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Abstract

In this thesis, we proposed the method for tracking the interface with higher
order accuracy, when given the normal velocity. Our proposed model com-
bines the well-known Lagrangian surface tracking method with the high or-
der interpolation method for discontinuity capturing. The proposed method
not only tracks the surface with higher accuracy than the conventional
method, but also depends little on the geometric parameters. Furthermore,
the method accurately detects the local shapes of the surface, which is an
essential part for a stable interface tracking method. The model developed
on the two-dimensional interface can be extended naturally on the three-
dimensional interface using the high order interpolation method on triangu-
lar meshes.

Key words: Lagrangian interface tracking, wavefrontal motion, local shape
detection, face offsetting method, WENO reconstruction, FOM-WENO scheme
Student Number: 2012-20248
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Chapter 1

Introduction

Accurate interface tracking and interface capturing among distinct sub-
stances are important in many physical processes such as solidification, mul-
tiphase flow, and have a plenty of engineering applications. Generally, in-
terface representation methods are classified into two categories, interface
tracking and interface capturing. Explicit methods(or Lagrangian methods)
usually track the interface, and implicit methods(or Eulerian methods) usu-
ally capture the interface.

The level set method [1] is a famous and typical Eulerian method for
propagating interfaces. It was introduced by S. Osher and J. A. Sethian [2]
in 1988, and many follow-up papers were published in last three decades
[3, 4, 5, 6, 7]. The level set method is able to capture the presence of bound-
ary singularities and topological changes. Its basic idea is based on implicit
function φ, whose 0-level set represents the interface one want to track for.
Then the evolution of the interface can be done by solving simple Hamiton-
Jacobi equation. The method also has the advantage in that one can express
many useful geometric information, e.g. normal vector, mean curvature using
function φ. Above all, the most important advantage is an automatical treat-
ment for topological change of the interface, which do not require special
mesh surgery process. However, traditional level set method has relatively
large computational cost, since its computation is done not in the interface
neighborhood but in the whole domain for the implicit function φ. More-
over, the accuracy of the method at the singular boundary point is not good.
To overcome such a weakness, local level set method [3] and particle level
set method [5] were introduced to overcome computation cost problem and
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CHAPTER 1. INTRODUCTION

smearing out problem, respectively.
Lagrangian methods also have been studied extensively. These are more

accurate and computationally cheaper than Eulerian method with similar
resolution, thus enabling efficient interface tracking. Papers on front-tracking
methods in multiphase flow [8, 9, 10, 11] have been read by many researchers.
Shin and Juric [12] enforced mass conservation and enabled to handle topo-
logical change in film rupture or filamentary breakup simulations. However,
almost all Lagrangian methods use ad hoc techniques in order to handle
a topology change. Although several researchers have devised a solution
[13, 14, 15], but it is still a difficult problem under Lagrangian framework.
Nevertheless, the Lagrangian method is often used because of its less diffu-
sivity and high accuracy [16, 17].

One method of Lagrangian methods, the face-offsetting method(FOM)
was introduced by X. Jiao [18]. It requires only an explicit surface mesh,
but not a volume mesh. FOM scheme moves the face with a given speed and
then reconstructs the vertices by an eigenvalue analysis. The local geometry
near each vertex is determined in the process of eigenvalue analysis, and each
vertex movement is restricted depending on the type of local geometry de-
termined. In wavefrontal motion, the entropy-satisfying Huygens’ principle
must be satisfied and the way vertex moves is different according to whether
it is contracting or expanding. To implement this, the FOM scheme checks
whether the neighbor face is expanding or contracting at each point, and
adjusts the position of the reconstructed vertex. Finally, to maintain mesh
quality during propagation, the vertex is redistributed along a tangential
direction. This process is called null-space smoothing. The FOM scheme is
very effective method when moving the interface in the normal direction. It
can effectively round the expanding corner according to the Huygens’ prin-
ciple while moving the boundary more precisely than the Eulerian methods.

The WENO scheme [19, 20] is a high order reconstruction method first
introduced in [21], which is an evolution of the ENO scheme [22]. Both meth-
ods are based on high order interpolation and are improved to avoid numer-
ical oscillation near discontinuity. In the ENO scheme, only the smoothest
stencil is found and used for interpolation. In the WENO scheme, however,
it utilize a smooth indicator to calculate smoothness and then determine
appropriate weights according to smooth indicator to combine all possible
stencils. The WENO scheme thus developed prevents the Gibbs phenomenon
from occurring near discontinuity while ensuring high order in the smooth
region. WENO schemes on unstructured meshes have also been developed in
[23, 24]. Recently, various variants of WENO schemes, such as [25, 26, 27],
have been actively researched as well.

2



CHAPTER 1. INTRODUCTION

In this thesis, we have combined the conventional FOM scheme and
the WENO scheme described above to develop a new high order interface
tracking method. Determining the offset direction using the normals of the
neighboring face in the FOM scheme is very similar to determining the nu-
merical flux at the cell boundary by solving the Riemann problem from the
fluxes of the left and right cells in many CFD problems (details are in [28]).
The WENO scheme is usually used to compute the numerical flux of the in-
terface with high order in the left and right cells, and the numerical flux at
the interface can also be approximated with a high order. In FOM-WENO
method, the normal vectors at the vertex are approximated with high or-
der and then use them to calculate the offset direction more accurately, to
develop a higher order FOM scheme.

Since we utilize the WENO scheme, the FOM-WENO scheme can ef-
fectively find normal vectors without oscillations near sharp features such
as ridges and corners. We experimentally show that our methodology can
track each point more accurately than the conventional FOM scheme and
that the resulting volume loss is much less than that of the conventional
FOM scheme. In addition, the high order approximation of the normal vec-
tor will make our methodology less sensitive to special geometric parameters
used in conventional FOM scheme, so we will be able to find local geome-
try more reliably than the conventional FOM scheme. We will compare the
FOM-WENO with conventional FOM scheme in various surface propaga-
tion problems. We will also show natural extensibility of the FOM-WENO
scheme over a triangular surface mesh.

After the introduction part in Chapter 1, the thesis consists of the fol-
lowing: Chapter 2 describes the basic numerical preliminaries, such as the
level set method, the face offsetting method, the WENO scheme on 1D in-
terval and on 2D triangular meshes, and the third order TVD Runge-Kutta
method [29, 30] used for time stepping. In Chapter 3, we propose our FOM-
WENO scheme and analyze it mathematically. Numerical results on various
surfaces are then presented and compared with the existing FOM scheme.
Finally, we will finish our thesis with concluding remarks in Chapter 4.
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Chapter 2

Previous works

2.1 Level set method

Before introducing the face offsetting method, one of the famous Lagrangian
interface tracking method, we first review the Eulerian counterpart, level set
method.

2.1.1 Basic equations

Level set method is first introduced by Osher and Sethian in [2]. The main
idea is to take implicit function φ for expressing and moving the interface.
The interface can be described in the following manner.

Let Γ be the common boundary between two regions Ω` and Ω´. A
smooth function φ : Rn ˆ R` Ñ R is then defined by:

φpx, tq ą 0 if x P Ω`,

φpx, tq “ 0 if x P Γ,

φpx, tq ă 0 if x P Ω´.

Note that the 0-level set of φ is exactly Γ, which corresponds to the
interface we want to track. This is where the name level set method originates
from. Now, implicit function φ can be evolved with the following simple
Hamilton-Jacobi equation for a given velocity field V:

φt `V ¨∇φ “ 0.
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CHAPTER 2. PREVIOUS WORKS

This is the Eulerian formulation that expresses the motion of the inter-
face under the velocity field V using the implicit function φ. We call it the
level set equation.

In this thesis, we especially treat the case when the normal velocity is
given. In particular, when the interface moves with a constant speed a in
the normal direction, the velocity field can be written as V “ aN. Here, N
denotes the outward normal of the interface given. The corresponding level
set equation is

φt ` a|∇φ| “ 0.

2.1.2 Numerical discretization

In the previous section, we briefly summarized the level set equation for
evolving the interface in the normal direction. To discretize level set equation
using the simple upwind scheme, it is necessary to express the equation in
the form of advection equation. The key observation to achieve this is that

the velocity field is V “ aN “ a
∇φ
|∇φ|

. We now rewrite the above equation

in the following form.

φt `

ˆ

aφx
|∇φ|

,
aφy
|∇φ|

,
aφz
|∇φ|

˙

¨∇φ “ 0. (2.1.1)

This equation corresponds to advection equation with the velocity field
a|∇φ|´1∇φ. For brevity, we only consider the x velocity term aφx|∇φ|´1. To
discretize this term with an upwind scheme, we should consider the sign of
the term. Since |∇φ| is always positive, the sign of aφx determines whether
φ´x or φ`x is used to discretize φx. Especially, when the signs of φ´x and φ`x
are same, the sign of aφx is also automatically determined. For example, if
both φ´x and φ`x are positive, then aφx is also positive (assume a ą 0 for
convenience), so we can set φx “ φ´x . However, when the signs of φ´x and
φ`x are different, the sign of aφx cannot be determined directly and we need
more procedure to determine the approximation for φx.

In general, the above equation is discretized using the Godunov’s method.
For brevity, the details are omitted and only the results are shown here. If
aφ`x and aφ´x are both positive, than use φx “ φ´x . If aφ`x and aφ´x are both
negative, than use φx “ φ`x . If aφ`x ď 0 and aφ´x ě 0, the situation corre-
sponds to rarefaction, and we set φx “ 0. Finally, if aφ`x ě 0 and aφ´x ď 0,
the shock occurs, then we compare the absolute values of aφ`x and aφ´x , and

5



CHAPTER 2. PREVIOUS WORKS

use larger one to discretize φx. We can express the results in the following
compact form.

When a ą 0,

φ2x « max
`

maxpφ´x , 0q
2,minpφ`x , 0q

2
˘

.

When a ă 0,

φ2x « max
`

minpφ´x , 0q
2,maxpφ`x , 0q

2
˘

.

In order to finalize the spatial discretization, we should approximate φ`x
and φ´x . There are various methods for this approximation, and one of the
famous method is 5-th order WENO method, which will be introduced in
later section. We also use the Runge-Kutta method in order to achieve higher
order in time variable, and we will also introduce it in a subsequent section.

2.1.3 Reinitialization

Equation (2.1.1) reduces to a simple ODE φt “ ´a when φ is a signed dis-
tance function. From this equation, we see that φ becomes larger or smaller
according to the sign of a. In particular, if a is a constant, the equation
has φptq “ φ0–at as the exact solution. In general, if φ is a signed distance
function, then the level set method becomes very simple. Therefore, there
is a huge advantage for maintaining φ to be closer to the signed distance
function.

Of course the level set equation works well even if φ is not a signed
distance function. However, as φ moves along the level set equation, the
noise gradually increases and the derivative also becomes steeper, which
inevitably damages the finite difference scheme. On the other hand, if the
value of φ is kept close to the signed distance function, the magnitude of
the gradient of φ is kept at 1 and φ stays sufficiently smooth function, so
that it can be approximated to the desired accuracy for discretization. Note
that even if the initial φ value is set to be a signed distance function, φ
is not necessarily a signed distance function since φ moves away from the
signed distance as the interface moves. Therefore, we need an additional
reinitialization technique periodically to maintain φ as a signed distance
function.
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CHAPTER 2. PREVIOUS WORKS

When reinitializing level set, we require that φ to be a signed distance
function with the φ “ 0 on the interface we are tracking. Sussman, Smereka,
and Osher [31] devised the following reinitialization equation.

φτ ` Spφ0qp|∇φ| ´ 1q “ 0. (2.1.2)

In equation (2.1.2), τ is a virtual time step for reinitializing φ, and Spφ0q
is the sign function which is 1 in Ω`, ´1 in Ω´, and 0 on the interface Γ.
In practice, we can get better results by using mollification of Spφ0q near
the interface. For example, (A) used the following instead of original sign
function.

Spφ0q “
φ0

φ20 ` p∆xq
2
.

Peng, Merriman, Osher, Zhao, and Kang [3] suggested the following mo-
lifier

Spφ0q “
φ0

φ20 ` |∇φ0|2p∆xq2
.

