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Abstract

Many big cities around the world are located near the mountains. In city-mountain
regions, thermally and topographically forced local winds are produced and they affect
the transport of pollutants emitted into the urban atmosphere. A better understanding of
the dynamics of thermally and topographically forced local winds is necessary to improve
the prediction of local winds and to cope with environmental problems. In this study, the
interactions of urban breezes with mountain slope winds in the presence of basic-state
wind are theoretically examined within the context of the response of a stably stratified
atmosphere to prescribed thermal and mechanical forcing. The interactions between
urban breezes and mountain slope winds are viewed through the linear superposition of
individual analytical solutions for urban thermal forcing, mountain thermal forcing, and
mountain mechanical forcing. A setting in which a city is located downwind of a
mountain is considered. In the nighttime, in the mountain-side urban area, surface/near-
surface horizontal flows induced by mountain cooling and mountain mechanical forcing
cooperatively interact with urban breezes, resulting in strengthened winds. In the daytime,
in the urban area, surface/near-surface horizontal flows induced by mountain heating are
opposed to urban breezes, giving rise to weakened winds. It is shown that the degree to
which urban breezes and mountain slope winds interact is sensitive to the mountain
height and the basic-state wind speed. Particularly, a change in the basic-state wind speed
affects not only the strength of thermally and mechanically induced flows (internal
gravity waves) but also their vertical wavelengths and decay rates. The examination of a

case in a setting in which a city is located upwind of a mountain reveals that the direction



of basic-state wind significantly affects the interactions between urban breezes and
mountain slope winds.

The urban breeze circulation (UBC) is a thermally forced mesoscale circulation
characterized by low-level inward flows toward the urban center, updrafts near the urban
center, upper-level outward flows, and weak downdrafts outside the urban area. Previous
numerical modeling studies indicate that in the early morning the direction of the UBC
can be reversed. Here, the dynamics of a reversed UBC is studied in the context of the
response of the atmosphere to a specified thermal forcing, which represents the diurnally
varying urban heating. For this, linearized, two-dimensional, hydrostatic, and Boussinesq
airflow system in a rotating frame with a specified thermal forcing is solved using the
Fourier transform method. The occurrence of a reversed UBC in the early morning is
confirmed. The Coriolis parameter affects the strength and vertical structure of the UBC,
whose role is similar to that of the coefficient of Rayleigh friction and Newtonian cooling.
The occurrence condition, strength, and vertical structure of a reversed UBC are
examined. The Coriolis force as well as urban heating alters the occurrence time of the
reversed UBC. For a strongly viscous system, a reversed UBC occurs only in high
latitudes with low occurrence possibility. A simple oscillation-type model for the
horizontal velocity is constructed to get some dynamical insights into a reversed UBC.
The analysis results also show that the Coriolis force alters the occurrence time of the
reversed UBC.

Dynamical aspects of flows forced by either convective heating or a mountain
have been extensively studied, but those forced by both convective heating and a

mountain have been less studied. Here, we theoretically examine the orographic-



convective flows, gravity-wave reflection, and gravity-wave momentum fluxes in stably
stratified two-layer hydrostatic and nonhydrostatic atmospheres. The upper layer
(stratosphere) has a larger static stability than the lower layer (troposphere), and the
basic-state wind has a constant shear in the troposphere and is uniform in the stratosphere.
The equations governing small-amplitude perturbations in a two-dimensional, steady-
state, and nonrotating system in the presence of orographic forcing and convective
forcing are analytically solved. Then, the analytic solutions are analyzed to understand
how orographically and convectively forced flows vary with changes in the basic-state
wind speed, stratospheric static stability, and the location of the convection relative to the
mountain.

In a two-layer hydrostatic atmosphere, over the upslope of the mountain, the
convectively forced deep upward motion is positively combined with the orographic
uplift, thus giving rise to enhanced upward motions there. The ratio of the convectively
forced vertical velocity to the orographically forced vertical velocity at the cloud base
height over an upslope location of the mountain is analyzed to further understand the
linear interaction between orographically and convectively forced flows. The gravity-
wave reflection at the tropopause plays an important role in orographic-convective flows.
The gravity-wave reflection at the tropopause acts to amplify the symmetric (anti-
symmetric) structure of orographically (convectively) forced waves. The vertical fluxes
of the horizontal momentum are analytically obtained. The total momentum flux contains
the component resulting from the nonlinear interaction between orographically and

convectively forced waves. It is found that the nonlinear interaction component can be as
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important as each of the orographic and convective components in the total momentum
flux depending on the location of the convection relative to the mountain.

A nondimensional governing equation system including the Rayleigh friction and
the Newtonian cooling is considered to theoretically investigate the nonhydrostatic
effects on convectively forced flows in a single layer nonhydrostatic atmosphere. The
nondimensionalized airflow system contains the nonhydrostaticity factor f (= U/Na,
where U is the basic-state wind speed, a is the half-width of the convective forcing, and N
is the basic-state buoyancy frequency). In an inviscid-limit system, the solutions for
vertical velocity are classified into the propagating mode (k < g1, where k is the
nondimensional horizontal wavenumber) and the evanescent mode (k > g71). As g
increases, an alternating wavy pattern of updrafts and downdrafts appears downstream of
the convective forcing with a horizontal wavelength of 2z corresponding to the critical
horizontal wavenumber k. = 1. The momentum flux analysis shows that the alternating
updrafts and downdrafts are almost horizontally propagating gravity waves of the
propagating mode whose k is slightly smaller than kc and that these gravity waves
strengthen the momentum flux above the convective forcing. In a viscid system, the
solution for vertical velocity has propagating and decaying components simultaneously
such that they cannot be explicitly separated. Here, the propagating mode and two
evanescent modes are defined by comparing the magnitudes of the vertical wavenumber
and decay rate. For large viscous coefficient, the k-range of the propagating mode
becomes narrow and the alternating updrafts and downdrafts dissipate. As f increases, the
propagating mode, which strengthens the momentum flux above the convective forcing,

effectively dissipates even with small viscous coefficient.



In a two-layer nonhydrostatic atmosphere, the wave components form modified
Bessel functions of the purely imaginary order. The wave components in the stratosphere
are sinusoidal or exponential depending on the horizontal wave number, tropospheric
basic-state wind shear, and stratospheric static stability. Resonant waves corresponding to
the horizontal wavelength of the zeros of the denominator of the solution are
nonhydrostatically generated downstream of the convective forcing. Without
stratospheric stability jump, the horizontal wavelengths of resonant waves are the zeros of
Ki.(¢0). Relatively short waves are trapped at a certain height because the wave behavior
changes from sinusoidal to exponential. Most of the resonant waves are in the range of
the sinusoidal asymptotic of the modified Bessel function. Using that fact, the
wavelengths of resonant waves in the case of Ri = 9, 36, and 144 are approximated.
Stratospheric stability jump conditionally reflects totally or partially and transmits the
resonant waves. Relatively short waves are totally trapped in the troposphere by the
gravity-wave reflection and the window is broader in the case with stronger wind shear.
The transmitted resonant waves vertically propagate in the stratosphere and transport
wave energy.

Aerosol effects on orographic precipitation from shallow and deep convective
clouds over mountains with different windward-widths are numerically studied using the
Weather Research and Forecasting model which includes a bin microphysics scheme.
Forced uplift by a mountain in a potentially unstable atmosphere results in cellular-type
convective orographic clouds.

In the cases with shallow and warm clouds, more cloud droplets are produced

under higher aerosol number concentration. As a result, the growth of cloud droplets into



raindrops is inhibited, the total and maximum precipitation amounts decrease, and the
maximum precipitation occurs downstream. In addition, stronger convection is generated
because of stronger condensational heat release, and more liquid drops of small sizes are
distributed in a deeper layer. In the case of narrower windward-width, compared to the
case with symmetric mountain, the steeper upslope generates stronger convection with a
shorter advection time scale, hence stronger precipitation is concentrated over a narrower
area. Accordingly, the aerosol effects, which result in a decrease in the total precipitation
amount and a downstream shift of the location of the maximum precipitation, are clearer
here than in the cases with the symmetric mountain. In the case with a wider windward-
width, the gentler upslope generates a weaker convection, while a large portion of liquid
drops precipitate over the wide upslope with a long-enough advection time scale. The
orographic precipitation amount and the location of its maximum are more sensitive to
the aerosol number concentration when the mountain upslope is steeper.

In the cases with deep and mixed-phase clouds, orographic precipitation occurs
mainly from lower-level clouds and its dependency on the aerosol number concentration
and upslope steepness is similar to that in the case with shallow and warm convective
clouds in the early stage. As time goes on, lower-level convective clouds vigorously
develop and an upper-level mixed-phase cloud extends upstream depending on the case,
and strong interactions between lower- and upper-level clouds result in strong
precipitation via melting or direct sedimentation of ice-phased particles if both conditions
are satisfied. The mixed-phase processes (freezing, WBF process, and riming) during the
interaction is stronger in the case of higher aerosol number concentration, resulting in

enhanced surface precipitation on the symmetric mountain. In the cases with asymmetric
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mountains, the trends are not monotonic. In the case with steep upslope, the liquid drop
growth is slower compared to the clean case and the condensational latent heating is
weaker compared to the polluted case, and these characteristics inhibit the interaction
between lower- and higher-level clouds and the mixed-phase processes result in the
minimal surface precipitation amount in the control case. In the case with a gentle
upslope, on the other hand, stronger condensational heating than the clean case and faster
growth of liquid drops than the polluted case enhance the interaction between lower- and
higher-level clouds and the mixed-phase processes result in the maximal surface
precipitation amount in the control case.

A real orographic precipitation event over the Taebaek Mountains from 26 to 27
June 2015 with three different aerosol number concentrations is numerically simulated to
examine aerosol effects on real orographic precipitation. Near Sokcho, orographic clouds
are warm-phased. In this region, an increase in aerosol number concentration results in
the increased cloud droplet mixing ratio and the decreased raindrop mixing ratio.
However, the change of the surface precipitation amount is not monotonic. Both the
increased raindrop mixing ratio in the clean case and the decreased cloud droplet mixing
ratio in the polluted case result in enhanced surface precipitation. Near Mt. Kumgang, ice
particles in the upper-level cloud play an important role in controlling the surface
precipitation amount. In this region, the increase in aerosol number concentration results
in the increased surface precipitation amount through the increase the ice-phased particle

mixing ratio.
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1 Overview

To examine various atmospheric phenomena, we conceptually simplify the
system into a mathematically expressible frame. Mathematically expressed atmospheric
systems are widely used to fundamentally and systematically understand atmospheric
phenomena. Many atmospheric processes are driven by external forcings. Topography of
the Earth’s surface mechanically perturbs atmospheric movements. Spatial and temporal
variations of thermal forcings also initiate atmospheric phenomena. The urban breeze
circulation (UBC) is a characteristic local circulation which originates from the thermal
imbalance between urban and rural areas. A city near or on a mountainous region is
influenced by the mechanical forcing of the mountains and the thermal forcing from the
mountains and the urban area. In Chapter 2, the interactions between urban breezes and
mountain slope winds in the presence of basic-state wind are examined. The circulation
direction of UBC can be reversed in a rotating frame. Detailed dynamics of the reversed
UBC is provided in Chapter 3.

Another well examined thermal forcing is latent heat released from clouds. This
heating originates from the condensation, freezing and sublimation of the hydrometeors
in clouds. To represent a flow forced by latent heating from convective clouds, many
studies include a finite-depth diabatic heating function in the thermodynamic energy
equation as an external thermal forcing. The orographic rainfall related system can be
represented as an atmosphere influenced by the mechanical forcing of mountain and the
thermal forcing from a convective thermal heating. Chapter 4 provides dynamics related

to orographically and convectively forced flows in a two-layer hydrostatic atmosphere. In



Chapter 5, nonhydrostatic effects of the convectively forced flows in a uniformly
stratified atmosphere with constant basic-state wind speed are theoretically examined.
Chapter 6 extends the study in Chapter 5 to orographic-convective flows and waves in a
two-layer nonhydrostatic atmosphere.

The mathematically expressed atmospheric system is also used to numerically
simulate complicated atmospheric phenomena which have too many causality factors and
are difficult to simplify. Cloud microphysics is one of the important but conceptually
complicating processes. Because of the computational scarcity, cloud microphysics tends
to be over-simplified. The bin microphysics method is a realistic method to represent
detailed microphysical processes involved in precipitation events; however, the detailed
study of orographic precipitation using the bin microphysics is still at an early stage due
to the excessive computational needs. As an extended study of the theoretical study of
orographic-convective flows, we numerically simulate an orographic-convective
precipitation from clouds. Chapter 7 and Chapter 8 discuss the orographic precipitation
from shallow-warm convection and from deep and mixed-phase convection, respectively.
Finally, a real simulation study of orographic precipitation over The Taebaek Mountains
with different aerosol number concentrations is provided in Chapter 9 to re-visit our
findings of Chapter 7 and Chapter 8. The main results of this study are summarized in

Chapter 10.



2 Dynamics of interactions between
urban breezes and mountain slope
winds in the presence of basic-state
wind

2.1 Introduction

Many interesting thermally or mechanically driven local-wind phenomena are
observed in the atmosphere, including urban breezes, land/sea breezes, mountain/valley
winds, severe downslope storms, etc. Over the past few decades, these local-wind
phenomena have been extensively studied and substantial progress in understanding the
basic dynamics of each local-wind phenomenon has been made [see references in
Simpson (1994), Lin (2007), and Markowski and Richardson (2010)]. In many regions of
the world, local-wind systems interact with each other. The degree of interactions
between local-wind systems differs depending on location, time of day, etc. For example,
daytime urban breezes interact with sea breezes in and around coastal/inland cities and
the degree of the interactions differs depending on many factors, such as sea surface
temperature, city size, urban heat island intensity, and time of day (e.g., Yoshikado 1992;
Freitas et al. 2007; Ryu and Baik 2013). Understanding the dynamics of interactions
between local-wind systems is one of the important issues in mesoscale dynamics and
helps to cope with environmental problems with which big cities located near mountains
or in complex terrain or adjacent to seas are faced. Fernando (2010) reviewed the fluid

dynamics of mesoscale urban airflows in complex terrain.



Thermally or mechanically driven winds/flows can be theoretically investigated
from the viewpoint of the response of a stably stratified atmosphere to prescribed thermal
or mechanical forcing. From this angle, extensive theoretical studies, particularly
focusing on mountain waves or convectively forced flows, have been performed to better
understand thermally or mechanically driven winds/flows (e.g., Queney 1948; Smith
1980; Lin 1987; Song and Chun 2005). The interactions between mountain waves and
convectively forced flows with application to the dynamics of orographic rain are well
described in a theoretical study of Smith and Lin (1982).

Recently, Ganbat et al. (2015b) theoretically examined the interactions of urban
breezes with mountain slope winds in the absence of basic-state wind. When there is no
basic-state wind, mountains cannot mechanically induce mountain waves in a stably
stratified atmosphere. Hence, mountain slope winds are produced only by mountain
thermal forcing (mountain heating in the daytime and mountain cooling in the nighttime).
In this study, we extend our previous study by including basic-state wind and mountain
mechanical forcing and further examine the interactions of urban breezes with mountain
slope winds. The sensitivities of the interactions to mountain mechanical forcing and
basic-state wind speed are also investigated. In this study, mountain slope winds are
produced by both mountain thermal forcing and mountain mechanical forcing. In section
2.2, governing equations and solutions are provided. In section 2.3, values of parameters
for calculations are provided. In section 2.4, calculation results are presented and

discussed.



2.2 Governing equations and analytic solutions

In this study, a two-dimensional, hydrostatic, nonrotating, Boussinesq airflow
system in the presence of thermal forcing and topography is considered. Linearized
equations in the presence of uniform basic-state horizontal wind can be expressed as

follows (Lin 2007; Ganbat et al. 2015b):
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Here, u is the perturbation velocity in the x-direction, w is the perturbation vertical
velocity in the z-direction, = is the perturbation kinematic pressure, and b is the
perturbation buoyancy. U is the basic-state wind speed in the x-direction, N is the
buoyancy frequency (constant in this study), g is the gravitational acceleration, c; is the
specific heat of air at constant pressure, To is the reference temperature, and v is the
coefficient of Rayleigh friction and Newtonian cooling. g in Eq. (2.3) represents thermal

forcing (heating or cooling) and is specified as
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Here, qo is the magnitude of the thermal forcing, aq is the half-width of the bell-shaped
function, cq is the horizontal location of the center of the thermal forcing, and H is the e-
folding depth of the thermal forcing. @ is the angular frequency of the diurnal variation.

A bell-shaped mountain is considered in this study, which is given by

2
a'h

h(x)=h —
(9 "(x-c,) +a’

(2.6)

where hm is the maximum mountain height, an is the half-width of the bell-shaped
mountain, and cy is the horizontal location of the mountain center. A bell-shaped function
is widely used in theoretical studies to represent thermal forcing and mountain shape (e.g.,
Queney 1948; Smith and Lin 1982; Baik 1992) because it imitates real heating/cooling
and an isolated mountain well and the Fourier transform of the bell-shaped function is
mathematically simple.

Egs. (2.1)—(2.4) can be combined to yield a single equation for the perturbation

vertical velocity.
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Eq. (2.7) is Fourier-transformed in x (— k) and t (— w) to get
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Here, ¢ is the delta function. The solution of Eq. (2.8) is obtained by imposing an upper
radiation condition (U > 0 in this study so that B = 0) and a lower boundary condition of

w=ikUhatz=0.
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Time-invariant property of h(x) is represented by d(w) in wavenumber-frequency space.



The first term on the right-hand side of Eq. (2.9) represents the perturbation vertical
velocity in the wavenumber-frequency space induced by the mountain mechanical
forcing. The second term on the right-hand side of Eq. (2.9) represents the perturbation
vertical velocity in the wavenumber-frequency space induced by the thermal forcing. To
obtain the solution for the perturbation vertical velocity in physical space, the inverse
Fourier transform in k (— x) and o (— t) upon Eq. (2.9) is performed and then the real

part is taken.
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Using the forward Euler scheme, the numerical integration with respect to k in Eq.
(2.10) is made. We use kn = 2n2/10° m™ (n = 1, 2, -, 10000) which gives Lx = 10-10° m
(Lx: wavelength in the x-direction). The choice of the domain size does not matter if Lx
corresponding to the smallest k (k1) covers the entire domain and Ly corresponding to the
largest Kk (Kio000) is smaller than the x-directional resolution. In this study, Ax = 100 m is
used. Using Eqg. (2.10) and the Fourier-transformed equations of Egs. (2.1)—(2.4), the
solutions for the perturbation horizontal velocity, perturbation kinematic pressure, and
perturbation buoyancy can be obtained. Note that in the absence of the mountain

mechanical forcing the solution w becomes identical to that of Ganbat et al. (2015b).

2.3 Parameters

The solution that represents the linear interactions of urban breezes with mountain
slope winds is obtained by the linear superposition of solutions that correspond to urban
thermal forcing, mountain thermal forcing, and mountain mechanical forcing. The

thermal forcing that induces urban breezes and the thermal forcing that induces mountain



slope winds are supposed to have steady components (2 = 0 s%) and diurnally varying
components (Q = 2rn/24 h™) (Ganbat et al. 2015b). Mountain mechanical forcing has a
steady component only. The solution for the perturbation vertical velocity is the sum of

solutions corresponding to each forcing, which is given by

W(X, 2,t) =W, (X, 2) + W (X, 2,t -7,
(x,2,8) =W, (x,2) + W (6 2,1-7,) 1D
+W, (X, 2)+w

(X2 t=7 )+ w, (X, 2).

Here, wus, Wud, Wms, and Wmg are the perturbation vertical velocities corresponding to the
steady urban thermal forcing, diurnally varying urban thermal forcing, steady mountain
thermal forcing, and diurnally varying mountain thermal forcing, respectively. The
magnitudes of steady urban thermal forcing, diurnally varying urban thermal forcing,
steady mountain thermal forcing, and diurnally varying mountain thermal forcing are
denoted by Qus, Qud, Oms, and gmg, respectively. z, is the time of maximum urban thermal
forcing, and zm is the time of maximum mountain thermal forcing. ws is the perturbation
vertical velocity corresponding to steady mountain mechanical forcing.

Consider a setting in which a city is located downwind of a mountain. The center
of the city (mountain) is located at x = 10 km (x = —=10 km). Following Ganbat et al.
(2015b), the following parameter values are used in the calculations: qus = 0.20 J kgt s,
Quda =0.15J kg ts? gms=0.05J kg s qma=0.20 kg ts? cy =10 km, cm =-10 km,
7= 1700 LT, tm = 1400 LT, ay = am = 5 km, Hy, = 750 m (urban H), Hn = 500 m
(mountain H), N = 0.01 s%, To = 283 K, and v = 1/7200 s™X. Even though the time
variation of buoyancy frequency affects thermally or mechanically induced flows, N is
treated as a constant because of mathematical difficulty in handling time-dependent
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buoyancy frequency. For simplicity, a region of x = 0 to 20 km (x = —20 to 0 km) is called
the urban (mountain) area. In a control case, the basic-state wind speed is specified as 2
m s, and the maximum mountain height is specified as 100 m. Sensitivities to mountain
height and basic-state wind speed are examined.

The horizontal variations of urban thermal forcing and mountain thermal and
mechanical forcings normalized by the maximum of each forcing are plotted in Fig. 2.1a.
Figure la also shows the names of the areas which are used in this study (mountain-side
urban area, rural-side urban area, urban-side mountain area, and plain-side mountain
area). The dark gray (gray) box on the x-axis indicates the urban (mountain) area. The
temporal variations of urban thermal forcing and mountain thermal forcing at the center
of each thermal forcing and z = 0 km are shown in Fig. 2.1b, which is from Ganbat et al.
(2014). Note that urban (mountain) thermal forcing is the sum of steady urban (mountain)
thermal forcing and the diurnally varying urban (mountain) thermal forcing. Urban
thermal forcing is positive at all times (urban heating), and mountain thermal forcing is
positive from 0700 to 2100 LT (mountain heating) and negative from 2100 to 0700 LT
(mountain cooling) (Fig. 2.1b). In the following sections, the perturbation vertical
velocity, perturbation horizontal velocity, perturbation velocity vector, perturbation
buoyancy, and perturbation kinematic pressure are called as the vertical velocity,
horizontal velocity, velocity vector, buoyancy, and kinematic pressure for brevity,

respectively.
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1 5 L L L | L L L | L L L | L L L | L L L | L L L
8 plain plain-side urban-side | mountain- | rural-side rural
ey area mountain mountain side urban urban area
T 1.0 area area area area B
|-
: A
E 054 —~y @ A.E90 _
~~
e
0.0 |

3Cm

2Cu

Cm Cu

X O

(b) temporal variations

04 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

urban thermal forcing
mountain thermal forcing

time (LT)

Figure 2.1 (a) Horizontal variations of urban thermal forcing (solid line) and mountain
thermal and mechanical forcings (dashed line) normalized by the maximum of each
forcing. The dark gray (gray) box on the x-axis indicates the urban (mountain) area. The
names of the areas used in this study are given. (b) Temporal variations of urban thermal
forcing at x = ¢y and z = 0 km (solid line) and mountain thermal forcing at x = cm and z =

0 km (dashed line). Fig. 2.1b is from Ganbat et al. (2015b).
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2.4 Results and Discussion

2.4.1 Cases with each forcing only

To facilitate an investigation of the interactions of urban breezes with mountain slope
winds, the results of cases with each forcing only are first presented. Figure 2.2 shows the
vertical velocity, velocity vector, buoyancy, and kinematic pressure fields at 0200 and
1700 LT in the cases with urban thermal forcing only, mountain thermal forcing only,
and mountain mechanical forcing only. In all three cases, the basic-state wind speed is
specified as 2 m s7%. In the case with mountain mechanical forcing only, the maximum
mountain height is specified as 100 m. In all three cases, updraft and downdraft bands in
the vertical direction are evident, especially in the case with mountain mechanical forcing
only. These updraft and downdraft bands are internal gravity waves forced by thermal or
mechanical forcing in a stably stratified atmosphere (Baik and Chun 1997). Wave
amplitudes decrease with height because of the exponential decay of urban or mountain
thermal forcing (thermal forcing is zero in the case with mountain mechanical forcing
only) and the Rayleigh friction and Newtonian cooling. Phase lines are tilted upwind,
implying upward propagation of wave energy (Chun and Baik 1998).

In the case with urban heating only (Fig. 2.2a, b), the buoyancy and kinematic
pressure gradient in the urban area are larger at 1700 LT than at 0200 LT because of
stronger urban heating at 1700 LT. This leads to stronger circulation at 1700 LT than at
0200 LT. At 1700 LT, relatively strong upward motion is observed downwind of the
urban heating center (x = 10 km), while weak downward motion is observed upwind of
the urban heating center. This result is consistent with that of Baik (1992). In the urban

area, positive surface/near-surface (perturbation) horizontal flows are observed and they
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Figure 2.2 Vertical velocity (black lines), velocity vector, buoyancy (shaded), and

kinematic pressure (gray lines) fields at 0200 LT (left) and 1700 LT (right) in the cases

with (a), (b) urban thermal forcing only, (c), (d) mountain thermal forcing only, and (e),

(f) mountain mechanical forcing only. The basic-state wind speed is specified as 2 m s

In the case with mountain mechanical forcing only, the maximum mountain height is

specified as 100 m. The dark gray (gray) box on the x-axis (also, in Figs. 2.3-2.6)

indicates the urban (mountain) area.



diverge and then converge as going downwind. The location of maximum surface
convergence, which is x = 14.2 km at 1700 LT, is situated downwind of the urban heating
center. In x = =10 to 0 km, there are positive horizontal flows at low levels. These
features are also observed at 0200 LT, although urban-heating induced flows are weaker.
In the case with mountain thermal forcing only (Fig. 2.2c, d), there is mountain cooling at
0200 LT and mountain heating at 1700 LT (Fig. 2.1b). In x = =10 to 0 km, downward
motion at 0200 LT and upward motion at 1700 LT exist. In the mountain area, there
exists negative surface/near-surface horizontal flows except near x = 0 km at 0200 LT
and positive surface/near-surface horizontal flows at 1700 LT. In x =0 to 10 km, positive
horizontal flows at 0200 LT and negative horizontal flows at 1700 LT are observed at
low levels. In the case with mountain mechanical forcing only (Fig. 2.2e, f), the
perturbation field at 0200 LT is identical to that at 1700 LT because mountain mechanical
forcing is steady. At low levels, downslope winds (downward motion with positive
horizontal flows) are produced in x = =10 to 0 km. In x = 0 to 10 km, positive

surface/near-surface horizontal flows are produced, but their intensity is very weak.

2.4.2 Control case

The control case is equal to a case that linearly combines the three cases with each
forcing only (Fig. 2.2). Figure 2.3 shows the vertical velocity, velocity vector, buoyancy,
and kinematic pressure fields at 0200, 0800, 1100, 1400, 1700, and 2000 LT in the
control case (U =2 m s and hm = 100 m). Flow patterns in the presence of basic-state

wind (Fig. 2.3) are quite different from those in the absence of basic-state wind (Ganbat
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et al. 2015b). Unlike in Ganbat et al. (2015b), updraft and downdraft bands in the vertical
direction with phase lines tilted upwind are produced in the control case.

