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Abstract

Regularity estimates for
measure data problems

Jung-Tae Park

Department of Mathematical Sciences
The Graduate School

Seoul National University

We establish global Calderón-Zygmund type estimates for nonlinear elliptic
and parabolic equations in nonsmooth bounded domains when the right-hand
side is a finite signed Radon measure.

We first investigate a quasilinear elliptic equation with variable growth.
We obtain an optimal global Calderón-Zygmund type estimate for such a
measure data problem, by proving that the gradient of a very weak solution
to the problem is as globally integrable as the first order maximal function
of the associated measure, up to a correct power, under minimal regularity
requirements on the nonlinearity, the variable exponent and the boundary of
the domain.

Secondly, we study a nonlinear elliptic equation with measurable nonlin-
earity. A global Calderón-Zygmund type estimate in variable exponent spaces
is established under optimal regularity assumptions on the nonlinearity and
the Reifenberg flatness of the boundary.

We finally consider a nonlinear parabolic equation with measurable non-
linearity. Under minimal regularity requirements on the nonlinearity and the
boundary of the domain, we prove a global Calderón-Zygmund type estimate
in weighted Orlicz spaces. As an application we obtain such an estimate in
variable exponent spaces, which gives an alternative proof for this new result
in the literature.

Key words: measure data, regularity, Calderón-Zygmund estimate, Reifen-
berg domain, variable exponent, extrapolation
Student Number: 2013-30896

i





Contents

Abstract i

1 Introduction 1
1.1 Measure data problems . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Calderón-Zygmund theory . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 9
2.1 Elliptic equations . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Variable exponent spaces . . . . . . . . . . . . . . . . . 10
2.1.3 Reifenberg flat domains . . . . . . . . . . . . . . . . . 11
2.1.4 Auxiliary results . . . . . . . . . . . . . . . . . . . . . 12

2.2 Parabolic equations . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Muckenhoupt weights . . . . . . . . . . . . . . . . . . . 14
2.2.3 Weighted Orlicz spaces . . . . . . . . . . . . . . . . . . 15
2.2.4 Auxiliary results . . . . . . . . . . . . . . . . . . . . . 16

3 Regularity estimates for elliptic measure data problems with
variable growth 19
3.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Comparison estimates in L1 for regular problems . . . . . . . . 23

3.2.1 Boundary comparisons . . . . . . . . . . . . . . . . . . 23
3.2.2 Interior comparisons . . . . . . . . . . . . . . . . . . . 41

3.3 Covering arguments . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Global Calderón-Zygmund type estimates . . . . . . . . . . . . 49

iii



CONTENTS

4 Optimal regularity for elliptic measure data problems in vari-
able exponent spaces 55
4.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Comparison estimates for regular problems . . . . . . . . . . . 59

4.2.1 Boundary comparisons . . . . . . . . . . . . . . . . . . 60
4.2.2 Interior comparisons . . . . . . . . . . . . . . . . . . . 63

4.3 Covering arguments . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Calderón-Zygmund type estimates . . . . . . . . . . . . . . . . 74

4.4.1 Local estimates . . . . . . . . . . . . . . . . . . . . . . 77
4.4.2 Global estimates . . . . . . . . . . . . . . . . . . . . . 78

5 Global weighted Orlicz estimates for parabolic measure data
problems: Application to estimates in variable exponent spaces 81
5.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Proof of Theorem 5.1.4 . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Comparisons . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.2 Covering arguments . . . . . . . . . . . . . . . . . . . . 88
5.2.3 Calderón-Zygmund type estimates . . . . . . . . . . . . 91

5.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography 95

Abstract (in Korean) 105

iv



Chapter 1

Introduction

The aim of this dissertation is to provide global Calderón-Zygmund type
estimates for measure data problems. More precisely, we establish global
gradient estimates for solutions of the divergence type nonlinear elliptic and
parabolic equations with measure data on the right-hand side, under optimal
regularity assumptions on both the nonlinearity and the boundary of the
domain.

1.1 Measure data problems

We first outline the existence and uniqueness of a solution for measure data
problems, see [78,81] and the references given there for details.

