve symmetry of the assembled system matrix. We

make our solution satisfying the zero-integral condition in post-processing. On

the other hand, nonsingularity of the matrix can not be maintained any longer

in this approach. We have to find out a solution of a singular matrix problem.

Fortunately the system matrix is at least positive semi-definite.

Consider a system of equations for (4.8) associated with E♭ without any

28



modification,

LE♭

h u♭ :=

SB♭

h 0

0 SA
h

u♭ =

∫
Ω
fE♭. (4.14)

Note that the above system matrix is singular, and symmetric positive semi-

definite. We find the solution u♭ of the system such that

u♭|B♭ · 1B♭ = 0 (4.15)

since
∫
Ω vE♭ = 0 if and only if v|B♭ · 1B♭ = 0, and the numerical solution

u♭h ∈ V h
per of this scheme is obtained by

u♭h = u♭E♭. (4.16)

As mentioned in Section 2.2, we can find a unique Drazin inverse solution

of a singular system using Krylov iterative methods under proper condition.

When a symmetric positive semi-definite system Ax = b is given, as our formu-

lation, the Conjugate Gradient method (CG) gives a unique Krylov solution

if consistency condition b ∈ ImA holds. The general solution is obviously

obtained upto its kernel space.

The kernel space of the system matrix in (4.14) is closely related with the

kernel space of SB♭

h . A simple analog of Section 4.3 implies that the dimension

of kerSB♭

h is 1, and v ∈ kerSB♭

h if and only if vB♭ is a constant function in

Ω. Note that B♭ is not a partition of unity, whereas B is. Let wB♭ denote a

unique vector in R|B♭| such that wB♭B♭ ≡ 1 in Ω. Then the kernel space of the

system matrix in (4.14) is simply represented by SpanwE♭ where wE♭ ∈ R|E♭|

is the trivial extension of wB♭ , as
[
wT

B♭ 0
]T

. Therefore in post-processing we

add a multiple of wE♭ to the Krylov solution to satisfy (4.15).
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We have the numerical solution u♭h as follows.

1. Take a vector u(0) ∈ R|E♭| for an initial guess.

2. Solve the singular symmetric positive semi-definite system (4.15) by the

CG and get the Krylov solution u′ = u(n).

3. Add a multiple of wE♭ to u′ in order to enforce the zero-integral condi-

tion (4.15) as

u♭ = u′ − u′|B♭ · 1B♭

wB♭ · 1B♭

wE♭ .

4. The numerical solution is obtained as u♭h = u♭E♭.

Let u♭ and ũ♭ be the solutions as in Sections 4.4.1 and 4.4.2, respectively.

Note that two linear systems (4.13) and (4.14) coincide except |B♭|-th row.

Even on |B♭|-th row,

(
L̃E♭

h u♭
)
|B♭|

= 1B♭ ·
(
u′ − u′|B♭ · 1B♭

wB♭ · 1B♭

wE♭

)∣∣∣∣
B♭

= 1B♭ ·
(
u′|B♭ −

u′|B♭ · 1B♭

wB♭ · 1B♭

wB♭

)
= 0.

Thus L̃E♭

h u♭ =

f̃B♭

fA

 = L̃E♭

h ũ♭, and it implies u♭ = ũ♭ because L̃E♭

h is nonsin-

gular. Therefore two schemes give the same numerical solution.
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4.4.3 Option 3: S = E for a symmetric positive semi-definite

system with rank deficiency 2

Although symmetry and positive semi-definiteness of the system matrix are

key factors for an efficient numerical scheme, we can not enjoy full benefits in

the previous scheme. We need the extra post-processing to impose the zero-

integral condition. The defect in the previous approach comes from the fact

that the Riesz representation vector for the integral functional does not belong

to the kernel space of the system matrix. As shown above, the kernel space of

the system matrix is closely related with the coefficient vector for the unity

function. If these two vectors coincide, we can get our solution without any

post-processing. The imbalance of B♭ for the linear independence is also a

disadvantage to numerical implementation.

In this approach, we find the numerical solution u♮h ∈ V
h
per such that

u♮h = u♮E (4.17)

where u♮ is a solution of a system of equations for (4.8) associated with full E,

LEhu♮ :=

SB
h 0

0 SA
h

u♮ =

∫
Ω
fE (4.18)

with

u♮|B · 1B = 0, (4.19)

since
∫
Ω vE = 0 if and only if v|B · 1B = 0. The numerical solution u♮ is

unique because solution of the matrix system is unique upto additive nontrivial

representation for the zero function in B. We want to emphasize that, unlike
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the previous scheme, 1B belongs to the kernel space of SB
h as shown in (4.3.3).

It implies that, without any extra post-processing, we can find the solution of

the linear system which satisfies the zero-integral condition (4.19) if an initial

guess is chosen to satisfy the same condition.

We have the numerical solution u♮h as follows.

1. Take an initial vector u(0) ∈ R|E| which satisfies u(0)|B · 1B = 0.

2. Solve the singular symmetric positive semi-definite system (4.18) by the

CG and get the Krylov solution u♮ = u(n).

3. The numerical solution is obtained as u♮h = u♮E.

Let u♮ and u♭ be the solutions as in Sections 4.4.3 and 4.4.2, respectively.

Clearly u♮|A = u♭|A. Therefore it is enough to show u♮|BB = u♭|B♭B♭ to prove

the equality of two solutions u♮h and u♭h. Note that u
♭
h has been already proven

to be equal to uh.

Let

u♭|B♭

0

 be a trivial extension of u♭|B♭ into a vector in R|B| by padding

a single zero. Note that
∑|B|

j=1(S
B
h )jk = 0 for all 1 ≤ k ≤ |B|. Due to the

definition of u♭, we have

SB
h

u♭|B♭

0

 =

 SB♭

h u♭|B♭

[SB
h ]|B|,1:|B♭|u

♭|B♭


=


∫
Ω fB

♭

−
∑
j ̸=|B|

[SB
h ]j,1:|B♭|u

♭|B♭


=

 ∫
Ω fB

♭

−
∑|B♭|

j=1 [S
B♭

h ]j,1:|B♭|u
♭|B♭


=

 ∫
Ω fB

♭

−
∑|B♭|

j=1

∫
Ω fϕj

 =

 ∫
Ω fB

♭∫
Ω f(ϕ|B| − 1)

 =

∫
Ω
fB,
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since B is a partition of unity and
∫
Ω f = 0. On the other hand, the def-

inition of u♮ implies SB
h u

♮|B =
∫
Ω fB. Thus u♮|B −

u♭|B♭

0

 is in the ker-

nel space of SB
h , which is decomposed as Proposition 4.3.3. Due to the zero-

integral condition in each scheme,

u♮|B −

u♭|B♭

0

 ·1B = u♮|B ·1B−u♭|B♭ ·

1B♭ = 0. Therefore u♮|B −

u♭|B♭

0

 must belong to kerBB
h , and consequentlyu♮|B −

u♭|B♭

0

B = u♮|BB − u♭|B♭B♭ is equal to 0. This concludes our

claim.

4.4.4 Option 4: S = B for a symmetric positive semi-definite

system with rank deficiency 2

Consider a system of equations associated only with B for (4.8) with V B,h
per

rather than V h
per,

LBh ū♮ := SB
h ū

♮ =

∫
Ω
fB. (4.20)

Starting from an initial vector u(0) ∈ R|B| which satisfies u(0) · 1B = 0, let ū♮

be the Krylov solution of the linear system. The numerical solution ū♮h ∈ V
h
per

is obtained by

ū♮h = ū♮B. (4.21)

Let u♮ and ū♮ be the solutions as in Sections 4.4.3 and 4.4.4, respectively.

Note that u♮|B = ū♮, and u♮|A = diag (ah(ψx, ψx), ah(ψy, ψy))
−1 ∫

Ω fA ≤
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Ch2
∫
Ω fA due to Lemma 4.4.1. A simple inequality

∫
Ω
fψ ≤ C

(∫
Ω
|f |2

)1/2(∫
Ω
|ψ|2

)1/2

≤ C∥f∥0 ∀ψ ∈ A

implies that each component of u♮|A is bounded by O(h2). It estimates the dif-

ference between u♮h and ū♮h in L2- and H1-(semi-)norm. The following theorem

states the relation between all numerical solutions discussed above.

Theorem 4.4.2 (Relation between numerical solutions). Let uh, u
♭
h, u

♮
h, ū

♮
h be

the numerical solutions of (4.6) as (4.12), (4.16), (4.17), (4.21), respectively.

Then uh = u♭h = u♮h, and

∥u♮h − ū
♮
h∥0 ≤ Ch

2∥f∥0, |u♮h − ū
♮
h|1,h ≤ Ch∥f∥0.

4.5 Numerical results

For the scheme option 1 in numerical tests, we use the restarted GMRES

scheme in MGMRES library provided by Ju and Burkardt [33]. We emphasize

that we replace one of essentially linearly dependent rows of SB♭

h by the zero-

integral condition in order to make S̃B♭

h nonsingular.

The first example is the problem (4.6) on the domain Ω = (0, 1)2 with the

exact solution u(x, y) = s(x)s(y) where

s(t) =
3∑

k=1

4

(2k − 1)π
sin
(
2(2k − 1)πt

)
, (4.22)

a truncated Fourier series for the square wave. For each option, the error in

energy norm and L2-norm are shown in Table 4.2. We can observe that all

schemes give a very similar numerical solution.

The second example is the same problem with the exact solution u(x, y) =
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s(x)s(y) where

s(t) = exp

(
− 1

1− (2t− 1)2

)
t2(1− t) + C, (4.23)

with a constant C satisfying
∫
[0,1] s = 0. Table 4.3 shows numerical results

in each option, and all options give almost the same result, as the previous

example. The iteration number and elapsed time in each option in case of

h = 1/256 are shown in Table 4.4. We can observe decrease of the iteration

number and elapsed time in option 3 compared to option 2. Decrease from

option 3 to option 4 is quite natural because we only use the node based

functions as trial and test functions in option 4.
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Opt 1 Opt 2
h |u− uh|1,h order ∥u− uh∥0 order |u− uh|1,h order ∥u− uh∥0 order

1/8 1.123E+01 - 4.230E-01 - 1.123E+01 - 4.230E-01 -
1/16 5.466E-00 1.039 8.607E-02 2.297 5.466E-00 1.039 8.607E-02 2.297
1/32 2.832E-00 0.949 2.216E-02 1.957 2.832E-00 0.949 2.216E-02 1.957
1/64 1.429E-00 0.987 5.585E-03 1.989 1.429E-00 0.987 5.585E-03 1.989
1/128 7.160E-01 0.997 1.399E-03 1.997 7.160E-01 0.997 1.399E-03 1.997
1/256 3.582E-01 0.999 3.499E-04 1.999 3.582E-01 0.999 3.499E-04 1.999

Opt 3 Opt 4
h |u− uh|1,h order ∥u− uh∥0 order |u− uh|1,h order ∥u− uh∥0 order

1/8 1.123E+01 - 4.230E-01 - 1.123E+01 - 4.230E-01 -
1/16 5.466E-00 1.039 8.607E-02 2.297 5.466E-00 1.039 8.607E-02 2.297
1/32 2.832E-00 0.949 2.216E-02 1.957 2.832E-00 0.949 2.216E-02 1.957
1/64 1.429E-00 0.987 5.585E-03 1.989 1.429E-00 0.987 5.585E-03 1.989
1/128 7.160E-01 0.997 1.399E-03 1.997 7.160E-01 0.997 1.399E-03 1.997
1/256 3.582E-01 0.999 3.499E-04 1.999 3.582E-01 0.999 3.499E-04 1.999

Table 4.2. Numerical results for the exact solution with s(t) as in (4.22)

Opt 1 Opt 2
h |u− uh|1,h order ∥u− uh∥0 order |u− uh|1,h order ∥u− uh∥0 order

1/8 1.225E-03 - 5.649E-05 - 1.225E-03 - 5.649E-05 -
1/16 6.024E-04 1.024 1.033E-05 2.450 6.024E-04 1.024 1.033E-05 2.450
1/32 3.045E-04 0.984 1.949E-06 2.406 3.045E-04 0.984 1.949E-06 2.406
1/64 1.527E-04 0.996 4.682E-07 2.058 1.527E-04 0.996 4.682E-07 2.058
1/128 7.642E-05 0.999 1.171E-07 1.999 7.642E-05 0.999 1.171E-07 1.999
1/256 3.822E-05 1.000 2.929E-08 2.000 3.822E-05 1.000 2.929E-08 2.000

Opt 3 Opt 4
h |u− uh|1,h order ∥u− uh∥0 order |u− uh|1,h order ∥u− uh∥0 order

1/8 1.225E-03 - 5.649E-05 - 1.225E-03 - 5.649E-05 -
1/16 6.024E-04 1.024 1.033E-05 2.450 6.024E-04 1.024 1.033E-05 2.450
1/32 3.045E-04 0.984 1.949E-06 2.406 3.045E-04 0.984 1.949E-06 2.406
1/64 1.527E-04 0.996 4.682E-07 2.058 1.527E-04 0.996 4.682E-07 2.058
1/128 7.642E-05 0.999 1.171E-07 1.999 7.642E-05 0.999 1.171E-07 1.999
1/256 3.822E-05 1.000 2.929E-08 2.000 3.822E-05 1.000 2.929E-08 2.000

Table 4.3. Numerical results for the exact solution with s(t) as in (4.23)

solver iter time (sec.)
Opt 1 GMRES(20) 4944 61.52
Opt 2 CG 817 3.30
Opt 3 CG 437 1.80
Opt 4 CG 318 1.33

Table 4.4. Iteration number and elapsed time in each option when h = 1/256
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Chapter 5

Application to Stokes Equations

Suppose Ω = (0, 1)2 ⊂ R2. Consider the incompressible Stokes equations with

periodic boundary condition:

−∆u+∇p = f in Ω, (5.1a)

∇ · u = 0 in Ω, (5.1b)

u is periodic and

∫
Ω
u dx = 0, (5.1c)

p is periodic and

∫
Ω
p dx = 0 (5.1d)

with the compatibility condition
∫
Ω f = 0. The corresponding weak formula-

tion is as follows: find (u, p) ∈ [H1
per(Ω)/R]2 × L2

0(Ω) such that

∫
Ω
∇u : ∇v dx−

∫
Ω
p ∇ · v dx =

∫
Ω
f · v dx ∀v ∈ [H1

per(Ω)/R]2, (5.2a)∫
Ω
q ∇ · u dx = 0 ∀q ∈ L2

0(Ω) (5.2b)
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where L2
0(Ω) := {v ∈ L2(Ω) |

∫
Ω v = 0}. Then we can easily show that the

inf-sup stability of [H1
per(Ω)/R]2 × L2

0(Ω): there exists β > 0 such that

inf
q∈L2

0(Ω)
sup

v∈[H1
per(Ω)/R]2

∫
Ω q ∇ · v
|v|1 ∥q∥0

≥ β, (5.3)

since H1
0 (Ω) ⊂ H1

per(Ω) and [H1
0 (Ω)]

2×L2
0(Ω) is inf-sup stable [29]. Thus there

exists a unique solution (u, p) ∈ [H1
per(Ω)/R]2 × L2

0(Ω) of (5.2).

5.1 Discrete inf-sup stability

Assume that Th consists of uniform squares with same even number Nx and

Ny. We need to define several discrete function spaces for velocity and pressure:

V h
0 /R = {vh ∈ V h | vh = wh −

1

|Ω|

∫
Ω
wh, wh ∈ V h

0 },

P h = {ph ∈ L2(Ω) | ph|K ∈ P0(K) ∀K ∈ Th},

P h0 = {ph ∈ P h |
∫
Ω
ph = 0},

P hc = {ph ∈ P h0 |
∑
K∈Th

∫
K
ph ∇ · vh dx = 0 ∀vh ∈ [V h

0 ]
2},

P hcf = the L2(Ω)-orthogonal complement of P hc in P h0 .

We denote the standard basis of P h byP. Define two bilinear forms ah(·, ·) :

[V h]2× [V h]2 → R, and bh(·, ·) : [V h]2×P h → R corresponding to the Laplace

operator and the divergence operator, respectively, as follows: for all vh,wh ∈

[V h]2 and qh ∈ P h,

ah(vh,wh) :=
∑
K∈Th

∫
K
∇vh : ∇wh dx, bh(vh, qh) := −

∑
K∈Th

∫
K
qh ∇ · vh dx .

