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Abstract

A Study on Modeling HIV
Infection Dynamics

Hyoeun Kim
The Interdisciplinary Program
in Computational Science and Technology
The Graduate School
Seoul National University

A focus of this thesis is to develop a mathematical modeling approach to ana-

lyze the clinical data of Human immunodeficiency virus(HIV) acute infection.

From the several studies, a remarkable stability of the HIV latent reservoir

is detected despite the long-term treatment and advances in anti–retroviral

therapy, and it has been recognized as a major barrier to HIV cure. We an-

alyze several nonlinear mathematical models including the one that contains

latent reservoir effect which provides consecutive viral replication and derive

reproductive number (R0) which is a key index on HIV dynamics. For a quan-

titative analysis, we estimated parameters best describe time-series viral load

measurements, obtained from published clinical study. We implement an effi-

cient estimation method for the relevant parameters and numerical algorithm

to solve the HIV infection dynamics. By using a nonlinear least square method

for parameter estimation, analysis on the sensitivity parameters are performed

for each model. In addition, we can obtain the total contribution of the reser-

voir processes to the productively infected T lymphocyte cells is also examined.

We also propose a new model for HIV infection dynamics. There has been

some researches that some influencing fractions on the dynamics of blood flow

i



have been associated with the severity of HIV infection. In order to explain

the rheological behavior of HIV infection in T lymphocyte populations we at-

tempt to modify Latent cell model with fractional order differentiation of order

α ∈ (0, 1]. The hemorheological parameters and fractional-order derivative in

HIV system embody essential features of influencing fractions on the dynam-

ics of blood flow associated with the severity of HIV infection. We show that

the modified model has non-negative, bounded solutions. Optimal fractional

order and kinetic parameters are estimated by using the nonlinear weighted

least-square method, the Levenberg-Marquardt algorithm, and Adams-type

predictor-corrector method is employed for the numerical solution. The nu-

merical results confirm that a value of fractional order (α) representing the

rheological behavior in plasma is significantly related with a density of lym-

phocyte population.

Keywords : HIV infection dynamics, latent reservoir, reproductive number,

parameter estimation, fractional derivative

Student Number : 2010-20405
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Chapter 1

Introduction

The human immunodeficiency virus(HIV), an etiological agent for acquired

immunodeficiency syndrome (AIDS), has been a significant transmitted dis-

ease throughout the world. AIDS is one of the most serious public health

concerns affecting people all over the world, and in some areas, affecting pop-

ulation imbalances. Despite many successful public health and clinical inter-

ventions since the first identification of HIV-positive patients in 1981, there

remains no cure and the HIV/AIDS epidemic continues to grow. Highly ac-

tive antiretroviral therapy (HAART) denotes a use of multiple antiretroviral

drugs that act on different stage of the life-cycle of virus, and treatment of

HIV infection with HAART is the most common administration method that

can significantly decrease HIV-RNA levels and permit immune reconstitution.

Antiretroviral drugs are widely available in the United States and Western Eu-

rope, but difficult to use due to cost and side effects. In developing countries,

The Joint United Nations Programme on HIV/AIDS(UNAIDS) estimates that
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only 7% of its infected population has accessing to HAART. In both developed

and underdeveloped countries, effective and appropriate use of pharmacother-

apy are requires improved strategies.

The rest of this chapter is organized as follows. In Section 1.1, a brief

introduction to virology and current ART for HIV are introduced. In Section

1.2, the latent reservoir and mutation of virus, which is one of major issues for

HIV treatment, are implemented. Section 1.3 devotes for a review for previous

modeling HIV infection dynamics. In Section 1.4, the organization of the thesis

is stated.

1.1 Infection mechanism of HIV and Antiretroviral

treatment

HIV is a pathogen of AIDS(Acquired Immune Deficiency Syndrome). When

infected with HIV, CD4 + T lymphocytes related to cellular immunity among

the immune functions of the human body are mainly destroyed. AIDS is a

collective term referring to the occurrence of various complications such as

infectious diseases or malignant tumors caused by viruses, bacteria, fungi,

protozoa or parasites which are not visible to healthy people, due to the loss

of immunity to human defense after infection of HIV. Although HIV infection

often tends to be confused with AIDS, not all HIV-infected people are HIV-

positive. The term “HIV infected person” is a generic term referring to people

with HIV in the body. It is a concept that includes all pathogen holders, HIV-

positive, and AIDS patients. In contrast, “AIDS patients” refers to patients

who have developed HIV infection and become ill with immune deficiency, re-

sulting in opportunistic infections or complications such as tumors. However,

people with AIDS and those without symptoms can spread HIV to others.

HIV belongs to the lentivirus of the human retroviridae. HIV is a single-
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stranded, positive sense, enveloped RNA virus. The viral particles have outer

protrusions composed of a coat protein on the surface. The inside of the vi-

ral envelope is covered with a protein grain, and the inside further forms a

nucleocapsid. At the core of the virus particle surrounded by the nucleocap-

sid is reverse transcriptase (reverse transcriptase, integrase, protease and viral

enzymes are associated with the viral genome. There are two types of HIV,

HIV-1 and HIV-2, which are categorized by their nucleotide sequence and the

genes they carry. HIV-2 can cause the same symptoms and illnesses as HIV-

1, but spreads slowly and progressively slower than HIV-1. Throughout this

thesis, we refer to HIV as HIV−1.

The most widely used classification of HIV infection and the definition

of AIDS in adolescents and adults follows the US CDC classification system,

which is classified according to the number of CD4+ T lymphocytes and clinical

features. A healthy human body has about 1000cells/mm3 of CD4+ T cell.

In general, HIV-infected persons are classified as AIDS patients when the

number of CD4+ T lymphocytes is less than 200cells/mm3 or is in a condition

suitable for ’AIDS- Surveillance Case Definition’ regardless of the symptom.

This reduction in the number of CD4+ T lymphocytes may result in a variety

of life-threatening complications (opportunistic infections, etc.) as the immune

function is significantly reduced.

As the infection progresses, the risk of complications increases and most of

the complications lead to death. Recently, however, the incidence of compli-

cations such as opportunistic infections has been significantly reduced due to

the combination of strong ART for HIV and chemotherapy to prevent oppor-

tunistic infections. Therefore, the life span of HIV-infected persons is being

prolonged, and even if the antiviral treatment is well received, the normal life

span can be prolonged.
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There are two classes of anti–retroviral agents that have been developed

and are currently used to cure HIV infection; reverse transcriptase inhibitors

(RTIs) and protease inhibitors (PIs). RTIs inhibit the activity of viral DNA

polymerases necessary for a reverse transcriptase and replication of HIV and

other retroviruses. PIs prevent viral replication from selectively binding to

HIV-1 protease and block proteolytic cleavage of the protein precursor required

for the reproduction of infectious viral particles. A process of HIV proliferation

along with anti-retroviral treatment(ART) is as follows:

1. HIV binds to the target cell, and the membrane of the virus and the

membrane of the target cell are fused to each other.

2. HIV enters the cell and the RNA of the virus is released into the

cytoplasm.

3. The reverse transcriptase of the virus makes the DNA with the viral

RNA as a template. The reverse transcriptase inhibitors block this step.

4. Viral DNA (proviral DNA) enters the nucleus of the target cell and

enters the chromosome DNA of the integrase.

5. Viral DNA that is caught in the chromosome of the target cell is ac-

tivated by RNA polymerase and transcribed into mRNA and translated

into the protein of the virus.

6. The produced virus protein is cleaved by protease and becomes a

protein constituting the virus. Protease inhibitors block this step.

7. The newly created virus RNA and viral proteins come together to

destroy the host cell while escaping the target cell membrane.

During during an initial phase of the illness, lasting for about 30 days,

the concentration of infected cells and free virus in the body is very small.
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After this period, a fast growth of the concentration of virus and infected cells

is noticed, together with a major decrease of healthy CD4+ T cells. After 6

months the infection stabilizes, and its kept in an approximated steady state

for a period lasting between 2 and 10 years. After this period, the number of

healthy CD4+ T cells is drastically reduced and the patient develops AIDS.

To reduce this risk of the development of drug-resistant mutated viruses, it

is common to use these two types of inhibitors together that are each aimed at

different targets. The use of multiple antiretroviral drugs that act on different

stage of the life-cycle of virus is known as HAART. Antiretroviral treatment

(ART) is a long-term commitment. The HIV treatment guidelines recommend

continuous ART for most infected individuals [58]. However, variability in

treatment access, difficulties with consistent drug adherence, unknown side

effect of lifelong ART, and unsustainable cost of lifelong treatment have pro-

vided impetus to the search for new strategies for cure.

In recent years, various treatment strategies aiming to improve the quality

of life of HIV patients during their treatment period, have been developed to

alleviate above problems [23, 89, 122]. Several safe and well-tolerated agents

have been approved, and once daily dosing now allows for simpler prescrip-

tions and a fixed dose of antiretroviral agents. In addition, deferred initiation

of ART which delay the initiation of therapy in asymptomatic patients with a

CD4+ count above a certain threshold level, has been widely recommended.

[63, 73, 150]. Above all, there have been a lot of interest in the study of treat-

ment interruptions, also known as “structured treatment interruptions(STI)”.

Several STIs strategies are under evaluation as an alternative approach with

the potential to reduce drug exposure, promote drug adherence, and reduce

treatment-related fatigue. Treatment interruption has been explored in a va-

riety of clinical trials with different goals. [101, 139]. Treatment interruptions
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have also been studied as a way to boost the immune system and to help

people who have tried and failed numerous antiretroviral drugs in the past

respond better to “salvage” drug regimens. In patients who started treatment

in acute seroconversion, STI was explored as a means of improving the HIV-

specific immune response, resulting in better control of viral replication in the

absence of continued treatment. [86, 137].

1.2 Latent reservoir and drug-resistant mutant in HIV

infection

Despite the dramatic therapeutic effect of HAART on HIV infection, cur-

rently available therapies are suppressive and can not eradicate HIV infection

[112, 167, 48]. A greatest obstacle to treating HIV-1 infection is a latent reser-

voir which contains unexpressed, replication-competent copies of the HIV-1

genome integrated into the host DNA. This latent reservoir is characterized

by remarkable stability that explains why it is a lifelong barrier to treatment.

Numerous studies have explored the correlation between HIV-1 persistence

and the latent viral reservoir[24, 26, 48, 59, 145, 166]. Longitudinal analysis

demonstrated that the latent viral reservoir is extremely stable and provides

a mechanism for lifelong persistence of HIV-1 infection [48, 152].

The stability of latent HIV-1 is not affected by HAART because antiretrovi-

ral inhibitors does not eliminate proviruses integrated into the cellular genome.

To date, latently infected resting memory CD4+ T cells are the most stud-

ied and best characterized reservoir for HIV-1. Phylogenetic analysis showed

that in patients under long term efficient ART, rebounding plasma viruses

after structured therapeutic interruptions (STI) were from long-lived, latent

infected resting CD4+ T cells [71, 166]. Since no viral protein is produced, la-

tently infected resting CD4+ T cells in which latent infection had been reversed
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are essentially indistinguishable from uninfected ones and therefore cannot be

selectively targeted for elimination by either viral cytopathic effects(CPE) or

cytolytic T-lymphocyte responses. Among several therapeutic strategies now

being pursued in the clinic, inducing an expression of latent proviruses by a

latency reversal agents(LRAs) while patients are staying at HAART is cur-

rently one of the best strategies for the depletion of latent reservoir. However,

none of the studies demonstrated a significant reduction in the frequency of

infected cells as measured by HIV DNA or quantitative viral outgrowth assay.

A number of clinical trials have now begun with a broadening range of LRA

classes, dosing intervals and combination strategies [33].

HIV-1 are vulnerable to the emergence of drug-resistant viruses in many

ways. Due to the long half-life of virus-infected host T cells and the rapid

rate of viral replication, viral infection continues to be maintained. HIV is an

RNA virus, and it has a characteristic of reverse transcription. As it is known,

due to the nature of the reverse transcription stage that does not have an

ability to correct a mutation, a mutation that occurs once is accumulated as

it is. It is a naturally occurring environment in patients with chronic infection

regardless of the treatment. If selective pressures such as antiviral therapy or

host immune response are applied, mutants favoring survival will survive. Drug

resistance is a phenomenon in which mutations that are relatively favorable

for viral replication during the treatment period are selectively survived due

to less susceptibility to the drug[169].

A selective survival of a particular mutated virus is governed by the ability

of the antiretroviral agent to inhibit virus multiplication. If the drug’s abil-

ity to inhibit the growth of viruses is insignificant, it does not affect virus

survival. If the ability to inhibit virus growth is perfect, however, mutation

is replication-dependent and there is no chance for mutation to occur. Thus,
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the moderate antiviral agent having the ability to inhibit the proliferation of

viruses provides the best environment for resistance development[88]. Most pa-

tients with chronic HIV-1 infection require lifelong disease management, and

more and more of them are taking antiretroviral drugs. However, the advent of

drug-resistant viruses due to the long duration of antiviral drug administration

is a major obstacle to the patient’s long-term infection journey. In addition,

from the viewpoint of public health, if the occurrence of drug-resistant viruses

increases within the community, immense expense will be required. In order to

prevent and treat the emergence of resistant viruses, the choice of the correct

anti-retroviral therapy and the careful decision on the duration of consecutive

dosing are important. Understanding the mechanism of resistance virus, risk

factors are essential.

Ultimately, there is an opinion that ‘combinatory therapy’, which com-

bines at least two drugs from the first treatment stage, is ideal for more ef-

fective inhibition of virus growth and prevention of long-term drug resistance.

Although simple mutations are always present, the likelihood of multiple mu-

tations occurring in a single virus is very low, and the sequential use of two

types of drugs is a selective option for the survival of viruses with partial cross

resistance. Therefore, theoretically, it is recommended to use a combinatory

therapy from the first treatment, and the ideal combinations of drugs have dif-

ferent mechanisms of action, no cross-resistance among the drugs, and drugs

with aggressive antiviral effects. These combined therapies may work with

different selective pressures on several simple mutations that may be present

in an individual, thereby reducing the selective survival of certain resistant

mutations. However, combination therapies still leave significant challenges to

be addressed through clinical trials, such as unexpected drug side effects and

toxicity, excessive costs, and the emergence of multidrug-resistant viruses over
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long-term use and the potential for fatal flares.

1.3 Modeling HIV infection dynamics in lymphocyte

Mathematical models for in vivo HIV dynamics have been used to under-

stand the mechanisms involved in the evolution of the infection at the micro-

scopic level and to ascertain the effects of various anti-retroviral treatments,

such as reverse transcriptase inhibitors and protease inhibitors [78, 156, 113].

The studies on modelling have been also used to estimate several biologically

informative values including life-span of infected population and virions, daily

production number of viral load, reproductive number, infection susceptivity

and sensitivity on drug for each patient. Such predictions provide not only a

kinetic picture of HIV-1 pathogenesis, but theoretical principle to guide the

development of treatment strategies by examining closely the interactions be-

tween the quantities being analyzed [116].

As we implemented in the Section 2.3 and Section 2.4, existence of long-

lived latent reservoir in resting memory CD4+T cell population and drug-

resistance due to the mutation of virus has been recognized as major barriers

to HIV-1 cure by causing the virus to grow out to detectable levels upon re-

moval of drug therapy. To date, deterministic models of HIV dynamics have

concerned at least these three components: the productively infected CD4+

T cells, along with uninfected healthy CD4+ T cells and free floating HIV.

Various models from the simplest 3 component models to the comprehen-

sive models which consider several components as populations within the the

blood or lymphatic tissue, including latently-infected CD4+ T-cells, cytotoxic

T-lymphocytes, macrophages, have been proposed since 1995[106, 116]. The

early linear models developed in Bryson[20], Perelson[116], Ho[61] are approxi-

mations to more realistic nonlinear models for viral and infected cell decay, and
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thus are applicable only over short periods of time, most likely on the order of

days. While these linear models have been extremely useful in characterizing

short-term dynamics of HIV infection after therapy, several researchers have

attempted to use these models to estimate time to eradication of virus from

individuals.

To model data over longer periods of time and make predictions about long-

term outcomes, nonlinear mathematical models are necessary. In addition to

the unrealistic simplifying assumptions that make it difficult for linear models

to accurately describe long-term HIV infection dynamics, factors that could

play an important role in dynamic disease outcomes may be omitted in linear

models. For example, several authors have raised the question as to whether or

not these linear mathematical models have adequately described the decay of

compartments relevant to HIV infection dynamics. Bonhoeffer[110] argues that

more complex nonlinear models are needed to accurately describe long-term

viral decay.

According to Perelson and Alan et al. [112], there are different phases of

plasma viral dynamics following antiviral drug treatment. When three or more

inhibitors are given to HIV-infected patients, plasma virus undergoes transi-

tion phase reflecting decay of free virus and productively infected T(PIT)

cells and rapid decay phase reflecting decay of PIT, long-lived and latently

infected T cells(LIT), and virus decays with an initial rapid exponential de-

cline of nearly 2logs(first phase). Then it is followed by a slower exponential

decline(second phase) after several week, which reflect decay of long-lived and

LIT cells and other residual infected cells, and this phase leads to the virus

falling below levels of detection(< 50copies/mℓ). They present that the slope

of the decline depends on the efficacy of the therapy, with faster declines cor-

responding with more potent therapy. To interpret these two phase decline,
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a new model was suggested by [112], which postulated that the second phase

was due to sources of HIV-1 not included in the basic three-component model.

They also report that the decline in plasma HIV RNA after the initiation of

therapy has two phases and the second one was attributed to long-lived, re-

lease of virus from tissue reservoirs, of the activation of latently infected cells.

Several mathematics models have been proposed to describe in vivo dynamics

of T cell and HIV interaction with these three processes [112, 136, 135, 91].

Meanwhile, the basic model and a variant containing latently infected cells

have been used to model the abrupt rise, peak, subsequent fall, and the estab-

lishment of the set-point viral load that characterizes acute HIV infection. In

chronic infeciton, it is predicted that the immune response is constant, but dur-

ing primary infection an HIV–specific cytotoxic T lymphocyte(CTL) response

is generated and correlates temporally with the decline in viraemia[79]. In the

basic model, the decrease in virus concentration after reaching the peak is due

to target-cell limitation, i.e., running out of cells to infect[119]. This prop-

erty of the basic model reveals a shortage in data fitting in previous work by

Stafford et al.[149]. They fit viral-load data from ten primary infection patients

and they found that the decline in virus after peak was more profound than

the basic target-cell-limited model could explain. They suggested that by the

immune response might have a role in decreasing viral loads. Moreover, the

researchers of the clinical data used for parameter estimation in a following

section, strived to assess whether repeated interruptions in treatment could

restore or expand HIV specific immune responses, helping to control viral

replication. So far, however, a few HIV investigators have proposed mathe-

matical models to describe the dynamics of long-term latent reservoirs [91],

[135], [136].
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1.4 Thesis overview

The aim of this thesis is compare an analyze some HIV models which can

explain persistence of low-level virus and emergence of viral blips in the long-

term virus dynamics with treatment. We also purpose to propose the new

model based on those works. In Chapter 2 begins with a survey of several

existence models of in-host HIV infection dynamics that illustrate the various

disease features and pathways. While complex models may be needed to pro-

vide accurate descriptions of the underlying dynamics, the models are most

useful when they can be compared to clinical data we have. The complexity

of nonlinear HIV models and data sets may necessitate the extraction of only

essential states to balance between complexity and utility.

We then describe the several kinds of systems of differential equations

which used to model HIV infection in our work and discuss its analysis. Among

them, we consider a model with latent reservoir known to be related with a

successive viral rebound mention in 1.3 and compare it with other model.

With careful qualitative analysis of mathematical models that describe HIV

infection dynamics, we estimated parameters best describe viral measurement

during STI, which shows successive viral rebound. We examine the ability to

estimate parameters in a typical nonlinear model of HIV infection dynamics.

In doing so, we describe a relevant inverse problem methodology, including

sensitivity analysis and the nonlinear least squares method in the estimation

process.

In Chapter 3, we propose a system of fractional-order differential equations

for the dynamics of HIV infection. In this chapter, we introduce a fractional-

order derivative of order 0 < α ≤ 1 into Latent cell activation model. We

present a derivation and analysis of this fractional-order system in HIV model.

We describe the numerical method and semi-sensitivity analysis. The optimal
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fractional order and parameters are estimated for 9 infection patients. From

these results, we verify that the density of healthy CD4+ T lymphocyte pop-

ulation when the fractional order α is less than 1, which corresponds to the

previous clinical findings.
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Chapter 2

Mathematical models for HIV

infection dynamics

2.1 Models and their analysis

In modelling HIV infection dynamics, only a major subset of biological

compartments and their interactions must be typically chosen. We focus on

compartmental models where each of compartments corresponds to a type of

lymphocyte population throughout the body. We do not attempt to offer com-

prehensive investigations into a extensive range of mathematical models used

for HIV infection dynamics. Rather, we refer the reader one of the outstanding

survey articles [115, 22] that have already been published. We provide overview

of some pioneering developments here. Using the measurement from patients

undergoing HAART, mathematical models investigate the kinetics of viruses
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and CD4+ lymphocyte cell populations and it support the theory that virus

and infected cell populations show a very rapid and consistent turnover in all

patients. Ho, et al. [61], Wei, et al. [155], and Perelson, et al. [116].

This is in contrast to the previous assumption of researchers, that a stable

virus and CD4+T cell concentrations observed during the clinical latency of

chronic HIV infection were due to the absence of any significant virus replica-

tion. According to Ho, Wei and Perelson’s studies, both viruses and infected

cell populations are turning over rapidly and continuously.

A further work by Perelson, et al. [112] discovered a second subpopulation

of lymphocytes, longer-lived and productively infected cells, contributing the

population of viral load. Since these reports, numerous researcher groups used

mathematical models to calculate the decay rates of the infected cell popula-

tions [92, 97, 163, 108]. In Section2.1, we present basic three-component model

and two representative models that can predict the observed persistent low–

level replication of virus by including subpopulation of infected lymphocyte

cells.

We consider (1) A general three-component model; (2) A four-component

HIV infection dynamical model with chronically infected T lymphocyte sub-

population; (3) A four-component HIV dynamical model which includes ac-

tivation of latently infected CD4+ T lymphocyte cell population. An aspect

of the HIV model’s derivation involves incorporating the interactions between

these populations and deriving their corresponding mathematical representa-

tion.

For each system we find equilibrium points and analyse their local stability

properties in order to obtain a global phase portrait. The models that will be

discussed in this Section 2.1 have multiple equilibria; different equilibria de-

scribe the success or failure of the immune system to control infection and the
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initial conditions and parameters of the system determine which equilibrium

is realized. A qualitative analysis is performed for each model to contribute to

understanding of fundamental qualitative features of viral replication dynam-

ics.

2.1.1 Three-component model

There have been several efforts to mathematically model the battle between

the immune system and HIV within an infected host. Perelson and Nelson

[116] provide an overview of some common models which have been used.

Many biological operators are involved in the interaction between HIV and

cells within the human body.

Among them, the first group is a subset of lymphocytes population, which

in turn are a type of white blood cell. This subset is known as CD4+ T cells

or helper T cells. These T cells detect and direct the immune system response

to invading viruses. Without them, the human body are seriously affected by

opportunistic infections, which have a greater severity and duration than those

without it. HIV, which refers in this case to the plasma virus, is a pathogen

of AIDS and belongs to a class of retrovirus that infects population of helper

T cells. They use an enzyme called reverse transcriptase to make a DNA copy

of their RNA genome to be integrated into the targeted host cell’s genes by

breaching the cell wall and transporting their RNA into the T-cell nucleus.

Then the infected T cell population ceases its function as part of the immune

system and instead reproduce copies of HIV. These infected T-cells, along with

the healthy CD4+ T-cells and free floating HIV, are the populations with which

we are concerned, and will appear within the mathematical model.