At 0200 LT (Fig. 2.3a), urban heating produces upward motion in the rural-side
urban area (x = 10 to 20 km). Mountain cooling produces downward motion on the
urban-side mountain slope (x = -10 to 0 km), and mountain mechanical forcing produces
downslope winds on the urban-side mountain slope. On the urban-side mountain slope,
downward motion induced by mountain cooling is cooperatively combined with
downslope winds induced by mountain mechanical forcing, resulting in strengthened
downward motion. On the other hand, on the urban-side mountain slope negative
surface/near-surface horizontal flows induced by mountain cooling are opposed to the
horizontal component of downslope winds induced by mountain mechanical forcing,
resulting in weakened positive surface/near-surface horizontal flows. In the mountain-
side urban area (x = 0 to 10 km), positive surface/near-surface horizontal flows induced
by mountain cooling and very weak positive surface/near-surface horizontal flows
induced by mountain mechanical forcing are cooperatively combined with urban breezes,
giving rise to strengthened winds. At 0800 LT (Fig. 2.3b), mountain heating is weak (Fig.
2.1b), so mountain mechanical forcing plays an important role in producing mountain
slope winds. Upward motion in the rural-side urban area is weaker at 0800 LT than at
0200 LT. Urban heating at 0800 LT is the same as that at 0200 LT, and mountain
mechanical forcing is steady. Hence, mountain heating is responsible for the weaker
upward motion at 0800 LT in the rural-side urban area, which is associated with weaker
surface/near-surface convergence. At 1100 LT (Fig. 2.3c), both urban heating and

mountain heating increase (Fig. 2.1b). Upward motion in the rural-side urban area is
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Figure 2.3 Vertical velocity (black lines), velocity vector, buoyancy (shaded), and
kinematic pressure (gray lines) fields at (a) 0200, (b) 0800, (c) 1100, (d) 1400, (e) 1700,

and (f) 2000 LT in the control case.
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further intensified.

At 1400 LT (Fig. 2.3d), mountain heating is the strongest (Fig. 2.1b), producing
strong upward motion on the urban-side mountain area (x = =10 to 0 km). On the urban-
side mountain slope, downslope winds induced by mountain mechanical forcing and
upward motion induced by mountain heating act oppositely to give rise to weakened
downward motion. Because urban heating is also strong at 1400 LT, upward motion
stronger than at 1100 LT develops in the rural-side urban area. Because of the influences
of downslope winds induced by mountain mechanical forcing and urban breezes induced
by urban heating, winds on the urban-side mountain slope are directed toward the urban
center. At 1700 LT (Fig. 2.3e), urban heating is the strongest (Fig. 2.1b) and the
buoyancy in the urban area is positive and large, producing well-developed urban
circulation with strong upward motion. The buoyancy in the urban area is larger in the
control case than in the case with urban heating only (Fig. 2.2b). This is a result of the
influence of mountain heating and the interactions of urban breezes with mountain slope
winds. Because of strengthened urban breezes, winds toward the urban center on the
urban-side mountain slope become strong. At 2000 LT (Fig. 2.3f), mountain heating is
weak (Fig. 2.1b) and mountain mechanical forcing is mainly responsible for mountain
slope winds.

As should be expected, Fig. 2.3 shows that the interactions of urban breezes with
mountain slope winds are stronger in the area between the mountain center and the urban
center than in other areas, simply because of larger superposition of urban heating,
mountain thermal forcing, and mountain mechanical forcing. In the mountain-side urban

area, in the nighttime and daytime surface/near-surface winds are directed toward the
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urban center due to urban heating, but their intensity changes with time, depending on
diurnally varying interactions between urban breezes and mountain slope winds. In the
urban-side mountain area, mountain cooling in the nighttime and mountain heating in the
daytime play a crucial role in diurnally varying interactions between urban breezes and

mountain slope winds.

2.4.3 Sensitivities to mountain height and basic-state wind

speed

The degree of interactions between urban breezes and mountain slope winds can vary
depending on the magnitudes of basic-state wind speed and stability as well as on the
intensities of urban thermal forcing, mountain thermal forcing, and mountain mechanical
forcing. In this subsection, we examine the sensitivities of the interactions of urban
breezes with mountain slope winds to mountain height and basic-state wind speed. The
maximum mountain height (hm) is a parameter that controls the intensity of mountain
mechanical forcing.

Figure 2.4 shows the vertical velocity, velocity vector, buoyancy, and kinematic
pressure fields at 0200 and 1700 LT in the cases with hm = 50 and 200 m. These two
cases are the same as the control case (hm = 100 m) except for the maximum mountain
height. 0200 LT and 1700 LT are selected because representative nighttime and daytime
flow features are well captured at these times. Eq. (2.10) indicates that the vertical
velocity induced by mountain mechanical forcing is proportional to maximum mountain
height. Therefore, stronger (weaker) mountain mechanical forcing corresponding to a

larger (smaller) maximum mountain height produces stronger (weaker) mountain waves
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Figure 2.4 Vertical velocity (black lines), velocity vector, buoyancy (shaded), and
kinematic pressure (gray lines) fields at 0200 LT (left) and 1700 LT (right) in the cases
with (a), (b) hm =50 m and (c), (d) hm =200 m. The basic-state wind speed is specified as
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in the mountain area, as seen in Figs. 2.3a, e and 2.4. At 0200 LT, as mountain height
increases, downward motion on the urban-side mountain slope, which is produced by
downward motion induced by mountain cooling being combined with downslope winds
induced by mountain mechanical forcing, is strengthened (Figs. 2.3a and 2.4a, c). On the
urban-side mountain slope, downslope winds whose horizontal component is weakened
due to negative horizontal flows induced by mountain cooling intensify with increasing
mountain height. Stronger downslope winds toward the city center for stronger mountain
mechanical forcing are cooperatively combined with urban breezes in the mountain-side
urban area. This leads to strengthened winds in the mountain-side urban area with
increasing mountain height, as seen in Figs. 2.3a and 2.4a, c. The intensity of upward
motion in the rural-side urban area changes little with mountain height. At 1700 LT,
winds on the urban-side mountain slope intensify and accordingly winds in the mountain-
side urban area also intensify as mountain height increases (Figs. 2.3e and 2.4b, d).
Sensitivity to basic-state wind speed is shown in Fig. 2.5, depicting the vertical
velocity, velocity vector, buoyancy, and kinematic pressure fields at 0200 and 1700 LT in
the cases with U = 1 and 4 m s 1. These two cases are the same as the control case (U = 2
m s™1) except for basic-state wind speed. A change in basic-state wind speed affects not
only the strength of thermally and mechanically induced flows (internal gravity waves)
but also their vertical wavelength and decaying rate (Eq. 2.10). As basic-state wind speed
increases, thermally and mechanically induced flows are extended deeper in the vertical
direction, mountain waves induced by mountain mechanical forcing intensify, and the
vertical wavelength of updraft and downdraft bands increases (Figs. 2.3a, e and 2.5). As

basic-state wind speed increases, at 0200 LT surface/near-surface horizontal flows
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directed toward the city center in the area between the mountain center and the urban
center weaken. In the case with U = 4 m s™%, positive surface/near-surface horizontal
flows are present outside of the urban area as well as in the urban area (Fig. 2.5c). At
1700 LT, winds on the urban-side mountain slope become strong and surface/near-
surface horizontal flows in the mountain-side urban area strengthen as basic-state wind
speed increases (Figs. 2.3e and 2.5b, d). The location of zero surface horizontal flows is
shifted farther downwind with increasing basic-state wind speed (Figs. 2.3e and 2.5b, d).
Because wn is explicitly proportional to U, but wys, Wud, Wms Or Wmd IS approximately
proportional to U2 (Eq. 2.10), mountain mechanical forcing becomes more important
with increasing basic-state wind speed, as clearly seen in Fig. 2.5.

Thus far, we have investigated the interactions of urban breezes with mountain
slope winds in the cases in which a city is located downwind of a mountain. Here, we
examine interactions between urban breezes and mountain slope winds in a setting in
which a city is located upwind of a mountain. In a case considered, the urban area is
situated upwind of the mountain area with the urban and mountain centers being located
at x = -10 km and x = 10 km, respectively, and other specified parameter values are the
same as those in the control case. This case is equivalent to the control case, but with
basic-state wind blowing in the opposite direction (U < 0). At 0200 LT (Fig. 2.6a),
strengthened upward motion by mountain cooling and mountain mechanical forcing on
the urban-side mountain slope (x = 0 to 10 km) is connected with upward motion induced
by urban heating on the mountain-side urban area (x = =10 to 0 km), forming a broad
region of upward motion between the urban center and the mountain center. Surface/near-

surface horizontal flows in the mountain-side urban area are weaker than those in the
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control case (Figs. 2.3a and 2.6a). At 1700 LT (Fig. 2.6b), the connected upward motion
still exists, but its intensity on the urban-side mountain slope is weaker than that at 0200
LT. This weaker intensity is because on the urban-side mountain slope upward motion
induced by mountain mechanical forcing is combined with downward motion induced by
mountain heating. On the urban-side mountain slope, surface/near-surface horizontal
flows are very weak because negative surface/near-surface horizontal flows induced by
urban heating are almost cancelled by positive surface/near-surface horizontal flows
induced by mountain heating. Figures 2.3 and 2.6 indicate that basic-state wind direction
is one of the important factors that significantly affect interactions between urban breezes

and mountain slope winds.
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3 Dynamics of reversed urban breeze
circulation

3.1 Introduction

Weather and climate in urban areas are influenced by the local circulation induced
by a thermal difference between urban and rural areas, which is called urban breeze
circulation (UBC) or urban heat island circulation. UBC can interact with other local
circulations such as sea-land breeze circulation and mountain-valley breeze circulation,
depending on the geographical location (Dandou et al. 2009; Ryu and Baik 2013). UBC
is one of the interesting problems in mesoscale meteorology, and a better understanding
of UBC will help urban planning as well as urban weather and air quality prediction
(Barlag and Kuttler 1990/91; Ryu et al. 2013Db).

UBC has been extensively studied in the past decades. Observational studies have
documented UBC and its features (Clarke 1969; Oke 1973; Shreffler 1978, 1979; Haeger-
Eugensson and Holmer 1999; Lindén and Holmer 2011). Numerical modeling studies
have illustrated the structure and evolution of simulated UBC (Draxler 1986; Lemonsu
and Masson 2002; Ryu et al. 2013b). Theoretical studies have examined urban heating-
induced circulation/flow by adding surface temperature perturbation in a mechanically
viscous and thermally diffusive system (Estoque and Bhumralkar 1969; Olfe and Lee
1971) or thermal forcing in the thermodynamic energy equation (Lin and Smith 1986;
Baik 1992; Han and Baik 2008).

To investigate a diurnal cycle of UBC in a theoretical frame, the observed diurnal

variation of urban heating has to be considered. Observational studies indicate that the
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urban heat island intensity exhibits a diurnal variation and its maximum occurs in the
nighttime (Lee and Baik 2010). In the nighttime, however, urban heating-induced
circulation/flow is weak because of strong static stability which suppresses upward
motion. Many observational and numerical modeling studies show that the maximum
intensity of UBC is observed in the daytime, more specifically in the late afternoon
(Shreffler 1978, 1979; Oliveira et al. 2003; Ryu et al. 2013a; Ganbat et al. 2015a). To
reflect this characteristic, theoretical studies that examine a diurnal cycle of UBC use the
heating function that has a maximum in the late afternoon (Ganbat et al. 2015b; Chapter
2).

The general structure of UBC in the calm atmosphere consists of low-level inward
flows toward the urban center, strong updrafts near the urban center, upper-level outward
flows, and weak downdrafts outside the urban area. Interestingly, an idealized numerical
modeling study indicates that reversed UBC in which the direction of circulation is
opposite to that of the typical UBC is observed in the early morning when the Coriolis
force is included, even though the urban area still releases heat (Savijarvi and Liya 2001).
Using a numerical model, Ganbat et al. (2015a) confirmed the numerical modeling result
of Savijarvi and Liya (2001). Savijarvi and Liya (2001) explained that reversed UBC (or
anti-UBC) is generated as a result of the inertial rotation of the UBC with an inertial
period of 12/|sing| h (¢ is the latitude) after surface heat transfer and vertical mixing are
calmed down after sunset. However, the basic dynamics of reversed UBC has not yet
been studied, motivating this study.

The purpose of this study is to understand the dynamics of UBC in a rotating

system, particularly the dynamics of reversed UBC. The governing equations and
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solutions are provided in section 3.2. In section 3.3, UBC in a rotating system and the

dynamics of reversed UBC are presented and discussed.

3.2 Governing equations and solutions

To examine UBC in a rotating system, we consider a two-dimensional, linear,
hydrostatic, Boussinesq airflow system with thermal forcing in the zero background wind.

Equations that govern perturbations can be written as follows.

u-fv=—z,-au, (3.1)
v, + fu=-av, 3.2)
7, =b, (3.3)
b+ N2w= CpgTO q—ab, (3.4)
u,+w,=0, (3.5

where u, v, and w are the velocities in the x-, y-, and z-direction (zonal, meridional, and
vertical velocities), respectively, = is the perturbation kinematic pressure, b is the
perturbation buoyancy, f is the Coriolis parameter, « is the coefficient of Rayleigh friction
and Newtonian cooling (hereafter, called the frictional coefficient for simplicity), N is the
buoyancy frequency, g is the gravitational acceleration, cp is the specific heat of air at
constant pressure, and To is the reference temperature. The thermal forcing g represents

the diurnally varying urban heating and is specified to be bell-shaped in the horizontal
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and have an exponential decay in the vertical. The structure of the thermal forcing

imitates the resultant spatial temperature pattern over cities.

a2 -z i
L H Re{em}, (3.6)

CI(X, Z,t) =0,

where qo is the magnitude of urban heating, a is the half-width of the bell-shaped function,
H is the e-folding depth of urban heating, and Q is the angular frequency of the diurnal
variation of urban heating. Note that equations (3.1)—(3.5) and the specified urban heating
(3.6) are the same as those of Ganbat et al. (2015b), except that the momentum equation
in the y-direction, the Coriolis force terms, and the zero background wind are considered
in the present study.

Equations (3.1)-(3.5) can be combined into a single equation for w, which is

expressed by

2 2 2, _ 9
[(at +a) +f ]WZZ +N2w,, = o, Oy - (3.7)

p

Equation (3.7) is converted to an ordinary differential equation in z by taking the Fourier

transform in x (— k) and t (— w) as follows.

W+ N2 aw=—9 274, (3.8)
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where

2 k?
A =m, (393.)
d4(k,z,0) = g,ae e " 5(w_g)+5(w+g). (3.9b)

2

Here, the Dirac delta function is denoted by 6. The general solution of Eq. (3.8) is given

by

A?H? g

W(k,z,0) = A(k, )™ + B(k, w)e™* +1+ NZZ?H7 c T, g,

(3.10)

where

ﬁ cos(%tan‘lLRjJrisin(%tan‘llﬁﬂ for R(w) >0,
Koo - (RZ+17) :
k (1 Y (1 ]
—————| —sin| —tan™ — [+icos| —tan~ — | | for R(w) <0,
(R2+|2) i 2 R 2 R
(3.11a)
R(@)=o’~(a®+17), (3.11b)
| () =2aw. (3.11¢)
30 -':Ix_-ﬁ: I\.I_. ]



Note that the values of «, f, and w determine the major behaviors of the solution.
For R(w) > 0, the solution mainly exhibits a wave-like behavior in the vertical. On the
other hand, for R(w) < 0, the solution mainly exhibits a decay in the vertical when the
possible ranges of sine and cosine terms in A(k, w) are considered. In this study, the
values of a, f, and w which make R(w) negative will be used to consider cases in which
UBC exhibits very weak wave-like pattern in the vertical. For R(w) < 0, the real part of A
changes the sign by the sign of I(w), whereas the imaginary part of 4 is independent of the
sign of I(w).

Two unknown coefficients A(k, ) and B(k, w) in Eq. (3.10) are obtained by
applying a flat bottom boundary condition (w = 0 at z = 0) and eliminating the vertically
amplifying component (B(k, ) = 0). Then, the solution in Fourier-transformed space is

expressed by

CA? wO(0-Q)+6(0+Q)

Wk z.0) =TT 2

(e—z/H _eiN/lz) ’ (312)

where C = ggoaH?/(cpTo).
By taking the inverse Fourier transform in k (— x) and @ (— t) and choosing the

real part, we can obtain the solution of w in physical space.

w(x,z,t)= C.f:kze”’"‘ cos kx[e’z’H (Xg COSQt— X, sin Qt) (313)
—e77* {Xq cos(mz+Qt) - X, sin(mz+Qt)} | dk,

where
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Q*+N?HK? —(a + 7)
Xg = . : (3.14a)
[ Q2+ NPHK —(a” + £2) | +42°Q°

2080

X, = - : (3.14b)
[Q°+N?HAK? — (o + 1) | +40°Q°

m = Re{NA(k, Q)}, (3.14c)

y = Im{N(k, 2)}. (3.14d)

Using Eq. (3.13) and the Fourier-transformed equations of Egs. (3.1)—(3.5), we can obtain
the solutions of u, v, 7, and b. For example, the solutions of u and v are provided as

follows.

u(x,zt)= Cj: ke sin kx[e’z’H (Xg cos Qt— X, sin Qt) /H
—e‘”<m{XRsin(mz+Qt)+ X, cos(mz+Qt)} (3.15)

—y{XR cos(mz +Qt)— X, sin(mz +Qt)}>}dk,

v(x,z,t)=—Cf _[: ke sin kx[e‘z’H (Yg COSQt+Y,sin Q) /H
+e‘”<m{YR cos(mz+Qt)—Y, sin(mz + Qt)} (3.16)

—y {YR sin(mz + Qt)+Y, cos(mz +Qt)}>}dk,

where
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_OX, —aX,

YR —W, (317a)
aXg +02X

To examine a diurnal cycle of UBC, the solution of w which corresponds to the
urban heating component that is constant with time (wc; Q¢ = 0 s™) and the solution of w
which corresponds to the urban heating component that varies diurnally (wq; Q4 = 27/24
h=1) are linearly superposed. The magnitudes of urban heating qc = 0.2 J kg™ s and qq =
0.19 J kg™? s are selected for we and wq, respectively. Other parameter values are
specified as N = 0.01 s%, To = 283.15 K, a = 5 km, and H = 750 m (Ganbat et al. 2015b).
Urban heating is specified to have a maximum at 1700 LT and a minimum at 0500 LT by
applying the (t — 17 h) to the time t. Many previous studies which consider the local
circulation induced by diurnally varying thermal forcing (sea-land breeze circulation and
UBC) have used different frictional coefficients [(3.2 h)™ in Dalu and Pielke (1989); (2
h)~! in Ganbat et al. (2015b); (8.9 h)™ in Li and Chao (2016)]. These studies focused on
the circulations in the daytime. This study focuses the evolution of the UBC in the
nighttime and early morning with weaker turbulent activity. In this study, & =2 x 10° s
[= (13.9 h)™], which is smaller than the frictional coefficient used in the previous studies,
is chosen. The integrations in Egs. (3.13), (3.15), and (3.16) are numerically calculated

using the forward scheme with Ak = 2#2/10° m= (n=0, 1, 2, ..., 10%).
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3.3 Results and discussion

3.3.1 UBC in a rotating system

Ganbat et al. (2015b) investigated the UBC induced by urban heating in the
resting basic-state wind and a non-rotating frame. In Ganbat et al. (2015b), « = 1/7200 s,
gc = 0.2 J kgt s? and q¢ = 0.15 J kgt s are used. Here, a brief description of their
results is given. In the nighttime, the low pressure and the positive buoyancy drive low-
level converging flows toward the urban center. Subsequently, updrafts near the urban
center, upper-level diverging flows, and then weak downdrafts outside the urban area are
induced. This kind of circulation is maintained with diurnal variations in strength and
horizontal/vertical scale. The UBC strengthens with time from 0800 LT and attains its
maximum intensity in the late afternoon. Although the time of the strongest urban heating
is 1700 LT, the strongest horizontal and vertical velocities occur 2 h 2 min and 36 min
later than the time of the strongest daytime urban heating, respectively. The time lags
between weakest nighttime urban heating and the weakest horizontal and vertical
velocities are the same as in the above. Expectably, urban heating induces the typical
UBC in terms of circulation direction over an entire day.

Figure 3.1 shows meridional and vertical velocities, perturbation kinematic
pressure, and velocity vector fields (u, w) in the case with the Coriolis force terms. The
selected times are 0200, 0600, and 1200 LT, and the Coriolis parameter is evaluated at ¢
= 30°N. At 0200 LT, thermally induced zonal converging flows and updrafts in the urban
area are evident (Fig 3.1a). Generally, the meridional velocity is positive (negative) in the
region with negative (positive) zonal velocity, due to the Coriolis effect. At 0600 LT,

near-surface zonal diverging flows accompanied with broad and weak downdrafts of ~0.3
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to ~1 km depth are developed (Fig. 3.1b), forming reversed UBC. Reversed UBC is
opposite to typical UBC in terms of circulation direction, even though the kinematic
pressure perturbation is negative in the urban area and the thermal forcing is positive
(heating). As time goes on, the main updrafts above the downdraft layer strengthen and
touch the surface and the circulation direction goes back to that of typical UBC. At 1200
LT, typical UBC is well established (Fig. 3.1c). The zonal converging flows are deeper at
1200 LT than at 0200 LT (Figs. 3.1a and 3.1c).

To investigate the latitude dependence of the UBC, we calculate differences in
meridional and vertical velocities, perturbation kinematic pressure, and velocity vector
between ¢ = 40 and 30°N (¢ = 40°N case minus ¢ = 30°N case) (Fig. 3.2). At 0200 LT
(1200 LT), zonal converging near-surface flows are weaker (stronger) in the higher
latitude case. At 0600 LT, the difference in vertical velocity is positive because weaker
low-level downdrafts associated with reversed UBC are induced in the higher latitude
case. This is related to the fact that the inertial period in the higher latitude is shorter than
that in the lower latitude. In section 3b, some discussion of the inertial rotation is
provided.

Figure 3.3 shows differences in meridional and vertical velocities, perturbation
kinematic pressure, and velocity vector between the cases with and without the Coriolis
force terms (case with the Coriolis force terms minus case without the Coriolis force
terms). The Coriolis parameter in the case with the Coriolis force terms is evaluated at ¢
= 30°N. We use a = 1/7200 st in these cases because R(Qq) is positive in the case with «
=2 x 10~ s7t and no Coriolis force. The addition of the Coriolis force terms results in the

weakening of zonal converging flows and updrafts during the entire day. Note that in this
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this rotational case with strong friction, reversed UBC does not appear.

Figure 3.4 shows the hodographs of the diurnally varying component of surface
horizontal velocity at x = -5, =10, and =20 km with a = 2 x 10° st and 1/7200 s™*. The
Coriolis parameter is evaluated at ¢ = 30°N. The black circle on each trajectory indicates
the surface horizontal velocity at 0000 LT, and the spiral curve from the black circle
indicates the vertical change of the horizontal velocity at x = -5 km and at 0000 LT. The
surface horizontal velocity rotates clockwise with time, and the horizontal velocity rotates
clockwise with height (see the spiral curves in Fig. 3.4). At x = -5 km and at 0000 LT,
the height from the surface at which the zonal velocity first becomes zero is 20 m (40 m)
in the case with « = 2 x 10 s (« = 1/7200 s™1). In the case with the smaller frictional
coefficient (Fig. 3.4a), the range of diurnal variation in surface zonal velocity is similar to
that in surface meridional velocity and the strongest surface horizontal velocity (6.4 m s~
1y appears at ~2200 (~1000) LT. The daily constant components of surface horizontal
velocity in this case are (4.3, -15.5), (3.2, -11.8), and (1.7, -6.2) in m st at x = -5, -10,
and —20 km, respectively. Hence, at these locations, the surface zonal velocity changes
the sign from 0600 to 1000 LT and the surface meridional velocity does not change the
sign. Note that the strongest zonal and meridional velocities are 5.8 m s at ~0800 LT
and 5.6 m st at ~1300 LT, respectively. In the case with the larger frictional coefficient
(Fig. 3.4b), the range of the diurnally varying component is larger in the zonal direction
than in the meridional direction and the surface horizontal velocity is the strongest at
~1900 (~0700) LT. The strongest surface horizontal wind speed in this case is 1.9 m s
and is 4.5 m s weaker than that in the case with « = 2 x 107° s™X. The daily constant

components of surface horizontal velocity are (1.9, -1.0), (1.4, -0.7), and (0.7, -0.4) in
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m s at x = =5, =10, and =20 km, respectively. In this case, the sign of surface zonal and
meridional velocities does not change during the entire day. Note that the strongest zonal
and meridional velocities are 1.7 m st at ~0700 LT and 0.8 m s at ~0900 LT,

respectively. The horizontal wind speed decreases rapidly with height in both the cases.

3.3.2 Dynamics of reversed UBC

The occurrence of reversed UBC is possible if the maximum amplitude of the
diurnally varying component of the velocity in the zonal or vertical direction exceeds the
value of its daily constant component. To examine the occurrence condition of reversed
UBC, we calculate the maximum value of the diurnally varying vertical velocity (Wd, max)
for the ranges of the latitude and frictional coefficient. Also, we calculate the ratio of wy,
max t0 the daily constant vertical velocity (wc) at the occurrence location and time (t =
tmax) OF W, max. In this analysis, we use qc = g = 0.2 J kg™ s to emphasize that the
occurrence condition of reversed UBC is the circulation direction that can be reversed
even though the thermal forcing has a positive sign. In the case of gqq > qc, a reversed
UBC can appear more easily. Figure 3.5 Shows Wq, max, Wd, max/We, and the occurrence time
and height (zmax) of Wa, max. The parameter r is the ratio of the frictional coefficient to the
angular frequency of Earth’s rotation. The gray area in Fig. 3.5 indicates the range of
R(Qq) > 0 (r? < 1 — 4sin?p). We can regard that reversed UBC appears at z = Zmax after 12
hours of t = tmax With the strength wg, max — We because the diurnally varying component
has the opposite sign with the same strength after 12 hours of t = tmax.

The results shown in Fig. 3.5 are sensitive near ¢ = 30°N for small r. The ratio wg,

max/We¢ 1S maximum at ¢ ~ 30°N and r ~ 0 and generally decreases (increases) with latitude
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latitude latitude

Fic. 3.5. (a) Maximum diurnally varying vertical velocity (cm s™), (b) ratio of the
maximum diurnally varying vertical velocity to the daily constant vertical velocity, and
(c) occurrence time and (d) height (m) of the maximum diurnally varying vertical
velocity as a function of latitude and r (= a/Qq). Here, we use gc = ga = 0.2 J kg s In
(c), the hour of the occurrence time is 17 h and the minute of the occurrence time is
contoured. The gray area in which r?> < 1 — 4sin?p indicates the condition of R(Qq4) > 0.
The dashed line in (b) is r? = 12sin%p — 1, and the dashed line in (c) is r? = 4sinp — 1 For
a given ¢, the range below the dashed line in (a) indicates |Fq| > |F¢| in Egs. (3.21) and

(3.22).
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for small (large) r. For a given latitude, the ratio wq, max/Wc decreases with r except in very
low latitude. Figure 3.5b indicates that reversed UBC exists only in high latitude for a
strongly viscous system and that the Coriolis force plays an important role for a weakly
viscous system. In the tropics, reversed UBC does not occur for a strongly viscous system.
The Coriolis parameter in 4, Xg, and X; in Egs. (3.11) and (3.14) acts as a frictional
coefficient. In detail, (a® + f2) is applied in a rotating system in place of «? in a
nonrotating system such as Eqg. (3.11) in Ganbat et al. (2015b) and Eq. (3.10) in Seo et al.
(2017b). Olfe and Lee (1971) also indicated that the Coriolis force damps the heat island-
type flows. In the system considered in this study, the zonal pressure gradient produced
by urban heating generates zonal flows. In terms of energetics, the Coriolis force diverts
part of the driving energy to generate meridional flows, while friction consumes energy
on both zonal and meridional flows. In this way, the zonal circulation is weakened by the
Coriolis force. For a given r, wg, max decreases with latitude (Fig. 3.5a) and zmax increases
with latitude (Fig. 3.5d). For a given latitude, wq, max also decreases with r (Fig. 3.5a) and
Zmax also increases with r (Fig. 3.5d). The occurrence time of wq, max for a given latitude
higher than ~30°N is delayed with r, but the occurrence time of wq, max decreases with r
for the cases with tmax larger than 30 min in a limited range of latitude and r (Fig. 3.5c).
The resonance-like pattern of the ratio Wq, max/We at ¢ ~ 30°N and r ~ 0 recalls the
work of Rotunno (1983). Rotunno (1983) examined the sea-land breeze represented by an
atmospheric response to diurnally varying thermal forcing in the equation system similar
to that of this study. Without viscous effects, generated circulation is confined to the
neighborhood of the thermal forcing in the case of f > Qq, while generated circulation is

in the form of internal-inertial waves in the case of f < Q4. The system is singular at the
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critical latitude of 30°N. The reversal of the UBC is related to the frictionally decayed
resonance of the diurnally varying component of the vertical velocity at ¢ = 30°N. This is
because at ¢ = 30°N, the strength of the diurnally varying component has its maximum,
whereas that of the daily constant component of the vertical velocity does not have [EQs.
(3.13) and (3.14)].