It seems that artificially inserting numerical smearing in the sign function
gives better results because it slows down the information transfer rate near
the interface, preventing the characteristic from skipping over the interface.
As before, Spφ0q|∇φ| is generally discretized using the Godunov’s method,
and the Runge-Kutta method is used for time variable.
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CHAPTER 2. PREVIOUS WORKS

2.2 Face offsetting method

The face-offsetting method(FOM) is first introduced by X. Jiao [18]. It is
a Lagrangian interface tracking method with vertices reconstruction using
an eigenvalue analysis. Let Γ0 be an orientable surface, which is constructed
with 0-dimensional vertices, 1-dimensional edges, and 2-dimensional faces.
A normal speed fpx, tq : ΓˆR` Ñ R is given for each face and the interface
is propagated under the following equation :

Bx

Bt
“ fnpx, tq,

where n is the outward unit normal vector. Since the normal vector is com-
puted from the local geometry, usually this problem is much difficult than
propagating interfaces under given velocity field.

Now, we briefly introduce the core of FOM scheme. We first propagate
each face under given normal speed. Then using eigenvalue analysis, the local
shape near each vertex is determined so that the new vertices are located on
the propagated face. The normalized vertex displacement at this time is also
called the offset direction. Finally, the scheme corrects the vertices according
to whether the type of motion is expanding or contracting. Each time one
move the vertices, one will redistribute vertices in a tangential direction to
preserve mesh quality during propagation.

2.2.1 Advection type

In FOM scheme, neighboring faces for given vertex are moved according to
their normal velocity first, then the intersection of moved faces is calculated
as least square sense, and the vertex is moved to the solution of least square
problem. However, if the vertices are in a smooth region of the interface,
such intersection of such faces may occur at odd locations that are far from
the original vertex position, which can lead to severe degradation of mesh
quality or even break the mesh altogether. The conventional FOM scheme
uses the concept of primary space to overcome this problem. The primary
space is defined by the eigenvalue analysis, which defines the space in which
the vertex should move according to its local geometry. By projecting the
previously computed intersection point to the primary space, we can reliably
calculate the vertex displacement.

Consider a vertex v in 3-dimensional space. A plane containing point p
with normal vector n can be represented by nTx “ nTp. Suppose v has m
neighborhood faces. We refer to the new location of all the points of a face

8



CHAPTER 2. PREVIOUS WORKS

as its face offset. Then, provided that there is no topological change, new
position of a vertex v has to be contained in the offsets of m neighborhood
faces. It is the solution of the mˆ 3 linear system

Nx “ a,

of which each row corresponds to each neighborhood face of v. In general,
m ě 3 and we need to solve Eq.(2) in a weighted least square sense. Then
we have linear system

Ax “ b,

where A “ NTWN, b “ NTWa, and W “ pWijq is an m ˆ m diagonal
matrix with Wii is the weight of the i-th neighborhood face of v. Here,
weights Wii are generally taken as the face area of corresponding face.

As mentioned before, we carry out an eigenvalue analysis for matrix
A, which is symmetric and positive semi-definite. Let λi be real and non-
negative eigenvalues and ei be corresponding eigenvectors. Assume λ1 ě
λ2 ě λ3. We can obtain geometric information from these eigenvalues and
eigenvectors. The fact that the eigenvalues corresponding to the eigenvectors
are large means that the normal directions of the neighborhood faces are
relatively directed toward the direction of the eigenvector. We classify local
geometry near vertices into three categories. They are summarized in table
2.1(Interface in 2D can be regarded as consisting of the smooth region and
the ridge only). In each case, the characteristics of eigenvalues are listed.

Smooth region A relatively large λ1 and small λ2, λ3
λ1 " λ2 ě λ3

Ridge Relatively large λ1, λ2 and a small λ3,
λ1 ě λ2 " λ3

Sharp corner Three eigenvalues are of similar magnitude,
λ1 « λ2 « λ3

Table 2.1: Classification of local geometries and their characteristics in eigen-
value

Therefore, we can classify local flatness of surface by comparing the mag-
nitude of eigenvalues. If we refer to the vector space spanned by eigenvectors
corresponding to relatively large(whose meaning will be clear later on) eigen-
values of A as its primary space, the vertex displacement within the primary

9
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space of dimension k is computed by

dadv “

k
ÿ

i“1

etibei{λi.

The following figure 2.1 shows the primary space for three types of local
geometry introduced above. For a point lying on the smooth region, the
primary space is a one dimensional vector space spanned by a normal vector
at the point. For a point lying on the ridge, the primary space bisects the
two surfaces two surfaces constituting the ridge. Finally, for a point lying at
corner, the primary space is R3.

Figure 2.1: The eigenvectors corresponding to relatively large eigenvalues
and the primary space for (a) Smooth. (b) Ridge. (c) Corner

The dimension k is determined from the relative magnitude of three
eigenvalues, for example, one can compute λ2{λ1 and λ3{λ1. To set some
thresholds to classify a ridge and a corner based on geometry, we also con-
sider the following various geometric quantity. First, one can consider the
sum of the angles at the vertex in its incident faces, denoted by θs, which
can be used to detect corner. θs " 2π means the vertex is located at a cor-
ner. Let θa “ θs ´ 2π. θa alone is not enough to distinguish whether the
vertex lies on a ridge. To classify the vertex more rigorously, let e1be the
first eigenvector with eT1 b ą 0. Then the following criterion may be useful.

1. if λ3{λ1 ě χc or |θa| ě π{2, the v is a corner;

2. if λ2{λ1 ě χr or eT1 n ď 0 in incident face, then v is on a ridge.

Depending on the size of χc, there is a possibility for all vertices to be
classified as corners, or no vertices are classified as corners. The same phe-
nomena can happen when classifying ridges. Furthermore, classifying results
react very sensitive to these parameters in some geometry. Reasonable choice
of χr and χc is related to the dihedral angle and open angle of a cone. If

10
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a vertex v on a ridge has almost uniform weights, the dihedral angle θd is
less than π{2 and the eigenvalues satisfy λ2{λ1 « tan2pθd{2q, λ3 « 0. If a
vertex v is located at a corner with an open angle π ´ θo, the eigenvalues
satisfy λ3{λ1 « λ2{λ1 « tan2pθo{2q{2. From this observation, if we set a
dihedral angle thresholds φr and open angle thresholds φc, we can define
χr “ tan2pφr{2q and χc “ tan2pφc{2q{2. The values of φr and φc are de-
termined by how the initial geometry is given. For example, X.Jiao uses
φr “ 15˝ and φc “ 45˝ in [32, 18], then χr « 0.0173 and χc « 0.0858. In this
case, interface in 2D can be regarded as having only χr. Experimentally, it
is known that it is more sensitive to determine the value of χc than the value
of χr.

2.2.2 Wavefrontal type

Before we discuss wavefrontal type propagations, it is essential to distinguish
contracting and expanding motions, which are illustrated in figure 2.2. In
case of contracting motions, the vertex displacement dwav is identical to
aforementioned advection type, which is determined by the intersection of
the moved faces. Therefore, total displacement of each vertex at each step is
equal to dadv. However, for expanding motion case, a corner point tends to
be rounded during propagation, and the vertex displacement computed as if
it were contracting motion is too long. In other words, to implement wave-
frontal motion, we must modify the previously computed vertex displace-
ment. Experimentally, dadv is correctly identifies the direction in which the
vertex moves. Therefore, it is enough for adjusting length only according to
the type of motions. We first determine whether the i-th neighborhood face
is expanding or contracting with respect to the vertex from the following
simple formula. If si is a vector that connects up to the opposite edge of
the vertex for the face moved from the vertex moved along dadv, the face
is contracting with respect to the vertex if dTadvsi ě 0, and expanding if
dTadvsi ă 0.

11
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Figure 2.2: Expanding and contracting

X.Jiao suggested the following simple formula obtaining length l incor-
porating both motions

l “

˜

m
ÿ

i“1

µili

¸

{

˜

m
ÿ

i“1

µi

¸

,

where

µi “

"

ai if expanding
ai cos2pθiq if contracting

, li “

"

ci if expanding
ci{| cospθiq| if contracting

.

Here, ai is the area of the i-th face, ci is the length of i-th face moving under
normal velocity, and θi is the angle between dadv and ni. The final vertex
displacement dwav can be calculated as follows.

dwav “ l
dadv

|dadv|
.
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2.2.3 Null-space smoothing

Vertex redistribution or smoothing is used to maintain mesh quality during
propagation. Note that this redistribution procedure should be done on the
complementary space of the primary space(that is, smoothing movement of
vertex should be tangential to moving direction), which we call null space.
Therefore, vertex movement is a sum of vertex displacement d (which can
be either dadv or dwav), and tangential displacement t, i.e., d` t. Here, t is
given by

t “ TTT

˜

m
ÿ

i“1

wici

¸

{

˜

m
ÿ

i“1

wi

¸

,

where T is a 3ˆp3´kq matrix whose column vectors consists of orthonormal
bases of the null space of A, ci is a vector connecting the vertices from the
vertex to the center of the i-th neighboring face, and wi is the weight for
i-th face. Here, one can use same weights as in determining local geometry
previously.

Note that the linear map TTT projects each vector in R3 to a null space
of A. Therefore, this method can be seen as a projection of the weighted
Laplacian smoothing to the null space. In the smooth region, the two vectors
which spans the null space are also a basis of the tangent plane at the vertex
and thus the smoothing process is done in the tangent plane. Likewise, the
vertex on ridges can be only smoothed along the direction of ridges, and
smoothing does not occur at the corner vertex. With this simple smoothing
scheme, we can prevent sharp features from being corrupted during the
smoothing process. We call such smoothing procedure null-space smoothing.

13
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2.3 Weighted essentially non-oscillatory scheme

In this section we are going to introduce a weighted essentially non-oscillatory
scheme(WENO), a high order reconstruction scheme that is essential for
developing FOM-WENO scheme. In particular, we focus on the WENO
scheme in one dimensional space, which is a building block for developing
two dimensional FOM-WENO scheme. For one dimensional mesh, we can
arrange cells and points in order. We conveniently arrange the cells in order
of I1, I2, ¨ ¨ ¨ IN . The point shared by Ii and Ii`1 is denoted by xi`1{2.

2.3.1 Polynomial reconstruction

The most important component for the WENO scheme is how to define a
stencil containing each cell Ii, and how to interpolate the value of a given
point using averages of cell which is in the same stencil with a given point.
Here, the cell average for a function v in j’th cell Ij is given by

v̄j ”
1

∆xj

ż x
j` 1

2

x
j´ 1

2

vpxqdx, j “ 1, 2, ¨ ¨ ¨ , N.

Now, let us have all cell averages. For a given cell Ii, we consider the
interpolation problem for v at xi`1{2(which we simply write vi`1{2) using cell
averages nearby Ii. The most simple, and natural first order approximation
is v̄i. For high order reconstruction, we need to make use of cell averages in
a neighborhood of Ii as well. Thus, we consider the set S containing Ii as
well as the neighbor cells.

S “ tIi´r, Ii´r`1, ¨ ¨ ¨ , Ii, ¨ ¨ ¨ , Ii`su, r, s ě 0.

We call this S the stencil of Ii. For k “ r ` s ` 1, there is an unique
polynomial of order pk´ 1q such that the cell averages of ppxq in the stencil
are equal to those of v.

1

∆xj

ż x
j` 1

2

x
j´ 1

2

ppxqdx “ v̄j , j “ i´ r, ¨ ¨ ¨ , i` s.

If a function v is smooth in the stencil, then ppxq is an kth order ap-
proximating polynomial for v in the stencil. In particular, ppxi`1{2q is a
kth order approximation for vi`1{2. Now, for a fixed k, we denote this ap-
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proximation as v
prq
i`1{2. This value can be easily shown to be linear with

respect to cell averages v̄i in the stencil. Therefore, one can define constants
crj , j “ 0, ¨ ¨ ¨ k ´ 1 which are independent of a function v to find the

following expression for v
prq
i`1{2.

v
prq

i` 1
2

“

k´1
ÿ

j“0

crj v̄i´r`j . (2.3.1)

More precisely, using k and ∆xi “ xi`1{2 ´ xi´1{2, one can derive the
following expression for constants crj . Detailed calculations are omitted here.

crj “ ∆xi´r`j

k
ÿ

m“j`1

řk
l“0,l‰m

śk
q“0,q‰m,l

´

xi` 1
2
´ xi´r`q´ 1

2

¯

śk
l“0,l‰m

´

xi´r`m´ 1
2
´ xi´r`l´ 1

2

¯ . (2.3.2)

Note that one can also handle the interpolation for vi´1{2 in the same
manner.

