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Abstract

We propose a Bayesian model for estimating functions that may have jump

discontinuities, and variational method for inference. The proposed model is

an extension of the LARK model, which enables functions to be represented

by the small number of elements from an overcomplete system composing of

multiple kernels. The location of jumps, the number of elements, and even the

smoothness of functions are automatically determined by the Levy random

measure, there is no need for model selection. A simulation study and a real

data analysis illustrate that the proposed model performs better than the stan-

dard nonparametric models for the estimation of discontinuous functions and

show the suggested variational method significantly reduces the computation

time than the conventional inference method, reversible jump Markov chain

Monte Carlo. Finally, we prove prior positivity of the model and show that

the prior has sufficiently large support including discontinuous functions with

finite number of jumps.

Keywords: Bayesian nonparametric regression, overcomplete system, multi-

ple kernel, Levy random measure, Poisson random measure, variational method,

simulated annealing

Student Number: 2011-30896
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Chapter 1

Introduction

1.1 Nonparametric Bayesian regression model

A nonparametric model is a model in which the dimension of at least one

parameter is infinite. An infinite-dimensional parameter is usually related to a

function in the model.

In many cases, we are interested in the relationship between covariates

x ∈ X and outcomes Y ∈ R, which the model for this relationship is called

the regression model. The relationship between variables is fully determined

by data in nonparameteric regression. Data must offer a model structure as

well as model estimates, so that nonparametric regression models require a

large sample size. That is the reason that nonparametric models can flexibly

express the relationship between variables.

The nonparametric regression model can be understood in two ways (Gray

et al., 2016). A first approach assumes that covariates are fixed. A conditional

distribution f(Y |x) is directly modeled. The ways of modeling f(Y |x) are sub-
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divided into two methods: the semiparametric model and the fully nonparamet-

ric model. Some semiparametric regression model assume that a conditional

distribution is modeled as f(Y |x) = N(η(x), σ2), where η is a real-valued func-

tion. In Bayesian approach, a prior distribution is assigned for unknown mean

functions, η. In fully nonparametric method, f(Y |x) =
∫

Θ
f(Y |x, θ)Px(dθ) is

often assumed to be a conditional distribution which is determined by unknown

mixing distribution, Px. From Bayesian point of view, a prior distribution is

defined on a family of probability distributions (Px)x∈X . The dependent Dirich-

let process (MacEachern, 1999), which derives many variations (Dunson et al.,

2007; Griffin and Steel, 2006; Caron et al., 2007; Dunson and Park, 2008) are

populary used for the prior of Px.

An alternative approach considers covariates as random variables (Muller

et al, 1996). In this approach, regression problem changes into problem of

the density estimation since the conditional mean function is obtained from

the estimated joint density. The Dirichlet process mixture (DPM) is widely

used for estimating the joint density in Bayesian field. Based on DPM, various

models have been proposed (Shahbaba and Neal, 2009; Hannah et al., 2001;

Wade el al., 2014).

Since we are interested in directly estimating the mean function, we con-

sider a semiparametric model with fixed covariates. First, some methodologies

for function estimation will be reviewed in the next section.
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1.2 Literature review of nonparametric func-

tion estimation

Suppose we observe {(xi, Yi)}i=1,··· ,n, where xi ∈ R, Yi ∈ R, and n is the number

of observations. We postulate that

Yi = η(Xi) + εi, εi
iid∼ N(0, σ2), i = 1, 2, · · · , n, (1.1)

where η is a real-valued function from R. In this setting, estimating mean func-

tion is considered as curve fitting. There are many methodologies for nonpara-

metric curve fitting: using basis expansion, using smoothing, using a Gaussian

process, using overcomplete system.

A traditional way to approximate a function is to represent it as a linear

combination of basis functions. Let {φj}j∈J be the basis set of a function space

to which a mean function belongs. Then, η can be expressed as

η(·) =
∑
j∈J

βjφj(·),

where βj ∈ R is coefficient of the basis function φj, and J ∈ N∪∞. To estimate

η, we need to estimate βjs. Polynomial basis, spline basis, Fourier basis, and

wavelet basis are generally used in this methodology.

A spline basis was suggested to avoid the degree of polynomial greatly

increasing when using a polynomial basis in function estimation. As an alter-

native to increasing the order of polynomial, the covariate space is divided into

small intervals and a simple function is fitted by using observations in each

interval. The basis composing this simple functions is called the spline basis.

3



There are many types of spline basis. A truncated power basis of the degree D

is {1, x, x2, · · · , xD, (x− ξ1)D, · · · , (x− ξK)D}, where the selected K points ξj

are called knots. If selected knots are very close each other, values of associated

truncated power basis functions will be similar in all observations, so that it

results in multi-collinearity. Multi-collinearity brings unstable numerical cal-

culation. This problem can be avoided by using other basis which produces

the same range of curves. Among equivalent basis sets, the most popular one

is a B-spline basis. This basis does not cause multi-collinearity, so it makes an

algorithm stable.

A wavelet basis is based on wavelet transform. Wavelet transform is related

to Fourier transform that represents a signal as a function of frequency. Even-

though Fourier transform is useful in understanding signals in frequency do-

main, information in time domain is lost. To overcome this, continuous wavelet

transform (CWT) was proposed in 1984 (Grossmann et al.). However, CWT

has to pay expensive cost because it has too much information. Fortunately,

low frequencies will not change very quickly, we can understand a signal de-

spite frequencies are not measured frequently. A good way to select frequencies

is to use a dyadic scheme. This means Wavelet transform (WT) is done only

at the positions sampled with a power of 2 in time domain. This type of WT is

called discrete wavelet transform (DWT). Typically, a wavelet basis is called as

a basis set composed by DWT. In curve fitting using wavelet basis, coefficients

which has small values are thresholded and inverse DWT is taken with these

thresholding coefficients.

A methodology based on smoothing such as spline smoothing and kernel

smoothing is also popular in nonparametric curve fitting. Spline smoothing is

4



close to ridge regression. Every points of covariate are considered as knots, co-

efficients of spline basis functions are shrinked by regularization to avoid over-

fitting. A cubic spline and a B-spline are typically used for spline smoothing,

which regularized form are a natural cubic spline and a P-spline, respectively.

Such smoothing methods do not require selection of knots, but they suffer from

other kind of model selection: selection of tunning parameter for determining

the degree of smoothness.

Kernel smoothing is a smoothing method which averaging observations in

a neighborhood at each grid point to evaluate a function value. As a neighbor-

hood is defined by a bandwidth of kernel, according the selection of bandwidth

may greatly change the shape of function. Local polynomial regression can be

understood as a kind of kernel smoothing. Unlike assuming underlying func-

tions locally constant, local polynomial function is postulated.

From Bayesian point of view, Gaussian processes can be used for function

estimation, in which the mean function η is assumed

η(·) ∼ GP (µ(·), K(·, ·)),

where µ is a mean function of Gaussian process and K is a covariance func-

tion. When using Gaussian processes, n×n dimensional matrix inversions are

required repeatedly in order to obtain the estimate for η. This operation is nu-

merically heavy when the number of observations is large. Fortunately, inverse

operation can be circumvented by using Karhunen-Loeve representation of a

function.

Karhunen-Loeve theorem states that a stochastic process can be repre-

sented as a linear combination of an infinitely number of orthogonal functions,
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in which coefficients are random variables and a basis is determined by a covari-

ance function that determines a process (Ghanem and Spanos, 2003). Suppose

that a centered random process, η(x), x ∈ [a, b], has a continuous covariance

function K(·, ·). There is a linear operator TK corresponding to this covariance

function, i.e.,

[TKη](x) =

∫ b

a

K(x, s)η(s)ds,∀η ∈ L2[a, b].

Denote the eigenfunction of TK as φj, and the eigenvalue corresponding to φj

is denoted as σj. According to mercer theorem, eigenfunctions of TK form a

orthonormal basis of L2[a, b] and K is expressed as

K(s, t) =
∞∑
j=1

σjφj(s)φj(t).

A process η which has the covariance function K can be represented as

η(x) =
∞∑
j=1

Zjφj(x),

where the uncorrelated random variable Zj has mean of 0 and variance of

σj. If η is a Gaussian process, coefficients are also Gaussian and independent.

However, finding eigenfunctions and eigenvalues of a linear operator induced

by a covariance function is not easy.

A covariance function of a Gaussian process can be considered as a re-

producing kernel of reproducing kernel Hilbert space (RKHS). Let X be an

arbitrary set, and H be a Hilbert space of real-valued functions defined on X .

When Lx : η 7→ η(x), a linear operator defined in H for x ∈ X , is continuous
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for all η ∈ H, we call H as RKHS. η can be represented as

η(x) =
∞∑
j=1

ajK(xj, x),

where aj ∈ R and K(xj, x) is a kernel that determines corresponding repro-

ducing kernel Hilbert space.

Representing a function by using an overcomplete system is another ap-

proach for curve fitting. A collection of reproducing kernels is a kind of over-

complete system. A subset of the vectors {φi}i∈J of Banach space F is called

complete system if for all f ∈ F ,

||f −
∑
i∈J

βiφi|| < ε,∀ε > 0

where βi ∈ R, J ∈ N ∪ ∞. A complete system is called as overcomplete if

removal of a φj from the system still results in a complete system. Because

of the inherent redundancy in the overcomplete system, the representation

using the overcomplete system can be more flexible and parsimonious than

those with a complete system. However, representation would not be no longer

unique due to the redundancy.

The Levy adaptive regression kernel (LARK) model, proposed by Tu (2006)

is a general model which utilizes overcomplete systems in Bayesian function

estimation. Pillai (2007, 2008) proved the relationship between a LARK model

and a reproducing kernel Hilbert space, and he showed the posterior consis-

tency in a LARK model. Wolpert et al. (2011) summarized the LARK model

and showed convergence properties in the function space induced by the LARK

7



model.

1.3 Literature review of nonparametric func-

tion estimation for functions with jumps

In the nonparametric function estimation, discontinuities are common. When

a important event occurs at a certain point in time, time series data may have

a jump at that point. For example, on the Friday after Brexit referendum both

of S&P 500 and the Dow had a big jump at that time. In x-ray data or well log

data, jumps occur where different materials meet. In sensor data, data points

may be suddenly shifted when sensor captures certain events.

However, most well-known methods are suitable only for continuous, espe-

cially smooth functions, so they have poor performance for estimating function

with jumps. For example, in basis expansion method using a B-spline it needs

repeated knots at the location of jumps, but finding these knots is practically

impossible. In wavelet regression, it is known that even using continuous type

of wavelet basis can approximate all functions of L2(R) including discontinu-

ous functions. However, it needs an infinitely many basis functions to express

a jump or it suffers to Gibbs phenomenon near a jump. Contrary, when using

discontinuous type of wavelet basis such as Haar, smooth regions would not

be fitted well with a finite number of basis functions.

In addition, since smoothing method and Gaussian process regression were

originally devised in order to fit smoothing functions, they are not proper to

estimate discontinuous functions.

Even the LARK model which utilizing an overcomplete system, same phe-
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nomenon appears like the wavelet regression. In words, it requires infinite el-

ements in order to fit jump discontinuities when using continuous type of

function as the element of an overcomplete system. This phenomenon destroys

identity, called parsimony, of the model which uses an overcomplete system.

By these reasons, nonparametric curve fitting methods for discontinuous

functions have been studied. In the Bayesian side using basis expansion, Deni-

son et al. (1998) used piecewise polynomial basis having free knots. Dimatteo et

al. (2001) investigated free-knot selection method using B-spline basis, which is

called Bayesian adaptive regression spline (BARS). In these models the num-

ber of knots can vary but the degree of smoothness of functions should be

predetermined.

Many techniques have been proposed to estimate functions with discontinu-

ities in smoothing method. Qiu (2003) and Gijbels et al. (2007) considered dis-

continuous function estimation in local polynomial smoothing. They assumed

that every design point could be a jump. The mean function is estimated by

using local polynomial smoothing with right and left side kernels at each de-

sign point. Kernel-based techniques have been studied by Muller (1992) and

Kang et al. (2000), and Gijbels and Goderniaux (2004). These methods are

related to selection of kernel in different regions. Spline-based methods have

been considered by Koo (1997) and Spiriti et al. (2013). They studied about

knot selection.

However, these methods suffer from model selection problem. It means that

users have to decide tunning parameters related to something such as band-

width, the number of jumps and the degree of smoothness. Unfortunately,

performance of models heavily depends on the choice of these tunning param-
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eters.