The solution obtained in this study contains diurnally varying and uniform
components because we consider such thermal forcing functions. In a rotating system,
thermally induced flow/circulation is always affected by the Coriolis force. By combining

Egs. (3.1) and (3.2), we can obtain an equation for the zonal velocity.
[(@+a) + 7 Ju==(3,+a)z, (3.18)

On the western side of the urban center near the surface, —x has a positive sign for urban

heating. If —zx takes a form of PqcosQ(t — to) + Pc, Eq. (3.18) can be written as
[(dt ra) + fz}u = aP, cos Q(t—t,) — QP,sin Q(t—t,) + aP.. (3.19)

Equation (3.19) is an oscillation-type equation with the imposed time-dependent forcing.

The solutions of u and v are

u(t) = Re{er(”’“)(t’t")} +D, cos Q2(t—t,) + E,sinQ2(t—t,) + D,, (3.20)

v(t) = Re{iUOe(”*“)(t’t")} +F,cos 2(t—t,) + G, sin Q(t—t,) + F,, (3.21)
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where

D, =« Qv+t y (3.22a)
R?(Q)+17%(Q)
g,— 2t o (3.22b)
R?(Q2) +12(2)
(04
D, = RO P, (3.22¢)
=t D _p (3.22d)
R (Q)+ 17(Q)
Gd =—f 2 I(Q)z Pd; (3226)
RZ(Q)+ 12(2)
f
PG (3.22)

Here, Uo (= Uo + iVo) is the complex velocity at t = to. Equations (3.20) and (3.21) indicate
that the solutions of the zonal and meridional velocities induced by a diurnally varying
perturbation kinematic pressure gradient have a temporally decaying inertial rotation term,
diurnally varying terms, and a constant term. If we consider t ~ to as a late afternoon time
at which UBC is the strongest, we can estimate the time evolution of horizontal velocity
after t ~ to, which is affected by the Coriolis force and the diurnally varying perturbation
kinematic pressure gradient.

The sum of the second and fourth terms in the right-hand side of Egs. (3.20) and

(3.21) has a minimum at t = to + 12 h. The minimum value of the sum at t = to + 12 h has

45 3 ]



a sign opposite to the maximum value if |Dq| and |Fq| are larger than |D¢| and |F¢|,
respectively. The condition for |Dg| > |D¢| is r? < 12sin?p — 1, and the limit curve is drawn
in Fig. 3.5b. Note that the limit curve is closer to wq, max/We = 1 curve for large r. The third
term in the right-hand side of Egs. (3.20) and (3.21) shifts the phase of the times that the
maximum and minimum occur. The positive (negative) Eq and Gq indicate that the sum of
the second, third, and fourth terms has a minimum value after (before) t =to + 12 h. For a
given latitude, tmax increases with r in the range of r? < 4sin?p — 1 (for ¢ > 30°N). The
limit curve is drawn in Fig. 3.5c. Outside of the limit curve, especially for ¢ < 30°N, tmax
tends to decrease with r for a given latitude. Similarly, we can obtain the condition for
|[Fa| > |F¢| (the limit curve is drawn in Fig. 3.5a). However, as discussed earlier, there is no
sign change of meridional velocity at a given location under all conditions. This is

because we consider ve o< —(ucsing)/r and vq o —(rugsing)/(1 + r?) in the equation system.

Note that these relations can be obtained by applying 0, iQqvq, 2Q4Sing, and rQq to Oive,
owg, f, and a in Eq. (3.2), respectively. The relations indicate that vc has a larger value
than vq with comparable uc and uqg for a given latitude.

The complex velocity U in the first term in the right-hand side of Egs. (3.20) and
(3.21) inertially rotates 180 degrees during half an inertial period (12/|sing| h). Therefore,
for a given r, the minimum of the resultant zonal velocity occurs earlier than the time
which is determined by the last three terms in the right-hand side of Egs. (3.20) and
(3.21) in higher latitude. This effect is stronger for smaller r.

Figure 6 shows the time series of u(t + to) in Eq. (3.20) with r = 0.5 and 1.5. Here,
(Uo, Vo) = (5, 0) m st and Pc = Pg = 2.5 x 10™* m s are used. For r = 0.5, the minimum

value of the diurnally varying u, which is marked by circles, occurs later (earlier) than
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t=1to+ 12 hat o =40°N (¢ = 30°N) following the sign of Eq4. Note that the sign of
Eq is negative at ¢ = 40°N and positive at ¢ = 30°N. Moreover, shorter inertial period at ¢
= 40°N causes the minimum of total u to occur earlier. From Fig. 3.6a, we can deduce
that the strongest reversed UBC appears earlier and is weaker at ¢ = 40°N than at ¢ =
30°N. This explains the positive difference in the vertical velocity in Fig. 3.2b. For r =
1.5, negative Eq appears only in ¢ > 64.3°N and the inertial rotation term is strongly
dampened in the nighttime (Fig. 3.6b). For this reason, it is difficult for reversed UBC to

occur in the strongly viscous system.
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4 Dynamics of orographic-convective
flows in a two-layer hydrostatic
atmosphere

4.1 Introduction

Forcings, such as mountains, convection, and fronts, in a stably stratified
atmosphere generate mesoscale flows and internal gravity waves. Orographic forcing is a
mechanical forcing of mountain, while convective forcing is a thermal forcing which
represents latent heat released by condensation in convective clouds. In many cases,
convective clouds are located in/near a mountainous area. Lin (1986) showed that
orographically forced updrafts generate clouds and that the latent heat released from the
induced clouds disturbs the stably stratified atmosphere. Jiang (2003) emphasized that
latent heat release near a mountain affects upslope winds and the generation and
development of orographic precipitation.

Orographically forced flows in a stably stratified atmosphere have been
theoretically studied for a long time (e.g., Queney 1948; Smith 1980; Durran 1992). The
linear dynamics of flows forced by an isolated mountain in a hydrostatic system indicate
that orographically forced flows are characterized as vertically propagating mountain
waves. The structure and strength of orographic gravity waves depend on environmental
factors such as basic-state static stability and wind speed. Wurtele et al. (1987) and Keller
(1994) examined the effects of tropospheric wind shear and static stability jump at the
tropopause on orographic flows and momentum fluxes in hydrostatic/nonhydrostatic

atmospheres, demonstrating that wave reflection at and wave transmission through the
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tropopause affect orographic flows.

Theoretical studies of convectively forced flows have considered the diabatic
forcing in the thermodynamic energy equation to represent latent heat release. Lin and
Smith (1986) examined the transient response of a stably stratified airflow forced by a
local heat source and found that in a steady state, the vertical displacement of the airflow
IS negative near the heating center and positive downstream. The deep convective forcing,
which represents latent heat release from deep convection, induces a deep updraft area
accompanied by a low-level compensating downward motion on the upstream of the
convective forcing (Lin 1987; Lin and Li 1988; Han and Baik 2009). Lin and Li (1988)
and Han and Baik (2010) examined the effects of basic-state wind shear on convectively
forced flows in a single-layer atmosphere. Chun (1995) examined the response of a stably
stratified two-layer atmosphere to low-level heating. In Chun (1995), the amplification of
the flows/waves due to the wave reflection caused by the static stability jump is
emphasized.

To theoretically analyze the mesoscale flows related to orographic precipitation,
the perturbative motion resulted from the addition of a heat source in a mountainous area
in a stably stratified atmosphere has been considered. In a single-layer atmospheric
setting, Smith and Lin (1982) and Lin and Smith (1986) showed that the linear
combination of orographically and convectively forced flows determine total flows in the
region where orographic precipitation occurs. Davies and Schar (1986) considered
diabatic heat released from non-precipitating clouds accompanied by mountain lee waves
in a single-layer atmosphere. To better understand combined flows due to both

orographic and convective forcings in a more realistic atmospheric setting, the
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consideration of tropospheric wind shear and stability jump at the tropopause is needed.
Internal gravity waves transport wave energy and horizontal momentum in the
horizontal and vertical (Eliassen and Palm 1960; Bretherton 1969; Bretherton 1988).
Internal gravity waves penetrate into the upper atmosphere, and their energy is deposited
through the gravity wave breaking/drag (Linzen 1981; Holton 1982). Many researchers
have developed the parameterizations of orographic gravity-wave drag (e.g., Palmer et al.
1986; Pierrehumbert 1986) and have shown that the parameterizations can be applied to
improve weather prediction or climate simulations (McFarlane 1987; lwasaki et al. 1989).
The reduction of the westerly bias of the Northern Hemispheric mean flow in winter is
one example (Palmer et al. 1986). The dominant portion of stationary gravity waves
originates from mountains. However, the significant magnitude of momentum fluxes of
gravity waves with high frequencies has been observed and convectively forced gravity
waves have been regarded as a main source, especially in summer. Many investigators
have proposed convective gravity wave drag parameterizations (e.g., Chun and Baik 1998,
2002; Beres 2004; Song and Chun 2005, 2008) and applied them to large-scale numerical
models to better simulate climate (Song et al. 2007). An overview of gravity-wave drag
parameterizations is given in Kim et al. (2003). Smith and Lin (1982) presented an
analytic expression for the vertical flux of the horizontal momentum in the case of
uniform basic-state wind speed and static stability. In their expression, there is the
momentum flux cross term which is resulted from the nonlinear interaction between
orographically and convectively forced flows. Considering the importance of gravity-
wave drag parameterizations in large-scale numerical models, further formulation and

analysis of gravity-wave momentum flux cross term in a more realistic atmospheric
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setting are needed.

In this study, orographic-convective flows, gravity-wave reflection, and gravity-
wave momentum fluxes in a two-layer hydrostatic atmosphere are examined. In Section
4.2, the analytic solutions of the governing equations are obtained. In Section 4.3.1, the
orographic-convective flows are described using the obtained analytic solutions. In
Section 4.3.2, the gravity-wave reflection at the tropopause is analysed to deeply
understand its effects on orographic-convective flows. In Section 4.3.3, the analytic
expressions of gravity-wave momentum fluxes forced by orographic forcing, convective

forcing, and both orographic and convective forcings are provided and are analyzed.

4.2 Governing equations and solutions

A two-dimensional (x-z plane), linear, steady-state, inviscid, nonrotating equation
system that satisfies hydrostatic and Boussinesq approximations is considered. The

governing equations of perturbation variables are as follows.

Uu, +wU, =-rx,, (4.1)
7, =D, 4.2)
Ub, + N?w= CSTO q, (4.3)
u,+w, =0, (4.4)

where u and w are the perturbation horizontal and vertical velocities, respectively, « is the

perturbation kinematic pressure, b is the perturbation buoyancy, U is the basic-state wind
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speed in the horizontal direction, N is the buoyancy frequency, g is the gravitational
acceleration, cp is the specific heat of air at constant pressure, To is the reference
temperature, and q is the convective forcing.

Figure 4.1 shows the schematic of a two-layer atmosphere considered in this study.
The lower and upper layers represent the troposphere and stratosphere, respectively. The
tropopause height is H. The stratospheric static stability Ns is larger than the tropospheric
static stability Nt. The basic-state wind speed has a constant wind shear in the
troposphere (U = Uo + sz, where Uy is the basic-state wind speed at the surface and s is
the basic-state wind shear) and is constant in the stratosphere (U = Un). Only positive U
and s are considered in this study. The convective forcing g represents the latent heat

release from convective clouds and is specified as

2

1(x.2) =qo{ Gt a0, } 4.5)

(x-c)’+a’ - (x—c.)’ +b?

where Qo is the magnitude of the convective forcing, ac is the half-width of the bell-
shaped heating function, b is a constant (bc > ac), and cc is the center of the convective
forcing in the x-direction. The convective forcing is present from z = hy to z = hy, where
h1 and hy are the bottom and top heights of the convective forcing, respectively (see Fig.

4.1). The mountain is represented as

h(x)=h_ m (4.6)
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Figure 4.1. Structure of a two-layer atmosphere in the presence of convective forcing and

a mountain considered in this study.
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where hm is the maximum height of the mountain, am is the half-width of the bell-shaped
mountain function, and cm is the center of the mountain in the x-direction.
Equations (4.1)-(4.4) can be combined into a single equation for the perturbation

vertical velocity, which is Fourier-transformed (x — k) to obtain

U, +N2W=F, (4.7a)
where
Fkig)= 200 (e e e (4.7b)
p'0'vT

The general solutions of Eq. (4.7a) for 0 <z <H and z > H are given, respectively, by

1. 1.
W, (k,z2)=AU? ~ +BUZ " +F, (4.8a)
T

W (k,z) =Ce'™ + De™™. (4.8b)

Here, 1 = (Ri — 0.25)2, where Ri (= Nt%/s?) is the tropospheric Richardson number, and
m (= Ns/Un) is the vertical wavenumber of the internal gravity wave in the stratosphere.
By imposing bottom boundary condition [ = ikUo/ = G; /& = hmamexp{—k(am + ikcm)}],
upper radiation condition (D = 0 with Un > 0), and interfacial boundary conditions (w and
ow/oz are continuous at z = hy, hy, and H), the analytic solutions in Fourier-transformed
space for 0 <z < hg, hy <z <hy, ho <z <H,andz>H are obtained, which are given,

respectively, by
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In Egs. (4.9e) and (4.9),1=0, 1, and 2 are for z = 0, hy, and hy, respectively.

Equations (4.9a)—(4.9d) are the linear sum of orographically and convectively
induced components. P (Q) represents the complex amplitude of upward (downward)
propagating convectively forced internal gravity wave component generated at z = h; and
h> (note that P and Q are a complex conjugate pair and P + Q = 1). R represents the
complex reflection coefficient of the orographically/convectively forced internal gravity
wave at the tropopause.

To get analytic solutions in physical space, we take the inverse Fourier transform
(k — x) of Egs. (4.9a)—(4.9d) and select the real parts of the transformed solutions. The
orographically forced components of the solutions for 0 <z<H (j =1, 2,and 3) and z >

H are given, respectively, by

ij(X, z)= Zo% [GR {R1 cos(6; +0,) — R, cos(6, - 020)} (4.10a)
e {R1Sin(91 + 020) -R, Sin(‘gz - 020)}] ’

1
W,,, (X,2) = Z3,| G {R, C0S(6, + 6, + MAZ) - R, COS(6, - 6, + MAZ)} (4.10b)
=G, {R,sin(6; + 6,5 + MAZ) ~ R, sin(6, - 6, + mAZ)} |.

The convectively forced components of the solutions for 0 <z <hj, hy <z <hy, ho <z <H,

and z > H are given, respectively, by
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+R,| Z¢ {cos(6, +6,,) —cos(d, - 9}

|

2?2 {sin(6, +6}) —sin(6, - 0,,)}

cos(6, +@;,) —cos(6, —O},)}

e
e

+R,| 2 {sin(, + @) —sin(6, - 6;,)}
s (4.11a)
-Z21sin(6, +0,,) —sin(6, - 2)}}>
N.F _:
W, (X,2) =W, — 5 Z2cos@, - F, |, (4.11b)
U
NFelo
Wy, (X,2) =W, — 5 Z2cos@,—27cosO,, |, (4.11c)
U
w4c(x,z)=—N—[ Fe {R, C0S(6), + 0,1 +MAZ) - R, €05 (6, - 6, + MAZ)|
su
—F,{Rlsin(91+o9H0+mAz)—stin(6’2—9H0+mAz)}}x (4.11d)
> 1) 3 1
Z2,cos| O, —tan™— |-Z2,cos| O, —tan™ — |}.
2u 2u
In Egs. (4.10) and (4.11),
G, +iG, =—h a U, Lo (X=C) +H(X=C))" ~a} (4.12a)

(x-c,)’ +a’
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. 4iF = 0,92, {ac+|(x—cc) ~ b, +(x-¢,) } (4.12b)

C,ToNT [ (x=¢,)*+a  (x—c,)’+b;
L _Ren (4.12¢)
1-R V7 '
S=Re", (4.12d)
U
zl ﬂ U| ( )
U p
q
+ -1 1
0, =0, i(ejo —tan —J : (4.129)
2p

In Eq. (4.12¢),1=0, 1, and 2 are for z = 0, hy, and hy, respectively. In Eq. (4.12f), pand q
=0,1, 2,and H are for z = 0, hy, hy, and H, respectively. In Eq. (4.12g), j = 1 and 2 are for
z = hy and hy, respectively.

We consider the finite-depth convective forcing which is located fromz =h; =1
km to z = ho = 11 km vertically and has the half-width of heating ac = 10 km and b = 5ac.
The center of the bell-shaped mountain is ¢cm = 0 km with hm = 500 m and am = 10 km.
The tropospheric buoyancy frequency is specified as Nt = 0.01 s, the basic-state wind
speed at the surface as Up = 10 m s, and the tropopause height as H = 12 km. The
stratospheric buoyancy frequency Ns, the basic-state wind speed in the stratosphere U,
and the center of the convective forcing c are different in each case. We name each case
NxUyy in which Ns = 0.0x s and Un = yy m s are used. The basic-state wind shear s is

determined by Uo, Un, and H, and the tropospheric Richardson number Ri by N1, Uo, Un,
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and H. The magnitude of the convective forcing is specified as go = 1 J kg~* s, and the

reference temperature as To = 273.15 K.

4.3 Results and discussion

4.3.1 Orographic-convective flows

The flows forced by each forcing are first presented before examining the linear
interaction between orographic and convective flows. Figure 4.2 shows orographically
and convectively forced perturbation vertical velocity fields in the cases of N1U10,
N1U20, and N2U10 with cm = 0 km and cc = 0 km. Under the no-slip boundary condition
at the surface, upward and downward flows are orographically generated on the upslope
and downslope of the mountain, respectively (Figs. 4.2a—4.2c). Internal gravity waves are
generated in the stably stratified atmosphere, and the perturbation vertical velocity fields
exhibit a wavy structure in the vertical direction (Queney 1948; Durran 1992). The
alternating pattern of the perturbation vertical velocity according to internal gravity
waves generated at the surface is clear in the entire atmosphere. The convection forces a
deep upward motion near the convective forcing center and a low-level compensating
downward motion upstream of the convection (Figs. 4.2d-4.2f). These are well-known
characteristics of convectively forced flows (Lin and Smith 1986; Han and Baik 2009).
Above the convection top, the alternating pattern of the perturbation vertical velocity
according to internal gravity waves clearly appears. Without the basic-state wind shear,
the vertical wavelength of the internal gravity wave in the troposphere is 2nUo/Nt = 6.28
km (cases of N1U10 and N2U10), as reported in many previous studies (e.g., Han and
Baik 2009).
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Figure 4.2. (a)—(c) Orographically and (d)—(f) convectively forced perturbation vertical
velocity fields in the cases of N1U10 for (a) and (d), N1U20 for (b) and (e), and N2U10
for (c) and (f) with cm = 0 km and cc = 0 km. The rectangle in (d)—(f) represents the
concentrated convective forcing region. The contour line information (unit: m s™) is

given on the bottom of each panel.
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In the case with wind shear, the increase of the basic-state wind speed with height
strengthens the orographically forced perturbation vertical velocity (Fig. 4.2b). The
vertical wavelength of the internal gravity wave is longer than that in the cases without
wind shear due to the vertically increasing basic-state wind speed. The wavy structure of
the convectively forced vertical velocity field in the troposphere is less clear in the case
with wind shear (Fig. 4.2e). The main updraft is more concentrated and has a single-cell
structure in the region of concentrated convective forcing. However, the compensating
downward motion is weaker in the case with wind shear (Fig. 2e) than that in the cases
without wind shear (Figure 4.2d and 4.2f). Compared to the cases without wind shear, the
compensating downward motion is located closer to the convection center. In the cases
without wind shear, on the upstream side, orographically forced waves are out of phase
with convectively forced waves by ~180°. For this reason, flows forced by convection
over the mountain peak would be negatively combined with orographically forced flows
on the upstream side. In the case with wind shear, the convectively forced single-cell
shaped main upward motion would be positively (negatively) combined with the updraft
(downdraft) near the convection center above the mountain peak (Figs. 4.2b and 4.2e). In
the case of N2U10, the vertical wavelength of the internal gravity wave in the
stratosphere is shorter than that in the case of N1U10 due to the higher stratospheric
buoyancy frequency (Figs. 4.2c and 4.2f). The main structure of the perturbation vertical
velocity field in the troposphere is similar to that in the case without stability jump.
However, the induced flows are stronger in the case of N2U10 than in the case of N1U10.
The wave reflection at the tropopause plays a role in strengthening the flows. The

analysis of the wave reflection is provided in section 4.3.2.
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The perturbation vertical velocity fields with the center of the convective forcing
being located upstream of the mountain (cc = =10 km) are shown in Figure 4.3. In all
cases (N1U10, N1U20, N2U10, and N2U20), the convectively forced main upward
motion is located over the upslope of the mountain. This upward motion is positively
combined with orographically forced updrafts in the convection layer. As a result, a deep
layer of strong updraft appears aloft upstream of the mountain (Figs. 4.3a and 4.3c). The
main internal gravity wave bands generated by both forcings are concentrated slightly
downstream of the mountain center (Figs. 4.3a and 4.3c). The convectively forced
upward motion creates a deeper layer of strong updraft upslope of the mountain in the
cases with wind shear than in the cases without wind shear (compare Figs. 4.3a and 4.3b
and also Figs. 4.3c and 4.3d). However, the positive combination of the convectively
forced upward motion with the low-level upslope wind is weaker in the cases with wind
shear than in the cases without wind shear. The mountain waves are stronger and more
concentrated over the mountain center in the cases with wind shear than in the cases
without wind shear. The strong downdraft area of the mountain waves in the lower
convection layer is broader in the cases with wind shear than in the cases without wind
shear. As in Figure 4.2, the flows forced by both forcings are stronger in the cases with
stability jump due to the wave reflection at the tropopause than in the cases with uniform
stability in the entire atmosphere (compare Figure Figs. 4.3a and 4.3c and also Figs. 4.3b
and 4.3d).

Figure 4.4 is the same as Figure 4.3 except for the center of the convective forcing
being located lee of the mountain (cc = 10 km). In the convection layer over the

downslope of the mountain, the convectively forced upward motion positively interacts
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Figure 4.3. Perturbation vertical velocity fields in the cases of (a) N1U10, (b) N1U20, (c)
N2U10, and (d) N2U20 with cc = -10 km. The rectangle in the troposphere represents the
concentrated convective forcing region. The contour line information (unit: m s™) is

given on the bottom of each panel.
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with the updrafts of mountain waves. In the cases without stability jump, the maximum
amplitude of resultant waves appear above the downslope of the mountain as a result of
the positive combination of orographically forced flows with convectively forced flows
there (Figs. 4.4a and 4.4b). In the cases with stability jump, the maximum amplitude of
the strengthened resultant waves over the mountain is located over the mountain peak
(Figs. 4.4c and 4.4d).

Forced uplift of a moist air over the upslope of a mountain occasionally produces
orographic clouds and precipitation. The horizontal and vertical motion forced by various
factors, such as latent heating and local circulation, over the upslope of a mountain
enhances or suppresses orographically forced uplift. To examine the effects of
convectively forced vertical motion on orographically forced vertical motion on the
upslope of the mountain, we calculate the ratio of the convectively forced perturbation
vertical velocity to the orographically forced perturbation vertical velocity at (X, z) = (Cm
— am, h1). Note that cm — am = =10 km and h1 = 1 km. The results are presented in Figure
4.5. The ratio is calculated as a function of ¢; and Un (Figs. 4.5a and 4.5b) and as a
function of cc and Ns (Figs. 4.5¢ and 4.5d).

When the convection center is located at cc < -10 km, the convectively forced
upward motion is positively combined with the orographic uplift. For weak wind shear (s
< 8.3 x 10 571 Un < 20 m s, the positive combination is stronger as wind shear
becomes weaker (Figs. 4.5a and 4.5b). For strong wind shear, the convectively forced
flows tend to be positively (negatively) combined with the orographic uplift when the
convection center is located upstream (downstream) of the mountain, and the degree of

the combination depends on the wind shear. When the convection center is located at
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cc = 0 km, the convectively forced compensating downward motion is generally
negatively combined with the orographic uplift. Depending on the location of the
boundary between the convectively forced upward motion and the compensating
downward motion, the ratio has different signs. For this reason, there is a range of wind
shear in which the ratio is positive (negative), although the convective forcing is located
above the lee (upstream) side of the mountain. The positive combination of the
convectively forced upward motion with the orographic uplift and the negative
combination of the convectively forced compensating downward motion with the
orographic uplift are stronger in the case with large stability jump than in the case with
small stability jump or without stability jump (compare Figs. 4.5a and 4.5b and also Figs.
4.5c and 4.5d). Without wind shear, the convection forces upward motion at (x, z) = (Cm —
am, h1) in the wide range of c. and Ns; because the compensating downward motion is
located far upstream of the convection center. The positive interaction is strongest when
the convection center is located at x ~ -9 km (Fig. 4.5¢). When wind shear exists,
however, the main upward motion (compensating downward motion) is positively
(negatively) combined with the orographic uplift and the degree of the interaction is

stronger with larger stability jump (Fig. 4.5d).