Here, we describe the three-component model that has been widely used

and is the most basic and ubiquitous model in the study of HIV. It is suggested
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by De Boer and Perelson et al.,[32] and concerned with three quantities: T (t),

the density of uninfected CD4+ cells, T ∗(t), the density of infected CD4+ cells

and V (t), the density of free virions. The corresponding dynamical system is:

dT

dt
= λ− ρT − (1− θRTu(t))kTVI , T (0) = T0

dT ∗

dt
= (1− θRTu(t))kTVI − δT ∗, T ∗(0) = T ∗

0

dVI

dt
= (1− θPIu(t))NδT ∗ − cVI , VI(0) = VI,0

dVNI

dt
= θPIu(t)NδT ∗ − cVNI , VNI(0) = VNI,0

(2.1)

This model includes T representing uninfected target CD4+ T cells that are

susceptible to infection, T ∗ productively infected T cells, VI infectious virus,

and VNI non-infectious virus produced by the action of protease inhibitors

(PIs), respectively. A total amount of virus is then VI + VNI . Target cells are

replenished from stem cells in the bone marrow at rate λ, and mature in the

thymus. It is assumed that the overall number of T-cells lost in a group over a

certain period of time is proportional to the number of T-cells within the group

at rate ρT . They are infected by virus, with infectivity k; note that healthy T

cells become infected at a rate proportional to the product of the density of

T cells and the density of free virion. This is essentially an application of the

mass-action principle. Productively infected T cells are produced by infection

of target cells and they die(lysis) at rate δT ∗ either from viral cytopathic

effects(CPE) or by host immune response. Virus particles are generated from

productively infected cells (T ∗), where N is the number of virion produced

during the average lifespan of T ∗, and it is also called a burst size.

The model considers two conventional drug categories; reverse transcrip-

tase inhibitors(RTIs) and protease inhibitors(PIs), which are implemented in

2.2. Here, a time-dependent treatment function u(t) ∈ [0, 1] represents HAART
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drug protocol, where u(t) = 0 is off-treatment and u(t) = 1, fully on. Following

the [2], to describe control input (time-varying treatment protocol) u(t) rep-

resenting structured treatment interruption, which need not be periodic, we

assume the piecewise constant ramp-shaped function assuming that it takes

for 1 day for the absorption and dissipation of the drug.

The RTIs prevent HIV RNA from being converted into DNA and thereby

block the viral infection, reducing the infectivity, k, by quantity 1−θRT , where

θRT represents the efficacy of RTIs and 0 ≤ θRT ≤ 1. The PIs, on the other

hand, do not directly inhibit the infectiousness of virus. Rather, they alter

part of the viral assembly process in the final stage of the viral life cycle, and

as a result cause the production of defective, noninfectious virus. Here, due to

the action of PIs with an efficacy θPI , only a fraction (1 − θPI) of the virion

are infectious.

Thus, in the presence of a PIs, one can consider two types of virus particles:

infectious virions at concentration VI and noninfectious virions at concentra-

tion VNI . This notation is somewhat imprecise, since even in the absence of

a protease inhibitor, not every virus particle is infectious. Thus, according to

[116], to be more precise, VI denotes the population of virus particles that

have not been influenced by a PIs and hence had their polyproteins cleaved,

whereas VNI denotes the population of virus particles with uncleaved polypro-

teins. The sum of these two types of virus particles VI + VNI corresponds to

the total plasma viral load, a quantity typically monitored in a clinical setting.

Thus, it is assumed that all virus belong to the VI in the absence of a protease

inhibitor[116]. Both type of virus particles are cleared from the plasma with a

rate c. Then the half-life of virions in plasma is given by ln(2c ) and the half-life

of productively infected cells is obtained by ln(2δ ). A detail of viral life cycle

is implemented in 2.2. Let T0, T
∗
0 , VI,0, VNI,0 ∈ R be a given initial conditions
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for the states when t = 0.

Model reduction

Denoting by V (t) the total virus at time t, V (t) = VI(t)+VNI(t), the summa-

tion of the third and fourth equaitons in (2.2) leads to the equation dV (t)
dt =

NδT ∗(t) − cV (t). Note that this equation can also be obtained by substitut-

ing VI(t) = (1 − θRTu(t))V (t) and VNI(t) = (θPIu(t))V (t) into (2.2). Fol-

lowing the assumption of [116] that all virus belongs to the infectious virus

population in the absence of a protease inhibitor, we have V (t) = VI(t) and

VNI(t) = 0 when u(t) = 0, and thus conditions VI(t) = (1 − θRTu(t))V (t)

and VNI(t) = (θPIu(t))V (t), are satisfied. Finally, one can define a composite

parameter θ as 1 − θu(t) = (1 − θRTu(t))(1 − θPIu(t)), and then θ is usually

represented by the total combined drug efficacy [134, 22, 156]. Then a resulting

simplified system of equations is obtained as below.

dT (t)

dt
= λ− ρT (t)− (1− θu(t))kT (t)V (t), T (t0) = T0

dT ∗(t)

dt
= (1− θu(t))kT (t)V (t)− δT ∗(t), T ∗(t0) = T ∗

0

dV (t)

dt
= NδT ∗(t)− cV (t), V (t0) = V0.

(2.2)

A description for the parameters are listed in Table 2.1.

Remark 2.1.1. In (2.2), u(t) is an input variable which is considered to be a

bounded and piecewise C1 function. The states T (t), T ∗(t) and V (t) are output

variables and they affect each other in a nonlinear fashion physiologically with

underlying biological logic among them.

For the notational convenience, let x(t) = (x1(t), x2(t), x3(t))
T = (T (t), T ∗(t)

, V (t))T denotes a continuously differentiable functions mapping R+ into R3
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Variable Units Description

T cells/ml Uninfected healthy CD4+ T cell density.
T ∗ cells/ml Productively infected CD4+ T cell density.
VI copies/ml Infectious HIV load.
VNI copies/ml Non-infectious HIV load.
V copies/ml Total amount of HIV load.

Parameter Units Description

λ cells
ml·day Rate of supply of uninfected T cell from precursors.

ρ day−1 Death rate of uninfected T cells(natural death).
k ml

copies·day Rate constant for T cells becoming infected by free virus.

δ day−1 Death rate of productively infected T cell(lysis).

N copies
cell

Number of free virus produced by a T cell.
c day−1 Death rate of free virus.

θRT ∈ [0, 1] - Primary efficacy of Reverse transcriptase inhibitor.
θPI ∈ [0, 1] - Primary efficacy of Protease inhibitor.
θ ∈ [0, 1] - Overall efficacy of combinatory ART.

Table 2.1: A description of variables and parameters of the three-component
model

and the right hand side in (2.2) be prescribed by

f(t,x;p) =


λ− ρx1 − (1− θu(t))kx1x3

(1− θu(t))kx1x3 − δx2,

Nδx2 − cx3

 , (2.3)

where p denotes the vector of model parameters listed in Table 2.1. Then

system (2.2) can be rewritten as

ẋ(t) = f(t,x(t)), t ≥ 0

x(0) = x0 = (T0, T
∗
0 , V0)

T .
(2.4)

For being biologically reasonable, we assume the the initial conditions for

states variable, x0, are non–negative.

We first prove that a solution to the initial-value problem (2.4) does exist,

and that this solution is unique.

Proposition 2.1.2. Let T0, T
∗
0 , V0 ∈ R be given. There exist t1 > 0 and

20



continuously differentiable functions x(t) satisfies (2.4) and initial condition

x0.

Proof. To prove the result, we note that the classical existence and uniqueness

theorem due to Picard-Lindelöf [13] works just as well for the non–autonomous

system. Then, it suffices to show that the function f in (2.4) is locally Lipschitz

in its second argument, x and continuous in t. Note that the value of piecewise-

continuous function u(t) is bounded in [0, 1], it is enough to notice that the

Jacobian matrix, and denote by J ,

J(x) =


−ρ− (1− θu(t))kx3 0 −(1− θu(t))kx1

(1− θu(t))kx3 −δ (1− θu(t))kx1

0 Nδ −c

 (2.5)

is linear in x and therefore locally bounded for every x ∈ R3. Hence, f has

a continuous, bounded derivative on any compact subsets of R3 and so f is

locally Lipschitz in x. By the Picard-Lindelöf Theorem, there exists a unique

solution, x(t), to the system (2.4) on [0, t1] for some time t1 > 0.

Definition 2.1.3. [130] The basic reproductive number The basic reproduc-

tive number disease to reproduce, and is denoted by R0. This is defined as the

expected number of secondary cases reproduced by one infected individual in

his/her entire infectious period. When R0 < 1, each infected individual can

produce an average of less than one new infected individual during his entire

period of infectiousness. In this case the disease will not persist in the popula-

tion and may be eradicated. But in a situation where R0 > 1 implies that each

infected individuals during the entire period of infectiousness can produce more

than one new infected individual. This is a strong indication that the disease

can persist and invade the population.
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Using the model equations, we investigate the basic reproductive number,

denoted by R0, which measures the average number of secondary infected cells

which will result from the introduction of a single infected cell into a population

of completely uninfected CD4+ cells (Anderson and May, 1991 when there is no

target cell limitation. We derive R0 of the above model equations following the

formal derivation presented in [130]. During uninfected period with no virus,

the number of uninfected T cell can be assumed to be approximately constant,

so that T (t) = λ
ρ from the model equations (2.2). By denoting productively

infected T cell population in a unit volume at t = 0 as T ∗
1 , its density at time

t can be given by T ∗(t) = T ∗
1 e

−δt and

V (t) =
NδT ∗

1

(c− δ)
(e−δt − e−ct). (2.6)

The rate at which virions infect target cells is kTV , and a total number of

target cells infected by these virions is given by

∫ ∞

0
kT (t)V (t)dt =

kNT0T
∗
1

c
. (2.7)

By the definition of R0, we have T ∗
1 = 1 and obtain R0 = λkN

ρc as a basic

reproductive ratio prior to drug therapy for this system. When 0 < R0 < 1,

the population is able to reproduce, but the death rate exceeds the growth

rate and the population size will asymptotically approach zero. If R0 greater

than 1, it refers that one infected T cell infects more than 1 susceptible T cell

on average, and generally the viral infection typically persists. A magnitude

of R0 determines the speed, scale, and spread of the viral infectivity.

In order to fully understand the dynamics of the three component model(2.2),

it is necessary to first determine values of equilibria. An equilibrium point is

a constant solution of (2.2) so that if the system begins at such a value, it
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will remain there for all time. In other words, the populations are unchanging;

so, the rate of change for each population is zero. The system (2.2) possesses

two off treatment equilibria, the first one written in ordered-form (T, T ∗, V )

is given by

E0 =

(
λ

ρ
, 0, 0

)
, (2.8)

and we can categorize these points to be when the HIV virus is either extinct

from the body. We call this viral extinction equilibrium point, since there are

no virus particles or infected cells. We can also consider that E0 is the case

in which an infection exists for a short period of time, then is removed from

the body by natural means. when the virus persists within the body as time

t grows large, we refer to this equilibrium point as viral persistence, given by

Ē = (T̄ , T̄ ∗, V̄ ) where

T̄ =
λ

ρ

1

R0
, T̄ ∗ =

λ

δ

(
1− 1

R0

)
, V̄ =

ρ

k
(R0 − 1) (2.9)

in term of the reproductive number R0. We remark that in the rare event that

R0 = 1, the equilibria E0 and Ē are identical. We note that the equilibrium

Ē is nonnegative if R0 ≥ 1, and the system of equations tends to Ē , denotes

that situation where the body is unable to clear the infection by itself. In

order to understand the stability properties of the system (2.2) which explicitly

depends on a time-varying input signal, we introduce a concept of input–to–

state stability by recalling Definition 2.1.4 to Theorem 2.1.7(See the pages

135− 136 and 217− 222 in [74]). Let us denote the ℓ2 norm by || · ||.

Consider the system of ODEs

ẋ = f(t,x,u), (2.10)
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where f : [0,∞)×D ×Du → Rn is piecewise continuous in time t and locally

Lipschitz in x and u, D ⊂ Rn is a domain that contains x = 0, and Du ⊂ Rm

is a domain that contains u = 0. The input u is a piecewise continuous and

bounded function of t for all t ∈ [0,∞).

Definition 2.1.4. A continuous function α : [0, a) → [0,∞) is said to belong

to class K if it is strictly increasing and α(0) = 0. It is said to belong to class

K∞ if a = ∞ and α(r) → ∞ as r → ∞.

Definition 2.1.5. A continuous function β : [0,∞) × [0, a) → [0,∞) is said

to belong to class KL if for each fixed s, the mapping β(s, r) belongs to class K

with respect to r and, for each fixed r, the mapping β(s, r) is decreasing with

respect to s and β(s, r) → 0 as s → ∞.

Definition 2.1.6. The system (2.10) is said to be locally input–to–state stable

if there exist a class KL function β, a calss K function γ, and positive constants

k1 and k2 such that for any initial state x(t0) with ||x(t0)|| < k1 and any input

u(t) with supt≥t0 ||u(t)|| < k2, the solution x exists and satisfies

||x(t)|| ≤ β(t− t0, ||x(t0)||) + γ( sup
t0≤τ≤t

||u(τ)||) (2.11)

for all t ≥ t0 ≥ 0. It is said to be input–to–state stable if D = Rn, Du = Rm,

and inequality (2.11) is satisfied for any initial state x(t0) and any bounded

input u(t).

Then the inequality equation (2.11) implies that for a bounded input u(t),

the state x(t) will be bounded. The following theorem gives a sufficient con-

dition for input–to–state stability.

Theorem 2.1.7. Let Dr = {x ∈ Rn|||x|| < r}, Dru = {u ∈ Rm|||u|| < ru},

and f : [0,∞) × Dr × Dru → Rn is piecewise continuous in t and locally

24



Lipschitz in x and u. Let U : [0,∞)×Dr → R be a continuously differentiable

function such that

α1(||x||) ≤ U(t,x) ≤ α2(||x||), (2.12)

Ut +∇xUḟ(t,x,u) ≤ α3(||x||), ∀||x(t)|| ≥ ω(||u(t)||) > 0, (2.13)

∀(t,x,u) ∈ [0,∞) × Dr × Dru where α1, α2, α3 and ω are calss K functions.

Then the system (2.10) is locally input–to–state stable with γ = α−1
1 ◦ α2 ◦ ω,

k1 = α−1
2 (α1(r)), and k2 = ω−1(min{k1, ω(ru)}). Moreover, if Dr = Rn, Dru =

Rm, and α1 is a calss K∞ function, then the system (2.10) is input–to–state

stable with γ = α−1
1 ◦α2 ◦ω. Here γ, k1 and k2 are referred in Definition2.1.6.

It is well known that a Lyapunov function is a convenient tool to analyze

stability, evaluate the system’s robustness to perturbations. We need following

preliminaries for using Lyapunov function in stability analysis.

Consider a linear time–invariant system

ẋ = Ax, (2.14)

where x ∈ Rn and A is an n×n matrix with real components. Then the system

(2.14) has an equilibrium point at the origin. Recall that all eigenvalues of a

Hurwitz matrix are negative, we note that the origin of the system (2.14) is

asymptotically stable if and only if A is a Hurwitz matrix.

Consider a quadratic Lyapunov function candidate

U(x) = xTPx (2.15)

where P is a real symmetric positive definite matrix. Then a derivative of U
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along the trajectories of the linear system (2.14) is given by

U̇(x) = xTPẋ+ ẋTPx = xT (PA+ATP)x = −xTQx (2.16)

where Q is a symmetric matrix defined by

PA+ATP = −Q. (2.17)

Equation (2.17) is called a Lyapunov equation. The following theorem inter-

prets the asymptotic stability of the origin in terms of the solution of the

Lyapunov equation (2.17).

Theorem 2.1.8. An n × n matrix A is a Hurwitz matrix if and only if, for

given n×n symmetric positive definite matrix Q, there exists a n×n symmetric

positive definite matrix P that satisfies the equation (2.17). Moreover, if A is

a Hurwitz matrix and Q is a symmetric positive definite matrix, then there

exists a unique symmetric positive definite matrix P satisfying (2.17).

The Routh–Hurwitz criteria [64, 138] for differential equations are used to

determine local asymptotic stability of an equilibrium for nonlinear systems

of differential equations. The Routh–Hurwitz criteria are stated in the next

theorem.

Theorem 2.1.9. (Routh–Hurwitz criteria, [64, 138]) Given the polyno-

mial,

P (ξ) = ξn + a1ξ
n−1 + · · ·+ an−1ξ + an,

where the coefficients ai are real constants for i = 1, . . . , n, define tha n Hur-
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witz matrices using the coefficients ai of the characteristic polynomial:

H1 = (a1), H2 =

a1 1

a3 a2

 , H3 =


a1 1 0

a3 a2 a1

a5 a4 a3

 ,

and

Hn =



a1 1 0 0 · · · 0

a3 a2 a1 1 · · · 0

a5 a4 a3 a2 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · an


.

whereaj = 0 if j > n. All of the roots of the polynomial P (ξ) are negative or

have negative real part if and only if the determinants of all Hurwitz matrices

are positive:

detHj > 0, j = 1, 2, . . . , n.

When n = 2, the Routh-Hurwitz criteria simplify to detH1 = a1 > 0 and

detH2 = det

a1 1

0 a2

 = a1a2 > 0

or a1 > 0 and a2 > 0. For polynomials of degree n = 2, 3 and 4, the Routh-

Hurwitz criteria are summarized as follows.

n = 2 : a1 > 0 and a2 > 0, (2.18a)

n = 3 : a1 > 0, a3 > 0, and a1a2 > a3, (2.18b)

n = 4 : a1 > 0, a3 > 0, a4 > 0 and a1a2a3 > a3
2 + a4a1

2, (2.18c)
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The following proposition shows that the equilibrium point E0 of system

(2.2) is stable under certain condition on model parameters.

Proposition 2.1.10. The system (2.2) is locally input–to–state stable in some

neighborhood of (T (t), T ∗(t), V (t), u(t))T = (λρ , 0, 0, 0)
T . Moreover, a viral ex-

tinction equilibrium point (λρ , 0, 0)
T of the system (2.2) is stable if 1 > R0.

Proof. In order to apply Theorem 2.1.7, we need to find a proper lyapunov

function U satisfying (2.12). For this purpose, we consider a system in the

absence of the forcing input, i.e., u(t) = 0, which is called an unforced system

of (2.2). Then it has equilibrium point E0 = (λρ , 0, 0)
T which is called as viral

extinction equilibrium. A change of variable T̃ (t) = T (t) − λ
ρ transforms the

homogeneous system into

dT̃ (t)

dt
= − (ρ+ kV (t)) T̃ (t)−

(
kλ

ρ

)
V (t),

dT ∗(t)

dt
= kT̃ (t)V (t) +

(
kλ

ρ

)
V (t)− δT ∗(t),

dV (t)

dt
= NδT ∗(t)− cV (t).

(2.19)

To clarify notation, we introduce x̃ = (T̃ (t), T ∗(t), V (t))T , then the linearized

system of(2.34) at the zero equilibrium point is

˙̃x = Ax̃+ h(x̃), (2.20)

where the Jacobian matrix A and the nonlinear part h(x̃) are given by

A =


−ρ 0 −

(
kλ
ρ

)
0 −δ

(
kλ
ρ

)
0 Nδ −c

 , h(x̃) = kT̃ (t)V (t)


−1

1

0

 . (2.21)
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Then the eigenvalues of A are

−ρ and
−(c+ δ)±

√
(c+ δ)2 − 4cδ(1−R0)

2
. (2.22)

where R0 = kλN
cρ is reproductive number of the system (2.2). Since all model

parameters are positive, we see that all eigenvalues of A have negative real

part if and only if 1 − R0 > 0. Therefore, the linear system ˙̃x = Ax̃ has an

asymptotically stable equilibrium point at the origin only when 1 > R0.

From Theorem 2.1.8, a symmetric positive definite matrix P, the solution

of the following equation

PA+ATP = −I (3× 3 identity matrix) (2.23)

is given by

P = −cρ(1−R0)

2


1

cρ2(1−R0)
−cR0 − c

NR0

0 cρ
δ

kλ
δ

0 Nρ ρ

 . (2.24)

.

For the linear system ˙̃x = Ax̃, we consider the lyapunov function U(x̃) =

x̃TPx̃. Then we have the inequalities as follows:

ξmin(P)||x̃||2 ≤ U(x̃) ≤ ξmax(P)||x̃||2, (2.25a)

∇x̃U ·Ax̃ = −x̃T Ix̃ ≤ −ξmin(I)||x̃||2 = −||x̃||2, (2.25b)

||∇x̃U || = ||2x̃TP|| ≤ 2||P|| ||x̃|| = 2ξmax(P)||x̃||, (2.25c)

where ξmin(P) and ξmax(P) denote the positive minimum and maximum eigen-
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values of matrix P, respectively. Let us split the system (2.2) by

˙̃x = Ax̃+ h(x̃) + g(u(t)), (2.26)

where g(u(t)) with the input function u(t) is given by

g(u(t)) = kθV (t)

(
T̃ (t) +

λ

ρ

)
u(t)

−u(t)

0

 . (2.27)

Now, we are going to show that the Lyapunov function U(x̃) for the linear

system ˙̃x = Ax̃ is indeed the proper function the system (2.78) satisfying

(2.12).

By using (2.25b), we obtain

U̇(x̃) = ∇x̃U · ˙̃x ≤ −||x̃||2 + ||∇x̃U || ||h(x̃)||+ ||∇x̃U || ||g(u(t))||. (2.28)

Since the nonlinear part h(x̃) satisfies lim||x̃||→0 ||h(x̃)|| = 0, for any ϵ > 0,

there exists a constant r > 0 such that

||h(x̃)|| < ϵ as ||x̃|| < r. (2.29)

In addition, g(u(t)) with the input function u(t) satisfies the following inequal-

ity:

||g(u(t))|| < θ

(
ϵ+

λk

ρ
||x̃||

)
||u(t)|| (2.30)

Substituting (2.29) and (2.30) into (2.28), and using the inequality (2.25c),
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we have

U̇(x̃) <− ||x̃||2 + 2ξmax(P)ϵ||x̃||+ 2ξmax(P)θ

(
ϵ||x̃||+ λk

ρ
||x̃||2

)
||u(t)||. (2.31)

Let Dru = {u(t) ∈ R | ||u(t)|| < ru} and Dr = {x̃ ∈ R3 | ||x̃|| < r}. We choose

a sufficiently small constant ru > 0 and consider a constant r satisfying

(
2ξmax(P)r

(
ϵ+ θ

(
ϵ+

λk

ρ
r

)
ru

)
z−1

)1/2

< r

(
ξmin(p)

ξmax(p)

)1/2

. (2.32a)

in order to estimate the bounds on the initial state and input (the constants

k1 and k2 in Definition 2.1.6 and Theorem 2.1.7). By recalling (2.31), we

get

U̇(x̃) <− (1− z)||x̃||2 − z||x̃||2

2ξmax(P)

(
ϵr + θ

(
ϵr +

λk

ρ
r2
)
||u(t)||

)
, (0 < z < 1)

≤− (1− z)||x̃||2,

(2.33)

where

(
2ξmax(P)r

(
ϵ+θ

(
ϵ+λk

ρ
r
)
||u(t)||

)
z

)1/2

< ||x̃|| < r. From (2.25c) and (2.33),

we finally find the explicit forms of class K functions on Dr ×Dru ,

α1(||x̃||) = ξmin(P)||x̃||2,

α2(||x̃||) = ξmax(P)||x̃||2,

α3(||x̃||) = (1− z)||x̃||2

ω(||u||) =

2ξmax(P)r
(
ϵ+ θ

(
ϵ+ λk

ρ r
)
||u(t)||

)
z

1/2

Therefore, the system (2.78) is locally input–to–state stable by Theorem 2.1.7
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with

k1 = α−1
2 (α1(r)) = r

(
ξmin(P)

ξmax(P)

)1/2

,

k2 = ω−1(min{k1, ω(ru)}) = ru,

γ(a) = α−1
1 ◦ α2 ◦ ω(a) =

2ξ2max(p)r
(
ϵ+ θ

(
ϵ+ λk

ρ r
)
a
)

zξmin(p)

1/2

Note that the condition (2.32a) of choosing r is equivalent to k1
ω(ru)

> 1.

In addition, following proposition shows the stability property for the second

equilibrium point Ē of system (2.2).

Proposition 2.1.11. The system (2.2) is locally input–to–state stable in some

neighborhood of (T (t), T ∗(t), V (t), u(t))T = (λρ
1
R0

, λδ

(
1− 1

R0

)
, ρk (R0 − 1), 0)T .

Moreover, a viral persistence equilibrium point Ē of the system (2.2) is stable

if R0 > 1.