The models using an overcomplete system may mitigate model selection

problem. In the LARK model, every parameters which compose a function

automatically determined in inference process, so that we may bypass model

selection problem. We expected that this property would be preserved even if

the LARK model extends. This is one reason that we focused on the model

using an overcomplete system, especially the LARK model.

10



Chapter 2

Bayesian curve fitting for

discontinuous functions using

overcomplete system with

multiple kernels

2.1 Introduction

In this paper, we pay attention to the method using an overcomplete system

in order to mitigate the model selection problem. In particular, focusing on

the LARK model, we take the Bayesian approach for the inference of model

(1.1). The original version of the LARK model utilizes only one type of kernel

for composing an overcomplete system. We propose an extension of LARK

model with an overcomplete system which consists of many types of kernel.

We call the proposed model the Levy adaptive regression with multiple kernels

11



(LARMuK).

The paper is organized in the following order. In section 2, the LARK

model is introduced, and needs for extension is also discussed. In section 3,

we explore the structure of the proposed model and present a theorem that

says that the proposed prior has large support. In section 4, posterior inference

for the model using reversible jump Markov chain Monte Carlo (RJMCMC)

method is described. In section 5, data analysis is given. We demonstrate the

proposed method estimates diverse shapes of functions with the small number

of parameters. MSE are small enough comparing to other models. In the final

section, conclusions and problems for further research are discussed.

2.2 The LARK model

Let L is an infinitely divisible valued random measure defined on a complete

separable metric space Ω. For L there exists the triple of sigma-finite measures

(δ,Σ, ν) consisting of a signed measure δ(dw), a positive measure Σ(dw) on Ω

and a positive measure ν(dβ, dw) on R× Ω which satisfies ν({0},Ω) = 0 and

∫ ∫
R×A

(1 ∧ β2)ν(dβ, dw) <∞ (L2 integrability condition)

for each compact set A ⊂ Ω such that

E[eitL(A)] = exp

{
itδ(A)− 1

2
t2Σ(A) +

∫ ∫
R×A

(eitβ − 1− ith0(β))ν(dβ, dw)

}
(2.1)
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where h0(β) ≡ βI[−1,1](β). h0 can be replaced by any bounded measurable

function h satisfying

h(β) = h0(β) +O(β2), β ≈ 0,

and δ(dw) may be replaced with

δh(dw) = δ(dw) +

∫
R
(h(β)− h0(β))ν(dβ, dw)

correspondingly. Then, equation (2.1) is changed into

E[eitL(A)] = exp

{
itδh(A)− 1

2
t2Σ(A) +

∫ ∫
R×A

(eitβ − 1− ith(β))ν(dβ, dw)

}
.

Removing Gaussain part, above equation is written by

E[eitL(A)] = exp

{∫ ∫
R×A

(eitβ − 1− ith(β))ν(dβ, dw)

}
. (2.2)

The random measure L which has characteristic function (2.2) is called a Levy

random measure and ν is called a Levy measure.

When ν satisfies L1 integrability condition:

∫ ∫
R×A

(1 ∧ |β|)ν(dβ, dw) <∞, for all compact A ⊂ Ω, (2.3)

the characteristic function of L(A) becomes

E[eitL(A)] = exp

{∫ ∫
R×A

(eitβ − 1)ν(dβ, dw)

}
, for all A ⊂ Ω. (2.4)

13



Let g(x,w) be a real-valued function defined on X × Ω. By integrating g

with respect to a Levy random measure L, we can define a real-valued function

defined on X :

η(x) ≡
∫

Ω

g(x,w)L(dw). (2.5)

If ν satisfies L1 integrability condition, L(dw) =
∫
R βN(dβ, dw), where N is

the Poisson process on R× Ω with mean measure ν. In this case, the integral

in (2.5) can be expressed as

∫
Ω

g(x,w)L(dw) =

∫
Ω

∫
R
g(x,w)βN(dβ, dw).

Furthermore, if ν(R × Ω) = M < ∞, N(dβ, dw) =
∑

j≤J βjδwj(dw), where

J ∼ Poisson(M) and (βj, wj)
iid∼ ν/M , j = 1, 2, . . . , J . Thus, in this case,

η(x) =
J∑
j=1

g(x,wj)βj. (2.6)

If g is uniformly bounded and ν satisfies L1 integrability condition, the integral

in (2.5) exists with probability 1. We call g the generating function.

Possible choices of generating functions for X = R include symmetric kernel

function, such as the Haar kernel,

g(x,w) ≡ I{|x−χλ |≤1}(x),

Gaussian kernel,

g(x,w) ≡ exp

{
−(x− χ)2

2λ2

}
,
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or the Laplacian kernel,

g(x,w) ≡ exp

{
−|x− χ|

λ

}

with w ≡ (χ, λ) ∈ X × R+ ≡ Ω. For the asymmetry, one-sided exponential

kernel

g(x,w) ≡ exp

{
−x− χ

λ

}
I{x>χ}(x)

can be used.

With likelihood (1.1), the LARK model is defined as

η(x) ≡
∫

Ω

g(x,w)L(dw)

L|θ ∼ Levy(ν)

θ ∼ πθ(dθ),

where Levy(ν) denotes the generating process for the Levy random measure

L having the characteristic function (2.4) and ν(dβ, dw) is a Levy measure

satisfying L1 integrability condition. The conditional distribution for Y has

a hyperparmeter vector θ, and πθ denotes the probability distribution of θ.

In all of examples using the LARK model, a product measure ν(dβ, dw) =

νβ(β)dβ|Ω|πw(dw) is used, with πw(·) a probability measure on Ω, |Ω| a mea-

sure of the volume of Ω, and νβ(·) > 0 a nonnegative function on R. Gamma,

symmetric Gamma, and symmetric α-stable Levy measures are used for ex-

amples. In these examples, ν(R × Ω) < ∞ condition is not satisfied, so they

adopt a truncation method in order to approximate the Levy measure to a

finite Levy measure. Truncated - finite version of Levy measure is used for
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practical inference process in the LARK model.

The LARK model is a novel Bayesian function estimation model with an

overcomplete system. However, the LARK model could not parsimoniously

represent smooth functions having discontinuities although it has overcom-

pleteness. This is because that the LARK model uses an overcomplete system

composed by single type of kernel. To extend the LARK model, we propose a

model using an overcomplete with many types of kernel.

2.3 Levy adaptive regression with mutiple ker-

nels (LARMuK)

2.3.1 Structure of proposed model

In this section, we describe the propose model, the nonparametric regression

model whose mean function is expressed by an integral of a Levy random mea-

sure with multiple kernels. We consider three types of kernels, Haar, Laplacian,

and Gaussian, for composing an overcomplete system. The Gaussian, Lapla-

cian and Haar kernels are for smooth part, sharp peaks and jumps of the

function, respectively.

The LARMuK model is extended from the LARK model by combining the

type configuration c. Let θ ≡ (w, c) ∈ Ω′ ≡ Ω × {0, 1, 2} and the generating

function is denoted by

g(x,θ) = gc(x,w) (2.7)

where gc represents Haar, Laplacian or Gaussian kernel depending on the value
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of c = 0, 1, 2. Let

g0(x,w) ≡ I{|x−χλ |≤1}(x), (2.8)

g1(x,w) ≡ exp

{
−|x− χ|

λ

}
, (2.9)

g2(x,w) ≡ exp

{
−(x− χ)2

2λ2

}
, (2.10)

where w = (χ, λ) is the parameters of the generating function, and χ and λ

are the center and scale parameter, respectively.

Generating functions of the LARMuK model also can be represented by a

linear combination of three kernels whose coefficients follow the multinomial

distribution with parameters (p0, p1, p2), i.e.,

g(x,θ∗) = z0g0(x,w) + z1g1(x,w) + z2g2(x,w), (2.11)

(z0, z1, z2) ∼ Multi(1, (p0, p1, p2)),

where θ∗ ≡ (w, z) ∈ Ω∗ ≡ Ω×Ω1, Ω1 is support of a multinomial distribution

with the number of trial 1. By this reason, we usually call the generating

function of the LARMuK model as the multiple kernel.

The mean function is defined as

η(x) ≡
∫

Ω′
g(x,θ)L(dθ),
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and the randomness of a mean function is determined from the Levy random

measure,

L ∼ Levy(ν(dβ, dθ))

where ν(dβ, dθ) is a Levy measure satisfying M ≡ ν(R×Ω′) <∞. The mean

function can be represented as a random finite sum,

η(x) =
J∑
j=1

gcj(x,wj)βj,

where J ∼ Poi(M) and (βj,θj)
iid∼ π(dβ, dθ) ≡ ν(dβ, dθ)/M . In this paper, we

consider

π(dβ, dθ) = N(β; 0, σ2
β)dβ · Unif(χ;X )dχ ·Ga(λ; aλ, bλ)dλ · Cat(c; p0, p1, p2).

While the LARK model considered Levy measures whose the total mass

may not be finite, we consider only finite Levy measures in the LARMuK

model. The total mass of Levy measure acts as a device of regularization, finite

total mass may prevent overfitting by controlling the number of parameters.
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Below we summarize the LARMuK model:

Yi|xi
ind∼ N(η(xi), σ

2) i = 1, 2, · · · , n,

η(x) = β0 +
J∑
j=1

gcj(x,wj)βj,

J ∼ Poi(M),

βj
iid∼ N(0, σ2

β), j = 1, 2, · · · , J,

wj ≡ (χj, λj)
iid∼ Unif(X ) ·Ga(aλ, bλ), j = 1, 2, · · · , J,

cj
iid∼ Cat(p0, p1, p2), j = 1, 2, · · · , J,

σ2 ∼ IG

(
r

2
,
rR

2

)
,

M ∼ Ga(aγ, bγ),

(2.12)

and for the simplicity, we set β0 = Ȳ .

2.3.2 Prior

We use the term “feature” for parameters (β, χ, λ, c) which compose the func-

tion. The number of features J follows Poisson distribution whose mean is the

total mass of Levy measure, and the total mass follows gamma distribution

with shape parameter aγ and rate parameter bγ. By the gamma-Poisson mix-

ture, J ∼ NB(aγ, 1/(bγ + 1)). With the negative binomial distribution for J ,

the variance of J becomes larger than that of Poisson distribution.

The parameter β representing the coefficient depends on a difference be-

tween the maximum and the minimum value of the outcomes. i.e.,

β ∼ N(0, σ2
β), σβ ≡ (max(Yi)−min(Yi))/2.
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The parameter χ which denotes center of a generating function is assumed to

follow a uniform distribution over the covariate space. In words,

χ ∼ Unif(X ).

The scale parameter of a generating function λ follows a gamma distribution

with the scale parameter aλ and the rate parameter bλ. i.e.,

λ ∼ Ga(aλ, bλ).

Since aλ and bλ control features determining the smoothness of η(x), they play

a similar role as a bandwidth in kernel smoothing. c is a configuration parame-

ter indicating a type of kernel. c is assumed to follow a categorical distribution

with probability (p0, p1, p2). When probability (p0, p1, p2) are fixed at (1, 0, 0),

the LARMuK model is same as the LARK model using Haar kernel only,

(0, 1, 0) and (0, 0, 1) cases are equivalent to the LARK model using Laplacian

kernel and Gaussain kernel only, respectively. We may control this probability

in order for a mean function to posses a larger number of certain types of

kernel. Examples of the LARMuK prior realizations with different cases for

probability are shown in Figure 2.1. The number on top of each figure denotes

the total number of features used for a realization.

Prior positivity

In this section, we will prove the LARMuK model has sufficiently large support

including discontinuous function with finite jumps. Recall ν is a finite measure

on R × Ω′, L ∼ Levy(ν) and the generating function is defined as (2.7). For
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(a) p0 = p1 = p2 = 1
3 (b) p0 = 98

100 , p1 = p2 = 1
100

(c) p1 = 98
100 , p0 = p2 = 1

100 (d) p2 = 98
100 , p0 = p1 = 1

100

Figure 2.1: Examples of LARMuK prior realization with different configura-
tion probability. The number on the top of each figure denotes the number of
features used for a realization.

the simplicity, suppose X = [0, 1]. Define

Θ = {η ∈ D[0, 1] : η(x) ≡
J∑
j=1

gcj(x,wj)βj, J ∈ N, βj ∈ R, (wj, cj) ∈ Ω′}

where D[0, 1] is the space of cadlag functions on [0, 1], right continuous func-

tions with left limits. Let Θ̄ be the closure of Θ and B(Θ̄) be the associated

21



Borel σ-field. For η0 ∈ Θ, denote the ball of radius δ of η0 by

Bδ(η0) ≡ {η ∈ Θ̄ : ||η − η0||∗ < δ}

where || · ||∗ is a norm defined by Skorokhod metric.