4.3.2 Gravity-wave reflection

As mentioned in section 4.3.1, the stability jump at the tropopause causes the
reflection of the orographically/convectively forced internal gravity waves, and the
reflected waves affect flows in both the troposphere and stratosphere. The complex

reflection coefficient R at the tropopause is given in Eq. (4.9i). The complex reflection
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coefficient R [= Roexp(ifo), where Ro is the reflectivity at the tropopause and 6p is the

phase shift angle] can be rewritten as

2

[

4 1+2InZ
R= - eXp itan‘llﬂ(N o) : (4.13)
1 (Ng = s o 2}
“ 4| “SyRi+ —+| o VRI—u
4 (NT ﬂ} 4 [NT

The orographically forced internal gravity waves propagate upward from the surface. At
the tropopause, the waves are partially reflected due to the discontinuity of the static
stability between the troposphere and stratosphere. The partially reflected waves at the
tropopause are totally reflected at the surface and propagate upward again. As a result of
infinite reflections, the upward propagating wave component is multiplied by 1/(1-R) and
the downward propagating wave component is multiplied by R/(1-R) [see Egs. (4.91),
(4.12c), and (4.12d)]. The convectively forced internal gravity waves that originated from
z = hy and hy propagate upward and downward with fractions of P and Q, respectively.
Depending on the convection bottom/top heights and tropopause height, upward and
downward propagating wave components are multiplied by 1/(1-R) and R/(1-R),

respectively, which are expressed as

1 _ 12 exp{itan‘l—Rosmg0 } (4.14a)
1-R \/(1— R,cos8,)" +R¢sin’ g, 1-R, cosé,

R _ R, - exp{itan‘1 &} (4.14b)
1-R \/(coseo—RO) +sin? @), cosé, —Ry
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Figure 4.6 shows Ro, R1, Rz, 6o, 61, and 6. as a function of the stratospheric
buoyancy frequency and the Richardson number. For a given Ns, the reflectivity Ro
decreases as Ri increases. For a given Ns, Ro is very sensitive to Ri when Ri is very small.
For a given Ri, Ro increases with increasing Ns. When Ri is large, Ro tends to be

independent of Ri for a given Ns and converges to

(4.15)

Note that Ro in Egs. (4.13) and (4.15) are always less than 1. The phase shift angle 6o (-
n/2 < 6o < ©/2) is negative for large Ri. For very small Ri, the sign of 6o is changed to
positive. This sudden phase reversal occurs when Ri = [{Ns+ (Ns? + 2Nt2)Y2}/2N+]%. Ry
and R2 are small when Ns and Ri are close to the boundary where the phase reversal of 6o
occurs. For large Ri, both R1 and Rz increase with increasing Ns. For this reason, as stated,
the resultant wave strengths are stronger in the presence of stability jump. The phase shift
angles 61 and 6> are negative for large Ri. The magnitudes of both phase shift angles are
smaller for larger Ri (weaker wind shear) and are increased with increasing Ns for a given
large Ri. Both phase shift angles change the sign in a manner similar to 6. The phase
shift angle 6, has additional sudden reversal when Ro = coséo. For a given Ns, the
dependency of #2 on Ri is stronger than that of 6:.

The analytic solutions for the orographically forced perturbation vertical velocity
for 0 < z < H [Eqg. (4.10a)] at the mountain center and the convectively forced
perturbation vertical velocity for 0 <z < h; [Eq. (4.11a)] at the convection center can be
written as follows, respectively.
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Figure 4.6. (a) Ro, (b) Ry, () Rz, (d) 6o, (€) 61, and (f) 62 as a function of the stratospheric

buoyancy frequency and the Richardson number. The values of 6o, 61, and - are in radian.

12 3]



1
W, (2) = =Gy, 22 {C0s 0, (R,SiN G, — R, 5in 6,) +5in 0,4 (R, cos 6, + R, cos6,)},  (4.16a)

1 1
W, (2) =-Fs ) ?_;Sin 0, [Zf —-Z?2 j{cos(@zo —tan™ ij (R,;sing, —R,sind,)

(4.16h)
+sin (HZO —tan™ Zi] (R, cosé, —R, cos 02)}.
yri

Because the second terms on the right hand side of Egs. (4.11b) and (4.11c) do not
depend on the stratospheric buoyancy frequency, the terms in braces in Eqgs. (4.16a) and
(4.16b) determine the characteristics of the waves in the troposphere affected by the wave
reflection at the tropopause.

The surface vertical velocity at the center of each forcing is zero and the vertically
varying pattern of the vertical velocity at the center of each forcing is like a sine function
rather than a cosine function (Fig. 4.2), and our calculation indicates that Rising; —
R2siné- is almost zero. Accordingly, among the two terms in braces in Eq. (4.16a) [also in
Eq. (4.16b)], the second term which is related to sinf, is dominant. The horizontally
symmetric structures of the orographically and convectively forced flows are mainly
proportional to R1cos#1 + R2cosd. and R1c0sH1 — R2c0s6s, respectively.

Figure 4.7 shows Ricos#: and R2cosé» as a function of the stratospheric buoyancy
frequency and the Richardson number. The dependency of both Ricosé: and R2cosé#2 on
Ns and Ri is similar to that of Ry (Figs. 4.6b and 4.7). Because of the very similar pattern
of Ricos#r and Rocosé, RicosHr — Rocosd: is almost unity except for the range of Ns and
Ri near the phase reversal occurrence. For this reason, the amplification of the flow at the
center of each forcing by the infinite reflections is effective only for the orographically
forced flows. Differences in orographically, convectively, and both orographically and
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Figure 4.8. Differences in (a, b) orographically, (c, d) convectively, and (e, f) both
orographically and convectively forced perturbation vertical velocity fields between the
cases of N2U10 and N1U10 for the left column and between the cases of N2U20 and
N1U20 for the right column. The center of the convective forcing is located at x = 0 km
in (c, d) and x = =10 km in (e, f). The contour line information (unit: m s™) is given on

the bottom of each panel.
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convectively forced perturbation vertical velocity fields between the cases with and
without stability jump at the tropopause are presented in Figure 4.8. Due to the wave
reflection at the tropopause, the symmetric structure of the orographically forced flows in
the troposphere is strengthened, and the pattern of the difference is not exactly symmetric
for the case with tropospheric wind shear (Figs. 4.8a and 4.8Db).

From an analysis similar to that about the horizontally symmetric structures of the
orographically and convectively forced flows, it is revealed that the relations of the
horizontally anti-symmetric structure of the orographically and convectively forced flows
are mainly proportional to Ricosf1 — R2cosf. and Ricos#: + Rocos62, respectively. This
can be also seen in Figs. 4.8c and 4.8d. For this reason, the mountain waves tend to
maintain the horizontally symmetric structure (Figs 4.2a and 4.2c), and the convectively
forced compensating downward motion is strengthened and the maximal vertical velocity
iIs moved downstream in the case with stability jump (Figs. 4.2d and 4.2f). The wave
reflection at the tropopause has little effect on the positively combined strong updraft in
the deep layer upstream of the mountain [from x ~ -20 km to ~ =10 km in Figs. 4.8e and

4.8f].

4.3.3 Gravity-wave momentum fluxes

In a stably stratified atmosphere, orographically/convectively forced internal
gravity waves transport momentum vertically. The vertical flux of horizontal momentum

can be obtained analytically by using the solutions of u and w, which is defined as

M= pOJ.i uwdx. (4.17)
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Here, po is the reference air density. In this study, we consider the flows forced by the two
forcings, and the resultant flows are obtained by the linear superposition of the flows
forced by individual forcings. For this reason, the total momentum flux is divided into

three components as follows.

pOJ‘jO (U, +u)w, +w)dx=M_ +M_+M_, (4.18a)
where

Moy = o] U dx, (4.18b)

M, = pof u w,adx, (4.18c)

Moe =25 ] (UnW, +UW, )elx. (4.18d)

The total momentum flux has orographically forced component Mm, convectively forced
component Mc, and component due to the nonlinear interaction between orographically
and convectively forced components Mmc. The momentum flux components Mm, Mc, and

Mnmc in the stratosphere (z > H) are obtained as follows.

2
_ poug th NS 2 2
M, __W(U—OT N {R? +RY —2RR, cos(6, -6, +26,, )} (4.19)
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M, :_poUo 992, —| In (ac+bc) v
N, {c,ToN.Ug 4a b,

251 (1 1 2
NTzZZ'O Z},cos 910—'%“1_1i —-Z2,cos 6’20—tan‘1i X (4.20)

T
Mmc :_pOUg gqoac > thT X
Ny (¢, ToN;US L U,

. 1
72 m){(acﬁuam)ﬁ(cc—cm)z (bc+am)2+(cc‘cm)2}

(4.21)
1
2t 1
NiZuo Z2 cos| 6, tant L ~Z2,c08| 0, Ctant 2|l
Su 2u 2u
NS 2 2
o {R?+R} —2RR, c0s(6, - 6, + 20, )}
;
The orographically forced momentum flux component can be written as
P
M, =-2C0 R, (4.22)

The parameter Fr = Uo/(hmNT) is the Froude number and is the nonlinearity factor of
orographically forced internal gravity waves. The parameter cs = (Ns/NT){Ri? + R2? —
2R1R2c0s(6h — 62 + 26H0)} is related to the wave transmission through the tropopause.
When Nt = Ns and s = 0, M is equal to the momentum flux given in Smith and Lin
(1982) in which uniform basic-state wind and static stability are considered.

The convectively forced momentum flux component can be written as
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u
M, = _%ﬂ&qczzcs- (4.23)
T

The parameter uni = (gdoac)/(cpToNTUo?) is the nonlinearity factor of thermally forced
internal gravity waves (Chun and Baik 1994). The parameter ¢1 = In{(ac + bc)?/4acbc} is
related to the horizontal structure of the convective forcing. The parameter c,?
[underlined term in Eq. (4.20)] is related to the basic-state wind speed, tropospheric static
stability, and the bottom and top heights of the convective forcing. The transmission
related parameter c3 is also multiplied. When Nt = Ns and s = 0, Mc is equal to the
momentum flux given in Chun and Baik (1998) in which uniform basic-state wind and
static stability are considered.

The component caused by the nonlinear interaction between orographically and

convectively forced internal gravity waves can be written as

3 _ —
M =—p°U°yNLFr‘1 2(b,—a,)(a,+b, +2a,)(c,—¢,)

me N; {(aC +a,, )2 +(c,—¢, )2}{([30 +a )2 (e, )2} C,Cy (4.24)

Equation (4.24) is the geometric average of Eqs. (4.22) and (4.23) except for the
parameter related to the horizontal structure, which depends on the location of the
convection relative to the mountain and the horizontal scales of the mountain and
convection. The underlined term in Eq. (4.21) related to the horizontal structures of the
mountain and convection is exactly the same as “cross terms proportional to hQ” in Eq.
(65) of Smith and Lin (1982). The sign of the nonlinear interaction component depends

79 1

-



on the location of the convection relative to the mountain. When the convection center is
equal to the mountain center (Cc = Cm), Mmc becomes zero. The nonlinear interaction
component in the case with the convection center being located upslope (downslope) of
the mountain has a positive (negative) value. As a function of the location of the
convection relative to the mountain (Cc — cm), Mmc¢ has an anti-symmetric structure for
given parameter values. In the case of cc — ¢m < 0 (Cc — cm > 0), the positive maximum
(negative minimum) of Mmc occurs when 6(cc — cm)? = ac2{(r* + 14r®> +1)¥2 — (r? + 1)},
where r = be/ac. In this study (r = 5), (Cc — Cm)maxmin = £0.93ac = £9.3 km.

Figure 4.9 shows the momentum fluxes forced by the mountain, convection, and
orographic-convective interaction as a function of the stratospheric buoyancy frequency
and the Richardson number. In this calculation, po = 0.7 kg m= and ¢c — ¢m = —10 km are
used. In an inviscid atmosphere without a critical level, the momentum flux above an a
forcing does not vary with height and internal gravity waves that transport energy upward
have a negative momentum flux (Eliassen and Palm 1960; Chun and Baik 1998). At/Near
the boundary where the phase angle reversal occurs, the discontinuity of the momentum
flux exists. For a given Ns, the magnitude of Mm (Mc) decreases (increases) as Ri
increases (Figs 4.9a and 4.9b). M. is more sensitive to Ri (also to s) compared to Mm. For
a given Ri, both components Mm and M¢ become large in magnitude as the stratospheric
buoyancy frequency increases. The dependency of the magnitude of Mmc on Ns and Ri is
similar to that of M¢ (Fig. 4.9¢c). As discussed in section 4.3.2, the wave reflection at the
tropopause strengthens the symmetric (anti-symmetric) structure of the orographically
(convectively) forced flows. For this reason, the dependency of each momentum flux

component on Ns and Ri is similar to that of Ricosé: + R2cosé» on Ns and Ri (Fig. 4.7).
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Figure 4.9. Momentum fluxes forced by the (a) mountain, (b) convection, and (c)
orographic-convective interaction as a function of the stratospheric buoyancy frequency

and the Richardson number. Here, ¢c — cm = -10 km is used.
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Note that the nonlinear interaction component has the same order of magnitude as
each of the orographically and convectively components. Depending on the location of
the convection relative to the mountain, the total momentum flux can be increased or

decreased due to the orographic-convective interaction.
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5 Dynamics of orographic-convective
flows in a single layer nonhydrostatic
atmosphere

5.1 Introduction

There are many mesoscale phenomena whose basic dynamics can be understood
by theoretically examining the response of a stably stratified atmosphere to specified
thermal forcing such as condensational heating in convective clouds or evaporative
cooling of raindrops in the boundary layer. Along this research line, extensive studies
have been performed to better understand the dynamics of thermally forced flows [see
references in Lin (2007)]. The equation systems used so far are diverse, ranging from the
simplest system of two dimensions and constant basic-state wind speed and buoyancy
frequency (e.g., Lin and Smith 1986) to complex systems of, for example, three
dimensions and shear flow with a critical level (e.g., Han and Baik 2010).

One of the troublesome factors in theoretical studies of thermally forced flows is
the nonhydrostaticity of the airflow system. Hydrostatic approximation, which is valid in
a system when the horizontal length scale of motion is much larger than the vertical
length scale of motion, simplifies mathematical problems greatly because inertial terms in
the vertical momentum equation are neglected under this approximation. However, in
some deep convection problems, the vertical length scale of motion can be comparable to
the horizontal length scale of motion, thus invalidating the hydrostatic approximation. In
spite of this fact, very little attention has been paid to nonhydrostatic effects on

convectively forced mesoscale flows.
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Many studies of nonhydrostatic effects on orographically forced mesoscale flows,
especially mountain waves, have been made. Queney (1948) indicated that in a
nonhydrostatic system with vertically uniform basic-state wind speed and static stability,
lee waves with the horizontal wavelength equal to 2mkc™?, where kc is the critical
horizontal wavenumber, are evident when the half-width of a bell-shaped mountain is
~k:L. Smith (1979) overviewed the influence of mountains on the atmosphere. He
classified the solution for the vertical velocity in wavenumber space into two modes
depending on the sign of 12 — k2, where | is the Scorer parameter that is determined by the
vertical structure of the basic-state wind speed and static stability. The solution with k? <
1> represents vertically propagating gravity waves (propagating mode), and the solution
with k? > 12 represents vertically decaying gravity waves (evanescent mode).

In vertically structured atmospheres, vertically propagating gravity waves can be
reflected according to the vertical structure of the Scorer parameter. The reflected gravity
waves can be trapped in the lower atmosphere, and these trapped waves can form lee
waves. Keller (1994) investigated nonhydrostatic effects on mountain waves in the
presence of wind shear in the troposphere and a stability jump between the troposphere
and stratosphere on the basis of Wurtele et al. (1987). Broutman et al. (2002, 2003)
examined the behaviors of mountain waves in vertically structured hydrostatic and
nonhydrostatic atmospheres using the ray theory. The nonhydrostatic effects on lee waves
that are produced by a temperature inversion were investigated by Vosper (2004) and
Teixeira et al. (2017).

A number of observational studies (Alexander et al. 2006; Grimsdell et al. 2010)

have reported that convective clouds generate not only vertically propagating gravity
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waves but also slantwise/horizontally propagating gravity waves. In a numerical
modeling study of Alexander and Holton (2004), the slantwise/horizontally propagating
gravity waves are clearly identified in the spectrum of convectively forced gravity waves
in a nonhydrostatic atmosphere. To enhance our understanding of the dynamics of the
slantwise/horizontally propagating gravity waves forced by convection, in-depth
theoretical studies of nonhydrostatic effects on convectively forced gravity waves are
required.

It is well-known that the wave energy transported by convectively forced gravity
waves is one of the main energy sources that plays an important role in maintaining the
circulation of the stratosphere and mesosphere [see references in Fritts and Alexander
(2003)]. Many researchers have developed the parameterizations of convectively forced
gravity-wave drag for use in large-scale or climate models (Beres 2004; Chun and Baik
1998, 2002; Song and Chun 2005, 2008; Choi and Chun 2011; Kang et al. 2017).
Considering that current climate models adopt a nonhydrostatic system (e.g., Marsh et al.
2013; Walters et al. 2014), theoretical studies of nonhydrostatic effects on convectively
forced gravity waves can provide some insight into the convectively forced gravity-wave
drag parameterization in a nonhydrostatic system.

Using a nondimensional numerical model, Woo et al. (2013) studied
nonhydrostatic effects on convectively forced mesoscale flows. They found that an
alternating wavy pattern of updrafts and downdrafts appears downstream of the
convective forcing and that the horizontal wavelength in the alternating wavy pattern is
approximately 2z (- nonhydrostaticity factor). These results are consistent with those of

Queney (1948). Although Woo et al. (2013) showed nonhydrostatic effects on
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convectively forced mesoscale flows, the analysis is not sufficient to present the
dynamics of convectively forced mesoscale flows in a nonhydrostatic system, particularly
the dynamics of the alternating updrafts and downdrafts downstream of the convective
forcing. This motivates the present study.

The main purpose of this study is to theoretically analyze nonhydrostatic effects
on convectively forced flows, particularly focusing on the analysis of propagating and
evanescent modes. In section 5.2, the governing equations and solutions are presented. In
sections 5.3.1 and 5.3.2, nonhydrostatic effects in inviscid-limit and viscid systems are,
respectively, presented and discussed. In section 5.3.3, nonhydrostatic effects on gravity-

wave momentum flux are presented and discussed.

5.2 Governing equations and solutions

In this study, a two-dimensional, steady-state, nonrotating, Boussinesq airflow
system with convective forcing is considered. The equations governing small-amplitude

perturbations are expressed as follows.

us=—2_yu, 5.1
OX OX Y 61)
U@=—a—”+b—vmw,, (5.2)
OX oz

U Nw=—9 g-vb,, (5.3)
OX C,To

8_u+@=0” (5.4)
oX 0z
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where u is the perturbation velocity in the x-direction, w is the perturbation velocity in the
z-direction, z is the perturbation kinematic pressure, b is the perturbation buoyancy, U is
the basic-state wind speed in the x-direction (U is constant with height in this study), vm is
the coefficient of Rayleigh friction, vr is the coefficient of Newtonian cooling, N is the
buoyancy frequency, g is the gravitational acceleration, cp is the specific heat of air at
constant pressure, To is the reference temperature, and q is the convective forcing
function.

To solve the above equation system, the Green function method is used (Han and
Baik 2009, 2010). First, we obtain the solution for the perturbation vertical velocity in the

equation system with line-type convective forcing that is given by

a
x? +a’

q(x) =qq 6(z-h), (5.5)

where go and a are the strength and half-width of the bell-shaped convective forcing,
respectively, ¢ is the Dirac delta function, and h is the height at which the line-type
convective forcing is located. Then, we obtain the solution for the finite-depth convective
forcing by integrating the solution for the perturbation vertical velocity induced by the
line-type convective forcing with respect to h.

The following dimensionless variables (with tildes) are introduced (Han and Baik

2012; Woo et al. 2013).
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u U - U - U -
X=aX,a=ad, z=—1Z, h=—h, h=—h, h,=—nh,,
N =g =t
< - U . U _
U:UU,q=q0q,vm—gvm,VT:€vT,
=20 g = Fh g, oo Bl 5y TRl 5 (5.6)
c,T,NU c,HN c,IHN c, U

After applying the above dimensionless variables to Egs. (5.1)-(5.5), we obtain

nondimensionalized governing equations and line-type convective forcing as follows.

a_Lj:_a_{Z,-_‘;mav (57)
oX oX

, W OF o~ .

K oz DA (5.8)
ob -
_+W: A —1 b, 59
= qa-v; (5.9)
a—lf+@~=0, (5.10)
oX 07

8’ ~
4(X,2) = —5——=3(Z-h), (5.11)
X" +a

where £ (= U/Na) is the nonhydrostaticity factor. Here, the half-width of the bell-shaped
convective forcing a represents the horizontal length scale of the convective forcing. Note
that the arbitrarily chosen horizontal length scale L is used in Woo et al. (2013). The
nonhydrostaticity factor represents the degree of the contribution of the inertial term in

the vertical momentum equation [Eq. (5.8)]. Hereafter, tildes are dropped to simplify the



notation.
Equations (5.7)—(5.10) can be combined into a single equation for the perturbation

vertical velocity.

[i+vmj(i+vT)[azw+ﬂz 62W]* °y-21 (5.12)

By taking the Fourier transform (x — k) to Eq. (5.12), the differential equation for w in

wavenumber space is obtained.

2 ~
az\;ersz: mZd, (5.13a)
where
i :_kz{;wz}
(ik+v, )ik +v;) (5.13b)
2 k?
my =—— B
(ik+v,, )ik +vr) (5.13c)
G=ae *5(z-h). (5.13d)

The general solution of Eq. (5.13a) is

W, =Ae™+Be™ for0<z<h, (5.14a)
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W, = Ae™ +B,e™ forz>h. (5.14b)

The coefficients A1, A2, B1, and Bz can be determined by applying the no-slip bottom
boundary condition (w. = 0 at z = 0), the upper radiation condition (B> = 0 with U > 0),

and the interfacial boundary conditions at z = h that are given by

W, =W, (5.15a)
Wy _ W _ i (5.15b)
0z oz

Then, the solution for the perturbation vertical velocity induced by the line-type

convective forcing in wavenumber space is obtained.

2
W, = iﬂ{e‘m(”“) + e"m(z’“)}e*a" for0<z<h, (5.16a)
2m
~ . am§ im(z+h) | Aim(z=h) | a—ak
W, =i—2e +e e ™ forz>h. 5.16b
b= } (5.16)

To get the solution induced by the finite-depth convective forcing, we integrate Eq. (5.16)

with respect to h as follows.

W, = j: W, dh for 0<z<h, (5.17a)

W, =J':1v“vudh+Lh2 W, dh for hy <z < hy, (5.17b)



W, = .[hlhz W, dh forz > hs. (5.17c)

After manipulation, we can obtain the following solution in wavenumber space.

W, = (O, -07)-(Q, Q) for0 <z <hy, (5.18a)

W, = (O, -07) - (O, - Q) forhy<z<hy, (5.18)

W, = (Q, - Q) +(Q, - Q) forz> hy, (5.18¢)
where

N+ amg +'im(zth,) _ak

Qn =% {e e (5.18d)

In Eqg. (5.18d), n = 1, 2. Each of f)jn represents the wave component induced by the

convective forcing. The superscript of QO denotes the direction of wave energy

propagation, positive (negative) sign denoting upward (downward) wave energy

propagation. In the subscript of Q, the positive (negative) sign denotes waves reflected
at the surface (non-reflected waves) and n denotes the waves originated from z = h.
Finally, the solution in physical space is obtained by numerically integrating the

real part as below.

W, :IwRe{Wjeikx}dk :j:wjkdk. (5.19)

J 0
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In Eq. (5.19), j = 1, 2, 3. The Euler forward scheme is used for the numerical integration.
The convective forcing is located from z = hy = 1 to z = ho = 9. The half-width of the bell-
shaped convective forcing is a = 1. Hereafter, for simplicity, the perturbation horizontal
velocity and the perturbation vertical velocity are called the horizontal velocity and the

vertical velocity, respectively.

5.3 Results and discussion

5.3.1 Inviscid-limit system

In an inviscid-limit system, i.e., both v, and vt are sufficiently small, individual

wave components [Eq. (5.18d)] are approximated as

O = {ef‘m“i“n) —1} e (5.20)

In Eq. (5.20), the vertical wavenumber m = (1 — p%k?)*? is real if k < g and purely
imaginary if k > g. The wave component in the range of k < %, which is sinusoidal
with the vertical wavenumber m and propagates vertically, is called the propagating mode.
The wave component in the range of k > %, which exponentially decreases with a decay
rate of m' = (%k? — 1) = —im, is called the evanescent mode. This classification of wave
components has been used in mountain-wave studies (Queney 1948; Smith 1979). Note
that the k-boundary of both modes k. = £ is the critical horizontal wavenumber that was

introduced by Queney (1948).
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The spectral vertical velocity wjk in Eq. (5.19) is obtained by applying Eq. (5.20)
to Eq. (5.18) and choosing the real part of 1w;e™. The spectral vertical velocity of the

propagating mode (k < 1) is given by

W, = —%e‘a“ sinmz{sin (kx+mh, ) =sin(kx+mh,)} for0<z<h,,  (5.21a)

W,, = —%e‘a" {sin mzsin (kx +mh, ) +cos mh, cos (kx + mz)—cos kx}
forhi<z<hy, (5.21b)
Wy, =%e‘ak (cosmh, —cosmh, )cos (kx+mz) for z > hy, (5.21c)

whereas the spectral vertical velocity of the evanescent mode (k > 51) is given by

W, = —%e*ak sinhm’z (e‘”"hz —e™ )cos kx for 0 <z <hy, (5.22a)
m
W, = e (e sinhm'z+e ™™ coshm'h, —1)coskx for hy <z <h, (5.22b)
m
W, = —%e‘a"e‘m'Z (coshm’h, —coshm'h, )coskx for z > ha. (5.22¢)

Figure 5.1 shows the vertical velocity fields in the cases of the nonhydrostaticity
factor #=0.1, 0.3, 0.5, and 1 in the inviscid-limit system. For # = 0.1, the flow is close to
the hydrostatic flow (Fig. 1a). As g increases, the flow gradually deviates from the

hydrostatic flow and becomes more nonhydrostaic. For 5 = 0.3, 0.5, and 1, an alternating
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Figure. 5.1. Vertical velocity fields in the cases of g = (a) 0.1, (b) 0.3, (c) 0.5, and (d) 1 in
the inviscid-limit system. The rectangle in each panel represents the concentrated
convective forcing region. The contour line information is given at the bottom of each

panel.
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wavy pattern of updrafts and downdrafts appears downstream of the convective forcing
(Figs. 5.1b—d). The horizontal wavelength (2zk™) of the alternating updrafts and
downdrafts is 2z, which is 1.88 for § = 0.3, 3.14 for p = 0.5, and 6.28 for S = 1, where k
= ke. Note that the dimensional horizontal wavelength of the alternating updrafts and
downdrafts is 2zU/N, which is fixed for uniform basic-state wind speed and static
stability. The nonhydrostaticity factor g can be controlled by changing the half-width of
the bell-shaped convective forcing a for given environmental conditions (fixed U and N).
Using Eq. (5.6), it can be easily seen that the alternating updrafts and downdrafts
downstream of the convective forcing with the horizontal wavelength 2zU/N are
generated as a decreases (5 increases) in a dimensional frame. The alternating updrafts
and downdrafts are almost horizontally propagating resonant waves. As the horizontal
wavenumber k approaches ke, the vertical wavenumber m of the propagating mode and
the decay rate m' of the evanescent mode in the denominator of the wave components
approach zero, thus amplifying corresponding wave components [see Egs. (5.21) and
(5.22)].

In their numerical modeling study, Woo et al. (2013) also found that the
alternating updraft and downdraft cells appear downstream of the convective forcing and
that the horizontal length scale of each cell is zf. Woo et al. (2013) speculated that the
alternating updraft and downdraft cells are produced by the superposition of the
horizontally propagating waves of the propagating mode and the horizontally wavy
pattern of the evanescent mode. We calculate the propagating mode and evanescent mode
of the vertical velocity field in the case of = 0.5 (Fig. 5.2). As speculated in Woo et al.