2.3.2 ENO reconstruction

Before introducing the WENO scheme, we breifly introduce an essentially
non-oscillatory scheme(ENO) [22], which has become the motivation of the
WENO scheme. We defined a stencil at cell Ii consisting of k cells containing
Ii in the previous section, and if a function v is smooth in this stencil, then
the value vi`1{2 can be approximated to kth order using cell average values
of cells belonging to the stencil. Let us now consider the case where v is
piecewise smooth and there is a discontinuity(shock) for v near the cell
Ii. In this case, if discontinuity exists in the stencil, the order of accracy for
interpolation is no longer guaranteed. In other words, the interpolating value
for vi`1{2 can be overshooted or undershooted, which results in an oscillation
called Gibbs Phenomena. To overcome this, we consider the following k
different stencil.

Sr “ tIi´r, Ii´r`1, ¨ ¨ ¨ , Ii, ¨ ¨ ¨ , Ii´r`k´1u, r “ 0, ¨ ¨ ¨ , k ´ 1.

The core idea for ENO scheme is to use the smoothest stencil to avoid
discontinuity. It follows that it is essential for us to have a suitable measure
of smoothness. In the conventional ENO scheme, one usually consider the
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primitive function Prpxq of the interpolating polynomial prpxq computed
from each Sr. Polynomial Prpxq interpolates the following function V pxq

V pxq ”

ż x

´8

vpx1qdx1,

at k ` 1 points, xi´r´1{2, ¨ ¨ ¨ , xi´r`k´1{2. Now, the Newton divided dif-
ference of V is used as the measurement of the smoothness in the stencil.
Starting from 1-cell stencil Ii, by repeatedly adding left or right cell which
has smaller divided differences, we can construct the stencil consisting of k
cells. After determining stencil for Ii, the equation (2.3.1) can be used to
approximate vi`1{2.

There are several problems with the ENO scheme. One of them is that
although p2k ´ 1q cells in a neighborhood of Ii are likely to be used in
selecting stencil of Ii, only k of them are used and the order of accuracy is
also limited to k. Another problem is that the approximated value for vi`1{2
is not smooth with repsect to cell average values, since the chosen stencil
changes abruptly. Various methodologies have been proposed to overcome
these problems, the most famous of which is the WENO scheme.

2.3.3 WENO reconstruction

Weighted ENO(WENO) is a method intrdouced by Liu, Osher, and Chan
[21], where several problems of ENO scheme discussed above are overcomed
by using a weighted sum wisely. Consider k different stencils Sr discussed
above. The core idea of WENO is that the approximate value for vi`1{2 is

expressed by a weighted sum of approximate value v
prq
i`1{2 which is computed

from each stencil Sr.

vi` 1
2
“

k´1
ÿ

r“0

ωrv
prq

i` 1
2

, ωr ě 0,
k´1
ÿ

r“0

ωr “ 1. (2.3.3)

Two conditions in equation (2.3.3) are necessary to satisfy stability and
consistency for WENO scheme. The ENO scheme discussed above can be
seen as a special case of WENO scheme, in that the weight ωr is 1 in the
smoothest stencil and 0 in the remaining stencil. Now we want to design
weights ωr to satisfy the following three conditions.

1. In smooth region, resulting order of accuracy for vi`1{2 is p2k ´ 1q,
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2. For a stencil containing a shock, ωr is nearly zero,

3. ωr is a smooth function for the cell average value.

If we rewrite the first condition, we have to find constants dr so that the
following holds.

k´1
ÿ

r“0

drv
prq

i` 1
2

“ vi` 1
2
`Op∆x2k´1q. (2.3.4)

Furthermore, we do not want dr to depend on the cell average values.
We first find the expression which approximates vi` 1

2
by p2k ´ 1q-th order

using p2k ´ 1q cell averages.

vi` 1
2
“

2k´2
ÿ

j“0

rcj v̄i´k`1`j `Op∆x
2k´1q. (2.3.5)

Then, we equate the expression (2.3.5) with the weighted sum of v
prq

i` 1
2

to

find constants dr. In other words, the following equation should be satisfied.

2k´2
ÿ

j“0

rcj v̄i´k`1`j “
k´1
ÿ

r“0

drv
prq

i` 1
2

“

k´1
ÿ

r“0

dr

˜

k´1
ÿ

j“0

crj v̄i´r`j

¸

. (2.3.6)

We want this equation holds whatever the cell average value is, and
this yields the linear equation. At first glance, it seems that the system is
overdetermined since the number of dr sought is k, whereas the number of
equation equals p2k´ 1q, which is the number of cell averages. However, the
condition

řk´1
r“0 dr “ 1 enforces the equation hold for v “ 1, x, ¨ ¨ ¨ , xk´1,

since both part of equation (2.3.6) correctly reconstruct all for polynomials
of order less than k. Therefore, actual number of the equation reduces by
pk ´ 1q, then we have a linear system of k equations with k unknowns. dr
can be uniquely found by solving this linear system.

Now, to satisfy the second and third conditions, we use the following
form of weights :

ωr “
rωr

řk´1
s“0 rωs

, r “ 0, ¨ ¨ ¨ , k ´ 1, (2.3.7)
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where

rωr “
dr

pε` βrq2
. (2.3.8)

βr is a measure of the smoothness of stencil Sr, called smooth indicators,
and ε ą 0 is a small constant to prevent the denominator from reaching 0.
Using the designed weights, the smooth indicators are nearly zero in the
smooth region, and this implies ωr « dr. That is, from the equation (2.3.4),
we can obtain p2k ´ 1q order approximation in the smooth region. If one
has discontinuity in stencil r1, then βr1 is very large, which in turn implies
αr1 is very small compared to other stencils. Thus, ωr1 is nearly zero for
the stencil which has a discontinuity. Therefore, you can avoid using stencil
with discontinuity as in ENO scheme. Finally, we can see that ωr is smooth
provided βr is smooth with repsect to cell average values.

We used the Newton divided differences to measure the smoothness of
the stencil. The following smooth indicators are generalized versions of total
variations, which are known to be good measures of smoothness, to higher
order variations. For the 3rd order and 5th order WENO schemes, the ro-
bustness of this smooth indicator has been verified through several numerical
experiments.

βr “
k´1
ÿ

l“1

ż x
i` 1

2

x
i´ 1

2

∆x2l´1i

ˆ

Blprpxq

Blx

˙2

dx. (2.3.9)

We can calculate ωr using this smooth indicator, and finally the WENO
reconstruction can be done as follows.

v
prq

i` 1
2

“

k´1
ÿ

j“0

crjvi´r`j , j “ 0. ¨ ¨ ¨ , k ´ 1,

vi` 1
2
«

k´1
ÿ

r“0

ωrv
prq

i` 1
2

.

Note that the value of vi`1{2 can also be approximated in Ii`1. We usually

denote the approximated value for vi`1{2 in Ii by v´i`1{2, and the approxi-

mated value for vi`1{2 in Ii`1 by v`i`1{2.
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Generally, the fifth order WENO method, which corresponds to k “ 3, is
widely used in many papers. In this case, the total number of cell used is 5,
and each stencil Sr has 3 cells. That is, in the smooth region, the accuracy
order is close to 5, and the 3rd order accuracy can be obtained near the
shock.
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2.4 WENO scheme on triangular meshes

In the previous section, we designed WENO scheme in 1D. In this section
we extend WENO scheme into 2D space, consisting of triangular mesh.
This process is introduced in [23]. First, let us assume that a smooth func-
tion u is defined on given triangular mesh, whose triangles are denoted by
t40,41, ¨ ¨ ¨ ,4Nu. For WENO reconstruction, we should interpolate the
values at given points from the cell averages. The average value of upx, yq in
each cell 4i is given by

ūi ”
1

|4i|

ż

4i

upx, yq dx dy.

Let P k be a set of two-variable polynomials whose order is less than k.
Then our aim is to find the reconstruction polynomial ppx, yq in P k which
satisfies following conditions: p approximates u in 4i with order pk ` 1q,
and its cell average value in 4i is same as that of u. Since there are K “

pk ` 2qpk ` 1q{2 coefficients in ppx, yq , we need at least K triangles to
determine these coefficients. We use set ofK triangles Si “ tΩ1,Ω2, ¨ ¨ ¨ ,ΩKu

to find the polynomial in 4i, and Si is usually called a stencil of 4i. For
example, when k “ 1, we usually use stencils made of 4i and two neighbors
around it.

Furthermore, ppx, yq should be reconstructed so that the cell average of p
in Ωi is the same as that of u, which yields K linear equations. Since ppx, yq
has K coefficients, we obtain a linear system Ax “ b for K ˆ K matrix
A. When matrix A has full rank, i.e. when the linear equation always has
a unique solution, we call Si the admissible stencil of 4i. In previous case
k “ 1, stencils are admissible in most triangulations.

2.4.1 Third order reconstruction

We start with the 3rd order WENO scheme. The first step required to create
WENO scheme is to find a reconstruction polynomial p. In 3rd order case,
we need a quadratic polynomial interpolation and a proper stencil for each
triangle. Let 40 be the cell that we want to approximate. Three neighbors
of 40, are denoted by 4i, 4j , and 4k. Again, we need 4ia, 4ib, which
are two neighbors of 4i different from 40. In the same way, we can also
find 4ja, 4jb, 4ka, 4kb. In this section, we use this 10-triangle stencil for
reconstruction.
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Figure 2.3: Whole stencil used in third, fourth order WENO scheme

Now, we should find a quadratic polynomial pp2q, which has the same cell
average as that of u in 40. In addition, we also require that cell averages
of pp2q and u are equal at all triangles in the stencil. As there are only
6 undetermined coefficients in polynomial pp2q, the system for determining
coefficient is actually overdetermined. Therefore, in general, we use the least-
square method to find these coefficients.

The most important step in developing a high-order WENO scheme is to
represent the reconstruction polynomial using lower order polynomials(that
is, with smaller stencils). For the 3rd order case, we usually use polynomials
of order 1 for this. Since polynomial of order 1 has three coefficients, it is
necessary to decompose the stencil into smaller stencils, each of which is
made up of three triangles.

Using the 10-triangle stencil defined above, 9 smaller stencils can be
made. The following notation is used for 9 substencils :

S1 40, 4j , 4k S2 40, 4k, 4i S3 40, 4i, 4j

S4 40, 4i, 4ia S5 40, 4i, 4ib S6 40, 4j , 4ja

S7 40, 4j , 4jb S8 40, 4k, 4ka S9 40, 4k, 4kb

Table 2.2: Substencils used in the third order WENO scheme

Then, the polynomial pr of order 1 is reconstructed for each Sr, where
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the cell average of pi in each triangle consisting of Sr is equal to that of u.
For the point pxG, yGq we want to approximate, we should find the coeffi-

cient γr which only depends on local geometry of mesh, so that the following
linear combination

Rpx, yq “
9
ÿ

r“1

γrprpx, yq (2.4.1)

matches pp2q at the point pxG, yGq where we want to approximate values,
whatever the values tū0, ūi, ūj , ūk, ūia, ūib, ūja, ūjb, ūka, ūkbu are.

RpxG, yGq “ pp2qpxG, yGq. (2.4.2)

In equation (2.4.1) and (2.4.2), all expressions are linear with respect
to cell averages. In order to achieve equality for arbitrarily given cell aver-
ages, ten linear coefficients should be identically zero when we organize the
expression with cell averages as variables. Since there are nine γr’s to be
determined in the equation, one can misunderstand at glance that the equa-
tion is overdetermined, but in fact the system has rank 8 so the equation
is underdetermined, having one degree of freedom. This is due to the fact
that since both prpxq and pp2qpxq can reconstruct the first order polynomial
exactly, the equality for three cases u “ 1, x, y are automatically established
with the one constraint

ř9
r“1 γr “ 1. Therefore, we have rank 8 system with

9 variables, resulting in one degree of freedom. For convenience, we express
γr as a function of γ1 for r ě 2.