Consider the following discrete weak formulation: find (uh, ph) ∈ [V h
per/R]2×P h0
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such that

ah(uh,vh) + bh(vh, ph) =

∫
Ω
f · vh dx ∀vh ∈ [V h

per/R]2, (5.4a)

bh(uh, qh) = 0 ∀qh ∈ P h0 . (5.4b)

Our goal of this section is to prove the following theorem for discrete inf-sup

stability.

Theorem 5.1.1. [V h
per/R]2×P h0 is uniformly discrete inf-sup stable, i.e., there

exists a positive constant β which is independent of h such that

βh := inf
qh∈Ph

0

sup
vh∈[V h

per/R]2

bh(vh, qh)

|vh|1,h∥qh∥0
≥ β > 0.

We can prove the above theorem in help of results from the discrete for-

mulation of the Stokes equations with homogeneous Dirichlet boundary con-

dition. For the Stokes equations with homogeneous Dirichlet boundary condi-

tion, there exists the lowest order uniformly discrete inf-sup stable space pair

as follows.

Theorem 5.1.2. (Theorem 2.2, [35]) [V h
0 ]

2×P hcf satisfies the uniform discrete

inf-sup condition.

We quote the Subspace Theorem of Qin, which is useful in the proof.

Theorem 5.1.3. ([45]) Given Xh × Mh, let X1 and X2 be two subspaces

of Xh, and M1 and M2 be two subspaces of Mh. Assume the following three

conditions hold:

1. Mh =M1 +M2,
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2. there exist βj > 0, j = 1, 2, which are independent of h such that

sup
vj∈Xj

bh(vj , qj)

|vj |1,h
≥ βj∥qj∥0 ∀qj ∈Mj ,

3. there exist αj ≥ 0, j = 1, 2, such that

|bh(vj , qk)| ≤ αj |vj |1,h∥qk∥0 ∀vj ∈ Xj ,∀qk ∈Mk, k ̸= j,

with

α1α2 ≤ β1β2.

Then, Xh ×Mh satisfies the inf-sup condition with the inf-sup constant de-

pending only on α1, α2, β1, β2.

Proof of Theorem 5.1.1. Let us consider two subspaces of [V h
per/R]2, namely,

[V h
0 /R]2 and [SpanA]2. We use Theorem 5.1.3 where X1 = [V h

0 /R]2, X2 =

[SpanA]2 and M1 = P hcf , M2 = P hc . Since P
h
cf is a subspace of P h0 which is

complementary to P hc , the first condition holds.

For given vh in [V h
0 ]

2, let ṽh denote vh− 1
|Ω|
∫
Ω vh, a trivial correspondent

of vh belonging to [V h
0 /R]2. Since bh(ṽh, qh) = bh(vh, qh) ∀qh ∈ P h and |ṽh|1 =

|vh|1, simple modification of Theorem 5.1.2 implies that [V h
0 /R]2×P hcf is also

uniformly discrete inf-sup stable.

On the other hand, we know that the dimension of P hc is just equal to

1, and it is generated by a global checkerboard pattern ch, where ch|Qjk
=

(−1)j+k, see [42]. Take wh = (ψx, 0) in [SpanA]2. The definition of ψx yields

∇ ·wh = ∂ψx/∂x = (−1)j+k2/h on Qjk. Thus |bh(wh, ch)| =
∑

Qjk

∫
Qjk

2h =

2/h. Furthermore, ∥ch∥20 =
∑

Qjk

∫
Qjk

1 = 1, and |wh|21 =
∑

Qjk

∫
Qjk
|∇ψx|2 =
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∑
Qjk

∫
Qjk

(∂ψx/∂x)
2 =

∑
Qjk

4 = 4/h2. Therefore, for ch,

sup
vh∈[SpanA]2

bh(vh, ch)

|vh|1 ∥ch∥0
≥ |bh(wh, ch)|
|wh|1 ∥ch∥0

= 1.

Since P hc is generated by ch, it implies the uniform discrete inf-sup stability

of [SpanA]2 × P hc .

For the last condition, recall that bh(vh, qh) = 0 for all vh ∈ [V h
0 ]

2 and qh ∈

P hc . Note that every function in [V h
0 /R]2 is represented as ṽh = vh− 1

|Ω|
∫
Ω vh

for some vh in [V h
0 ]

2. Thus bh(ṽh, qh) = 0 for all ṽh ∈ [V h
0 /R]2 and qh ∈ P hc . It

implies α1 = 0, so the last condition is satisfied. Therefore we conclude that

[V h
per/R]2 × P h0 satisfies the uniform discrete inf-sup condition.

Theorem 5.1.1 leads the following error estimates [29, 12].

Theorem 5.1.4. There exists a unique solution (uh, ph) ∈ [V h
per/R]2 × P h0 of

(5.4), and

|u− uh|1,h + ∥p− ph∥0 ≤ Ch(|u|2 + |p|1).

5.2 Numerical scheme: Uzawa variant with a semi-

definite block

Consider the set of trial and test functions consisting of E for each component

of the velocity variable as the option 3 in Section 4.4.3, and the standard basis

P of P h for the pressure variable. It leads to the following system of equations

in form of A BT

B 0

u
p

 =

f
g

 , (5.5)
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where A is a symmetric positive semi-definite matrix with dim kerA = 4. If

the incompressible Stokes equations are considered, g in the right hand side

vector becomes 0. We can easily show that the linear system (5.5) satisfies the

following assumptions.

Assumption 5.1. Let assume the followings.

1. A is symmetric positive semi-definite.

2. kerA ⊂ kerB.

3. f ∈ ImA and g ∈ ImB.

Recall the relation between the Drazin inverse and a Krylov solution of the

equation Ax = b. Let k be the index of A which is the smallest nonnegative

integer such that Cn = ImAk + kerAk. If b ∈ ImAk, then the equation has

a unique Krylov solution as xK = ADb, i.e., ADb is genuinely a solution of

Ax = b and is belonging to the Krylov space Kn(A, b). When A is symmetric

or diagonalizable, the index of A is equal to 1. This leads the consistency

condition b ∈ ImA for the existence of the Krylov solution.

Return to the our problem. Let AD be the Drazin inverse of A. The equa-

tion in the first block in (5.5) is simplified as

Au = f −BT p. (5.6)

For any value p, the right hand side belongs to the image space of A because

ImBT ⊂ ImAT = ImA from Assumption 5.1. The matrix equation (5.6) with

respect to the variable u is symmetric and consistent. Thus, starting from an

initial guess in ImA, the equation has a unique Krylov solution associated with

p, namely uK(p) = AD(f −BT p) ∈ ImA. We can write the general solution of
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(5.6) associated with p as

u(p) = uK(p) + u◦, u◦ ∈ kerA. (5.7)

We put the above expression into the equation in the second block in (5.5).

Due to Assumption 5.1, it gives an equation which is containing variable p

without u◦,

BADBT p = BADf − g. (5.8)

We can easily observe that BADBT is also symmetric positive semi-definite.

Furthermore, we can show the consistency of (5.8). Suppose x ∈ kerBADBT .

Then xTBADBTx = 0 and thus we get BTx ∈ (ImA)⊥ due to the characteris-

tic of AD. But Assumption 5.1 implies (ImA)⊥ = kerA ⊂ kerB = (ImBT )⊥.

Therefore BTx = 0 and we get kerBADBT ⊂ kerBT . Since the converse is

trivial, we conclude that kerBADBT = kerBT . As a consequence, we also get

ImBADBT = ImB, and (5.8) is consistent. Therefore starting from an initial

guess in ImB, there exists a unique Krylov solution pK∗ = (BADBT )D(BADf−

g) ∈ ImB. The general solution of (5.8) is

p = pK∗ + p◦, p◦ ∈ kerBT . (5.9)

Let uK∗ denote uK(pK∗ ), the Krylov solution of (5.6) associated with pK∗ .

Note that the approach discussed above is a Uzawa variant for a singular

block system. The numerical scheme to get (uK∗ , p
K
∗ ) is described in Algo-

rithm 1.

Now we discuss about properties of the solution obtained from the scheme.

Recall that (uh, ph) ∈ [V h
per/R]2 × P h0 is the solution of (5.4). Define the nu-
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Algorithm 1 Uzawa method with conjugate directions and the Drazin inverse

1: p0 ← initial guess in ImB
2: u1 ← AD(f −BT p0) ▷ Use CG with an initial guess in ImA
3: q1 ← g −Bu1
4: d1 ← −q1
5: while k = 1, 2, · · · do
6: sk ← BTdk
7: hk ← ADsk ▷ Use CG with an initial guess in ImA
8: αk ← (qTk qk)/(s

T
k hk)

9: pk ← pk−1 + αkdk
10: uk+1 ← uk − αkhk
11: qk+1 ← g −Buk+1

12: βk ← (qTk+1qk+1)/(q
T
k qk)

13: dk+1 ← −qk+1 + βkdk
14: end while

merical solution (u♮h, p
♮
h) corresponding to (uK∗ , p

K
∗ ) by u♮h := (uK∗,xE, u

K
∗,yE)

and p♮h := pK∗ P where uK∗ = (uK∗,x, u
K
∗,y). Clearly, (u

♮
h, p

♮
h) ∈ [V h

per]
2 × P h.

Lemma 5.2.1. (uK∗ , p
K
∗ ) truly solves (5.5).

Proof. Note that the symmetry of A implies Ind (A) = 1, thus AADb = b for

all b ∈ ImA [15]. Therefore we have

AuK∗ +BT pK∗ = AAD(f −BT pK∗ ) +BT pK∗

= AADf + (I −AAD)BT pK∗ = f,

BuK∗ = BAD(f −BT pK∗ )

= BADf −BADBT pK∗

= BADf − (BADf − g) = g.

The following lemma shows that (5.7) and (5.9) truly represent the general

solution of (5.5).
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Lemma 5.2.2. (v, q) is in the kernel space of

A BT

B 0

 if and only if v ∈

kerA, q ∈ kerBT .

Proof. Suppose v ∈ kerA and q ∈ kerBT . Since kerA ⊂ kerB from Assump-

tion 5.1, we immediately get Av +BT q = 0 and Bv = 0.

Conversely, suppose (v, q) belongs to the kernel space of the block matrix.

It leads that v is a solution of the equation Ax = −BT q, which is consistent.

Thus v = −ADBT q + v◦ for some v◦ ∈ kerA. If we plug it into the second

equation Bv = 0, we get BADBT q = 0. Therefore q belongs to kerBADBT ,

which is equal to kerBT , as mentioned in lines above (5.9). It implies that v

belongs to kerA.

Lemma 5.2.3. (u♮h, p
♮
h) ∈ [V h

per/R]2 × P h0 .

Proof. It is enough to show that
∫
Ω u♮h = 0, and

∫
Ω p

♮
h = 0. Note that these

are equivalent to 1B · uK∗,x
∣∣
B
= 0, 1B · uK∗,y

∣∣
B
= 0, and 1P · pK∗ = 0.

Since 1B ∈ kerSB
h and uK∗,x

∣∣
B
∈ ImSB

h , the first two conditions are proved

immediately. Since bh(vh, 1) = 0 for all vh ∈ [V h
per]

2, we have 1P ∈ kerBT .

Therefore 1P · pK∗ = 0 because pK∗ belongs to ImB, the space which is orthog-

onal to kerBT .

The system of equations (5.5) is consistent with the system of equations

derived from (5.4). Lemmas 5.2.1 and 5.2.3 imply (u♮h, p
♮
h) is a solution of

(5.4) in [V h
per/R]2 × P h0 . Due to the uniqueness in Theorem 5.1.4, we have the

equivalence between two solution pairs.

Theorem 5.2.4. Let (u♮h, p
♮
h) be the corresponding function to the Krylov so-

lution (uK∗ , p
K
∗ ) of (5.5) which is derived from the incompressible Stokes equa-

tions with periodic boundary condition (5.1). Then (u♮h, p
♮
h) is the solution of

(5.4), i.e., u♮h = uh and p♮h = ph.
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Next, we describe the discrete inf-sup constant of [V h
per/R]2 ×P h0 in Theo-

rem 5.1.1 in terms of A and B in (5.5). This is an analog of the work in [41]

to a singular system.

Lemma 5.2.5. Suppose DT z = 0. Then inf z·y=0,
yT y=1

supwTw=1 y
TDw is the

square root of the second smallest eigenvalue of DDT .

Proof. Without loss of generality, we assume that z is a unit vector. For fixed

y, it is easily shown that supwTw=1 y
TDw = (yTDDT y)1/2. We can find a

unitary matrix U , and a nonnegative diagonal matrix Σ such that

DDT = UΣUT

=
[
z u2 · · · un

]

0

d2
. . .

dn




zT

uT2
...

uTn

 .

Since z · y = 0 implies y ∈ Span{u2, · · · , un}, the claim is derived in conse-

quence.

Theorem 5.2.6. Let M ∈ R|P|×|P| be the mass matrix associated with the

standard basis P for P h, with the Cholesky decomposition M = GGT . Then

the discrete inf-sup constant of [V h
per/R]2×P h0 is the square root of the second

smallest eigenvalue of G−1BADBTG−T .

Proof. Consider a nontrivial function vh =

vxh
vyh

 ∈ [V h
per/R]2. There exists

a vector v =

vx
vy

 ∈ R2|E| such that vxh = vxE and vyh = vyE. Let vx =
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vxB
vxA

 and vy =

vyB
vyA

. The zero-integral conditions
∫
Ω v

x
h =

∫
Ω v

y
h = 0

imply 1B · vxB = 1B · vyB = 0. Furthermore, without loss of generality, we can

assume that vxB and vyB are orthogonal to the kernel space of BB
h because the

representation is unique upto kerBB
h (Section 4.1). Due to Proposition 4.3.3,

we conclude that v is orthogonal to the kernel space of A, or equivalently

v ∈ ImA. Conversely, any v ∈ ImA corresponds to vh in [V h
per/R]2. Similarly,

for every qh ∈ P h0 , there exists the corresponding q ∈ R|P| such that 1P ·q = 0,

and vice versa. Thus,

inf
qh∈Ph

0

sup
vh∈[V h

per/R]2

bh(vh, qh)

|v|1,h∥qh∥0
= inf

q∈R|P|,
1P·q=0

sup
v∈R2|E|,
v∈ImA

qTBv

(vTAv)1/2(qTMq)1/2
. (5.10)

Let XΛXT be the eigendecomposition of A, where X ∈ R2|E|×2|E| is a unitary

matrix, and Λ ∈ R2|E|×2|E| is a diagonal matrix with nonnegative entries. Since

dim kerA = 4, we can rewrite as

A =
[
Xm X̃m

]Λm
0

XT
m

X̃T
m

 = XmΛmX
T
m

where Xm ∈ R2|E|×(2|E|−4) and Λm ∈ R(2|E|−4)×(2|E|−4) with positive diagonals.

Note that ImA is equal to the column space of Xm. Therefore,

(5.10) = inf
q∈R|P|,
1P·q=0

sup
v∈R2|E|,
v∈ImA

qTBv

(vTXmΛmXT
mv)

1/2(qTGGT q)1/2

= inf
y∈R|P|,
y=GT q,

(G−11P)·y=0

sup
vm∈R2|E|−4,
v=Xmvm

yTG−1BXmvm

(vTmX
T
mXmΛmXT

mXmvm)1/2(yT y)1/2

47



= inf
y∈R|P|,

(G−11P)·y=0

sup
vm∈R2|E|−4

yTG−1BXmvm

(vTmΛmvm)
1/2(yT y)1/2

= inf
y∈R|P|,

(G−11P)·y=0

sup
wm∈R2|E|−4,

wm=Λ
1/2
m vm

yTG−1BXmΛ
−1/2
m wm

(wTmwm)
1/2(yT y)1/2

.

Simple calculation shows 1P is an eigenvector of M , and also that of M−1.

Thus it holds that

(G−1BXmΛ
−1/2
m )T (G−11P) = (Λ−1/2

m )TXT
mB

TG−TG−11P

= (Λ−1/2
m )TXT

mB
TM−11P

=
1

λ
(Λ−1/2

m )TXT
mB

T1P = 0.