(2013), the evanescent mode exhibits a horizontally wavy pattern (Fig. 5.2b). However,
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Figure 5.2. Vertical velocity fields in the case of # = 0.5: (a) propagating mode and (b)

evanescent mode. Differences in vertical velocity field between the cases of (a) # = 0.5

and # =0.01 and (d) p =1 and g = 0.01. The rectangle in each panel represents the

concentrated convective forcing region. The contour line information is given at the

bottom of each panel. The inviscid-limit system is considered.
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the vertical wavy pattern upstream of the convective forcing seems to be
independent of g (Fig. 5.1). Differences in vertical velocity field between g = 0.5 and g =
0.01 (hydrostatic-limit system) (Fig. 5.2c) and between f = 1 and g = 0.01 (Fig.5. 2d)
show that the nonhydrostatically generated alternating updrafts and downdrafts
downstream of the convective forcing do not exhibit a wavy pattern in the vertical
direction, so the vertical wavy pattern downstream of the convective forcing in Fig. 5.1 is
also the p-independent hydrostatic-limit flow. Thus, it is deduced that the wavy pattern of
the evanescent mode downstream of the convective forcing play a role in flattening the
horizontally undulating pattern of the S-independent hydrostatic-limit flow like the role of
the evanescent mode on the upstream of the convective forcing. In addition, the flow of
the evanescent mode is much weaker than that of the propagating mode. For these
reasons, in this study the alternating updrafts and downdrafts downstream of the

convective forcing are regarded as the propagating mode.

5.3.2 Viscid system

In a viscid system that includes the Rayleigh friction and Newtonian cooling, the
real part of the individual spectral wave components [Egs. (5.18d) and (5.19)] are

expressed as

Q= —[XR {e?M'(”h") cos(kx+'Mg(zth,))-cos kx}
(5.23a)
-X, {e?M'(“h”) sin(kx'Mg(z£h,))-sin kxﬂ

where
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X +iX, _m (1= B (& —vre)} =i { Bk (v, +17)} | (5.230)

M - B2 )+ Ky )]
m=M_ +iM,
k(RE+1°)™ [cos(itan1 Lj+isin (Etan1 Lﬂ for R>0,
e L L2 R 2 R
\/(é(f;g;(':gljvﬁ) [—sin (%tan‘1 LR) +i cos(%tan‘1 Iﬁﬂ for R <0,

(5.23c)

R=(k*—v v;)= B (K> +v2)(K* +v2), (5.23d)

I =(v, +v;)k. (5.23e)

In the viscid system, the propagating mode and evanescent mode cannot be explicitly
separated because the vertically propagating component with the vertical wavenumber
Mg and the vertically decaying component with a decay rate M; exist simultaneously in
the entire range of k. In this study, we consider the case in which the coefficient of
Rayleigh friction is equal to that of Newtonian cooling to examine a general role of the
dissipation terms. Hereafter, we refer to v = vm = vt as the viscous coefficient.

Figure 5.3 shows Mg, M), and R as a function of the horizontal wavenumber k in
the cases of v = 0.01, 0.3, 0.7, and 0.9. The nonhydrostaticity factor £ is specified as 0.5.
For v = 0.01, Mg and M; are similar to m and m' in the inviscid-limit case, respectively
(Fig. 5.3a). Similar to the inviscid-limit case, Mr (M) is dominant in the range of k < k¢ (k
> k¢), whereas M, (MR) is almost zero in the range of k > k¢ (k < k) (Fig. 3a). Noting that
the vertical wavenumber Mr is larger (smaller) than M; when R is positive (negative), we

classify the propagating mode and evanescent mode based on the sign of R. The k-range
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in which R is positive is referred to as the propagating mode in the viscid system. The
evanescent mode with k smaller (larger) than the k-minimum (maximum) in the k-range
of the propagating mode is referred to as evanescent mode 1 (2). As v increases, the k-

range of the propagating mode becomes narrow and only the evanescent mode exists if v
exceeds a critical value. The critical viscous coefficient v, =1/(2\/§ﬂ) can be obtained

under the condition that R = 0 does not have a solution. For = 0.5, v¢ is 0.707.

Figure 5.4 shows the total vertical velocity field and the vertical velocity fields of
the propagating mode, evanescent mode 1, and evanescent mode 2 in the case of # = 0.5
and v = 0.3. Similar to the inviscid-limit case, the alternating updrafts and downdrafts are
clearly observed (Fig. 5.4a). The boundary of k between the propagating mode and
evanescent mode 1 (2) is k = 0.31 (1.93), and the corresponding horizontal wavelength is
20.27 (3.26). In this case, the contribution of evanescent mode 1 to the total flow is not
significant, while the other two modes, that is, the propagating mode and evanescent
mode 2, play similar roles to the two modes in the inviscid-limit system. The alternating
updrafts and downdrafts have a horizontal wavelength longer than that in the inviscid-
limit system, and they weaken as further going downstream.

Figure 5.5 is the same as Fig. 5.4 except for v = 0.7, a larger viscous coefficient.
Strong updraft near the convective forcing center, broad compensating downdraft
upstream of the convective forcing, and narrow compensating downdraft downstream of
the convective forcing are the major characteristics of the total vertical velocity field (Fig.
5.5a). The boundary of k between the propagating mode and evanescent mode 1 (2) is k =
1.11 (1.34), and the corresponding horizontal wavelength is 5.66 (4.69). When the flow

system is strongly viscous, the alternating updrafts and downdrafts are almost dissipated
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due to the very narrow k-range of the propagating mode. Evanescent modes 1 and 2 are

dominant modes, and the contribution of the propagating mode to the total field is minor.

5.3.3 Gravity-wave momentum flux

To examine nonhydrostatic effects on gravity-wave momentum flux, the vertical
flux of integrated horizontal momentum is derived by integrating the product of the
spectral vertical velocity and the spectral horizontal velocity that is obtained using the

Fourier-transformed continuity equation [0; = (i/k)owj/0z].

L2 1 ¢
M, =["Mdk=[" L"i'lL_ _ u;w;dxdk =§j0 U W, dk, (5.24)
where Ly is the sufficiently large horizontal domain size and j = 1, 2, 3 depending on z
[Eq. (5.18)]. Here, the orthogonality of the sinusoidal function is used.

In the inviscid-limit system, the gravity-wave momentum flux Mx of the

propagating mode for hy <z <ha is

__ 2 e (cos mh, —cos mh, )(cos mz —cos mh,). (5.25)

Ma 2m3k

The gravity-wave momentum flux below the convective forcing is M1k = Mk (z = hy) = 0.
The gravity-wave momentum flux above the convective forcing is Msx = M (z = hp) =
constant and satisfies the Eliassen-Palm theorem (Eliassen and Palm 1960). Note that the

evanescent mode does not contribute to the momentum flux.
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Figure 5.6. (a) Vertical profiles of gravity-wave momentum flux in the cases of § = 0.01,
0.1, 0.3, 0.5, 0.7, and 1. (b) Differences in gravity-wave momentum flux between the
nonhydrostatic system in each case of f = 0.3, 0.5, 0.7, and 1 and the hydrostatic-limit
system. (c) Spectral gravity-wave momentum flux above the convective forcing as a
function of the horizontal wavenumber k in the case of £ = 0.5. The inviscid-limit system

is considered.
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Figures 5.6a and 5.6b show the vertical profiles of gravity-wave momentum flux
and its differences between the nonhydrostatic and hydrostatic-limit systems for various
values of 4. The inviscid-limit system is considered. As S increases, the gravity-wave
momentum flux departs from that in the hydrostatic-limit system (Fig. 5.6a), so the
magnitude of the gravity-wave momentum flux above z ~ 3 increases compared to that in
the hydrostatic-limit system (Fig. 5.6b). This means that in a nonhydrostatic system of
large S, nonhydrostatically forced waves provide an additional momentum flux, although
the additional momentum flux is small compared to the total momentum flux. Figure 5.6¢
shows the spectral gravity-wave momentum flux above the convective forcing Mk as a
function of k in the case of p = 0.5. The magnitude of the spectral gravity-wave
momentum flux Msx decreases with increasing k up to k ~ 1.6, and a secondary local
maximum exists near k = ke. We can calculate k at the secondary local maximum using
dMak/dk = 0. In the case of # = 0.5, the wave component corresponding to the secondary
local maximum is a slantwise (almost horizontally) propagating wave of k = 1.958 and m
= 0.204. The slope of the wave propagation is m/k = 0.104. Because m is very small and

positive when k ~ k¢, we can approximate Mz for a very small m = ¢ > 0 using Eq. (5.25).

M == L2 (n ) (22 =), (5.26)

The above approximation indicates that the nonhydrostatically generated additional
gravity-wave momentum flux is proportional to the nonhydrostaticity factor. The above

approximation also indicates that the magnitude of the nonhydrostatically forced
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momentum flux increases with increasing height and that above the convective forcing is
larger for deeper convective forcing.

Figures 5.2c and 5.2d show that the alternating updrafts and downdrafts are
upstream tilted above the convective forcing, so the tilted waves transport wave energy
vertically. As already mentioned, these tilted alternating updrafts and downdrafts mainly
provide an additional momentum flux above the height of the convective forcing top (z =
h2). Note that another upstream tilted wave exists above the convective forcing and that
the sign of the vertical velocity above the convective forcing is opposite to the total
vertical velocity (compare Figs. 5.1¢c and 5.2c and Figs. 5.1d and 5.2d). For this reason,
the additional momentum flux in the nonhydrostatic system is small even though the
nonhydrostatically generated alternating updrafts and downdrafts provide a meaningful
amount of momentum flux. In other words, in nonhydrostatic system, some portion of
transported wave energy above the convective forcing is downstream shifted.

The result of our study shows that convective forcing in a nonhydrostiatic system
can provide an additional gravity-wave momentum flux above the convective forcing.
Considering the importance of the parameterization of convectively forced gravity-wave
drag in large-scale or climate models, its parameterization in a nonhydrostatic system
needs to be further developed.

In the viscid system, using Eq. (5.24), we can obtain the gravity-wave momentum

flux.

M, :a—ze*Zak(x§+x,2)x
4k
(Mgsinh2M,z—M, sin2M.z)x for0<z<h;, (5.27a)
fe

M g M e M) oog M (h, — hl)}
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a’ 28k [y 2 2
M,, Z—Eefa (Xg+X[)x

<MR[e 2MZ{coshZMh1 e M) cos M (h, —h)
+c032MRhl—e’M'(h2’hl)cosMR(m+h2)}—e’2M'“2sinh2M|z
+{e’“"'(”h2)cosMR(z+h2)—e’M'(”mcosMR(z+hl)
+eM'(Z‘“Z)cosMR(z—hz)—e‘M'(z‘hl)cosMR(z—hl)ﬂ
-M, [e™" ™M sinM, {22 (h, ~hy)}

+e MM sin M {2z~ (h +h,)} —e "™ sin2M .z
+{eMEMsinM (z+hy) —e ™M sin M 2+ h)

M gin M, (z—h,) —e ™MW sin MR(Z_hl)}:|>
forhi<z<hy, (5.26b)

2
My, = _%e-%‘k(xg +XE)M e 2 x

{cosh2M  h, +cos2Mh, +cosh 2M h, +cos2M:h, forz > h,. (5.26¢)
—2cosM; (h, +h,)coshM, (h, —h)
~2c0s M (h, —h,)cosh M, (h, +h,)}

Figure 5.7 shows the vertical profiles of gravity-wave momentum flux in the cases of v =
0.01, 0.3, and 0.7 for various values of 4. For v = 0.01, the magnitude of the gravity-wave
momentum flux above the convective forcing increases with increasing £, which is
similar to that in the inviscid-limit system. This is due to the nonhydrostatically forced
slantwise propagating gravity waves of k < ke which contribute to the secondary local
maximum of the spectral momentum flux (Fig. 5.7a). For larger v, however, the
magnitude of the gravity-wave momentum flux above the convective forcing decreases as

Jincreases (Figs. 5.7b and 5.7c¢).
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Figure 5.7. Vertical profiles of gravity-wave momentum flux in the cases of v = (a) 0.01,

(b) 0.3, and (c) 0.7 for 5 =0.1, 0.3, 0.5, 0.7, and 1.
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Figure 5.8 shows the vertical profiles of the gravity-wave momentum flux of total
and each mode in the cases of f# = 0.5 and v = 0.01, 0.3, and 0.7. For v = 0.01, the
propagating mode takes the largest portion of the total momentum flux (Fig. 5.8a). As the
viscous coefficient increases, the portion of the momentum flux of evanescent mode 1
increases (Figs. 5.8b and 5.8c). For v = 0.7, the gravity-wave momentum flux of the

propagating mode is almost dissipated, whereas the gravity-wave momentum flux of
evanescent mode 1 is dominant. The critical viscous coefficient v, =]/ (2v/23) for g =

0.1, 0.3, 0.5, 0.7, and 1 are 3.54, 1.18, 0.71, 0.51, and 0.35, respectively. Therefore, the
propagating mode is effectively dissipated by relatively weak viscous -effects.
Accordingly, the nonhydrostatic effects on convectively forced flows are easily weakened

in a nonhydrostatic system of large .
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6 Dynamics of orographic-convective
flows in a two-layer nonhydrostatic
atmosphere

6.1 Introduction

Convectively forced internal gravity waves are regarded as a main source of
momentum fluxes with high frequency, especially in summer. The momentum fluxes
transported by horizontally/vertically propagating internal gravity waves deposit their
energy through wave breaking/drag, and the wave drag has an important role in
controlling the upper atmosphere (Eliassen and Palm 1960; Bretherton 1969; Linzen
1981; Holton 1982); for this reason, the convectively forced internal gravity waves have
been actively investigated for decades.

Parameterizations of the convectively gravity wave drag have been proposed
based on theoretical studies of the momentum fluxes induced by convective heating. Kim
et al. (2003) reviewed the gravity-wave drag parameterizations in numerical climate
models, and highlighted the importance of understanding in the spectrum of the gravity
waves in developing new parameterizations. In a stably stratified hydrostatic atmosphere,
vertically propagating internal gravity waves are induced, and they transport the wave
energy vertically with vertically monotonic waves in steady-state (Chun and Baik 1998,
2002). Beres et al. (2004) and Song and Chun (2005, 2008) theoretically investigated and
formulated the convectively forced momentum fluxes spectrum under two- and three-
dimensional frameworks. Parameterizations based on those studies are applied to large-

scale numerical models, and they have a role in improving the numerical climate



simulations (Beres et al. 2005; Song et al. 2007).

In a nonhydrostatic atmosphere, in which the vertical scale of a system cannot be
neglected compared to the horizontal scale of the system, non-negligible inertial terms in
the vertical momentum equation generate a distinct pattern of convectively forced
mesoscale flows. Woo et al. (2013) numerically investigated the nonhydrostatic effects
on the convectively forced flows. Woo et al. (2013) showed that the alternating cells of
updraft/downdraft are induced downstream of the convection and that the cells have
specific horizontal length scales, which depend on the static stability and the basic-state
wind speed in a strongly nonhydrostatic single-layer atmosphere. Chapter 5 showed that
the alternating cells are horizontally tilted internal gravity waves and provide additional
vertical momentum flux; however, the convectively forced internal gravity waves and
their effects on the vertical momentum fluxes in the nonhydrostatic atmosphere with
static stability jump and the basic-state wind shear need further investigations.

The investigations of the characteristics of topographically forced internal gravity
waves in a nonhydrostatic atmosphere with static stability jump and the basic-state wind
shear have seen some progress. Broutman et al. (2002, 2003) examined the behavior of
mountain waves in hydrostatic and nonhydrostatic atmospheres using the ray theory.
Vosper (2004) and Teixeira et al. (2017) also showed that the mountain lee waves can be
trapped by stability changes due to temperature inversion. Based on Wurtele et al. (1987),
Keller (1994) examined the flow patterns, wave reflections, and momentum fluxes of
topographically forced internal gravity waves in a two-layer nonhydrostatic atmosphere.
In a nonhydrostatic atmosphere, a number of distinct resonance waves with characteristic

horizontal wavenumbers are generated; however, the theories of topographically forced



waves cannot be directly adapted to convectively forced waves because 1) the source of
convectively forced waves is continuously distributed above the surface in the vertical,
while the source of topographically forced waves is at the bottom, 2) convectively forced
waves are thermally forced waves, while topographically forced waves are mechanically
forced waves, and 3) convective forcing is spatially and temporally varying, while
topographic forcing is temporally fixed.

This study examines the characteristics of convectively forced gravity waves in a
two-layer nonhydrostatic atmosphere. The governing equations and analytic solutions for
the convectively forced flows are provided in section 6.2. The convectively forced flows
in a two-layer nonhydrostatic atmosphere and the characteristics of resonant waves are
analyzed in section 6.3.1. In section 6.3.2, analyses of the gravity-wave momentum

fluxes in the stratosphere factoring in various environmental factors are provided.

6.2 Governing equations and solutions

In this study, we consider a two-dimensional linear Boussinesq system in steady-
state including a convective diabatic forcing. Since we consider a nonhydrostatic
atmosphere, the inertial terms in the vertical momentum equation are not neglected. The

governing equations in perturbation variables are as follows:

Uu, +wU, =-r,, (6.1)

Uw, =-z,+b, (6.2)

Ub, +N*w=-9 g, 6.3)
cT,
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u,+w,=0, (6.4)

where u and w are the perturbation horizontal and vertical velocities, respectively, « is the
perturbation kinematic pressure, b is the perturbation buoyancy, U is the basic-state wind
speed, N is the buoyancy frequency, g is the gravitational acceleration, c; is the specific
heat of air at constant pressure, To is the reference temperature, and q is the diabatic
forcing function.

Figure 6.1 presents the schematic of a two-layer atmosphere considered in this
study. The lower and upper layers represent the troposphere and the stratosphere,
respectively, and the tropopause height is H. In the troposphere, the basic-state wind
speed has a constant wind shear (U = Ug + sz, where Ug is the basic-state wind speed at
the surface and s is the basic-state wind shear), while the basic-state wind is constant in
the stratosphere (U = Ug). In this study, Ug and s are positive. The stratospheric buoyancy
frequency Ns is larger than the tropospheric buoyancy frequency Nr.

The Green function method is used to solve Eg. (6.1)-(6.4) (Han and Baik, 20009,
2010). The perturbation vertical velocity induced by a finite-depth diabatic (hereafter,
convective) forcing is obtained by integrating the analytic solution for the perturbation
vertical velocity induced by a line-type diabatic forcing at z = h, which is given below,

with respect to h from convection bottom height h; to convection top height h.
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Figure 6.1. Structure of a two-layer atmosphere in the presence of convective forcing

considered in this study.
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a’ ab
x*+a®> x*+b?

j5(z —h). (6.5)

Here, o and a are the strength and the half-width of the bell-shaped diabatic forcing,
respectively, b is a constant (b > a), and ¢ is the Dirac delta function.

Equations (6.1)—(6.4) are combined into a single equation in w as follows.

U? (W, +W,, )+N*w= 9r a, (6.6)

To derive the ordinary differential equation for the perturbation vertical velocity in the
wavenumber space, the Fourier transformation of Eq. (6.6) is taken (x — K).
Due to the two layers having different vertical structures of the basic-state wind

speed, the general solutions for the perturbation vertical velocity have different forms as

follows:
Wo, = AZY?K,, (E)+BZY2L,, (&) for0<z <h, (6.72)
Wi, = AZY Ki. (&) + BZZUZLiy (§) forh<z<H, (6.7b)
W, = Ce'™ +De™™ forz > H. (6.7¢)

Here, Z = U/Uo, m = (Ns?/Ui? — k?)¥2, and Ki,(&) and L;(&) are the modified Bessel

functions with purely imaginary order iu [u = (Ri — 0.25)Y?; Ri = Nt%/s? is Richardson
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number] and argument & (= Uk/s), and the modified Bessel functions Ki,(¢) and Li(¢) are
defined by the modified Bessel function of the first kind 1+;,(¢) as follows (Wurtele et al.

1987; Duster 1990; Keller 1994).

_ir 1,01,
_z Ily(g)—’_ I—iy(g)
(@) -G, (6.80)

Chapter 5 describes the behavior of each wave component depending on the
horizontal wavenumber k in a nonhydrostatic single-layer atmosphere. In the stratosphere
in which the basic-state wind speed and static stability are uniform, if k < Ns/Un (k >
Ns/Un), then the wave component is sinusoidal and represents a vertically propagating
wave (exponential and vertically decaying wave) with the vertical wavenumber m (with
the decaying rate m’ = im). The second term on the RHS of Eq. (6.7c) is nonphysical and
is to be deleted due to the upper radiation condition (D = 0 with Uy > 0).

In the troposphere, the wave components which are represented by modified
Bessel functions K;.(¢) and L;(¢) can be interpreted in a similar way. If & < u (& = w),
then the wave component is oscillatory (exponential), and the behavior changes from
oscillatory (exponential) to exponential (oscillatory) when &= u (c.f., Figs Al and A2 in
Wourtele et al. 1987). When ¢ » u, the asymptotic behaviors of Ki(¢) and L (&) are
exponentially decaying and amplifying with the argument &, respectively, and are

expressed as
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K, (&) z(i] e, (6.92)

. 12 eg
|—¢(§)~(a] W (6.9b)

On the other hand, when ¢ « y, the asymptotic behavior of Ki(&) and Li.(¢) is

sinusoidal and are 7/2 out of phase with each other. Each is expressed as

K, (&) = (i] exp [—ﬂ—zﬂjsin {/{In - In§—1j+%] (6.10a)

L, (&) = [%] exp(—ﬂ—zﬂ)cos{y(ln - In%—l}t%}. (6.10Db)

The choice of L;,(&) as the pair of the modified Bessel function of the second kind K;.(&)
is introduced by Miller (1950), and various characteristics of K;.(¢) and L;(&) are
described in Dunster (1990).

To find the coefficients A1, A2, Bi, Bz, and C, the no-slip bottom boundary
condition [vr1 (z = 0) = 0] and the interfacial boundary conditions at z =h and z = H are

applied as follows:

WTl(Z =h)= WTZ(Z =h), (6.11a)
Wy, ,(z=h) -\, ,(z=h)=F, (6.11b)
W, (z=H) =V, (z=H), (6.11c)
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WTZ,Z(Z = H) = VAVs,z(Z = H)’ (6.11d)

where

F(k,2) =%(eak —e™)5(z-h). (6.11¢)
p'o0

Then, the solution for the perturbation vertical velocity forced by line-type diabatic

forcing in the wave number space is

i = Yo i () U R _
Wy, =2 3|nh(y7r)(K0+RLO)Z {LKL (&) =KoL, (9] for0<z<h,

(6.12a)

Wy, = _UnF sinh(yﬂ)MZ; {Kiy(f)— RLw(é)} forh<z<H,

s (Ko +RLy)

(6.12b)
~ U FA . Ky, =KoL 2 im(z—H
iy == Smh(ﬂﬂ)(IEOKO:—RLOO;)Zﬁ (K, —RL,)e™ ™ forz>H, (6.12c)

where

Ur=U@E=9, (6.12d)
Z:=2(2=0), (6.12¢)
Ke= Kiu(Uekis), Lo = Li(Uk/s), (6.12f)
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;KH+UHI<K'H+imUHKH
R=

S (6.12g)
5 L, +U kL, +imU L,

Here, R is the complex reflection coefficient at the tropopause.
The solution for the perturbation vertical velocity forced by a convective diabatic

forcing can be obtained by integrating Egs. (6.12a)—(6.12c) with respect to h from hs to h,

as follows:
W, = j: W, dh for 0 <z < hy, (6.13a)
W, = [ i + [y, forh<z<h, (6.13b)
W, = L: W,,dh forh,<z<H, (6.13c)
- j: Wiedh for z > H. (6.13d)

The solution can be obtained analytically by the relations below.

UKL (&)= [P 6K, ()0,
sz (&, (14, H PR
—'kz(zj {gh {4 W (ZJ]
. . ik
—22‘ﬂr[ '“j E {1—Iﬁ;1—iy,2—lﬁ;(ij }}
2 2 2\ 2

a

(6.14a)
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h, S %
J.hl UhLiy (fh)dh :FJ.Q ghl—iy (fh)dgh
B .- (éjz—iy
~ KZsinh(ur)\ 2
{gﬁ'ﬂr('g‘ 1] F { L §+2 (52] }
22'ﬂr( "‘J |52|:1—iﬁ;1—i,u,2—iﬁ;(ij ]}
2 2 2\ 2

(6.14b)

where
G=¢(z2=hy, (6.14c)
Fola B Bié]= i @ o (6.14d)

F(ﬂl)F(ﬂz 12 (8)n(5,), N!

Here, ,F, [a;ﬂl,ﬂz;f] is the regularized hypergeometric function and I'(f) is the gamma

function. In this study, however, we numerically integrate Eqg. (6.13) to simplify the

calculation and to easily handle and analyze the solution.

The inverse Fourier transform of the numerically integrated solution in Eq. (6.13)

is taken (k — Xx) using the Euler forward scheme. The grid size Ak and the number of the

grids Nk are varied case by case to avoid numerical blow-ups triggered by the calculations

involving Bessel functions. Some caveats to calculating the solutions are described in

section 4 of Keller (1994). In this study, we consider the nonhydrostatic atmosphere with

the basic-state wind shear which is determined by three Richardson numbers (Ri = 9, 36,
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and 144) with and without stability jump at the tropopause (Ns = 0.02 s when the
stability jump exists). When Ri =9, 36, and 144, the basic-state wind speeds at z = 12 km
are Uy = 50, 30, and 20 m st and s = 3.33 x 1073, 1.66 x 10~ and 0.83 x 107 s,
respectively, when Up = 10 m st and Nt = 0.01 s (Table 6.1). The line-type diabatic
forcing is located at z = h = 8 km and the convective diabatic forcing is located from z =
hi1 =1 kmtoz =hy =11 km vertically. The half-widths a = 10 km for both of the diabatic
forcings, and b = 5a. The magnitude of both diabatic forcings is qo = 1 J kg™ s and the

reference temperature is To = 273.15 K.

6.3 Results and discussion

6.3.1 Convectively forced flows and gravity waves

The perturbation vertical velocity fields induced by line-type diabatic forcing
without stability jump are shown in Figure 6.2. Downstream of the convective forcing,
horizontal wavy patterns appear clearly. Resonant waves with different horizontal
wavenumbers are superposed to form the wavy patterns. Without the stability jump (R =
0), the perturbation vertical velocity has singularities at the zeros of Ko [see Egs. (6.12a)—
(6.12c)]. When the denominator of Eqgs. (6.12a)—(6.12c) goes to zero, the horizontal the
wave component e™* and the vertical wave components K;,(¢) and Ly (&) corresponding to
wavenumber k are amplified. Because the wave strength is exponentially decreasing with
k [see Eq. (6.11e)], wave components corresponding to relatively long wavelengths are
strongly amplified. Since the zeros of K;(¢) depend only on Richardson number, the

tropospheric basic-state wind shear determines the horizontal wavelengths of resonant

waves when the tropospheric static stability is fixed.



Ri Uu(ms?) s(x103s?) Lx at zeros of K;.(&) (km)
9 50 3.33 7.2,20.9,60.3
36 30 1.66 9.4,15.9, 26.9, 45.5, 76.9
144 20 0.83 7.7, 10.0, 13.0, 17.0, 22.0, 28.6, 37.2, 48.3, 62.8

Table 6.1. The basic-state wind speed at z = 12 km, basic-state wind shear s, and the
horizontal wavelengths corresponding to the zeros of K;.(&) for the case of Richardson

numbers 9, 36, and 144.
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Figure 6.2. Perturbation vertical velocity induced by line-type forcing at h = 8 km without
stability jump at the tropopause in the case of Ri = (a) 9, (b) 36, and (c) 144. The contour

line informations are given at the bottom of each panel.