Proof. In order to apply Theorem 2.1.7, a proper lyapunov function U satis-

fying (2.12) is needed. For this purpose, we consider the unforced system of

(2.2) which is the system when the forcing input function u(t) = 0. Then it

has the second equilibrium point Ē =
(
λ
ρ

1
R0

, λδ

(
1− 1

R0

)
, ρk (R0 − 1)

)T
which

is called as viral persistence equilibrium. By using the change of variable

T̃ (t) = T (t)− λ

ρ

1

R0
. T̃ ∗(t) = T ∗(t)− λ

δ

(
1− 1

R0

)
, Ṽ (t) = V (t)− ρ

k
(R0 − 1),

the unforced system becomes

dT̃ (t)

dt
= −(ρR0)T̃ (t)−

cṼ (t)

N
− kT̃ (t)Ṽ (t),

dT̃ ∗(t)

dt
= kT̃ (t)Ṽ (t) + ρ(R0 − 1)T̃ (t) +

cṼ (t)

N
− δT̃ ∗(t),

dṼ (t)

dt
= NδT̃ ∗(t)− cṼ (t).

(2.34)
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By introducing x̃ = (T̃ (t), T̃ ∗(t), Ṽ (t))T , the linearized system of(2.34) at the

viral persistence equilibrium point can be expressed as

˙̃x = Ax̃+ h(x̃),

where the Jacobian matrix A and the nonlinear part h(x̃) are given by

A =


−ρR0 0 − c

N

ρ(R0 − 1) −δ c
N

0 Nδ −c

 , h(x̃) = kT̃ (t)Ṽ (t)


−1

1

0

 .

From the Routh-Hurwitz criteria in Theorem 2.1.9, all eigenvalues of A have

negative real parts if and only if R0−1 > 0. Hence the persistence equilibrium

point of the linear system ˙̃x = Ax̃ is uniformly asymptotically stable only

when R0 > 1.

Theorem 2.1.8 gives a symmetric positive definite matrix P, given by

p =
1

2(R0 − 1)


0 −1

ρ − 1
Nρ

(R0−1)
δ

R0
δ

1
Nδ

N(R0−1)
c

(NR0)
c

R0
c

 .

For the linear system ˙̃x = Ax̃, we consider the Lyapunov function U(x̃) =

x̃TPx̃ and we have the inequalities (2.25).

Let us split the system (2.2) by

˙̃x = Ax̃+ h(x̃) + g(u(t)), (2.35)
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where g(u(t)) with the input function u(t) is given by

g(u(t)) = θ

(
ρ(R0 − 1)T̃ (t) +

cṼ (t)

N
+ λ(1− 1

R0
) + kT̃ (t)Ṽ (t)

)
u(t)

−u(t)

0

 .

Now, we are going to show that the Lyapunov function U(x̃) for the linear

system ˙̃x = Ax̃ is indeed the proper function the system (2.78) satisfying

(2.12).

By using (2.25b), we obtain

U̇(x̃) = ∇x̃U · ˙̃x ≤ −||x̃||2 + ||∇x̃U || ||h(x̃)||+ ||∇x̃U || ||g(u(t))||. (2.36)

Since the nonlinear part h(x̃) satisfy lim||x̃||→0 ||h(x̃)|| = 0, for any ϵ > 0,

there exists a constant r > 0 such that

||h(x̃)|| < ϵ as ||x̃|| < r. (2.37)

Moreover, g(u(t)) with the input function u(t) satisfies the following inequal-

ity:

||g(u(t))|| < θ

(
ρR0T̃ (t) +

cṼ (t)

N
+ λ+ ϵ

)
||u(t)||. (2.38)

Substituting (2.37) and (2.38) into (2.36), and using the inequality (2.25c),

we have

U̇(x̃) <− ||x̃||2 + 2ξmax(P)θ
(
ρR0 +

c

N

)
||u(t)||||x̃||2

+ 2ξmax(P)||x̃|| (ϵ+ (λ+ ϵ)||u(t)||) .
(2.39)
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Let Dru = {u(t) ∈ R | ||u(t)|| < ru} and Dr = {x̃ ∈ R3 | ||x̃|| < r}. We choose

constant ru and r satisfying

(
2ξmax(p)r

(
θ
(
ρR0 +

c
N

)
rur + (ϵ+ (λ+ ϵ)ru)

)
z

)1/2

< r

(
ξmin(P)

ξmax(P)

)1/2

,

(2.40a)

for 0 < z < 1, in order to estimate the bounds on the initial state and input

(the constants k1 and k2 in Definition 2.1.6 and Theorem 2.1.7).

By recalling (2.39), we get

U̇(x̃) <− (1− z)||x̃||2 − z||x̃||2

+ 2ξmax(p)r
(
θ
(
ρR0 +

c

N

)
||u(t)||r + (ϵ+ (λ+ ϵ)||u(t)||)

)
, (0 < z < 1)

≤− (1− z)||x̃||2,
(2.41)

where

(
2ξmax(p)r(θ(ρR0+

c
N )||u(t)||r+(ϵ+(λ+ϵ)||u(t)||))

z

)1/2

≤ ||x̃|| < r. From (2.25c)

and (2.41), we finally find the explicit forms of class K functions on Dr ×Dru ,

α1(||x̃||) = ξmin(P)||x̃||2, α2(||x̃||) = ξmax(P)||x̃||2,

α3(||x̃||) = (1− z)||x̃||2

ω(||u||) =

(
2ξmax(p)r

(
θ
(
ρR0 +

c
N

)
||u(t)||r + (ϵ+ (λ+ ϵ)||u(t)||)

)
z

)1/2

.

Therefore, the split system is locally input–to–state stable by Theorem 2.1.7
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with

k1 = α−1
2 (α1(r)) = r

(
ξmin(P)

ξmax(P)

)1/2

,

k2 = ω−1(min{k1, ω(ru)}) = ru,

γ(a) = α−1
1 ◦ α2 ◦ ω(a) =

(
2ξ2max(p)r

(
θ
(
ρR0 +

c
N

)
ar + (ϵ+ (λ+ ϵ)a)

)
zξmin(p)

)1/2

From the above analysis, it is revealed that, for starting values sufficiently

close to equilibrium, the long-term behavior depends solely on the value of R0.

It is a biologically reasonable explanation, given the definition of reproductive

number.

We then discuss the positivity and boundedness of solutions to system

(2.2).

Proposition 2.1.12. Suppose x satisfy (2.2) and T0 > 0, T ∗
0 > 0 and V0 > 0.

Then for any t1 > 0, T (t), T ∗(t), and V (t) will be bounded and remain in

positive for all t ∈ [0, t1].

Proof. Recall that all parameters p in the system (2.2) are positive. We first

establish the property for some time interval [0, t1], then extend the proof to

an arbitrary interval. Since we assumed positivity of initial conditions, there

must be some t1 > 0 such that T (t), T ∗(t), and V (t) are positive. On this

interval,

dT (t)

dt
= λ− ρT (t)− (1− θu(t))kT (t)V (t) ≤ λ. (2.42)
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Solving for T gives

T (t) ≤ T0 + λt ≤ C1(1 + t), (2.43)

where the constant C1 satisfying C1 ≤ max{λ, T0}. In particular, there is

constant bound for T which is uniform in time. Next, we can place lower

bounds on dT ∗

dt and dV
dt . On the interval (0, t1], we have

dT ∗(t)

dt
= (1− θu(t))kT (t)V (t)− δT ∗(t) ≥ −δT ∗(t)

and
dV (t)

dt
= NδT ∗(t)− cV (t) ≥ −cV (t).

Using separation of variables, we re–write these differential inequalities to find

T ∗(t) ≥ T ∗
0 e

−δt > 0 and V (t) ≥ V0e
−ct > 0. (2.44)

Meanwhile, a summation of dT ∗(t)
dt with dV (t)

dt has bounds,

d

dt
(T ∗ + V )(t) = (1− θu(t))kT (t)V (t) + (N − 1)δT ∗(t)− cV (t)

≤ kT (t)V (t) +NδT ∗(t), t ∈ [0, t1].

Recall that the bound on T (t), a substitution gives

d

dt
(T ∗ + V )(t) ≤ kC1(1 + t)V (t) +NδT ∗(t) ≤ C2(1 + t)(T ∗ + V )(t), (2.45)

where C2 ≥ max{kC1, Nδ}. Solving the differential equation (2.45) yields

(T ∗(t) + V (t)) ≤ C3e
t2
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for t ∈ [0, t1] where C3 depends upon C2, T
∗
0 and V0 only. Since T

∗(t) is positive

from (2.44), we can place an upper bound on V (t) by V (t) ≤ C3e
t2 .

Additionally, since V (t) is also positive, it follows that T ∗(t) must be as

well, hence, T ∗(t) ≤ C3e
t2 . With these bounds in place, we can now examine

T (t) and bound it from below using

dT (t)

dt
= λ− ρT (t)− kT (t)V (t) ≥ −ρT (t)− (1− θu(t))kT (t)V (t)

≥ −ρT (t)− kC3e
t2T (t) ≥ −C4(1 + et

2
)T (t), t ∈ [0, t1],

(2.46)

where C4 ≥ max{ρ, kC3}. Shifting the last term to the other side of the in

equation (2.46) gives

dT (t)

dt
+ C4(1 + et

2
)T (t) ≥ 0,

and we find that for t ∈ [0, t1],

T (t) ≥ T0 exp(−C4

∫ t

0
(1 + eτ

2
)dτ) > 0.

We have proven boundedness and positivity of solution on the interval

(0, t1] for some t1 > 0. We attempt to establish the property for any positive

time. We note that at this t1, T, T
∗, V are positive and continuous so there

is some c1 such that T, T ∗, V remain positive for t ∈ (t1, t1 + c1]. Repeating

this argument indefinitely, we arrive a maximal interval of existence for the

solutions. It we assume this interval is finite, then we may say the interval is

(0, S], where

S = sup{t ∈ R : T (τ), T ∗(τ), V (τ) > 0 for all τ ∈ [0, t]} < ∞.

On the interval (0, S], the solution will remain positive and bounded. However,
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by the definition of S, one of x(S) must be equal to zero or else, by continuity,

S would not be the supremum of the set. This we see that our solutions are

positive on the closed interval (0, S] and yet one of the solution must equal to

zero at S. This provides a contradiction so we see that this interval must be

infinite.

Therefore, we conclude that the solutions remain positive and bounded for

all positive time. That is, for any t1 > 0, T (t), T ∗(t), V (t) are bounded and

remain positive for all t ∈ [0, t1].

Decline phase analysis with perfect inhibition

If one assume that initially a person is uninfected and then introduces a small

amount of virus, the solution of equation (2.2) mimics the kinetics of primary

HIV infection. To analyze the effects of giving an ART drug, if a 100% effective

RTIs and PIs are given to an individual at steady state with viral load, V̄ ,

one can investigate the decline dynamics of free virus, and this approach is

proposed by Perelson et al.,[116, 112] to measure the rate of loss of viral

infectivity. Applying this, the model equations (2.2) become:

dT

dt
= λ− ρT, T (t0) = T̄

dT ∗

dt
= −δT ∗, T ∗(t0) = T̄ ∗

dV

dt
= NδT ∗ − cV, V (t0) = V̄

(2.47)

and this gives rise to the following state solution for virion population

V (t) = V̄ e−ct +
NδT̄ ∗

c− δ
(e−δt − e−ct). (2.48)

From the above equation, we can find that in a perfect inhibition, the infectious

virus should decay exponentially with slope c. Assuming that the viral load
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decay will obey above equation, one can confirm the estimate of parameters

c, the rate of clearance of free virions, and δ, lifespan of productively infected

CD4+ lymphocytes, using patient data. Perelson et al.[116, 112] proposed this

method to independently estimate model parameters so that prevent multiple

local solutions which confound nonlinear least squares or maximum-likelihood

fitting.

Parameter Constraints

We also consider the behavior of steady state virus quantity of the system

δT ∗ with on-treatment, to examine the relation between drug efficacy and

reproductive number. When u(t) = 1, t ≥ t0, the amount of virus presence at

steady state, denoted by V̄d, is

V̄d =
ρ

k

(
R0 −

1

(1− θ)

)
. (2.49)

From the Eq.(2.49), we find that increasing drug efficacy causes the infection

rate k to decrease, which in turn increases the number of available target

cells. Denoting µ the fraction of the pre-treatment steady state viral load (V̄

in (2.9)) present for a given drug efficacy, if drug therapy reduces the viral

load by n-logs, µ would be 10−n and this can be written as

µ =
V̄d

V̄
=

R0 − 1
(1−θ)

R0 − 1
, (2.50)

and solving for θ gives

θ = 1− 1

R0 − f(R0 − 1)
, (2.51)

which can be interpreted as a required drug efficacy for viral load drop by

desired proportionality µ. Perelson et al.[116, 112] refer to the drug efficacy,
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which corresponds to V̄d = 0 or equivalently µ = 0 as the ’critical efficacy’ and

let denote it by θ0. Then

θ0 = 1− 1

R0
, (2.52)

and we note that the infected steady state, V̄d, becomes negative for θ > θ0,

i.e., the drug will extinguish the viral population. Although the results of

the model indicate that extinction should occur, it appears that the viral

population is not extinguished in any patients studied and several clinical

results indicate that extinction of the viral population does not occur under

HAART(Chun et al.,[25]; Dornadula et al., [41]; Furtado et al., [54]; Natarajan

et al., [105]; Zhang et al., [168]; Sharkey et al., [142]). Perelson suggest that one

must conclude that no patients have experienced drug efficacies greater than

or equal to the critical efficacy. Thus, models with a concave down relationship

between steady state viral load during treatment and efficacy contradict clin-

ical results, which implement that the three component model (2.2) is poorly

suited for modeling low steady state viral loads.This gives you an opportunity

to search for advanced models that do not have these flaws and as a result

gained insight into mechanisms that do or do not play a role in maintaining

low virus loads in drug treatments.

According to [75], because T cell counts and viral loads in HIV-infected

patients generally change very slowly before ART is initiated, it is reasonable

to assume that these and other related system variables are at a quasi-steady

state before treatment. This condition the can be used to identify relations

existing among parameters and thus to limit the ranges of values parameter can

take. At pre-treatment, quasi-steady state kTV −δT ∗ = 0 and NδT ∗−cV = 0.

Further, T ∗
ps =

cVps

Nδ , where the subscript ps us used to denote a pre-treatment

quasi-steady state value, correspond to a fraction of plasma virus produced by
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productively infected cells. Then this yields the following parameter constraint:

k =
c

NTps
. (2.53)

Although above basic three component model can be used to describe the

acute HIV infection. If the infection becomes worse than a certain period of

time, however, the applicability of the three component models is lost. More

complex models which can describe the spread of HIV within the body and its

development toward AIDS, are then required. In this paper, we consider HIV

models which account for the latently infected cell population and chronical

infection, which are related with two phase of viral decay and are recognized

as the major reason for successive viral rebound even with HAART.

2.1.2 Chronical infection model

We now investigate more sophisticated versions of three component HIV

model with respect to persistence of low-level viral load. Drug perturbation

studies have found that as plasma HIV-1 decays under drug therapy, there are

several observable phases of the decay. The most rapid occurs as free virus is

cleared from the blood (due to the rate constant c) and establishes a quasi-

steady state with the number of infected cells. The next phase is due to the

decline to productively infected cells, and has been used to determine the rate

constant δ. This phase is characterized by an exponential fall in viral load, and

has been termed the ’first’(observable) phase. A later (second) phase has been

observed, and this has been attributed to the decay of ’chronically’ infected

cells, or cells which produce much smaller amounts of virus than the main pop-

ulation of infected cells, and, perhaps as a consequence, die at a much slower

rate. Of concern for HIV-infected patients experiencing recurrent episodes of

transient viremia include the potential effects on the chronic infection that
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may serve as viral reservoirs. It is known that the effects on chronically in-

fected cells are more lingering than the productively infected cells. A standard

representation presented by Perelson et al.,[112] of a system with this second

type of infected cell population is as follow.

dT

dt
= λ− ρT − kTV, T (t0) = T0

dT ∗

dt
= (1− ϵc)kTV − δT ∗, T ∗(t0) = T ∗

0

dT ∗
c

dt
= ϵckTV − µT ∗

c , T ∗
c (t0) = T ∗

c,0

dV

dt
= NδT ∗ +NcµT

∗
c − cV, V (t0) = V0.

(2.54)

In this model, Perelson et al.,[112] allow heterogeneity in target cells by al-

lowing 2 co-circulating populations of target cells. They assume that most

infected cells are short-lived(I(t)), a small proportion is assumed to be chroni-

cally infected(Ic(t)). Chronically infected cells are assumed to have lower mor-

tality and to produce virus at a slower rate than short-lived infected cells. The

antigen activates a fraction of CD4+ T cells at a rate ϵc and leads to HIV

production from these two types of infected populations and is cleared from

the body at a constant rate per viral particle. The chronically infected cells

die with a rate constant µ, and Nc is an average number of virions produced

in the lifetime of chronically infected cells

Variable/Parameter Units Description

T ∗
c cells/ml Chronically infected CD4+ T cell density.

ϵc ∈ [0, 1] - fraction of uninfected T cells that
upon infection become chronical.

µ day−1 death rate of chronically infected cell(lysis).

Nc
copies
cell

Number of free virus produced by a
chronically infected T cell.

Table 2.2: A description of variables and parameters of the chronic infection
model
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We now derive the reproductive number for the system (2.54). Following

the assumption applied in the derivation of reproductive number for the pre-

vious model (2.2), we consider the constant population number of healthy T

cell is constant in uninfected period, so that we have T (t) = λ
ρ . Let us denote

the population of PI cell and CI cell in a unit volume at time t = 0 by T ∗
1

and T ∗
c,1, respectively. From the second and the third equations of (2.54), two

types of infected cell population can be obtained by T ∗(t) = T ∗
1 e

−δ(t−t0) and

T ∗
c (t) = T ∗

c,1e
−µ(t−t0) in uninfected period. Setting t0 = 0 and V0 = 0, we solve

for V (t) by substituting T ∗(t) and T ∗
c (t) into the fourth equation of (2.54) and

this gives

V (t) =
NδT ∗

1

c− δ
(−e−δt − e−ct) +

NcµT
∗
c,1

c− µ
(−e−µt − e−ct). (2.55)

By the definition of the reproductive number, the secondary population of PI

T cell with T ∗
1 = 1 and T ∗

c,1 = 0, is obtained by (1−ϵc)λk
ρ

(
N
c

)
. In the same

way, the secondary population density of the CI T cell with T ∗
c,1 = 1 is given

by ϵc(λk)
ρ

(
Nc
c

)
. Then the overall reproductive number derived from the model

(2.54) is given by

Rc
0 =

λk ((1− ϵc)N + ϵcNc)

cρ
. (2.56)

We note that Rc
0 = R0 if the proportionality of chronic infection is zero, i.e.,

ϵc = 0.

Proposition 2.1.13. The system (2.54) is locally input–to–state stable in

some neighborhood of (T (t), T ∗(t), T ∗
c (t), V (t), u(t))T =

(
λ

ρRc
0
, λ(1−ϵc)

δ

(
1− 1

Rc
0

)
,

λϵc
µ

(
1− 1

Rc
0

)
,
ρ(Rc

0−1)
k , 0

)T
. Moreover,a viral persistence equilibrium point

(
λ

ρRc
0
,

λ(1−ϵc)
δ

(
1− 1

Rc
0

)
, λϵcµ

(
1− 1

Rc
0

)
,
ρ(Rc

0−1)
k

)T
of the system (2.54) is stable when

a3 > 0, a1a2a3 > a23 + a21a4 for the coefficients in 2.58, and Rc,0 >
1
kλ .

Proof. In order to apply Theorem 2.1.7, a proper lyapunov function U sat-
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isfying (2.12) is required. For this purpose, we consider a system when the

input u(t) = 0, called the unforced system of (2.54). Then an equilibrium

point ( λ
ρRc

0
, λ(1−ϵc)

δ

(
1− 1

Rc
0

)
,
(
λϵc
µ

)(
1− 1

Rc
0

)
,
ρ(Rc

0−1)
k )T is obtained from the

unforced system of (2.54). By using the change of variables

T̃ (t) = T (t)− λ

ρRc
0

, T̃ ∗(t) = T ∗(t)− λ(1− ϵc)

δ

(
1− 1

Rc
0

)
,

T̃ ∗
c (t) = T ∗

c (t)−
(
λϵc
µ

)(
1− 1

Rc
0

)
, Ṽ (t) = V (t)− ρ(Rc

0 − 1)

k
,

the unforced system becomes

dT̃ (t)

dt
= −(ρRc

0)T̃ (t)−
(

λk

ρRc
0

)
Ṽ (t)− kT̃ (t)Ṽ (t),

dT̃ ∗(t)

dt
= (1− ϵc)

{
kT̃ (t)Ṽ (t) + ρ(Rc

0 − 1)T̃ (t) +

(
λk

ρRc
0

)
Ṽ (t)

}
− δT̃ ∗(t),

dT̃ ∗
c (t)

dt
= ϵc

{
kT̃ (t)Ṽ (t) + ρ(Rc

0 − 1)T̃ (t) +

(
λk

ρRc
0

)
Ṽ (t)

}
− µT̃ ∗

c (t),

dṼ (t)

dt
= NδT̃ ∗(t) +NcµT̃ ∗

c (t)− cṼ (t).

(2.57)

For notational convenience, we denote the variables with x̃ = (T̃ (t), T̃ ∗(t), T̃ ∗
c (t)

, Ṽ (t))T . Then the linearized system of(2.57) at the viral persistence equilib-

rium point can be expressed as

˙̃x = Ax̃+ h(x̃),
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where the Jacobian matrix A and the nonlinear part h(x̃) are given by

A =


−ρRc

0 0 0 −
(

λk
ρRc

0

)
ρ(1− ϵc)(R

c
0 − 1) −δ 0 λk(1−ϵc)

ρRc
0

ρϵc(R
c
0 − 1) 0 −µ λkϵc

ρRc
0

0 Nδ Ncµ −c

 ,h(x̃) = kT̃ (t)Ṽ (t)


−1

(1− ϵc)

ϵc

0

 .

From the Routh-Hurwitz criteria, all eigenvalues of A have negative real parts

when

a1 = Rc
0ρ+ c+ δ + µ,

a2 = Rc
0ρ(c+ δ + µ) + (cδ + cµ+ δµ)− λkM

ρRc
0

, M = (1− ϵc)Nδ +Ncϵcµ,

a3 = Rc
0ρ(cδ + cµ+ δµ)− cδµ− (kλ)2M

Rc
0

,

a4 = µδcρ(kλRc
0 − 1),

(2.58)

satisfy condition(2.18c), where {ai}4i=1 is the corresponding coefficients re-

ferred in Theorem 2.1.9. We note that all model parameters are assumed to

be positive, and the viral persistence equilibrium point of the linear system ˙̃x =

Ax̃ is uniformly asymptotically stable only when a3 > 0, a1a2a3 > a23 + a21a4,

and Rc
0 >

1
kλ .

Theorem 2.1.8 gives a symmetric positive definite matrix P, given by

p =
1

2cρ(1−Rc
0)


1
ρ −Nkλ

ρ − (Nckλ)
ρ − (kλ)

ρ

0 (cρ−Ncϵckλ)
δ

Nckλ(1−ϵc)
δ

kλ(1−ϵc)
δ

0 (Nϵckλ)
µ

(cρ−Nkλ+Nϵckλ)
µ

(ϵckλ)
µ

0 Nρ Ncρ ρ

 .

For the linear system ˙̃x = Ax̃, we consider the Lyapunov function U(x̃) =
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x̃TPx̃ and we have the inequalities (2.25).

Let us split the system (2.54) by

˙̃x = Ax̃+ h(x̃) + g(u(t)), (2.59)

where g(u(t)) with the input function u(t) is given by

g(u(t)) = kθ

(
T̃ (t) +

λ

ρRc
0

)(
Ṽ (t) +

ρ(Rc
0 − 1)

k

)


u(t)

−(1− ϵc)u(t)

−ϵcu(t)

0

 .

Now, we are going to show that the Lyapunov function U(x̃) for the linear

system ˙̃x = Ax̃ is indeed the proper function the system (2.78) satisfying

(2.12).