The following theorem shows that the LARMuK model has full support in

the sense of Skorokhod metric.

Theorem 2.3.1. Let ν be a finite measure with support R × Ω′ and L ∼

Levy(ν). Let Π be a probability measure on (Θ̄,B(Θ̄)) induced by the LARMuK

model. Then for all δ > 0, Π(Bδ(η0)) > 0 for every η0 ∈ Θ.

Proof. Without loss of generality, we assume D[0, 1] is complete with respect

to Skorokhod metric since there exists a topologically equivalent metric which

D[0, 1] is complete. Then, Θ̄ is a complete set because Θ̄ is a subset of D[0, 1]

and closed, and Θ is dense in Θ̄.

Let fix δ > 0. For η0 ∈ Θ̄, there exists Jδ ∈ N and {β∗j , wj∗, c∗j}
Jδ
j=1 satisfying

||η0(x)−
Jδ∑
j=1

gc∗j (x,w
∗
j )β
∗
j || < δ/2.

Let M0 ≡
∑Jδ

j=1 |β∗j | < ∞ and κ ≡ sup |gc(x,w)| < ∞. Define ε = δ
2(κ+M0)

. In

Skorokhod topology, there exists ε′ s.t.

||w − w′|| < ε′ ⇒ max
l
||gl(x,w)− gl(x,w′)||∗ < ε

for all x ∈ [0, 1].
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Now, define

B′δ(η0) ≡ {η : η(x) =

Jδ∑
j=1

gcj(x,wj)βj,

Jδ∑
j=1

|βj − β∗j | < ε, ||wj − w∗j || < ε′, c∗j = cj,∀j}.

For the proof of this theorem, we need next lemmas.

Lemma 2.3.2.

B′δ(η0) ⊂ Bδ(η0).

Proof. For any η ∈ B′δ(η0), η =
∑Jδ

j=1 gc∗j (x,wj)βj.

||η(x)−
Jδ∑
j=1

gc∗j (x,w
∗
j )β
∗
j ||∗

≤
Jδ∑
j=1

||gc∗j (x,wj)βj − gc∗j (x,w
∗
j )β
∗
j ||∗

≤
Jδ∑
j=1

||gc∗j (x,wj)βj − gc∗j (x,wj)β
∗
j ||∗ +

Jδ∑
j=1

||gc∗j (x,wj)β
∗
j − gc∗j (x,w

∗
j )β
∗
j ||∗

≤
Jδ∑
j=1

||gc∗j (x,wj)||∗ · |βj − β
∗
j |+

Jδ∑
j=1

||gc∗j (x,wj)− gc∗j (x,w
∗
j )||∗ · |β∗j |

≤ κ

Jδ∑
j=1

|βj − β∗j |+
Jδ∑
j=1

max
l
||gl(x,wj)− gl(x,w∗j )||∗ · |β∗j |

≤ κ

Jδ∑
j=1

|βj − β∗j |+ ε

Jδ∑
j=1

|β∗j |

≤ κε+ εM0 = (κ+M0)ε = δ/2.
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By triangular inequality,

||η − η0||∗ ≤ ||η −
Jδ∑
j=1

gc∗j (x,w
∗
j )β
∗
j ||∗ + ||

Jδ∑
j=1

gc∗j (x,w
∗
j )β
∗
j − η0||∗ < δ

holds.

Lemma 2.3.3.

Π(B′δ(η0)) > 0.

Proof.

Π(η ∈ B′δ(η0)) = Π

(∫ ∫ ∫
R×Ω×{0,1,2}

gc(x,w)βN(dβ, dw, dc) ∈ B′δ(η0)

)
= P

[
J∑
j=1

gcj(x,wj)βj ∈ B′δ(η0)

]

= P

[
Jδ∑
j=1

|βj − β∗j | < ε, ||wj − w∗j || < ε′, cj = c∗j , J = Jδ

]

= P

[
Jδ∑
j=1

|βj − β∗j | < ε, ||wj − w∗j || < ε′, cj = c∗j , J = Jδ|J = Jδ

]
×P [J = Jδ]

> P
[
|βj − β∗j | < ε/Jδ, ||wj − w∗j || < ε′, cj = c∗j (j = 1, · · · , Jδ)|J = Jδ

]
×P[J = Jδ]

=

Jδ∏
j=1

(∫
|β−β∗j |<ε/Jδ

πβ(β)dβ ·
∫
||w−w∗j ||<ε′

πw(w)dw · p(c = c∗j)

)

×M
JδeM

Jδ!
.

Since πβ(β) = N(β; 0, σ2
β), πw(w) = Unif(χ;X )·Ga(λ; aλ, bλ), c ∼ Cat(p0, p1, p2)
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in the LARMuK model, above expression is always bigger than 0.

Therefore,

Π(Bδ(η0)) ≥ Π(B′δ(η0)) > 0

and the proof of Theorem 2.3.1 is done.

The next theorem says that discontinuous functions having a finite number

of jumps on [0, 1] are included in the support of the LARMuK model.

Theorem 2.3.4. A prior distribution Π defined by the LARMuK model has

positive probability on the neighborhood of discontinuous functions having finite

jumps.

Proof. By Theorem 2.3.1, it suffices to show a collection of discontinuous func-

tions having finite jumps is included in Θ̄.

Let

FL = {f ∈ C[0, 1] : f(x) =
J∑
j=1

g1(x,wj)βj, J ∈ N, βj ∈ R, wj ∈ Ω},

FG = {f ∈ C[0, 1] : f(x) =
J∑
j=1

g2(x,wj)βj, J ∈ N, βj ∈ R, wj ∈ Ω},

and F ≡ FL
⊕
FG.

Suppose X = [0, 1] and a discontinuous function on [0, 1] having p number

of jumps can be defined as

η(x) = f(x) +

p∑
j=1

ujI(sj < x ≤ 1)
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where uj ∈ R, sj ∈ [0, 1), and f ∈ F . Define

Θp = {η ∈ D[0, 1] : η(x) = f(x) +

p∑
j=1

ujI(sj < x ≤ 1), f ∈ F , uj ∈ R, sj ∈ [0, 1)}.

When support of ν(dw) includes [1
2
, 1)× (0, 1

2
], for all sj ∈ [0, 1) I(sj < x ≤

1) is equivalent to Haar kernel with χj =
1+sj

2
, λj =

1−sj
2

. Also, f ∈ F can be

represented by finite sum of Laplacian and Gaussian kernel, all elements of Θp

can be represented by elements definining Θ̄. This means Θp ⊂ Θ̄, therefore

the proof is done.
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2.4 Algorithm

The posterior distribution of the model (2.12) is as follows.

[β,w, c, J,M, σ2|Y] (2.13)

∝ [Y|η, σ2]× [β,w, c|J ]× [J |M ]× [M ]× [σ2]

∝

[
(σ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(Yi − β0 −
J∑
j=1

gcj(xi, wj)βj)
2

}]

×

[
exp

{
− 1

2σ2
β

J∑
j=1

β2
j

}]
×

[
1

|X |J
J∏
j=1

I(χj ∈ X )

]

×

( J∏
j=1

λj

)aλ−1

exp

{
−bλ

J∑
j=1

λj

}× [( J∏
j=1

pcj

)]

×
[
MJ

J !
exp{−M}

]
×
[
Maγ−1 exp{−bγM}

]
×
[
(σ2)−

r
2

+1 exp

{
− rR

2σ2

}]
.

Since features may have the varying dimension in the LARMuK model,

we use reversible jump Markov chain Monte Carlo (RJMCMC) method for

posterior computation (Green (1995)). Denote ξ ≡ {ξj}j=1,··· ,J where ξj =

(βj, χj, λj, cj). A proposal distribution moves the number of features J to one

of cases among J − 1, J and J + 1, which are called the death, walk or birth

step, respectively. A form of proposal distribution q is

q(ξ′|ξ) = pB · qB(ξ′|ξ) + pD · qD(ξ′|ξ) + pW · qW (ξ′|ξ),

where pB, pD, and pW are the probabilities of choosing birth, death, and walk
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step, respectively. When current ξ have J number of features, the proposal

distribution for each step is defined by

qB(ξ′|ξ) = b(ξJ+1)× 1

J + 1
, (2.14)

qD(ξ′|ξ) =
1

J
,

qW (ξ′|ξ) = qW (ξ′r|ξr) for some r,

where b(ξ) is a distribution generating a new feature. In birth step, we assume

the new feature is located in the last order. In death and walk step, randomly

chosen r-th feature is deleted and changed, respectively.

Since q is a mixture of three proposal distributions, it is enough to get the

acceptance ratio at each step. Jacobian is 1 in all cases. Recall J ∼ Poi(M),

and donote
∏J

j=1 π(dβj, dθj) as Π(ξ).

Birth step It is selected with probability pB. If birth step is accepted, change

J into J + 1 and place a new feature ξJ+1 in the last order. ξJ+1 is generated

from b(ξ). The acceptance ratio is min
{

1, L(Y|ξ′)Π(ξ′)q(ξ|ξ′)
L(Y|ξ)Π(ξ)q(ξ′|ξ)

}
, where

L(Y|ξ′)Π(ξ′)q(ξ|ξ′)
L(Y|ξ)Π(ξ)q(ξ′|ξ)

=
L(Y|ξ′)
L(Y|ξ)

× π(ξJ+1)M

J
× pD
pB × b(ξJ+1)

.

Death step It is selected with probability pD. If death step is accepted,

randomly select an index r of one of J indices and delete the corresponding

feature ξr. The acceptance ratio is min
{

1, L(Y|ξ′)Π(ξ′)q(ξ|ξ′)
L(Y|ξ)Π(ξ)q(ξ′|ξ)

}
, where

L(Y|ξ′)Π(ξ′)q(ξ|ξ′)
L(Y|ξ)Π(ξ)q(ξ′|ξ)

=
L(Y|ξ′)
L(Y|ξ)

× J

π(ξr)M
× pB × b(ξr)

pD
.
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Walk step It is selected with probability pW . If walk step is accepted, ran-

domly select one index r and update corresponding feature ξr. The dimension

of features are maintained. Updating procedure in this step is totally equiv-

alent to general Metropolis-Hasting (MH) updating. The acceptance ratio is

min
{

1, L(Y|ξ′)Π(ξ′)q(ξ|ξ′)
L(Y|ξ)Π(ξ)q(ξ′|ξ)

}
, where

L(Y|ξ′)Π(ξ′)q(ξ|ξ′)
L(Y|ξ)Π(ξ)q(ξ′|ξ)

=
L(Y|ξ′)Π(ξ′)qW (ξr|ξ′r)
L(Y|ξ)Π(ξ)qW (ξ′r|ξr)

.

When using independent proposal distribution for qW (ξ′|ξ), and set qW (ξ′) =

π(ξr), acceptance ratio is equivalent to likelihood ratio.

In the birth and death step, setting b(ξ) = π(ξ) makes acceptance ratio

much simpler because some factors - the likelihood ratio, the number of fea-

tures in current state, mean of the number of features, and pB or pD - would

determine the acceptance ratio. In addition, when pB = pD, the acceptance ra-

tio is determined by the likelihood ratio and some values related to the number

of features. However, it is better to set b(ξ) 6= π(ξ) for mixing in practice.

In walk step, Gibbs sampling is used. χ and λ are updated by MH al-

gorithm, while β and c are directely sampled from their conditional posterior

distribution. Both σ2 and M are also able to be sampled from their conditional

posterior distribution by using conjugacy. Details are the followings.