Let us consider the Dirichlet problem with measure data{
− div a(Du, x) = µ in Ω,

u = 0 on ∂Ω,
(1.1.1)

where Ω ⊂ Rn is a bounded domain with n ≥ 2, and µ is a signed Radon
measure on Ω with finite total variation |µ|(Ω) < ∞. We assume that µ
is defined in Rn by letting the zero extension to Rn. The nonlinearity a =
a(ξ, x) : Rn × Rn → Rn is differentiable in ξ and measurable in x, and it
satisfies the following growth and ellipticity conditions:{

|ξ||Dξa(ξ, x)|+ |a(ξ, x)| ≤ Λ|ξ|p−1,

λ|ξ|p−2|η|2 ≤ 〈Dξa(ξ, x)η, η〉 ,

1



CHAPTER 1. INTRODUCTION

whenever x, η, ξ ∈ Rn, where 0 < λ ≤ Λ and p > 2 − 1
n
. Here Dξa is

the Jacobian matrix of the nonlinearity a with respect to ξ, and 〈·, ·〉 is
the standard inner product in Rn × Rn. We remark that when investigating
higher regularity, for instance differentiability or integrability on Du, we need
additional assumptions on the map x 7→ a(·, x).

We now introduce the notion of a distributional solution as follows:

Definition 1.1.1. A function u ∈ W 1,1
0 (Ω) called a very weak solution to

the problem (1.1.1) if a(Du, x) ∈ L1(Ω) and

ˆ
Ω

〈a(Du, x), Dϕ〉 dx =

ˆ
Ω

ϕ dµ for all ϕ ∈ C∞c (Ω).

Note that a very weak solution need not generally be a weak (energy)
solution in W 1,p

0 (Ω). A wide notion of very weak solutions does not guarantee
the uniqueness of such solutions even for uniformly elliptic linear equations
of the type div (A(x)Du) = 0, see a counterexample of Serrin [94].

To avoid this difficulty, there exists a proper notion of solutions such as
entropy solution [10], renormalized solution [47], SOLA [12,48], etc. Indeed,
from the point of regularity, there is little difference between SOLA and the
other solutions, as all are based on approximation arguments. Hereafter we
adopt the notion of SOLA (Solution Obtained by Limits of Approximations):

Definition 1.1.2. u ∈ W 1,1
0 (Ω) is a SOLA to the problem (1.1.1) if u is a

very weak solution of (1.1.1), and there exists a sequence of weak solutions
{uh}h≥1 ⊂ W 1,p

0 (Ω) of the regularized problems{
− div a(Duh, x) = µh in Ω,

uh = 0 on ∂Ω

such that
uh → u in W

1,max{1,p−1}
0 (Ω) as h→∞,

where µh ∈ L∞(Ω) converges weakly to µ in the sense of measure and satisfies
for each open set V ⊂ Rn,

lim sup
h→∞

|µh|(V ) ≤ |µ|(V ),

with µh defined in Rn by considering the zero extension to Rn.

2



CHAPTER 1. INTRODUCTION

The existence of SOLA was first introduced by Boccardo and Gallouët
in [12] with the relation

uh → u in W 1,q
0 (Ω) for all q < min

{
p,
n(p− 1)

n− 1

}
, (1.1.2)

who proved a priori W 1,q estimate of solutions for regularized problems with a
proper approximation scheme. Indeed, the result in (1.1.2) is almost optimal.
Consider the problem{

− div (|Du|p−2Du) = δ0 in B1,
u = 0 on ∂B1,

(1.1.3)

where δ0 is the Dirac delta function charging the origin. Then the fundamen-
tal solution

u(x) = c(n, p)

{
|x|

p−n
p−1 − 1 if 1 < p 6= n,

log |x| if p = n

of (1.1.3) implies that u belongs to W 1,q
0 (B1) for q < n(p−1)

n−1
. The result in

(1.1.2) also gives us that u ∈ W 1,1
0 (Ω) if and only if p > 2− 1

n
.

When p > n, it follows from Morrey’s inequality that the measure µ
belongs to the dual space W−1,p′(Ω); then a SOLA to the problem (1.1.1)
becomes a weak solution in W 1,p

0 (Ω). Indeed, a weak solution is unique from
the monotone operator theory, see for example [95]. On the other hand, in the
case p ≤ n, it is well known that µ ∈ W−1,p′(Ω) if the measure µ satisfies the
following conditions: (i) µ ∈ Lγ with γ ≥ (p∗)′ = np

np−n+p
> 1 (by Sobolev’s

inequality), or (ii) |µ|(Br) . rn−p+ε for some ε > 0 (by Adams’s trace theorem
in [4]).