By using (2.25b), we obtain

U̇(x̃) = ∇x̃U · ˙̃x ≤ −||x̃||2 + ||∇x̃U || ||h(x̃)||+ ||∇x̃U || ||g(u(t))||. (2.60)

Note that 0 < ϵc < 1, since the nonlinear part h(x̃) satisfy lim||x̃||→0 ||h(x̃)|| =

0, for any ϵ > 0, there exists a constant r > 0 such that

||h(x̃)|| < ϵ as ||x̃|| < r. (2.61)

Moreover, g(u(t)) with the input function u(t) satisfies the following inequal-

ity:

||g(u(t))|| < θ

(
ρRc

0T̃ (t) +
kλṼ (t)

ρRc
0

+ λ+ ϵ

)
||u(t)||. (2.62)
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Substituting (2.61) and (2.62) into (2.60), and using the inequality (2.25c),

we have

U̇(x̃) <− ||x̃||2 + 2ξmax(P)θ

(
ρRc

0 +
kλ

ρRc
0

)
||u(t)||||x̃||2

+ 2ξmax(P)||x̃|| (ϵ+ (λ+ ϵ)||u(t)||) .
(2.63)

Let Dru = {u(t) ∈ R | ||u(t)|| < ru} and Dr = {x̃ ∈ R3 | ||x̃|| < r}. We choose

constant ru and r satisfying

2ξmax(p)r
(
θ
(
ρRc

0 +
kλ
ρRc

0

)
rur + (ϵ+ (λ+ ϵ)ru)

)
z

1/2

< r

(
ξmin(P)

ξmax(P)

)1/2

,

(2.64a)

for 0 < z < 1, in order to estimate the bounds on the initial state and input

(the constants k1 and k2 in Definition 2.1.6 and Theorem 2.1.7).

By recalling (2.63), we get

U̇(x̃) <− (1− z)||x̃||2 − z||x̃||2

+ 2ξmax(p)r

(
θ

(
ρRc

0 +
kλ

ρRc
0

)
||u(t)||r + (ϵ+ (λ+ ϵ)||u(t)||)

)
,

≤− (1− z)||x̃||2, (0 < z < 1),

(2.65)

where

2ξmax(p)r

(
θ

(
ρRc

0+
kλ
ρRc

0

)
||u(t)||r+(ϵ+(λ+ϵ)||u(t)||)

)
z

1/2

≤ ||x̃|| < r. From

(2.25c) and (2.65), we finally find the explicit forms of class K functions on
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Dr ×Dru ,

α1(||x̃||) = ξmin(P)||x̃||2, α2(||x̃||) = ξmax(P)||x̃||2, α3(||x̃||) = (1− z)||x̃||2,

ω(||u||) =

2ξmax(p)r
(
θ
(
ρRc

0 +
kλ
ρRc

0

)
||u(t)||r + (ϵ+ (λ+ ϵ)||u(t)||)

)
z

1/2

.

Therefore, the split system is locally input–to–state stable by Theorem 2.1.7

with

k1 = α−1
2 (α1(r)) = r

(
ξmin(P)

ξmax(P)

)1/2

,

k2 = ω−1(min{k1, ω(ru)}) = ru,

γ(a) = α−1
1 ◦ α2 ◦ ω(a)

=

2ξ2max(p)r
(
θ
(
ρRc

0 +
kλ
ρRc

0

)
ar + (ϵ+ (λ+ ϵ)a)

)
zξmin(p)

1/2

.

We then discuss the positivity and boundedness of solutions to system

(2.54).

Proposition 2.1.14. Suppose x satisfy (2.54) and T0 > 0, T ∗
0 > 0, T ∗

c,0 > 0

and V0 > 0. Then T (t), T ∗(t), T ∗
c (t), and V (t) are bounded and remain in

positive for all t > 0.

Proof. Recall that all parameters p in the system (2.54) are positive. We first

establish the property for some time interval [0, t1], then extend the proof to

an arbitrary interval. Since we assumed positivity of initial conditions, there

must be some t1 > 0 such that T (t), T ∗(t), T ∗
c (t), and V (t) are positive. On
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this interval,

dT (t)

dt
= λ− ρT (t)− (1− θu(t))kT (t)V (t) ≤ λ. (2.66)

Solving for T (t) gives

T (t) ≤ T0 + λt ≤ C1(1 + t), (2.67)

where the constant C1 satisfying C1 ≤ max{λ, T0}. In particular, there is

constant bound for T which is uniform in time. Next, we can place lower

bounds on dT ∗

dt , dT
∗
c

dt and dV
dt . On the interval (0, t1], we have

dT ∗(t)

dt
= (1− ϵc)(1− θu(t))kT (t)V (t)− δT ∗(t) ≥ −δT ∗(t),

dT ∗
c (t)

dt
= ϵc(1− θu(t))kT (t)V (t)− µT ∗

c (t) ≥ −µT ∗
c (t),

dV (t)

dt
= NδT ∗(t) +NcµT

∗
c (t)− cV (t) ≥ −cV (t).

Using separation of variables, we re–write these differential inequalities to find

T ∗(t) ≥ T ∗
0 e

−δt > 0, T ∗
c (t) ≥ T ∗

c,0e
−µt > 0, and V (t) ≥ V0e

−ct > 0. (2.68)

Recall that u(t) ∈ [0, 1] for t ≥ 0, a summation of dT ∗(t)
dt ,dT

∗
c (t)
dt with dV (t)

dt

has bound as follow.

d

dt
(T ∗ + T ∗

c + V )(t) =(1− θu(t))kT (t)V (t) + (N − 1)δT ∗(t)

+ (Nc − 1)µT ∗
c (t)− cV (t)

≤kT (t)V (t) +NδT ∗(t) +NcµT
∗
c (t), t ∈ [0, t1].
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Due to the bound on T (t), a substitution gives

d

dt
(T ∗ + T ∗

c + V )(t) ≤ kC1(1 + t)V (t) +NδT ∗(t) +NcµT
∗
c (t)

≤ C2(1 + t)(T ∗ + T ∗
c + V )(t),

(2.69)

where C2 ≥ max{kC1, Nδ,Ncµ}. Solving the differential equation (2.69) yields

T ∗(t) + T ∗
c (t) + V (t) ≤ C3e

t2

for t ∈ [0, t1] where C3 depends upon C2, T
∗
0 , T

∗
c,0 and V0 only. Since T ∗(t)

and T ∗
c (t) are positive from (2.68), we can place an upper bound on V (t) by

V (t) ≤ C3e
t2 .

Moreover, since V (t) is also positive, it follows that both of T ∗(t) and T ∗
c (t)

must be as well, hence, T ∗(t) ≤ C3e
t2 , T ∗

c (t) ≤ C3e
t2 . With these bounds in

place, we can now examin T (t) and bound it from below using

dT (t)

dt
≥ −ρT (t)− kT (t)V (t) ≥ −ρT (t)− kC3e

t2T (t)

≥ −C4(1 + et
2
)T (t), t ∈ [0, t1],

(2.70)

where C4 ≥ max{ρ, kC3}. Shifting the last term to the other side of the in

equation (2.70) gives

dT (t)

dt
+ C4(1 + et

2
)T (t) ≥ 0,

and we find that for t ∈ [0, t1],

T (t) ≥ T0 exp(−C4

∫ t

0
(1 + eτ

2
)dτ) > 0.

By applying the contradiction referred to in the Proposition 2.1.12 for the
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model (2.2), we can conclude that for any t1 > 0, T (t), T ∗(t), T ∗
c (t), V (t) are

bounded and remain positive for all t ∈ [0, t1].

2.1.3 Latent infection model

As previously mentioned in 2.2, HIV-1 belongs to a class of retroviruses

and the viral DNA copy on this process is called “provirus” and the status

of infected T cell is distinguished by a provirus activity in cell. When the

provirus is duplicated with cell DNA and reproduce themselves, then the host

T cell population are in a productively infected status. The virion, however,

can remain latent within a T cell while not being reproduced, giving no sign

of its presence for months or years. Because of their latent state, these cells

are not likely to be subject to immunosurveillance by HIV-specific T cells.

Perhaps as a consequence, these cells persist during drug therapy (Chun[24];

Finzi [49];Wong [162]), either by replenishment from ongoing replication or an

extremely long half-life.

Usually the resting memory CD4+ T cell population harbor HIV-RNA

as provirus, so they are usually called as latently infected cell. Occasional

antigen-driven stimulation activates them to induce viral gene expression and

it leads to viral replication and temporal expansion of rhe reservoirs. After all,

this causes successive viral rebound even with potent ART. Latently infected

cells thus pose a serious obstacle to eradicating the virus, suggesting that this

population of cells could play a crucial role in maintaining a low steady state

viral load during therapy. In 1997, Perelson [112] suggested that the second

phase in the decay profile is probably due to sources such as activation of

latently infected lymphocyte or release of trapped virions. They declared that

decay of productively infected T cell population leave the secondary sourved

as the major source which is reflected in the slope of the second-phase decline.
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Assuming the overall drug efficacy θ implented in 2.1.2, a basic model of latent

cell activation was proposed by Rong and Perelson et al.[134] as follow:

dT

dt
= λ− ρT − (1− θu(t))kTV, T (0) = T0

dT ∗

dt
= (1− ϵ)(1− θu(t))kTV − δT ∗ + rLL, T ∗(0) = T ∗

0

dL

dt
= ϵ(1− θu(t))kTV − (δL + rL)L, L(0) = L0

dV

dt
= NδT ∗ − cV, V (0) = V0.

(2.71)

This model includes L(t) representing a concentration of latently infected rest-

ing CD4+ T cells that harbour virus which are not transcriptased yet, then

they become infected and produce low level of virus[168]. The formation of

latently infected resting cells was modelled by a proportionality, ϵ, of viral

infections of target healthy T cells results in latency. Unlike with three com-

ponent model(2.2), the productively infected cells are produced not only by

infection of target cells but the activation of latently infected cells at rate rLL

caused by interaction with their relevant antigen or other stimuli. Here the

heterogeneity in the activation rate among latently infected cells[152, 151] are

not taken into account and instead the average rate is assumed. They explic-

itly describe the death of latently infected cells by defining kinetic constants

δL for the rate of death. A details for state and parameters of equation (2.71)

are listed in 2.3.

Var/Par Unit Description

L cells/ml latently infected CD4+ T cell density.

rL day−1 activation rate of latently infected T cell.
ϵ ∈ [0, 1] - fraction of uninfected T cells that upon infection become latent.

δL day−1 death rate of activated resting memory cell(natural death).

Table 2.3: A description of variables and parameters of the latent cell activa-
tion model
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To derive the reproductive number for model equations (2.71), To de-

rive the reproductive number for latent model, we again assume the con-

stant population density of the uninfected lymphocyte cell during the un-

infected period, so that T (t) = λ
ρ . Let us denote the population of PI T

cell and LI T cell in a unit volume at time t = 0 by T ∗
1 and L1, respec-

tively. From the second and third equations of (2.71), the population densities

of both lymphocyte cells at time t are given by L(t) = L1e
−(rL+δL)t and

T ∗(t) = T ∗
1 e

−δt + BL1(e
−(rL+δL)t − e−δt), where B = rL

δ−(rL+δL)
. Substituting

T ∗(t) and L(t) into the fourth equation of (2.71) and multiplying integrating

factor yield a analytic solution for the virus state V (t) as follow:

V (t) =
NδBL1

c− (rL + δL)
(e−(rL+δL)t−e−ct)+

Nδ(T ∗
1 −BL1)

c− δ
(e−δt−e−ct). (2.72)

By the definition of the reproductive number, the secondary population of PI

T cell with T ∗
1 = 1 and L1 = 0, is obtained by (1−ϵ)λk

ρ

(
N
c

)
. With T ∗

1 = 0 and

L1 = 1, the secondary population density of the chronically infected T cell can

be given by∫ ∞

0

ϵkT (t)V (t)dt

=
ϵλk

ρ

[
NδB

c− (rL + δL)

∫ ∞

0

(
e−(rL+δL)t − e−ct

)
dt− NδB

c− δ

∫ ∞

0

(
e−δt − e−ct

)
dt

]
=

ϵλk(NδB)

ρ

[
1

c− (rL + δL)

(
1

rL + δL
− 1

c

)
− 1

c− δ

(
1

δ
− 1

c

)]
=

ϵλk(NδB)

cρ

[
1

(rL + δL)
− 1

δ

]
=

λkN)

cρ

(
ϵrL

rL + δL

)
.

(2.73)

Then the overall reproductive number of infected lymphocytes in the system

(2.71), denoted by RL
0 , is

RL
0 =

(
(1− ϵ) +

ϵrL
rL + δL

)
R0. (2.74)

and we note that RL
0 = R0 if the proportionality of the latent infection is zero,
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i.e., ϵ = 0.

Proposition 2.1.15. The system (2.71) is locally input–to–state stable in

some neighborhood of (T (t), T ∗(t), L(t), V (t), u(t))T =
(

λ
ρRL,0

,
λ(RL,0−1)

δR0
,

ϵλ
(rL+δL)

(
1− 1

RL,0

)
,
ρ(RL,0−1)

k , 0
)T

. Moreover, a viral persistence equilibrium

point
(

λ
ρRL,0

,
λ(RL,0−1)

δR0
, ϵλ

(rL+δL)

(
1− 1

RL,0

)
,
ρ(RL,0−1)

k

)T
of the system (2.71)

is stable when a3 > 0, a1a2a3 > a23 + a21a4 for the coefficients in 2.77, and

RL,0 > 1.

Proof. In order to apply Theorem 2.1.7, we need to find a proper lyapunov

function U satisfying (2.12). For this purpose, we consider a system in the

absence of the forcing input, i.e., u(t) = 0, which is called an unforced system

of (2.71). Then it has equilibrium point
(

λ
ρRL,0

,
λ(RL,0−1)

δR0
, ϵλ
(rL+δL)

(
1− 1

RL,0

)
,

ρ(RL,0−1)
k

)T
which is called as viral extinction equilibrium. By using the change

of variables

T̃ (t) = T (t)− λ

ρRL,0
, T̃ ∗(t) = T ∗(t)−

λ(RL,0 − 1)

δR0
,

L̃(t) = L(t)− ϵλ

(rL + δL)

(
1− 1

RL,0

)
, Ṽ (t) = V (t)−

ρ(RL,0 − 1)

k
,
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the unforced system is transformed into

dT̃ (t)

dt
= −(ρRL,0)T̃ (t)−

λk

ρRL,0
Ṽ (t)− kT̃ (t)Ṽ (t),

dT̃ ∗(t)

dt
= (1− ϵL)

{
ρ(RL,0 − 1)T̃ (t) +

λk

ρRL,0
Ṽ (t) + kT̃ (t)Ṽ (t)

}
− δT̃ ∗(t) + rLL̃(t),

dL̃(t)

dt
= ϵL

{
ρ(RL,0 − 1)T̃ (t) +

λk

ρRL,0
Ṽ (t) + kT̃ (t)Ṽ (t)

}
− (rL + δL)L̃(t),

dṼ (t)

dt
= NδT̃ (t)− cṼ (t).

(2.75)

For clear notation, we introduce x̃ = (T̃ (t), T̃ ∗(t), L̃(t), Ṽ (t))T , then the lin-

earized system of (2.75) at the viral persistence equilibrium point is

˙̃x = Ax̃+ h(x̃), (2.76)

where the Jacobian matrix A and the nonlinear part h(x̃) are given by

A =


−(ρRL,0) 0 0 − λk

ρRL,0

(1− ϵL)ρ(RL,0 − 1) −δ rL
λk(1−ϵL)
ρRL,0

ϵLρ(RL,0 − 1) 0 −(rL + δL)
λkϵL
ρRL,0

0 Nδ 0 −c

 ,

h(x̃) = kT̃ (t)V (t)


−1

1− ϵL

ϵL

0

 .

From the Routh-Hurwitz criteria, all eigenvalues of A have negative real parts
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when

a1 = RL,0ρ+ rL + c+ δ + δL,

a2 = RL,0ρ(rL + c+ δ + δL) + (rLc+ rLδ + cδ + cδL + δδL)−
cδ(1− ϵ)R0

RL,0
,

a3 = RL,0ρ(rLc+ rLδ + cδ + cδL + δδL) + 2cδ(rL + δL)−
cρδ(1− ϵ)R0

RL,0
,

a4 = cρδ(rL + δL)(RL,0 − 1).

(2.77)

satisfy condition(2.18c), where {ai}4i=1 is the corresponding coefficients re-

ferred in Theorem 2.1.9. Hence the persistence equilibrium point of the linear

system ˙̃x = Ax̃ is uniformly asymptotically stable only when a3 > 0, a1a2a3 >

a23 + a21a4, and RL,0 > 1.

Theorem 2.1.8 gives a symmetric positive definite matrix P, given by

P =
1

2A



(RL,0−R0)B+R0δLϵ
ρ −R0B

ρ − rLR0
ρ −R0B

ρN

− (RL,0−R2
L,0)B+(R2

L,0−R0)(δLϵ)

δ

R2
L,0B

δ

(R2
L,0rL)

δ
R0(B−δLϵ)

Nδ

ϵRL,0(RL,0 − 1) ϵR0 R2
L,0 −R0(1− ϵ) ϵR0

N
N [(R2

L,0−RL,0)(B−δLϵ)

c

NR2
L,0B

c

(NR2
L,0rL)

c

R2
L,0B

c ,


where RL,0 is the reproductive number derived from the latent cell activation

model (2.71) and A = (R2
L,0−R0)(rL+δL)+(δLϵ)R0 and B = rL+δL. For

the linear system ˙̃x = Ax̃, we consider the Lyapunov function U(x̃) = x̃TPx̃

and we have the inequalities (2.25). Let us split the system (2.71) by

˙̃x = Ax̃+ h(x̃) + g(u(t)), (2.78)
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where g(u(t)) with the input function u(t) is given by

g(u(t)) = kθ

(
T̃ (t) +

λ

ρRL,0

)(
Ṽ (t) +

ρ(RL,0 − 1)

k

)


u(t)

−(1− ϵ)u(t)

−ϵu(t)

0

 .

Now, we are going to show that the Lyapunov function U(x̃) for the linear

system ˙̃x = Ax̃ is indeed the proper function the system (2.78) satisfying

(2.12).

By using (2.25b), we obtain

U̇(x̃) = ∇x̃U · ˙̃x ≤ −||x̃||2 + ||∇x̃U || ||h(x̃)||+ ||∇x̃U || ||g(u(t))||. (2.79)

Note that 0 < ϵ < 1, since the nonlinear part h(x̃) satisfy lim||x̃||→0 ||h(x̃)|| =

0, for any ν > 0, there exists a constant r > 0 such that

||h(x̃)|| < ν as ||x̃|| < r. (2.80)

Moreover, g(u(t)) with the input function u(t) satisfies the following inequal-

ity:

||g(u(t))|| < θ

(
ρRL,0T̃ (t) +

(
kλ

ρRL,0

)
Ṽ (t) + λ+ ν

)
||u(t)||. (2.81)

Substituting (2.80) and (2.81) into (2.79), and using the inequality (2.25c),

we have

U̇(x̃) <− ||x̃||2 + 2θξmax(p)

(
ρRL,0 +

kλ

ρRL,0

)
||u(t)||||x̃||2

+ 2ξmax(P)||x̃|| (ν + (λ+ ν)||u(t)||) .
(2.82)
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Let Dru = {u(t) ∈ R | ||u(t)|| < ru} and Dr = {x̃ ∈ R3 | ||x̃|| < r}. We choose

constant ru and r satisfying

[
2ξmax(p)r

{(
ρRL,0 +

kλ

ρRL,0

)
θrur + (ν + (λ+ ν)ru)

}]1/2
< r

(
z ξmin(P)

ξmax(P)

)1/2

for 0 < z < 1, in order to estimate the bounds on the initial state and in-

put (the constants k1 and k2 in Definition 2.1.6 and Theorem 2.1.7). By

recalling (2.82), we get

U̇(x̃) <− (1− z)||x̃||2 − z||x̃||2

+ 2ξmax(p)r

(
θ

(
ρRL,0 +

kλ

ρRL,0

)
||u(t)||r + (ν + (λ+ ν)||u(t)||)

)
≤− (1− z)||x̃||2, (0 < z < 1),

(2.83)

where

(
2ξmax(p)rz

−1

((
ρRL,0 +

kλ

ρRL,0

)
θ||u(t)||r + (ν + (λ+ ν)||u(t)||)

))1/2

≤ ||x̃|| < r.

From (2.25c) and (2.83), we finally find the explicit forms of class K func-

tions on Dr ×Dru ,

α1(||x̃||) = ξmin(P)||x̃||2, α2(||x̃||) = ξmax(P)||x̃||2, α3(||x̃||) = (1− z)||x̃||2,

ω(||u||) =

2ξmax(p)r
(
θ
(
ρRL,0 +

kλ
ρRL,0

)
||u(t)||r + (ν + (λ+ ν)||u(t)||)

)
z

1/2

.

Therefore, the split system is locally input–to–state stable by Theorem 2.1.7
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with

k1 = α−1
2 (α1(r)) = r

(
ξmin(P)

ξmax(P)

)1/2

,

k2 = ω−1(min{k1, ω(ru)}) = ru,

γ(a) = α−1
1 ◦ α2 ◦ ω(a)

=

2ξ2max(p)r
((

ρRL,0 +
kλ

ρRL,0

)
θar + λa+ ν(1 + a)

)
zξmin(p)

1/2

Following proposition discuss the positivity and boundedness of solutions

to system (2.71).

Proposition 2.1.16. Suppose x satisfy (2.71) and T0 > 0, T ∗
0 > 0, L0 > 0 and

V0 > 0. Then T (t), T ∗(t), L(t), and V (t) are bounded and remain in positive

for all t > 0.

Proof. Recall that all parameters p in the system (2.71) are positive. We first

establish the property for some time interval [0, t1], then extend the proof to

an arbitrary interval. Since we assumed positivity of initial conditions, there

must be some t1 > 0 such that T (t), T ∗(t), L(t), and V (t) are positive. On this

interval,
dT (t)

dt
= λ− ρT (t)− (1− θu(t))kT (t)V (t) ≤ λ,

and this gives

T (t) ≤ T0 + λt ≤ C1(1 + t),

for some constant C1 satisfying C1 ≤ max{λ, T0}. In particular, there is con-

stant bound for T (t) which is uniform in time. Next, we can place lower bounds
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on dT ∗

dt , dLdt and dV
dt . On the interval (0, t1], we have

dT ∗(t)

dt
≥ −δT ∗(t),

dV (t)

dt
≥ −cV (t),

dL(t)

dt
= ϵc(1− θu(t))kT (t)V (t)− (rL + δL)L(t) ≥ −(rL + δL)L(t).

Using separation of variables, we re–write these differential inequalities to find

T ∗(t) ≥ T ∗
0 e

−δt > 0, L(t) ≥ L0e
−(rL+δL)t > 0, and V (t) ≥ V0e

−ct > 0.(2.84)

Recall that u(t) ∈ [0, 1] for t ≥ 0, a summation of dT ∗(t)
dt ,dL(t)dt with dV (t)

dt

has bound as follow.

d

dt
(T ∗ + L+ V )(t) ≤ kT (t)V (t) +NδT ∗(t) + rLL(t), t ∈ [0, t1].

Due to the bound on T (t), a substitution gives

d

dt
(T ∗ + L+ V )(t) ≤ kC1(1 + t)V (t) +NδT ∗(t) + rLL(t)

≤ C2(1 + t)(T ∗ + L+ V )(t),

(2.85)

where C2 ≥ max{kC1, Nδ, rL}. Solving the differential equation (2.85) yields

T ∗(t) + L(t) + V (t) ≤ C3e
t2

for t ∈ [0, t1] where C3 depends upon C2, T
∗
0 , L0 and V0 only. Since T ∗(t)

and L(t) are positive from (2.84), we can place an upper bound on V (t) by

V (t) ≤ C3e
t2 . Moreover, since V (t) is also positive, it follows that both

of T ∗(t) and L(t) must be as well, hence, T ∗(t) ≤ C3e
t2 , L(t) ≤ C3e

t2 . With
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these bounds in place, we can now examin T (t) and bound it from below using

dT (t)

dt
≥ −ρT (t)− kT (t)V (t) ≥ −ρT (t)− kC3e

t2T (t)

≥ −C4(1 + et
2
)T (t), t ∈ [0, t1],

(2.86)

for some constant C4 satisfying C4 ≥ max{ρ, kC3}. Then from the (2.86), we

find that

T (t) ≥ T0 exp(−C4

∫ t

0
(1 + eτ

2
)dτ) > 0

for t ∈ [0, t1]. Applying the contradiction referred to in the Proposition 2.1.12

gives a conclusion that T (t), T ∗(t), L(t), V (t) are bounded and remain positive

for all t > 0.