In the last line, we use BT1P = 0, since bh(vh, 1) = −
∑

K∈Th
∫
K ∇ · vh dx =

−
∑

K∈Th
∫
∂K ν · vh ds = 0 for all vh ∈ [V h

per/R]2. Due to Lemma 5.2.5, the

discrete inf-sup constant in (5.10) is equal to the square root of the second

smallest eigenvalue of

(G−1BXmΛ
−1/2
m )(G−1BXmΛ

−1/2
m )T = G−1BXmΛ

−1
m XT

mB
TG−T

= G−1BADBTG−T .

We refer to [15] for the matrix representation of the Drazin inverse used in the

last line.
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5.3 Numerical results

On Ω = (0, 1)2, consider the periodic incompressible Stokes equations (5.1)

with the exact solution pair for the velocity and pressure

u(x, y) = ∇×
(
sin(2πx)s(y)

)
,

p(x, y) = sin(2πx) cos(2πy)

where s(t) = exp
(
− 1

1−(2t−1)2

) (
1− (2t− 1)2

)
+C with a constant C satisfying∫

[0,1] s = 0. The results on Table 5.1 show optimal convergence order in various

norms.

We compute the discrete inf-sup constant of [V h
per/R]2 × P h0 as in Theo-

rem 5.2.6. And, for a comparison, we also consider the trial and test func-

tions based on the option 4 in Section 4.4.4; just B instead of E for each

component of the velocity. This combination of functions corresponds to the

space pair [V B,h
per /R]2 × P h0 . The numerically computed 4 smallest eigenvalues

λ1 ≤ λ2 ≤ λ3 ≤ λ4 of G−1BADBTG−T , and the discrete inf-sup constant

βh =
√
λ2 for each option are shown in Table 5.2. We can observe that the

discrete inf-sup constant based on the option 3 is bounded below by a positive

number which does not depend on the mesh size, as expected. The results

confirm our theoretical claims for the inf-sup stability in Theorem 5.1.1. On

the other hand, the second smallest numerically computed eigenvalue in the

scheme based on the option 4 is comparable to the machine epsilon, which

means nearly zero. Thus we can conclude that the discrete inf-sup constant

of [V B,h
per /R]2 × P h0 is almost equal to zero. It is a consequence of the simple

fact that bh(vh, ch) = 0 for all vh ∈ [V B,h
per ]2, where ch is a piecewise constant

function in global checkerboard pattern.
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Opt 3
velocity pressure

h |u− uh|1,h order ∥u− uh∥0 order ∥p− ph∥0 order

1/8 3.018E-00 - 9.105E-02 - 5.686E-01 -
1/16 1.449E-00 1.058 1.655E-02 2.460 9.541E-02 2.575
1/32 7.462E-01 0.957 4.869E-03 1.765 4.550E-02 1.068
1/64 3.733E-01 0.999 1.169E-03 2.058 2.057E-02 1.145
1/128 1.868E-01 0.999 2.937E-04 1.993 1.009E-02 1.028
1/256 9.341E-02 1.000 7.347E-05 1.999 5.019E-03 1.007

Table 5.1. Numerical results based on the option 3 for the Stokes equations

h λ1 λ2 λ3 λ4 βh

Opt 3

1/8 9.437E-16 1.000 1.000 1.000 1.000
1/16 -2.776E-16 1.000 1.000 1.000 1.000
1/32 -2.331E-15 1.000 1.000 1.000 1.000
1/64 -1.144E-14 1.000 1.000 1.000 1.000

Opt 4

1/8 -4.594E-16 1.527E-17 1.000 1.000 (≈ 0)
1/16 -6.708E-16 -3.284E-16 1.000 1.000 (≈ 0)
1/32 -1.703E-15 -1.516E-15 1.000 1.000 (≈ 0)
1/64 -2.223E-16 2.443E-15 1.000 1.000 (≈ 0)

Table 5.2. Numerically computed eigenvalues and discrete inf-sup constant
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Chapter 6

3-D Case

In this chapter, we consider the case of d = 3. Following similar discussions as

in 2-D case, we will get 3-D results.

6.1 Dimension of finite spaces in 3-D

The following lemma is 3-D analog of Lemma 3.2.1.

Lemma 6.1.1. For Ω ⊂ R3,

(dimension of finite space)

= #(faces)− 2#(cells)

−#(minimally essential discrete boundary conditions).

Proof. We can rewrite the dice rule in a single 3-D cubic cell K ∈ Th into two
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separated relations:

vh(m
K
1 )− vh(mK

2 ) + vh(m
K
6 )− vh(mK

5 ) = 0,

vh(m
K
1 )− vh(mK

3 ) + vh(m
K
6 )− vh(mK

4 ) = 0

for all vh ∈ V h where mK
j is the center point of a face fKj of K, and the faces

are arranged to satisfy that the sum of indices in opposite faces is equal to

7, as an ordinary dice. Since each relation reduces the number of degrees of

freedom in the finite space by 1, same as 2-D case, the claim is derived in

consequence.

Proposition 6.1.2. (Neumann and Dirichlet B.C. in 3-D)

#(minimally essential discrete boundary conditions)

=


0 in the case of Neumann B.C.,

2(NxNy +NyNz +NzNx)

− (Nx +Ny +Nz) + 1
in the case of homo. Dirichlet B.C.

Consequently,

dim V h = NxNyNz +NxNy +NyNz +NzNx, (6.1a)

dim V h
0 = (Nx − 1)(Ny − 1)(Nz − 1). (6.1b)

Proof. It is enough to consider the homogeneous Dirichlet boundary case since

there is nothing to prove in the Neumann case. Suppose that the homogeneous

Dirichlet boundary condition is given. Similar to the argument in 2-D, we

need to investigate induced relations on boundary DoF values. Consider x-

direction first, and classify all cells into Nx groups by their position in x.
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Figure 6.1. An example of a strip

Then each group consists of Ny × Nz cells which are attached in y- and z-

direction. For each cell in a group, the dice rule in 3-D implies a relation

between 4 DoFs on faces which are parallel to xy- or zx-plane. A collection

of such relations from all cells in a group derives a single relation between

DoF values on a set of boundary faces, called a strip perpendicular to x-axis,

similarly to the 2-D case. Precisely speaking, an alternating sum of 2Ny+2Nz

boundary DoF values on the strip is equal to zero. This induced relation on

the strip is well-defined because the number of faces in the strip is always even.

Figure 6.1 shows an example of a strip perpendicular to x-axis. The signs on the

strip represent the alternating sum of boundary DoF values. For x-direction,

there are Nx relations between DoFs on boundary faces corresponding to Nx

strips perpendicular to x-axis, respectively. We can continue to discuss similar

arguments for y- and z-direction. Consequently, we can find totally Nx+Ny+

Nz strips and corresponding relations between boundary DoFs.

However, it is not true that these induced relations are linearly indepen-

dent. Choose a cube K at one of corners in Th. There are three strips σxK , σyK ,

σzK which are attached to K, and perpendicular to x-, y-, z-axis, respectively.
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Let each of these strips call the standard strip for each axis. There are two

options to give proper alternating sign to DoF values on each standard strip

in order to make corresponding alternating relation between boundary DoFs.

For each standard strip, we choose an option for alternating sign in the rela-

tion to cancel out all boundary DoFs belong to K when summing up all three

relations on three standard strips. We call them the standard choices. Consider

σ, a strip among others, which is obviously parallel to one of these standard

strips, without loss of generality, σxK . There are also two options for alternating

sign in the relation on σ. One option is same to the standard choice on σxK : in

this option, the sign for each boundary DoF on σ is equal to the sign for the

corresponding boundary DoF in the standard choice on σxK . The other option

is just opposite to the standard choice. We make a choice on σ depending on

the distance from σxK . If σ is adjacent to σxK , or is away from σxK by an even

number of faces in x-direction, then we choose an option for alternating sign

on σ to be opposite to the standard choice on σxK . Else if σ is away from σxK

by an odd number of faces in x-direction, then the same alternating sign as

the standard choice is chosen on σ. Under this rule, we can make all choices

for alternating sign in the induced relations on all Nx +Ny +Nz strips. And

it can be easily shown that the sum of all induced relations on all strips with

chosen alternating sign becomes a trivial relation. It implies that there is a

single linear relation between those induced relations on all strips. Therefore,

#(minimally essential discrete boundary conditions)

= #(boundary faces)−#(independent relations)

= 2(NxNy +NyNz +NzNx)− (Nx +Ny +Nz − 1).
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Proposition 6.1.3. (Periodic B.C. in 3-D) Let ϵj := (1 + (−1)j)/2. In case

of periodic boundary condition,

#(minimally essential discrete boundary conditions)

= (NxNy +NyNz +NzNx)

− (NxϵNyϵNz +NyϵNxϵNz +NzϵNxϵNy) + ϵNxϵNyϵNz .

Consequently,

dim V h
per =


NxNyNz + (Nx +Ny +Nz)− 1 if all Nx, Ny, Nz are even,

NxNyNz +Nι if only Nι is odd,

NxNyNz else.

(6.2)

Proof. Note that ϵj is equal to 1 for even j and 0 for odd. Due to the same

reason discussed in 2-D case, an induced relation between boundary DoFs on

a strip perpendicular to x-axis can help to impose periodic boundary condi-

tion only when both Ny and Nz are even. In this case, coincidence of two

DoF values of the last boundary face pair is naturally achieved by pairwise

coincidence of DoF values of other boundary face pairs in the strip. Conse-

quently, totally Nx periodic boundary conditions can hold naturally due to

other periodic boundary conditions and induced boundary relations on strips

perpendicular to x-axis. Similar claims hold for induced boundary relations

on strips perpendicular to y-, and z-directional axis.

However, as discussed in the case of Dirichlet boundary condition, due to

the linear dependence between Nx + Ny + Nz induced relations on all strips

we have to consider 1 redundant relation when all Nx + Ny + Nz strips are

meaningful, i.e., all Nx, Ny and Nz are even. It completes the claims.
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6.2 Linear dependence of B in 3-D

In this section, we identify a global coefficient representation for node based

functions in B with a vector in R|B|. With this identification, we use a vector

c ∈ R|B| to represent a global coefficient representation on given 3-D grid Th.

In this sense, we denote the local coefficients of c in a cube Q ∈ Th by c|Q. For

the sake of simple description, we use this abusive notation as long as there is

no chance of misunderstanding. A surjective linear map BB
h : R|B| → V B,h

per is

defined as in Chapter 4, but for 3-D case.

As shown in Figure 6.2, there are exactly 4 kinds of local coefficient rep-

resentation for the zero function in a single cube. The value at each vertex

represents the coefficient for the corresponding node based function in B. If

any global coefficient representation for the zero function is restricted in a

cube, then it has to be a linear combination of these 4 elementary representa-

tions which are denoted by A,X ,Y and Z, respectively. In other words, any

global representation for the zero function is obtained by consecutive extension

of local representation in appropriate way.

Define the following subspaces consisting of global representations:

SXYZA :=
{
c ∈ R|B| | c|Q ∈ Span{X ,Y,Z,A} ∀Q ∈ Th

}
,

SXA :=
{
c ∈ R|B| | c|Q ∈ Span{X ,A} ∀Q ∈ Th

}
,

SYA :=
{
c ∈ R|B| | c|Q ∈ Span{Y,A} ∀Q ∈ Th

}
,

SZA :=
{
c ∈ R|B| | c|Q ∈ Span{Z,A} ∀Q ∈ Th

}
,

SA :=
{
c ∈ R|B| | c|Q ∈ Span{A} ∀Q ∈ Th

}
.

Remark 6.2.1. SXYZA, SXA, SYA, SZA, and SA are truly vector spaces.

Remark 6.2.2. The definition of BB
h implies kerBB

h = SXYZA.
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Figure 6.2. Nontrivial representations for the zero function in a cube: A, X ,
Y, Z

Lemma 6.2.3. Let c ∈ SXYZA, and c
X
ijk, c

Y
ijk, c

Z
ijk, c

A
ijk denote coefficients of c

in a cube Qijk ∈ Th for X , Y, Z, A, respectively, i.e., c|Qijk
= cXijkX + cYijkY+

cZijkZ + cAijkA. Then for all 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz,

cXijk − cAijk = cX(i+1)jk + cA(i+1)jk, (6.3a)

cYijk = −c
Y
(i+1)jk, (6.3b)

cZijk = −cZ(i+1)jk, (6.3c)
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cXijk = −cXi(j+1)k, (6.4a)

cYijk − c
A
ijk = cYi(j+1)k + cAi(j+1)k, (6.4b)

cZijk = −cZi(j+1)k, (6.4c)

cXijk = −cXij(k+1), (6.5a)

cYijk = −c
Y
ij(k+1), (6.5b)

cZijk − cAijk = cZij(k+1) + cAij(k+1). (6.5c)

Here all indices are understood in modulo Nx, Ny, Nz, respectively, due to the

periodicity.

Remark 6.2.4. Conversely, local relations (6.3)–(6.5) in Lemma 6.2.3 for all

1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz imply well-definedness of c ∈ SXYZA,

i.e., on each face shared by two adjacent cubes the vertex values are matching.

Proof of Lemma 6.2.3. These relations are nothing, but just the matching con-

ditions on every face which is shared by two adjacent cubes.

Two cubes Qijk and Q(i+1)jk are adjacent in x-direction, and sharing a

common face perpendicular to x-axis. Thus the vertex values on the right face

of the left cube Qijk have to be matched with the vertex values on the left

face of the right cube Q(i+1)jk. Since there are 4 nodes in the common face,

we have 4 equations in 8 variables:

−cXijk + cYijk + cZijk + cAijk = −cX(i+1)jk − c
Y
(i+1)jk − c

Z
(i+1)jk − c

A
(i+1)jk, (6.6a)

cXijk + cYijk − c
Z
ijk − cAijk = cX(i+1)jk − c

Y
(i+1)jk + cZ(i+1)jk + cA(i+1)jk, (6.6b)

cXijk − cYijk + cZijk − cAijk = cX(i+1)jk + cY(i+1)jk − c
Z
(i+1)jk + cA(i+1)jk, (6.6c)

−cXijk − cYijk − c
Z
ijk + cAijk = −cX(i+1)jk + cY(i+1)jk + cZ(i+1)jk − c

A
(i+1)jk. (6.6d)
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Simple calculation shows that (6.6) are equivalent to (6.3). Similarly, consid-

ering faces perpendicular to y- and z-direction, we get (6.4) and (6.5).

The next decomposition theorem is essential for the dimension analysis in

3-D case.

Theorem 6.2.5 (Decomposition Thoerem). The quotient space SXYZA/SA

can be decomposed as

SXYZA/SA = SXA/SA ⊕ SYA/SA ⊕ SZA/SA. (6.7)

Proof. Clearly SA ⊂ SXA,SYA,SZA ⊂ SXYZA and SXA∩SYA = SYA∩SZA =

SZA ∩ SXA = SA. Thus it is enough to show that for any c ∈ SXYZA, there

exist u ∈ SXA, v ∈ SYA, w ∈ SZA such that c ∈ u+ v +w + SA.

Let cXijk, c
Y
ijk, c

Z
ijk, c

A
ijk denote the coefficients of c in a cube Qijk ∈ Th for

X , Y, Z, A, respectively, i.e., c|Qijk
= cXijkX + cYijkY + cZijkZ + cAijkA. Due to

Lemma 6.2.3, the relations (6.3)–(6.5) hold. Now we construct u, v, and w.

First, define u ∈ R|B| by

u|Qijk
:= uXijkX + uAijkA where uXijk = cXijk, u

A
ijk = (−1)j+kcAi11. (6.8)

The above definition naturally implies that uYijk = uZijk = 0. We can check the

followings.

1. u is well-defined, and belongs to SXYZA: See Remark 6.2.4. For a face

shared by two adjacent cubes Qijk and Q(i+1)jk,

uXijk − uAijk = cXijk − (−1)j+kcAi11

= (−1)cXi(j−1)k − (−1)j+kcAi11

= · · ·
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= (−1)(j−1)cXi1k − (−1)j+kcAi11

= (−1)(j−1)+1cXi1(k−1) − (−1)j+kcAi11

= · · ·

= (−1)(j−1)+(k−1)cXi11 − (−1)j+kcAi11

= (−1)j+k(cXi11 − cAi11)

= (−1)j+k(cX(i+1)11 + cA(i+1)11)

= (−1)j+kcX(i+1)11 + (−1)j+kcA(i+1)11

= · · ·

= cX(i+1)jk + (−1)j+kcA(i+1)11

= uX(i+1)jk + uA(i+1)jk.