The uniqueness of a SOLA generally remains unsolved except when µ ∈
L1 or when considering linear problems a(ξ, x) = A(x)ξ in (1.1.1), see [47]
and the references therein. Recently, however, it was proved that a SOLA
u is unique under the assumption that the nonlinearity a with the growth
p = 2 is strongly asymptotically Uhlenbeck, see [18, Corollary 2.2]. We also
refer to [10,12,14,47,48] for a further discussion regarding the existence and
uniqueness of measure data problems.

We briefly present as well two applications of measure data problems.

a. The flow pattern of blood in the heart, see [84,96].

The following systems of motion are considered as a model for blood flow

3



CHAPTER 1. INTRODUCTION

in the heart by Peskin in [84]:
ut + (u · ∇)u−∆u +∇p = µ,

div u = 0,

dxk
dt

= u(xk, t), µ = lim
N→∞

1

N

N∑
k=1

fkδxk ,

(1.1.4)

considered in the cylindrical domain Ω × (0, T ], with Ω ⊂ R3. Here u is
the velocity of the blood fluid, xk is the position in space of the material
sample point k of the immersed boundary (the moving boundary which
interacts the fluid), fk is the intensity of the boundary force at xk, and
δxk is the Dirac delta function charging xk.

The motion of the blood flow in the heart is closely related to the per-
formance of the heart valves, and it therefore has practical application
in the design of artificial valves and artificial hearts. The problem (1.1.4)
was at first treated numerically in [84], and Ton in [96] later considered
the existence of a solution to (1.1.4) for two dimensional case.

b. State-constrained optimal control problems, see [39–41,73].

Let Ω be a Lipschitz domain in Rn with n ≤ 3. Consider{
− div (A(x)Dv) = α in Ω,

v = 0 on ∂Ω,

where A(x) is the n × n matrix satisfying uniformly ellipticity. Then for
each α ∈ L2(Ω), there is a unique weak solution vα ∈ W 1,2

0 (Ω)∩W 2,2(Ω).
We consider the following optimal control problem:{

Minimize J(α) = 1
2

´
Ω

(vα − v0)2 dx+ r
2

´
Ω
α2 dx

subject to α ∈ K and |vα(x)| ≤ 1 ∀x ∈ Ω,
(1.1.5)

where v0 ∈ L2(Ω), r ≥ 0 is the constant, and K is a nonempty, convex
and closed subset of L2(Ω). We know that the solution vα is continuous by
the Sobolev-Morrey embedding theorem. Indeed, Lagrange multipliers in
the optimality conditions become measures in the case of pointwise state
constraints.

According to [39, Theorem 2], under Slater condition, β ∈ K is a solution

4



CHAPTER 1. INTRODUCTION

of the problem (1.1.5) if and only if there exist v ∈ W 1,2
0 (Ω) ∩W 2,2(Ω),

u ∈ L2(Ω), and a measure µ such that

− div (A(x)Dv) = β in Ω,

− div
(
AT (x)Du

)
= v − v0 + µ in Ω,ˆ

Ω

v dµ = sup
w∈B

ˆ
Ω

w dµ, v ∈ B,
ˆ

Ω

(u+ rβ)(γ − β) dx ≥ 0 for all γ ∈ K,

(1.1.6)

where B :=
{
w ∈ C0(Ω) : ||w||L∞(Ω) ≤ 1

}
and AT (x) is the transpose ma-

trix of A(x). Thus, finding a solution to the optimal control problems
(1.1.5) is deeply connected with the existence of a solution to the corre-
sponding measure data problems in (1.1.6).

1.2 Calderón-Zygmund theory

We start presenting the basic historical development of Calderón-Zygmund
theory as well as some technical ideas. We refer to [75] and the references
therein for a further discussion on Calderón-Zygmund theory.

Calderón and Zygmund [38] at first proved the integrability of the gradient
of the solution to the Poisson equation; let us consider

∆u = divDu = divF in Ω ⊂ Rn

for which the result becomes

||Du||Lqloc(Ω) ≤ c ||F ||Lqloc(Ω) for all 1 < q <∞, (1.2.1)

where c > 0 is the constant independent on u and F , that is,

|F | ∈ Lqloc(Ω) =⇒ |Du| ∈ Lqloc(Ω) for all 1 < q <∞,

by using a representation formula and singular integrals. Estimates such as
(1.2.1) are called Calderón-Zygmund estimates. Iwaniec [60] later established
local Calderón-Zygmund estimates for p-Laplace equations. More precisely,

5



CHAPTER 1. INTRODUCTION

if u ∈ W 1,p
loc (Ω) is a weak solution to the problem

div
(
|Du|p−2Du

)
= div

(
|F |p−2F

)
in Ω ⊂ Rn,

then there holds

|F |p ∈ Lqloc(Ω) =⇒ |Du|p ∈ Lqloc(Ω) for all 1 < q <∞.