Remaining one degree of freedom will be used later to make each linear
weights γr nonnegative, which is an essential condition when dealing with
shocks. Note that such nonnegativity of weights is not possible for many
triangulations. One way to overcome this problem is a grouping technique,
which will be introduced in next subsection.

2.4.2 Fourth order reconstruction

For the 4th order WENO scheme, a cubic reconstruction polynomial with
10 coefficients is necessary. Thus 4ia, 4ib, 4ja, 4jb, 4ka, 4kb should be all
distinct. Otherwise, our stencil cannot be admissible. Now, a cubic polyno-
mial pp3q should be reconstructed in a way that cell averages of pp3q in each
triangle are same as that of u. In most triangulations, this is possible when
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4ia, 4ib, 4ja, 4jb, 4ka, 4kb are all distinct.
As in 3rd order case, we now represent pp3q using lower order polynomials

in some substencils. For example, we can create six quadratic polynomials
qr, correspond to each substencil Sr consisting of six triangles.

S1 40, 4i, 4ia, 4ib, 4k, 4kb

S2 40, 4i, 4ia, 4ib, 4j , 4ja

S3 40, 4j , 4ja, 4jb, 4i, 4ib

S4 40, 4j , 4ja, 4jb, 4k, 4ka

S5 40, 4k, 4ka, 4kb, 4j , 4jb

S6 40, 4k, 4ka, 4kb, 4i, 4ia

Table 2.3: Substencils used in the fourth order WENO scheme

Again, we wish that following linear combination

Qpx, yq “
6
ÿ

r“1

γrqrpx, yq (2.4.3)

matches pp3q at the point pxG, yGq, whatever the values of ū’s are.

QpxG, yGq “ pp3qpxG, yGq.

In this case, the number of γr is 6 and the number of linear equations
is 10. However, the single constraint

ř6
r“1 γr “ 1 can incorporate six equa-

tions corresponding to u “ 1, x, y, x2, xy, y2 into single equation. Therefore,
the linear system is actually a rank 5 system and again has one degree of
freedom. One degree of freedom can be used later to make the weights non-
negative, but different from the 3rd order case, this is only possible on nearly
uniform meshes.

2.4.3 Positivity of linear weights

In previous subsections, one degree of freedom has left when calculating
linear weights and we expressed γrpr ě 2q using γ1. In order for the final
WENO reconstruction to be stable near shock, each linear weight should be
non-negative. Therefore, it is necessary to adjust the value of γ1 to make
each linear weight non-negative. However, this adjustment is generally not
possible for most triangulations. To overcome this problem, one can seek
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grouping techniques. For example, consider the case when you want to in-
corporate the nine polynomials used in third order reconstruction into three
new polynomials and coefficients as follows:

9
ÿ

r“1

γrprpx, yq “
3
ÿ

r“1

rγrrprpx, yq. (2.4.4)

In equation (2.4.4), each rprpx, yq is a linear combination of the three
linear polynomials in LHS. Note that it is also a linear polynomial which
approximates u with second order accuracy. The stencil for rprpx, yq is just
the union of three corresponding substencils. Here, one should ensure that
each new stencil is well separated, so that when the shock is present, at least
one stencil do not contain a shock.

The following grouping works for most triangulations. The first group
uses p2, p4, and p5, the second group contains p3, p6, and p7, and finally
the last group consists of the rest, p1, p8, and p9. Following the grouping
mentioned above, three new linear polynomials, their coefficients and corre-
sponding stencils are as follows.

rp1 “ pγ2p2 ` γ4p4 ` γ5p5q{pγ2 ` γ4 ` γ5q, rγ1 “ γ2 ` γ4 ` γ5,

rp2 “ pγ3p3 ` γ6p6 ` γ7p7q{pγ3 ` γ6 ` γ7q, rγ2 “ γ3 ` γ6 ` γ7,

rp3 “ pγ1p1 ` γ8p8 ` γ9p9q{pγ1 ` γ8 ` γ9q, rγ3 “ γ1 ` γ8 ` γ9.

rS1 40, 4i, 4ia, 4ib, 4k

rS2 40, 4j , 4ja, 4jb, 4i

rS3 40, 4k, 4ka, 4kb, 4j

Table 2.4: New stencils corresponding to grouped polynomials

The resulting linear combination

rRpx, yq “
3
ÿ

r“1

rγrrprpx, yq

is equivalent to the previous Rpx, yq, and in most cases it is possible to
make all rγr’s non-negative by adjusting one degree of freedom. Stencils are
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relatively well separated too.
In the case of the 4th order, there is also given one degree of freedom

to determine the value of linear weights γr. Therefore, making the six linear
weights non-negative using this degree of freedom is then equivalent to solv-
ing six linear inequalities for γ1. But experimentally this is only possible if
the mesh is nearly uniform. Since the size of each stencil is relatively large
compared to 3rd order case, the shock is more likely to enter all the stencils
formed by grouping. Thus, the problem is rarely overcomed by using simple
grouping techniques.

2.4.4 Smoothness indicators and nonlinear weights

Finally, the smooth indicator is used to calculate the nonlinear weights. As
in 1D case, for the polynomial ppx, yq whose order is less than k, we define
the measure for smoothness as follows.

β “
ÿ

1ď|α|ďk

ż

4
|4||α|´1pDαppx, yqq2 dx dy.

Here, the summation is taken for α, a multi-index notation for differen-
tiation. Using smooth indicator β, nonlinear weights ωr can be defined as
follows.

ωr “
rωr

ř

s rωs
, rωr “

γr
pε` βrq2

. (2.4.5)

In equation (2.4.5), γr is the linear weights calculated before (especially,
for 3rd order case, we may use rγr instead of γr when grouping technique is
applied.), βr is the smooth indicator of r’th reconstruction polynomial (pr
or rpr in 3rd order case, and qr in the 4th order case), and ε is a small positive
number introduced to deal with smooth region. In general, if ε is large, we can
get better accuracy in the smooth region, but there may be some oscillation
near shock. The smaller the ε, the better the shock can be handled. The
WENO reconstruction is completed by replacing the previously calculated
nonlinear weights γr with ωr in (2.4.1) or (2.4.3) according to the order of
approximation.
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2.5 Total variation diminishing Runge-Kutta method

The purpose of time-stepping methods is to update u from time to time for
given ODE

ut “ fpuq, upt0q “ u0,

and the spatial discretization of ODE

ut “ Lpuq.

The simplest method is the forward Euler method, which is based on
Taylor expansion upt0 ` hq « upt0q ` hu

1pt0q.

un`1 “ un `∆tLpunq.

However, since time discretization with the forward Euler method is only
first order accurate in time variable, high order discretization is necessary
for higher accuracy. The most commonly used method is the total variation
diminishing (TVD) Runge-Kutta (RK) method devised by Shu and Osher
[29]. This method is called TVD, because of the following property : If some
spatial discretizations with forward Euler time update is TVD, then it is
still TVD when using TVD-RK method as time discretization. That is, the
total variation

TV puq “
ÿ

jPZ
|uj`1 ´ uj |

does not increase with time:

TV pun`1q ď TV punq.

This property makes the scheme stable. The following is the commonly
used third order TVD-RK method.
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up1q “ un `∆tLpunq,

up2q “
3

4
un `

1

4
up1q `

1

4
∆tLpu1q,

un`1 “
1

3
un `

2

3
up2q `

2

3
∆tLpu2q.
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Proposed models

3.1 FOM-WENO scheme

3.1.1 Motivations for high order FOM scheme

There are many numerical schemes for computing numerical fluxes. FDM(Finite
Difference Method) and FVM(Finite Volume Method) are two widely used
methodologies. Although these schemes work well for globally smooth prob-
lems, due to their interpolation is based on fixed stencil, the high order
accurate result become oscillatory near a discontinuity. As we pointed out
in section 2.3, WENO scheme makes use of adaptive stencil to avoid in-
cluding the discontinous cell in the stencil when computing numerical flux.
Therefore, WENO scheme maintain high order accurate results in smooth
region as well as reduce artificial oscillations near a discontinuity.

We explained brief concept of FOM scheme in section 2.2. As one can
see easily, the biggest shortcoming for conventional FOM scheme is that
the accuracy order is restricted to 1st order even in smooth region of the
interface. This is due to the fact that FOM scheme uses only neighboring face
normals to determine offset directions. However, it is clear that in smooth
region of the front one can widen stencil to obtain high order accuracy. This
is where our idea originates from. We utilize such advantages of WENO
schemes when determining normal vectors(in many practical examples, this
is equivalent to determine propagating direction of front) in FOM scheme
to guarantee high order accurate in smooth regions of front.
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Figure 3.1: Conventional FOM scheme only uses neighboring normals(blue
arrow) to approximate the normal at the vertex of front(purple arrow)

Furthermore, there is more room for improvement in FOM scheme. FOM
scheme uses two geometric parameters χc, χr. These parameters are used as
a threshold when determining the local shape of the interface. Therefore, in
FOM scheme, the local geometry of a vertex can be changed according to
the value of χc, χr, and then errors can be induced when determining correct
propagating directions. We want the local shape to be well determined even
if the values of χc, χr are fixed for various shapes, so that the interface moves
correctly.

Figure 3.2: Small χr may result in sharp shape at expanding corner which
should be rounded (left figure), and large χr may misdirect contracting cor-
ner (right figure). In both figures, blue line corresponds to correct interface
and red line corresponds to the interface propagated by using FOM scheme.

For example, for the interface lying in two spatial dimension(only χr
exists in this case), if χr is set to be too small, FOM scheme can hardly
smoothen expanding corner(See the left figure of figure 3.2). Similarly, if χr is
set to be too large, the method cannot find out corners with small angle(See
the right figure of figure 3.2). We would like to develop new method easier
to determine the value of χr, χc than the existing FOM scheme.
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3.1.2 High order reconstruction of normals

The starting point for implementing FOM-WENO scheme in two dimen-
sions is to approximate the normal vector with high order accuracy using
polynomial reconstruction. For better understanding of the situation, we as-
sume that we arrange the faces of the interface in order, and that the point
shared by face i and face pi` 1q is denoted by the point pi` 1{2). Then the
normal vectors at pi` 1{2q can be approximated using normal informations
in a neighborhood of pi` 1{2q. Let us denote N´i`1{2 and N`i`1{2 by normal

approximations for pi ` 1{2q at face i and i ` 1, respectively. FOM scheme
can be viewed as a scheme for calculating the offset direction using these two
normal approximations. This similar to the role of the numerical flux calcu-
lations in computatinoal fluid dynamics(CFD). Conventional FOM scheme
uses the following simple approximations, if we denote normal vectors of
face i and face i` 1 by Ni, Ni`1, respectively.

N´i`1{2 “ Ni, N`i`1{2 “ Ni`1.

Using the numerical flux approximation ideas in CFD fields, it is possible
to improve the accuracy of conventional FOM scheme by approximating
N´i`1{2 and N`i`1{2 with high order numerical flux approximation scheme. To

achieve this, we use 5th order WENO scheme discussed in section 2.3. We
first consider only linear coefficients that do not take smooth indicators into
account. Then a new reconsturction of the normal vector at point pi` 1{2q
calculated from face i can be wriiten as

N
prq

i` 1
2

“

k´1
ÿ

j“0

crjNi´r`j , j “ 0. ¨ ¨ ¨ , k ´ 1,

N´
i` 1

2

“

k´1
ÿ

r“0

drN
prq

i` 1
2

,

where N`
i` 1

2

, which is computed from face pi ` 1q, can be computed in

a similar fashion. Since the faces are not uniform, the linear coefficients cij
and di should be calculated as unstructured sense, namely using the equation
(2.3.2). For explicit formula of di, see [33]. The offset direction is calculated
from the obtained N´i`1{2 and N`i`1{2 through the conventional FOM scheme.

One can propagate the interface by repeating this process at every point on
the interface.
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Figure 3.3: FOM-WENO uses normal vector of wider stencils to get high
order approximation of normals(green arrow).