2.2 Parameter estimation

The HIV model is a system of differential equations with a set of pa-

rameters. Mathematical problems with such parameter-dependent differential

equations can be lead to inverse problem which require parameter estimation

based on the measurements of output variable. With several HIV models sur-

veyed in Section 2.1, we are particularly interested in finding a parameter set

that minimize the chi-square value between observed data in [139] and numeri-

cal solutions. We first describe the characteristics of the data set, including the

treatment regimens undergone by various patients. We examine longitudinal

viral load data from 9 patients, which shows viral rebound while therapeutic

Interruption. This data set includes samples below the limit of detection of

the assay used. From this data, we quantify the rate of viral expansion during

primary HIV infection. In this section, We describe the characteristics of the

data set, including the treatment regimens undergone by various patients. We

also describe inverse problem formulations and corresponding computational
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approaches, together with a parameter sensitivity analysis.

2.2.1 Description of measurement data and their clinical result

The data for our study come from over 8 adults with asymptomatic HIV-1

infection. These subjects were enrolled in a trial study of Ruiz et al.[139] based

at University Hospital Germans Trias i Pujol in Barcelona,Spain.The subjects

of this study contains the patients who had laboratory documented evidence

of HIV-1 infection, a CD4 : CD8 ratio greater than 1 for a minimum of 6

months, and plasma HIV-RNA levels of less than 50 copies/ml (the limit of

detection of the assay) for at least 2 years before study entry. Thus it makes

its measurement particularly useful for understanding viral dynamics which

highly related to existence of latent reservoir or chronic infection.

A total of 9 patients were included in the study, of whom intermittently

discontinued their ART regimens in a structured manner, remaining off ther-

apy until two consecutive viral load measurements above 3000 copies/ml were

obtained, or for a maximum of 30 days. ART was re-initiated for 90 days

until the next interruption cycle begin. This administration manner is called

a Structured therapeutic Interruption(STI). It is shown that the re-initiation

of ART successfully drove plasma viraemia to below the level of detectability

(50 copies/ml ) in all interrupter patients data. A primary goal of clinical stud-

ies is to investigate the clinical,virological and immunological consequences

driven by treatment interruption approaches in chronically HIV-infected pa-

tients. According to [139], the aim of this clinical study is to develop advanced

drug regimen which can overcome a major limitation of current ART that

significant restoration of HIV specific CD8+ T cell is not induced except at

primary infection and decrease in parallel to virus clearance in plasma.

During the entire follow-up period, all patients in the study underwent
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combination therapy with three or more ART drugs, although the precise

regime varied from patient to patient as dictated by the treating physician.

All subjects we considered were exposed to three consecutive cycles of STI,

and viral load rebound was evident in all treatment discontinuations. The

measurement of interrupter subject 6,9 and 12, who have problems of detec-

tion, shortage of the number of data points and drug adherence, respectively,

are excluded in this paper. No side-effects were observed throughout the study

period.

Viral load measurements were quantified with RNA Polymerase Chain

Reaction(PCR) analysis three times weekly during the interruptions, yielding

measurements in viral RNA copies per milliliter(ml). Characteristics of pa-

tients are summarized in Table 2.4 referred to [139], and differences in the base-

line(BL) CD4+ and CD8+ T cell subsets counts (initial counts) were measured

between individuals before the first interruption(before treatment initiation),

which implements that the subject’s cell density and immune response are dif-

ferent from each other before virologic suppression. Table2.4 also summarizes

the data set for all 9 patients, including the clinical identification number as-

signed to the patient, number of longitudinal viral load measurements, total

number of days on and off treatment. Each of terms “IVDU”, “Hetero” and

“Homo” indicates an intravenous drug user, heterosexual and homosexual,

respectively. Values of “ratio” in the last column denote a proportionalities

of treatment administration days, assuming that tf = 380. Patient-specific

treatment schedules underwent in [139] are depicted together with numerical

results in Section2.3.

According to the data analysis done by authors of [139], they found that the

mean time before the plasma viral load increased to more than 50 copies/ml

was significantly shorter in the second and third STI (11.1 days and 12.3 days,
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Risk CD4 count CD8 count DN
Patient Age factor at BL at BL of VL on/off ratio

(years) (cells/mm3) (cells/mm3) (days) (%)

1 33 IVDU 2870 1107 36 292/ 58 0.77
2 37 IVDU 742 616 36 301/ 51 0.79
3 29 IVDU 1673 1032 37 303/ 49 0.80
4 32 Hetero 1141 809 39 313/ 46 0.82
5 41 IVDU 1189 1094 32 295/ 56 0.78
7 28 Hetero 1311 897 21 283/ 67 0.74
10 38 Homo 1486 957 25 298/ 57 0.78
11 38 Homo 1002 729 32 301/ 52 0.79

Table 2.4: [139] Characteristics and summary of 9 patients with viral load mea-
surements in their longitudinal data, ordered by patient identification num-
ber.(BL,baseline; DN of VL,data number of viral load.)

respectively) than in the first (14.4 days). Extrapolating back to the begin-

ning of each interruption cycle, they conclude that the shorter time before

virus rebounded to above detectable levels was associated with a higher initial

viral load. Then they hypothesize that this is caused by successive STI cycles

re-seeding reservoirs of virus within the body. When they investigate changes

in T cell subsets after three STI, they found that, at baseline, CD4 and CD8

T cell subsets were not significantly different with other group of patients,

of whom continued on their previous ART during the whole study follow-up.

Overall, the authors found that treatment interruptions were not associated

with significant changes in CD4 or CD8 cell counts, but the reduction in viral

replication by the third STI cycle is unlikely to be caused by lower target cell

densities.

2.2.2 An algorithm for parameter estimation

Among several integration methods for the numerical solution of ordinary

differential equation, we have used the Adams-type method [34] to obtain

the numerical solutions of HIV models and compare the result with our new
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model, a fractional-order HIV model in Chapter 3. Three well-known mathe-

maticians Kai Diethelm, Neville J. Ford and Alan D. Freed [34] successfully

present the numerical approximation of Volterra intergral equation by us-

ing a piecewise linear interpolation polynomial and introduced a fractional

Adams-type predictor-corrector method for solving initial value problem for

fractional-order differential equations, proving that the order of convergence

of the numerical method is min{2, 1 + α} for 0 < α ≤ 2 if CDα
t y ∈ C2[0, tf ].

An arithmetic complexity of their algorithm with steps N is O(N2), whereas

a comparable algorithm for a classical IVP with integer order only give rise to

O(N). The challenge of the computational complexity is essentially because

fractional derivatives are non-local operators. A detail of the algorithm for this

numerical method will be given in 3.4.

A quasi-optimal parameters are estimated by using a nonlinear weighted

least squares method, the Levenberg-Marquardt(LM) algorithm [51]. The LM

algorithm is one of the popular gradient-based optimization methods, where

the performance index is the mean squared error. The LM algorithm is a vari-

ation of Newton’s method that was designed for minimizing functions that are

sums of squares of other nonlinear functions. This method combines the ad-

vantageous functionality of two fundamental methods, namely steepest descent

and Newton-Raphson; both use numerical derivative information. It provides

a nice compromise between the speed of Newton’s method and the guaranteed

convergence of steepest descent. We have applied for the numerical solution for

various states of Three-component, Latent cell activation and chronic infection

model. The measurement data of HIV-RNA used for parameter estimation

were given with a log10 scaled quantities and we denote by {(tj , yj)}nj=1 the

data pairs where n indicates the number of available data points. The low-level

viremia measurements below the limit of assay detections, are served as limit
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value(50 copies/mL), and these data are not used for the estimation. Model

fit will be to the base-10 logarithm of the quantities of unscaled viral states

solution, (V ), which is comparative to data given. A patient-specific under-

went ART records during the observation period [t0, tf ] are also provided in

the reference and these are used for input of control variable u(t), t ∈ [t0, tf ]

in solving the HIV dynamics system numerically. Given a vector of model

dynamics parameters p and specified initial condition for the states x0, we

calculate numerical solutions for model using Adams method with derivative

order 1.

It is important but difficult to determine an initial guess for each parameter in

the nonlinear model due to the high dependency, and we use a nonlinear least

square method with a sufficiently many initial guesses, and the quasi optimal

parameters were then obtained by taking the minimum of all local minima

calculated with these initial guesses. Designate the m model parameters in

each model by

p := (λ, ρ, k, δ,N, c, θrt, θp + dependent on model)T ∈ Rm
+ ,

we assume that the parameter vector p is in the range

P := Πm
j=1[p

min
j , pmax

j ] ∈ Rm
+ , (2.87)

where pmin
j and pmax

j are the lower and upper bound of the parameter pj , j =

1, . . . ,m. We divide the m-orthotope P into equal-sized suborthotopes with

20m vertices to choose one candidate initial guess. One needs some restrictions

on parameter values considering the defined biological meanings. Denote by

V (t;p), t ∈ [t0, tf ] the viral states solution of each model depending on the

parameters p. Then our objective is to find optimal p for the nonlinear least
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squares problem:

min
p∈Rm

+

χ2(p), (2.88)

where the objective function χ2(p) denotes a sum of squared deviations of

data to model,

χ2(p) =
n∑

j=1

(rj(p))
2 = r(p)T r(p), (2.89)

for a residual map r : Rm → Rn whose components are given by

rj(p) = yj − log10
(
V (tj ;p)

)
= j = 1, · · · , n. (2.90)

The partial derivatives of f(t, x;p) with respect to every single element of the

parameter vector p are required for the nonlinear least-squares method and

the Levenberg-Marquardt algorithm. We differentiate subject model equations

with respect to p, interchanges the time and parameter derivatives. Here, the

number of data point we consider in parameter estimation is greater than

the number of parameter, m. We fix a standard deviation to 1 for all data

points, assuming that the log-scaled measurements are normally distributed.

The local minima of this minimization problem (2.88) are progressively sought

by using the Levenberg-Marquardt method, while the state solutions of each

model are obtained by using the Adams-type predictor-corrector method for

the updated parameter set p in successive iterations.

Following the general stop-iteration criterion in optimization procedure,

we assume that the local optimum is approached when subsequent changes

in the parameter values do not improve the chi-square value or change in

parameters is small enough. We let the iteration stop if the relative change in

the chi-square values between current and previous iteration is small enough;
|χ2

k−χ2
k−1|

|χ2
k−1|

< 1e − 04 ,where χ2
k denotes a chi-square values obtained in k−th
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iteration. When the variation in parameters is small then 1e − 15, we also

terminate the iteration and regard current candidate parameter optimal one

best describe the target data set.

Scaled system

Scale is important in that one must decide whether to model at the micro

level, e.g., of viral RNA, or more at the systemic level. It is recommended

by Adams[34] to solve the HIV dynamics system numerically by using a log-

transformed system. They suggest that this procedure resolve a problem of

states becoming unrealistically negative during solution due to round-off error.

It also enables efficient handling of extremely small values or values that vary

over several orders of magnitude during the simulations

Using the transformation x = log10(x̄), with the original system ˙̄x =

ḡi(t, x̄;p) we obtain the system

dxi
dt

=
10−xi

ln(10)
ḡi(t, 10

x;p), i = 1, 2, . . . , Nx, (2.91)

which is the log-transformed analog of the reduced system with the number

of state variable, Nx. Given a vector of model dynamics parameter p and

specified initial conditions x̄0, we calculate numerical solutions for the model.

2.2.3 Initial guess for initial state density and model parame-

ters

Recall that the RNA quantities of all patients in the data for our study

had been undetectable(< 50 copies/mℓ) for at least two years before the STI.

Then, one of our goals is to use patient data from primary infection periods

with models to predict positive initial viral load(V0) which is transient low-

level viremia observed in well-suppressed patients on potent treatment, and

use this value as an initial guess for initial condition for viral state(V (t0)) load.
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In case of three component model, we can get analytic solution for V (t)

until the first peak(which is pre-treatment period) of viral load occurred as

follow.

V (t) = V0e
−ct +

(B −AN)

(c− δ)
(e−δt − e−ct) +

AN

c
(1− e−ct) (2.92)

where A = kT0V0 and B = NδT ∗
0 , for T0 = λ

ρ+kV0
and T ∗

0 = kT0V0
δ using the

formula of nontrivial steady state. The initial density based on above equation,

however, can not be used for initial guess of V0, since the number of data

existing before the first treatment is smaller than the number of parameters

to be estimated in the equation (2.92).

We, therefore, following the approach of [131], we can estimate primary

viral expansion rate by using the consecutive measurements of HIV-1 RNA

before initiation of the first treatment. Denoting this period of early infection

by T1, the viral loads are assumed to be in an exponential growth phase during

this time and follow the equation VI(t) = VI,0e
r(t−t0), t ∈ T1, where r denotes

a primary HIV replication rate after the patients are newly diagnosed. For a

fixed growth rate r, we also calculate a doubling time given by td(=
ln (2)
r ),

which denotes a time it takes for the amount of viral load to double at a

certain point in time. The estimated values of V0, r and td are listed in Ta-

ble 2.5 for each patients. The initial viral doubling time has a median of 1.4

days with an interquartile range of 0.78 to 2.64 days. We can observe how fast

the viral load increases and how variable this parameter is among individuals

during primary infection. To specify a informative search range for each of

the unknown parameters and initial states conditions, we refer values similar

to those reported or justified in the literature. The parameter indicated in

Table2.6 are taken directly from the literature and principally extracted from

the Callaway–Perelson [22] and Kirschner [77] papers. The superscripts ∗ de-
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Patient
Primary HIV Doubling time Estimated V0

replication rate, r td (copies/ml)

1 0.467 1.49 5.78E-02
2 0.477 1.45 1.96E-01
3 0.638 1.09 2.49E-02
4 0.657 1.06 1.02E+00
5 0.312 2.22 9.64E-01
6 0.263 2.64 7.09E-01
7 0.315 2.20 4.73E-02
8 0.881 0.786 4.72E+00
10 0.562 1.23 3.69E-04
11 0.676 1.02 4.11E-02

Table 2.5: Estimated values for primary infection and initial viral load.

notes parameters the author indicated were estimated from human data and

∗∗ denotes those estimated from macaque data. Based on these values, we set

a range for initial guess in each of parameters.

parameter value Range of initial guess

λ [102, 103][22] [102, 103]
ρ 0.01∗∗[22], 0.02[77] [0.01, 0.5]
k 8.0× 10−7[22], 2.4× 10−5[77] [5.0× 10−7, 5.0× 10−5]
δ 0.7∗[116, 22], 0.24[22] [0.1, 0.9]
N 100∗[22], 2000[62],1200[77] [100, 5000]
c 13[47, 102, 22], 23 [129] [5, 30]
θ ∈ [0, 1] [0.1, 0.9]

ϵ 0.001[22] [0.01, 0.1]
rL 3× 10−3[77], 0.1[135] [5.0× 10−3, 1.0× 10−1]
δL 0.001[22], 0.02[77], 0.004[48] [5.0× 10−3, 5.0× 10−2]

ϵc 0.01 [115] [5.0× 10−3, 1.0× 10−1]
µ [0.03, 0.12][77], 0.078[115], 0.07[112] [0.01, 0.1]
Nc 1000[115] [1000, 5000]

Table 2.6: Reference parameters and range of initial guess for estimation.
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2.2.4 Analysis of parameter sensitivity

Modeling biological phenomena for any dynamic system needs to take into

account the nature of connection between the parameters of the dynamic sys-

tem and the observed solution in the model. This function of these parameters

is reflecting the characteristics of studies phenomena such that death rate of

productively infected lymphocyte or reproduction number of viral load in the

HIV model. Therefore, it is valuable to know about how perturbations in these

parameters present themselves in the solution.

To estimate model parameters and initial states to which the model solu-

tion is most sensitive, we present and analyze the parameter sensitivity results

for Three-component, Latent cell activation, Chronic infection model. Using a

semi-relative sensitive analysis[148] with our subject data, this process yields

sensitivity information as a function of time over the interval of interest. By

quantifying overall measure of the sensitivity of the state solution to each pa-

rameter, then we rank the resulting scalars to determine the most sensitive

parameters to infectious virus state.

Computing sensitivity of model outputs to dynamic parameters both yields

information about identifiability and helps construct the relationship between

estimated parameters and error estimated in an inverse problem process. For

three ordinary differential equation model we discuss previously, semi-relative

sensitivities can be computed explicitly by differentiating the dynamical sys-

tem with respect to model parameters. To describe this methodology, suppose

we wish to determine the relative sensitivity of observed model quantities x to

particular parameters pj , j = 1, 2, . . . ,m. The semi-relative sensitivity of the

model solution to parameter pj is given by

∂x(t;p)

∂pj
. (2.93)
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Note that a parameter pj can be a model parameter or an initial condition.

Denoting the system of model equations by

dx

dt
= f(t, x, ;p), x(0) = x0, (2.94)

we formally differentiate with respect to each pj and interchange the order of

the time and parameter derivatives[12, 53]. In the case of r parameters and

n model state variables, we thus obtain an (n × r)−dimensional system of

differential equations for the sensitivities xp(t;p) = ∂x
∂p(t;p), where p is the

vector of parameters considered:

d

dt

(
∂x

∂p
(t)

)
=

∂f

∂x

∂x

∂p
(t) +

∂f

∂p
(2.95)

with initial condition
∂x

∂p
(0) =

∂x0
∂p

. (2.96)

The initial condition matrix has zero entries since the initial conditions are

independent of the model parameters, except when initial states values are

included in the vector of parameters to be estimated. In the latter case, the

sensitivity initial condition for a model state with respect to its own initial

value is 1. Note that ∂f
∂x is the Jacobian of the ODE system,and ∂f

∂p is simi-

larly a matrix containing the derivatives of the right side with respect to the

parameters considered.

2.3 Numerical result

2.3.1 Sensitivity equations

We solve the system (2.95) and with initial condition(2.96) for xp(t;p)

by coupling it with the original differential equation system to obtain an
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(nr + n)−dimensional system which we again solve numerically with applied

integration method. This process yields sensitivity information as a function of

time over the interval of integration considered. To understand overall which

model dynamic parameters and initial conditions most influence the outputs

of the system we take the L2 norm of these over time. In particular with HIV

model we considered, given treatment protocol, observation times, and pa-

rameters for specific patient k, we compute the influence of each parameter pj

on viral RNA response over time. We examine results for relative sensitivity

for viral RNA to each of the number of subject models and corresponding

initial conditions. In case of three-component HIV model(2.2), the sensitivity

equations are as follow:

∂DT (t)

∂λ
=1− ρ

∂DT (t)

∂λ
− (1− θu(t))k

(
V (t)

∂DT (t)

∂λ
+ T (t)

∂DV (t)

∂λ

)
,
∂T (t)

∂λ

∣∣∣
t=0

= 0,

∂DT (t)

∂ρ
=− T (t)− ρ

∂DT (t)

∂ρ
− (1− θu(t))k

(
V (t)

∂DT (t)

∂ρ
+ T (t)

∂DV (t)

∂ρ

)
,
∂T (t)

∂ρ

∣∣∣
t=0

= 0,

∂DT (t)

∂k
=− (1− θu(t))T (t)V (t)− ρ

∂DT (t)

∂k

− (1− θu(t))k

(
V (t)

∂DT (t)

∂k
+ T (t)

∂DV (t)

∂k

)
,
∂T (t)

∂k

∣∣∣
t=0

= 0,

∂DT (t)

∂θ
=ku(t)TV − ρ

∂DT (t)

∂θ
− (1− θu(t))k

(
V (t)

∂DT (t)

∂θ
+ T (t)

∂DV (t)

∂θ

)
,
∂T (t)

∂θ

∣∣∣
t=0

= 0,

∂DT (t)

∂T0
=− (ρ+ (1− θu(t))kV (t))

∂DT (t)

∂T0
− (1− θu(t))kT (t)

∂DV (t)

∂T0
,
∂T (t)

∂T0

∣∣∣
t=0

= 1,

∂DT (t)

∂pj
=− (ρ+ (1− θu(t))kV (t))

∂DT (t)

∂pj
− (1− θu(t))kT (t)

∂DV (t)

∂pj
,
∂T (t)

∂pj

∣∣∣
t=0

= 0,

for pj = δ,N, c, T ∗
0 , V0.
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∂DT ∗(t)

∂θ
=− u(t)kT (T )V (t) + (1− θu(t))k

(
V (t)

∂T (t)

∂θ
+ T (t)

∂V (t)

∂θ

)
− δ

∂T ∗(t)

∂θ
,
∂T ∗(t)

∂θ

∣∣∣
t=0

= 0,

∂DT ∗(t)

∂k
=(1− θu(t))T (t)V (t) + (1− θu(t))k

(
V (t)

∂T (t)

∂k
+ T (t)

∂V (t)

∂k

)
− δ

∂T ∗(t)

∂k
,
∂T ∗(t)

∂k

∣∣∣
t=0

= 0,

∂DT ∗(t)

∂δ
=− T ∗(t) + (1− θu(t))k

(
V (t)

∂T (t)

∂δ
+ T (t)

∂V (t)

∂δ

)
− δ

∂T ∗(t)

∂δ

,
∂T ∗(t)

∂δ

∣∣∣
t=0

= 0,

∂DT ∗(t)

∂T ∗
0

=(1− θu(t))k

(
V (t)

∂T (t)

∂T ∗
0

+ T (t)
∂V (t)

∂T ∗
0

)
− δ

∂T ∗(t)

∂T ∗
0

,
∂T ∗(t)

∂T ∗
0

∣∣∣
t=0

= 1,

∂DT ∗(t)

∂pj
=(1− θu(t))k

(
V (t)

∂T (t)

∂pj
+ T (t)

∂V (t)

∂pj

)
− δ

∂T ∗(t)

∂pj
,
∂T ∗(t)

∂pj

∣∣∣
t=0

= 0,

for pj = λ, ρ,N, c, T0, V0.

∂DV (t)

∂N
=δT ∗(t) + +Nδ

∂T ∗(t)

∂N
− c

∂V (t)

∂N
,
∂V (t)

∂N

∣∣∣
t=0

= 0,

∂DV (t)

∂δ
=NT ∗(t) +Nδ

∂T ∗(t)

∂δ
− c

∂V (t)

∂δ
,
∂V (t)

∂δ

∣∣∣
t=0

= 0,

∂DV (t)

∂c
=− V (t) +Nδ

∂T ∗(t)

∂c
− c

∂V (t)

∂c
,
∂V (t)

∂c

∣∣∣
t=0

= 0,

∂DV (t)

∂V0
=Nδ

∂T ∗(t)

∂V0
− c

∂V (t)

∂V0
,
∂V (t)

∂V0

∣∣∣
t=0

= 1,

∂DV (t)

∂pj
=Nδ

∂T ∗(t)

∂pj
− c

∂V (t)

∂pj
,
∂V (t)

∂pj

∣∣∣
t=0

= 0, for pj = λ, ρ, k, θ, T0, T
∗
0 .

In case of chronic model(2.54) and latent reservoir model(2.71), we apply

as done for the three component model(2.2) as described above. The ranked

sensitivity of the parameters p for virus states V (t) and other states are given

in Table 2.8. These results are dependent on the relative magnitude of the

parameters considered and therefore vary among the models. This sensitivity

analysis will inform the inverse problem process, as one should not expect to

estimate a parameter to which the model solutions are insensitive. We can

verify that the model output V (t) are most sensitive to the parameters a
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infection rate k and secondarily to the parameters death rate of target cell ρ

or a total drug efficacy θ, and it is consistent with the underlying biological

phenomena.