29



(Sampling β)

[βk|β−k, others,Y]

∝ exp

− 1

2σ2

n∑
i=1

(
Yi − β0 −

J∑
j=1

gcj(xi, wj)βj

)2
× exp

{
− 1

2σ2
β

β2
k

}

= exp

− 1

2σ2

n∑
i=1

(
βkgck(xi, wk)− (Yi − β0 −

∑
j 6=k

gcj(xi, wj)βj)

)2

− 1

2σ2
β

β2
k


= exp

{
− 1

2σ2

(
β2
k

n∑
i=1

gck(xi, wk)
2 − 2βk

n∑
i=1

(
Yi − β0 −

∑
j 6=k

gcj(xi, wj)βj

)
· gck(xi, wk)

)}

× exp

{
− 1

2σ2
β

β2
k

}

= exp

{
−1

2

(∑n
i=1 gck(xi, wk)

2

σ2
+

1

σ2
β

)
β2
k

}

× exp

{(∑n
i=1(Yi − β0 −

∑
j 6=k gcj(xi, wj)βj) · gck(xi, wk)

σ2

)
βk

}
.

Therefore, posterior distribution of βk is

βk ∼ N(µβk , σ
2
βk

)

with

1

σ2
βk

=

∑n
i=1 gck(xi, wk)

2

σ2
+

1

σ2
β

,

µβk = σ2
βk
×
∑n

i=1(Yi − β0 −
∑

j 6=k gcj(xi, wj)βj) · gck(xi, wk)
σ2

.
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(Sampling σ2)

[σ2|others,Y] ∝ (σ2)−(n+r)/2+1 exp

− 1

2σ2

( n∑
i=1

(Yi − β0 −
J∑
j=1

gcj(xi, wj)βj

)2

+ rR

 .

Therefore, posterior distribution of σ2 is

σ2 ∼ IG

(
r0

2
,
r0R0

2

)

with

r0 = r + n,

R0 =

∑n
i=1(Yi − β0 −

∑J
j=1 gcj(xi, wj)βj)

2 + rR

r0

.

(Sampling M)

[M |others] ∝MJ+aγ−1 exp{−(1 + bγ)M}.

Therefore, posterior distribution of M is

M ∼ Ga(aγ0, bγ0)

with

aγ0 = aγ + J,

bγ0 = bγ + 1.

31



(Sampling c)

[ck = l|c−k, others,Y] ∝ exp

− 1

2σ2

n∑
i=1

(
Yi − β0 −

∑
j 6=k

gcj(xi, wj)βj − gck=l(xi, wk)βk

)2


×pl.

Therefore, posterior distribution of ck is

ck ∼ Cat(pk0, pk1, pk2),

for each l = 0, 1, 2, posterior probability pkl = P[ck = l] can be obtained by

normarizing above expressions.

2.5 Data analysis

The models for comparison to the LARMuK model denote as SP-# (B-spline

basis regression with # knots), K (Nadaraya–Watson kernel smoothing with a

Gaussian kernel), WT-S (wavelet basis regression using DWT with soft thresh-

olding), WT-H (wavelet basis regression using DWT with hard thresholding),

BPP-#1-#2 (Bayesian curve fitting using piecewise polynomial with degree

l =#1, l0 =#2 ; Denison et al.,1998), BARS-# (Bayeian adaptive regresson

spline with order #; DiMatteo et al.,2001), and LK-H, LK-L, LK-G (the LARK

model using Haar, Laplacian, Gaussian kernel, respectively). Functions are fit-

ted in R using packages with default options. For the thresholding of wavelet

basis regression, empirical Bayes thresholding is used. The LARK model could

be considered as a special case of LARMuK model in which one of configuration
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probability p0, p1, p2 equal 1. The LARMuK model is denoted as LMK.

The comparison of the LARMuK model with other competing methods

in the simulation and real data analysis shows that the LARMuK model has

flexibility and parsimony. It is flexible for it can estimate discontinuous func-

tions as well as continuous functions and parameters need not to be controlled

depending on the shape of functions. It is parsimonious for the fitted curve has

small number of features. The fact that the LARMuK model adaptively select

features affects flexibility and parsimony of the model.

2.5.1 Simulation data analysis

In simulation study, the mean squared error

MSE =
1

n

n∑
i=1

(η(xi)− η̂(xi))
2

is used to compare with the performance of competing models

The MCMC samples are generated from the posterior with 5 chains of

200,000 iterations. For each chain, the first 100,000 samples were discarded as

burnin and for the remaining samples one in every 100 iteration is selected,

resulting in 1,000 samples for each chain. The average of the posterior curves

is used for the estimate of the mean function. The performance of each model

was measured by average of the MSE.

We examined how the estimates of 5 chains are different from the estimate

of one chain. Since the estimated mean functions were not much different from

each others, we could say that the identifiability problem which is inherent in

overcomplete representation, is not so controversal in estimating mean func-
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tions. Thus, posterior samples of first chain were actually used for estimating

function in data analysis.

Functions with same type of elements: Bumps, Blocks, Doppler

Bumps, Blocks and Doppler test functions of Donoho and Johnstone (1994)

were used for examples. Each mean function may be assumed to consist of

same-shaped elements. For example, Bumps test function is composed by spike-

shaped elements. Data were generated from each test function by adding Gaus-

sian random errors at n = 128 equally spaced points on X = [0, 1]. The original

data was standardized before estimation. The signal-to-noise ratio (SNR) is set

at 5 and 10.

When p0 = p1 = p2 = 1
3

is set for configuration probability, fitted curves

of LARMuK model are in Figure 2.2. Fitted curves of LARMuK model look

similar to those of LARK model which select specific type of kernel in each

case. This results show that the LARMuK model is flexible and can be used

as off-the-shelf method, for the user does not need to select a type of kernel in

advance.

Figure 2.3 shows the fitted curves of LARMuK model and those of BARS-1

in each test function. The shape of curves are very similar to each other, but the

(posterior mean of) number of features used for fitting curves in the LARMuK

model are much less than the (posterior mean of) number of knots used in

BARS-1 (Table 2.1). Nevertheless, MSE of LARMuK model are consistently

smaller than the other models (Table 2.2). These results indicate inherent

parsimony of the LARMuK model.
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Figure 2.2: First row: estimated three test functions (Bumps, Blocks, and
Doppler functions) using LMK with configuration probability, p0 = p1 = p2 =
1
3
. Second row: estimated three test functions using LK with Haar, Laplacian,

Gaussian kernel, respectively. SNR=5 is set.

Figure 2.3: First row: estimated three test functions (Bumps, Blocks, and
Doppler functions) using LMK with configuration probability, p0 = p1 = p2 =
1
3
. Second row: estimated three test functions using BARS-1. SNR=5 is set.
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Table 2.1: The (posterior mean of) number of features or knots of fitted curves
using LMK and BARS-1.

Model
Bumps Blocks Doppler

SNR=5 SNR=10 SNR=5 SNR=10 SNR=5 SNR=10

LMK 6 13 14 19 16 31
BARS-1 22 31 24 26 22 32

Table 2.2: MSE for the estimated mean function of each model

Model
Bumps Blocks Doppler

SNR=5 SNR=10 SNR=5 SNR=10 SNR=5 SNR=10

LMK 0.033 0.012 0.013 0.003 0.029 0.008
LK 0.031 0.047 0.005 0.003 0.036 0.019
BPP-1-0 0.135 0.110 0.040 0.024 0.043 0.422
BPP-2-0 0.091 0.074 0.038 0.010 0.032 0.021
BPP-2-1 0.288 0.313 0.066 0.063 0.027 0.015
BPP-2-2 0.971 0.961 0.132 0.137 0.083 0.068
BARS-1 0.041 0.005 0.035 0.003 0.029 0.009
BARS-2 0.991 0.991 0.103 0.078 0.042 0.036
BARS-3 0.992 0.991 0.312 0.226 0.073 0.075
WT-S 0.066 0.043 0.033 0.027 0.032 0.018
WT-H 0.150 0.045 0.013 0.049 0.029 0.013
SP 0.767 0.787 0.073 0.557 0.045 0.027
K 0.478 0.061 0.065 0.127 0.035 0.126
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Functions with the different types of elements : Blip, Multi, Heavi-

sine

In the second example, each mean function is assumed be a mixture of different

type of elements. For example, Blip data is generated from a function consist

of lines, curves, jumps, and constants (Antoniadis et al. (2001)). In this paper,

we call the function having property that derivatives are much different along

the covariate space as “multi-scale function”. Multi data is generated from a

smooth but multi-scale function. This kind of function is known to be difficult

to fit by nonparametric regression models. Multi data do not have jumps, but

we considered this example to illustrate that how the LARMuK model fit

arbitrary function well.

Heavisine data can be easily found in digital modulation. Phase shift key-

ing is one of the methods used when transmitting digital signals over analog

channels. Quadrature phase shift keying (QPSK) is well-known method for

digital modulation. This modulation scheme produces a signal with a binary

or quadrature signal added to the carrier. Carrier is a periodic function with a

specific frequency, and this periodic function is changed by a binary or quadra-

ture signal. The shape of the modulated signal is mixture of binary functions

and periodic functions. In fact, since the carrier and signal types used in QPSK

are known in advance, the LARMuK model may not have good performance

compared to the other models which are optimized for this type of data. How-

ever, in order to see how well functions with jumps are estimated, Heavysine

data was used for example.

The data were generated from each function by adding Gaussian random

errors at n = 128 equally spaced points on X = [0, 1]. Original data was
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not standardized. Signal-to-noise ratio (SNR) set 5, meanwhile SNR set 10 in

Heavisine data in order to discriminate jump signal and noise well. Formulas

of the three functions - Blip, Multi and Heavisine are:

Blip

f(x) =


0 x = 0

0.32 + 0.6x+ 0.3e−100(x−0.3)2
0 < x < 0.8

−0.28 + 0.6x+ 0.3e−100(x−1.3)2
0.8 ≤ x ≤ 1

Multi

f(x) = 3

{
sin(x) +

sin(π(x− 5))

π(x− 5)
+

sin(5π(x− 2))

5π(x− 2)
+ 1

}

Heavisine

f(x) = 4 sin(4πx)− 4sgn(x− 0.1)− 2sgn(x− 0.3) + 4sgn(x− 0.5) + 2sgn(x− 0.7),

where sgn(x) is a function with a value of 1 if x is greater than or equal to 0,

or a value of -1 if less than 0. True functions are in Figure 2.4.

In Figure 2.5, we find out that the LARMuK model estimates Blip and

Heavisine function well, but the LARK model can not estimate these functions

properly no matter what type of kernel is selected. The LARK model could

not fit jump regions when it use a continuous type of kernel (Gaussian kernel),

and it may not estimate continuous regions with a discontinuous type of kernel

(Haar kernel).
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Figure 2.4: From left to right, figures are Blip, Multi, and Heavsine functions,
respectively.

Figure 2.5: First row: estimated Blip functions of LMK and LK-H, LK-G,
respectively. Second row: estimated Heavisine functions of LMK and LK-H,
LK-G, respectively
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Table 2.3: MSE for the estimated mean function of each model

Model Blip Multi Heavisine

LMK 0.005 0.008 0.002
LK-G 0.035 0.049 0.012
BPP-1-0 0.019 0.043 0.010
BPP-2-0 0.034 0.038 0.010
BPP-2-1 0.015 0.019 0.006
BPP-2-2 0.046 0.022 0.010
BARS-1 0.005 0.016 0.007
BARS-2 0.032 0.013 0.013
BARS-3 0.030 0.013 0.012
WT-S 0.038 0.057 0.007
WT-H 0.030 0.019 0.011
SP-20 0.061 0.044 0.010
SP-50 0.032 0.019 0.009

Figure 2.5 and Table 2.3 show that the performance of the LARMuK model

is superior comparing with other models. The estimated function of LARMuK

model captures jumps as well as smooth regions, and the MSE are much small

than other competing models. Surprisingly, p0 = p1 = p2 = 1
3

were used for

configuration probability in all examples, Blip, Multi and Heavysine data. This

means that functions would be estimated without controlling model specifica-

tions in the LARMuK model. This represents the flexibility of the LARMuK

model.

Figure 2.6 illustrates the adaptiveness of LARMuK model. This type of

data is known not to be fitted well by conventional models. Fitted curves

of Multi data using the LARMuK model are compared with those using B-

spline basis regression with 20 and 50 knots. In Figure 2.6, we find out that

the selected features are adaptively scattered in the LARMuK model. This
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Figure 2.6: From left to right, figures are fitted curves using LMK and SP-20,
SP-50, respectively. Blue dotted vertical lines denote the center features or
knots.

property makes the LARMuK model be parsimonious and flexible.