125 3

S—



The dash-dot line in Fig. 6.3 is the horizontal wavelength (= 2w/k) corresponding
to &% = w as a function of Richardson number and shows that the resonant wave
corresponding to wavelengths longer than ~10 km satisfies & < w. For this reason, the
sinusoidal asymptotic form of K;,(¢) and L.(¢) in EqQ. (6.10) can approximate the
behavior of resonant waves. Figure 6.3 also shows the horizontal wavelengths

corresponding to the zeros of sinusoidal asymptotic form of K;,(¢) as

L, = exp{—[n—%}wl—ln ,u}. (6.15)

The possible wavelengths of resonant waves are broadly but discretely distributed
depending on Richardson number. The wavelengths of the possible resonant waves
shorter than 100 km and satisfying & < u are listed in Table 6.1. When Ri = 9, the
resonant waves corresponding to wavelengths ~20.9 km and ~60.3 km appear in the
lower and the upper atmospheres, respectively (Fig. 6.2a). For a fixed horizontal
wavelength (or k), the argument of the Bessel function increases with the basic-state wind
speed. For this reason, the resonant waves with short wavelength (large wavenumber) are
trapped as the argument of the Bessel function approaches or overtakes u, so that the
wave components behave exponentially rather than sinusoidally (Fig. 6.2a). As the basic-
state wind shear becomes smaller, the horizontal wavelengths of the resonant waves
decrease and resonant waves with relatively shorter horizontal wavelengths can approach
high altitude (Fig. 6.2b and 6.2c).

Figure 6.4 shows the convectively forced perturbation vertical velocity fields
without stability jump. The flow patterns are made by superposing the flows induced -
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Figure 6.3. The horizontal wavelengths corresponding to the zeros of sinusoidal
asymptotic forms of K;.(&) in Eq. (6.10a) as a function of Richardson number. The thick
solid lines are for n = 0 and the thin solid (dashed) lines are corresponding ton =1, 2, and
3 (n =-15, =14, ..., -1) [see Eq. (6.15)]. The sinusoidal asymptotic form of K;(&) is

valid when Ly is longer than the dash-dot line on which & = u is valid.
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Figure 6.4. The same as Fig. 6.2 except for the perturbation vertical velocity induced by

convective forcing distributed from hy =1 km to h, =9 km.
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by line type diabatic forcings which are continuously distributed from z = h1 to z = ho. As
a result, strong and deep upward motions are induced around the convection center. The
composition of various resonant waves with different phases and strengths makes for a
complex wave structure, especially in the case with high Ri (Fig. 6.4c), while the
horizontal wavelength of the resonant waves looks similar to those in the case of the line-
type diabatic forcing. Convectively forced resonant waves with weaker wind shear are
weaker than those with stronger wind shear, while those induced by a line-type diabatic
forcing are stronger (Fig. 6.2c and 6.4c).

The contribution of the resonant waves to the entire fields is as follows:

1
Wy, = —%Sinh (,wz)ZE

v K _RL.) | for0O=z<h,
XZFJ{LOJK'/J@J)Ko;'-.y(fj)}Re{iMe'ij}

(K(;J' +RL(;j)
(6.16a)
W, =—%sinh(ﬂﬂ)zi
N K () -RL (€D} 4 forh<z<H,
(6.16b)

1
W :ZUT'“sinh(,wr)Z,?1

forz>H.
n K., —RL. ) .
Xil F (LOJ Ky — Ko Iy ) Re{i—( il il ) e'{k’”m(ZH’}}
j=

(K(;iJFRLéj)

(6.16¢)
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In Eq. (6.16), terms with subscript j are the values corresponding to the wavenumber of j-
th zero of denominator Ko + RLo, and N is the number of zeros. In the troposphere, the
horizontal wave component e is separated from the vertical wave components K;,(&)
and Li(¢), which means the the resonant waves do not transport the wave energy
vertically. In the stratosphere, however, the resonant waves vertically transport wave
energy from the tropopause.

Figure 6.5 shows the perturbation vertical velocity fields induced by the line-type
diabatic forcing with stability jump at the tropopause. As discussed, the resonant waves
are tilted upstream in the stratosphere, which indicates that the wave energy is vertically
transported upward. Moreover, in the upper troposphere, the resonant waves are tilted
downstream, which indicates downward propagating wave components above the line-
type diabatic forcing due to the gravity-wave reflection at the tropopause. The wave
energy source in the stratosphere is the nonhydrostatically generated resonant waves at
the tropopause level. For this reason, wave energy, which is transmitted and transported
in the stratosphere, strongly depends on Richardson number, the height of the diabatic
forcing, and the tropopause height.

Convectively forced perturbation vertical velocity fields in Fig. 6.6 show that the
cellular structure of the resonant waves in the troposphere is aligned vertically compared
to those induced by a line-type forcing. Similar to the case with a line-type forcing,
resonant waves in the upper troposphere (in the stratosphere) are tilted downstream
(upstream). The vertically aligned wavy structure in the troposphere shows that the wave
energy source of the stratosphere is less sensitive to the tropopause height if the change in

the distance between the tropopause and the convection top height is smaller.
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Figure 6.5. The same as Fig. 6.2 except for the cases with stability jump at the tropopause.
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Figure 6.6. The same as Fig. 6.3 except for the cases with stability jump at the tropopause.
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6.3.2 Gravity-wave momentum fluxes

As discussed in Section 6.3.1, resonant waves without stability jump do not
transport wave energy vertically. However, the stability jump at the tropopause (existence
of the higher stability layer aloft) ensures the vertical propagation of wave energy toward
the upper atmosphere. Because the wave components are trapped at a certain height
(when & ~ u) given a Richardson number and the wavelength of the resonant wave, the
wave energy cannot be transported far aloft without stability jump. In this section, we
examine the gravity-wave momentum fluxes of the resonant waves in the stratosphere
which are transmitted through the tropopause.

Using the Fourier transformed continuity equation [(i = (i/k)owi/0z], we can
analytically obtain the perturbation horizontal velocity and the momentum fluxes in the

stratosphere induced by a line-type diabatic forcing as follows.

2

"sinh? (ur)Z,

o 4
Mg = J._w UsWedX = ;Jz

2 K2 —Re{R}K, L, +|R[ L,
K¢ +Re{R}K;, L), +|R|" L

]

N ~
xZ;FjZ(LOthj—KOthj)
=

(6.17)

Here, the orthogonality of the sinusoidal function with respect to the wavenumber is used.
Due to the (e — ) term in F [Eq. (6.11e)], the resonant wave component with a
longer wavenumber tends to have a stronger momentum flux. The gravity-wave
reflection at the tropopause also affects the stratospheric momentum flux, and this effect

depends on the tropopause height [Eq. (6.17)].
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Figure 6.7. The magnitude of the complex reflectivity in Eq. (6.12g) for the cases Ri =9,
36, and 144.
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Figure 6.7 shows the magnitude of the complex reflectivity |R| in Eq. (6.129g) as a
function of the horizontal wavelength. The tropopause totally reflects resonant waves that
correspond to short wavelength. In the case of weak wind shear (high Ri), a wider range
of shorter waves are totally trapped in the troposphere. In the case of strong wind shear
(Ri = 9), relatively shorter waves than in the case of weak shear can pass through the
tropopause. The resonant waves corresponding to Lx from ~11.1 km to ~14.0 km can be
partially transmitted. However, the transmitted resonant waves cannot vertically
propagate because the critical wavelength in the stratosphere (kc = Ns/Un) is 15.7 km.
The wave components are thus in the evanescent mode in the stratosphere (see Chapter 5).

Section 6.5.1 shows that the Bessel functions K;.(¢) and L;. (&) for most of the
resonant waves can be approximated by the sinusoidal asymptotic forms [Eq. (6.10)].
Then, (LojKnj — KojLnj) = —(z/2u)e™sin[uln(Zn/Zo)] and Eqg. (6.17) can be analytically

integrated with respect to h as follows:

Mszizsinhz(,u;r)ZH U2 { ucos ,ulnﬂ —3sin ,ulni
S U Uo

—Ug{ycos[,uInB—jj—%in(ylnB—jH (6.18)

2
xiﬁ? K7 —Re{RIK Ly +|R|" L,
= K2+ Re{R¥K;; Ly, +|R[LE

]

Here, Uj (j = 1 and 2) is the basic-state wind speed at z = h;. Equation (6.18) shows that
the stratospheric momentum fluxes of the transmitted resonance waves can be positive or

negative depending on Richardson number, the tropopause height, and the bottom and top
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heights of convection. The magnitude of the stratospheric momentum fluxes needs to be

calculated and analyzed further.
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7 Modeling of orographic-convective
precipitation: Shallow and warm
clouds

7.1 Introduction

Aerosol particles play a role in controlling precipitation characteristics as cloud
condensation nuclei (CCN) or ice nuclei (IN). Rosenfeld (1999) and Andreae et al. (2004)
showed evidence that smoke aerosols from forest fires can inhibit rainfall. Urban
pollution also suppresses downstream rainfall and snowfall (Rosenfeld 2000). The
suppression effect of aerosol particles on precipitation has been reproduced in various
numerical studies (e.g., Givati and Rosenfeld 2004; Khain et al. 2004; Xie et al. 2013).
These numerical studies showed that the size distribution of small-sized cloud droplets in
an aerosol-rich condition supresses precipitation. Many observational and numerical
studies have shown that air pollution in mountainous areas, such as the western United
States, inland of Israel, and northern China, also suppresses precipitation (Givati and
Rosenfeld 2004; Jirak and Cotton 2006; Rosenfeld and Givati 2006; Rosenfeld et al.
2007; Guo et al. 2014).

Precipitation over mountainous areas has been investigated for a long time
(Barros and Lettenmaier 1994; Roe 2005; Houze 2012). To systematically study
orographic precipitation, many theoretical methods have been designed (e.g., Smith and
Lin 1982; Lin 1986; Smith and Barstad 2004). However, it is difficult to standardize the
detailed characteristics of orographic precipitation because orographic precipitation is

sensitive not only to microphysical processes but also to many factors, such as mountain



geometry, static stability, and basic wind speed (Chu and Lin 2000; Colle 2004; Sever
and Lin 2017). Colle (2004), Pathirana et al. (2005), and Roe and Baker (2006) examined
the sensitivity of orographic precipitation by changing mountain geometry (mountain
height and width) and basic wind speed. These studies assess the importance of mountain
barrier effects and the roles of mountain waves on shallow orographic precipitation in a
macroscopic viewpoint. The mountain height and width modify the strength of
orographic convection by controlling upslope steepness. A narrow-mountain with steep
upslope angle sometime results in more precipitation over the leeside of the mountain
(Roe and Baker 2006). However, the sensitivity of orographic precipitation to mountain
geometry is highly dependent on other factors as well, and wide-mountains with gentle
upslopes sometimes result in more precipitation over the leeside of mountain (Pathirana
et al. 2005). To examine the effects of upslope steepness on orographic precipitation,
asymmetric mountains with different upslope steepnesses but fixed downslope geometry
should be considered. Sensitivity tests in this study concentrate on the sensitivity of
macroscopic features and microphysical processes in the generation and development
stages of orographic precipitation.

Mountain geometry and environmental factors can determine the convective
development of orographic clouds. (Dudis 1972; Durran and Klemp 1982; Hernandez-
Duenas et al. 2015). Cannon et al. (2012, 2014) numerically studied the conditions for the
generation of complex orographic convection. Under convection-prone conditions,
orographic convection constructs a cellular or a banded structure (Kirshbaum and Durran
2004, 2005). A well-developed orographic convection has been reported in many studies

using field campaign data (Smith et al. 2012; Minder et al. 2013; Wang and Kirshbaum,



2015) and has been numerically simulated using high-resolution models (Kirshbaum and
Smith 2009; Panosatti et al. 2016; Sever and Lin 2017).

Many bulk and bin microphysics schemes have been developed for numerical
simulations of clouds and precipitation. Bin microphysics models predict the number
concentration of each hydrometeor in each size bin (e.g., Khain et al. 2000; Lynn et al.
20054, b). The detailed representation of microphysical processes in bin microphysics
models provides more accurate numerical results than the numerical results obtained by
bulk microphysics models. However, bin microphysics models require much more
computational resources, and less studies have used bin microphysics models. Khain et al.
(2005) used a bin microphysics model to study aerosol effects on deep convective
precipitation. Aerosol effects on shallow convective precipitation have also been studied
using bin microphysics models (Wyszogrodsky et al. 2011; Blyth et al. 2013; Grabowski
et al. 2015; Lee et al. 2015).

The effects of aerosol particles on orographic precipitation are even more
complicated. Under the influence of mountain geometry and other environmental factors,
the complex interactions of dynamical, thermal, and microphysical processes determine
the characteristics of orographic precipitation. Several researchers have numerically
examined aerosol effects on orographic precipitation using bulk microphysics models and
have shown that aerosols reduce the total precipitation amount over mountains
(Creamean et al. 2015; Yang et al. 2016). Studies using bin microphysics models have
provided an insight for understanding very detailed microphysical processes associated
with orographic precipitation influenced by aerosols, including the evolution of the size

distributions of hydrometeors (Lynn et al. 2007; Xue et al. 2010; Xiao et al. 2014, 2015).



However, aerosol effects on orographic precipitation from cellular or banded convective
clouds are still poorly understood. Recently, Nugent et al. (2016) studied aerosol effects
on orographic-convective precipitation with and without the basic wind using an aerosol-
aware bulk model. To understand aerosol effects on precipitation from convective
orographic clouds more clearly, numerical simulations using a bin microphysics model
are needed.

In this study, we examine aerosols effects on orographic precipitation from
shallow convective clouds using a bin microphysics model. A particular attention is given
to the sensitivity to upslope steepness. Section 7.2 presents the experimental design of
simulations. The simulation results are provided and discussed in section 7.3. The
macroscopic and microphysical properties of orographic precipitation are presented in
section 7.3.1. The sensitivity of orographic precipitation to aerosol number concentration
and the sensitivity of aerosol effects on orographic precipitation to upslope steepness are

examined in section 7.3.2 and section 7.3.3, respectively.

7.2 Experimental design

7.2.1 Model description

The numerical model used in this study is the Weather Research and Forecasting
(WRF) model, version 3.6.1, coupled with the bin microphysics scheme of the Hebrew
University Cloud Model (HUCM) (Skamarock et al. 2008; Lee and Baik 2016). The
detailed description of the HUCM is given in Khain and Sednev (1996) and Khain et al.

(2000, 2004). The WRF-bin model considers 43 mass-doubling bins. The aerosol size



distribution N(ra) is calculated using the Kdélher equation and the Twomey equation as

follows (Kdlher 1936; Twomey 1959; Khain et al. 2000):

k/2
dN 3 4A°
==NK| —— | 7.1
dinr, 2°° (273@} (7-1)

a

where ra is the aerosol radius, No is the aerosol number concentration (here, CCN
number concentration) at 1% supersaturation, k (= 0.8 in this study) is a constant, A is the
curvature-effect-related coefficient, and B is the solution-effect-related coefficient. The
radius of the largest aerosol is 2 pum. The initial aerosol number concentration in the
vertical is constant up to 2 km height and then decreases exponentially with an e-folding
height of 2 km. We only consider warm microphysical processes in this study. In the
WREF-bin model, a liquid drop larger (smaller) than r = 40 um is categorized as a raindrop

(cloud droplet).

7.2.2 Simulation settings

To examine orographic precipitation, we construct two-dimensional simulations

(Fig. 7.1a). The bell-shaped mountain is considered, whose height is given by

a
x?+a?’

h(x) = h, (7.2)

Here, hm (= 1 km) is the maximum height and a is the half-width of the bell-

shaped mountain. The leeward-width is constant (a = a; = 10 km for x > 0 km), while the
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Figure 7.1. (a) Schematic diagram of the simulation configuration. The dashed (dotted)
ridge line is for the case of narrow (wide) windward-width of the mountain. (b) Skew T-
log P diagram, (c) relative humidity profile, and (d) equivalent potential temperature

profile of the sounding data at Osan, South Korea at 00 UTC 19 September 2012.
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No (cm™) a1 (km)

CLN 100 10
CNT 500 10
PLT 2500 10
CLNn 100 5
CNTn 500 5
PLTn 2500 5
CLNw 100 20
CNTw 500 20
PLTw 2500 20

Table 7.1 Names and the corresponding aerosol number concentrations at 1%

supersaturation No and the half-width of the mountain upslope a; for the nine cases.
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windward-width determined by a = a1 (for x < 0 km) varies. We classify simulation cases
into three groups based on the aerosol number concentration at 1% supersaturation No.
The clean (CLN), control (CNT), and polluted (PLT) cases are simulated by considering
No = 100, 500, and 2500 cm=3, respectively. Based on the windward-width (upslope
steepness) of the mountain ai, each group is subdivided into three cases (Table 7.1). The
n and the w at the end of each case title indicate narrow (a1 = 5 km) and wide (a1 = 20
km) windward-width of the mountain, respectively. In this study, the uniform background
wind speed U = 10 m s is considered.

Sounding data of Osan, South Korea at 00 UTC on 19 September 2012 is used to
simulate orographic precipitation from shallow convective clouds. Figures 7.1b, 7.1c, and
7.1d show the skew T-log P diagram, relative humidity profile, and equivalent potential
temperature profile of the sounding data, respectively. Figure 7.1b gives the basic
information about the thermodynamic structure. At the surface, the temperature is 17.8°C
and the relative humidity is 86%. Although the level of free convection (LFC) is 1476 m,
orographic clouds are generated at the lifting condensation level (LCL) of 409 m, which
is below the mountain top. The surface height h(x) = z.c. is located at X = —x.cL ~ -1.2a1.
Above the equilibrium level (EL) of 2788 m, a strong inversion layer is present, which
prevents convective developments there. The temperature at EL is 2.2°C; this indicates
that warm microphysical processes are adequate for simulating warm clouds.

The horizontal domain size is 1000 km with the grid size of 250 m. The open
boundary condition is applied in the x-direction. The vertical domain size is 15 km, with a
5-km-depth sponge layer at the top. There are 401 terrain-following levels in the vertical

direction. The WRF-bin model is integrated for 12 h with the time step of 0.6 s. The
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spatial resolution in this study is appropriate to resolve the active cellular/banded
convection involved in orographic-convective precipitation (Kirshbaum and Durran
2004; Kirshbaum and Smith 2008). With the exception of the bin microphysics scheme
and basic turbulent/diffusion parameterization, other parameterizations, such as
shortwave/longwave radiation, boundary layer, and surface physics, are not considered in

the simulations.

7.3 Results and discussion

7.3.1 General characteristics of the simulated orographic
precipitation

Figures 7.2 and 7.3 show the vertical velocity, the cloud droplet mixing ratio, and
the raindrop mixing ratio at t = 1 and 6 h, respectively. In the begining (earlier thant =1
h), shallow and cellular orographic-convective clouds develop over the mountain (not
shown). At t =1 h, the first convective cell that touches the mountain slope is located at x
~ —XLcL. A comparison of time scales related to orographic precipitation can give us a
clue for the relative importance of given orographic-precipitation-related process (Jiang
and Smith, 2003). Miglietta and Rotunno (2009) and Cannon et al. (2012) compared the

convection time scale zc and the advection time scale za which are defined as

T, = H, and za = Xrc/U, (7.3)
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Figure 7.2 Fields of vertical velocity (shaded), cloud droplet mixing ratio (green
contours), and raindrop mixing ratio (black contours) att =1 h in (a) CLN, (b) CNT, and
(c) PLT. The contour interval is 0.4 g kg™ and the maximal values of contour lines for

cloud droplet and raindrop mixing ratio in each panel are presented on the bottom boxes.
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where Hc is the vertical length scale of convection (zeL — zLcL = 2379 m in this study) and
CAPE stands for the convective available potential energy. In the case with a; = 10 km
and U =10 m s, ¢ ~ 450 s and za ~ 1200 s. This means that orographic clouds generated
at LCL can be fully developed up to EL before they reach the top of the mountain. Note
that CAPE is calculated from LFC, not from LCL. In this case, the condensational
heating provides an additional energy, and the updrafts over the upslope associated with
the mountain waves strengthen the upward motion in the convective clouds.

Potential instability, which is determined by the sign of df/dz, determines the
type of orographic clouds (stratiform or convective). As shown in Fig. 1d, dfe/dz is less
than —0.1 K m~! in two layers, which are z = (0.7, 1.4) and (2.7, 3.0) in km. Kirshbaum
and Durran (2004) showed that there can be a case in which convection does not develop
even in the region of negative df:/dz. They suggested that Nm2, where N is the moist
Brunt-Véisala frequency, can discriminate the possibility of convective development
(unstable when Nm? < 0). Both formulas introduced by Lalas and Einaudi (1974) and
Durran and Klemp (1982) show that Nm? is added by (—dqw/dz) times a positive value,
where qw is the total water mixing ratio. For this reason, the development of convection
in the layer z = (2.7, 3.0) km, in which the relative humidity steeply decreases (Fig. 7.1c),
is weak or inhibited, while many convective cells can be developed in the layer z = (0.7,
1.4) km (see Figs. 7.1c and 7.1d).

Cloud droplets in orographic shallow convective clouds grow primarily through
collision/coalescence. Over the mountain upslope, strong orographic uplift and strong
convective updrafts enhance the growth of cloud droplets into large raindrops. Large

raindrops with a fast enough terminal velocity can fall and reach the surface. A large
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portion of liquid drops pass over the mountain peak by advection, so that the rainfall is
concentrated over the mountain downslope. Downdrafts associated with mountain waves
help the sedimentation of liquid drops by accelerating their fall speed, but also they
enhance the evaporation of small raindrops and cloud droplets, so that they turn into
water vapor before reacing the surface. At early stages, the transiently developed
precipitating convection is propagated downstream [c.f., regime Il in Chu and Lin
(2000)]. From t ~ 6 h, the overall patterns of the flow and the hydrometeor distribution
maintain a quasi-steady state. Hereafter, the snap shot at t = 6 h and the accumulated

variables in the range t = 6-12 h are used for analysis.

7.3.2 Aerosol effects on the orographic precipitation

Figure 7.4 shows the horizontal distribution of accumulated surface precipitation
amount fromt=6to 12 hin CLN, CNT, and PLT. The total surface precipitation amount
in the entire domain Py, the local maximum surface precipitation amount Pmax, and the
location Xmax at which Pmax occurs are listed in Table 7.2. The total surface precipitation
amount decreases as No increases, and the local maximum precipitation amount in CLN is
3.2 and 4.9 times in CNT and PLT, respectively. Generally, the surface precipitation is
distributed more broadly in PLT than in CLN and CNT. As No gets larger, the cloud
droplet mixing ratio gets higher, while the raindrop mixing ratio gets lower (Figs. 7.2 and
7.3).

As in many previous studies, an increase in the number of CCN enhances
nucleation into cloud droplets and results in a higher cloud droplet mixing ratio (Khain et

al. 2004, 2005; Lynn et al. 2007; Xiao et al. 2014, 2015). However, the larger number of
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Prot (mm) Pmax (Mmm) Xmax (km)
ar (km) 5 10 20 5) 10 20 5 10 20
CLN 1091 1175 1269 300 219 129 6.5 0.5 —6.3
CNT 621 779 1102 172 125 112 123 3.0 -1.3

PLT 181 365 538 4.4 4.5 6.9 175 8.5 -0.8

Table 7.2. Total surface precipitation amount in the entire domain from t = 6 to 12 h Pyqt,

the local maximum surface precipitation amount Pmax, and the location Xmax at which Pmax

occurs.
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cloud droplets causes a decrease in the average size of liquid drops, and the growth of
cloud droplets into raindrops is reduced. As a result, the total surface precipitation
amount is smaller in PLT compared to the other cases. In CLN, however, active growth
into raindrops causes a rapid sedimentation of liquid drops. In PLT, a large portion of
liquid drops are advected downstream of the mountain peak, and the surface precipitation
is distributed more broadly on the leeside of the mountain.

Table 7.3 shows the condensation, evaporation, and precipitation rates integrated
over the mountain upslope and downslope within 100 km in the horizontal direction and
3 km in the vertical direction. Condensation is more active than evaporation over the
mountain upslope, and evaporation is more active than condensation over the mountain
downslope. Over both the mountain upslope and downslope, differences in condensation
and evaporation rates between PLT and CNT are higher than those between CNT and
CLN. The generated net liquid drops over the mountain upslope fall onto ground or are
advected toward the leeward side of the mountain. The precipitation rates are 89%, 195%,
and 445% on the downslope compared to those on the upslope in CLN, CNT, and PLT,
respectively. In CLN, more precipitation occurs on the upslope than on the downslope,
while more precipitation is distributed on the downslope in CNT and PLT.

To analyze the size distribution of liquid drops that pass over the mountain peak, we
calculate the advection rate of liquid drops over the mountain peak (x = 0) as follows (Fig.

7.5):

A(r)=pWJ.h:m+H q,(r,x=0,2)U (x =0, z)dz, (7.4)
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Cup (kgs™) Euw (kg s™) Pup (kg s
ar (km) 5 10 20 5 10 20 5 10 20
CLN 214 247 2.70 0.39 0.77 1.04 0.43 2.88 4,99
CNT 2.24  2.66 3.11 0.62 1.14 1.49 0.17 1.22 3.79
PLT 244  3.10 3.45 0.83 1.76 2.20 0.08 0.31 1.87

Cdown (kg 3_1) Edown (kg 3_1) Pdown (Kg 3_1)
CLN 112 061 036 122 070 0.40 4.63 256  0.90
CNT 157 064 040 170 071 051 2.71 238 131
PLT 3.34 152 0.73 3.58 1.74 0.89 0.76 1.38 1.15
Cdown/Cup Edown/Eup Pdown/Pup
CLN 052 025 013 313 091 038 1077 089 0.18
CNT 070 024 013 274 062 034 1594 195 035
PLT 137 049 021 431 099 0.40 9.50 445 0.61

Table 7.3 Condensation, evaporation, and precipitation rates over the mountain upslope
(Cup, Eup, and Pyp) integrated from x = —100 to x = 0 km and those over the mountain
downslope (Cdown, Edown, and Pdown) integrated from x = 0 to x = 100 km below z = h(x) +
3 km. The ratio of each rate over the mountain downslope to the corresponding rate over

the mountain upslope is also presented.



Figure 7.5 Size distribution of the accumulated advection rate of liquid drops (kg s™)
over the mountain peak from t = 6 to 12 h as a function of drop radius in the cases with a;
= 10 km. The dash-dotted line indicates the size-boundary between cloud droplet and

raindrop (r =40 pum).

154 ]



where py is the density of liquid water, H (= 3 km) is the vertical depth of the integration,
qi is the liquid drop mixing ratio, and U is the horizontal velocity. The size distribution of
liquid drops has a double-peak structure in the size ranges of cloud droplets and raindrops.
As discussed, most of liquid drops are cloud droplets in PLT. Compared to CLN and
CNT, the average size of cloud droplets is smaller in PLT. In CLN, more than half the
mass of the advected liquid drops is the mass of raindrops, and the average size of
raindrops is larger than those in CNT and PLT due to the faster growth of cloud droplets.
The large amount of drops between two peaks in CLN indicates that the growth from
cloud droplets to raindrops is active in convective clouds near the mountain peak.