Thus u is matching on all faces perpendicular to x-axis. For the faces

perpendicular to y-axis, it holds that

uXijk = cXijk = −cXi(j+1)k = −u
X
i(j+1)k,

− uAijk = −(−1)j+kcAi11 = (−1)j+1+kcAi11 = uAi(j+1)k,

and similar for the faces perpendicular to z-axis. Therefore u is also

matching along y- and z-direction.

2. u ∈ SXA: it is trivial due to the definition of u and SXA.

Similarly above, we define v and w ∈ R|B| by

v|Qijk
:= vYijkY + vAijkA where vYijk = cYijk, v

A
ijk = (−1)i+kcA1j1, (6.9)

w|Qijk
:= wZ

ijkZ + wA
ijkA where wZ

ijk = cZijk, w
A
ijk = (−1)i+jcA11k. (6.10)

Then both v and w are well-defined, and v ∈ SYA, w ∈ SZA. Thus c− (u+
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v +w) ∈ SXYZA, and for each cube Qijk it holds that

c− (u+ v +w)|Qijk
=
(
cAijk − (−1)j+kcAi11 − (−1)i+kcA1j1 − (−1)i+jcA11k

)
A.

Therefore we conclude that c− (u+ v +w) ∈ SA.

Corollary 6.2.6. dim kerBB
h = dim SXA+dim SYA+dim SZA− 2 dim SA.

The following lemmas explain the dimension of subspaces which depends

on parity of the discretization numbers.

Lemma 6.2.7. (The dimension of SXA, SYA, SZA)

dim SXA =


Nx if both Ny and Nz are even,

0 else.

(6.11a)

dim SYA =


Ny if both Nx and Nz are even,

0 else.

(6.11b)

dim SZA =


Nz if both Nx and Ny are even,

0 else.

(6.11c)

Proof. It is enough to show the claim for SXA, since the others can be shown

similarly. Let c ∈ SXA where c|Qijk
= cXijkX + cAijkA in each cube Qijk ∈ Th.

By applying matching conditions (6.4) and (6.5) consecutively, it is shown

cXijk = (−1)j+kcXi11 and cAijk = (−1)j+kcAi11.

Consider Nx+1 combined surfaces such that each of them consists of Ny×Nz

faces in Th, and is lying on the same hyperplane perpendicular to x-axis.

The above relations imply that on each surface the coefficients for node based
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Figure 6.3. Construction of a global representation for a function in SXA

functions are all the same, but with alternating sign like a checkerboard pattern

at nodes, not on faces. Due to the identification between boundary nodes in

y- and z-direction, all coefficients vanish unless both Ny and Nz are even.

Under the case of evenNy andNz, we consider a basis checkerboard pattern

at nodes on a combined surface consisting of +1 and −1, alternatively, as

Figure 6.3 (a) shows. In the figure, the plus and minus sign at nodes represent

the positive value one, and the negative value one, respectively. We get Nx+1

checkerboard patterns on Nx + 1 combined surfaces in series (Figure 6.3 (b)).

Based on the basis checkerboard pattern described in above, we can represent

all coefficients on each combined surface by a single factor in real number. Due

to the identification between boundary nodes in x-direction, two factors for

the first and the last combined surface must be identical. Then the series of

Nx + 1 checkerboard patterns compose a global representation for a function

in SXA (Figure 6.3 (c)). Conversely, for the Nx + 1 combined surfaces which

are perpendicular to x-axis and the basis checkerboard pattern at nodes on

surfaces, suppose Nx + 1 factors are given, where the first and the last of

them are equal. Then we can determine unique cXijk and cAijk, for all Qijk ∈ Th.

Therefore, only in the case when both Ny and Nz are even, SXA is equivalent

to {v ∈ RNx+1 | v1 = vNx+1}, and consequently dim SXA = Nx.
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Lemma 6.2.8. (The dimension of SA)

dim SA =


1 if all Nx, Ny, Nz are even,

0 else.

(6.12)

Proof. Let c ∈ SA where c|Qijk
= cAijkA in each cube Qijk. By applying

matching conditions (6.3)–(6.5) consecutively, it is shown

cAijk = (−1)i+j+k+1cA111.

Due to the identification of boundary nodes in x-, y-, and z-direction, all

coefficients vanish unless all Nx, Ny and Nz are even. In the case of all even

Nx, Ny and Nz, it is easily shown that the coefficients form a multiple of the

3-D checkerboard pattern at nodes. Therefore dim SA = 1.

Proposition 6.2.9. (The dimension of kerBB
h , V

B,h
per in 3-D)

dim kerBB
h =


Nx +Ny +Nz − 2 if all Nx, Ny, Nz are even,

Nι if only Nι is odd,

0 else.

(6.13)

Consequently,

dim V B,h
per = |B| − dim kerBB

h

=


NxNyNz − (Nx +Ny +Nz) + 2 if all Nx, Ny, Nz are even,

NxNyNz −Nι if only Nι is odd,

NxNyNz else.

(6.14)

Proof. Direct consequences of Corollary 6.2.6, Lemmas 6.2.7 and 6.2.8.
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6.3 A basis for V h
per in 3-D

Propositions 6.1.3 and 6.2.9 imply that V B,h
per is a proper subset of V h

per if at

most one ofNx,Ny, andNz is odd. Furthermore, if allNx,Ny, andNz are even,

then there exist 2(Nx +Ny +Nz)− 3 complementary basis functions for V h
per,

not belonging to V B,h
per . If only Nι is odd, then the number of complementary

basis functions for V h
per is 2Nι. In other cases, V B,h

per is equal to V h
per. We will

discuss about the complementary basis functions below.

For the first case, suppose that all Nx, Ny, and Nz are even. Consider Nx

strips σxi , 1 ≤ i ≤ Nx, which are perpendicular to x-axis. Each strip σxi defines

a subdomain Ωxi , the union of Ny ×Nz cubes which are wrapped up with σxi .

Let (ψxi )y denote a piecewise linear function in V h
per whose support is Ωxi as

follows. Within Ωxi it has nonzero DoF values only on faces perpendicular to

y-axis, and all the nonzero DoF values are 1 with alternating sign in y- and z-

direction, as similar to the alternating function ψx in 2-D case (Figure 6.4 (a),

(b)). The alternating function (ψxi )y is obtained by trivial extending to Ω (Fig-

ure 6.4 (c)). A similar argument as in 2-D case, it is easily shown that (ψxi )y is

well-defined, and not belonging to V B,h
per since Ny and Nz are even. A similar

property holds for (ψxi )z, a piecewise linear function in V h
per whose support

is Ωxi and which has nonzero DoF values as 1 only on faces perpendicular to

z-axis with alternating sign in y- and z-direction. Thus totally there exist 2Nx

alternating functions {(ψxi )y, (ψxi )z}1≤i≤Nx for V h
per associated with strips per-

pendicular to x-axis. By considering other strips perpendicular to y- or z-axis,

we can find out 2(Nx+Ny +Nz) alternating functions for V h
per, not belonging

to V B,h
per : {(ψxi )y, (ψxi )z, (ψ

y
j )x, (ψ

y
j )z, (ψ

z
k)x, (ψ

z
k)y}1≤i≤Nx,1≤j≤Ny ,1≤k≤Nz .

However, there is a single relation between the alternating functions in each

direction on subscript. An alternating sum of (ψxi )z in 1 ≤ i ≤ Nx is equal to

that of (ψyj )z in 1 ≤ j ≤ Ny. And anyNx+Ny−1 among all (ψxi )z and (ψyj )z are
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Figure 6.4. Construction of an alternating function in 3-D

linearly independent due to their supports. Similarly, any Ny +Nz − 1 among

all (ψyj )x and (ψzk)x are linearly independent, and so any Nz +Nx − 1 among

all (ψzk)y and (ψxi )y are. Consequently, suitably chosen 2(Nx + Ny + Nz) − 3

alternating functions form a complementary basis for V h
per.

In the case of only one odd Nι (and even Nµ, Nν), the set of all alternating

functions associated to the strips perpendicular to ι-axis, {(ψιj)µ, (ψιj)ν}1≤j≤Nι ,

are meaningful because Nµ and Nν are even.

Theorem 6.3.1. (A complementary basis for V h
per in 3-D)

1. If all Nx, Ny, and Nz are even, then V B,h
per is a proper subset of V h

per.

The union of

• any Nx +Ny − 1 among Az := {(ψxi )z, (ψ
y
j )z}1≤i≤Nx,1≤j≤Ny ,

• any Ny +Nz − 1 among Ax := {(ψyj )x, (ψzk)x}1≤j≤Ny ,1≤k≤Nz , and

• any Nz +Nx − 1 among Ay := {(ψzk)y, (ψxi )y}1≤i≤Nx,1≤k≤Nz

is a complementary basis for V h
per, not belonging to V B,h

per .

2. If only Nι is odd (and Nµ, Nν are even), then V B,h
per is a proper subset of

V h
per. And {(ψιj)µ, (ψιj)ν}1≤j≤Nι is a complementary basis for V h

per, not

belonging to V B,h
per .

3. Else, V B,h
per = V h

per.
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Figure 6.5. The stencil for SB
h in 3-D

6.4 Stiffness matrix associated with B in 3-D

The stiffness matrix SB
h is defined as in (4.3) but in 3-D space. See Figure 6.5

for the 3-D local stencil for the stiffness matrix associated with B.

Proposition 6.4.1. (The dimension of kerSB
h in 3-D)

dim kerSB
h =


Nx +Ny +Nz − 1 if all Nx, Ny, Nz are even,

Nι + 1 if only Nι is odd,

1 else.

(6.15)

Proof. It is a direct consequence of Propositions 6.2.9 and 4.3.3.

We numerically assemble SB
h for various combinations of Nx, Ny, and Nz.

The rank deficiency can be computed in help of well-known numerical tools

or libraries, for instance MATLAB or LAPACK. Table 6.1 shows numerically

obtained rank deficiency of the stiffness matrix associated withB in 3-D space.

Numbers in red represent the case of all even discretizations. Blue is for the

case of odd discretization in only one direction, and black for the other cases.

These numerical results confirm our theoretical result in Proposition 6.4.1.
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Nz = 2
Ny

2 3 4 5 6 7 8

Nx 2 5
3 4 1
4 7 4 9
5 6 1 6 1
6 9 4 11 6 13
7 8 1 8 1 8 1
8 11 4 13 6 15 8 17

Nz = 4
2 3 4 5 6 7 8

2
3
4 11
5 6 1
6 13 6 15
7 8 1 8 1
8 15 6 17 8 19

Nz = 3
2 3 4 5 6 7 8

2
3 1
4 1 4
5 1 1 1
6 1 4 1 4
7 1 1 1 1 1
8 1 4 1 4 1 4

Nz = 5
2 3 4 5 6 7 8

2
3
4
5 1
6 1 6
7 1 1 1
8 1 6 1 6

Table 6.1. Numerically obtained rank deficiency of SB
h in 3-D

6.5 Numerical schemes in 3-D

Consider again an elliptic problem with periodic boundary condition (4.6)

with the compatibility condition
∫
Ω f = 0, the corresponding weak formu-

lation (4.7), and the corresponding discrete weak formulation (4.8) in 3-D.

Throughout this section, we assume that all Nx, Ny, and Nz are even. B♭

again denotes a basis for V h
per, a proper subset of B. Note that we have known

what the cardinality of B♭ is, but the way to find B♭ is not constructive yet.

Let A and A♭ be the set of all alternating functions, and a complementary

basis for V h
per which consists of alternating functions as in Theorem 6.3.1, re-

spectively. Without loss of generality, we write B♭ = {ϕj}|B
♭|

j=1 , B = {ϕj}|B|
j=1,

A♭ = {ψj}|A
♭|

j=1, and A = {ψj}|A|j=1. Define two extended sets E := B ∪ A, and

E♭ := B♭ ∪ A♭. Even in 3-D case, E♭ is a basis for V h
per.

Remark 6.5.1. Unlike 2-D case, A may not be linearly independent in 3-D

case. Thus we use A♭, a linearly independent subset, instead of A to construct
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S |S| SpanS dim SpanS
B♭ NxNyNz − (Nx +Ny +Nz) + 2

V B,h
per NxNyNz − (Nx +Ny +Nz) + 2

B NxNyNz

E♭ NxNyNz + (Nx +Ny +Nz)− 1
V h
per NxNyNz + (Nx +Ny +Nz)− 1

E NxNyNz + 2(Nx +Ny +Nz)

Table 6.2. Summary of characteristics of B♭, B, E♭, E in 3-D when all Nx, Ny,
Nz are even

E♭ as a basis for V h
per.

Lemma 6.5.2. Let B and A be as above. Then the followings hold.

1. ah(ϕ, ψ) = 0 ∀ϕ ∈ B ∀ψ ∈ A.

2.
∫
Ω ψ = 0 ∀ψ ∈ A.

3. There exists an h-independent constant C such that ∥ψ∥0 ≤ Ch1/2 and

|ψ|1,h ≤ Ch−1/2 ∀ψ ∈ A.

Remark 6.5.3. The second equation in Lemma 4.4.1 does not hold in 3-D

case. If µ = ν, then ah((ψ
ι)µ, (ψ

λ)ν) does not vanish in general.

For 3-D case, we define SB♭

h , S̃B♭

h , and SA
h as in (4.9)–(4.11), respectively.

Furthermore we define SA♭

h , the stiffness matrix associated with A♭ in similar

manner. Define the linear systems L̃E♭

h , LE♭

h as in (4.13), (4.14), with slight

modification since E♭ is equal to B♭ ∪ A♭ in 3-D case. Other linear systems

LEh, LBh are defined as in (4.18), (4.20). The solutions ũ♭, u♭, u♮, ū♮, and the

numerical solutions uh, u
♭
h, u

♮
h, ū

♮
h are defined as in (4.13)–(4.15), (4.18)–(4.20),

(4.12), (4.16), (4.17), (4.21).

In the following, we compare these numerical solutions as in Section 4.4.

The equality between uh and u♭h is clear. The next is for comparison between

u♭h and u♮h.
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Since B♭ is a basis for V B,h
per , there exist tℓj ∈ R for 1 ≤ ℓ ≤ |B| − |B♭| and

1 ≤ j ≤ |B♭|, such that

ϕ|B♭|+ℓ =

|B♭|∑
j=1

tℓjϕj . (6.16)

Thus
∑

K∈Th ∇ϕk · ∇
(
ϕ|B♭|+ℓ −

∑|B♭|
j=1 tℓjϕj

)
dx = 0 for all k, and it is sim-

plified as (SB
h )|B♭|+ℓ,k =

∑|B♭|
j=1 tℓj(S

B
h )jk. Let T denote a matrix of size (|B| −

|B♭|)×|B♭| such that (T)ℓj = tℓj . Then the last equation for 1 ≤ ℓ ≤ |B|−|B♭|

and 1 ≤ k ≤ |B♭| can be expressed as a matrix equation

[SB
h ]|B♭|+1:|B|,1:|B♭| = T[SB

h ]1:|B♭|,1:|B♭|. (6.17)

Note that [SB
h ]1:|B♭|,1:|B♭| is just equal to S

B♭

h . Let

u♭|B♭

0

 be a trivial extension

of u♭|B♭ into a vector in R|B| by padding zeros. Then

SB
h

u♭|B♭

0

 =

 SB♭

h u♭|B♭

[SB
h ]|B♭|+1:|B|,1:|B♭|u

♭|B♭

 =

 SB♭

h u♭|B♭

TSB♭

h u♭|B♭

 =

 ∫Ω fB♭

T
∫
Ω fB

♭


since SB♭

h u♭|B♭ =
∫
Ω fB

♭. We can easily derive

T

∫
Ω
fB♭ = T


∫
Ω fϕ1
...∫

Ω fϕ|B♭|

 =


∫
Ω f
∑|B♭|

j=1 t1jϕj
...∫

Ω f
∑|B♭|

j=1 t|B♭|jϕj

 =


∫
Ω fϕ|B♭|+1

...∫
Ω fϕ|B|

 ,

which implies that

SB
h

u♭|B♭

0

 =

∫
Ω
fB.
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In the same way we obtain that SA
h

u♭|A♭

0

 =
∫
Ω fA. Therefore we can con-

clude the equality of u♮h and u♭h by the same argument in 2-D case.