2.5.2 Real data analysis

To further illustrate the LARMuK model, we analyzed a sensor data. Sensor

data refers to signal data obtained from sensors responding to factors like

humidity, temperature, and motion. Signals may not move continuously when

sudden changes occur. In the case of sensor that responds to motion, jumps may

occur when some movements are detected. Or a signal related to temperature

is suddenly changed when fire starts. It is important to detect and examine

these signals because we may not see what actually happened at that time. We

are able to sense the occurrences of events only through the signal patterns.

There are models for special types of signal, but few models are applicable for

general types of signal.

Figure 2.7 is a record of the temperature signal from one sensor. We can

easily find out there are at least two jumps by eyes. The total number of

observations is n = 512 and randomly chosen 20%, 50% of dataset are used as

test sets for validation.

41



Figure 2.7: Temperature signal from one sensor

Figure 2.8 and 2.9 show the predicted curves of the LARMuK model and

those of the LARK model using each of the three types of kernel. In the LARK

model using the Haar kernel, the locations of the jumps are captured well but

the the continuous regions are fitted as piecewise constant functions. On the

other hand, for the case of LARK model with the Laplacian or Gaussian kernel,

the continuous regions are reasonably fitted, but jumps are not estimated at

all. These results would give us distorted interpretation of signal. When the

signal is fitted with continuous curve only, some important information, such as

when the signal jumped, what factor caused the signal to suddenly move, may

lose. However, the LARMuK model could capture discontinuities and preserve

them in predicted curve, thus we could understand the signal without losing

information.

From the Table 2.4, the LARMuK model have more small MSE than others.
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Figure 2.8: From top left to bottom right, using 80% of dataset as traing set,
curves are predicted by LK-H, LK-L, LK-G and LMK. Grey circles indicate
original dataset, red circles denote training set, green line is the predicted
curve.
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Figure 2.9: From top left to bottom right, using 50% of dataset as traing set,
curves are predicted by LK-H, LK-L, LK-G and LMK. Grey circles indicate
original dataset, red circles denote training set, green line is the predicted
curve.
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Table 2.4: MSE for the predicted mean function of each model.

Model LMK LK-H LK-L LK-G

20% 0.0074 0.0207 0.0078 0.0089
50% 0.0092 0.0107 0.0094 0.0103

Table 2.5: The (posterior mean of) number of features or knots of predicted
curves using each method. 20% denotes that twenty percent of the total dataset
is used for the test set.

Model LMK LK-H LK-L LK-G BARS-1 BARS-2 BARS-3

20% 23 24 34 25 54 24 18
50% 15 21 17 14 48 20 16

Even if the mean function have jump discontinuities, the number of features

used in the LARMuK model is as small as those of the LARK model using

Gaussian kernel (Table 2.5). This means that the LARMuK model selects

features in considerably adaptive way.

In simulation example, BARS-1 and BPP-2-0 have also small MSE thus

they may be considered appropriate for estimating functions having disconti-

nuities. However, BARS-1 and BPP-2-0 make predicted curves to be wiggling.

This is because selection procedure of knots heavily depends on the num-

ber of observations. They tend to choose many parameters than LARMuK

model when the number of observation increases. Figure 2.10 shows these phe-

nomenons. Additionally, they are meaningless in real data examples with jumps

because they can not adaptively select the smoothness of the curve along the

covariate space. Once the user determines the degree of smoothness in advance,

it must be used in the entire covariate space. Furthermore, users can not really

know how smooth the underlying functions are. This causes model selection
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Figure 2.10: From left to right, in each training set (80%, 50% of dataset),
figures are predicted curves of BARS-1, BPP-2-0 and LMK, respectively. Grey
circles indicate original dataset, red circles denote training set, line is predicted
curve of each model. Blue dotted vertical lines denote knots or center features.

problem.

2.6 Discussion

We proposed the LARMuK model which is an extension of the LARK model.

The LARMuK model uses an overcomplete system with multiple kernels in

order to parsimoniously represent functions, especially discontinuous functions.

In particular, we used three types of kernel; Haar, Laplacian, and Gaussian

kernels are used to compose an overcomplete system.

Theories and data analysis confirm that LARMuK model can aptly esti-

mate a large range of functions including continuous functions and discontin-

uous functions. The LARK model with one kernel sometimes suffers difficulty

of parsimoniously representing functions with regionally different smoothness
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properties. By using multiple kernels, the LARMuK model however can parsi-

moniously represent such functions. In addition, since the estimated functions

are composed by the small number of kernels, fitted curves can be understood

in a natural way. Nevertheless, the LARMuK model is superior in performance

than any other model.

One drawback of the LARMuK model is that RJMCMC used for inference.

Sampling procedure from the posterior distribution is slow in mixing and is

time-consuming. We need to improve the inference process by using other

approaches such as optimization instead of sampling. Variational method is a

promising computation method.

Asymptotic theory such as posterior consistency has not been proved yet.

Future task will be to prove theoretical basis such as posterior consistency and

posterior convergence rate as well as some connection with other mathematical

theories like connection with RKHS.
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Chapter 3

Stochastic variational inference

for the LARMuK model

3.1 Introduction

Variational method is often useful in nonparametric Bayesian model, includ-

ing Dirichlet Process (Blei and Jordan, 2004) and Gaussian Process (Winther,

2000). Variational method may change the sampling-based inference into de-

terministic problem, inference for models would be involved optimization.

Eventhough the LARMuK model is attractive for function estimation,

sampling-based inference is challenging. For this reason, we suggest an al-

ternative method to infer the LARMuK model using variational method.

There are some problems when we bring variational method for the LAR-

MuK model. First, it is difficult to update some variational distributions for

variables lying inside generating functions. Second, since the number of fea-

tures is also random in the LARMuK model, optimizing features induced by
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the number of features are intractable. In this chapeter we will show that varia-

tional EM method adding probabilistic procedure can mitigate these problems,

In particular, simulated annealing algorithm is used for probabilistic procedure.

We call the proposed variational method as stochastic variational method.

The paper is organized in the following order. In section 2 general varia-

tional method is introduced, and relationship between variational method and

EM method is discussed. In section 3, we explain simulated annealing algo-

rithm. In section 4, stochastic variational method for the LARMuK model is

illustrated. A simulation study and a real data analysis are given in section

5. In the final section, conclusions and problems for further researches are

discussed.

3.2 Variational method in general

Variational method approximates the true posterior via a simpler distribu-

tion and changes sampling-based inference into a deterministic optimization

problem. In variational method, the closest distribution to the posterior dis-

tribution is used as a proxy for the true posterior. “Close” means that the

Kulback-Leibler divergence between a proxy and the true posterior distribu-

tion is as small as possible. Typically, some classes of distributions are consid-

ered for the set of candidates of a proxy. We call this as the class of variational

distributions, and the closest member to the posterior distribution is called the

optimal variational distribution.

If we assume all variables are independent of each other in the class of joint

variational distributions, a joint variational distribution can be expressed as
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the product of marginal variational distributions. This is called factorization.

Factorization usually makes inference procedure be tractable, while correla-

tions between variables could not be captured anymore.

Let assume that there are two variables, θ and z. Observations are denoted

by x. Denote the joint posterior distribution as p(θ, z|x) and a joint variational

distribution as q(θ, z). The optimal joint variational distribution is obtained

from the following optimization procedure:

q̂(θ, z) = arg min
q

KL(q||p(θ, z|x)) =

∫ ∫
log

q(θ, z)

p(θ, z|x)
q(θ, z)dθdz.

The best q̂ is the posterior distribution. However, in most of cases the form

of posterior distribution is intractable. In order to make problem simple, a

specific class of q would be considered in variational method.

Let define

J(q) ≡ KL(q||p(θ, z, x)) = KL(q||p(θ, z|x))− log p(x).

Since log p(x) is constant with respect to q, finding q̂ minimizesKL(q||p(θ, z|x))

is equivalanet to finding q̂ which minimizes J(q). We can easily find out that

log p(x) + J(q) = KL(q||p(θ, z|x)) ≥ 0

holds because Kulback-Liebler divergence is always equal or greater than 0.

This means −J(q) is a lower bound of log p(x), the ELBO (evidence lower
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bound) is defined as

L(q) ≡ −J(q) = −KL(q||p(θ, z, x)) = Eq log p(θ, z, x)− Eq log q(θ, z).

The joint variational distribution is optimized untill the ELBO converges as

tight as possible.

In factorization, the joint variational distribution of θ and z is expressed as

q(θ, z) = q(θ)q(z). Variational method using factorization is called mean-field

variational method. In mean-field variational method, the ELBO is expressed

as

L(q) =

∫ ∫
log p(θ, z, x)q(θ)q(z)dθdz +Hq(θ) +Hq(z) (3.1)

where Hq(·) ≡ −Eq(·) log q(·) denotes entropy of q(·), therefore, finding q̂(θ, z)

changes into the problem of finding q̂(θ) and q̂(z), respectively. It means that

it is enough to find

q̂(θ) = arg min
q(θ)

[∫ (∫
log p(θ, z, x)q(z)dθdz

)
q(θ)dθ +Hq(θ)

]
, (3.2)

and

q̂(z) = arg min
q(z)

[∫ (∫
log p(θ, z, x)q(θ)dzdθ

)
q(z)dz +Hq(z)

]
. (3.3)

For the case of θ, (3.2) is represented as

q̂(θ) = arg min
q(θ)

KL(q(θ)||f(θ)) =

∫
log

q(θ)

f(θ)
q(θ)dθ,
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where log f(θ) ≡
∫

log p(θ, z, x)q(z)dθ, thus the optimal variational distribu-

tion will be q̂(θ) ∝ f(θ).

So far we do not specify a class of q. When the prior and the likelihood are

conjugate, we can take the form of candidate distribution as the same as the

form of prior distribution. We could easily obtain a variational distribution

in this situation. But how we specify a class of variational distributions in

nonconjugate cases?

Variational method for nonconjugate models has been studied by Wang et

al.(2013). In this study, two approximation methods were introduced: Laplace

approximation and delta approximation. These methods approximate condi-

tional posterior distributions for some variables, which can not be expressed

in particular forms, into Gaussian distributions. They considered the generic

model with observations x and variables θ, z,

p(θ, z, x) = p(x|z)p(z|θ)p(θ),

and dealt with nonconjugate models defined as follows.

• p(θ) is twice differentiable with respect to θ. If θ > θ0 is required, a

distribution over log(θ − θ0) could be defined.

• p(z|θ) is in the exponential family.

• p(x|z) is in the exponential family which makes the distribution of z is

conjugate to the conditional distribution of x; the conditional p(z|θ, x)

is in the same family as p(z|θ).

This means that θ is a nonconjugate variable, z is a conjugate variable.
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Laplace approximation method is based on a Taylor expansion of f(θ) at

the maximum a posteriori (MAP) estimate, θ̂MAP . Assuming that q(θ) is a

Gaussian distribution, the MAP estimate of f(θ) is related to the parameters

of a variational distribution for θ, i.e.,

q(θ) ≈ N(θ̂MAP ,−∇2f(θ̂MAP )−1).

In Laplace method, original ELBO is used as the objective function and a class

of variational distributions is assumed to be a Gaussian.

On the other hand, delta approximation method modifies the ELBO by us-

ing a Taylor expansion at θ̂. In this case, a class of q(θ) is specified as a Gaussian

in advance, variational parameters of q(θ) are numerically determined. That

is, q(θ) = N(µ,Σ) is assumed no matter what the true posterior distribution

of θ is, so that the ELBO is

L(q) = Eqf(θ) +
1

2
log |Σ|.

Then, the ELBO is approximated as

L(q) ≈
[
f(θ̂) +∇f(θ̂)T (µ− θ̂) +

1

2
(µ− θ̂)T∇2f(θ̂)(µ− θ̂) +

1

2
Tr{∇2f(θ̂)Σ}

]
+

1

2
log |Σ|.

Three options are available for θ̂. The first one is the MAP estimate of f(θ),

the second choice is the value of previous iteration. The third choice is θ̂ = µ,

which could simplify the objective function.

In fact, variational method is not appropriate for infering the LARMuK
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model. First, the dimension of variables depends on the number of features J ,

however, the dimension of variables is assumed to be fixed in variational meth-

ods for even nonparametric Bayesian model which has possibility of varying

dimension of variables (Doshi et al., 2009). Second, some variables are lying

inside generating functions. It is difficult to get expectations involving these im-

plicit variables, so that we can not take good advantage of variational method.