2.3.2 Numerical simulation

In this section, we provide the numerical solution of the model systems

we considered. We apply plasma HIV-RNA measurement of 9 patients in this

model and estimate patient-specific model parameters. For each of these ini-

tial guesses, LM method is employed to estimate optimal parameters then the

minima of these optimal parameters which generate a smallest χ2-value are

taken as our global optimal values. To evaluate the goodness of fit for each

patient data, we use relative ℓ2 error obtained by
√

χ2/
√∑

k yk
2. In this sec-

tion, we present the numerical results for parameters estimation by applying

on the 9 patients data using the method described in § 2.2.1. We evaluate

the goodness of fit for each patient data by calculating relative ℓ2 error. The

estimated quasi-optimal model parameters p and indicators for goodness of

fit for each patient are listed in 2.7. We also calculate the values of R0 for

each patient using the estimated model parameters and comparison is listed

in Tabal2.11. We check that all patients have R0 greater than 1 so that viral

infection spread as expected, which correspondence to the pattern of measure-

ment. A patient of whom viral dynamics show the highest R0 is patient 2 with

Three component model (2.2), whereas patient 8 has highest R0 both with

chronic (2.54) and latent models (2.71).The patient who has highest average

value of R0 with three models are patient 8(2.22) and 2(1.72). We also observe

that the patients whose risk factor is Homosexual are in the highest level in

the comparison of the infection rate values, Heterosexual patients are in the

middle level, and last patients with IVDU are in the lowest level. Through
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a semi-relative sensitive calculation[148] implemented in Subsection2.3.1, we

attempt to estimate those parameters to which the model solution is most

sensitive. This process yields sensitivity information as a function of time over

the interval of interest. We wish to have some overall measure of the sensitiv-

ity of the model solution(V ) to the parameters and initial states combination,

we take a norm(L2 − norm) in time and then rank the resulting scalars to

determine the most sensitive parameters. We find that these comparisons are

similar using the two or sup norm, and report using the two norm here. For

comparative analysis for sensitivity parameter among the nine patients, we

use the time span long enough to contains the observation period of all pa-

tients. Table 2.8 contain the ranked semi-relative sensitivities and parameter

for viral RNA load and results in the tables are calculated for each patients

considered. With the underwent treatment schedule for each patients in the

reference[139], we find that the model solutions(V ) are most sensitive to the

parameters k, ρ, T0, θ and secondarily to the parameters T ∗
0 and δ for most

patients with the chronic infection model. We note that the model solutions

are highly sensitive to drug efficacy θ. In case of three-component model(2.2),

we find that the model solutions(V ) are sensitive to the parameters k, ρ, θ

and secondarily to the parameters c, δ and T0 for most patients, as listed in

Table2.8. With latent cell activation model(2.71), we have interest in the result

in Table that the model solutions(V ) are sensitive not only to the infection

rate(k),death rate of target lymphocyte population ρ, but also sensitive to

rL and δL which are the activated rate and death rate of latently infected

cell. Considering the suggestion of Perelson et al.[112] that the second phase

in the viral decay profile is due to the activation of latently infected lym-

phocyte, we deduce that the the existence of long-term latent reservoirs in

patients can be significantly influential reason for viral persistence. These
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results are dependent on the relative magnitude of the parameters considered.

This sensitivity analysis will inform the inverse problem process, as one should

not expect to estimate a parameter to which the model solutions are insensi-

tive. From the Table2.8 which estimated sensitivity parameters of latent cell

activation model, we had interested that the virus had a high sensitivity to

parameters associated with decay of latent cells, δL.

Figure 2.1-2.2 show the patients’ measurements of HIV-RNA in a loga-

rithmic scale with simulated viral load trajectory with underwent clinical STI

therapy. As we can see, the numerical results fit the RNA measurement well,

especially it was well matched to the rate of increase or decrease of the viral

load around the peak point when there is viral blip. In the process of the

plasma virus droving to below the detectable level due to initiation of treat-

ment, we observe that the HIV-RNA measurement of the patient 3, 4 and 8

does not continue to decrease exponentially, but once in second phase, the rate

of decrease is rebounding and our model states. The authors of [139] hypoth-

esizes that it is caused by consecutive STI cycles re-seeding reservoirs of virus

within the body. We note that our model is exactly covering the physiolog-

ical phenomena as shown in the numerical results of patient 3, 4 and 11. In

this section, we present some numerical results obtained from the HIV mod-

els we considered. We apply plasma HIV-RNA measurement of 9 patients in

this model and estimate patient-specific model parameters. For each of these

initial guesses, Levenberg–Marquardt method is employed to estimate opti-

mal parameters then the minima of these optimal parameters which generate

a smallest χ2-value are taken as our global optimal values. To evaluate the

goodness of fit for each patient data, we use relative L2 error obtained by√
χ2/
√∑

k yk
2. A parameter sensitivity is computed by taking ℓ2 norm of

states partial derivatives with respect to each parameter in p. In this section,
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we present the numerical results for parameters estimation by applying on the

9 patients data using the method described in § 2.2. We evaluate the good-

ness of fit for each patient data by calculating relative ℓ2 error. The estimated

quasi-optimal model parameters p and indicators for goodness of fit for each

patient are listed in 2.7. Figure 2.1-2.2 show the patients’ measurements

of HIV-RNA in a logarithmic scale with simulated viral load trajectory with

underwent clinical STI therapy. As we can see, the numerical results fit the

RNA measurement well, especially it was well matched to the rate of increase

or decrease of the viral load around the peak point when there is viral blip.

In the process of the plasma virus droving to below the detectable level due

to initiation of treatment, we observe that the HIV-RNA measurement of the

patient 3 and 4 does not continue to decrease exponentially, but once in second

phase, the rate of decrease is rebounding and our model states. The authors of

[139] hypothesizes that it is caused by consecutive STI cycles re-seeding reser-

voirs of virus within the body. We note that our model is exactly covering the

physiological phenomena as shown in the numerical results of patient 3, 4 and

11.

2.4 Conclusion

In Section 2.1, we proved that three component, Chronic infection and

latent reservoir models have bounded and positive solutions under certain pa-

rameters constraint. In Section 2.2, by using Levenberg-Marquardt algorithm

for nonlinear least square method, we estimated patient-specific values for

model parameters and initial states best describe the successive viral rebound

data under STI control. We also found that the infectivity k is the most sen-

sitive in the HIV infection dynamics by performing semi-relative sensitivity

analysis. In Section 2.3, we presented our numerical results for various states
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P
Estimated parameters

λ ρ k δ N c θ

1 4.46E+02 1.85E-01 3.68E-06 9.56E-01 1.93E+03 1.06E+01 4.47E-01
2 2.11E+02 3.48E-01 6.78E-06 4.45E-01 2.62E+03 6.20E+00 5.09E-01
3 1.54E+02 3.12E-01 8.76E-06 7.88E-01 3.00E+03 8.24E+00 4.16E-01
4 4.19E+02 2.41E-01 6.48E-06 9.83E-01 2.09E+03 1.41E+01 4.29E-01
5 3.41E+02 2.25E-01 7.74E-06 7.00E-01 1.83E+03 1.48E+01 3.67E-01
7 3.45E+02 2.28E-01 7.94E-06 1.52E-01 1.97E+03 1.36E+01 5.55E-01
8 1.91E+02 5.93E-01 8.92E-06 6.17E-01 4.39E+03 8.04E+00 4.19E-01
10 3.26E+02 2.49E-01 8.52E-06 7.41E-01 1.83E+03 1.52E+01 3.04E-01
11 3.31E+02 2.49E-01 8.44E-06 8.96E-01 1.85E+03 1.51E+01 3.20E-01

Patient
Estimated parameters

Relative ℓ2 error
T0 T ∗

0 V0

1 2.06E+03 3.57E-04 2.33E-01 1.42E-01
2 1.22E+01 8.19E-02 4.48E+02 1.45E-01
3 8.02E+02 6.99E-04 2.38E-02 1.94E-01
4 2.10E+03 4.46E-02 3.36E+01 1.57E-01
5 1.18E+03 1.26E-02 1.63E+01 1.83E-01
7 3.16E+03 8.83E-02 4.90E+01 1.64E-01
8 1.86E+03 1.40E-03 8.45E+00 2.54E-01
10 2.95E+03 3.77E-05 3.00E-02 1.51E-01
11 1.41E+01 3.48E+00 4.02E+04 1.41E-01

Table 2.7: Estimated parameters and goodness of fit for the three component
model.
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Patient
Sensitive parameter pi (Three component model)

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6

1 k ρ θ δ c T0

2 k ρ c θ δ p1
3 k ρ θ c δ T0

4 k ρ θ c δ T0

5 k ρ θ c δ T0

7 k ρ θ δ c T0

8 k ρ θ c δ T0

10 k ρ θ T0 δ c
11 k ρ θ c δ p1

Patient
Sensitive parameter pi (Chronic infection model)

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6

1 k ρ θ ϵc µ δ
2 k θ ρ µ ϵc δ
3 k θ ρ ϵc µ δ
4 k ρ θ ϵc µ δ
5 k ρ c θ µ ϵc
7 k ρ θ µ ϵc c
8 k θ ρ ϵc µ δ
10 k ρ θ c ϵc δ
11 k θ ρ µ ϵc δ

Patient
Sensitive parameter pi (Latent cell activation model)

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6

1 k ρ δL rL ϵ δ
2 k δL ρ rL θ δ
3 k ρ δL rL ϵ δ
4 k rL δL c ρ ϵ
5 k ρ δL rL ϵ δ
7 k rL ρ δL ϵ δ
8 k rL ρ δL θ ϵ
10 k ρ δL rL c ϵ
11 k ρ δL rL ϵ δ

Table 2.8: Ranked semi-relative sensitivity of the model state V (t) to param-
eters (p) estimated from each patient with three different models.

81



Patient
Estimated parameters

λ ρ k δ N c

1 4.49E+02 1.93E-01 3.55E-06 9.39E-01 1.94E+03 1.06E+01
2 2.21E+02 3.64E-01 6.67E-06 4.44E-01 2.73E+03 5.86E+00
3 1.70E+02 3.50E-01 7.76E-06 9.67E-01 3.31E+03 7.52E+00
4 4.17E+02 2.47E-01 6.34E-06 9.95E-01 2.08E+03 1.42E+01
5 3.61E+02 2.48E-01 6.97E-06 9.91E-01 1.93E+03 1.44E+01
7 3.49E+02 2.66E-01 6.80E-06 9.37E-01 1.98E+03 1.38E+01
8 2.26E+02 6.57E-01 7.93E-06 9.99E-01 5.13E+03 6.60E+00
10 3.55E+02 2.53E-01 8.10E-06 8.80E-01 1.98E+03 1.41E+01
11 2.49E+02 2.67E-01 6.03E-06 7.20E-01 2.46E+03 8.08E+00

θ ϵc µ Nc

1 6.71E-01 2.59E-02 7.15E-02 1.85E+03
2 6.59E-01 7.19E-02 5.99E-02 2.72E+03
3 7.88E-01 6.73E-02 6.32E-02 3.11E+03
4 4.96E-01 1.38E-02 2.63E-02 1.26E+03
5 5.70E-01 4.66E-02 3.66E-02 1.49E+03
7 6.92E-01 1.48E-02 1.81E-02 9.55E+02
8 7.22E-01 1.42E-02 5.50E-02 5.10E+03
10 5.80E-01 1.97E-02 8.25E-02 1.50E+03
11 8.77E-01 9.46E-02 6.79E-02 3.31E+03

Patient
Estimated parameters

Relative ℓ2 error
T0 T ∗

0 V0 T ∗
c,0

1 2.32E+03 2.85E-02 3.33E+00 9.97E-03 1.30E-01
2 6.05E+02 2.32E-02 2.75E+00 1.33E-02 1.30E-01
3 4.85E+02 9.49E-03 2.60E+00 1.04E-02 1.65E-01
4 1.68E+03 3.42E-02 3.23E+00 1.81E-02 1.39E-01
5 1.42E+03 1.14E-02 1.15E+00 1.18E-02 9.82E-02
7 1.30E+03 2.87E-02 3.06E+00 2.23E-02 1.88E-01
8 3.44E+02 6.82E-03 2.53E+00 1.79E-03 1.81E-01
10 1.40E+03 3.60E-02 3.19E+00 8.69E-03 3.37E-01
11 2.90E+02 7.13E-02 1.54E+02 3.77E-02 1.01E-01

Table 2.9: Estimated parameters and goodness of fit for the chronic infection
model.
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Patient
Estimated parameters

λ ρ k δ N c

1 4.62E+02 1.84E-01 3.67E-06 7.38E-01 1.98E+03 1.02E+01
2 2.25E+02 3.50E-01 7.15E-06 5.05E-01 2.73E+03 6.04E+00
3 1.69E+02 3.36E-01 8.09E-06 9.52E-01 3.30E+03 7.70E+00
4 4.35E+02 2.36E-01 6.37E-06 9.65E-01 2.12E+03 1.41E+01
5 3.64E+02 2.46E-01 7.00E-06 9.97E-01 1.94E+03 1.43E+01
7 3.53E+02 2.56E-01 6.99E-06 9.58E-01 1.89E+03 1.39E+01
8 4.38E+02 1.24E-01 7.68E-06 7.67E-01 2.06E+03 1.43E+01
10 3.60E+02 2.46E-01 7.64E-06 9.19E-01 1.82E+03 1.39E+01
11 2.55E+02 2.62E-01 6.14E-06 7.66E-01 2.52E+03 7.93E+00

θ rL ϵ δL
1 7.28E-01 5.12E-02 4.03E-02 4.05E-02
2 7.08E-01 7.04E-02 1.99E-01 1.28E-02
3 9.87E-01 6.05E-02 8.72E-02 7.86E-03
4 4.88E-01 9.05E-05 3.44E-02 8.29E-03
5 6.40E-01 3.15E-02 6.12E-02 1.08E-02
7 6.42E-01 2.60E-03 3.69E-02 1.66E-02
8 6.90E-01 5.27E-04 2.34E-01 3.63E-02
10 5.32E-01 4.13E-02 4.50E-02 2.01E-02
11 8.13E-01 7.58E-02 1.84E-01 1.31E-02

Patient
Estimated parameters

Relative ℓ2 error
T0 T ∗

0 V0 L0

1 2.72E+03 1.66E-04 1.64E-01 1.68E-03 9.67E-02
2 6.37E+02 7.00E-03 1.82E+00 9.65E-03 1.27E-01
3 5.16E+02 3.76E-04 2.38E-01 1.56E-03 1.44E-01
4 1.84E+03 1.01E-01 1.10E+01 1.90E-04 1.24E-01
5 1.45E+03 1.14E-02 2.09E+00 2.14E-02 9.36E-02
7 1.54E+03 1.19E-03 1.21E+00 9.56E-02 1.17E-01
8 2.02E+03 9.16E-02 1.01E+01 5.48E+00 1.58E-01
10 1.82E+03 2.27E-03 3.93E-01 9.75E-07 2.04E-01
11 1.04E+03 7.48E-04 6.04E+00 1.18E-03 1.04E-01

Table 2.10: Estimated parameters and goodness of fit for the latent cell acti-
vation model (Np = 14).
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Patient Three-component(2.2) Chronic(2.54) Latent(2.71)

1 1.61 1.47 1.71
2 1.75 1.75 1.67
3 1.58 1.55 1.59
4 1.66 1.54 1.70
5 1.45 1.30 1.31
7 1.74 1.25 1.27
8 1.57 2.09 3.00
10 1.34 1.56 1.40
11 1.37 1.56 1.55

Table 2.11: Comparison on reproductive number(R0) for three models.

with estimated parameters for each of the models. We conform that the patient

data showing successive viral rebound during interruption of HAART can be

better described by the HIV models which include the lymphocyte subpopula-

tions providing residual virus replication. Our results support a clinical finding

that latent infection of CD4 T cells provides a mechanism.
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(a) Patient 1 (b) Patient 2

(c) Patient 3 (d) Patient 4

Figure 2.1: Plot of clinical data and numerical results of each dynamics model.

85



(a) Patient 5 (b) Patient 7

(c) Patient 8 (d) Patient 10

(e) Patient 11

Figure 2.2: Plot of clinical data and numerical results of each dynamics model.
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Chapter 3

A fractional-order model for HIV

infection

Fractional differential equations provide an excellent mathematical tool for

the description of memory and hereditary properties of various materials and

processes. These operators are non-local which is the most significant advan-

tage in applications. The standard derivative of a function includes information

about the value of the function at certain earlier time points only, while the

fractional derivative encapsulates information about the function’s behaviour

from the earliest point in time up to the present. This advantages of fractional

differential equations become apparent in the description of rheological prop-

erties of the blood. Considering several researches finding relationship of blood

cell abnormalities and changes in rheological properties to HIV infection, we

introduce a fractional derivative of order 0 < α < 1 to models of HIV infection

dynamics in lymphocyte population.
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3.1 The fractional calculus

The fractional calculus is a name for the theory of integrals and derivatives

of arbitrary order, which unify and generalize the notions of integer-order

differentiation and n−fold integration. Considering the infinite sequence of

n−fold integrals and n−fold derivatives:

. . . ,

∫ t

t0

dτ2

∫ τ2

t0

f(τ1)dτ1,

∫ t

t0

f(τ1)dτ1, f(t), ,
df(t)

dt
,

d2f(t)

dt2
, . . .(3.1)

Newton and Leibniz developed the notions of differentiation and integration

of integer order. The symbol

dny

dxn
(3.2)

invented by Leibniz denotes the nth derivative of a function y with respect to

x. In 1819, the Lacroix [39] firstly mentioned a derivative of arbitrary order in

his text. He developed nth derivative of y = xm, for a positive integer m,

dny

dxn
=

m!

(m− n)!
xm−n, (3.3)

where n(≤ m) is an integer. By using the gamma function defined by

Γ(x) =

∫ ∞

0
tx−1e−tdt, (3.4)

he obtain a formula for the fractional derivative as follow:

dαy

dxα
=

Γ(β + 1)

Γ(β − α+ 1)
xβ−α, (3.5)
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In 1822, Fourier [52] obtained an integral representations for f and its deriva-

tives:

f(x) =
1

2π

∫ ∞

−∞
f(η)dη

∫ ∞

−∞
cos(p(x− η)dp, (3.6)

with

dn

dxn
f(x) =

1

2π

∫ ∞

−∞
f(η)dη

∫ ∞

−∞
pn cos(p(x− η) +

1

2
nπ)dp, (3.7)

for an integer n. The first application of fractional operations was made by

Abel in 1823 who applied the fractional calculus in the solution of an integral

equation based on the tautochronous problem. The solution is originated from

the fact that the derivative of a constant function is not always equal to zero.

After that, many famous mathematicians have devoted their energies to

fractional calculus over the years, and some definitions of fractional deriva-

tive have been contributed [57, 100, 123]. The reason of using fractional order

differential equations is that they are naturally related to systems with mem-

ory which exists in most biological systems. Also they are closely related to

fractals which are abundant in biological systems. The definition of fractional

derivative involves an integration which is non local operator (as it is defined

on an interval) so fractional derivative is a non local operator. In other word,

calculating time fractional derivative of a function f(t) at some time t = t1

requires all the previous history, i.e. all f(t) from t = 0 to t = t1 The results

derived of the fractional systems are of a more general nature. However, the

fundamental solutions of these equations still exhibit useful scaling properties

that make them attractive for applications. We would like to put your atten-

tion that time fractional derivatives change also the solutions we usually get in

standard system. The concept of fractional or non-integer order derivation and
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integration can be traced back to the genesis of integer order calculus itself.

Most of the mathematical theory applicable to the study of noninteger order

calculus was developed through the end of 19th century. However it is in the

past hundred years that the most intriguing leaps in engineering and scien-

tific application have been found. The calculation technique has in some cases

had to change to meet the requirement of physical reality. The derivatives are

understood in the Caputo sense. The general response expression contains a

parameter describing the order of the fractional derivative that can be varied

to obtain various responses.

3.2 Motivation

Mathematical models have been proved valuable in understanding the dy-

namics of HIV infection. Perelson [114, 115], Kirschner and De Boer [76] pro-

posed an ODE model of cell-free viral spread of HIV in a well-mixed compart-

ment such as the bloodstream. These models has been important in the field of

mathematical modelling of HIV infection, and many other models have been

proposed, which take the model of them as their inspiration. However, the

large amount of work done on modelling the HIV infection has been restricted

to integer-order ordinary differential equations [31, 107].

The theory of fractional differential operators generalizes the notion of

standard operators of integer orders to fractional orders. Such differential op-

erators appear in modeling diverse physical problems involving e.g., porous

or fractured media [16], viscoelastic materials [94], viscous fluid flows subject

to wall-friction effects[153], bioengineering applications [93], and anomalous

transport [98]. Fractional derivatives are a very natural and common tool in

the classical models of viscoelasticity. Recently, fractional calculus has also

been widely applied in many fields([3, 4, 6, 28, 44, 60, 72, 83, 123]) of biology
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and many mathematicians and applied researched have tried to model real pro-

cesses using the fractional calculus. Machado and Cunha analyzed the fraction-

alorder dynamics in botanical electrical impedances [66, 67]. Petrovic, Spasic

and Atanackovic developed a fractional-order mathematical model of a human

root dentin [117]. In biology, it has been deduced that the membranes of cells of

biological organism have fractional-order electrical conductance [28] and then

are classified in groups of non-integer order models. Fractional derivatives em-

body essential features of cell rheological behavior and have enjoyed greatest

success in the field of rheology [38]. Also, it has been shown that modelling the

behavior of brainstem vestibule-oculumotor neurons by fractional ordinary dif-

ferential equations (FODE) has more advantages than classical integer-order

modelling [6]. FODE are naturally related to systems with memory which ex-

ists in most biological systems. Also, they are closely related to fractals, which

are abundant in biological systems [4]. Some researchers also found that frac-

tional ordinary differential equations are naturally related to systems with

memory which exists in most biological systems. It has been deduced that the

membrane of cells or biological organism have fractional-order electrical con-

ductance [60]. With this reason, some mathematical models which describe

cells behavior are classified into groups of non-integer-order models. In the

field of rheology, fractional-order derivatives embody essential features of cell

rheological behavior and have enjoyed greatest success [123]. Fractional-order

equations are also closely related to fractals, which are abundant in biologi-

cal systems. Erythrocytes in static human blood form loose aggregates with

distinctive morphology similar to stacks of coins. This aggregation is often

called rouleaux formation and is caused by various macromolecules present in

the plasma, especially fibrinogen. Red cell aggregation affects low shear blood

viscosity and microvascular flow dynamics. Rampling et al.,[96] also found
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that RBC aggregation is particularly apparent under conditions of low flow,

namely, low shear stress. The rouleaux formation can dramatically decrease

blood flow velocity leading to compromised tissue perfusion and oxygen deliv-

ery leading eventually to organ ischemia.[127] Some researchers have studied

the relationship of blood cell abnormalities and changes in rheological prop-

erties to HIV infection [21]. Many changes in the blood component properties

such as deformability, aggregability, viscoelasticity are investigated during the

asymptomatic period in the HIV infected patients[61, 103]. Recent studies of

Gallegos et al. [55] found that red blood cell(RBC) deformability significantly

decreased in HIV infected individuals, which suggested that increased aggre-

gation and decreased erythrocyte deformability are features of HIV disease but

unrelated to the severity of the immunodeficiency. Some influencing factors on

the dynamics of blood flow have been founded in HIV infection [46, 75]. The

first one is an anatomic abnormality of the microvasculature in HIV disease.

The hematological factors, which contain increased erythrocyte aggregation,

increased leukocyte rigidity and decreased erythrocyte deformability, are also

detected in HIV-infected individuals. These factors are directly associated with

increased plasma fibrinogen, which is a determinant factor in the HIV infec-

tion. Therefore, it has been deduced that an increased RBC aggregation has

been associated with the severity of HIV disease.

Therefore, one of the challenges in HIV research has been to unravel the

multifactorial structure of the disease, which leads to changes in hemorheo-

logical parameters[10]. The existence of hemorheological parameters in HIV

system and fractional derivatives embody essential features of cell rheologi-

cal behavior. There are a few research which introduce fractional-order into

the traditional HIV models ([7, 36, 37, 56]), however, none of them carefully

controlled the time unit with respect to differential operator and did data as-
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similation with patient measurement. In this paper, we propose a system of

fractional-order differential equations for modelling HIV infection of lympho-

cyte population in plasma. We introduce a model that contains fractional-order

differential equations of order 0 < α < 1 into Latent reservoir model. In section

3.3, we give derivation and analysis of the fractional-order system in HIV in-

fection model. Section is devoted for the description for numerical method for

solving FODE, including how to determine the optimal initial guess for the

new model parameters. The model parameters including optimal fractional

order are estimated for 10 patient measurements and comparison on integer-

order model are presented in . From these results, we not only confirm that

our analysis is correct, but verify that a parameter representing the rheological

behavior in plasma is significantly correlated with critical parameter relating

with lymphocyte population.

3.3 Model derivation

We first give the definition of fractional-order integration and fractional-

order differentiation [123]. There are several approaches to the generalization

of the notion of differentiation to fractional orders e.g. Riemann-Liouville,

Caputo and Generalized Functions approach. For the concept of fractional

derivative, we will adopt Caputo’s definition which has the advantage of deal-

ing with initial value problem in proper. Recall Euler’s Gamma function

(also called Euler’s integral of the second kind) as follows:

Γ(x) =

∫ ∞

0
tx−1e−tdt. (3.8)

We then begin by clarifying the definitions of fractional–order integration and

differentiation; see, for instance, [57]. Denote by R+ and Rn
+ the set of strictly
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positive real numbers and set of points with positive components in Rn, re-

spectively.

Definition 3.3.1. Let α ∈ R+. A function Jα
a f(t), defined by

Jα
a f(t) =

1

Γ(α)

∫ t

a
(t− u)α−1f(u)du, (3.9)

is called the Riemann–Liouville fractional integral of order α of a function

f : R+ → Rn
+.