To examine the effects of aerosols on the spatial characteristics of the size
distribution of liquid drops, the difference in the mass and number size distributions of
liquid drops between PLT and CLN as a function of the horizontal location and the height
above the surface is given in Fig. 7.6. In PLT, relatively small cloud droplets are
distributed over both the mountain upslope and downslope (Fig. 7.6a). In CLN, larger
cloud droplets are located in the horizontally narrow region mainly over the mountain
upslope. Over the mountain peak, larger raindrops are also located in CLN, while smaller
raindrops are located farther downstream in PLT. The active condensation in PLT results
in a strong latent heat release. The strong latent heat release generates active convection
over the mountain, and the convective clouds can reach a high altitude (Fig. 7.6Db).
Because the initial CCN number concentration in PLT is 25 times higher than that in
CLN, the number concentration of very small droplets over the entire domain is clearly

higher in PLT (Fig. 7.6¢) than in CLN. In PLT, small raindrops get smaller through



(a) PLT - CLN, dm/dlnr (g kg?) (b) PLT - CLN, dm/dlnr (g kg?)
— T — T

10° R — T 10° | | — T
~10° | 1 100 1
g L ] [ ]
3 [ ]
L) - - -

10' "‘ 4 10 F - ]

1 1 1 1 | 1 1 1 1 | 1 1 1 | 1 1 1 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
-50 -25 0 25 50 0.0 0.5 1.0 1.5 2.0
(¢) PLT - CLN, dN/dlnr (10%#/kg) (d) PLT - CLN, dN/dlnr (10°#/kg)

10° —T T T w77
~10° | 1 10° 1
) 4 - -

C | ] ]
1 1 1 1 | 1 1 | 1 1 1 | 1 1 L L L 1 | Il Il Il 1 Il Il 1 | 1 1 1 Il
-50 -25 0 25 50 0.0 0.5 1.0 1.5 20
x (km) z (km)

@ 4 05 0 05 1 15 2 ® -2 1 0 1 2 3 4
S | [ N — |
© -2 -1 0 1 2 3 4 @ -1 0o 1 2 3 4 5 6 71 8 9

[ I I I I I [ T

Figure 7.6 Differences in (a, b) mass size distribution and (c, d) number size distribution

between PLT and CLN as a function of (a, ¢) x and (b, d) height above the surface.

156 : .!H _Q'I:r_ ]_._” &)

n’



evaporation while falling. As a result, many raindrops are located at higher altitudes,
rather than near the surface, compared to CLN in which the mass distribution of raindrops
near the surface is higher than PLT. Similar to the mass distribution in Fig. 7.6b, most
cloud droplets are in the convection area and near the surface, and their size is very small

in PLT (Fig. 7.6d).

7.3.3 Sensitivity of the aerosol effects on the orographic

precipitation to the mountain upslope angle

Changing the half-width of the windward side of the mountain controls the
upslope steepness and the advection timescale [Eq. (7.3)]. Figure 7.7 is the same as Fig.
7.2 except for CLNn, CNTn, and PLTn at t = 6 h. In the cases with narrow windward-
width, a steeper upslope rapidly lifts moist air; this results in an increase in the maximum
precipitation rate in CLNn and CNTn (Table 7.2). However, the shorter windward-width
and advection timescale (za ~ 600 s) cause a reduced condensation rate over the upslope
(Table 7.3) and a decreased precipitation rate. In PLTn, less cloud droplets over the
mountain upslope and downslope grow into raindrops on a shortened advection time
scale. Thus, cloud droplets evaporate rapidly due to the downdrafts associated with
mountain waves (Table 7.3). Therefore, aerosol effects on the total precipitation amount
and maximum precipitation rate become more remarkable in the cases of the narrow
windward-width. Smaller size distribution of liquid drops over the mountain peak causes
increases in xmax (Table 7.2 and Fig. 7.9a). A more remarkable aerosol effects, that is, a
decrease in total precipitation amount and a downstream shift of the location of the

maximum precipitation amount, can also be seen from the horizontal distribution of the
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accumulated surface precipitation amount in Fig. 7.9a.

Figure 7.8 is the same as Fig. 7.2 except for CLNw, CNTw, and PLTw att =6 h.
In the cases with wide windward-width, there are greater chances for cloud droplets to
grow and for liquid drops to fall onto the surface over the long distance of the mountain
upslope on a longer advection time scale (za ~ 2400 s). For this reason, a large amount of
drops are precipitated out onto the surface before the advected hydrometeors reach the
mountain peak. The horizontal distribution of the accumulated surface precipitation
amount in Fig. 7.9b shows a broader rainfall distribution over the mountain upslope and a
smaller amount of precipitation over the mountain downslope. The slower growth of
cloud droplets in PLTw results in a smaller precipitation amount and the location of
maximum precipitation amount being farther downstream than those in CLNw and
CNTw, while xmax is located on the mountain upslope in these all cases (Table 7.2).
Compared to the cases with narrow windward-width and with the symmetric mountain,
there is a smaller decrease in the total precipitation amount and in the maximum
precipitation amount due to higher-No in the cases with wide windward-width.

The advection rate of liquid drops over the mountain peak as a function of drop
radius in the case with narrow windward-width given in Fig. 7.10a shows that a larger
number of cloud droplets are generated and advected over the mountain peak due to the
stronger uplift by the steeper upslope. However, shorter advection timescale results in the
smaller number of large raindrops. The average size of raindrops in CNTn is smaller than
those in CLNn and PLTn. The larger size distribution of raindrops in CLNn is due to the
lower aerosol number concentration. On the other hand, having more active and deeper

convection in PLTn results in a larger size distribution than CNTn. In the cases with wide
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Figure 7.10. Accumulated advection rate of liquid drops over the mountain peak from t =
6 to 12 h as a function of drop radius in the cases with a; = (a) 5 km and (b) 20 km. The

dash-dotted line indicates the size-boundary between cloud droplet and raindrop (r = 40

um).
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windward-width, the long distance upslope provides a better opportunity and time for
cloud droplets to grow, so that a large portion of raindrops are precipitated out onto the
wide mountain upslope. As a result, the amount of drops that are advected over the
mountain peak is small in all cases (Fig. 7.10b). In these cases, the average size of
raindrops in CNTw is larger than those in CLNw and PLTw. In CLNw, the faster growth
of liquid drops results in more precipitation on the upslope and the decrease in the
advected large-sized raindrops over the mountain peak. The smaller size distribution in
PLTw is due to the higher aerosol number concentration, while the smaller precipitation
amount on the upslope results in the higher advection rate of raindrops over the mountain
peak. In the cases with both narrow and wide windward-widths, the double peak pattern
is not clearly compared to the cases with the symmetric mountain due to the lack of the
advected raindrops over the mountain peak (Figs. 7.5 and 7.9). Note that the change of
the size distribution due to the change of the aerosol number concentration is not
monotonic, especially for the size distribution of raindrops.

Figure 7.11 presents the differences in mass size distribution between PLTn and
CLNn and between PLTw and CLNw as functions of the horizontal location and the
height above the surface. In the cases with narrow windward-width, the steeper upslope
generates stronger and deeper convection, and the strengthening is outstanding in PLTn
compared to that in CLNn (Figs 7.11b), so that the total precipitation amount and the
maximum precipitation rate are larger than the cases with the symmetric mountain and
the wide windward-width. Although the advection rate of raindrops is lower over the
mountain peak due to the insufficient advection time (Fig. 7.9a), cloud droplets grow into

raindrops over the downslope. Because the average size of liquid drops is smaller in

164 3



PLTn than in CLNn, longer advection time is needed for cloud droplets to grow into
large-sized raindrops that have enough terminal velocity to precipitate. As a result, the
downstream shifting of the maximal precipitation amount location is clearly seen, but the
size difference between PLTn and CLNn is smaller than the cases with the symmetric
mountain (Fig. 7.11a).

In the cases with wide windward-width, shallower convection is generated
compared to the cases with narrow windward-width over the upslope (Figs. 7.11c and
7.11d). Compared to the cases with narrow windward-width and with the symmetric
mountain, clearly distinguished size distributions of cloud droplets and raindrops between
PLTw and CLNw are observed in the cases with wide windward-width (Fig. 7.11c)
because generation, growth, and precipitation occur almost uniformly over a wider range
of the mountain upslope. Because most of the precipitable water are consumed over the
wider upslope, the aerosol effects on the total precipitation amount and the location of the

maximum precipitation amount are not as obvious.
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8 Modeling of orographic-convective
precipitation: Deep and mixed-phase
clouds

8.1 Introduction

Since aerosol particles act as cloud condensation nuclei (CCN) or ice nuclei (IN)
in the atmosphere, aerosol loading controls precipitation characteristics through complex
aerosol-cloud-precipitation interactions. To understand the role of aerosol particles in
controlling the precipitation characteristics, many researchers have extensively
investigated the impacts of aerosols on clouds and precipitation (e.g., Khain, 2009; Tao et
al., 2012; Fan et al., 2016).

Precipitation over a mountainous region, called orographic precipitation, is
affected by wvarious factors, such as static stability, background wind speed,
environmental humidity, and mountain geometry (Colle 2004; Pathirana et al. 2005; Roe
and Baker 2006). However, the sensitivity of orographic precipitation to the
environmental factors and mountain geometry is generally caused by orographic
precipitation from shallow clouds because in broad ranges of the environmental factors
and mountain geometry, the downdraft associated with mountain waves restricts
convective development of orographic clouds. Several studies have investigated
orographic precipitation in a conditionally unstable atmosphere and have categorized the
behavior of convective orographic clouds based on convective available potential energy
(CAPE), mountain width, and the Froude number (F = U/Nhm), where U is the

background wind speed, N is the buoyancy frequency, and hm is the maximum height of



the mountain (e.g., Chu and Lin 2000; Chen and Lin 2005; Chen et al. 2008; Miglietta
and Rotunno 2009; Sever and Lin 2017).

Many previous studies have shown that an increase in aerosol number
concentration usually results in a decrease in surface precipitation from shallow
convection (Xue and Feingold 2006; Cheng et al. 2007; Fan et al. 2012) and in an
increase in surface precipitation from deep convection (Khain et al. 2005; Rosenfeld et al.
2008; Clavner et al. 2018). Many studies have shown that air pollution causes
suppression of orographic precipitation in mountainous regions (Givati and Rosenfeld
2004; Jirak and Cotton 2006; Rosenfeld and Givati 2006; Rosenfeld et al. 2007; Guo et al.
2014). Xiao et al. (2015) showed that an increase in aerosol number concentration results
in the enhanced orographic precipitation, but its effects on deep convective orographic
precipitation have not yet been studied as much.

Bin microphysics models predict each size bin for each hydrometeor (e.g., Khain
et al. 2000; Lynn et al. 2005a, b). To investigate the microphysical processes under
orographic precipitation more precisely, numerical studies of orographic precipitation
using bin microphysics scheme are recently carried out (Lynn et al. 2007; Xue et al.
2010; Xiao et al. 2014, 2015). However, almost all studies of orographic precipitation
using bin microphysics scheme are limited to orographic precipitation from shallow
clouds.

This study aims to understand how windward mountain upslope controls aerosol
effects on orographic precipitation from deep convective clouds. In Section 8.2, the
experimental design for simulations is described. Section 8.3.1 and 8.3.2 present the

characteristics for orographic precipitations from deep convective clouds and their



dependencies on aerosol number concentration. The sensitivity of aerosol effects on

orographic precipitation to windward mountain upslope is discussed in Section 8.3.3.

8.2 Experimental design

In this study, the Weather Research and Forecasting (WRF) model, version 3.6.1,
coupled with the Hebrew University Cloud Model (HUCM) is used (Skamarock et al.
2008; Lee and Baik 2016). The model is the same as in Chapter 7 except that the mixed-
phase microphysical processes are included. This model predicts seven hydrometeor
types [liquid drop, ice crystal (column, plate, and dendrite), snow, graupel, and hail] and
aerosol which are subdivided into 43 mass-doubling bins. The detailed descriptions of the
HUCM are provided in Khain et al. (2000, 2004, 2011).

Two-dimensional simulations are conducted to examine orographic precipitation
from deep convective clouds. Figure 8.1 shows a schematic of the simulations. The bell-

shaped mountain, defined as in Eq. (8.1), triggers orographic clouds by a forced uplift:

a

h(x)=h )
) ™ x?+a®

(8.1)

Here, hm (= 2 km) is the maximum height and a (= a; for x <0 km and = a> = 10 km for x
> 0 km) is the half-width of the bell-shaped mountain. As in Chapter 7, we classify
simulation cases by aerosol number concentration at 1% supersaturation No [= 100 cm=3
for CLN (clean), = 500 cm= for CNT (control), and = 2500 cm™ for PLT (polluted)] and

the windward-width (upslope steepness) of the mountain a: (= 5 km for narrow, = 10 km
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Figure 8.1. The schematic of the simulations. The dashed, solid, and dotted upslope ridge
are for the case of narrow windward-width (steep upslope), symmetric, and wide
windward-width (gentle upslope) mountain. In this study, the tropopause is located at z =
12 km. Vertical profiles of temperature T, dew point temperature Tq, and relative

humidity RH are roughly described.
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for control, and = 20 km for wide). Table 7.1 provides the name and specific setting for
each case. The background wind speed U = 10 m st is constant in the vertical.

To generate vigorous convective orographic clouds, a modified vertical sounding
of Weisman and Klemp (1982) is used. In this study, the potential temperature ¢ and the

relative humidity H are defined as follows.

2
90£1+ N ijorZSZ",
g

0(z) = (8.2)

et,exp[ 9_]r (z—1z, }forz>zt,,

pltr

5/4
3( z
H,|1-—| — forz<z,,
H(z) = { 4(4,}} i (8.3)

H, forz>z

tr?

where 6o (= 298.15 K) and 6« [Ho (= 0.9) and Hy] are the potential temperature [the
relative humidity] at the surface and the tropopause height zy (= 12 km), respectively, Ty
is the temperature at the tropopause height, cp is the specific heat of air at constant
pressure, N (= 0.01 s™) is the buoyancy frequency, and g is the gravitational acceleration.
By fixing N, the Froude number is easily controlled. The skew T-log P diagram of this
sounding is depicted in Fig. 8.2. The lifting condensation level (= 750 m) is located
below the mountain top, so orographic clouds can be generated by a forced uplift.
Because of the highly unstable vertical structure of the sounding (CAPE = 4448 J), deep
and strong convection can be developed through the tropopause. A horizontal domain of

200 km with Ax = 250 m is considered. The vertical domain size is 20 km with a sponge
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Figure 8.2. Skew T-log P diagram of the simulations. This sounding is modified version



layer of 5-km-depth and with 401 terrain-following levels. Horizontally, the open
boundary condition is considered. Each case is integrated by the WRF-bin model for 12 h
with the time step of 0.6 s. However, the early 6-h results will be examined for the reason
given in Section 8.3.1. Except for the bin microphysics scheme and basic

turbulent/diffusion parameterization, other parameterizations are not considered.

8.3 Experimental design

8.3.1 General characteristics of the simulated orographic

precipitation

Figure 8.3 shows the mixing ratio of the liquid drop (bluish shading), low-density
ice particles (greenish shading), which are ice crystal and snow, and high-density ice
particles (black contours), which are graupel and hail, and wind vectors of the CNT case.
From early on, orographic clouds are generated over the upslope. In the subcritical
condition (F < 1), on the other hand, flows are converged in a thin layer and are
accelerated over the downslope. As a result, a hydraulic jump occurs and a strong updraft
Is generated over the downslope (Fig. 8.3a). This deep convective system is downstream
advected by the downslope wind, and results in heavy precipitation lee of the mountain
(Fig. 8.3b). After the transiently generated deep convective system is advected
downstream of the mountain, the two departed cloud systems are clearly seen in the lower
and upper layers (Fig. 8.3c). In the lower layer, orographic clouds only with liquid drops
are present. Because of the downdraft associated with mountain waves, shallow

orographic clouds cannot be developed vigorously in the stratified atmosphere. In the
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Figure 8.3. Mixing ratio of the liquid drop (bluish shading), low-density ice particle
(greenish shading), which are ice crystal and snow, and high-density ice particle (black
contours), which are graupel and hail, and wind vectors in CNT att =(a) 1 h, (b) 2 h, (c)
4 h, and (d) 5 h 40 m. The contour interval of the high-density ice particle mixing ratio is

0.02 g kg™
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upper layer, where the weak updraft associated with mountain waves is located, ice
crystals are generated and are grown into snow particles. Because this updraft associated
with mountain waves is in phase with negative perturbation horizontal velocity, the
upper-layer cloud with low-density ice particles is extended upstream if negative
perturbation horizontal velocity exceeds the background wind speed. After t ~ 4 h, the
lower-level stratiform orographic clouds are transformed into cellular-type convective
orographic clouds due to the condensational latent heating and are extended upstream.
Occasionally, some deep convective cloud cells deeply develop and interact with the
upper-layer mixed-phased cloud. This interaction results in intermittent heavy
precipitation by melting of high-density ice particles or direct precipitation of graupel or
hail (Fig. 8.3d).

Figure 8.4 shows the Hovmaller diagrams of the surface rain rate (shaded) and ice-phased
precipitation rate (contoured only for 0.01 mm h) in CLN, CNT, and PLT. As described
earlier, the transiently generated deep convective system is advected downstream while
the orographic precipitation occurs steadily near the mountain. This pattern is of regime
11 in Chu and Lin (2000). In CNT and PLT, orographic precipitation is extended
upstream from t ~ 5 h. In all cases, ice-phased precipitation is dominant near and lee of
the mountain peak after t ~ 6 h because the freezing level gets lower with time. In this
study, we focus on how the aerosol number concentration and the upstream steepness of
the mountain affect the surface rainfall over a mountainous area through the interaction
between deep convective orographic clouds and upper-level mixed-phased clouds. For
this reason, the averaged and accumulated variables from t = 4 to 6 h are given particular

attention in this study in order to avoid the time periods during which the influence of the
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Figure 8.4. Hovmoller diagrams of the surface rain rate (shaded) and ice-phased

precipitation rate (contoured only for 0.01 mm h=) in CLN, CNT, and PLT.
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Figure 8.5. Averaged mixing ratio of the liquid drop (bluish shading), low-density ice
particles (greenish shading), which are ice crystal and snow, and high-density ice
particles (black contours), which are graupel and hail, and wind vectors fromt=4to 6 h
in (@) CLN, (b) CNT, and (c) PLT. The contour interval of the high-density ice particle

mixing ratio is 0.05 g kg™*.
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transiently developed deep convective system (t = 0—4 h) is strong and the time period

during which ice-phased precipitation is dominant (t = 6-12 h).

8.3.2 Aerosol effects on orographic precipitation

Figure 8.5 shows the averaged mixing ratio of the liquid drop, low-density ice
particle, and high-density particle, and wind vectors in CLN, CNT, and PLT fromt =4 to
6 h. In this period, lower-level convective orographic clouds are developed over the
mountain. In the case with higher aerosol number concentration, the higher number of
condensates results in a stronger condensational latent heating which results in a deeper
and stronger convection. As a result, many liquid drops can interact with ice particles in
the upper-level cloud and are frozen into ice crystals above the freezing level. Both
pathways result in higher mixing ratio of the high-density ice particles in the case with
higher aerosol number concentration. The high-density ice particles grow via riming in
both the lower- and upper-level clouds and result in the enhancement of surface
precipitation amount via melting or direct sedimentation. Figure 8.6 and Table 8.1 show
that an increase in aerosol number concentration causes increases in the total and
maximum precipitation amounts and upstream shifting of the location of the maximum
precipitation. This dependency of the precipitation characteristics on the aerosol number
concentration the opposite of the case of shallow, warm orographic precipitation which is
described in Chapter 7. However, the increase in the total and maximum precipitation
amount caused by an increase of aerosol loading is reported by many previous studies

(Khain et al. 2005; Rosenfeld et al. 2008; Xiao et al. 2015; Clanvner et al. 2018).
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Figure 8.6. Accumulated precipitation amount from t =4 to 6 h as a function of x in CLN,

CNT, and PLT.
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Ptot (mm) Pmax (mm) Xmax (km)
a1 (km) 5 10 20 5 10 20 5 10 20
CLN 1755 1298 1711 158 15.0 337 2.0 16.0 3.8
CNT 1000 2022 2551 106 199 293 16.0 125 20
PLT 1260 2071 1394 118 237 252 140 1.0 4.8

Table 8.1. Total surface precipitation amount from x = -50 to 50 km and fromt=41t0o 6 h
Ptot, the local maximum surface precipitation amount Pmax, and the location Xmax at which

Pmax occurs.
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Figure 8.7 shows the vertical profiles of temperature change due to microphysical
processes over the upslope (x = -50-0 km) and the downslope (x = 0-50 km) of the
mountain. On both sides, nucleation is strongest in PLT. Over the upslope, nucleation rate
decreases with height, while nucleation is strongest at agl ~ 5 km over the downslope
(Figs. 8.6a and 8.6f). A greater number of condensates over the upslope in PLT results in
stronger condensational latent heating over the upslope and also a stronger evaporative
cooling over the downslope compared to the other cases (Figs. 8.7b and 8.7g). Over the
upslope, many liquid drops are frozen into ice crystals (Fig. 8.7d), and the ice crystals
grow through the WBF process in PLT (Figs. 8.7b and 8.7c). In CLN, similar processes,
such as the strong freezing and the WBF process, are stronger than in the other cases over
the downslope (Figs. 8.7g-1). The riming process between grown ice-phased particles and
liquid drops is mainly responsible for the enhanced surface precipitation through mixed-
phase processes (Figs. 8.7e and 8.7j).

Along with the aforementioned processes, the upstream extension of the upper-
level cloud provides the environment to enhance the mixing ratio of high-density ice
particles via riming when lower-level convective clouds develop through the freezing
level. This environment is caused by the advection of ice particles by negative horizontal
velocity associated with mountain waves over the mountain peak (see Figs. 8.3 and 8.5).
Figure 8.8 presents the size distributions of accumulated advection rate of hydrometeors
over the mountain peak (x = 0) as a function of z. The advection rate is obtained by the

equation,

A(r,,z) = p, (r)u(x=0,2)q,(r,,x=0,z)/dInr,, 4)
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Figure 8.8. Size distributions of accumulated advection rate of liquid drop, columnar ice
crystal, snow, graupel, and hail through x = 0 as a function of z in CLN, CNT, and PLT.
Dashed lines in (a, f, k) indicate r = 40 um which is the boundary size between cloud

droplet and raindrop.



where pn (rn) is the density of each hydrometeor as a function of the size of particle, u is
the horizontal velocity, and g is the mixing ratio of each hydrometeor.

When aerosol number concentration is higher, the size of cloud droplets is smaller
and the lower-level convective clouds can achieve higher altitude (Figs. 8.8a, 8.8f, and
8.8k). The positive advection rate of columnar ice crystal below agl ~ 6 km is very high
in PLT, while there is almost no positive advection rate in CLN (Figs. 8.8b, 8.8g, and
8.8i) due to the the stronger/weaker freezing into ice crystal and stronger/weaker WBF
process over the upslope in PLT/CLN cases (Figs. 8.7b—d). Similarly, the negative
advection rate in the higher level is higher in CLN than in the other cases. Over the
mountain peak, lower-level convective orographic clouds are developed and are
overlapped with upper-level cloud in PLT (Fig. 8.5¢). In the upper-level cloud, many ice
crystals grow into snow particles, some portion of which are advected over the upslope
side (Fig. 8.8m). These snow particles grow further in the overlapped layer over the
upslope through riming (Fig. 8.7e), the type is converted into graupel and hail, and again
advected over the mountain peak (Figs. 8.8n and 8.80). The graupel and hail particles
melt and enhance surface precipitation (Fig. 8.71). In CLN, however, the overlapping of
lower and higher clouds occurs only in the narrow area over the mountain peak (Fig.
8.5a). Although many ice particles which are generated and grown over the downslope
are advected over the mountain peak, their further growth is limited. Moreover, ice
particles cannot reach the surface over the downslope, even though their growth via
riming is active (Fig. 8.7j). For this reason, the total and maximum precipitation amount

in CLN is smaller than in the other cases.
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8.3.3 Sensitivity of aerosol effects on orographic precipitation

to upslope steepness

In Chapter 7, the sensitivity of aerosol effects on orographic precipitation to
upslope steepness is examined. As discussed in Chapter 7, Fig. 8.9 shows that the
decrease in precipitation amount and the downstream shift of the location of the
maximum precipitation are clearly seen in the cases with a; =5 km (Fig. 8.9a—) and are
ambiguous in the cases with a1 = 20 km (Fig. 8.9d-f) early on (t = 0-4 h). As the
simulation continues, however, the sensitivity changes in different ways depending on the
cases. In the cases with a; = 5 km, the upstream extension of the precipitation area starts
earlier in PLTn and CLNn than in CNTn. This results in the lighter total and maximum
precipitation in CNTn compared to the other cases (Table 8.1). In the cases with a; = 20
km, the broad precipitation region over the mountain is clearly seen in all cases. In CLNw
and PLTw, however, the upstream extension of the precipitation area does not occur. This
results in heavier total precipitation in CNTw compared to the other cases (Table 8.1).

Figure 8.10 shows the averaged mixing ratio of the liquid drop, low-density ice
particle, and high-density particle, and wind vectors in CLNn, CNTn, and PLTn from t =
4 t0 6 h. In CNTn, narrow lower-level orographic clouds are generated over the upslope
due to the narrow upslope. Although the high-density ice particles affect precipitation
over the downslope, the interaction between lower- and upper-level clouds is weaker
compared to the other cases. Surface precipitation is concentrated over the downslope and
the upslope precipitation amount is very small in CNTn (Fig. 8.11a). In CLNn and PLTn,
the upper-level cloud is upstream extended and this clearly affects the upslope surface

precipitation amount (Fig. 8.11a). Compared to CNTn, the upstream extension of lower-
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Figure 8.9. Hovmoller diagrams of the surface rain rate (shaded) and ice-phased

precipitation rate (contoured only for 0.01 mm h™) in CLNn, CNTn, PLTn, CLNw,

CNTw, and PLTw.
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Figure 8.10. The same as Fig. 8.5 except for (a) CLNn, (b) CNTn, and (c) PLTn.

187 o ﬁr-!



P (mm)

P (mm)

Figure 8.11. Accumulated liquid (black) and ice (gray) precipitation amount and from t =

4 to 6 h as a function of x in the cases with (a) a1 = 5 km and (b) 20 km.
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level clouds is more apparent in PLTn. Ice-phased precipitation is strongest in CLNn
compared to the other cases (Fig. 8.11a).

Over the upslope and downslope, nucleation is strongest in PLTn. As discussed in
Chapter 7, in these cases, nucleated cloud droplets do not grow sufficiently until they
reach the mountain peak during the short advection time scale over the upslope, even
though the steep upslope generates strong convection over the upslope. For this reason,
the mass content of cloud droplets is larger and the mass of rain drops is smaller
compared to the cases with the symmetric mountain (compare Figs. 8.8a, 8.8f, and 8.8k
and Figs. 8.13a, 8.13f, and 8.13k). In the case with a higher aerosol number concentration,
the strong condensational latent heating generates deeper convective clouds over the
upslope and many small liquid drops freeze above the freezing level (Figs. 8.12b and
8.12d). Compared to the other cases, WBF process is strongest in PLTn (Figs. 8.12b and
8.12c). Similar to PLT, frozen and grown ice particles expense further growth via strong
riming over both the upslope and the downslope and result in heavy surface precipitation
via melting or direct sedimentation of ice-phased particles (Figs. 8.11a, 8.12e, 8.12j, and
8.13i-0). In CLNn, lower-level clouds with liquid drops can develop through the freezing
level. Because of the faster growth of liquid drops (Fig. 8.13a), frozen ice particles are
bigger here than in the other cases (Fig. 13b). As a result, the sizes of high-density ice
particles are very large resulting in the heavy liquid- and ice-phased precipitation (Figs.
8.11a, 8.13d, and 8.13e). In CNTn, however, the weaker condensational latent heating
than PLTn and the slower growth of liquid drops than CLNn result in weak lower-level
convection (Fig. 8.13a). For this reason, the interaction between lower- and upper-level

clouds is inhibited over the upslope (Fig. 8.12b—e). However, the advected liquid drops
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over the mountain peak grow further and freeze over the downslope, and the ice crystals
grow via the WBF process and riming (Figs. 8.12g-j). As a result, downslope-
concentrated precipitation occurs in CNTn (Fig. 8.11a).