Third, some variables are not proper to assume certain family of distributions

for marginal variational distributions. Although the LARMuK model does not

satisfies the conditions suggested by Wang et al. (2013), the idea of approxi-

mation methods used in variational method for nonconjugate model could be

available. However, general approximation method used in Wang et al. (2013)

is difficult to be adopted since some variables would be defined on unstructured

support. For example, χ is defined on support which covariates defined on.

In summary, the most important part in order to use variational method

for the LARMuK model is how to specify a class of variational distributions

for features to evaluate expectations easily. And also, we need to consider the

method effectively updating J .

One idea is to assume Dirac delta function as candidate distribution of

χk, λk and J . In other words, q(χk) is assumed to be a degenerated function at

one point. Then, the problem of finding the optimal variational distributions

of χk, λk and J become the problem of finding the point that maximizes the

ELBO or finding the point that minimizes Kulback-Leibler divergence.

In the LARMuK model, variational distributions depend on Eqgck(xi;χk, λk).

Since χk and λk are implicit variables, it is hard to get an expectation of

gck(xi;χk, λk) without numerical methods. However, if we assume that vari-
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ational distributions of χk and λk are Dirac delta functions, Eqgck(xi;χk, λk)

may be computed in a simple way. In addition, finding the optimal q(χk) max-

imizes f(χk) becomes equivalent to finding q(χk) maximizes L(q(χk)) since the

entropy of a delta distribution function is constant. We do not have to worry

about which objective function to be considered.

When the posterior distribution have complex form, this approach may

have some drawbacks related to optimization such as finding a local optimum.

Furthermore, someone may insist that using delta distribution functions be

too restrictive. We will discuss about these concerns later.

Now, let’s go back to (3.1) and consider the case where variational distri-

butions for some variables are delta functions. Suppose q(θ) is a delta function,

i.e.,

q(θ) = δα(θ) =

1, θ = α

0, θ 6= α

.

Denote the optimal α as θ0. Let a class of variational distributions for z, q(z),

could have free form. Under these assumptions, it is enough to find θ0 satisfying

θ0 = arg max
α

L(q)

= arg max
α

[
Eq(z) log p(α, z, x) +Hq(θ)

]
= arg max

α
Eq(z) log p(α, z, x).

On the other hands, the optimal variational distribution of z could be obtained
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by

q̂(z) = arg max
q(z)

L(q)

= arg max
q(z)

[
Eq(θ) log p(θ, z, x) +Hq(z)

]
= arg max

q(z)
[log p(θ0, z, x) +Hq(z)]

= arg min
q(z)

KL(q(z)||p(θ0, z, x))

∝ exp{log p(θ0, z, x)}.

Now, it is time to discuss about one concern mentioned before. Is it proper

to set the class of variational distributions for some variables as Dirac delta

functions? The answer is yes. Because using delta distribution functions as

variational distributions leads generalized EM method.

3.2.1 The relationship with EM method

The goal of EM algorithm is to find the maximum likelihood estimator in the

case of model has latent variables. Suppose θ is a parameter to be estimated,

z is a latent variable and x is set of observations. Likelihood denotes p(x|θ).

The maximum likelihood estimator of θ is obtained by

θ̂ML = arg max
θ

log p(x|θ).

We can easily find out that

log p(x|θ) = L(q(z), θ) +KL(q(z)||p(z|x, θ))
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holds, where

L(q(z), θ) = −KL(q(z)||p(x, z|θ))

In EM method, procedure of obtaining the maximum likelihood estimator has

two steps.

1. Estimate q(z) when θ̂ is given:

q̂(z) = p(z|x, θ̂) = arg max
q(z)

L(q(z), θ̂) = arg max
q(z)

[
Eq(z) log p(x, z|θ̂) +Hq(z)

]
.

2. Estimate θ when q̂(z) is given:

θ̂ = arg max
θ
L(q̂(z), θ) = arg max

θ
Eq̂(z) log p(x, z|θ).

It is well known that iteration of this procedure makes θ̂ go to the maximum

likelihood estimator. Instead of using q̂(z) as p(z|x, θ̂), we could specify a class

of q(z). This modifying procedure is called variational EM method.

On the other hands, the goal of variational method is to obtain the closest

q(θ, z) to the posterior distribution p(θ, z|x), i.e.,

q̂(θ, z) = arg min
q(θ,z)

KL(q(θ, z)||p(θ, z|x)).

In mean-field variational method, we know that

log p(x) = L(q(θ), q(z)) +KL(q(θ)q(z)||p(z, θ|x))

holds, where

L(q(θ), q(z)) = −KL(q(θ)q(z)||p(x, θ, z)).
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Therefore, the procedure of obtaining variational distibutions is as follows.

1. Estimate q(z) when q̂(θ) is given:

q̂(z) = arg max
q(z)

L(q̂(θ), q(z)) = arg max
q(z)

[
Eq(z)Eq̂(θ) log p(θ, z, x) +Hq(z)

]
.

2. Estimate q(θ) when q̂(z) is given:

q̂(θ) = arg max
q(θ)

L(q(θ), q̂(z)) = arg max
q(θ)

[
Eq(θ)Eq̂(z) log p(θ, z, x) +Hq(θ)

]
.

If we specify q(θ) as a delta distribution function, above procedure would

be modified.

1. Estimate q(z) when θ̂ is given:

q̂(z) = arg max
q(z)

[
Eq(z) log p(θ̂, z, x) +Hq(z)

]
.

2. Estimate θ when q̂(z) is given:

θ̂ = arg max
θ

Eq̂(z) log p(θ, z, x).

The main difference between variational EM method and mean-field vari-

ational method using a class of delta distribution functions is the form of ob-

jective function of θ. In variational EM method, the objective function of θ is

Eq̂(z) log p(x, z|θ), while the objective function in mean-field variational method

using delta distribution of θ is Eq̂(z) log p(x, z, θ) =
[
Eq̂(z) log p(x, z|θ) + log p(θ)

]
.
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θ is assumed to be random and prior distribution of θ is considered in mean-

field variational method.

Since there are many theoretical supports for EM method, it is reasonable

to use delta distribution functions as variational distributions from the view

of generalization of EM method. Furthermore, what’s even better is that the

estimate of θ would be more robust than variational EM method because prior

distribution is considered in mean-field variational method.

3.3 Simulated annealing

To mitigate a problem finding local optima and to change the number of fea-

tures in variational method, stochastic procedure is needed. In particular, we

use simulated annealing method.

Annealing is referred to as tempering materials by heating and cooling in

order to make materials good quality. The simulation with a procedure of an-

nealing is called simulated annealing (SA). This is a kind of algorithm to find

the global optimum using probabilistic technique, but it is heuristic to approx-

imate global optimum in a large space. Sometimes, finding an approximate

global optimum is more important than finding the precise local optimum, SA

may be preferable to alternatives in some optimization problems.

SA is composed of two stochastic procedure: one for the generation of a

candidate solution and the other for the acceptance of a candidate. T is a

control parameter called temperature, which controls the size of perturbations

of the energy function E. The probability of a state change is determined by

a energy difference of two states, P = e−
∆E
T . Details of an algorithm of SA is
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as follows.

1. Randomize s(0).

2. Initialize T with a lage value.

3. Repeat:

(a) Add a random perturbation to the state s∗ = s(i) + ε.

(b) Evaluate ∆E = E(s∗)− E(s(i)):

• If ∆E > 0, s(i+ 1) = s∗;

• otherwise, accept the new state s(i + 1) = s∗ with probability

P = e−
∆E
T .

(c) Set T = T −∆T .

Until T is small enough.

If T decreases too rapidly, SA may find a local minimum. On the other hands,

if it is reduced too slow, SA converges very slowly. This means that SA explores

parameter space at high temperatures, while it restricts exploration at lower

temperatures. In practice, T is usually applied as a follwing schedule (Geman

and Geman, 1984):

T (t) = αT (t− 1) with 0.85 ≤ α ≤ 0.96.
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3.4 Stochastic variational method for the LAR-

MuK model

3.4.1 The ELBO

For the varitional method of the LARMuK model, we consider the following

variational distributions for β, χ, and λ.

q(βk) ≡ N(µ0k, σ0k),

q(χk) ≡ δχ0k
(χk),

q(λk) ≡ δλ0k
(λk).

We set variational distributions for other variables as

q(ck) ≡ Cat(νk0, νk1, νk2),

q(σ2) ≡ IG

(
r0

2
,
r0R0

2

)
,

and

q(J) ≡ δJ0(J).

The dimension of variables may be changed in the LARMuK model, we

need to consider the number of features J as another variable, thus the ELBO
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of LARMuK model is defined as

L(q) ≡ Eq log p(β,χ,λ, c, σ2, J,Y) +Hq(β,χ,λ, c, σ
2, J)

= Eq log p(Y|β,χ,λ, c, σ2, J) + Eq log p(β,χ,λ, c, σ2, J)

+Hq(β,χ,λ, c, σ
2, J).

(3.4)

The first term of right side is proportional to the following expression.

Eq log p(Y|β,χ,λ, c, σ2, J) ∝ Eq

[
−n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(yi − gi
Tβ)2

]

∝ n

2
Eq log

1

σ2
− 1

2
Eq

1

σ2

n∑
i=1

Eq(yi − gi
Tβ)2

∝ n

2

(
Ψ
(r0

2

)
− log

r0R0

2

)
− 1

2R0

n∑
i=1

Eq(yi − gi
Tβ)2,

where Ψ is the digamma function and gi denotes (gc1(xi, w1), · · · , gcJ (xi, wJ))T .

For the second term of right side, since variables β,χ,λ, c, and σ2 are

determined independently for given J ,

Eq log p(β,χ,λ, c, σ2, J)

= Eq log p(β|J) + Eq log p(χ|J) + Eq log p(λ|J) + Eq log p(c|J) + Eq log p(σ2)

+Eq log p(J).

Note that Eq log p depends on parameters of underlying model p and parame-

ters of the variational distribution q. The details of all terms are as follows.
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Eq log p(β|J) = Eq

[
−J0

2
log(2πσ2

β)− 1

2σ2
β

J0∑
j=1

(βj − 0)2

]

∝ J0

2
log

1

σ2
β

− 1

2σ2
β

J0∑
j=1

(σ2
0j + µ2

0j).

(3.5)

Eq log p(χ|J) =

J0∑
j=1

Eq log p(χj)

=

J0∑
j=1

Eq[log I(0 ≤ χj ≤ 1)]

=

J0∑
j=1

log I(0 ≤ χ0j ≤ 1)

= 0.

(3.6)

Eq log p(λ|J) =

J0∑
j=1

Eq log p(λj)

=

J0∑
j=1

Eq[log baλλ − log Γ(aλ) + (aλ − 1) log λj − bλλj]

∝
J0∑
j=1

[(aλ − 1)Eq log λj − bλEqλj]

=

J0∑
j=1

[(aλ − 1) log λ0j − bλλ0j]

= (aλ − 1)

J0∑
j=1

log λ0j − bλ
J0∑
j=1

λ0j.

(3.7)
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Eq log p(c|J) =

J0∑
j=1

Eq log p(cj)

=

J0∑
j=1

[I(cj = 0) · log p0 + I(cj = 1) · log p1 + I(cj = 2) · log p2]

∝
J0∑
j=1

[νj0 log p0 + νj1 log p1 + νj2 log p2]

= log p0

J0∑
j=1

νj0 + log p1

J0∑
j=1

νj1 + log p2

J0∑
j=1

νj2.

(3.8)

Eq log p(σ2) = Eq

[
log

rR

2

r/2

− log Γ
(r

2

)
+
(r

2
− 1
)

log
1

σ2
− rR

2σ2

]
∝
(r

2
− 1
)
Eq log

1

σ2
− rR

2
Eq

1

σ2

∝
(r

2
− 1
)(

Ψ
(r0

2

)
− log

r0R0

2

)
− rR

2R0

.

(3.9)

Eq log p(J) = Eq[J logM −M − log J !]

∝ J0 logM − log J0!.
(3.10)

The third term of right side of equation (3.4) is the entropy of distribution

q. Since the entropy is defined as Hq(θ) ≡ −
∫

log q(θ)q(θ)dθ, it depens on the

parameters which are involved in the variational distribution q. In mean-field

variational method for the LARMuK model, we need conditional entropies for

β,χ,λ, and c.
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For the random variables X and Y , the conditional entropy Hq(X|Y ) is

defined as

Hq(X|Y ) ≡
∫ ∫

log q(x|y)q(x, y)dxdy.