For the last, consider the difference between u♮h and ū♮h. We can easily

observe that u♮h − ū
♮
h = u♮

∣∣
A
A, and ah(u

♮
h − ū

♮
h, ψ) =

∫
Ω fψ for all ψ ∈ A.

Thus

|u♮h − ū
♮
h|

2
1,h = ah

(
u♮h − ū

♮
h, u

♮
h − ū

♮
h

)
=

∫
Ω
f(u♮h − ū

♮
h) ≤ C∥f∥0 ∥u

♮
h − ū

♮
h∥0 = Ch ∥f∥0 |u♮h − ū

♮
h|1,h

due to the following lemma, and we immediately obtain the difference in mesh-

dependent norm, and in L2-norm.

Lemma 6.5.4. Let MA
h be the mass matrix associated with A. Then there

exists an h-independent constant C such thatMA
h = Ch2SAh . In a consequence,

∥vh∥0 = C1/2h|vh|1,h for all vh ∈ SpanA.

Proof. Remind that (ψιj)µ is the alternating function such that the support is

Ωιj and the nonzero DoF values are only lying on faces perpendicular to µ-axis.

Thus only µ-component of the piecewise gradient of (ψιj)µ survives. It implies

that ah((ψ
ι
j)µ, (ψ

λ
k )ν) = 0 if µ ̸= ν. Therefore we can consider SAh as a block

diagonal matrix:

SAh =


SAx
h 0 0

0 SAy

h 0

0 0 SAz
h

 ,

where Ax, Ay, Az are defined as in Theorem 6.3.1, and SAx
h , SAy

h , SAz
h are the

stiffness matrices associated with the respective sets.
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We can also considerMA
h as a block diagonal matrix in the same structure,

since the following observation: if µ ̸= λ, then

(
(ψιj)µ, (ψ

λ
k )ν

)
Ω
=

∫
Ω
(ψιj)µ (ψ

λ
k )ν dx =

∑
Q∈Th(Ω)

∫
Q
(ψιj)µ (ψ

λ
k )ν dx

=
∑

Q∈Th(Ω)

h

∫
Qµ

(ψιj)µ dµ

∫
Qν

(ψλk )ν dν = 0.

We write

MA
h =


MAx

h 0 0

0 MAy

h 0

0 0 MAz
h

 ,

whereMAx
h ,MAy

h ,MAz
h are the mass matrices associated with the respective

sets. Therefore, it is enough to showMAµ

h = Ch2SAµ

h for each µ ∈ {x, y, z}.

First, we consider the blocks associated with Ax = {(ψyj )x, (ψzk)x} for

1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz. The proof for other blocks is similar. For any two

alternating functions (ψιj)x and (ψλk )x in Ax,

1. if ι = λ (let them be equal to y, without loss of generality), then

ah

(
(ψyj )x, (ψ

y
k)x

)
=

∑
Q∈Th(Ω)

∫
Q
∇(ψyj )x · ∇(ψ

y
k)x dx

=
∑

Q∈Th(Ωy
j∩Ω

y
k)

∫
Q
(2/h)2 dx = 4NxNzhδjk,

since the number of cubes in Ωyj isNxNz. Here, δjk denotes the Kronecker

delta.
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2. if ι ̸= λ (let ι = y and λ = z, without loss of generality), then

ah

(
(ψyj )x, (ψ

z
k)x

)
=

∑
Q∈Th(Ω)

∫
Q
∇(ψyj )x · ∇(ψ

z
k)x dx

=
∑

Q∈Th(Ωy
j∩Ωz

k)

∫
Q
(2/h)2 dx = 4Nxh,

since the number of cubes in Ωyj ∩ Ωzk is Nx.

On the other hand, we can easily observe that

(
(ψyj )x, (ψ

y
k)x

)
Ω
=

∑
Q∈Th(Ω)

∫
Q
(ψyj )x (ψ

y
k)x dx

=
∑

Q∈Th(Ωy
j∩Ω

y
k)

∫
Q
(ψyj )x (ψ

y
k)x dx =

1

3
NxNzh

3δjk, and

(
(ψyj )x, (ψ

z
k)x

)
Ω
=

∑
Q∈Th(Ω)

∫
Q
(ψyj )x (ψ

z
k)x dx

=
∑

Q∈Th(Ωy
j∩Ωz

k)

∫
Q
(ψyj )x (ψ

z
k)x dx =

1

3
Nxh

3.

ThereforeMAx
h = 1

12h
2SAx

h , and the proof is completed.

Theorem 6.5.5 (Relation between numerical solutions in 3-D). Let uh, u
♭
h,

u♮h, ū
♮
h be the numerical solutions of (4.6) in 3-D as (4.12), (4.16), (4.17),

(4.21), respectively, with E♭ = B♭ ∪ A♭. Then uh = u♭h = u♮h, and

∥u♮h − ū
♮
h∥0 ≤ Ch

2∥f∥0, |u♮h − ū
♮
h|1,h ≤ Ch∥f∥0.
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6.6 Numerical results

As mentioned before, we can not construct a basisB♭ for V B,h
per in 3-D explicitly.

We only use the scheme option 4 for our numerical test. The exact solution

is u(x, y, z) = sin(2πx) sin(2πy) sin(2πz). The numerical results on Table 6.3

confirm our theoretical results.

Opt 4
h |u− uh|1,h order ∥u− uh∥0 order

1/8 1.505E-00 - 3.848E-02 -
1/16 7.550E-01 0.995 9.716E-03 1.986
1/32 3.777E-01 0.999 2.434E-03 1.997
1/64 1.889E-01 1.000 6.089E-04 1.999
1/128 9.443E-02 1.000 1.523E-04 2.000

Table 6.3. Numerical result of the elliptic problem in 3-D with the scheme
option 4
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Chapter 1

Introduction

Finite element method (FEM) is one of successful methods to approximate

the solution of partial differential equations derived in various fields of studies.

However it has a drawback when we treat a problem containing heterogeneity.

For instance, when the coefficient tensor of the problem is highly oscillatory

in micro scale, we need to consider a sufficiently refined mesh consisting of

elements which are comparable with the micro scale in order to get a numerical

solution sufficiently close to the exact solution. Such a refinement increases the

number of unknowns in the corresponding system of equations. It is, of course,

a critical burden on solving the equation numerically.

To overcome this shortage of the standard FEM, several efficient meth-

ods have been proposed and developed in decades. Multiscale finite element

method (MsFEM) [30, 26, 25] employs basis functions representing multi-

scale features whereas a local shape function in the standard FEM is just a

plain polynomial. In each macro element, the multiscale shape function is con-
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structed by solving a discrete harmonic equation associated with given mul-

tiscale coefficient. Generalized multiscale finite element method (GMsFEM)

reduces the number of degrees of freedom in the discrete model by considering

a few dominant modes of the corresponding generalized eigenvalue problem

[23, 24]. Heterogeneous multiscale method (HMM) numerically estimates the

homogenized coefficient using the micro scale structure. Especially, the finite

element heterogeneous multiscale method (FEHMM) is a HMM framework

which is based on finite element implementation [1, 2, 6, 3, 4, 21].

Most of the above works employ the conforming finite element approach,

while nonconforming elements have prominence for their numerical stability in

various problems [18, 14, 35, 46, 13, 20, 11, 38]. Recently, there are some works

in MsFEM based on the nonconforming approach [36, 37, 19]. Lee and Sheen

[39] proposed a nonconforming GMsFEM framework for elliptic problems.

In this thesis, we propose a FEHMM scheme based on nonconforming finite

elements for multiscale elliptic problems. As a prototype of nonconforming

elements, we employ the P1–nonconforming quadrilateral finite element, which

is the lowest-order element on quadrilateral or rectangular mesh (in 2-D case),

and hexahedral mesh (in 3-D case). Thus this finite element shares the same

nature of the well-known Crouzeix-Raviart element on triangular mesh. We

would like to emphasize the advantage of rectangular elements over simplicial

elements on mesh construction, especially in 3-D space. Each micro problem in

the proposed FEHMM scheme may derive a singular linear equation due to its

periodic nature. By using results from recent analysis for P1–nonconforming

quadrilateral finite element with periodic boundary condition, we formulate

the singular linear equation firmly, and solve it efficiently.

This thesis is organized as follows. In chapter 2, we state in brief pre-

liminaries and notations for our discussion. We introduce a nonconforming
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FEHMM scheme in chapter 3. Chapter 4 is devoted to prove main theorem

for a priori error estimates of the proposed method. We give several numerical

results in chapter 5.
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Chapter 2

Preliminaries

Let Ω ⊂ Rd (d = 2, 3) be a bounded domain with smooth boundary ∂Ω.

Denote x = (x1, · · · , xd) ∈ Rd. Consider a multiscale elliptic problem

−∇ ·
(
Aε(x)∇uε(x)

)
= f(x) in Ω, (2.1a)

uε = 0 on ∂Ω, (2.1b)

where ε≪ 1 is a scale parameter. Here, the coefficient tensor Aε ∈ [L∞(Ω)]d×d

is assumed to be symmetric, uniformly elliptic and bounded, i.e., there exist

λ,Λ > 0 which do not depend on x such that λ|ξ|2 ≤ Aε(x) ξ · ξ ≤ Λ|ξ|2 for

all ξ ∈ Rd.

2.1 Homogenization

Let Y =
∏d
k=1[0, ℓk] for given {ℓk}dk=1 and ej be the standard unit basis of Rd

corresponding to the j-th component. Suppose that Aε(x) := A(x,x/ε) for a
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Y -periodic function A(·, ·) with respect to the second variable, i.e., a function

A : Rd × Rd → Rd×d satisfies that A(x,y) = A(x,y + ℓkek) for 1 ≤ k ≤ d.

Then, the following result is well known [17, 32].

Theorem 2.1.1 (Periodic case). Suppose that Aε(x) := A(x,x/ε) where

A(x,y) is Y -periodic for the variable y = (y1, · · · , yd). Let f ∈ L2(Ω). Then

there exists a homogenized coefficient tensor A0 such that
uε ⇀ u0 weakly in H1

0 (Ω),

Aε∇uε ⇀ A0∇u0 weakly in [L2(Ω)]d,

where u0 is a unique solution in H1
0 (Ω) of the homogenized problem:


−∇ ·

(
A0(x)∇u0(x)

)
= f(x) in Ω,

u0 = 0 on ∂Ω.

(2.2)

In fact, the homogenized coefficient A0 = (A0
ij) is given by

A0
ij(x) =

1

|Y |

∫
Y

(
Aij(x,y) +

d∑
k=1

Aik(x,y)
∂χj

∂yk

)
dy,

where |Y | denotes the volume of Y , and χj = χj(x,y) the solution of the cell

problem: 
−∇y ·

(
A(x,y)∇yχ

j
)
= ∇y · (A(x,y) ej) in Y,

χj is Y -periodic,∫
Y
χj dy = 0.
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2.2 Notations

Let D be a bounded open domain in Rd (d = 2, 3). Denote by L2(D), H1(D),

andH1
0 (D) the standard Sobolev spaces onD with the standard Sobolev norms

∥·∥0,D, ∥·∥1,D, and (semi-)norm | · |1,D, respectively. By C∞
per(D) designate the

set of smooth periodic functions on D and by H1
per(D) the closure of C∞

per(D)

with respect to the norm ∥ · ∥1,D in H1(D). W 1
per(D) is a subspace of H1

per(D)

which consists of functions whose mean value on D are zero. We will mean

by (·, ·)D the L2(D) inner product. In the case of D = Ω, the subscript D on

notations of norms and inner product is omitted. For (d− 1)-dimensional face

f , ⟨·, ·⟩f indicates the L2(f) inner product.

By |D| we denote the volume of the domain D. For an integrable function

v ∈ L1(D), the mean value onD is denoted byMD(v) :=
1
|D|
∫
D v. Throughout

this thesis C denotes a generic constant and its value varies depending on the

position where it appears.

Consider a family of triangulations {Th(D)}0<h<1 for the domain D con-

sisting of quadrilateral elements. Let E ih, Ebh, and E
b,opp
h denote the sets of all

interior edges, of all boundary edges, and of all pairs consisting of two bound-

ary edges on opposite position, respectively. Set

V P1
h (D) =

{
v ∈ L2(D)

∣∣∣∣ v|K ∈ P1(K) ∀K ∈ Th(D), ⟨[v]e, 1⟩e = 0 ∀e ∈ E ih
}
,

(2.3)

V P1
h,0 (D) =

{
v ∈ V P1

h (D)

∣∣∣∣ ⟨v, 1⟩e = 0 ∀e ∈ Ebh
}
, (2.4)

V P1
h,per(D) =

{
v ∈ V P1

h (D)

∣∣∣∣ ⟨v, 1⟩e1 = ⟨v, 1⟩e2 ∀(e1, e2) ∈ E
b,opp
h , (v, 1)D = 0

}
,

(2.5)

where P1(K) denotes the set of linear polynomials on K, and [·]e the jump
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across edge e. Let | · |1,h,D denote mesh-dependent energy norm on V P1
h (D).

The standard error analysis for nonconforming elements implies a priori error

estimate, see [44, 20],

|u− uh|1,h ≤ Ch∥u∥2.
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Chapter 3

FEHMM Based on

Nonconforming Spaces

In this chapter we introduce a FEHMM scheme based on nonconforming finite

spaces for the multiscale elliptic problem (2.1). We follow the framework of

FEHMM [1, 2] with slight modification for nonconforming function spaces.

Here and in what follows, we only treat the case of d = 2. Let TH := TH(Ω)

be a regular triangulation of Ω with quadrilaterals. Define the macro mesh

parameter H := maxK∈TH diam(K). For each macro element KH ∈ TH , let

E(KH) denote the set of its edges. The set of all edges, of all interior edges

and of all boundary edges are denoted by EH , E iH and EbH , respectively. Let

FKH
: K̂ → KH be a bilinear transformation from the reference domain onto

KH . Set

V = H1
0 (Ω) and VH = V P1

H,0(Ω) (3.1)
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and denote the macro mesh-dependent (semi-)norm on V + VH by |||·|||H :=(∑
KH∈TH | · |

2
1,KH

)1/2
.

To formulate the FEHMM scheme, we need a quadrature formula which

consists of I points with corresponding weights (xi, ωi)
I
i=1 on each element

KH ∈ TH such that

I∑
i=1

ωi|∇v(xi)|2 ≥ C|v|21,KH
∀v ∈ P1(KH),

I∑
i=1

ωi∇v(xi) · ∇w(xi) =
∫
KH

∇v · ∇w dx ∀v, w ∈ P1(KH).

Remark 3.0.1. The above characteristics of the quadrature formula are useful

to prove the existence and uniqueness of the solution as well as optimal error

estimates in Chapter 4.

On each element KH ∈ TH we define I sampling domains Kδ,i := xi +

[−δ/2, δ/2]2 corresponding to each quadrature point xi for given δ ≪ 1. The

size of the sampling domains δ should be chosen to be comparable with ε.

The most trivial case is δ = ε, but not always. The effect of various δ will

be mentioned in Section 4.5.2. On each sampling domain we consider a micro

triangulation to deal a bundle of micro problems on it. Let Th(Kδ,i) be a

uniform triangulation of a sampling domain Kδ,i consisting of quadrilateral

elements and h := maxK∈Th(Kδ,i) diam(K) the micro mesh parameter. Each

micro element Kh ∈ Th(Kδ,i) has a bilinear transformation FKh
: K̂ → Kh

such that FKh
(K̂) = Kh. Let denote the set of all edges, of all interior edges

and of all boundary edges in Th by Eh, E ih and Ebh, respectively. E(Kh) denotes

the set of edges of Kh.

On each sampling domain Kδ,i we will consider two micro function spaces,

namely, a continuous function space W (Kδ,i) and a discrete space Wh(Kδ,i)
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(a) (b) (c)

Figure 3.1. The hierarchy of geometric objects in FEHMM scheme

which are determined by a choice of macro-micro coupling condition we use. If

the coefficient tensor Aε in (2.1) has a periodic property, then we can impose

periodic coupling condition. On the other hand, Dirichlet coupling condition

can be used for general cases. Respective to the choice we define two micro

function spaces by

W (Kδ,i) =


W 1
per(Kδ,i), periodic case,

H1
0 (Kδ,i), Dirichlet BC case,

(3.3a)

Wh(Kδ,i) =


V P1
h,per(Kδ,i) periodic case,

V P1
h,0 (Kδ,i) Dirichlet BC case.