When we apply the 5th order WENO scheme, we consider a stencil
consisting of 5 faces divided by 3 substencils consisting of 3 faces. However, in
the case of interface tracking problem, each face in the stencil is not colinear,
thus standard WENO scheme is not directly applicable. There should be
some sort of face unfolding process so that each face in the stencil to be
colinear(coplanar in 3D). The unfolding process is described in the following
figure 3.4.

Figure 3.4: Illustration of unfolding process

The main advantage of this unfolding process is that it doesn’t matter
whether corner exists in the stencil or not. This is due to the fact that
the unfolding process is basically reparametrization of curve. Furthermore,
this unfolding process is always possible for interfaces with sufficently good
mesh qualites. Since the mesh size distribution of the interface is balanced,
the face area in the stencil becomes also balanced, therefore the condition
number of linear system for linear coefficients is not relatively large.

31



CHAPTER 3. PROPOSED MODELS

3.1.3 Modified normal vector and error analysis

As pointed out in subsection 3.1.1, FOM-WENO scheme is designed to
achieve high order accuracy of normal vectors in smooth region of the inter-
face by making use of WENO scheme. In this section, we theoretically verify
such high order accuracy for normal vector is actually obtained in smooth
region of interface for two dimensional case.

Let Xptq be an initial interface, which is a curve parametrized by arc
length in xy-plane. All we know about initial interface is the set of n `
1 discrete points X1{2, X3{2, .., Xn`1{2 on the curve, where Xi`1{2 denotes
Xpti`1{2q. We note that the following identity for curve tangents give the
similarity between approximating normals and WENO schemes, which also
makes use of cell averages to compute numerical fluxes.

1

ti`1{2 ´ ti´1{2

ż ti`1{2

ti´1{2

X 1ptqdt “
Xi`1{2 ´Xi´1{2

ti`1{2 ´ ti´1{2
.

Since normal vectors can be obtained by rotating anti-clockwise the unit
tangent vector X 1ptq by 90˝, if we denote R to be a 90˝ anti-clockwise ro-
tation matrix, we apply ENO/WENO schemes with the cell average v̄i “

R
Xi`1{2 ´Xi´1{2

ti`1{2 ´ ti´1{2
. From the known accuracy theory for ENO/WENO schemes,

we have the following approximation for RX 1ptq

RX 1ptq “
n
ÿ

i“1

civ̄i `Op∆t
nq,

where ci are nth order ENO/WENO coefficients and

∆t “ max
1ďiďn

pti`1{2 ´ ti´1{2q.

However, since we approximate the interface by union of lines, we don’t
have exact information of arc length parameter t. Therefore we should re-

place the mathematical quantity R
Xi`1{2 ´Xi´1{2

ti`1{2 ´ ti´1{2
by the computable line

normals Ni “
Xi`1{2 ´Xi´1{2

|Xi`1{2 ´Xi´1{2|
. Then, one cannot expect how much the or-
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der of normal approximation degrades. Somehow, we seek maximum possible
values of large m, satisfying the following equation.

RX 1ptq “
n
ÿ

i“1

ciNi `Oph
mq,

where Ni is the normal vector of line connecting Xi´1{2, Xi`1{2, and

h “ max
1ďiďn

|Xi`1{2 ´Xi´1{2|.

To see the feasibility of approximation using Ni’s, we seek to estimate
the error v̄i ´ Ni. For simplicity, let’s introduce two temporary variables
hi “ ti`1{2´ ti´1{2, rhi “ |Xi`1{2´Xi´1{2|. Then from the Taylor expansion,
we have

rh2i “

ˆ

hiX
1pti´1{2q `

h2i
2
X2pti´1{2q `

h3i
6
X3pti´1{2q `Oph

4
i q

˙

ˆ

ˆ

hiX
1pti´1{2q `

h2i
2
X2pti´1{2q `

h3i
6
X3pti´1{2q `Oph

4
i q

˙

“ h2i ´
h4i
12
|X2pti´1{2q|

2 `Oph5i q.

During the above computation, we use the following two identities which
can be obtained by taking derivatives in unit speed condition of Xptq.

X 1 ¨X2 “ 0, |X2|2 `X 1 ¨X3 “ 0.

Note that

rhi “ hi

c

1´
h2i
12
|X2pti`1{2q|2 `Oph

3
i q

“ hi

ˆ

1´
h2i
24
|X2pti`1{2q|

2q `Oph4i

˙

“ Ophiq.
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Now,

v̄i ´Ni “ RpXi`1{2 ´Xi´1{2q

ˆ

1

hi
´

1

rhi

˙

“ RpXi`1{2 ´Xi´1{2q

¨

˚

˚

˝

´h3i
24
|X2pti´1{2q|

2 `Oph4i q

hirhi

˛

‹

‹

‚

“ R

ˆ

Xi`1{2 ´Xi´1{2

|Xi`1{2 ´Xi´1{2|

˙ˆ

´
h2i
24
|X2pti´1{2q|

2 `Oph3i q

˙

“ Oph2i q.

Therefore, we can only guarantee

RX 1ptq “
n
ÿ

i“1

ciNi `Oph
2q.

From the above calculation, however, we see that better accuracy can
be achieved if we replace Ni by a suitable modified normal vector rNi, which

cancels ´
h3i
24
|X2ptiq|

2 term when computing v̄i ´ rNi. That is, we only need

to find rNi such that

v̄i ´ rNi “ R
Xi`1{2 ´Xi´1{2

|Xi`1{2 ´Xi´1{2|
Oph3i q.

Simplest choice for rNi may be

rNi “ Ni ´R
Xi`1{2 ´Xi´1{2

|Xi`1{2 ´Xi´1{2|

ˆ

h2i
24
|X2pti´1{2q|

2

˙

“ R
Xi`1{2 ´Xi´1{2

|Xi`1{2 ´Xi´1{2|

˜

1´
|X2pti´1{2q|

2

24

¸

.

With the above modified normal vector rNi, we finally get the following
desired 3rd approximation RX 1ptq.
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RX 1ptq “
n
ÿ

i“1

ci rNi `Oph
3q.

3.1.4 Setting functions reflecting geometric shocks

In the previous subsection, we proposed to use modified normal vectors rNi

which approximate exact normal of the interface and proved that they are
3rd order approximations for exact normal vectors in smooth regions of the
interface. Note that linear coefficients crj and dr are independent of the cell
averages. They only depend on numerical grid information. Now, to com-
pute the WENO coefficients ωr, we need to find the smooth indicator βr.
Without the smooth indicator, the normal direction is well approximated
in the smooth region, but the normal vector dramatically changes near the
corner(geometric shock), causing the high order interpolation to induce os-
cillation as shown in the following figure.

Figure 3.5: Oscillation may occur near corner or ridge, as each component
of normal vectors may have shock.

From the equation (2.3.9), however, one can see that the smooth indica-
tor requires a reconstruction polynomial prpxq which does not depend solely
on numerical grid information. In other words, we have to define appropri-
ate values for each face to make the smooth indicator recognize the ridge
or corner as a geometric shock. The natural phenomenon that occurs near
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geometric shock is a dramatic change of face normals, therefore it is natural
to constitute a function using neighbor face normals.

In practice, we apply WENO scheme to v̄j “ fpj; iq “ Ni`j ¨ Ni pj “
´k`1, ¨ ¨ ¨ , k´1) to compute WENO coefficients at xi` 1

2
. Here, Np denotes

the normal vector of face p. From the following figure 3.6, one can see that
the function fpj; iq has a shock at the position where there is a corner or
ridge in the stencil as expected.

Figure 3.6: Left figure : local geometry of the interface. Exact interface is
represented by a blue curve, and its linear approximation is presented with
yellow line. Modified normal vectors at each line is given by sky blue arrows.
Right figure : Cell averages of the function v̄j “ Ni`j ¨ Ni(marked with
purple line) and three possible quadratic polynomial interpolations(marked
with red, yellow, green line) based on three cell averages in each stencil.

We can finally calculate WENO coefficient ωr from equations (2.3.7) and
(2.3.8). For example, when reconstructing a normal vector at the point pi`
1{2q, we can calculate a normal vector from the obtained WENO coefficient
as follows.

rN
prq

i` 1
2

“

k´1
ÿ

j“0

crj rNi´r`j , j “ 0. ¨ ¨ ¨ , k ´ 1,

rN´
i` 1

2

“

k´1
ÿ

r“0

ωr rN
prq

i` 1
2

.

Similarly, one can calculate rN`i`1{2 at face pi ` 1q, and now proceed to

calculate the offset direction using rN´i`1{2 and rN`i`1{2 as in conventional face

offsetting method.

36



CHAPTER 3. PROPOSED MODELS

3.1.5 Mesh smoothing method

While propagating, we need to smooth vertices after every one iteration.
In this thesis, we utilized the null-space smoothing method introduced in
section 2.2. The only difference is, the null space direction is also calculated
from a normal vector approximated with high order accuracy. Nevertheless,
with the simple null-space smoothing method, a smoothing error occurs,
which seriously degrades the order as the interface moves.

Figure 3.7: With a simple null-space smoothing, smoothing error can accu-
mulate to a large amount during propagation.

To better understand this, the figure above shows that even if you get the
null-space direction correctly, simply moving the point in that direction will
prevent the point from being placed on the surface, and this error will accu-
mulate as propagation proceeds. To overcome this problem, after smoothing
process we should project each vertex to high order reconstructed surface.
We reconstructed surfaces via polynomial reconstruction, in which artifical
oscillations can occur near ridge or corner(in three dimensions) if we use
all neighbor points to reconstruct surfaces. To avoid oscillation, one should
utilize local shape information computed from FOM-WENO to use points
on smooth region as possible as one can when reconstructing surface.

3.1.6 FOM-WENO algorithm

In this section, we describe whole FOM-WENO algorithm in detail.
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1. Compute each face normal Ni “
Xi`1{2 ´Xi´1{2

|Xi`1{2 ´Xi´1{2|
.

2. Construct cell averages v̄j “ Ni`j ¨ Ni (j “ ´k ` 1, ¨ ¨ ¨ , k ´ 1) to
compute p2k´1qth order WENO coefficients ωr for each computational
stencil around xi` 1

2
.

3. Using the WENO coefficients ωr from 2, normals can be reconstructed

by rN´i`1{2 “
řk´1
r“0 ωr

rN
prq
i`1{2. Here, rN

prq
i`1{2 “

řk´1
j“0 crj

rNi´r`j is the

linear combination of the modified normal vectors rNi.

4. Repeat 3 to the other stencil to get rN`i`1{2.

5. Find offset direction using rN´i`1{2,
rN`i`1{2. This process is done same

as finding offset direction for the conventional FOM scheme.

6. In case of wavefrontal motion, find wavefrontal length l to correct the
movement of vertex in offset direction d. Whereas the conventional
FOM scheme defines θi and θi`1 by the angle between offset direction
d and Ni, Ni`1 , respectively, in FOM-WENO, replace Ni and Ni`1

by rN´i`1{2 and rN`i`1{2.

During the computation of modified normal vectors rNi, the curvature
|X2pti´1{2q| is approximated by

min

ˆ

1

r1
,

1

r2

˙

,

where r1 : radius of circle passing through Xpti´1{2q, Xpti`1{2q, Xpti`3{2q
and r2 : radius of circle passing through Xpti´3{2q, Xpti´1{2q, Xpti`1{2q.

Remark) We have only considered the movement under uniform velocity.
When the velocity function also has a shock at corner or ridge, the WENO
scheme can be applied to the velocity function as well.
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3.2 FOM-WENO scheme in three dimension

In this subsection, we use the WENO method on the triangular meshes
discussed in section 2.4 to show FOM-WENO method can be extended well
into three dimensions. All methodologies used in FOM-WENO scheme in
two dimensions seem to extend well into three dimensions. In particular, we
discuss high order normal vector reconstruction here, since it is the most
important part in determining correct local shape of interface.