With the simple calculation, we can show that Hq(X|Y ) = Hq(X, Y )−Hq(Y )

where

Hq(X, Y ) ≡
∫ ∫

log q(x, y)q(x, y)dxdy

and

Hq(Y ) ≡
∫

log q(y)q(y)dy.

Therefore, the conditional entropy for each variable of the LARMuK model

are the followings.

Hq(β|J) = −Eq log q(β|J) = −Eq(J)Eq(β|J) log q(β|J)

= −Eq(J)

J∑
j=1

[
−1

2
log(2πσ2

0j)−
1

2σ2
0j

Eq(βj − µ0j)
2

]

=

J0∑
j=1

[
1

2
log(2πσ2

0j) +
1

2σ2
0j

Eq(βj − µ0j)
2

]

=

J0∑
j=1

[
1

2
log(2πσ2

0j) +
1

2

]

∝ 1

2

J0∑
j=1

log σ2
0j,
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Hq(χ|J) = −Eq(J)Eq(χ|J)(log q(χ|J)) = −
J0∑
j=1

log I(χj = χ0j) = 0,

Hq(λ|J) = −Eq(J)Eq(λ|J)(log q(λ|J)) = −
J0∑
j=1

log I(λj = λ0j) = 0,

Hq(c|J) = −Eq log q(c|J) = −Eq(J)Eq(c|J) log q(c|J)

= −
J0∑
j=1

Eq(log q(cj))

= −
J0∑
j=1

[νj0 log νj0 + νj1 log νj1 + νj2 log νj2],

Hq(σ
2) = −Eq

[
log

(
r0R0

2

) r0
2

− log Γ
(r0

2

)
+
(r0

2
− 1
)

log
1

σ2
− r0R0

2σ2

]
= log Γ

(r0

2

)
− r0

2
log

r0R0

2
−
(r0

2
− 1
)
Eq log

1

σ2
+
r0R0

2
Eq

1

σ2

= log Γ
(r0

2

)
− r0

2
log

r0R0

2
−
(r0

2
− 1
)(

Ψ
(r0

2

)
− log

r0R0

2

)
+
r0

2

= log Γ
(r0

2

)
− log

r0R0

2
−
(r0

2
− 1
)

Ψ
(r0

2

)
+
r0

2
,

Hq(J) = −Eq log q(J) = − log I(J = J0) = 0.

For the simple expression for the ELBO, we may assume configuration of

generating function follows a multinomial distribution with trial 1. This is
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equivalent to cj following a categorical distribution, i.e., we uses expression,

cj ≡ (cj0, cj1, cj2)T ∼ Multi(1, νj0, νj1, νj2)

instead of cj ∼ Cat(νj0, νj1, νj2). Then

E[c2
jk] = νjk,E[cjk1cjk2 ] = 0(k1 6= k2)

hold since

E[cjk] = νjk,Var[cjk] = νjk(1− νjk),Cov[cjk1 , cjk2 ] = −νjk1νjk2(k1 6= k2).

When assuming delta distribution functions as variational distributions for

χj and λj, for all l,

Eqg2
l (xi, wj) =

∫
g2
l (xi;χj, λj)q(χj)q(λj)dχjdλj = g2

l (xi;χ0j, λ0j),

where Eq means expectation with respect to q(β,χ,λ, c, σ2, J).

For the convenience, for l = 0, 1, 2, let

gijl ≡ gl(xi;χj, λj), (3.11)

g0ijl ≡ Eq[gijl] = gl(xi;χ0j, λ0j), (3.12)

gij ≡ cj0 · gij0 + cj1 · gij1 + cj2 · gij2. (3.13)

In addition, let Eq[gij] and Eq[g2
ij] be g0ij and g2

0ij, respectively. Then, they are

represented as
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g0ij ≡ Eq[gij]

= Eq[cj0 · gij0 + cj1 · gij1 + cj2 · gij2]

= νj0 · g0ij0 + νj1 · g0ij1 + νj2 · g0ij2,

g2
0ij ≡ Eq[g2

ij]

= Eq[cj0 · gij0 + cj1 · gij1 + cj2 · gij2]2

= Eq[c2
j0g

2
ij0 + c2

j1g
2
ij1 + c2

j2g
2
ij2 + 2(cj0cj1gij0gij1 + cj1cj2gij1gij2 + cj0cj2gij0gij2)]

= Eq[c2
j0] · Eq[g2

ij0] + Eq[c2
j1] · Eq[g2

ij1] + Eq[c2
j2] · Eq[g2

ij2]

+ 2(Eq[cj0cj1] · Eq[gij0gij1] + Eq[cj1cj2] · Eq[gij1gij2] + Eq[cj0cj2] · Eq[gij0gij2])

= νj0 · g2
0ij0 + νj1 · g2

0ij1 + νj2 · g2
0ij2

Furthermore, when j 6= l, all of the elements of generating functions are totally

independent,

Eq[gijgil] = Eq[(cj0gij0 + cj1gij1 + cj2gij2)(cl0gil0 + cl1gil1 + cl2gil2)]

= Eq[gij]Eq[gil]

= g0ijg0il.
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Finally, we get

Eq[gi
Tβ] = Eq[gi]

TEq[β] =

J0∑
j=1

µ0jg0ij, (3.14)

Eq[(gi
Tβ)2] =

J0∑
j=1

Eq[β2
j g

2
ij] +

∑
l,j,l 6=j

Eq[βjgijβlgil]

=

J0∑
j=1

Eq[β2
j ]Eq[g2

ij] +
∑
l,j,l 6=j

Eq[βjβl]Eq[gijgil]

=

J0∑
j=1

[σ2
0j + µ2

0j]Eq[g2
ij] +

∑
l,j,l 6=j

[µ0jµ0l]Eq[gijgil]

=

J0∑
j=1

[σ2
0j + µ2

0j]g
2
0ij +

∑
l,j,l 6=j

[µ0jµ0l]g0ijg0il,

(3.15)

and we evaluate the expectation,

Eq

[
n∑
i=1

(yi − gi
Tβ)2

]

= Eq

[
n∑
i=1

y2
i − 2

n∑
i=1

yi(gi
Tβ) +

n∑
i=1

(gi
Tβ)2

]

=
n∑
i=1

y2
i − 2

n∑
i=1

yiEq[gi
Tβ] +

n∑
i=1

Eq[(gi
Tβ)2]

=
n∑
i=1

y2
i − 2

n∑
i=1

yi

[
J0∑
j=0

µ0jg0ij

]
+

n∑
i=1

[
J0∑
j=1

[σ2
0jg

2
0ij + µ2

0jg
2
0ij] +

∑
l,j,l 6=j

[µ0jµ0lg0ijg0il]

]

=
n∑
i=1

[y2
i − 2yi(g0i

Tµ0) + (g0i
Tµ0)2 +

J0∑
j=1

σ2
0jg

2
0ij]

=
n∑
i=1

(yi − g0i
Tµ0)2 +

J0∑
j=1

n∑
i=1

σ2
0jg

2
0ij.
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Here g0i denote (g0i1, g0i2, · · · , g0iJ0)T and µ0 = (µ01, · · · , µ0J0)T .

In summary, the ELBO is

L(q) =

[
n

2

(
− log 2π + Ψ

(r0

2

)
− log

r0R0

2

)
− 1

2R0

(
n∑
i=1

(yi − g0i
Tµ0)2 +

J0∑
j=1

n∑
i=1

σ2
0jg

2
0ij

)]

−

[
J0

2
log 2πσ2

β +
1

2σ2
β

J0∑
j=1

(µ2
0j + σ2

0j)

]

+

[
J0(aλ log bλ − log Γ(aλ)) + (aλ − 1)

J0∑
j=1

log λ0j − bλ
J0∑
j=1

λ0j

]

+

[
log p0

J0∑
j=1

νj0 + log p1

J0∑
j=1

νj1 + log p2

J0∑
j=1

νj2

]

+

[
r

2
log

rR

2
− log Γ

(r
2

)
−
(r

2
− 1
)(

Ψ
(r0

2

)
− log

r0R0

2

)
− rR

2R0

]
+ [J0 logM − log J0!−M ]

+

J0∑
j=1

[
1

2
log 2πσ2

0j +
1

2

]

−
J0∑
j=1

(νj0 log νj0 + νj1 log νj1 + νj2 log νj2)

+ log Γ
(r0

2

)
− log

r0R0

2
−
(r0

2
− 1
)

Ψ
(r0

2

)
+
r0

2
.

3.4.2 Updating variational parameters

For χ and λ, which are located inside generating functions, updating varia-

tional parameters is intractable eventhough variational distributions of these

variables are assumed as delta distribution functions. For the case of χk, the
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function to be maximized is

E−q(χk) log p(x|β,χ,λ, c, σ2, J) + log p(χk)

∝ Eq(χ−k,λ,β,c,σ2,J)

− 1

2σ2

n∑
i=1

(
yi −

J∑
j=1

gcj(xi;χj, λj)βj

)2
 , χk ∈ (0, 1),

Therefore, the objective function is

objF(q(χk)) = − 1

2R0

[
(σ2

0k + µ2
0k)

n∑
i=1

g2
0ik∗ − 2µ0k

n∑
i=1

g0ik∗(yi −
∑
j 6=k

µ0jg0ij) +
n∑
i=1

y2
i

]
,

where g0ik∗ = νk0 · g0(xi;χk, λ0k) + νk1 · g1(xi;χk, λ0k) + νk2 · g2(xi;χk, λ0k).

Likewise, the object function for λk is

objF(q(λk))

= E−q(λk)

[
− 1

2σ2

n∑
i=1

(yi − gi
Tβ)2 + (aλ − 1) log λk − bλλk

]

= − 1

2R0

[
(σ2

0k + µ2
0k)

n∑
i=1

g2
0ik∗ − 2µ0k

n∑
i=1

g0ik∗(yi −
∑
j 6=k

µ0jg0ij) +
n∑
i=1

y2
i

]
+(aλ − 1) log λk − bλλk,

where g0ik∗ = νk0 ·g0(xi;χ0k, λk)+νk1 ·g1(xi;χ0k, λk)+νk2 ·g2(xi;χ0k, λk). Since

we assume that the variational distribution for J is also a delta distribution

function, the expection of J may not be considered at all in these objective

functions. It can be treated as a fixed value.

The optimal χ0k, λ0k will be obtained as the maximizer of each objective

function. It is difficult to use conventional optimization methods because a

form of objective function is hard to handle. Objective functions of χk and λk
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may have discontinuities. The simple way is to discretize supports of χk, λk

and to find the approximates for the optimal χ0k, λ0k.

For c, since we assumed the variational distribution of ck as Cat(νk0, νk1, νk2),

the optimal variational parameters can be obtained by

logQ(ck = l) ∝ E−q(ck)

[
− 1

2σ2

n∑
i=1

(yi − gi
Tβ)2

]
+ log pl

∝ − 1

2R0

E−q(ck)

[
n∑
i=1

(yi − gi
Tβ)2

]
+ log pl

∝ − 1

2R0

[
n∑
i=1

(yi − gk
0i

T
µ0)2 +

∑
j 6=k

n∑
i=1

σ2
0jg

2
0ij +

n∑
i=1

σ2
0kg

2
0ikl

]
+ log pl,

where gk
0i denotes that k-th element in g0i has been changed to g0ikl. Note that

unlike other elements of gk
0i, k-th element g0ikl is not a multiple kernel but a

single kernel, i.e.,

g0ikl = gl(xi;χ0k, λ0k)

6= νk0 · g0(xi;χ0k, λ0k) + νk1 · g1(xi;χ0k, λ0k) + νk2 · g2(xi;χ0k, λ0k),

g2
0ikl = g2

l (xi;χ0k, λ0k)

6= νk0 · g2
0(xi;χ0k, λ0k) + νk1 · g2

1(xi;χ0k, λ0k) + νk2 · g2
2(xi;χ0k, λ0k).