(3.3b)

The micro mesh-dependent (semi-)norm on W (Kδ,i) + Wh(Kδ,i) is defined

by |||·|||h,Kδ,i
:=
(∑

Kh∈Th(Kδ,i)
| · |21,Kh

)1/2
in both periodic and Dirichlet BC

coupling cases. The expression Kδ,i in notations will be omitted if there is no

ambiguity of choice for sampling domains.

Figure 3.1 shows the hierarchy of geometric objects in the FEHMM scheme

at a glance: (a) domain Ω and its triangulation TH , (b) macro element KH , (c)

sampling domain Kδ,i surrounding a quadrature point xi and its triangulation

Th consisting of micro elements Kh.

For the sake of convenience, introduce the two bilinear forms, aKδ,i :
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H1(Kδ,i)×H1(Kδ,i)→ R and a
Kδ,i

h : V P1
h (Kδ,i)× V P1

h (Kδ,i)→ R by

aKδ,i(u, v) =

∫
Kδ,i

Aε∇u · ∇v dx ∀u, v ∈ H1(Kδ,i),

a
Kδ,i

h (uh, vh) =
∑

Kh∈Th(Kδ,i)

∫
Kh

Aε∇uh · ∇vh dx ∀uh, vh ∈ V P1
h (Kδ,i).

Also define two bilinear forms aH and aH : VH × VH → R as follows: for all

uH , vH ∈ VH ,

aH(uH , vH) =
∑

KH∈TH

I∑
i=1

ωi
|Kδ,i|

∫
Kδ,i

Aε∇um · ∇vm dx, (3.4a)

aH(uH , vH) =
∑

KH∈TH

I∑
i=1

ωi
|Kδ,i|

∑
Kh∈Th(Kδ,i)

∫
Kh

Aε∇umh · ∇vmh dx (3.4b)

where um, vm, umh , v
m
h are the solutions of the continuous and discrete micro

problems with constraints uH and vH , respectively, on each sampling domain

Kδ,i in KH ∈ TH defined as follows: for given wH ∈ VH , wm ∈ wH +W (Kδ,i)

and wmh ∈ wH +Wh(Kδ,i) fulfill

aKδ,i(wm, z) = 0 ∀z ∈W (Kδ,i), (3.5a)

a
Kδ,i

h (wmh , zh) = 0 ∀zh ∈Wh(Kδ,i). (3.5b)

In the above expressions wH+W (Kδ,i) and wH+Wh(Kδ,i), wH actually means

wH |Kδ,i
, the function restricted onto the domain Kδ,i. However, here and in

what follows, we use this abusive notation for the sake of simple expressions

if context determines proper range of given function.

Remark 3.0.2. By following a typical FEHMM framework, one needs to con-

sider wlinH , a linearization of wH at xi, instead of wH itself in order to get wm

and wmh in (3.5). In our discussion, however, such a linearization is unnec-
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essary because the finite element space which we are considering consists of

piecewise linear functions.

A nonconforming FEHMM weak formulation of the problem (2.1) is now

ready to be stated as follows:

(Main Weak Formulation) find uH ∈ VH such that

aH(uH , wH) = (f, wH) ∀wH ∈ VH . (3.6)

For analysis in Chapter 4, we introduce several micro functions. Let ψjh =

ψjh(x) ∈Wh(Kδ,i), j = 1, · · · , d, the solution of the following micro problem

a
Kδ,i

h (ψjh, zh) = −
∑

Kh∈Th(Kδ,i)

∫
Kh

Aεej · ∇zh dx ∀zh ∈Wh(Kδ,i). (3.7)

Also, for j = 1, · · · , d, let ψj = ψj(x) ∈W (Kδ,i) be the solution of

aKδ,i(ψj , z) = −
∫
Kδ,i

Aεej · ∇z dx ∀z ∈W (Kδ,i). (3.8)

Later, ψjh, j = 1, · · · , d, play as basis functions for the solution space of the

micro problem (3.5). We will also use the following functions denoted by

φjh(x) := ψjh(x) + xj and φ
j(x) := ψj(x) + xj on each sampling domain Kδ,i.

Remark 3.0.3. Indeed, ψj and ψjh are nothing but ψj = (xj)
m − xj and

ψjh = (xj)
m
h − xj, respectively, with the superscript ‘m’ as in (3.5). Moreover

φj = (xj)
m and φjh = (xj)

m
h .

We also introduce several weak formulations which are used for analysis.
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(Weak Formulation of Homogenized Problem) A weak formulation of

the homogenized problem (2.2) is given as to find u0 ∈ V such that

a0(u0, v) = (f, v) ∀v ∈ V,

where

a0(v, w) =

∫
Ω
A0(x)∇v · ∇w dx ∀v, w ∈ V. (3.9)

(Weak Formulation with Quadrature Rule in Macro Scale) A weak

formulation of the homogenized problem (2.2) with quadrature rule in macro

scale, corresponding to (3.6), can be defined as to find u0H ∈ VH fulfilling

a0H(u
0
H , vH) = (f, vH) ∀vH ∈ VH ,

where

a0H(vH , wH) =
∑

KH∈TH

I∑
i=1

ωi A
0(xi)∇vH(xi) · ∇wH(xi) ∀vH , wH ∈ VH .

(3.10)

(Semi-discrete FEHMM) A semi-discrete FEHMM solution is defined as

uH ∈ VH such that

aH(uH , vH) = (f, vH) ∀vH ∈ VH . (3.11)
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Chapter 4

Fundamental Properties of

Nonconforming HMM

4.1 Existence and uniqueness

For the beginning of analysis, we prove the existence and uniqueness of solution

of the equation.

Lemma 4.1.1. Let vmh be the solution of the micro problem (3.5b) with con-

straint vH on a sampling domain Kδ,i. Then

|vH |1,Kδ,i
≤ |||vmh |||h,Kδ,i

≤ Λ

λ
|vH |1,Kδ,i

.

Proof. Utilizing the fact that vH is linear on K for all K ∈ TH and (3.3b), we

have

0 ≤
∑

Kh∈Th

∫
Kh

∇(vmh − vH) · ∇(vmh − vH) dx
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=
∑

Kh∈Th

∫
Kh

|∇vmh |2 − |∇vH |2 − 2∇(vmh − vH) · ∇vH dx

=

 ∑
Kh∈Th

∫
Kh

|∇vmh |2 dx−
∫
Kδ,i

|∇vH |2 dx


− 2∇vH ·

∑
Kh∈Th

∫
∂Kh

nKh
(vmh − vH) ds

where nKh
denotes the unit outward normal to Kh. Since v

m
h −vH ∈Wh(Kδ,i),

the last term in the above equation vanishes. Consequently, we get

∫
Kδ,i

|∇vH |2 dx ≤
∑

Kh∈Th

∫
Kh

|∇vmh |2 dx .

On the other hand, due to the ellipticity of Aε, we have

0 ≤
∑

Kh∈Th

∫
Kh

Aε∇(vmh − vH) · ∇(vmh − vH) dx

=
∑

Kh∈Th

∫
Kh

Aε∇vH · ∇vH −Aε∇vmh · ∇vmh

+Aε∇(vmh − vH) · ∇vmh +Aε∇vmh · ∇(vmh − vH) dx .

Due to the definition of vmh in (3.5) and symmetry of Aε, the last two terms

vanish. Thus we get

∑
Kh∈Th

∫
Kh

Aε∇vmh · ∇vmh dx ≤
∫
Kδ,i

Aε∇vH · ∇vH dx .

The uniform ellipticity and boundedness of Aε imply the desired inequality.

Due to the properties of the quadrature formula, the bilinear form aH is

bounded and coercive in VH . Therefore the existence and uniqueness of the
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solution uH to (3.6) is guaranteed by the Lax-Milgram Lemma. Thus, we have

Theorem 4.1.2. There exists a unique solution uH to the problem (3.6).

Similarly, the coercivity and boundedness of the bilinear form aH can be

obtained immediately, and thus one also get the existence and uniqueness of

the solution uH as stated below.

Theorem 4.1.3. There exists a unique solution uH to the problem (3.11).

4.2 Recovered homogenized tensors

Recovered homogenized tensors A0
Kδ,i

and A
0
Kδ,i

on a sampling domain Kδ,i

are defined by

A0
Kδ,i

=
1

|Kδ,i|
∑

Kh∈Th(Kδ,i)

∫
Kh

Aε(x)
(
I + JTψh

)
dx, (4.1a)

A
0
Kδ,i

=
1

|Kδ,i|

∫
Kδ,i

Aε(x)
(
I + JTψ

)
dx, (4.1b)

where Jψh
and Jψ are d× d matrices defined by

[Jψh
]jk =

∂ψjh
∂xk

and [Jψ]jk =
∂ψj

∂xk
, 1 ≤ j, k ≤ d,

respectively. The following proposition shows the essential characteristic of

two recovered homogenized tensors.

Proposition 4.2.1. Let umh and vmh be the solutions of the discrete micro

problem (3.5b) corresponding to the macro constraints uH and vH , respectively,

on Kδ,i. Then the following holds.

1

|Kδ,i|
∑

Kh∈Th(Kδ,i)

∫
Kh

Aε∇umh · ∇vmh dx = A0
Kδ,i
∇uH · ∇vH . (4.2)
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Similarly, let um and vm be the solutions of the continuous micro problem

(3.5a) corresponding to the macro constraints uH and vH , respectively, on

Kδ,i. Then the following also holds.

1

|Kδ,i|

∫
Kδ,i

Aε∇um · ∇vm dx = A
0
Kδ,i
∇uH · ∇vH . (4.3)

Proof. We will show (4.2) only, since (4.3) follows immediately by a similar

argument. Since umh is the solution of (3.5b), and vmh −vH ∈Wh(Kδ,i), it holds

1

|Kδ,i|
∑

Kh∈Th

∫
Kh

Aε∇umh · ∇vmh dx =
1

|Kδ,i|
∑

Kh∈Th

∫
Kh

Aε∇umh · ∇vH dx .

(4.4)

Since ∇uH is constant, umh is represented by a linear combination of the basis

functions ψjh as

umh = uH +

d∑
j=1

ψjh
∂uH
∂xj

.

By plugging the above representation into (4.4), we have

1

|Kδ,i|
∑

Kh∈Th

∫
Kh

Aε

∇uH +

d∑
j=1

∇ψjh
∂uH
∂xj

 · ∇vH dx

=
1

|Kδ,i|
∑

Kh∈Th

∫
Kh

Aε
(
I + JTψh

)
∇uH · ∇vH dx

=A0
Kδ,i
∇uH · ∇vH .

This completes the proof.

Remark 4.2.2. Proposition 4.2.1 implies that A0
Kδ,i

indeed plays a role as

the homogenized tensor on each sampling domain Kδ,i numerically.
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4.3 The case of periodic coupling

In this section, main ingredients of error analysis are provided under periodic

assumptions. Recall the definitions of ψj and φj in Chapter 3. The following

two assumptions will be taken into our discussion in this section.

Assumption 4.1 (H1. Periodic coupling).

1. Aε(x) := A(x, xε ) where A(x, ·) is Y -periodic with Y = [0, 1]2 and

A(x, ·) ∈W 1,∞(Y ).

2. On each sampling domain Kδ,i, solution of the micro problem (3.8) with

periodic coupling (3.3a) has regularity ψj ∈ H2(Kδ,i) and Aε∇φj ∈

[H1(Kδ,i)]
2.

First, we have the following result.

Lemma 4.3.1. Under Assumption 4.1, ∇ ·
(
Aε∇φj

)
= 0 on Kδ,i a.e.

Proof. From the definition of φj , it holds

∫
Kδ,i

Aε∇φj · ∇z dx = 0 ∀z ∈W 1
per(Kδ,i).

Let 1Kδ,i
be the characteristic function on Kδ,i. Since v − MKδ,i

(v)1Kδ,i
∈

W 1
per(Kδ,i) for all v ∈ H1

0 (Kδ,i), we have

∫
Kδ,i

Aε∇φj · ∇v dx = 0 ∀v ∈ H1
0 (Kδ,i).

The integration by parts gives ∇ ·
(
Aε∇φj

)
= 0 a.e.

Lemma 4.3.2. Under Assumption 4.1, it holds

|Aε∇φj |1,Kδ,i
≤ C|Kδ,i|1/2ε−1. (4.5)
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Proof. Taking z = ψj in (3.8), we have

∫
Kδ,i

Aε∇ψj · ∇ψj dx = −
∫
Kδ,i

Aεej · ∇ψj dx .

Due to the ellipticity of Aε and Assumption 4.1, it holds that

λ|ψj |21,Kδ,i
≤

∣∣∣∣∣
∫
Kδ,i

Aεej · ∇ψj dx

∣∣∣∣∣
≤

(∫
Kδ,i

|Aεej |2 dx

)1/2(∫
Kδ,i

|∇ψj |2 dx

)1/2

≤ C|Kδ,i|1/2 |ψj |1,Kδ,i
.

Thus it implies |ψj |1,Kδ,i
≤ C|Kδ,i|1/2, and therefore |φj |1,Kδ,i

≤ |ψj |1,Kδ,i
+

|xj |1,Kδ,i
≤ C|Kδ,i|1/2. Furthermore, the regularity of the problem implies that,

see also Remark 5.1 in [2],

|ψj |2,Kδ,i
≤ C|Kδ,i|1/2ε−1. (4.6)

The above results give the desired bound as follows.

|Aε∇φj |1,Kδ,i
≤ C

∫
Kδ,i

∑
k,ℓ,m

∣∣∣∣ ∂∂xk
(
Aεℓm

∂φj

∂xm

)∣∣∣∣2 dx

1/2

≤ C

∫
Kδ,i

∑
k,ℓ,m

∣∣∣∣∂Aεℓm∂xk

∂φj

∂xm

∣∣∣∣2 + ∣∣∣∣Aεℓm ∂2φj

∂xk∂xm

∣∣∣∣2 dx

1/2

≤ C

(
∥∇Aε∥0,∞,Kδ,i

|φj |1,Kδ,i
+ ∥Aε∥0,∞,Kδ,i

|φj |2,Kδ,i

)
≤ C|Kδ,i|1/2ε−1.
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The following proposition is a discretization error estimation of the micro

basis function ψj .

Proposition 4.3.3. Under Assumption 4.1, it holds

∣∣∣∣∣∣∣∣∣ψj − ψjh∣∣∣∣∣∣∣∣∣
h,Kδ,i

≤ Ch|Kδ,i|1/2ε−1. (4.7)

Proof. The Second Strang Lemma ([48, 10]) for the micro problems (3.7) and

(3.8) implies that

∣∣∣∣∣∣∣∣∣ψj − ψjh∣∣∣∣∣∣∣∣∣
h,Kδ,i

≤ C

 inf
vh∈Wh(Kδ,i)

∣∣∣∣∣∣ψj − vh∣∣∣∣∣∣h,Kδ,i

+ sup
wh∈Wh(Kδ,i)

∣∣∣aKδ,i

h (ψj , wh)− a
Kδ,i

h (ψjh, wh)
∣∣∣

|||wh|||h,Kδ,i

 .

The first term represents the best approximation error of ψj . It is bounded

by the micro mesh parameter h due to the standard approximation property of

nonconforming element spaces. The second term, so-called the consistency er-

ror, is for nonconformity of the finite element space. Let denote the numerator

of the second term by L(wh). The definitions of ψjh and φj imply

|L(wh)| : =
∣∣∣aKδ,i

h (ψj , wh)− a
Kδ,i

h (ψjh, wh)
∣∣∣

=

∣∣∣∣∣∣
∑

Kh∈Th

∫
Kh

Aε∇ψj · ∇wh dx+
∑

Kh∈Th

∫
Kh

Aεej · ∇wh dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

Kh∈Th

∫
Kh

Aε∇φj · ∇wh dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

Kh∈Th

∫
∂Kh

nKh
·
(
Aε∇φj

)
wh ds−

∑
Kh∈Th

∫
Kh

∇ ·
(
Aε∇φj

)
wh dx

∣∣∣∣∣∣ .
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The integration by parts is used in the last equation. Due to Lemma 4.3.1, it

is bounded by∣∣∣∣∣∣
∑

Kh∈Th

∫
∂Kh

nKh
·Aε∇φjwh ds

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

Kh∈Th

∑
e∈E(Kh)

∫
e
nKh

·Aε∇φjwh ds

∣∣∣∣∣∣
≤
∑
e∈Eh

∣∣∣∣∫
e
ne ·Aε∇φj [wh]e ds

∣∣∣∣ .
Let denote K+ and K− two adjacent elements that share a common interior

edge e. Let define the average of wh over the edge e as wh := 1
|e|
∫
ew

+
h =

1
|e|
∫
ew

−
h where wιh = wh|Kι for ι = +,−. Note that the integral value of a

function in Wh(Kδ,i) on each interior edge is well-defined due to the definition

of the nonconforming finite space. The regularity in Assumption 4.1 implies

∫
e
ne·Aε∇φj [wh]e ds

=

∫
e
ne ·Aε∇φj [wh − wh]e ds

=

∫
e
ne ·

(
Aε∇φj −Me

(
Aε∇φj

))
[wh − wh]e ds

≤
∑
ι=+,−

(∫
e

∣∣Aε∇φj −Me

(
Aε∇φj

)∣∣2 ds

) 1
2
(∫

e
|wιh − wh|

2 ds

) 1
2

.