Definition 3.3.2. Let α ∈ R+ and m = ⌈α⌉. The Caputo fractional derivative

of order α of a continuous function f : R+ → Rn
+ is given by

CD
α
a f(t) = Jm−α

a Dmf(t), (3.10)

where ⌈.⌉ is the ceiling function satisfying ⌈x⌉ = min{z ∈ Z : z ≥ x}, and

D = d
dt .

The Laplace transform of Caputo fractional derivative (3.10) is given as

follows:

L(CDα
a f(t)) =

∫ ∞

0
CD

α
a f(t)e

−stdt = sαL(f(t))− sα−1f(0), 0 < α ≤ 1.

(3.11)

Now we introduce fractional-order differentiation of order α ∈ (0, 1) into the

ODE model of latent cell activation, proposed by Rong et al.[134]. The new

system is described by the following set of equations:

Dα
0 T (t) = τ1−α(λ− (1− θu(t))kV (t)T (t))− ραT (t), T (0) = T0

Dα
0 T

∗(t) = τ1−α(1− ϵ)(1− θu(t))kT (t)V (t)− δαT ∗(t) + rαLL(t), T ∗(0) = T ∗
0

Dα
0 L(t) = τ1−αϵ(1− θu(t))kT (t)V (t)− (δαL + rαL)L(t), L(0) = L0

Dα
0 V (t) = NδαT ∗(t)− cαV (t), V (0) = V0,

(3.12)
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where the parameters are equal to the one listed in the previous model in (2.3)

except τ(day) is time constant required to preserve units. Here, α ∈ (0, 1) is

restricted such that fractional derivative can be approximately described the

rate of change in cell counts or viral copies.

Remark 3.3.3. u(t) is an input variable while T (t), T ∗(t), L(t) and V (t) are

output variables. In this system, these output variables affect each other phys-

iologically which behaves in a nonlinear fashion, and u(t) is considered as

bounded and piecewise C1 function.

Remark 3.3.4. In (3.12), we can consider that the parameter τ1−α takes a

role of balancing the cell reflects the effect of the rheological behavior proper-

ties ,especially RBC aggregation, resulting in the dynamics of blood flow of the

HIV infected individuals. This means that τ1−α can be considered as a param-

eter that describes the effect of the rheological behavior in the lymphocyte cell

production from thymus. This means that increase in RBC aggregation and

decrease in deformability lead to low flow rate of blood, then the cell produc-

tion in thymus(λ) can be decrease. Then the more the need of the active rate

(τ1−α) to maintain the balance of it. The greater the effect on the flow of the

bloodstream, the less susceptibility to increase or decrease in lymphocyte cell

and virus population.

For the notational simplification, denote C1(R+,R4) by the Banach space

of continuously differentiable functions mapping R+ into R4,

x(t) = (T (t), T ∗(t), L(t), V (t))T ∈ C1(R+,R4). Then (3.12) can be re-written

as

CD
α
0 x(t) = f(t,x;p), x(0) = (T0, T

∗
0 , L0, V0)

T (3.13)
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where we denote the right hand side in (3.13) by

f(t,x;p) =


−τ1−α(1− θu(t))kx1(t)x4(t)− ραx1(t)

τ1−α(1− ϵ)(1− θu(t))kx1(t)x4(t)− δαx2(t) + rαLx3(t)

τ1−αϵ(1− θu(t))kx1(t)x4(t)− (δαL + rαL)x3(t)

Nδαx2(t)− cαx4(t)

+


τ1−αλ

0

0

0

 , (3.14)

where p = {λ, ρ, k, δ,N, c, θ, ϵ, rL, δL, τ
1−α, α} is a set of parameters contained.

Note that the system is called the off–treatment system of (3.34) when the

input u(t) = 0. Throughout this section, we denote the ℓ2 norm by || · ||, and

eigenvalues of matrix A by spec(A).

To discuss the non–negativity and boundedness of the solution of (3.12),

we need the following preliminaries.

Theorem 3.3.5. (Theorem 2.1., Remark 2.3., and Theorem 3.1. in [85]) Con-

sider the following initial value problem for Caputo fractional differential equa-

tions CD
α
t0x = f(t,x), 0 < α ≤ 1,

x(t0) = x0,

(3.15)

where the function f(t,x) : R × Rd → Rd is a vector field and the dimension

d ≥ 1. Choose any a, b ∈ R+, and let

T = [t0 − a, t0 + a],

B = {x ∈ Rd| ||x− x0|| ≤ b},

D = {(t,x) ∈ R× Rd | t ∈ T ,x ∈ B}.

Assume that the function f(t,x) : D → Rd satisfies the following conditions:

1. f(t,x) is Lebesgue measurable with respect to t on T ;

2. f(t,x) is continuous with respect to x on B;
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3. there exists a bounded real–valued function M(t) such that

||f(t,x)|| ≤ M(t),

for almost every t ∈ T and all x ∈ B.

Then, there at least exists a solution of the initial value problem (3.15) on the

interval [t0 − h, t0 + h] for some positive number h satisfying

x(t) = x0 + Jα
t0 (f(t,x)) .

Moreover, if the function f(t,x) satisfies the above first two conditions 1 and

2 in the global space R× Rd and

||f(t,x)|| ≤ λ||x||+ w, (3.16)

for almost every t ∈ R and all x ∈ Rd where λ,w are two positive constants,

then, there exists a function x(t) on (−∞,∞) satisfying the initial condition

in (3.15). If ∇xf(t,x) is further assumed to be continuous with respect to x,

this gives the uniqueness of the solution x(t) in (3.15).

Lemma 3.3.6. Generalized Mean value Theorem in [111] Let 0 < α ≤ 1.

Suppose that f ∈ C[a, b] and CD
α
a f ∈ C(a, b]. Then, for all t ∈ (a, b], there

exist ξ ∈ (a, t) such that

f(t) = f(a) +
1

Γ(α)
(CD

α
a f)(ξ)(t− a)α. (3.17)

Corollary 3.3.7. (Corollary 1. in [37])

Let 0 < α ≤ 1. Suppose that f ∈ C[a, b] and CD
α
a f ∈ C(a, b]. If CD

α
a f(t) ≥

0, ∀t ∈ (a, b), then f is a non–decreasing function. If CD
α
a f(t) ≤ 0, ∀t ∈ (a, b),
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then f is a non–increasing function.

Lemma 3.3.8. (Fractional Comparison Principle in [84])

Let x(0) = y(0) and CD
α
0 x(t) ≤ CD

α
0 y(t), where 0 < α ≤ 1. Then x(t) ≤

y(t).

Definition 3.3.9. For α > 0, the Mittag–Leffler function Eα is defined by

Eα(z) :=

∞∑
j=0

zj

Γ(jα+ 1)
. (3.18)

Moreover, it is an entire function if α > 0.

The Mittag–Leffler function with two parameters defined by

Eα,β(z) :=
∞∑
j=0

zj

Γ(jα+ β)
(3.19)

is an entire function whenever α > 0, β > 0 and z ∈ C. The Laplace transform

of the Mittag–Leffler function with two parameters[123] is given by

L(tβ−1Eα,β(−λtα)) =
sα−β

sα + λ
, Re(s) > |λ|1/α. (3.20)

The following lemmas are useful in the proof of the non–negativity, bounded-

ness, and stability of the solution (3.13).

Lemma 3.3.10. (Page 210 in [1]) Suppose that 0 < α < 2, β ∈ R, and

µ ∈
(
απ
2 ,min{π, απ}

)
. Then for an arbitrary integer N ≥ 1, the following

asymptotic expansion holds:

Eα,β(z) = −
N∑
j=1

1

Γ(−jα+ β)zj
+O

(
1

zN+1

)
, as |z| → ∞, µ ≤ |arg(z)| ≤ π.

(3.21)
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From the above lemma the following result follows:

Lemma 3.3.11. (Theorem 1.6. in [123]) Suppose that 0 < α < 2, β ∈ R, and

µ ∈
(
απ
2 ,min{π, απ}

)
. Then there exists M > 0 such that

|Eα,β(z)| ≤
M

1 + |z|
, µ ≤ |arg(z)| ≤ π.

Lemma 3.3.12. (Corollary 1. in [157]) Suppose that A ∈ Cn×n, 0 < α < 2,

β ∈ R, and µ ∈
(
απ
2 ,min{π, απ}

)
. Then there exists C > 0 such that

||Eα,β(A)|| ≤ C

1 + ||A||
,

where µ ≤ |arg(spec(A))| ≤ π.

By the help of Lemmas, we now prove the existence of the solution in

(3.13).

Proposition 3.3.13. There is a solution x(t) in (3.13) that remains in R4
+

and bounded.

Proof. Note that f(t,x;p) in (3.13) satisfies clearly the conditions 1 and 2 of

Theorem 3.3.5 in R+ ∪ {0} × R4, we now show that it satisfies the condition

(3.16). Due to the boundedness of |u(t)| ≤ 1, CD
α
0 x1(t) satisfies

||CDα
0 x1(t)|| ≤ τ1−αλ− ραx1(t)

≤ ρα||x1(t)||+ τ1−αλ.
(3.22)

Then, Theorem 3.3.5 gives the existence and uniqueness of solutions x1(t) on

t ∈ (0,∞). In addition, we have

CD
α
0 x1(t) ≤ −ραx1(t) + τ1−αλ

= −ρα
(
x1(t)−

τ1−αλ

ρα

)
(3.23)
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Let K1(t) = x1(t)− τ1−αλ
ρα . Then, using the the linearity of Caputo derivative,

(3.30) can be rewritten as follows:

CD
α
0K1(t) ≤ −ραK1(t).

By applying Lemma 3.3.8, we have

K1(t) ≤ K1(0)Eα,1(−ραtα), ∀t > 0, (3.24)

and thus we have lim sup
t→∞

x1(t) ≤ τ1−αλ
ρα by Lemma 3.3.11, and it follows that

there exists a constant R1 > 0 such that ||x1(t)|| ≤ R1. The non–negativity of

the solution x1(t) can be guaranteed from

CD
α
0 x1(t) |x1(t)=0= τ1−αλ ≥ 0, (3.25)

and Corollary 3.3.7. Thus the solution x1(t) remains in R+.

Secondly, we let xℓ(t) = ϵx1(t) + x3(t). Then, by using the non-negativity

and boundedness of the solution x1(t), CD
α
0 xℓ(t) satisfies

||CDα
0 xℓ(t)|| ≤ ϵ(τ1−αλ− ραx1(t))− (rαL + δαL)x3(t)

≤ Mα
1 ||xℓ(t)||+ τ1−αϵλ,

(3.26)

where M1 = max{ρ, rL, δL}. Then, Theorem 3.3.5 gives the existence and

uniqueness of solutions x3(t) on (0,∞).

In addition, we have

CD
α
0 xℓ(t) ≤ −Mα

1 xℓ(t) + τ1−αϵλ

= −Mα
1

(
xℓ(t)−

τ1−αϵλ

Mα
1

)
(3.27)
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Let K2(t) = xℓ(t) − τ1−αϵλ
Mα

1
. Then, using the linearity of Caputo derivative,

(3.30) can be rewritten as follows:

CD
α
0K2(t) ≤ −Mα

1 K2(t).

By applying Lemma 3.3.8, we have

K2(t) ≤ K2(0)Eα,1(−Mα
1 t

α), ∀t > 0, (3.28)

and thus we have lim sup
t→∞

xℓ(t) ≤ τ1−αϵλ
Mα

1
by Lemma 3.3.11, and it follows that

there exists a constant R2 > 0 such that ||x3(t)|| ≤ R2. We also find that the

solution x3(t) remains in R+. from CD
α
0 x3(t) |x3(t)=0= 0 and Corollary 3.3.7.

In the same way done for x2(t), we can show that the existence of the

soluton x2(t) by considering xr(t) = (1− ϵ)x1(t)+x2(t). Then we can see that

CD
α
0 xr(t) satisfying

||CDα
0 xr(t)|| ≤ Mα

2 ||xr(t)||+ τ1−α(1− ϵ)λ, (3.29)

where M2 = max{ρ, δ} by using the help of x1 and x3(t). Then,the existence

and uniqueness of solutions x2(t) on (0,∞) can be proved from Theorem 3.3.5.

In addition, we have

CD
α
0 xr(t) ≤ −Mα

2 xr(t) + τ1−α(1− ϵ)λ

= −Mα
2

(
xr(t)−

τ1−α(1− ϵ)λ

Mα
2

)
(3.30)
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BY using the the linearity of Caputo derivative,and Lemma 3.3.8, we have

K3(t) ≤ K3(0)Eα,1(−Mα
2 t

α), ∀t > 0, (3.31)

,whereK3(t) = xr(t)− τ1−α(1−ϵ)λ
Mα

2
, and thus we have lim sup

t→∞
xr(t) ≤ τ1−α(1−ϵ)λ

Mα
2

by Lemma 3.3.11, and it follows that there exists a constant R3 > 0 such that

||x2(t)|| ≤ R3. The solution x2(t) remains in R+ due to the CD
α
0 x2(t) |x2(t)=0=

0 and Corollary 3.3.7.

From (3.12), CD
α
0 x4(t) in (3.13) satisfies

||CDα
0 x4(t)|| ≤ cα||x4(t)||+Nδα||x2(t)||

≤ cα||x4(t)||+NδαR3, (3.32)

which gives the sufficient condition for global existence and uniqueness of

solution x4(t) by (3.16) in Theorem 3.3.5. Hence, x4(t) has a solution on

(0,∞).

Then the existing solution x(t) for (3.13) has the form of

x(t) = x(0) + Jα
0 (f(t,x;p)) . (3.33)

The non–negativity of all solution x(t) can be guaranteed from

CD
α
0 x(t) |x(t)=0=


τ1−αλ

0

0

0

 ≥


0

0

0

0

 , (3.34)
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and Corollary 3.3.7. Thus the solution remains in R4
+.

From (3.12), we have

CD
α
0 x4(t) ≤ −cαx4(t) +NδαR3. (3.35)

Let K4(t) = x4(t)−NR3

(
δ
c

)α
, Then (3.35) gives

CD
α
0K4(t) ≤ −cαK4(t).

and we have

K4(t) ≤ K4(0)Eα,1(−cαtα) ∀t > 0. (3.36)

from Lemma 3.3.8. Therefore, we have lim sup
t→∞

x4(t) ≤ NR3

(
δ
c

)α
by Lemma

3.3.11.

3.4 Numerical methods

There are a number of numerical and analytical methods developed for

various types of FDEs, for example, variational iterative method, fractional

differential transform method, a domain decomposition method, homotopy

perturbation method and power series method. In [34], Kai Diethelm, Neville

J. Ford and Alan D. Freed introduced Adams-type predictor-corrector method

for solving both linear and nonlinear fractional differential equations. In the

numerical algorithm the authors converted the considered equations into the

Volterra integral equation and then approximated the integral by using a piece-

wise linear interpolation polynomial. It is used for both linear and nonlin-

ear problems, and can be extended to multi-term fractional-order differential

equations. We use this method for numerical solution of the nonlinear system

(3.12) by replacing original system into systems of equivalent Volterra integral
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equations. We again use the nonlinear least square method implemented in

2.2 to estimated optimal values for model parameters and initial states, and

particulary optimal fractional order α in this section. In 3.4.1, we introduce

briefly the fractional Adams-type predictor-corrector method as an integration

method for fractional-order differential equation. In order to use the nonlin-

ear weighted least–squares method and the Levenberg–Marquardt algorithm,

sensitivity equations are discussed in 3.4.2.

3.4.1 The fractional Adams method

The fractional Adams-type predictor-corrector method[34] is an effective

technique for solving fractional-order differential equations. Consider the fol-

lowing fractional-order differential equation

Dα
t0(t) = f(t, x(t)), x(t0) = x0. (3.37)

Assume that the function f is continuous and satisfies a Lipschitz condition

with respect to its second argument with Lipschitz constant L on a suitable

set. Then there exists a unique solution x of the initial value problem (3.37) on

some interval [t0, tf ] by the existence and uniqueness theorem for the Caputo’s

type of fractional-order differential equation.

It is well-known that (3.37) is equivalent to the Volterra integral equation

can be interpreted as a Volterra integral equation[34]

x(t) =

⌈α⌉−1∑
k=0

x
(k)
0

tk

k!
+

1

Γ(α)

∫ t

0
(t− u)α−1f(u, x(u))du (3.38)

in the sense that a continuous function is a solution of the initial value problem

(3.37) if and only if it is a solution of (3.38). In case of our model (3.12), we

have ⌈α⌉ = 1.
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Setting h = (tf − t0)/N, tj = jh, j = 0, 1, . . . , N , where N is a positive

integer. The integral of nonlinear term in (3.38) can be approximated by the

following linear interpolation:

∫ tk+1

t0

(t− u)α−1f(u, x(u))du ≈
∫ tk+1

t0

(t− u)α−1f̃k+1(u, x(u))du, (3.39)

where f̃k+1 is the piecewise linear interpolant for f with equispaced nodes and

knots chosen at tj , j = 0, 1, . . . , k + 1. An explicit calculation yields that we

can write the integral on the right-hand side of (3.39) as

∫ tk+1

t0

(t− u)α−1f̃k+1(u, x(u))du =
k+1∑
j=0

aj,k+1f(tj , x(tj)), (3.40)

where

aj,k+1 =
hα

α(α+ 1)
×


kα+1 − (k − α)(k + 1)α, j = 0

(k − j + 2)α+1 + (k − j)α+1 − 2(k − j + 1)α+1, 1 ≤ j ≤ k,

1, j = k + 1.

(3.41)

Using the above discretization, the integrand in (3.38) can be approximated

as follows:

x(tk+1) ≈ xk+1

= x0 +
1

Γ(α)

 k∑
j=0

aj,k+1f(tj , x(tj)) + ak+1,k+1f(tk+1, x
P
k+1)

 ,

(3.42)

where each of xk+1 and xPk+1 is an approximation and a predictor at time

tk+1. respectively. The predictor xPk+1 is determined by replacing the integral
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on the right-hand side of (3.38) following the product rectangle rule, i.e.,

∫ tk+1

t0

(t− u)α−1f(u, x(u))du ≈
k∑

j=0

bj,k+1f(tj , x(tj)), (3.43)

where now

bj,k+1 =
hα

α
((k + 1− j)α − (k − j)α) . (3.44)

Therefore, the predictor xPk+1 is obtained as follows:

xPk+1 = x0 +
1

Γ(α)

k∑
j=0

bj,k+1f(tj , x(tj)). (3.45)

We see that we first have to calculate the predictor xPk+1 according to (3.45),

then we evaluate f(tk+1, x
P
k+1), use this to determine the corrector xk+1 by

means of (3.42), and finally evaluate f(tk+1, xk+1) which is then used in the

next iteration.(PECE: predict, evaluate, correct, evaluate). By using the de-

rived discrete scheme, we find the numerical solution for the system (3.12).

Following theorem is for the order of convergence of this numerical method.

Some information on the errors of the quadrature formulas that have used in

the derivation of the predictor and the corrector are required ,respectively.

They first give a statement on the product rectangle rule that have used for

the predictor.

Theorem 3.4.1. (Theorem 2.4 of [35]) (a)Let g ∈ C1[0, tf ]. Then,

∣∣∣ ∫ tn+1

0
(tn+1 − u)α−1g(u)du−

n∑
j=0

bj,n+1g(tj)
∣∣∣ ≤ 1

α
∥g′∥∞ tαn+1h.
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(b)Let g(t) = tp for some p ∈ (0, 1). Then,

∣∣∣ ∫ tn+1

0
(tn+1 − u)α−1g(u)du−

n∑
j=0

bj,n+1g(tj)
∣∣∣ ≤ C(α, p)tα+p−1

n+1 h.

where C(α, p) is a constant that depends only on α and p.

Theorem 3.4.2. (Theorem 2.5 of [35]) (a)Let g ∈ C2[0, tf ] then there is a

constant Cα depending only on α such that

∣∣∣ ∫ tn+1

0
(tn+1 − u)α−1g(u)du−

n+1∑
j=0

aj,n+1g(tj)
∣∣∣ ≤ Cα ∥g′′∥∞ tαn+1h

2.

(a)Let g ∈ C1[0, tf ] and assume that g′ fulfils a Lipschitz condition of order µ

for some µ ∈ (0, 1). Then, there exist positive constants Bα,µ(depending only

on α and µ) and M(g, µ) (depending only on g and µ) such that

∣∣∣ ∫ tn+1

0
(tn+1 − u)α−1g(u)du−

n+1∑
j=0

aj,n+1g(tj)
∣∣∣ ≤ Bα,µM(g, µ)tαn+1h

1+µ.

(b)Let g(t) = tp for some p ∈ (0, 2) and Q = min(2, p+ 1). Then,

∣∣∣ ∫ tn+1

0
(tn+1 − u)α−1g(u)du−

n+1∑
j=0

aj,n+1g(tj)
∣∣∣ ≤ Cα,pt

α+p−Q
n+1 hQ.

where Cα,p is a constant that depends only on α and p.

Lemma 3.4.3. (Lemma 3.1 of [35]) Assume that the solution y of the initial

value problem(3.37) is such that

∣∣∣ ∫ tn+1

0
(tn+1 − u)α−1Dαy(u)du−

n∑
j=0

bj,n+1D
αy(tj)

∣∣∣ ≤ C1t
γ1
n+1h

δ1
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and

∣∣∣ ∫ tn+1

0
(tn+1 − u)α−1Dαy(u)du−

n+1∑
j=0

aj,n+1D
αy(tj)

∣∣∣ ≤ C2t
γ2
n+1h

δ2

with some γ1, γ2 ≥ 0 and δ1, δ2 ≥ 0. Then for some suitable chosen tf > 0, we

have

max
0≤j≤N

|y(tj)− yh(tj)| = O(hq),

where q = min{δ1 + α, δ2}.

Theorem 3.4.4. (Theorem 3.2 in [35]) Assume that the function f(t, x(t)) in

(3.37) is of class C2[0, tf ] for some suitable tf . Then,

max
0≤j≤N

|x(tj)− xj | =


O(h2), if 1 ≤ α < 2

O(h1+α), if0 < α < 1.

Proof. We may apply lemma 3.4.3 with γ1 = γ2 = α > 0, δ1 = 1 and δ2 = 2 .

Thus we find an O(hq) error bound where

q = min{1 + α, 2} =


2, if α ≥ 1,

1 + α, if α < 1.

Note that in a certain sense the theorem above deals with the “optimal”

situation: the function that we approximate in our process is f(·, y(·)) = Dαy.

In order to obtain very good error bounds, we need to make sure that the

quadrature errors for this function are (asymptotically) as small as possible. A

sufficient condition for this to hold is, as is well known from quadrature theory,

that this function is in C2 on the interval of integration, i.e., Dαy is at least
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two times continuously differentiable on [0, tf ]. So this theorem shows us what

kind of performance the Adams method can give under optimal circumstances,

and it also states sufficient conditions for such results to hold. We then obtain

the numerical solution for each state variables by discretizing (3.12) using the

form of (3.42) and (3.45).

3.4.2 Sensitivity equations

The nonlinear weighted least–squares method and the Levenberg–Marquardt

algorithm require the partial derivatives of each states variable with respect

to every single element of the parameter vector p. In order to obtain the

derivatives, we need to calculate the first derivatives of the model prediction

f(t,x(t);p) with respect to every single element of the parameter vector p.

And then interchanging the order of time and parameter derivatives, the frac-

tional Adams method is applied. Therefore, we obtain the partial derivatives

of x(t) with respect to every single element of the parameter vector p. Our

model (3.12) is not dynamically linear system, and therefore it is not possible

to calculate the exact derivatives since the dependency of f(t,x(t);p) on pa-

rameters p is unknown. In particular, partial derivatives of (3.12) with respect

to each parameters including fractional order α are obtained as follows. For
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certain parameter pj ∈ p, we have

∂Dα
0 T (t)

∂pj
=− (τ1−α(1− θu)kV + ρα)

∂T

∂pj
− τ1−α(1− θu)kT

∂V

∂pj

+



τ1−α if pj = λ

−αρα−1T (t) if pj = ρ

−τ1−α((1− θu(t))V (t)T (t)) if pj = k

τ1−α(u(t)kV (t)T (t)) if pj = θ

(λ− (1− θu(t))kV (t)T (t)) if pj = τ1−α

−τ1−α ln(τ)

(
λ− (1− θu(t))kV (t)T (t)

)
if pj = α

−ρα ln(ρ)T (t)

0 otherwise,

,
∂T

∂pj

∣∣∣
t=0

=

1 if pj = T0

0 otherwise.