For the case of βk and σ2, variational parameters could be easily obtained

by using conventional way. Variational parameters of βk is obtained by the
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following procedure.

log q(βk) ∝ E−q(βk)

[
n∑
i=1

log p(yi|xi, β) + log p(βk)

]

∝ E−q(βk)

[
− 1

2σ2

n∑
i=1

(yi − gi
Tβ)2

]
− 1

2σ2
β

β2
k

= E−q(βk)

[
− 1

2σ2

n∑
i=1

(yi − gikβk − gi,−k
Tβ−k)

2 − 1

2σ2
β

β2
k

]

∝ E−q(βk)

[
− 1

2σ2

n∑
i=1

(g2
ikβ

2
k − 2(yi − gi,−k

Tβ−k)gikβk)−
1

2σ2
β

β2
k

]

= −E−q(βk)

[
1

2σ2

n∑
i=1

(g2
ikβ

2
k − 2(yi − gi,−k

Tβ−k)gikβk)

]
− 1

2σ2
β

β2
k

= − 1

2R0

n∑
i=1

(β2
kE−q(βk)[g

2
ik]− 2(yi − E−q(βk)[gi,−k

Tβ−k])βkE−q(βk)[gik])−
1

2σ2
β

β2
k

∝ − 1

2R0

(β2
k

∑
i

g2
0ik − 2βk

∑
i

(yi − g0i,−k
Tµ0,−k])g0ik)−

1

2σ2
β

β2
k

= −1

2

(
β2
k

(∑n
i=1 g

2
0ik

R0

+
1

σ2
β

)
− 2βk

∑n
i=1(yi − g0i,−k

Tµ0,−k)g0ik

R0

)
,

variational parameters (µ0j, σ
2
0j) for βk are

1

σ2
0k

=
1

σ2
β

+
1

R0

∑
i

g2
0ik

µ0k = σ2
0k ·

∑n
i=1(yi − g0i,−k

Tµ0,−k)g0ik

R0

,
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where subscript −k denote that k-th element is eliminated. For σ2, since

log q(σ2) ∝ E−q(σ2)

[
n∑
i=1

log p(yi|xi, σ2) + log p(σ2)

]

∝ n

2
log

1

σ2
− 1

2σ2
E−q(σ2)

[
n∑
i=1

(yi − gi
Tβ)2

]
+
(r

2
− 1
)

log
1

σ2
− rR

2σ2

=

(
n+ r

2
− 1

)
log

1

σ2
− 1

σ2

(∑n
i=1 E−q(σ2)[(yi − gi

Tβ)2] + rR
)

2
,

variational parameters r0, R0 for σ2 are

r0 = n+ r,

R0 =

∑n
i=1(yi − g0i

Tµ0)2 +
∑J0

j=0

∑n
i=1 σ

2
0jg

2
0ij + rR

r0

.

The number of features J would be obtained in a different way from other

variables. Most of variational methods for nonparametric Bayesian models in-

volving J consider J as a fixed value, however, we suggest a method for infer-

ring J in this paper. Denote θ as all the variables except J . When the prior

distribution of J is Poi(M) and the variational distribution of J is assumed to
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be δJ0(J), the objective function of J is

objF(q(J)) ∝ Eq log[p(x|θ)p(θ|J)p(J)] +Hq(θ|J) +Hq(J)

∝ − 1

2R0

[
n∑
i=1

(yi − g0i
Tµ0)2 +

J0∑
j=1

n∑
i=1

σ2
0jg

2
0ij

]

−

[
J0

2
log 2πσ2

β +
1

2σ2
β

J0∑
j=1

(µ2
0j + σ2

0j)

]

+

[
J0(aλ log bλ − log Γ(aλ)) + (aλ − 1)

J0∑
j=1

log λ0j − bλ
J0∑
j=1

λ0j

]

+

[
log p0

J0∑
j=1

νj0 + log p1

J0∑
j=1

νj1 + log p2

J0∑
j=1

νj2

]
+ [J0 logM − log J0!]

+

[
J0∑
j=1

1

2
log(2πσ2

0j) +
J0

2

]

−
J0∑
j=1

(νj0 log νj0 + νj1 log νj1 + νj2 log νj2).

As one optimizing J in this objective function, it tends to select a constant

value of J since variational parameters related to other variables except J

were already optimized in the setting of given current J . To improve this,

we use simulated annealing method which has a possibility to move even if

it is not optimal. The energe function E in SA is objF(q(J)), and a random

neighborhood of J which we consider is (J − 1, J, J + 1). Initial temperature

is set to depend on the number of observations.

When the number of features increases, the expectations for new features

are needed. New expectations for χ could be randomly selected on the covariate

space X . For the new expectations of λ we use a small value such as 0.01. There
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are two reasons to use this setting. First, it can capture some signals occured

in narrow regions. Second, we want a mean function which is obtained with

new J not to be significantly different from before J changes. By using these

setting, we expect that a mean function converges eventhough the dimension

of features changes. We set the new expectations of µ that involves β following

Gaussian distribution with mean 0 and variance 4 × R0. This means that a

new signal tends to be greater than estimated error.

3.5 Data analysis

In this section, we mainly compare the results of stochastic variational method

in LARMuK model with the results of RJMCMC method. We denote stochas-

tic variational method for LARMuK model as V-LMK, and RJMCMC method

for LARMuK model is denoted by RJ-LMK. The analysis in simulation data

and real data shows the efficiency of stochastic variational method for LAR-

MuK model. Efficiency is considered from the view of computing time until

convergence as well as MSE.

There are many local optima for the objective function of mean function,

but stochastic variational method may not guarantee convergence to the global

optimum. In order to avoid finding a local optimum if possible, we used heuris-

tic way in which we tried repeating an algorithm several times. Randomly

selected initial values are used in each repetition, then we choose the best re-

sult as the optimizer among the estimates, which make the ELBO large. The

repetition can be implemented by using GPU since the repetition does not

involved each other. This is the reason that stochastic variational method is
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Table 3.1: Computing times (second) until obtaining the estimates in each
method.

Method Bumps Blocks Doppler Blip Multi Heavisine

V-LMK 271.54 535.88 296.90 448.51 256.63 514.37
RJ-LMK 10108.28 10997.20 10391.96 10566.16 10342.76 17114.04

more attractive than sampling-based method eventhough stochastic variational

method seems to time-consuming.

3.5.1 Simulation data analysis

Bumps, Blocks, Doppler, Blip, Multi, and Heavysine function are used for

simulation study. In each example except Heavysine, n = 128 and SNR = 5 is

set. SNR = 10 is set in Heavysine data as in the previous chapter. Typically,

values of the ELBO depend on the number of observations, so that we set

10 × n as the initial temperature T for simulated annealing. For the cooling

rate α we use 0.1.

The computing times until obtaining the estimates are listed in Table 3.1.

While the computing times of stochastic variational method are significantly

small comparing to times of RJMCMC, performance of stochastic variational

method is similar to that of RJMCMC method for the LARMuK model and the

LARK model (Table 3.2 and Figure 3.1). Therefore, we can say that the pro-

posed method is competible enough comparing conventional inference method.

Note that the proposed method is not good at analysis for Bumps data.

Since variational method is a kind of approximation method, sharp peaks are

hard to be captured and the estimates for peaks tend to be underestimated.
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Table 3.2: MSE for the estimated mean function of each method. H, L, G are
denoted as Haar, Laplacian and Gaussian kernel, respectively.

Method Bumps Blocks Doppler Blip Multi Heavisine

V-LMK 0.249 0.033 0.053 0.013 0.023 0.012
RJ-LMK 0.033 0.013 0.012 0.005 0.008 0.002
RJ-LK 0.031(L) 0.005(H) 0.036(G) 0.035(G) 0.049(G) 0.012(G)

Figure 3.1: First row: estimated Bumps, Blocks, and Doppler function of LMK
using RJMCMC method. Second row: estimated Bumps, Blocks, and Doppler
function of LMK using stochastic variational method.
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Figure 3.2: First row to third row: the ELBO, the number of features, and σ2

estimated from Bumps, Blocks, and Doppler data, respectively.
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Figure 3.3: First row to third row: the ELBO, the number of features, and σ2

estimated from Blip, Multi, and Heavysine data, respectively.
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Table 3.3: The esimated σ in each example. Stochastic variational method and
RJMCMC method are used.

Method Bumps Blocks Doppler Blip Multi Heavisine

True σ 0.20 0.20 0.20 0.20 0.20 0.10
σ̂ of V-LMK 0.57 0.27 0.25 0.19 0.23 0.16
σ̂ of RJ-LMK 0.28 0.23 0.25 0.23 0.20 0.10

Figure 3.2 and 3.3 are time series plots for the ELBO, the number of fea-

tures, and the estimates of σ2. The ELBO tends to increase and σ̂2 converges

to the true value of σ2. True value of σ is 0.2 except Heavysine data. In Heavy-

sine data, the true value of σ is 0.1 corresponding SNR = 10. Each estimated

σ is listed in Table 3.3. The results are similar to the results of RJMCMC

method, which uses exact posterior distribution. It indicates that performance

of stochastic variational method is good enough despite it uses approximation

of posterior distribution.

3.5.2 Real data analysis

In real data example, we used signal data which we already analyzed in the

previous chapter. Figure 3.4 shows that the predicted curve of stochastic vari-

ational method are as similar as the one of RJMCMC method. Furthermore,

MSE of stochastic variational method are small enough comparing to RJM-

CMC method.

The ability to capture jumps is important property of the LARMuK model,

so that we need to check that stochastic variational method of the LARMuK

model can capture jumps well. From Figure 3.4 we find out that stochastic

variational method captures the locations of jump well. When the number of
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Figure 3.4: Left: using 50% of dataset as test set for validation, curves are
predicted using RJMCMC in LARMuK model. Right: curves are predicted
using stochastic variational method in LARMuK model. Grey circles indicate
original dataset, red circles denote training set, green line is predicted curve.
Blue dotted vertical lines denote center of features.

Table 3.4: MSE for the predicted mean function of each method, stochastic
variational method and RJMCMC method, respectively. 80% means that 80%
of dataset(n = 410) used for training data and 20% of dataset(n = 102) used
for validation.

Methods 80% (n = 410) 50% (n = 256) 20% (n = 102)

V-LMK 0.0139 0.0111 0.0285
RJ-LMK 0.0074 0.0092 0.0390

observations increases and data are piled near jumps, stochastic variational

method will capture jumps more correctly.

To verify the performance of suggested method, we have set up three test

sets: randomly chosen 20, 50, 80 percent of dataset. Automatically, the rest is

used for training set. MSE was obtaind in each test set. Of course, MSE tends

to increase as the percentage of dataset for test set increases. It is remarkable

that MSE of stochastic variational method is not much different from MSE of
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RJMCMC (Table 3.4).

3.6 Discussion

In this chapter, we proposed stochastic variational method for the LARMuK

model. This method can evaluate intractable expectations involving generating

functions by using Dirac delta functions as variational distributions of some

variables lying inside generation functions. Furthermore, using simulated an-

nealing method as probabilistic procedure in conventional optimization process

for variational method, so that we are able to infer the number of features and

hidden variables effectively even when the dimension of features changes.

From the data analysis, we found out that the results are similar to the

results based on sampling, which uses exact posterior distribution for inference,

while computation time is much shorter than that of RJMCMC method.

However, there is a drawback that the speed of computation is not so

fast because heuristic method like discretization is used. The methodology for

improving the heuristic method should be studied for further researches.
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국문초록

본 논문에서는 불연속 점이 있을 수도 있는 임의의 함수를 추정하기 위한

베이지안 모형과, 모형의 추론을 위한 변분 방법을 제안한다. 제안한 모형은

LARK모형을 확장한 것으로서, 과완비 체계의 요소로 다중커널을 사용하여 함

수를 적은 개수의 요소들로 표현하는 것이 가능하다. 점프의 위치, 구성요소의

개수,부드러움의정도등의함수를구성하는모든요소들이레비임의측도에의

해서 자동적으로 결정되기 때문에, 이 모형은 모형선택의 문제를 갖지 않는다.

시뮬레이션과 실제 자료분석을 통해서 제안된 모형이 불연속 함수를 추정하는

다른비모수모형들에비해성능이우수함을입증하였으며,모형의추론을위해

제안된 확률적 변분 방법이 모수의 추출에 의존하는 가역 점프 마르코프 체인

몬테 카를로에 비해 계산 시간을 크게 줄일 수 있음을 확인하였다. 또한, 제안한

모형이 불연속이 있는 함수를 포함한 상당히 넓은 함수공간을 받침으로 갖는다

는 사실을 증명했다.

주요어: 베이즈 함수 추정, 과완비 체계, 다중 커널, 레비 임의측도, 포아송

임의측도, 변분 방법, 모의 담금질

학번: 2011-30896
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