Due to the trace theorem and Poincaré inequality on the reference domain K̂

with the standard scaling argument, the first term is bounded by

∫
e

∣∣Aε∇φj −Me

(
Aε∇φj

)∣∣2 ds ≤ Ch−1

∫
ê

∣∣∣Âε∇φ̂j −Mê

(
Âε∇φ̂j

)∣∣∣2 dŝ

≤ Ch−1
∥∥∥Âε∇φ̂j −Mê

(
Âε∇φ̂j

)∥∥∥2
1,K̂

≤ Ch−1
∣∣∣Âε∇φ̂j

∣∣∣2
1,K̂
≤ Ch

∣∣Aε∇φj
∣∣2
1,Kι
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for each ι = +,−. Here we use a simple fact that the bilinear transformation

FKh
linearly transforms an edge ê of the reference domain onto e. Note that

the average value of a function is preserved by a linear transformation. The

second term is bounded by

∫
e
|wιh − wh|

2 ds ≤ Ch
∫
ê
|ŵιh − wh|

2 dŝ ≤ Ch ∥ŵιh − wh∥
2
1,K̂

≤ Ch |ŵιh|
2
1,K̂
≤ Ch |wιh|

2
1,Kι .

Consequently, we have

|L(wh)| ≤ C
∑

Kh∈Th

h|Aε∇φj |1,Kh
|wh|1,Kh

≤ Ch

 ∑
Kh∈Th

|Aε∇φj |21,Kh

1/2 ∑
Kh∈Th

|wh|21,Kh

1/2

= Ch|Aε∇φj |1,Kδ,i
|||wh|||h,Kδ,i

.

Finally, Lemma 4.3.2 and (4.6) imply the desired error estimate:

∣∣∣∣∣∣∣∣∣ψj − ψjh∣∣∣∣∣∣∣∣∣
h,Kδ,i

≤ Ch
(
|ψj |2,Kδ,i

+ |Aε∇φj |1,h,Kδ,i

)
≤ Ch|Kδ,i|1/2ε−1.

Remark 4.3.4. In a similar way, we can obtain (4.7) for the case of d = 3,

under an additional assumption such that FKh
is a linear transformation.

The following proposition shows difference between the recovered homog-

enized tensors.
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Proposition 4.3.5. Under Assumption 4.1, it holds

sup
Kδ,i

∥A0
Kδ,i
−A0

Kδ,i
∥2 ≤ C

(
h

ε

)2

. (4.8)

Proof. For given sampling domain Kδ,i, definition of the recovered homoge-

nized tensors (4.1) implies

[A0
Kδ,i

]jk =
1

|Kδ,i|
∑

Kh∈Th

∫
Kh

d∑
ℓ=1

Aεjℓ
∂φkh
∂xℓ

dx

=
1

|Kδ,i|
∑

Kh∈Th

∫
Kh

Aε∇φkh · ∇xj dx

=
1

|Kδ,i|
∑

Kh∈Th

∫
Kh

Aε∇φkh · ∇φ
j
h dx,

and a similar expression for [A
0
Kδ,i

]jk. Thus

∣∣∣[A0
Kδ,i

]jk − [A
0
Kδ,i

]jk

∣∣∣
=

∣∣∣∣∣∣ 1

|Kδ,i|
∑

Kh∈Th

∫
Kh

Aε∇φkh · ∇φ
j
h −Aε∇φk · ∇φj dx

∣∣∣∣∣∣
=

∣∣∣∣∣ 1

|Kδ,i|
∑

Kh∈Th

∫
Kh

Aε∇
(
φkh − φk

)
· ∇
(
φjh − φ

j
)

+Aε∇φk · ∇
(
φjh − φ

j
)
+Aε∇

(
φkh − φk

)
· ∇φj dx

∣∣∣∣∣
≤ 1

|Kδ,i|

∣∣∣∣∣∣
∑

Kh∈Th

∫
Kh

Aε∇
(
φkh − φk

)
· ∇
(
φjh − φ

j
)
dx

∣∣∣∣∣∣
+

1

|Kδ,i|

∣∣∣∣∣ ∑
Kh∈Th

−
∫
Kh

∇·
(
Aε∇φk

)(
φjh−φ

j
)
dx+

∫
∂Kh

nKh
·Aε∇φk

(
φjh−φ

j
)
ds

∣∣∣∣∣
+

1

|Kδ,i|

∣∣∣∣∣ ∑
Kh∈Th

−
∫
Kh

∇·
(
Aε∇φj

) (
φkh−φk

)
dx+

∫
∂Kh

nKh
·Aε∇φj

(
φkh−φk

)
ds

∣∣∣∣∣.
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The last inequality is due to the integration by parts and the symmetry of Aε.

By Lemmas 4.3.1 and 4.3.2, Proposition 4.3.3 and using a similar technique,

it is bounded by

≤ Λ

|Kδ,i|

∣∣∣∣∣∣∣∣∣φkh − φk∣∣∣∣∣∣∣∣∣
h,Kδ,i

∣∣∣∣∣∣∣∣∣φjh − φj∣∣∣∣∣∣∣∣∣
h,Kδ,i

+
1

|Kδ,i|

∣∣∣∣∣∣
∑

Kh∈Th

∫
∂Kh

nKh
·Aε∇φk

(
φjh − φ

j
)
ds

∣∣∣∣∣∣
+

1

|Kδ,i|

∣∣∣∣∣∣
∑

Kh∈Th

∫
∂Kh

nKh
·Aε∇φj

(
φkh − φk

)
ds

∣∣∣∣∣∣
≤ Λ

|Kδ,i|

∣∣∣∣∣∣∣∣∣φkh − φk∣∣∣∣∣∣∣∣∣
h,Kδ,i

∣∣∣∣∣∣∣∣∣φjh − φj∣∣∣∣∣∣∣∣∣
h,Kδ,i

+
h

|Kδ,i|
|Aε∇φk|1,Kδ,i

∣∣∣∣∣∣∣∣∣φjh−φj∣∣∣∣∣∣∣∣∣
h,Kδ,i

+
h

|Kδ,i|
|Aε∇φj |1,Kδ,i

∣∣∣∣∣∣∣∣∣φkh−φk∣∣∣∣∣∣∣∣∣
h,Kδ,i

≤ C
(
h

ε

)2

.

4.4 The case of Dirichlet coupling

In this section we consider the following assumptions and Dirichlet coupling

condition for micro problems.

Assumption 4.2 (H2. Dirichlet coupling).

1. Aε(x) ∈W 1,∞(KH) with |Aεjk|0,∞,KH
≤ C and |∇Aεjk|0,∞,KH

≤ C/ε for

all KH ∈ TH .

2. On each sampling domain Kδ,i, solution of the micro problem (3.8) with

Dirichlet coupling (3.3a) has regularity ψj ∈ H2(Kδ,i) and Aε∇φj ∈

[H1(Kδ,i)]
2.
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The definition of φj implies

∫
Kδ,i

Aε∇φj · ∇z dx = 0 ∀z ∈ H1
0 (Kδ,i).

Applying the integration by parts, we have ∇ ·
(
Aε∇φj

)
= 0 a.e. It implies

the same results in Propositions 4.3.3 and 4.3.5 under Assumption 4.2, instead

of Assumption 4.1.

4.5 A priori error estimate

4.5.1 Macro error

Under sufficient regularity of u0, for instance H2, the standard analysis for

nonconforming finite elements and approximation by quadrature formulas [49]

imply that

∣∣∣∣∣∣u0 − u0H ∣∣∣∣∣∣H ≤ CH∥u0∥2. (4.9)

4.5.2 Modeling error

Due to the uniform ellipticity of aH , we have

∣∣∣∣∣∣u0H − uH ∣∣∣∣∣∣2H ≤ aH(u0H − uH , u0H − uH)
= aH(u

0
H , u

0
H − uH)− aH(uH , u0H − uH)

= aH(u
0
H , u

0
H − uH)− (f, u0H − uH)

= aH(u
0
H , u

0
H − uH)− a0H(u0H , u0H − uH).
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Note that the definitions of uH and u0H are applied successively in the above

equations. Dividing by a factor
∣∣∣∣∣∣u0H − uH ∣∣∣∣∣∣H implies a Strang-type inequality

∣∣∣∣∣∣u0H − uH ∣∣∣∣∣∣H ≤ sup
wH∈VH

∣∣aH(u0H , wH)− a0H(u0H , wH)∣∣
|||wH |||H

. (4.10)

Proposition 4.2.1 implies that the numerator is bounded as

∣∣aH(u0H , wH)− a0H(u0H , wH)∣∣
=

∣∣∣∣∣∣
∑

KH∈TH

I∑
i=1

ωiA
0
Kδ,i
∇u0H · ∇wH −

∑
KH∈TH

I∑
i=1

ωiA
0(xi)∇u0H(xi) · ∇wH(xi)

∣∣∣∣∣∣
≤

∑
KH∈TH

I∑
i=1

ωi

∣∣∣(A0
Kδ,i
−A0(xi)

)
∇u0H · ∇wH

∣∣∣
≤ sup

Kδ,i

∥A0
Kδ,i
−A0(xi)∥2

∣∣∣∣∣∣u0H ∣∣∣∣∣∣H |||wH |||H ,
and we have

∣∣∣∣∣∣u0H − uH ∣∣∣∣∣∣H ≤ C sup
Kδ,i

∥A0
Kδ,i
−A0(xi)∥2. (4.11)

The analysis in [22] reads the difference between two homogenized tensors,

one from the homogenization theory and the other from micro problems with

sampling domains of size δ. If we assume the local periodicity of Aε, then

sup
Kδ,i

∥A0 −A
0
Kδ,i
∥2 ≤



Cε if periodic coupling with

δ/ε ∈ N is used for (3.5),

C
(
ε
δ + δ

)
if Dirichlet coupling or

δ/ε ̸∈ N is used.

(4.12)
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4.5.3 Micro error

Due to the uniform ellipticity of aH , we have

|||uH − uH |||2H ≤ aH(uH − uH , uH − uH)

= aH(uH , uH − uH)− aH(uH , uH − uH)

= aH(uH , uH − uH)− (f, uH − uH)

= aH(uH , uH − uH)− aH(uH , uH − uH).

Therefore it holds

|||uH − uH |||H ≤ sup
wH∈VH

|aH(uH , wH)− aH(uH , wH)|
|||wH |||H

. (4.13)

Propositions 4.2.1 and 4.3.5 imply that the numerator is bounded as

|aH(uH , wH)− aH(uH , wH)|

=

∣∣∣∣∣∣
∑

KH∈TH

I∑
i=1

ωi A
0
Kδ,i
∇uH · ∇wH −

∑
KH∈TH

I∑
i=1

ωi A
0
Kδ,i
∇uH · ∇wH

∣∣∣∣∣∣
≤

∑
KH∈TH

I∑
i=1

ωi

∣∣∣(A0
Kδ,i
−A

0
Kδ,i

)
∇uH · ∇wH

∣∣∣
≤ sup

Kδ,i

∥A0
Kδ,i
−A

0
Kδ,i
∥2 |||uH |||H |||wH |||H

≤ C
(
h

ε

)2

|||uH |||H |||wH |||H ,

and we have

|||uH − uH |||H ≤ C
(
h

ε

)2

. (4.14)
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4.6 Main theorem for error estimates

The Aubin-Nitsche duality argument gives L2 error estimates, see [22].

Theorem 4.6.1. Let u0 and uH be the solutions of (2.2) and (3.6). Then,
the followings hold under various assumptions:

1. under Assumption 4.1, if periodic coupling with δ/ε ∈ N is used, then

∣∣∣∣∣∣u0 − uH ∣∣∣∣∣∣H ≤ C
(
H + ε+

(
h

ε

)2
)
, (4.15a)

∥u0 − uH∥0 ≤ C

(
H2 + ε+

(
h

ε

)2
)
; (4.15b)

2. under Assumption 4.1, if periodic coupling with δ/ε ̸∈ N is used, then

∣∣∣∣∣∣u0 − uH ∣∣∣∣∣∣H ≤ C
(
H +

(ε
δ
+ δ
)
+

(
h

ε

)2
)
, (4.16a)

∥u0 − uH∥0 ≤ C

(
H2 +

(ε
δ
+ δ
)
+

(
h

ε

)2
)
; (4.16b)

3. under Assumption 4.1 and Assumption 4.2, if Dirichlet coupling is used,
then

∣∣∣∣∣∣u0 − uH ∣∣∣∣∣∣H ≤ C
(
H +

(ε
δ
+ δ
)
+

(
h

ε

)2
)
, (4.17a)

∥u0 − uH∥0 ≤ C

(
H2 +

(ε
δ
+ δ
)
+

(
h

ε

)2
)
; (4.17b)

4. under Assumption 4.2, if Dirichlet coupling is used, then

∣∣∣∣∣∣u0 − uH ∣∣∣∣∣∣H ≤ C
(
H + sup

Kδ,i

∥A0
Kδ,i
−A0(xi)∥2 +

(
h

ε

)2
)
, (4.18a)

∥u0 − uH∥0 ≤ C

(
H2 + sup

Kδ,i

∥A0
Kδ,i
−A0(xi)∥2 +

(
h

ε

)2
)
. (4.18b)
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Chapter 5

Numerical Results

When one uses periodic coupling condition for the micro problems, the corre-

sponding algebraic system of equations for each micro problem must be con-

structed to consider two important properties — periodicity and zero-integral

property. Technically, one can enforce the solution to satisfy these properties

through either the discrete function space or the formulation for the problem.

In [5] these two properties are imposed through the formulation, by use of a

Lagrange multiplier and a constraint matrix. This approach is quite simple to

implement. However, it requires to solve an expanded indefinite linear system

of equations. Furthermore, the authors solve the linear system with a direct

method because its structure is not suitable to use efficient iterative methods

for the saddle point problems.

In order to overcome such disadvantages, we can alternatively use the

numerical schemes recently proposed for the P1–nonconforming quadrilateral

finite element with periodic boundary condition. These alternatives are based
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on a simple iterative method without any help of a Lagrange multiplier or

a constraint matrix, since they enforce the discrete function space with the

periodic property. The zero-integral condition is also treated in efficient ways.

For micro problems in all numerical examples, we employ one of these

alternative approaches: the option 2, whose trial and test functions are E♭

for a symmetric positive semi-definite system. We will investigate efficiency

of the alternative approach for micro problems in Section 5.1.1. Furthermore,

we use 2-point Gauss-Legendre quadrature formula for each coordinate in all

numerical examples.

5.1 Periodic diagonal example

The first example is the multiscale elliptic problem of which the coefficient

tensor has anisotropic periodicity in micro scale. On Ω = (0, 1)2, we consider

the problem (2.1) with Aε(x) =

√2 + sin(2πx1/ε) 0

0
√
2 + sin(2πx2/ε)

 ,

where ε is 10−3. By the homogenization theory, it can be easily shown that

the associated homogenized tensor A0 is equal to I, the identity tensor. f(x)

is set to satisfy that the associated homogenized elliptic problem has the exact

solution u0(x) = sin(πx1) sin(πx2). For the sake of simplicity we use the macro

and the micro mesh consisting of uniform squares. The size parameter δ of each

sampling domain is set to be same as ε. We use periodic coupling for micro

problems.