Figure 3.8: Unfolding process in three dimensions

Now consider a triangle 40 and a point p above it. To approximate a
normal vector at p within a stencil of 40, triangles around 40 should be on
the same plane. In general, this is not the case since the interface is usually a
curved surface. To put triangles around 40 up on the same plane, as in two
dimensional case, we need unfolding process, which is illustrated in figure
3.8. Now that the stencil of 40 lies in the same plane, one can calculate the
WENO coefficient as described in section 2.4. As in two dimensional case,
the function for calculating smooth indicator can also be taken in the same
fashion.

v̄j “ Nj ¨N0,

where N0, Nj are normal vectors of 40, 4j , respectively. In various
numerical test, this function seems to be able to distinguish geometric shocks
well.
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When dealing with the WENO scheme on triangular mesh of poor qual-
ity, there can be several problems. First of all, the condition number of
the matrix for finding linear weights can be very large. Even if the recon-
struction polynomials are well calculated, it may be impossible to make all
linear weights non-negative. In [23], WENO method is used for solving com-
putational fluid dynamics problems on two-dimensional triangle mesh. In
this case, since the initial mesh remains fixed during the analysis, once the
WENO coefficient has been determined, the problem has not been repeated
anymore. However, in interface tracking problem, the interface continues to
move. As the interface moves, the shape of the stencil also changes. There-
fore, the WENO coefficient must be continuously calculated, and the above
problems may recur.

Figure 3.9: Wider stencils used for the third method

To avoid this problem, we prioritize three different WENO reconstruction
methods and apply them to each triangle by chaning the method until the
two previous problems do not occur. The first two methods follow the 3rd
order WENO scheme introduced in section 2.4, and the only difference is
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the way of grouping nine polynomials into three groups. In the first method,
the first group is p2, p4, p5, and the second group is p3, p6, p7, and the third
group consists of p1, p8, p9. In the second method, we slightly modified these
groups. p3, p4, p5 is used for first group, and p1, p6, p7 is used for second
group, and finally the last group consists of p2, p8, p9.

If two prior reconstruction results in large condition number of system
or if non-negative linear weights cannot be found, the third reconstructionl
method is then used. It uses more triangles(i,e. wider stencils) as shown in
figure 3.9. In this case, since the reconstruction must be successful, it does
not go through the process of obtaining high order in the smooth region by
selecting linear weights well. That is, for each of the six stencils Sr shown
in the following table 3.1, the second order reconstruction polynomial pr
is found in a least square sense, and the corresponding linear weights are
set to be γr “ 1{6. In this way, linear weights are always non-negative,
and reconstruction polynomials in each stencil are also found well for most
triangulations. For determining final non-linear weights ωr via calculating
the smooth indicator, it is sufficient to follow the procedure illustrated in
subsection 2.4.4.

S1 40, 4i, 4ia, 4ib, 4iaa, 4iba, 4j

S2 40, 4i, 4ia, 4ib, 4iaa, 4iba, 4k

S3 40, 4j , 4ja, 4jb, 4jaa, 4jba, 4k

S4 40, 4j , 4ja, 4jb, 4jaa, 4jba, 4i

S5 40, 4k, 4ka, 4kb, 4kaa, 4kba, 4i

S6 40, 4k, 4ka, 4kb, 4kaa, 4kba, 4j

Table 3.1: Stencils used for the reconstruction in the third method

FOM-WENO method does not contain the fourth order method intro-
duced in section 2.4, because even small stencils are so large that shocks
tend to be included all possible stencils. In this case, the normal vector can
be reconstructed incorrectly.
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3.3 Numerical experiments

In this section, we will present some numerical results based on our novel
proposed FOM-WENO algorithm. Since our algorithm is based on the high
order approximation of normal vectors at the interface, we first verify numer-
ically that modified normal vector indeed gives high order accurate results.
Then we also check high accurate result stay in long time simulation as well.
Especially, numerical results presented for both types of corner propagation.
As we pointed out in subsection 3.1.1, we show that FOM-WENO scheme is
able to give highly accurate propagation results which are less dependent on
geometric parameters. Furthermore, we compare the volume loss caused by
conventional FOM scheme and FOM-WENO scheme. In subsection 3.3.5, we
also extend our results to a non-uniform speed interface propagation. The
numerical results for the interface under mean curvature motions. Finally,
we present various surface propagation results using FOM-WENO schemes
in two dimensions as well as in three dimensions to examine the extensibility
of FOM-WENO scheme in three dimensional space.
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3.3.1 Accuracy for normal vector approximation

We approximated normal vector of the ellipse x2 `
y2

0.62
“ 1 at x “ 0.6, y “

0.48. Exact normal vector is N “ p9{
?

481, 20{
?

481q. We measure the error
by decreasing the average mesh size by half from havg “ 0.08 to havg “
0.0025. Here, the error is measured by L2 norm of the diffrence of exact
normal vector and approximated normal vector.
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Figure 3.10: Left figure - Normal vector at p0.6, 0.48q, Right figure - Absolute
error for normal approximation in conventional FOM scheme and FOM-
WENO scheme.

43



CHAPTER 3. PROPOSED MODELS

Approximation Method Accuracy Order

FOM(Left Normal) 0.9881

FOM(Right Normal) 1.0199

FOM(Averaged Normal) 2.2274

FOM-WENO(With Ni, No Normalization, Left Normal) 2.0268

FOM-WENO(With Ni, No Normalization, Right Normal) 1.9701

FOM-WENO(With Ni, No Normalization, Averaged Normal) 5.3013

FOM-WENO(With rNi, No Normalization, Left Normal) 3.2320

FOM-WENO(With rNi, No Normalization, Right Normal) 3.1969

FOM-WENO(With rNi, No Normalization, Averaged Normal) 4.9265

FOM-WENO(With Ni, Normalization, Left Normal) 4.8983

FOM-WENO(With Ni, Normalization, Right Normal) 4.9884

FOM-WENO(With Ni, Normalization, Averaged Normal) 5.3014

FOM-WENO(With rNi, Normalization, Left Normal) 4.9540

FOM-WENO(With rNi, Normalization, Right Normal) 4.9375

FOM-WENO(With rNi, Normalization, Averaged Normal) 4.9265

Table 3.2: Various approximation methods for normal vectors and their order
of accuracy

Here, we need to explain various approximation methods used for ap-
proximating normal vectors. N´i`1{2 and N`i`1{2 are represented as left nor-

mal and right normal, respectively. For example, in the conventional FOM
scheme, N´i`1{2 “ Ni and N`i`1{2 “ Ni`1. In FOM-WENO scheme, N´i`1{2
and N`i`1{2 denote the approximation of normals using the stencils at left

and right sides, respectively. In the conventional FOM scheme, the normal
vector at point pi`1{2q is finally obtained from the weighted average of left
and right normal, and we represent this normal by averaged normal.

In addition to above circumstances, we have further tested the effect of
using modified normal vector rNi described in subsection 3.1.3 as well as
the effect of normalization. Here, normalization refers to the normalization
of N´i`1{2 and N`i`1{2 computed by WENO reconstruction to a unit vector.

That is, in approximation with normalization, we use the following N´i`1{2.

N´
i` 1

2

“

řk´1
r“0 ωrN

prq

i` 1
2

ˇ

ˇ

ˇ

ˇ

řk´1
r“0 ωrN

prq

i` 1
2

ˇ

ˇ

ˇ

ˇ

.
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From the table, we can confirm the following facts. First, as we wanted,
FOM-WENO yields a high order accurate normals than conventional FOM
scheme. Specifically, the first two results show that conventional FOM scheme
could only approximate N´i`1{2 and N`i`1{2 with order 1, while FOM-WENO

approximate them two vectors with order 2. One can see this order can be
improved approximately by 1 with using modified normal vectors rNi as we
have discussed in error analysis section. The order can also be improved
nearly 5 using the normalization technique described above.

One can observe an interesting point in calculating the offset direction
from the normal vectors using FOM scheme. Even though N´i`1{2 and N`i`1{2
are not calculated as high order, order can be improved during the calcula-
tion of offset direction. This seems to be due to the fact that length adjusting
process for the wavefrontal type actually has the same effect as normaliza-
tion process discussed above.

Next, we consider 5-flower shape interface, given by the following equa-
tion.

x “ p1` 0.2 sin 5θq cos θ, y “ p1` 0.2 sin 5θq sin θ.

At θ “
π

3
, exact normal vector is N “ p5`2

?
3, 5
?

3´4q{p2
a

32´ 5
?

3q.

We again measure the error by decreasing the average mesh size by half
from havg “ 0.08 to havg “ 0.0025. Numerical results are summarized in the
following table 3.3.
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Figure 3.11: Left figure - Normal vector at θ “
π

3
, Right figure - Absolute

error for normal approximation in conventional FOM scheme and FOM-
WENO scheme.

In this case, although FOM-WENO did not achieve up to fifth order,
we can confirm that it still approximates normal vector higher order than
conventional FOM scheme.

Method Accuracy Order

FOM(Left Normal) 0.8811

FOM(Right Normal) 1.1110

FOM(Averaged Normal) 1.9860

FOM-WENO(With rNi, Normalization, Left Normal) 3.7383

FOM-WENO(With rNi, Normalization, Right Normal) 3.6627

FOM-WENO(With rNi, Normalization, Averaged Normal) 3.9457

Table 3.3: Numerical results for normal approximation in 5-flower shape
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Now we present numerical test results for normal vector approximations
at geometric shock, especially for a expanding corner point. The geometric
object we have chosen is the quadrant of a circle with radius 1. At p0, 1q,
exact offset direction for corner point is given by N “ p1{

?
2, 1{

?
2q (i,e.

corner point moves with a speed 1). Note that exact left normal is p0, 1q and
exact right normal is p1, 0q. Numerical experiments were carried out under
the same conditions as above to confirm the order. The results are presented
in table 3.4.
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Figure 3.12: Left figure - Exact offset direction at p0, 1q, Right figure - Ab-
solute error for conventional FOM scheme and FOM-WENO scheme.

In this case, one can observe that the order of FOM-WENO is close
to 3. This is because only one-sided stencil is mainly used in 5th order
WENO reconstruction, resulting the WENO scheme almost similar to 3rd
order ENO scheme. Here, the order for right normal approximation is not
computed, since the right normal is constant p1, 0q and any consistent scheme
would give exact right normal approximations.
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Method Accuracy Order

FOM(Left Normal) 0.9945

FOM(Right Normal) -

FOM(Averaged Normal) 0.9945

FOM-WENO(With rNi, Normalization, Left Normal) 2.9821

FOM-WENO(With rNi, Normalization, Right Normal) -

FOM-WENO(With rNi, Normalization, Averaged Normal) 2.9821

Table 3.4: Numerical results for normal approximation at an expanding cor-
ner point

Test for contracting corner point is also done. The curve to the left of
corner point p0, 0q is composed of a quadrant of circle with radius 1. Exact
offset direction at p0, 0q is p1, 1q (i,e. The corner points moves with a speed?

2.). The following table 3.5 shows corresponding numerical results.
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Figure 3.13: Left figure - Exact offset direction at p0, 0q, Right figure - Ab-
solute error for conventional FOM scheme and FOM-WENO scheme.