∂Dα
0 L(t)

∂pj
=τ1−αϵ(1− θu(t))k

(
V (t)

∂T (t)

∂pj
+ T (t)

∂V

∂pj

)
− (δαL + rαL)

∂L

∂pj

+



ϵ(1− θu(t))kT (t)V (t) if pj = τ1−α

τ1−α(1− θu(t))kT (t)V (t) if pj = ϵ

τ1−αϵ(−u(t))k if pj = θ

τ1−αϵ(1− θu(t))T (t)V (t) if pj = k

−αδα−1
L L(t) if pj = δL

−αrα−1
L L(t) if pj = rL

− (δαL ln(δL(t)) + rα ln(r))L if pj = α

0 otherwise

,
∂L(t)

∂pj

∣∣∣
t=0

=

1 if pj = L0

0 otherwise.
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∂Dα
0 T

∗(t)

∂pj
=kτ1−α(1− ϵ)(1− θu(t))

(
V (t)

∂T (t)

∂pj
+ T (t)

∂V (t)

∂pj

)
− δα

∂T ∗

∂pj
+ rαL

∂L

∂pj

+



−τ1−α(1− θu(t))kT (t)V (t) if pj = ϵ

τ1−α(1− ϵ)(−u(t))kT (t)V (t) if pj = θ

τ1−α(1− ϵ)(1− θu(t))T (t)V (t) if pj = k

−α ∗ δα−1T ∗(t) if pj = δ

−α ∗ ρα−1T (t) if pj = rL

(1− ϵ)(1− θu(t))kT (t)V (t) if pj = τ1−α

−τ1−α ln(τ)(1− ϵ)(1− θ1u(t))kT (t)V (t) if pj = α

−δα ln(δ)T ∗(t) + rα ln(r)L(t)

0 otherwise,

,
∂T ∗

∂pj

∣∣∣
t=0

=

1 if pj = T ∗
0

0 otherwise.

∂Dα
0 V (t)

∂pj
=− cα

∂V (t)

∂pj
+Nδα

∂T ∗(t)

∂pj

+



Nαδα−1T ∗(t) if pj = δ

δαT ∗(t) if pj = N

−αcα−1V (t) if pj = c

Nδα ln(δ)T ∗(t)− cα ln(c)V (t) if pj = α

0 otherwise,

,
∂V (t)

∂pj

∣∣∣
t=0

=

1 if pj = V0

0 otherwise.
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3.4.3 Initial guess for paramters and the fractional order

For determining an initial guess for each parameters and initial states in

the nonlinear equation (3.12), we consider a nuber of initialization approaches

for obtaining optimal model parameters. We again divide the range of each pa-

rameter used in 2.2, which cover the reference values in Table2.6 into 20 equal-

sized vertices to choose one candidate initial guess. One needs some restrictions

on parameter values considering the defined biological meanings, for example,

the parameters for the drug efficacy(θ), the death rate of lymphocyte(λ, ρ, δL)

and proportionality(ϵ, ϵC) should be in the range [0, 1]. To find the optimal

fractional order, the same process is performed in the range [0.1, 1.0] of the

fractional order α. We surely contains the case of α = 1.00 since we can ac-

cept of optimality of fractional-order model with α than the integer model.

From these, we choose the parameters generating the smallest chi-square value,

which is given by χ2 =
∑n

j=1(yj − log10(V (tj ;p)))
2, where n is the number

of data, yj and V (tj ;p) are measurement data and the numerical solution for

the set of parameter p at time tj , respectively. To evaluate the goodness of fit

for each patient data, we use relative ℓ2 error calculated by
√

χ2/
√∑

k yk
2.

The rest of this process is the same as for initial model.

3.5 Numerical results: model fits and sample predic-

tions

In this section, we present some numerical results obtained from the fractional-

order HIV model with latent reservoir. As we done with the integer-order HIV

models in the previous chapter, we use the calibrated individual patient data

to carry out inverse problem to obtain patient-specific parameter estimated in

the fracitonal-order model.
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Figure 3.1-3.2 show the measurements of plasma HIV viral load with nu-

merical solution of the model(3.12) given by the estimated parameters.In Table

3.1, the estimated model parameters with optimal fractional order α, the rela-

tive ℓ2 error for each patient are given. In Table 3.1, the optimal fractional

order, the estimated parameter and initial conditions for states, and the rela-

tive ℓ2 error for each patients are given. Compared to the values in Table3.3,

the fractional model produces the smaller chi-square value than the model

restricted to α = 1 so that the viral rebound pattern of patient data can be

descried by the fractional derivative better for all 9 patients. In Section3.3, we

note that the parameter τ1−α estimated in Table 3.1 can be physiologically

interpreted as the effect of rheological behavior to the infection process of

HIV in plasma. The value of the τ1−α is determined to maintain the balance

of virus-lymphocyte cell populations, depending on the growth rate of target

cell(λ), infection rate(k).

We also performed a sensitivity analysis for estimated parameters with

fractiona-order latent cell activation model, and the results are ranked in order

in Table 3.2. Having similar parameters with high sensitivity observed in the

integer model (2.71),i.e., k, δL, ρ and rL, the notable point in this result is

that the fractional order α and the balancing τ1−α belong to parameters with

relatively high sensitivity among 16 parameters.

In the period of treatment, the decay dynamics of viral load are better

fitted to the fractional model than the integer model, especially for patients

2,4 and 11 in Figure3.1 and Figure3.2. It can be seen that the response rate

to the factors affecting the increase or decrease of the population is slower

than that of the integer difference derivatives, which is consistent with the

new model.Overall in most cases, having three interruptions yields a good

prediction of long-term vial dynamics. For all nine patients, the fractional
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model fit better than the model restricted to α = 1, especially in the viral

decay interval.

Red blood cell (RBC) deformability is a major determinant of the ability of

the RBC to pass repeatedly through the microcirculation. A decrease in RBC

deformability leads to tissue perfusion and organ dysfunction. According to

Athanassiou et al.,[10], the rigidity of RBCs in HIV seropositive patients was

significantly higher than that of the healthy individuals. Moreover, a index

of rigidity(IR) was observed RBC deformability is decreased in HIV disease,

in a degree mainly related to CD4+cell depletion. This means that a low IR

value indicates a higher flow rate of the blood, and it is related with high CD4

cell counts. The lower the value of α, the slower the blood flow velocity is

depicted. To demonstrate the results of previous studies, we investigated the

relationship between the density of CD4 cells in patients with relatively low α

values.

Considering above clinical findings, we compare the the total population

values estimated from each model during the same observation time. From

the comparison on lymphocyte density listed in Table 3.4, for all patients, we

find that the total value of target cell T (t) for same observation time period

is smaller when 0 < α < 1, which means that patient actually shows slower

blood flow velocity and has higher value of index of rigidity(IR),than the case

of α = 1. Thus, the numerical results are coincide with the result of previous

research on RBC deformability within HIV-infected patients, which denotes a

high value of index of rigidity(IR) indicates a higher flow rate of the blood the

fractional order model and consider the rheological factor. In case of repro-

ductive number compared in Table3.5, the fracitonal model provides higher

values for patients 2,3,5,8,11 and smaller value for patients 1,4,7,10 than the

integer model. Recall the findings of Gallegos et al. [55] that increased aggre-
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gation and decreased erythrocyte deformability are unrelated to the severity

of the immunodeficiency, we can see that there is no influence on secondary

reproductive number of productively infected lymphocyte population(T ∗).

Patient
Estimated parameters

λ ρ k δ N c

1 4.53E+02 1.81E-01 3.67E-06 7.01E-01 1.98E+03 1.00E+01
2 2.27E+02 3.53E-01 7.03E-06 4.19E-01 2.75E+03 5.98E+00
3 1.67E+02 3.34E-01 8.16E-06 8.70E-01 3.30E+03 7.61E+00
4 4.38E+02 2.38E-01 6.31E-06 9.12E-01 2.11E+03 1.41E+01
5 3.69E+02 2.42E-01 7.17E-06 8.23E-01 1.94E+03 1.42E+01
6 3.64E+02 2.53E-01 7.27E-06 6.17E-01 1.60E+03 1.43E+01
7 3.55E+02 2.58E-01 7.16E-06 8.39E-01 1.91E+03 1.37E+01
8 3.99E+02 1.80E-01 7.89E-06 7.74E-01 2.12E+03 1.40E+01
10 3.55E+02 2.51E-01 7.54E-06 8.69E-01 1.80E+03 1.41E+01
11 2.62E+02 2.64E-01 5.85E-06 5.45E-01 2.57E+03 7.75E+00

θ rL ϵ δL α τ1−α

1 8.87E-01 4.32E-02 7.08E-02 3.74E-02 9.78E-01 1.009E+00
2 7.33E-01 5.62E-02 1.33E-01 1.06E-02 9.80E-01 1.009E+00
3 9.86E-01 5.62E-02 9.49E-02 5.32E-03 9.84E-01 1.011E+00
4 4.84E-01 1.37E-04 5.11E-02 3.27E-03 9.70E-01 9.919E-01
5 7.91E-01 2.97E-02 9.57E-02 1.29E-02 9.48E-01 1.020E+00
6 6.01E-01 1.65E-03 3.02E-02 1.10E-02 9.70E-01 1.097E+00
7 6.92E-01 1.92E-03 7.47E-02 1.68E-02 9.58E-01 1.004E+00
8 6.82E-01 9.05E-04 2.11E-01 2.25E-02 9.84E-01 1.087E+00
10 6.12E-01 5.09E-02 3.99E-02 2.67E-02 9.48E-01 1.103E+00
11 8.99E-01 5.81E-02 1.12E-01 8.52E-03 9.80E-01 1.009E+00

Patient
Estimated parameters

Relative ℓ2 error
T0 I0 V0 L0

1 2.74E+03 6.13E-04 7.76E-02 5.46E-06 9.15E-02
2 6.21E+02 8.34E-03 4.96E+00 1.30E-02 1.23E-01
3 5.52E+02 3.68E-04 6.85E-02 2.12E-04 1.42E-01
4 1.84E+03 9.66E-02 8.37E+00 3.20E-02 1.14E-01
5 1.01E+03 1.02E-02 1.01E+00 1.01E-01 9.33E-02
7 9.40E+02 9.86E-03 8.94E-01 9.41E-02 1.15E-01
8 2.06E+03 9.00E-02 8.86E+00 1.99E+00 1.52E-01
10 1.56E+03 5.47E-06 4.74E-04 1.02E-06 1.48E-01
11 5.33E+02 2.97E-02 6.04E+01 5.46E-02 9.41E-02

Table 3.1: Optimal order (0 < α < 1), estimated parameters, and relative ℓ2
error for each patient
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Patient
Sensitive parameter pi

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6

1 k δL ρ rL τ1−α δ
2 k δL ρ rL τ1−α α
3 k δL rL τ1−α ρ α
4 k rL δL ρ τ1−α θ
5 k δL ρ τ1−α rL α
7 k rL ρ δL τ1−α α
8 k rL α δL ρ θ
10 k α ρ δL τ1−α rL
11 k δL rL ρ τ1−α α

Table 3.2: [Fractional-order Latent cell activation model] Ranked semi-relative
sensitivity of the model state (V (t)) to parameters (p) estimated from each
patient with fractional-order latent cell activation model.

Patient
Estimated parameters

Relative ℓ2 error
T0 T ∗

0 V0 L0

1 2.72E+03 1.66E-04 1.64E-01 1.68E-03 9.67E-02
2 6.37E+02 7.00E-03 1.82E+00 9.65E-03 1.27E-01
3 5.16E+02 3.76E-04 2.38E-01 1.56E-03 1.44E-01
4 1.84E+03 1.01E-01 1.10E+01 1.90E-04 1.24E-01
5 1.45E+03 1.14E-02 2.09E+00 2.14E-02 9.36E-02
7 1.54E+03 1.19E-03 1.21E+00 9.56E-02 1.17E-01
8 2.02E+03 9.16E-02 1.01E+01 5.48E+00 1.58E-01
10 1.82E+03 2.27E-03 3.93E-01 9.75E-07 2.04E-01
11 1.04E+03 7.48E-04 6.04E+00 1.18E-03 1.04E-01

Table 3.3: Estimated initial conditions for states and relative ℓ2 error for each
patient when α = 1.00.

Patient
α = 1.00 0 < α < 1∫
T (t)dt

∫
T (t)dt α τ1−α

1 9.27E+05 9.08E+05 9.782E-01 1.009E+00
2 2.41E+05 2.38E+05 9.80E-01 1.009E+00
3 1.87E+05 1.87E+05 9.84E-01 1.011E+00
4 6.63E+05 6.28E+05 9.70E-01 9.919E-01
5 5.55E+05 5.33E+05 9.48E-01 1.020E+00
7 5.23E+05 4.94E+05 9.58E-01 1.004E+00
8 1.16E+06 7.99E+05 9.84E-01 1.087E+00
10 5.50E+05 5.49E+05 9.48E-01 1.103E+00
11 3.65E+05 3.64E+05 9.80E-01 1.009E+00

Table 3.4: A comparison on the total population number of target cells CD4+

during observaton between the case o α = 1.00 and 0 < α < 1
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Patient α = 1.00 0 < α < 1

1 1.71 1.69
2 1.67 1.83
3 1.59 1.62
4 1.70 1.64
5 1.31 1.42
7 1.27 1.28
8 3.00 2.24
10 1.40 1.30
11 1.55 1.79

Table 3.5: A comparison on reproductive number between the case of α = 1.00
and 0 < α < 1

3.6 Conclusion

In this paper, we introduce a fractional derivative with order (0 <≤ 1)

into Latent reservoir model to embody essential features to cell rheological

behavior in HIV infection of lymphocyte population. In Section 3.3, we de-

rive our new model (3.12) and showed that it has non-negative, bounded

solutions with locally asymptotically stable equilibrium points. We compare

viral load measurements of HIV infected patients with the numerical solu-

tions of nonlinear model of HIV of fractional order, obtained by using the

Adams-type predictor-corrector methodimplemented in Section3.4. Employ-

ing the range of initial guess for parameters based on the reference values, we

obtain the optimal fractional order better describe the data than the model of

which order of derivative is restricted to integer. From the numerical results

in Section3.5, we can confirm that CD4 cell counts described by fractional-

order model(0 < α < 1) is lower than the one provided by the integer-order

model(α = 1). This results correspond with the several clinical findings that

there is an inverse correlation between CD4 T-lymphocyte counts and index

of rigidity, and RBC deformability is decreased in HIV disease, in a degree

mainly related to CD4 depletion, which is appeared in HIV-infected patients.
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(a) Patient 1 (b) Patient 2

(c) Patient 3 (d) Patient 4

Figure 3.1: Plots with HIV-RNA measurement and estimated values(Latent
reservoir model with 0 < α < 1) for patients.

In this thesis, we have tried to show how mathematical modeling has impacted

our understanding of HIV pathogenesis. Before modeling was brought, AIDS

was thought to be a slow disease in which treatment could be delayed until

symptoms appeared, and patients were not monitored very aggressively. In

conclusion, we note that our consideration in rheological property, which have

been proven influential in HIV-infected patients, can provide more precise pre-

diction for future infection and can give better design for ART in reducing the

risk of AIDS overall.
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(a) Patient 5 (b) Patient 7

(c) Patient 8 (d) Patient 10

(e) Patient 11

Figure 3.2: Plots with HIV-RNA measurement and estimated values(Latent
reservoir model with 0 < α < 1) for patients.
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137



De Launoit, and Arsène Burny. Synergistic activation of human immun-

odeficiency virus type 1 promoter activity by nf-κb and inhibitors of

deacetylases: potential perspectives for the development of therapeutic

strategies. Journal of virology, 76(21):11091–11103, 2002.

[127] MW Rampling, HJ Meiselman, B Neu, and OK Baskurt. Influence of

cell-specific factors on red blood cell aggregation. Biorheology, 41(2):91–

112, 2004.

[128] Ramratnam. The decay of the latent reservoir of replication-competent

hiv-1 is inversely correlated with the extent of residual viral replication

during prolonged anti-retroviral therapy. Nature medicine, 6(1):82–85,

2000.

[129] Bharat Ramratnam, Sebastian Bonhoeffer, James Binley, Arlene Hurley,

Linqi Zhang, John E Mittler, Martin Markowitz, John P Moore, Alan S

Perelson, and David D Ho. Rapid production and clearance of hiv-1 and

hepatitis c virus assessed by large volume plasma apheresis. The Lancet,

354(9192):1782–1785, 1999.

[130] Ruy M Ribeiro, Narendra M Dixit, and Alan S Perelson. Modelling

the in vivo growth rate of hiv: implications for vaccination. Studies in

Multidisciplinarity, 3:231–246, 2005.

[131] Ruy M Ribeiro, Li Qin, Leslie L Chavez, Dongfeng Li, Steven G Self, and

Alan S Perelson. Estimation of the initial viral growth rate and basic

reproductive number during acute hiv-1 infection. Journal of virology,

84(12):6096–6102, 2010.

138



[132] SZ Rida, HM El-Sherbiny, and AAM Arafa. On the solution of the

fractional nonlinear schrödinger equation. Physics Letters A, 372(5):553–

558, 2008.

[133] P Riedinger, FR Kratz, C Iung, and C Zanne. Linear quadratic op-

timization for hybrid systems. In IEEE Conference on Decision and

Control, volume 3, pages 3059–3064. IEEE; 1998, 1999.

[134] Libin Rong and Alan S Perelson. Asymmetric division of activated

latently infected cells may explain the decay kinetics of the hiv-1 la-

tent reservoir and intermittent viral blips. Mathematical biosciences,

217(1):77–87, 2009.

[135] Libin Rong and Alan S Perelson. Modeling hiv persistence, the latent

reservoir, and viral blips. Journal of theoretical biology, 260(2):308–331,

2009.

[136] Libin Rong and Alan S Perelson. Modeling latently infected cell activa-

tion: viral and latent reservoir persistence, and viral blips in hiv-infected

patients on potent therapy. PLoS Comput Biol, 5(10):e1000533, 2009.

[137] Eric S Rosenberg, Marcus Altfeld, Samuel H Poon, Mary N Phillips,

Barbara M Wilkes, Robert L Eldridge, Gregory K Robbins, TD Richard,

Philip JR Goulder, and Bruce D Walker. Immune control of hiv-1 after

early treatment of acute infection. Nature, 407(6803):523–526, 2000.

[138] Edward John Routh. Stability of a dynamical system with two indepen-

dent motions. Proceedings of the London Mathematical Society, 1(1):97–

99, 1873.

[139] Lidia Ruiz, Guislaine Carcelain, Javier Mart́ınez-Picado, Simon Frost,

Silvia Marfil, Roger Paredes, Joan Romeu, Esther Ferrer, Kristina

139



Morales-Lopetegi, and Brigitte Autran. Hiv dynamics and t-cell im-

munity after three structured treatment interruptions in chronic hiv-1

infection. Aids, 15(9):F19–F27, 2001.

[140] M Shahid Shaikh and Peter E Caines. On the optimal control of hy-

brid systems: Optimization of trajectories, switching times, and location

schedules. In Hybrid systems: Computation and control, pages 466–481.

Springer, 2003.

[141] Liang Shan, Kai Deng, Neeta S Shroff, Christine M Durand, S Alireza

Rabi, Hung-Chih Yang, Hao Zhang, Joseph B Margolick, Joel N Blank-

son, and Robert F Siliciano. Stimulation of hiv-1-specific cytolytic t

lymphocytes facilitates elimination of latent viral reservoir after virus

reactivation. Immunity, 36(3):491–501, 2012.

[142] Mark E Sharkey, Ian Teo, Thomas Greenough, Natalia Sharova, Kather-

ine Luzuriaga, John L Sullivan, R Pat Bucy, Leondios G Kostrikis, Ash-

ley Haase, and Claire Veryard. Persistence of episomal hiv-1 infection

intermediates in patients on highly active anti-retroviral therapy. Nature

medicine, 6(1):76–81, 2000.

[143] Philip L Sheridan, Timothy P Mayall, Eric Verdin, and Katherine A

Jones. Histone acetyltransferases regulate hiv-1 enhancer activity in

vitro. Genes & development, 11(24):3327–3340, 1997.

[144] Siliciano. Long-term follow-up studies confirm the stability of the latent

reservoir for hiv-1 in resting cd4+ t cells. Nature medicine, 9.6:727–728,

2003.

[145] Janet D Siliciano, Joleen Kajdas, Diana Finzi, Thomas C Quinn, Karen

Chadwick, Joseph B Margolick, Colin Kovacs, Stephen J Gange, and

140



Robert F Siliciano. Long-term follow-up studies confirm the stability of

the latent reservoir for hiv-1 in resting cd4+ t cells. Nature medicine,

9(6):727–728, 2003.

[146] Janet M Siliciano and Robert F Siliciano. The remarkable stability of

the latent reservoir for hiv-1 in resting memory cd4+ t cells. Journal of

Infectious Diseases, page jiv219, 2015.

[147] Robert F Siliciano and Warner C Greene. Hiv latency. Cold Spring

Harbor perspectives in medicine, 1(1):a007096, 2011.

[148] Eric D Smith, Ferenc Szidarovszky, William J Karnavas, and ATerry

Bahill. Sensitivity analysis, a powerful system validation technique.

Open Cybernetics & Systemics Journal, 2:39–56, 2008.

[149] Max A Stafford, Lawrence Corey, Yunzhen Cao, Eric S Daar, David D

Ho, and Alan S Perelson. Modeling plasma virus concentration during

primary hiv infection. Journal of theoretical biology, 203(3):285–301,

2000.

[150] Timothy R Sterling, Richard E Chaisson, Jeanne Keruly, and Richard D

Moore. Improved outcomes with earlier initiation of highly active an-

tiretroviral therapy among human immunodeficiency virus–infected pa-

tients who achieve durable virologic suppression: longer follow-up of an

observational cohort study. Journal of Infectious Diseases, 188(11):1659–

1665, 2003.

[151] Matthew C Strain, Susan J Little, Eric S Daar, Diane V Havlir,

Huldrych F Günthard, Ruby Y Lam, Otto A Daly, Juin Nguyen, Caro-

line C Ignacio, and Celsa A Spina. Effect of treatment, during primary

141



infection, on establishment and clearance of cellular reservoirs of hiv-1.

Journal of Infectious Diseases, 191(9):1410–1418, 2005.

[152] MC Strain, HF Günthard, DV Havlir, CC Ignacio, DM Smith, AJ Leigh-

Brown, TR Macaranas, RY Lam, OA Daly, and M Fischer. Heteroge-

neous clearance rates of long-lived lymphocytes infected with hiv: in-

trinsic stability predicts lifelong persistence. Proceedings of the National

Academy of Sciences, 100(8):4819–4824, 2003.

[153] N Sugimoto. Propagation of nonlinear acoustic waves in a tunnel with an

array of helmholtz resonators. Journal of Fluid Mechanics, 244:55–78,

1992.

[154] Hector J Sussmann. A maximum principle for hybrid optimal control

problems. In Decision and Control, 1999. Proceedings of the 38th IEEE

Conference on, volume 1, pages 425–430. IEEE, 1999.

[155] Xiping Wei, Sajal K Ghosh, Maria E Taylor, Victoria A Johnson,

Emilio A Emini, Paul Deutsch, Jeffrey D Lifson, Sebastian Bonhoef-

fer, Martin A Nowak, and Beatrice H Hahn. Viral dynamics in human

immunodeficiency virus type 1 infection. Nature, 373(6510):117–122,

1995.

[156] Lawrence M Wein, Rebecca M D’Amato, and Alan S Perelson. Mathe-

matical analysis of antiretroviral therapy aimed at hiv-1 eradication or

maintenance of low viral loads. Journal of theoretical biology, 192(1):81–

98, 1998.

[157] Xiang-Jun Wen, Zheng-Mao Wu, and Jun-Guo Lu. Stability analysis

of a class of nonlinear fractional-order systems. IEEE Transactions on

circuits and systems II: Express Briefs, 55(11):1178–1182, 2008.

142



[158] Fiona Wightman, Paula Ellenberg, Melissa Churchill, and Sharon R

Lewin. Hdac inhibitors in hiv. Immunology and cell biology, 90(1):47–54,

2012.

[159] Myriam Witvrouw, JEAN-CLAUDE SCHMIT, BARBARA VAN RE-

MOORTEL, Dirk Daelemans, JOSÉ A ESTÉ, A-M Vandamme, Jan
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