Table 5.1 shows error in energy norm, and in L2-norm, and the difference

between two observable homogenized tensors A0 and A0
Kδ,i

in the Frobenius

norm. Note that the matrix 2-norm for a finite dimensional matrix is equivalent

to the Frobenius norm. The theoretical error estimates (4.15) depend on H

as well as h. We can observe that the error is decreasing as H is decreasing,
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but there is a critical H value where the error does not decrease anymore

for fixed h, as particularly in L2-norm. Furthermore, in order to observe the

convergence rate as in (4.15) we have to consider simultaneous reduction of H

and h in different orders, since the theorem shows the dependency on H and

h with their own convergence orders. For instance, simultaneous reduction of

H in the second-order and h in the first-order gives convergence order of 2 in

energy norm, as observed in the table. The error in L2-norm is similar. The

numerical results confirm (4.15) in Theorem 4.6.1, the main convergence result

for periodic cases.

H h/ε=1/4 1/8 1/16 1/32 1/64∣∣∣∣∣∣u0 − uH ∣∣∣∣∣∣H
1/2 1.33E-00 1.35E-00 1.36E-00 1.36E-00 1.36E-00
1/4 6.98E-01 6.99E-01 7.03E-01 7.04E-01 7.05E-01
1/8 3.75E-01 3.55E-01 3.54E-01 3.55E-01 3.55E-01
1/16 2.77E-01 1.84E-01 1.78E-01 1.78E-01 1.78E-01
1/32 1.54E-01 1.04E-01 8.98E-02 8.90E-02 8.90E-02
1/64 1.93E-01 6.79E-02 4.66E-02 4.46E-02 4.45E-02

∥u0 − uH∥0
1/2 1.21E-01 1.20E-01 1.20E-01 1.21E-01 1.21E-01
1/4 4.58E-02 3.22E-02 3.04E-02 3.04E-02 3.04E-02
1/8 3.50E-02 1.41E-02 8.21E-03 7.64E-03 7.60E-03
1/16 4.96E-02 1.20E-02 3.69E-03 2.06E-03 1.91E-03
1/32 2.88E-02 1.25E-02 3.20E-03 9.31E-04 5.16E-04
1/64 4.23E-02 1.16E-02 3.17E-03 8.09E-04 2.33E-04

supKδ,i
∥A0 −A0

Kδ,i
∥F

1/2 1.00E-01 3.47E-02 9.02E-03 2.27E-03 5.68E-04
1/4 1.07E-01 3.42E-02 9.02E-03 2.27E-03 5.68E-04
1/8 1.04E-01 3.44E-02 9.02E-03 2.27E-03 5.68E-04
1/16 1.56E-01 3.43E-02 9.02E-03 2.27E-03 5.68E-04
1/32 8.65E-02 3.62E-02 9.02E-03 2.27E-03 5.68E-04
1/64 1.44E-01 3.37E-02 9.02E-03 2.27E-03 5.68E-04

Table 5.1. Error table of the example in Section 5.1
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Figure 5.1. Error plots of the example in Section 5.1

5.1.1 Comparison between approaches to solve micro problem

As mentioned in the beginning of this chapter, we mainly use the alternative

iterative approach based on the Conjugate Gradient method (CG) for micro

problems with Dirichlet coupling as well as periodic coupling condition. Here

we investigate the efficiency of the alternative iterative approach over the direct

solver for the periodic coupling case.

We consider three approaches for implementation of the FEHMM scheme.

They only differ in way for setting and solving linear systems corresponding

to micro problems. We describe these approaches in brief.

The first approach uses the Q1 bilinear conforming element to assemble

a linear system for each micro problem. As mentioned in [5], the assembled

system is indefinite due to blocks for constraints. The number of rows of the

system matrix is equal to n2+4n+3, where n is the number of discretization

in each coordinate of each sampling domain. A direct solver from LAPACK

is used to solve the indefinite system numerically. We name this approach

‘DirQ1’.

The second approach, denoted by ‘DirP1NC’, assembles a linear system

using the P1–nonconforming quadrilateral element in similar manner as the
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previous approach. The only difference between two approaches is kind of used

finite elements. Thus the system matrix in this approach is also indefinite, and

has the size of n2 + 4n+ 2. This system is solved by the same direct solver as

the previous approach.

The last approach, denoted by ‘IterP1NC’ and mainly used throughout

the whole numerical implementations in our discussion, also uses the P1–

nonconforming quadrilateral element but in different manner unlike two previ-

ous approaches. This approach uses a basis for the discrete function space with

periodic property, and assembles a corresponding symmetric positive semi-

definite system with rank 1 deficiency. The zero-integral property is imposed

as a post-processing procedure. The size of the system matrix is n2 + 1, less

than previous, due to the absence of constraint blocks. We solve this semi-

definite system in iterative way, by use of the CG.

For the comparison between three approaches, we again consider the same

multiscale elliptic problem in Section 5.1. Each of three approaches is used

to solve micro problems numerically, and (sum of) the elapsed time for mi-

cro solver is measured. Table 5.2 shows the elapsed time in seconds for each

approach in various combinations of macro and micro mesh size. We can ob-

serve the elapsed time in IterP1NC approach is much less than other direct

approaches.

h/ε = 1/32 h/ε = 1/64
H DirQ1 DirP1NC IterP1NC DirQ1 DirP1NC IterP1NC

1/2 6.8 4.2 1.6 326.0 295.5 12.8
1/4 20.3 16.4 6.3 1303.3 1164.1 52.1
1/8 73.9 66.8 25.8 5147.1 5143.5 213.9
1/16 288.8 260.8 102.5 20943.3 18845.1 845.5

Table 5.2. Elapsed time for micro solvers
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5.2 Periodic example with off-diagonal terms

In this example we take a tensor whose components are all nonzero with

single directional periodicity. For ε = 10−3, consider the problem (2.1) with

a multiscale tensor Aε(x) =

 √2 + sin(2πx1/ε)
1
2 + 1

2
√
2
sin(2πx1/ε)

1
2 + 1

2
√
2
sin(2πx1/ε) 2 + sin(2πx1/ε)

 ,

and the associated homogenized tensor A0(x) =

 1 1
2
√
2

1
2
√
2

17−
√
2

8

. We set f(x)

to satisfy that the exact homogenized solution u0(x) = sin(πx1) sin(πx2). As

the previous example, we use the macro and the micro mesh consisting of

uniform squares, and δ = ε with periodic coupling for each micro problem.

Table 5.3 shows that similar results can be obtained in more general periodic

case.

5.3 Example with noninteger-ε-multiple sampling do-

main and Dirichlet coupling

This example, which is originated from [1], is to investigate the effect of Dirich-

let coupling on micro problems. Consider the multiscale elliptic problem with

mixed boundary condition

−∇ ·
(
Aε(x)∇uε(x)

)
= f(x) in Ω = (0, 1)2,

uε|ΓD
= 0,

ν ·Aε∇uε|ΓN
= 0,

where ΓD = {(x1, x2) | x1 = 0 or 1} ∩ ∂Ω and ΓN = ∂Ω \ ΓD. We use the

multiscale coefficient tensor Aε(x) =
(
2 + cos(2πx1/ε)

)
I where ε = 10−3, the

associated homogenized tensor A0(x) = diag(
√
3, 2), and f ≡ 1 which admits
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H h/ε=1/4 1/8 1/16 1/32 1/64∣∣∣∣∣∣u0 − uH ∣∣∣∣∣∣H
1/2 1.35E-00 1.36E-00 1.36E-00 1.36E-00 1.36E-00
1/4 6.98E-01 7.02E-01 7.04E-01 7.05E-01 7.05E-01
1/8 3.56E-01 3.54E-01 3.55E-01 3.55E-01 3.55E-01
1/16 1.96E-01 1.78E-01 1.78E-01 1.78E-01 1.78E-01
1/32 1.01E-01 9.12E-02 8.91E-02 8.90E-02 8.90E-02
1/64 8.72E-02 4.86E-02 4.48E-02 4.45E-02 4.45E-02

∥u0 − uH∥0
1/2 1.20E-01 1.20E-01 1.21E-01 1.21E-01 1.21E-01
1/4 3.30E-02 3.06E-02 3.04E-02 3.04E-02 3.04E-02
1/8 1.54E-02 8.83E-03 7.68E-03 7.60E-03 7.60E-03
1/16 2.00E-02 4.91E-03 2.25E-03 1.92E-03 1.90E-03
1/32 1.13E-02 4.80E-03 1.29E-03 5.63E-04 4.81E-04
1/64 1.68E-02 4.45E-03 1.21E-03 3.25E-04 1.41E-04

supKδ,i
∥A0 −A0

Kδ,i
∥F

1/2 7.99E-02 2.76E-02 7.17E-03 1.80E-03 4.52E-04
1/4 8.54E-02 2.72E-02 7.17E-03 1.80E-03 4.52E-04
1/8 8.26E-02 2.74E-02 7.17E-03 1.80E-03 4.52E-04
1/16 1.24E-01 2.73E-02 7.17E-03 1.80E-03 4.52E-04
1/32 6.88E-02 2.88E-02 7.17E-03 1.80E-03 4.52E-04
1/64 1.15E-01 2.68E-02 7.18E-03 1.80E-03 4.52E-04

Table 5.3. Error table of the example in Section 5.2

10
-2

10
-1

10
0

H

10
-2

10
-1

10
0

10
1

Error in |·|
1,H

h/ǫ=1/4
h/ǫ=1/8
h/ǫ=1/16
h/ǫ=1/32
h/ǫ=1/64

10
-2

10
-1

10
0

H

10
-4

10
-3

10
-2

10
-1

10
0

Error in ||·||
0

h/ǫ=1/4
h/ǫ=1/8
h/ǫ=1/16
h/ǫ=1/32
h/ǫ=1/64

Figure 5.2. Error plots of the example in Section 5.2
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the exact homogenized solution u0(x) = − 1
2
√
3
x1(x1 − 1). We use Dirichlet

coupling on each micro problem. We have three options for sampling domain

size δ which are not multiple of ε; δ = 1.1ε, 3.1ε and
√
ε. The last option

is deduced from (4.17) for the optimal convergence. The number of micro

elements is fixed sufficiently large to guarantee that the micro error (4.14) can

not disrupt the tendency of the total error.

We can observe that error varies depending on size of sampling domains.

As shown in Table 5.4, the bigger size of sampling domains gives the more

accurate results.

H δ = 1.1ε (Diri.) 3.1ε (Diri.)
√
ε (Diri.,512)∣∣∣∣∣∣u0 − uH ∣∣∣∣∣∣H

1/2 8.41E-02 8.34E-02 8.33E-02
1/4 4.22E-02 4.17E-02 4.17E-02
1/8 2.51E-02 2.14E-02 2.09E-02
1/16 1.50E-02 1.11E-02 1.04E-02
1/32 1.14E-02 6.33E-03 5.28E-03

∥u0 − uH∥0
1/2 1.60E-02 1.41E-02 1.34E-02
1/4 5.07E-03 3.91E-03 3.33E-03
1/8 5.11E-03 2.29E-03 1.20E-03
1/16 3.56E-03 1.38E-03 3.57E-04
1/32 2.84E-03 1.03E-03 2.39E-04

supKδ,i
∥A0 −A0

Kδ,i
∥F

1/2 1.59E-01 5.34E-02 1.16E-02
1/4 8.45E-02 2.97E-02 4.82E-03
1/8 1.78E-01 6.01E-02 1.64E-02
1/16 1.42E-01 4.79E-02 8.22E-03
1/32 1.74E-01 5.88E-02 1.55E-02

Table 5.4. Error table of the example in Section 5.3 with δ = 1.1ε, 3.1ε,
√
ε
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Figure 5.3. Error plots of the example in Section 5.3 with δ = 1.1ε, 3.1ε,
√
ε

5.4 Example on mixed domain

The last example is a problem on a domain which consists of distinct coeffi-

cients. Let Ω = (0, 1)2, and disjoint subdomains Ω1 =
{
(x1, x2) ∈ Ω

∣∣ x1 >
0.5 and x2 < 0.5

}
and Ω2 = Ω \ Ω1. We consider the second-order elliptic

problem with the coefficient tensor

Aε(x) =

1.1 + δk,1 sin(2πx1/ε) 0

0 1.1 + δk,1 sin(2πx1/ε)

 if x ∈ Ωk

with ε = 10−3. Here δij denotes the standard Kronecker delta. We impose

homogeneous Neumann boundary condition on the upper and lower boundary,

and Dirichlet boundary condition on the left and right boundary: value 1 on

the left and 0 on the right. Any mesh used in this example consists of uniform

squares. We use periodic coupling for micro problems with δ = ε. By using
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the associated homogenized tensor

A0(x) =



√0.21 0

0 1.1

 for x ∈ Ω1,

1.1 0

0 1.1

 for x ∈ Ω2,

the reference solution u0ref on 1024× 1024 mesh is obtained.

Contour plots of the solutions are drawn in Figure 5.4 for comparison.

The plot on top is for the FEM solution uεref , and the middle plot is for the

FEM solution u0ref of the homogenized problem. Both solutions are obtained

on 512 × 512 uniform square mesh. The plot on bottom is for the FEHMM

solution uH from the macro mesh with 8× 8 uniform squares, and the micro

mesh with 16 × 16 uniform squares. The contour plots show the resemblance

of the FEHMM solution to the solution of the homogenized problem as well

as the solution of the original multiscale problem. Table 5.5 shows error of

FEHMM solutions to the reference solution in energy norm, and in L2-norm.

We can observe the reduction of error due to decreasing H and h, but not as

much as the purely periodic case.
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Figure 5.4. Contour plots of the solutions of the example in Section 5.4
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H h/ε=1/16 1/32 1/64∣∣∣∣∣∣∣∣∣u0ref − uH ∣∣∣∣∣∣∣∣∣
H

1/2 9.02E-02 9.07E-02 9.09E-02
1/4 5.32E-02 5.34E-02 5.35E-02
1/8 3.07E-02 3.04E-02 3.04E-02
1/16 1.78E-02 1.69E-02 1.69E-02
1/32 1.11E-02 9.32E-03 9.21E-03
1/64 8.31E-03 5.21E-03 4.97E-03

∥u0ref − uH∥0
1/2 9.45E-03 9.84E-03 9.97E-03
1/4 2.86E-03 2.83E-03 2.90E-03
1/8 1.53E-03 8.31E-04 8.20E-04
1/16 1.48E-03 4.11E-04 2.32E-04
1/32 1.50E-03 3.86E-04 1.06E-04
1/64 1.58E-03 3.91E-04 9.73E-05

Table 5.5. Error of the example in Section 5.4
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국문초록

본 학위논문의 제1부에서는 주기경계조건을 갖는 P1–비순응유한요소공간을

고려하고, 그것과 이산 라플라스 연산자의 특성에 대해 조사한다. 최소의 필수

이산경계조건이라는 개념의 도움을 받아 유한요소공간들의 차원을 해석한다. 이

해석에 기반하여, 주기경계조건을 갖는 유한공간의 기저함수들을 두 가지 종류

로 분류한다. 그리고 이차 타원형 문제를 풀기 위한 크릴로프 반복법 몇 가지를

소개하고 그 해들을 비교한다. 그중 몇몇의 방법은 일반화된 역작용소의 하나인

Drazin 역에 기반하는데, 이는 주기적 성질이 특이 선형연립방정식을 유도할 수

있기 때문이다. 주기경계조건을 갖는 스토크스 방정식으로의 응용을 다룬다. 마

지막으로 타원형 문제에 대한 결과들을 3차원 경우로 확장한다. 이러한 논의에

수치적 결과들을 보여준다.

제2부에서는 멀티스케일 문제를 위한 비순응 이종 멀티스케일 방법을 소개

한다. 이에 대한 공식화는 P1–비순응유한요소에 기반을 두고 있는데, 대개는 주

기경계조건을 갖는다. 이종 멀티스케일 유한요소법의 일반적인 구성을 따라서,

제안된 방법의 사전 추정오차를 분석한다. 수치적인 구현을 위해서, 우리는 앞

선 제1부에서 특이 선형연립방정식을 위해 제안된 반복법 중 하나를 사용한다.

수치적 예제와 결과를 보인다.

주요어 : P1–비순응유한요소, 주기경계조건, 최소의 필수이산경계조건, 특이 선

형연립방정식, Drazin 역, 이종 멀티스케일 방법, 수치적 균질화

학번 : 2012-20414
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