In this case, the order of normal approximation of FOM-WENO is close
to 3 because of the same reason as above.
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Method Accuracy Order

FOM(Left Normal) 0.9945

FOM(Right Normal) -

FOM(Averaged Normal) 0.9839

FOM-WENO(With rNi, Normalization, Left Normal) 2.9774

FOM-WENO(With rNi, Normalization, Right Normal) -

FOM-WENO(With rNi, Normalization, Averaged Normal) 2.9775

Table 3.5: Numerical results for normal approximation at a contracting cor-
ner point

Finally, let us consider the worst case where geometric shock detect func-
tion fpj; iq “ ni`j ¨ ni, does not work well. The following shape is made by
attaching two quadrants of a circle with radius 1. At the intersection of two
quadrants, p0, 0q, the first-order derivative of the interface is continuous but
the second derivative is discontinuous. Exact normal at p0, 0q is given by
N “ p1, 0q.
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Figure 3.14: Left figure - Exact normal vector at p0, 0q, Right figure - Abso-
lute error for conventional FOM scheme and FOM-WENO scheme.
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Method Accuracy Order

FOM(Left Normal) 0.9945

FOM(Right Normal) 0.9945

FOM(Averaged Normal) 0.9945

FOM-WENO(With rNi, Normalization, Left Normal) 0.9953

FOM-WENO(With rNi, Normalization, Right Normal) 0.9953

FOM-WENO(With rNi, Normalization, Averaged Normal) 0.9953

Table 3.6: Numerical results for normal approximation at a saddle point

Since the first derivative is continuous, the WENO smooth indicator is
difficult to distinguish between the appropriate stencil to be used and there-
fore the accuracy is limited. Nevertheless, one can see that the magnitude of
the absolute error itself is smaller in FOM-WENO than conventional FOM
scheme.
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3.3.2 Long time accuracy for corner propagation

We pointed out that normal vectors computed by conventional FOM scheme
have low accuracy even in smooth region, corner point tends to move in in-
exact direction. In this subsection, we numerically compare the performance
of conventional FOM scheme and FOM-WENO scheme in long time propa-
gation by measuring error norm of a corner point as time evolves. For this
experiment, the geometric shape which we used earlier to check the accuracy
of normal vector at the contracting corner point(figure 3.13) is chosen. The
normal velocity of interface is fixed to constant 1, and the time progressed
from 0 to 1. We set time step to be sufficiently small, so that we can avoid
additional process(such as remeshing procedure for maintaining mesh qual-
ity). Specifically, we set timestep to 1{20 times the average mesh size in each
experiment. Again, average mesh is set to decrease by half from havg “ 0.08
to havg “ 0.0025. The order of accuracy for location of corner point is then
calculated. For time stepping, we used TVD-RK3 illustrated in section 2.5.
In addition, 10 null-space smoothing steps were performed for each move to
prevent overlapping of meshes. Exact corner location can be computed as
follows.

#

p´0.5`
?
t` 0.25, tq for 0 ď t ď 0.75

p0.5t` 0.125,
?

0.75t2 ` 0.375t´ 0.140625q, for t ě 0.75
.
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Figure 3.15: Interfaces at t “ 0, 0.4, 0.8, Blue : FOM scheme, Red : FOM-
WENO scheme
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Figure 3.16: Interfaces near contracting corner points at t “ 0.4, 0.8, Blue
: FOM scheme, Red : FOM-WENO scheme, Green : Exact corner point
location
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Figure 3.17: Absolute error for contracting corner location at t “

0.08, 0.4, 0.8, Blue : FOM scheme, Red : FOM-WENO scheme

For t ă 0.75, the error norm of FOM-WENO is much smaller than that
of t ą 0.75. This is because the magnitude of the error norm induced by
colliding two circular wavefront originating from p0, 0q and p1, 0q is very
large.
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t “ 0.08, Method Accuracy Order

FOM 2.2650

FOM-WENO(With rNi, Normalization) 3.7501

t “ 0.4, Method Accuracy Order

FOM 2.3638

FOM-WENO(With rNi, Normalization) 4.6021

t “ 0.8, Method Accuracy Order

FOM 1.1398

FOM-WENO(With rNi, Normalization) 0.9750

Table 3.7: Accuracy order for contracing corner location at t “ 0.08, 0.4, 0.8

Therefore, the FOM-WENO is better than conventional FOM scheme
before t ă 0.75 in terms of accuracy order, but there is no significant differ-
ence thereafter.

Now, we fix the mesh size to havg “ 0.01. The follwing graph shows the
error norm of the corner point location in conventional FOM scheme and
FOM-WENO scheme until time t “ 1.
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Figure 3.18: Error of the contracting corner point location with havg “ 0.01
from t “ 0 to t “ 1, Blue : FOM scheme, Red : FOM-WENO scheme

In the beginning, the error norm of the FOM-WENO is close to 0 and
much smaller than that of conventional FOM scheme(see the graph on the
left), but the difference between two errors decreases as the time starts
approaching to 0.75. Over the entire time, the magnitude of error is always
smaller in FOM-WENO scheme.
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To confirm the accuracy of propagation at an expanding corner point,
we take initial interface as a quadrant of circle(given in figure 3.12) and
propagate it by unit speed in normal direction. This time, the time step is
taken equal to the average mesh size. This is because, in the case of expand-
ing motion, it is less likely that mesh overlaps or the quality becomes worse
even if the time step is larger than the contracting motion. The expanding
corner point is set to be fixed during null-space smoothing process, other-
wise it moves in the smoothing step since the local shape near expanding
corner point is usually recognized to smoothing region. Other expermiental
conditions are set to be equal to the experiment of contracting corner point.
We measure errors and the order of accuracy at time t “ 0.08, 0.32. The
exact corner location is given by p0.5` t{

?
2, 0.5` t{

?
2q.
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Figure 3.19: Interfaces at t “ 0, 0.08, 0.32, Blue : FOM scheme, Red : FOM-
WENO scheme
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Figure 3.20: Interfaces near expanding corner points at t “ 0, 0.08, 0.32,
Blue : FOM scheme, Red : FOM-WENO scheme, Green : Exact corner point
location
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Figure 3.21: Absolute error for expanding corner point location at t “
0.08, 0.32, Blue : FOM scheme, Red : FOM-WENO scheme

t “ 0.08, Method Accuracy Order

FOM 0.3417

FOM-WENO(With rNi, Normalization) 0.5120

t “ 0.32, Method Accuracy Order

FOM 0.4490

FOM-WENO(With rNi, Normalization) 0.5680

Table 3.8: Accuracy order for expanding corner location at t “ 0.08, 0.32

In the experiment regarding an expanding corner point, both schemes
have poor order of accuracy because the process for rounding the sharp
corner point harms order of accuracy seriously. Nevertheless, it is noteworthy
that the error norm of the FOM-WENO scheme is only about 1{10 times
compared to that of conventional FOM scheme. This is mainly due to the
fact that the FOM-WENO scheme rounds expanding corner much better
than conventional FOM scheme. This feature become more pronounced as
the expanding corner becomes more acute. In order to see this property
clearly, we moved the following sharp diamond shape centered at p0, 0q with
acute angle θ “ 28.0725˝ by a unit speed.
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Figure 3.22: Interfaces at t “ 0, 0.1, Blue : FOM scheme, Red : FOM-WENO
scheme

Figure 3.23: Interface near expanding corner points at t “ 0.1, Blue : FOM
scheme, Red : FOM-WENO scheme

One can easily see that FOM-WENO rounds the expanding corner much
better than conventional FOM scheme.

Finally, to measure the long time accuracy in smooth region, we again

take ellipse x2`
y2

0.62
“ 1 and a point px, yq “ p0.6, 0.48q on it, which is used

for verifying high order normal approximations in subsection 3.3.1. As in the
case of expanding corners, the point is fixed during null-smoothing process.
All other numerical experimental conditions are set equal. As a function of
time, the exact location is given by p0.6` 9t{

?
481, 0.48` 20t{

?
481q.
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Figure 3.24: Interfaces at t “ 0, 0.4, 0.8, Blue : FOM scheme, Red : FOM-
WENO scheme
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Figure 3.25: Interfaces near a tracking point at t “ 0.4, 0.8, Blue : FOM
scheme, Red : FOM-WENO scheme, Green : Exact point location. In the
figure, the point location of the FOM-WENO result overlaps with the exact
point location.

One can see that both conventional FOM scheme and FOM-WENO
scheme capture the interface relatively well, and results of two methods
are almost same. However, if one magnify interfaces near a tracking point,
difference between two schemes can be clearly seen.
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Figure 3.26: Absolute error for the point location in smooth region at t “
0.08, 0.4, 0.8, Blue : FOM scheme, Red : FOM-WENO scheme

t “ 0.08, Method Accuracy Order

FOM 2.1180

FOM-WENO(With rNi, Normalization) 4.4384

t “ 0.4, Method Accuracy Order

FOM 1.8247

FOM-WENO(With rNi, Normalization) 3.9730

t “ 0.8, Method Accuracy Order

FOM 1.7108

FOM-WENO(With rNi, Normalization) 3.8593

Table 3.9: Accuracy order for the point location in smooth region at t “
0.08, 0.4, 0.8

In the graphs and tables above, the order of accuracy for the FOM-
WENO is much higher than that of the conventional FOM scheme and
the error norm is much smaller. From this, it can be confirmed once again
that the FOM-WENO captures the interface with high order accuracy in the
smooth region. The following graph compares the error norm of conventional
FOM scheme and FOM-WENO scheme when the average mesh size is fixed
to havg “ 0.01 and the timestep is equal to mesh size during t “ 0 „ 1.
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Figure 3.27: Error norm of the point location in smooth region with havg “
0.01 during t “ 0 „ 1, Blue : FOM scheme, Red : FOM-WENO scheme

In the graph, it can be seen that the FOM-WENO scheme has a much
smaller error norm than conventional FOM scheme over the entire time.
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3.3.3 Geometric stability of FOM-WENO scheme

In this subsection, we show by example that the FOM-WENO scheme can
stably distinguish geometric shocks. In conventional FOM scheme, the prop-
agation result is very sensitive to geometric parameter φr. However, in FOM-
WENO scheme, by setting the geometric value φr to be small enough, we
can get correct propagation results. Let’s consider propagation of an ini-
tial interface with unit speed from t “ 0 to t “ 0.3, especially focusing on
propagation of three distinct corner points.

Figure 3.28: Initial geometry containing both expanding and contracting
corner points.

For FOM-WENO scheme, the feature parameter φr is fixed to 10˝ and
the final propagation result is shown with red lines. In order to compare with
this result, we propagate initial surface with conventional FOM scheme as
well, where the parameter value is set to two different values, φr “ 10˝ and
φr “ 30˝, respectively.

Figure 3.29: For small feature parameters (φr “ 10˝), expanding corner
which should be rounded can be sharpen in conventional FOM scheme. Blue
: FOM scheme, Red : FOM-WENO scheme at t “ 0.3
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Figure 3.30: For large feature parameters (φr “ 30˝), conventional FOM
scheme may misdirect contracting corner points. Blue : FOM scheme, Red :
FOM-WENO scheme at t “ 0.3

In FOM scheme, depending on feature parameters, ambiguous points are
considered to have different geometry. Small feature parameters may result
in sharp shape at expanding corner which should be rounded. Large fea-
ture parameters may misdirect contracting corner. Therefore, to move the
interface correctly, the parameter value should not be too large or to small,
and it is not easy to find the appropriate parameter value. In particular,
misdirection of contracting corner caused by large feature parameters is a
very serious problem, so parameter values must be set to avoid all of these
misdirections. In this case, sharp shapes occurring at the expanding corner
are difficult to avoid. On the other hand, since FOM-WENO scheme cap-
tures the smooth region more accurately through high-order reconstruction,
even if the initial feature parameter value is set small enough to avoid all
misdirects in the contracting corner, such sharp shape occurring at expand-
ing corner can be avoided. In other words, the FOM-WENO scheme has a
significantly lower dependence of the results on the parameter values than
the conventional method, and can more stably propagate interfaces.
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3.3.4 Comparison of volume loss

Now, relative volume loss of the conventional FOM scheme and the FOM-
WENO scheme for ellipse propagation under unit normal velocity is com-

pared. The ellipse is again given by the equation x2`
y2

0.62
“ 1. The following

figure 3.31 shows the volume loss calculated at time t “ 0.08, 0.4 according
to the average mesh size varying from havg “ 0.005 to havg “ 0.08. Here,
timestep for propagation is set equal to average mesh size and TVD-RK3 is
used for time stepping.
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Figure 3.31: Volume loss of both methods at t “ 0.08, 0.4, Blue : FOM
scheme, Red : FOM-WENO scheme

The order is high in both methods, but FOM-WENO scheme has almost
100 times smaller absolute error compared to conventional FOM scheme.
The following figure 3.32 shows the volume error of both methods at each
time t P r0, 20s. Here, the average mesh size and time step are fixed to 0.01.
One can check that the volume error for the FOM-WENO scheme is much
smaller than that of conventional FOM scheme at all times.
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t “ 0.08, Method Accuracy Order

FOM 4.1685

FOM-WENO(With rNi, Normalization) 5.9067

t “ 0.4, Method Accuracy Order

FOM 3.9213

FOM-WENO(With rNi, Normalization) 4.6248

Table 3.10: Accuracy order for volume loss at t “ 0.08, 0.4
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Figure 3.32: Volume loss caused by both methods at each time t P r0, 20s,
Blue : FOM scheme, Red : FOM-WENO scheme