Figure 8.14 shows the averaged mixing ratio of the liquid drop, low-density ice
particle, and high-density particle, and wind vectors in CLNw, CNTw, and PLTw from t
= 4 to 6 h. Over the wide upslope, wider and weaker convective orographic clouds are
generated compared to the cases with symmetric mountain and a narrow upslope. In
CLNw and PLTw, lower- and upper-level clouds interact only near the mountain peak
(Figs. 8.14a and 8.14c). In CNTw, however, the interaction over the upslope exists due to
the upstream extension of the lower-level clouds (Fig. 8.14b). For this reason, the total
precipitation amount is largest in CNTw (Table 8.1). The surface precipitation is
concentrated over the downslope in CLNw and PLTw, and is smaller in PLTw than in
CLNw (Table 8.1 and Fig. 8.11D).

As discussed in Chapter 7, cloud droplets sufficiently grow into raindrops over the
wide upslope. For this reason, the mass of raindrops is larger than the mass of cloud
droplets over the mountain peak (Fig. 8.16a, 8.16f, and 8.16k). Similar to the other cases,
the nucleation rate is largest in PLTw over the upslope and the downslope (Figs. 8.15a
and 8.15f). In CNTw, many ice crystals are generated by freezing and growth into snow
particles via the WBF process at agl ~ 6 km over the downslope (Figs. 8.15g-1). These
low-density ice particles are advected over to the upslope side (Figs. 8.15g and 8.15h).
Besides, the freezing rate is strongest in CNTw (Fig. 8.15d). Low-density ice particles
generated over the upslope and advected from the downslope grow further into high-

density ice particles via deposition and riming, and again get advected over to the
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FiG. 8.16. The same as Fig. 8.8 except for the cases with a; = 20 km.
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Downslope side (Figs. 8.15b—e and 8.16g-j).The melted high-density ice particles
enhance surface precipitation via melting. In CLNw and PLTw, however, such mixed-
phase processes are inhibited. In CLNw, the fast growth of liquid drops results in a
smaller amount of cloud droplets, which are the first source of ice crystals above the
freezing level (Fig. 8.16a). In PLTw, weak convection in the cases with gentle upslope is
not sufficient for small-sized liquid particles to finally generate large-sized ice particles

(Fig. 8.16K).
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9 Modeling of orographic precipitation
over Taebaek Mountains in South
Korea

9.1 Introduction

In Chapter 7 and Chapter 8, the idealized simulations of orographic precipitations
with various aerosol number concentrations and mountain geometries are performed.
Both chapters suggest how orographic precipitation from shallow-warm clouds and deep,
mixed-phase clouds is controlled by the aerosol loading and the upslope steepness. This
chapter examines aerosol effects on orographic precipitation over a real mountainous area,
the Taebaek Mountains located on the eastern side of the Korean peninsula.

Because of the north-southerly enlongated geometry and the steep upslope angle
of the Taebaek Mountains, the moist air advected from East Sea frequently leads to
precipitation events over the Taebaek Mountains. Regarding the Youngdong region
(eastern side of the Taebaek Mountains), however, most of the studies focus on the
wintertime heavy snowfall event (e.g., Seo and Jhun 1991; Seo and Lee 1996; Lee 1999;
Lee and Kim 2008; Lee et al. 2011; Jung et al. 2012; Lee and Xue 2013). In recent
decades, aerosol effects on orographic precipitation over the Taeback Mountains have
been studied, mainly concerned with cloud seeding and anthropogenic pollution (Kim et
al. 2005; Bae et al. 2015; Yang et al. 2015). But the study of aerosol effects on orographic
precipitation over the Taebaek Moutains in summer time is not sufficiently done as of yet.

This study examines aerosol effects on orographic precipitation by numerically

simulating a real precipitation event over the Taebaek Mountains in summer using the



WRF-bin model. Section 9.2 provides experimental design. In section 9.3.1, the detailed
case description with model verification is provided. Aerosol effects on orographic

precipitation over the Taebaek Mountains are examined in Section 9.3.2.

9.2 Experimental design

A precipitation event over the Taebaek Mountains from 26 to 27 June 2015 is
selected. To simulate the orographic precipitation, the Weather Research and Forecasting
(WRF) model version 3.7.1 coupled with the Hebrew University Cloud Model (HUCM)
is used (Skamarock et al. 2008; Lee and Baik 2016). The detailed description of the
model is given in Chapter 7, Chapter 8, and Khain et al. (2000, 2004, 2011). By changing
the aerosol number concentration at 1% supersaturation No [= 30 cm™ for CLN (clean), =
300 cm=® for CNT (control), and = 3000 cm™ for PLT (polluted)], three cases are
considered. Table 9.1 and Fig. 9.1a provide detailed description of the simulation. Figure
9.1b shows the terrain height in the innermost domain, locations of the observatories used
in this study, and the two lines named C1 and C2 for the cross section analyses. The
model integrates for 42 h from 06 UTC 25 June to 00 UTC 27 June. Only the last 21 h is

used for the analysis.

9.3 Results and discussion

9.3.1 Precipitation case

Figure 9.2 shows observed and simulated weather charts at 850 hPa height. From

21 KST 25, a low pressure system develops in southwest of Korean peninsula and



domain 1 domain 2 domain 3

horizontal 25 km 5 km 1.667 km
grid size
horizontal 120 x 120 211 x 211 211 x 211
grid numbers
vertical grid levels 41
PBL scheme Yonsei University Scheme (Hong et al. 2006)
cumulus scheme Kain-Fritsch none
(Kain 2004)

longwave: RRTM (Mlawer et al. 1997)
shortwave: Dudhia (Dudhia 1989)

land surface scheme 5-layer thermal diffusion (Dudhia 1996)
MMD5 similarity (Paulson 1970; Dyer and Hicks 1970;
Webb 1970; Beljaars 1994; Zhang and Anthes 1982)
Initial/boundary data RDAPS (UM 12kmL70) data

radiation scheme

surface-layer scheme

Table 9.1. Model configuration of each domain and parameterization list in the WRF

model simulations.
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Figure 9.1. (a) Three nested simulation domains and (b) terrain height in the innermost

domain with observation location. Black and light blue dots indicate automated synoptic

observing system (ASOS) and Automatic Weather System (AWS) observatories,

respectively. Two lines named C1 and C2 are for the cross sections which are given in

Figs. 9.7 and 9.8, respectively.
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Figure 9.2. (a—c) Observed and (d—f) simulated (CNT case) geopotential height (gpm)

and temperature ('C) at 850 hPa height at 21 KST 25, 09 KST 26 and 21 KST 26.
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passes over the southern Korean peninsula. As the low pressure system moves to the East
Sea, a strong and consistent easterly is generated over Youngdong region. When the low
pressure system is located over the East Sea, the main flow changes into the northeasterly.
Overall, the synoptic patterns are well simulated by the WRF-bin model (Figs. 9.2d-f).
Observed and simulated 21-h accumulated surface precipitation amount are given in Fig.
9.3. Note that the observed precipitation amount on the northern region of Korean
peninsula is not available. The simulations overestimate the surface precipitation amount,

while simulating well the overall patterns over the Taebaek Mountains.

9.3.2 Aerosol effects on orographic precipitation

To compare precipitation patterns between CLN and PLT cases, the differences in
21-h accumulated surface precipitation amount between CLN and CNT and PLT and
CNT are given in Fig. 9.4. Although the signs of the differences are different depending
on location, the signs of differences in the Youngdong region are mainly negative and
positive in CLN and PLT, respectively. Figure 9.5 shows the differences of the 21-h
averaged vertically integrated cloud droplet mixing ratio and the raindrop mixing ratio
between CLN and CNT, and between PLT and CNT. As the aerosol number
concentration increases, the cloud droplet mixing ratio decreases and the raindrop mixing
ratio increases for the most part. Note that, however, there are negative and positive
differences near the line C2 in Figs. 9.5¢ and 9.5d, respectively. Figure 9.6 shows that ice
particles might have a role in making different precipitation characteristics between the
region near the lines C1 and C2.

Figure 9.7 shows the vertical cross sections through the line C1 of the cloud
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Figure 9.3. (a) Observated by AWS and ASOS and (b—d) simulated 21-h accumulated

surface precipitation amount.
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(a) CLN - CNT, cloud droplet, (b) PLT - CNT, cloud droplet
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Figure 9.6. Differences in 21-h averaged vertically integrated ice crystal and snow mixing

ratio between (a) CLN and CNT and (b) PLT and CNT.
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droplet and raindrop mixing ratios. Line C1 passes through Sokcho and the near-
Hongcheon automated synoptic observing system (ASOS) observatories (Fig. 9.1b) and
the x = 0 is located at the coast. In this region, the orographic clouds are warm clouds. As
we discussed in Chapter 7, an increase in aerosol number concentration results in an
increase in the cloud droplet mixing ratio and the decrease in raindrop mixing ratio.
However, in this case, both the increase and decrease of aerosol number concentration
result in an increase of surface precipitation amount over the mountain upslope (Fig. 9.4).
In CLN, the faster growth of cloud droplets over the steep upslope results in a higher
raindrop mixing ratio than in CNT (Fig. 9.7a). In PLT, the difference in the raindrop
mixing ratio between PLT and CNT is small, while the cloud droplet mixing ratio is
higher in PLT than CNT, which also results in an increase of the surface precipitation
amount over the mountain upslope (compare Figs. 9.7b and 9.7c¢).

Figure 9.8 shows vertical cross sections through line C2 of the liquid drop mixing
ratio and the low- and high-density ice particle mixing ratios. Line C2 passes through the
local maximum terrain height near Mt. Kumgang (Fig. 9.1b) and where x = 0 is located at
the coast. Note that the orographic clouds in this region are mixed-phase clouds. Both the
low- and high-density ice particle mixing ratios increase as the aerosol number
concentration increases, while the liquid drop mixing ratio changes little. As discussed in
Chapter 8, an increase in ice particle mixing ratio in higher-level cloud results in

enhanced surface precipitation via melting of the ice particles.
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Figure 9.7. Vertical cross sections through the line C1 of 21-h averaged cloud droplet
mixing ratio (shaded) and raindrop mixing ratio (contoured) in (a) CLN, (b) CNT, and (c)

PLT. The contour interval is 0.05 g kg™
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Figure 9.8. Vertical cross sections through the line C2 of 15-h averaged liquid drop
mixing ratio (bluish shaded), low-density ice particle mixing ratio (greenish shaded), and
high-density ice particle mixing ratio (contoured) in (a) CLN, (b) CNT, and (c) PLT. The

contour interval is 0.05 g kg2
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10 Summary and conclusions

The theoretical study in Chapter 2 is an extension of our previous study (Ganbat
et al. 2015b) by including a basic-state wind and a mountain mechanical forcing to
further examine the interactions between urban breezes and mountain slope winds. We
showed how interactions between urban breezes and mountain slope winds vary diurnally
and are different from a location another. Going further, we showed that the degree of
interactions between urban breezes and mountain slope winds are sensitive to the
mountain height and the basic-state wind speed and that the basic-state wind direction is
an important factor which significantly affects these interactions. This study demonstrates
the importance of linear mesoscale dynamics of local winds in city/mountain areas.

In this theoretical study, the buoyancy frequency, i.e., the basic-state stability, is
assumed to be constant and a two-dimensional airflow system is adapted. Noticing the
importance of basic-state stability in thermally and mechanically forced winds/flows and
the typical geometries of cities, the time-varying basic-state stability and its extension to
three dimensions need to be taken into account in future research. In this theoretical study,
the Coriolis force is neglected. The effects of the Coriolis force on the interactions
between urban breezes and mountain slope winds deserve an investigation. Although the
linear dynamics can explain many aspects of the interactions between urban breezes and
mountain slope winds, there may be other aspects of the interactions that cannot be

explained by linear dynamics or in which nonlinear dynamics is important. A challenging



research topic would be to examine the nonlinear interactions between urban breezes and
mountain slope winds using nonlinear theories or simple nonlinear dynamical models.

In Chapter 3, to examine the dynamics of urban breeze circulation (UBC) in a
rotating system, particularly of the reversed UBC, we constructed a linearized, two-
dimensional, hydrostatic, Boussinesq airflow system in a calm atmosphere with a
specified thermal forcing which represents the diurnally varying urban heating. To
represent the diurnal variation of UBC, the daily steady solution and the diurnally varying
solution are linearly superposed.

It was confirmed that reversed UBC appears early in the morning. Similar to the
frictional coefficient, the Coriolis parameter plays a role in damping the strength of UBC.
The occurrence condition, strength, and vertical structure of the reversed UBC were
examined. The Coriolis force as well as the urban heating alters the occurrence time of
the reversed UBC. For a strong viscous system, the reversed UBC occurs only in high
latitudes with low occurrence possibility. An analysis of the solutions for a simple
oscillation-type model also shows that the Coriolis force alters the occurrence time and
strength of the reversed UBC.

Observational evidence of reversed UBC has not been reported yet. The detection
of the reversed UBC might not be as straightforward because various kinds of
atmospheric flows/circulations interact nonlinearly depending on the geographical
location and because real urban areas are very complex. Nevertheless, the detection of a
reversed UBC early in the morning may be possible if synoptic and other mesoscale
flows are very weak. In the presence of reversed UBC, the near-surface thermal structure

and pollutant dispersion can be modified. Reversed UBC are expected to be observed.



In this study, we considered constant static stability to simplify the mathematical
problem. In the real atmosphere, however, static stability varies diurnally and diurnally
varying static stability can significantly affect the strength and the vertical structure of
UBC. The dynamics of UBC or the reversed UBC with diurnally varying static stability
deserves an investigation. In this study, we considered a two-dimensional dynamical
frame. In three dimensions, the horizontal structure of urban heating can be represented
by a circular or an elliptic shape, thus closely imitating the real urban heating. The
extension to three dimensions in the study of the dynamics of UBC or the reversed UBC
would be an interesting research topic.

In Chapter 4, we theoretically examined the linear dynamics of orographic-
convective flows in a two-layer hydrostatic atmosphere. The two-dimensional, linear,
steady-state, inviscid, nonrotating system that includes an orographic mechanical forcing
and a convective diabatic forcing was solved to obtain the analytic solutions for the
perturbation velocities. The analytic solutions are the superposition of the solutions
forced by the orographic and convective forcings. We examined the resultant orographic-
convective flows according to changes in basic-state wind, stratospheric static stability,
and location of the convection relative to the mountain. The deep upward motion forced
by the convective forcing located upslope of the mountain is positively combined with
the orographic uplift. The convectively forced upward motion is deeper and causes a
deeper updraft layer in the case with wind shear than in the case without wind shear. The
stability jump between the troposphere and stratosphere acts to strengthen the resultant
flows owing to the wave reflections at the tropopause. We calculated the ratio of the

convectively forced vertical velocity to the orographically forced vertical velocity at the



cloud base over an upslope location of the mountain to further understand the linear
interaction of orographically forced flows with convectively forced flows.

To understand the roles of wave reflection at the tropopause, the resultant wave
strength and phase shift angle due to the infinite reflections of gravity waves at the
tropopause were analyzed. The reflectivity Ro converges to (Ns — Nt)/(Ns + Nt) for large
Ri, and increases with increasing Ns for a given Ri. The phase shift angle 6o is negative in
the wide range of Ns and Ri. However, there are some conditions under which the phase
is reversed in the opposite direction. The wave reflection at the tropopause strengthens
the symmetric structure of the orographically forced internal gravity waves and the anti-
symmetric structure of the convectively forced internal gravity waves in the troposphere.

The vertical fluxes of the horizontal momentum in the stratosphere were
analytically obtained and calculated with different Ns and Ri. Since the momentum flux
is a nonlinear variable, the total momentum fluxes contain a component related to the
nonlinear interaction between convectively and orographically forced waves. Each
momentum flux component is constructed by multiplication of the factors related to the
nonlinearity parameter of each forcing, the horizontal structure of each forcing, the
vertical structure of the atmosphere (basic-state wind speed and static stability), the
bottom and top heights of the convective forcing, and the wave transmission through the
tropopause. The nonlinear interaction component is the geometric average of the
components forced by both forcings except that the factor related to the horizontal
structure of the forcing is a function of the location of the convection relative to the
mountain and the horizontal scales of both forcings. It was found that the nonlinear

interaction component has an order of magnitude comparable to each of the



orographically and convectively forced components, which can increase or decrease the
total momentum fluxes depending on the location of the convection relative to the
mountain. The parameterizations of orographic and convective gravity wave drags have
considered both wave components separately. In some situations, however, the
interaction component between orographic and convective forcings cannot be negligible
compared to the component forced by a sole forcing. The parameterization of the
interaction generated gravity wave drag deserves for an in-depth investigation.

In this study, we considered orographic-convective flows in a hydrostatic system.
In a nonhydrostatic system, orographically and convectively forced internal gravity
waves propagate horizontally or slantwise as well as vertically. Some dynamics
associated with nonhydrostatic effects on orographically forced flows has been
theoretically examined (Wurtele et al. 1987; Keller 1994). Woo et al. (2013) described
nonhydrostatic effects on convectively forced flows using a nonlinear dynamical model.
In a future study, nonhydrostatic effects on orographically and convectively forced flows
need to be examined.

In Chapter 5, we examined nonhydrostatic effects on convectively forced
mesoscale flows and gravity-wave momentum flux by solving the equations governing
small-amplitude perturbations in a linearized, two-dimensional, steady-state, nonrotating,
and Boussinesq airflow system with prescribed convective forcing. The nonhydrostaticity
factor (= U/Na) appears in the nondimensionalized vertical momentum equation.

In an inviscid-limit system, the solutions are divided into the propagating mode
for k < k¢ and the evanescent mode for k > ke, where ke = g1 is the critical horizontal

wavenumber. For very small g, the flow is close to the hydrostatic flow. As S increases,



an alternating wavy pattern of updrafts and downdrafts appears downstream of the
convective forcing and its horizontal wavelength is 2zf. The alternating updrafts and
downdrafts correspond to almost horizontally propagating gravity waves of the
propagating mode with the horizontal wavenumber k ~ kc. The momentum flux analysis
indicates that the slantwise (almost horizontally) propagating gravity waves provide an
additional momentum flux above the convective forcing and that its magnitude increases
with increasing S and increasing convective-forcing depth.

In a viscid system, unlike in the inviscid-limit system, the solution cannot be
explicitly separated into two modes. Each wave component has a vertically propagating
part and a vertically decaying part simultaneously. In this study, the propagating mode
and two evanescent modes are classified by comparing the vertical wavenumber Mr and
the decay rate M. The k-range of the propagating mode becomes narrow as the viscous
coefficient increases. As a result, the alternating updrafts and downdrafts downstream of

the convective forcing are dissipated due to the viscous effect. For v > v, where
v, =1/(2ﬁﬁ), the propagating mode is disappear. For large v, the magnitude of the

momentum flux above the convective forcing decreases as £ increases because the
momentum flux of the propagating mode easily dissipates in the case of larger .

In this study, we considered an airflow system with uniform basic-state wind
speed and static stability. To study the general characteristics of nonhydrostatic effects on
convectively forced flows in a more realistic framework, the vertical variations of basic-
state wind speed and static stability need to be included. In their study of mountain waves,
Wurtele et al. (1987) and Keller (1994) showed that there are a number of

nonhydrostatically forced resonant waves with various horizontal wavelengths in a
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nonhydrostatic atmosphere with basic-state wind shear and a stability jump at the
tropopause. Unlike the mountain forcing, which is a mechanical forcing at the surface,
the convective forcing is a thermal forcing that can generate gravity waves in a range of
altitudes where the forcing is located. Thus, the convectively forced flows in a
nonhydrostatic non-uniform atmosphere can reveal some features different from
topographically forced flows, which also deserves an investigation.

In Chapter 6, convectively forced internal gravity waves in a two-layer
nonhydrostatic atmosphere are investigated. For this, an analytic solution for the
perturbation vertical velocity forced by line-type diabatic forcing is obtained. The
convectively forced perturbation vertical velocity fields are obtained using the Green
function method. In the troposphere with constant basic-state wind shear, the wave
components form modified Bessel functions of the purely imaginary order of x and
argument ¢ = Uk/s. The wave components in the stratosphere are sinusoidal or
exponential depending on the horizontal wave number compared to Ns/Un.

Downstream of the diabatic forcing, resonant waves corresponding to the
horizontal wavelength of the zeros of the denominator, which is the composition of the
modified Bessel functions and the complex reflectivity, of the solution are
nonhydrostatically generated. Without stability jump at the tropopause, the horizontal
wavelengths of the resonant waves are the zeros of K;.(%). Relatively short waves are
trapped at a certain height because the wave behavior changes from sinusoidal to
exponential. Most of the resonant waves are in the range of the sinusoidal asymptotic of
the modified Bessel function. Using that fact, the wavelengths of resonant waves in the

case of Ri =9, 36, and 144 are approximated.



Stability jump at the tropopause conditionally totally or partially reflects and
transmits the resonant waves. Relatively short waves are totally trapped in the
troposphere by the gravity-wave reflection and the window is broader in the case with
stronger wind shear. The transmitted resonant waves vertically propagate in the
stratosphere and transport wave energy. The characteristics and magnitude of the
stratospheric momentum fluxes need to be further examined.

In Chapter 7, based on the numerical simulations using the WRF model, which
includes the bin microphysics scheme, the effects of aerosol number concentration on
orographic precipitation from shallow convective clouds and their sensitivity to
windward mountain slope were examined. Forced uplift due to a bell-shaped mountain
generates orographic precipitation. By changing the aerosol number concentration and the
half-width of the mountain upslope, nine simulation cases are constructed.

Because of the potentially unstable low-level structure, the orographic uplift
generates shallow cellular-structured convective orographic clouds. As the aerosol
number concentration increases, the total and maximum surface precipitation amounts
decrease and the maximum surface precipitation amount occurs far downstream. In the
polluted case, a greater number of cloud droplets is generated, and the resultant average
size of liquid drops is smaller. This small size distribution of cloud droplets inhibits the
growth of cloud droplets into raindrops and suppresses surface precipitation. However, as
the surface precipitation amount decreases on the upslope, more liquid drops are
transported to the lee of the mountain. As a result, the surface precipitation amount on the
downslope is larger than that on the upslope in the cases with higher aerosol number

concentrations. Downdrafts associated with the mountain waves act to stimulate the
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sedimentation of liquid drops and the evaporation of small-sized liquid drops. The
advection rate of liquid drops over the mountain peak as a function of drop size exhibits a
double-peak pattern, which is constructed by a large enough amount of grown raindrops
from cloud droplets during the advection toward the mountain peak. This feature is more
prominent in the clean case.

The advection timescale is one of the key parameters for determining the amount
and distribution of precipitation. The narrow mountain upslope rapidly generates strong
convections due to its steep upslope angle; however, the growth into raindrops is not
completed over the upslope due to the short advection timescale. In these cases, strong
and concentrated downslope precipitation occurs. Over the wide upslope, orographic
convection produces precipitation over the long advection timescale. In these cases, a
large amount of precipitation occurs and most of precipitable water is consumed over the
upslope; these result in a smaller amount of downslope precipitation. The effects of
aerosol number concentration, which are the decrease in the total surface precipitation
amount and the downstream shift of the location of the maximum precipitation, are weak
in the cases with the wide upslope because there is a long enough advection timescale to
grow into raindrops from cloud droplets and to consume the precipitable water through
upslope precipitation even in the polluted cases. Both in the cases with narrow and wide
windward-widths, the double-peak structure of the size distribution of advection rate of
liquid drops is not clear compared to the control cases due to having not enough
advection timescales to form raindrops in the cases with narrow windward-width and the
large amount of large-sized raindrop consumption by precipitation over the upslope in the

cases with wide windward-width, respectively.
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Many studies have reported the importance of ice processes in orographic
precipitation. Although aerosol particles mainly reduce the orographic precipitation
amount, melted ice particles in the mixed-phase orographic precipitation can enhance the
precipitation amount. However, the precise microphysics under the complicated
convective orographic precipitation from deep, mixed-phase clouds need to be examined
using a bin microphysics model. The sensitivity of deep, mixed-phase convective
orographic precipitation to mountain geometry, static stability, and basic wind speed
deserves an investigation.

In Chapter 8, the sensitivity of aerosol effects on orographic precipitation from
deep convective clouds to windward mountain slope is examined using the WRF model
coupled with bin microphysics scheme. The aerosol number concentration and the
windward-width of bell-shaped mountain are controlled to construct nine simulation
cases.

In early stage, orographic precipitation near the mountain occurs mainly from
lower-level clouds, and its dependency on the aerosol number concentration and upslope
steepness is similar to that in the cases with warm shallow convective clouds which is
discussed in chapter 7. As time goes on, lower-level convective clouds vigorously
develop and an upper-level mixed-phase cloud extends upstream depending on the case,
and strong interactions between lower- and upper-level clouds result in strong
precipitation via melting or direct sedimentation of ice-phased particles if both conditions
are satisfied.

In the cases with symmetric mountain, an increase in the aerosol number

concentration results in stronger lower-level convection and stronger mixed-phase
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processes (freezing, WBF process, and riming). As a result, total and maximum
precipitation amounts are enhanced in the case with high aerosol number concentration.
In the cases with a steep upslope and a gentle upslope, the trends are not monotonic. In
CLNnN, strong convection generated by a steep upslope and the fast growth of liquid drops
and ice particles result in strong precipitation. In PLTn, even though the growth of liquid
drops is slow, the large condensational latent heating also results in strong precipitation.
In the middle of the two cases, the slower growth of liquid drops than CLNn and the
weaker condensational latent heating than PLTn inhibit the interaction between lower-
and upper-level clouds, and mixed-phase processes in CNTn result in weak precipitation.
In CNTw, even though the gentle upslope generates a weak orographic uplift, the
condensational latent heating provides additional energy. As a result, convection can
develop through the freezing level, and the mixed-phase processes enhance the surface
precipitation. In CLNw, the weak condensational latent heating and the lesser amount of
cloud droplets by fast growth of liquid drops result in the inhibition of the interaction
between lower- and upper-level clouds. In PLTw, the slow growth of liquid drops results
in the inhibition of the interaction even though the condensational latent heating is strong.

In this study, the sounding of a stably stratified atmosphere with a large CAPE is
used to simulate deep convective clouds in the presence of mountain waves. If CAPE is
not large, downdrafts associated with mountain waves restrict the development of
convection. In the present study, it is shown that the development of lower-level
convection through the freezing level is one of the conditions to reach active interactions
between lower- and upper-level clouds. For this reason, choosing soundings with

different CAPEs can make totally different results from those in this study. Not only
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considering different aerosol number concentrations and mountain geometries, but also
considering different vertical soundings deserve further investigations.

In Chapter 9, a real orographic precipitation event over the Taebaek Mountains is
numerically simulated using the WRF-bin model. To examine aerosol effects on
orographic precipitation, three cases with different aerosol number concentrations are
considered. Two different aerosol effects on orographic precipitation are observed and
investigated.

Near Sokcho, orographic clouds are warm-phased. As discussed in Chapter 7, an
increase in aerosol number concentration results in an increase of cloud droplet mixing
ratio and a decrease of raindrop mixing ratio. However, the changes of the surface
precipitation amount are not monotonic. Increases in raindrop mixing ratio in CLN and in
the cloud droplet mixing ratio in PLT both result in enhanced surface precipitation. Near
Mt. Kumgang, ice particles in the higher-level cloud play an important role in controlling
the surface precipitation amount. In this region, the increase in aerosol number
concentration results in an increased surface precipitation amount through the increase of
ice-phased particle mixing ratio.

This study investigated orographic precipitation from warm and mixed-phased
stratiform clouds in summer. As discussed in Chapter 7 and Chapter 8, orographic
precipitation from convective orographic clouds has different characteristics compared to
that from stratiform orographic clouds. A more detailed investigation of the sensitivity of

aerosol effects on convective orographic precipitation in a real case is needed.
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