Here one should note that depending on how the volume is measured,
the accuracy order for volume loss can be predetermined regardless of which
interface tracking method used. For example, if you simply calculate the
volume of a polygon, the volume error between the exact volume and the
polygon is already restricted to second order, regardless of the type of in-
terface tracking method. In this case, the performance of FOM scheme and
FOM-WENO scheme can not be compared properly. Therefore, we need
a high order volume computation method that does not affect to evaluate
the performance of two interface tracking methods. In this experiment, the
volume is estimated by using 6th order polynomial reconstruction.
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We now compare relative volume loss of conventional FOM scheme and
the FOM-WENO scheme for square propagation under unit normal velocity.
All numerical quantities such as mesh size and timestep are taken values with
which we used in ellipse propagation.
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Figure 3.33: Volume loss of both methods at t “ 0.08, 0.4, Blue : FOM
scheme, Red : FOM-WENO scheme

t “ 0.08, Method Accuracy Order

FOM 0.9738

FOM-WENO(With rNi, Normalization) 1.3896

t “ 0.4, Method Accuracy Order

FOM 1.1876

FOM-WENO(With rNi, Normalization) 1.1900

Table 3.11: Accuracy order for volume loss at t “ 0.08, 0.4

As discussed above, the order of accuracy is limited in rounding expand-
ing corner points. In both cases, the order of accuracy is close to 1. However,
the absolute error is smaller in FOM-WENO scheme than that of conven-
tional FOM scheme. To confirm this more accurately, we again set mesh size
and timestep to 0.01 and extracted volume error of both methods at each
time t P r0, 20s.
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Figure 3.34: Volume loss caused by both methods at each time t P r0, 20s,
Blue : FOM scheme, Red : FOM-WENO scheme

In the graph, it can be confirmed once again that volume error induced by
the FOM-WENO scheme is smaller than that of conventional FOM scheme.
In other words, using the FOM-WENO scheme, the volume loss can be kept
lower than the conventional FOM scheme in a smooth region as well as in a
region rounding occurs.
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3.3.5 Propagating under non-uniform normal velocity

In all previous numerical examples, only interfaces moving at constant speed
in normal direction were considered. Now, to consider the non-uniform nor-
mal velocity, we propagate interfaces by mean curvature flow, whose equa-
tion is given as follows.

Bx

Bt
“ ´κnpx, tq, κ “

|x1y2 ´ y1x2|

px12 ` y12q
3
2

.

The interface moving under mean curvature flow has the property that
the protruding part of the initial interface gradually moves inward as time
passes, and the sunken part of the initial interface gradually moves to the
outside. Therefore, interface becomes close to the circular shape. if when
the interface once reaches the circle, as the time passes, the circle becomes
smaller and eventually it converges to the center. Here, we present the mean
curvature motion of 5-flower shape during t “ 0 „ 0.2.

The following figure shows the moving interface every 0.04 sec. It can
be seen that the FOM-WENO scheme moves the interface well even under
circumsatances where non-uniform normal speed is given. As discussed in the
remarks of subsection 3.1.6, normal speed at given point is also reconstructed
from a value given at each face with high order using the WENO scheme.
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Figure 3.35: Curvature flow evolution of 5-flower shape using FOM-WENO
scheme at t “ 0, 0.04, 0.08, 0.12, 0.16, 0.2.
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3.3.6 Results in three dimension

To illustrate the implementation of the FOM-WENO scheme in three dimen-
sions, we consider a unit speed normal propagation of unit cube interface
from t “ 0 to t “ 1. The average mesh size is fixed to 0.04 and the timestep
is set to 0.01, which is 1{4 of average mesh size. The parameter values are
selected to φr “ 20˝, φc “ 45˝.

Figure 3.36: Propagation results for unit cube interface at t “ 0, 0.5, 1, Blue
: FOM scheme, Red : FOM-WENO scheme

It can be seen from the above figure 3.36 that both conventional FOM
scheme and FOM-WENO scheme propagate interface well enough. To see the
difference, we enlarge the interface near expanding corners after projecting
the interface at t “ 0.3 to xy plane.
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Figure 3.37: Interfaces near an expanding corner point(magnified and over-
lapped) at t “ 0.3, Blue : FOM scheme, Red : FOM-WENO scheme

In a parallel with 2D results, the interface propagated from FOM-WENO
scheme is more rounded near the expanding corners than the interface prop-
agated from conventional FOM scheme. Therefore, it can be seen that FOM-
WENO scheme can deal with expanding corners better than conventional
FOM scheme by approximating normal vector reconstruction to higher or-
der.

To compare the dependence of geometric parameters in both methods, we
lowered the value of φr to 10˝. In the figure 3.38, the results of conventional
FOM and FOM-WENO scheme when t “ 0.3 is presented. One can see that
the resulting mesh for conventional FOM scheme is completely distorted.
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Figure 3.38: Propagation Results at t “ 0.3 with φr “ 10˝, Blue : FOM
scheme, Red : FOM-WENO scheme

The resason for such distortion is shown in the figure 3.39, which shows
the local shape of each point determined by conventional FOM scheme at t “
0.12. In the figure, in addition to the points on the edge that should be judged
as ridges, one can see that the local shapes are misjudged as ridges even in
the points actually located in the smooth region on the immediate side of
actual ridges. Since conventional FOM scheme only uses neighboring face to
approximate normal vector, when φr is small, the method is vulnerable to
judge a point to be in the ridge even though a point is actually located in the
smooth region. Points that are judged to have a wrong local geometry will
be propagated in the wrong direction and will not be smoothed properly in
null-space smoothing. Particularly for three dimensions, since the geometric
shape can be more complicated, this sort of error often occurs. Therefore,
wrong judgement of the local geometry depending on geometric parameters
can yield the completely wrong result.
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Figure 3.39: Local shape of interface at t “ 0.12 in conventional FOM
scheme(left) and FOM-WENO scheme(right), Blue : smooth region, Green
: ridge, Red : corner. In conventional FOM scheme, the local shapes are
misjudged as ridges for the points actually located in the smooth region.

However, FOM-WENO scheme distinguishes between ridges and smooth
regions much better, and as a result, the resulting mesh is also much better
than conventional FOM scheme. As discussed in two dimensions, it can
be seen that FOM-WENO scheme which uses high order reconstruction of
normals is less sensitive to geometric parameters in three dimensions than
conventional FOM scheme as well.

Finally, we compared how FOM scheme and FOM-WENO scheme cap-
ture the initial local shape using the submarine interface which has more
complex geometries, to confirm that FOM-WENO scheme distinguishes lo-
cal geometry better than conventional FOM scheme.
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Figure 3.40: Local shape of submarine interface determined by conventional
FOM scheme(Left) and FOM-WENO scheme(Right), Blue : smooth region,
Green : ridge, Red : corner

In the figure 3.40, one can see that FOM-WENO scheme catches the
local shape much more neatly than conventional FOM scheme. Nevertheless,
neither of these methods can completely capture the local shape because
the face offsetting method itself has limitations that make it impossible to
perfectly capture the local shape in three dimensions.
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Conclusion

In this thesis, we have developed a new high order interface tracking method,
FOM-WENO scheme, by combining the face offsetting method(FOM) [18]
and the weighted essentially non-oscillatory scheme(WENO) [21]. FOM-
WENO scheme maintains the advantages of conventional FOM scheme as
well as overcomes disadvantages of conventional FOM scheme. That is, the
scheme is also fast as it is based on the Lagrangian method, it can round
the expanding corner well, and it can automatically consider the local ge-
ometry at each vertex, while overcoming the lower accuracy and sensitivity
to geometric parameters. We have mathematically proved the accuracy of
the FOM-WENO scheme in smooth regions through error analysis. Fur-
thermore, we have designed a smooth indicator using appropriate function
to make it work reliably even near non-smooth regions such as ridges and
corners.

We also tested the FOM-WENO scheme through various numerical ex-
periments. In subsection 3.3.1, it is confirmed that the FOM-WENO scheme
approximates the normal vector better than the conventional FOM scheme
in various types of interfaces. For the smooth curve, the two methods showed
a large difference in the order of accuracy. Near the expanding / contracting
corner, the FOM-WENO scheme had the higher accuracy order and the er-
ror norm was smaller in all cases, including the worst case at corner points
having discontinuous second derivative. In subsection 3.3.2, we compared
the accuracy of the interface moving with time using the third order TVD-
RK method [29]. For points lying in the smooth region and corner points
moving under contracting motions, the FOM-WENO scheme has a higher
order of accuracy and able to capture the position of the interface much
better. In expanding corner propagation, there was a limit on the order
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caused by rounding effect. Nevertheless, the FOM-WENO scheme exhibited
smaller error than conventional FOM scheme. This is due to the fact that
the FOM-WENO scheme rounds expanding corner more gentle and approx-
imates the interface more accurately. In subsection 3.3.3, we compared the
dependence of the parameter in both methods. In the case of FOM scheme,
it is difficult to fix the appropriate parameter value because large and small
values of χr can yield different problems. However, FOM-WENO scheme
is stable if the value of χr is set to be small enough. In subsection 3.3.4,
the volume loss for interface propagation is measured. For smooth surfaces,
FOM-WENO scheme has a higher order of accuracy and a much smaller
volume loss than the conventional FOM scheme. In the case where rounding
at the corner occurs, although the order of FOM-WENO scheme is limited,
by rounding the corner more gently than conventional FOM scheme, the re-
sulting volume loss is much smaller than conventional FOM scheme. Finally,
in subsection 3.3.5, we have tested the mean curvature flow as an example
of the case where the normal speed is not uniform. It can be seen that the
FOM-WENO scheme moves the interface well even when the non-uniform
normal velocity is given.

In this thesis, we do not consider remeshing processes, such as mesh
splitting, collapsing, and flipping process, which are used when the mesh
is distorted as the interface moves, to compare only the accuracy of the
interface tracking method. For the same reason, we also did not discuss the
methods to deal with topological changes. When applying such additional
procedure depicted in [34], combining with suitable higher order surface
reconstruction, such as the method presented in subsection 3.1.5, will yield
higher accuracy. In addition, the null-space smoothing method we used in the
smoothing process is actually based on the weighted Laplacian smoothing
method. In Laplacian smoothing method, when the initial mesh size is not
uniform throughout the interface, the mesh size distribution can not be
maintained during smoothing process. By using more general smoothing
methods such as mass spring method [35] or methods in [36, 37, 38], it
seems to be able to overcome such a limitation.

We also demonstrated the feasibility of the FOM-WENO scheme method-
ology using WENO scheme on triangular meshes [23] even for three dimen-
sions. Various numerical experiments show that the FOM-WENO scheme
judges local geometry better than the conventional FOM scheme, imple-
ments rounding more accurately as the expanding corner advances, and has
less dependence on the geometric parameters. However, it is difficult to com-
pletely distinguish three types of local shapes by using three eigenvalues in
the face offsetting method. In particular, it is easy to determine the lo-
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cal shape wrong in the vicinity of a special geometry such as the saddle
point, and such misjudgement can yield the interface move in wrong direc-
tion. Therefore, it is further expected that some additional methods used
in [39, 40, 32] can be combined with the FOM-WENO scheme for more
accurate detection of ridges and corners, resulting in a more precise scheme.
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국문초록

본 학위논문에서는 표면에 수직 방향의 속력이 주어졌을 때 고차 정확도로서

표면을 추적하기 위한 방법을 제시하였다. 우리가 제안하는 모델은 잘 알려진
라그랑지안 표면 추적 기법을 불연속 점 포착을 위한 고차 정확도 보간법과 결

합한 것이다. 제안된 방법은 기존 방법에 비해 높은 정확도로 표면을 추적할 뿐
아니라, 매개 변수들에 대한 의존도가 낮고 표면의 국부적 모양들을 정확히 찾
아내어 안정적으로 표면을 추적할 수 있다. 일차원 곡선 위에서 개발된 모델은
삼각형 메쉬 위에서의 고차 정확도 보간법을 이용하여 이차원 곡면 상으로도

자연스럽게 확장될 수 있다.

주요어휘: 라그랑지안 표면 추적, 국부적 모양 검출, 파형 운동, 페이스 오프셋
방법, 위노 보간법, 페이스 오프셋-위노 방법
학번: 2012-20248
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