The approach in [60] uses sharp maximal operators and a priori Lipschitz
estimates for the solution w to homogeneous equation div (|Dw|p−2Dw) = 0.
See also [50] for the case of p-Laplace systems.

After these pioneering works, Caffarelli and Peral [37] found a system-
atic and useful approach to obtain Calderón-Zygmund type estimates for
elliptic problems having divergence form. This approach will be certain so-
called maximal function technique, which uses the standard estimates for
the problem, Hardy-Littlewood maximal functions and Calderón-Zygmund
decompositions. A significant advantage of this approach is that it can com-
pletely avoid the use of explicit kernels and singular integrals. This practical
method has been widely developed later, see [2, 23, 34, 37, 79, 98]. It is also
worth noting that so-called maximal function free technique, based only upon
PDE estimates without using maximal functions, was first introduced in [3]
in the setting of parabolic problems with the constant p-growth. We refer
to [7, 15, 22, 27–29, 93] for Calderón-Zygmund estimates using the maximal
function free technique.

We now discuss Calderón-Zygmund theory for measure data problems.
Mingione [77] derived the differentiability of Du to the problem (1.1.1) for
the case p ≥ 2. In [77, Lemma 4.1], the author in particular proved the

difference estimate in Lq space with q < min
{
p, n(p−1)

n−1

}
comparing (1.1.1)

with its homogeneous problem, which plays an important role in obtaining
Calderón-Zygmund type estimates, see also [54, Lemma 4.2] for the case
2 − 1

n
< p ≤ 2. Mingione [79] later developed local Calderón-Zygmund type

estimates for a SOLA u to the problem (1.1.1). Phuc [88] extended the local
estimates up to the nonsmooth boundary as follows:

ˆ
Ω

|Du|q dx ≤ c

ˆ
Ω

M1(µ)
q
p−1 dx for all 0 < q <∞,

where c > 0 is the constant independent on u and µ. Here M1(µ) is the

6



CHAPTER 1. INTRODUCTION

fractional maximal function of order 1 for µ defined by

M1(µ)(x) := sup
r>0

r|µ|(Br(x))

|Br(x)|
for x ∈ Rn. (1.2.2)

For various regularity results regarding measure data problems, we refer to
[8, 16, 54,55,64–66,68,77,80,81,83,86,87].

We end this chapter with a summary of the main results of this dis-
sertation. The first contribution of this dissertation is to establish a global
Calderón-Zygmund type estimate for a SOLA u to the problem (1.1.1) with
variable growth p(·), see Chapter 3. Specifically, we prove that for all q > 0,

ˆ
Ω

|Du|q dx ≤ c

{ˆ
Ω

[M1(µ)]
q

p(x)−1 dx+ 1

}
(1.2.3)

under minimal conditions on p(·), a and Ω. The main difficulty in carrying
out our result (1.2.3) is to establish comparison L1-estimates and higher
integrability for the variable exponent case, see Chapter 3.2. Moreover, unlike
the constant exponent case, the problem (1.1.1) with variable growth p(·)
has no normalization property, and so it needs a delicate analysis and a very
careful computation to obtain the standard L1-estimates for measure data
problems, see Remark 3.4.1 and Remark 3.4.2. The desired estimate (1.2.3)
is obtained via the maximal function technique in [37,98]

The second part is devoted to deriving a global Calderón-Zygmund type
estimate to the problem (1.1.1) with p = 2 in the variable exponent spaces,
under the condition that the nonlinearity a(ξ, x) is merely measurable with
respect to one variable of x, see Chapter 4. The condition on the nonlinearity
a is a possibly optimal assumption for the estimate. In other words, if a(ξ, ·)
has two or more measurable coefficients, then this estimate is not generally
satisfied even in the constant exponent case, see [74]. Our result generalizes
that of [20] in two aspects. For one thing, we consider measure data problems.
Since the measure data is not in general regular enough, we need a new notion
of a suitable solution (see Definition 4.1.1) and a systematic investigation for
uniform regularity estimates (see Chapter 4.2 and Chapter 4.3). For the other,
we obtain the Calderón-Zygmund type estimates in the variable exponent
context. Unlike the constant exponent case, it is important to study how
the variable exponent function changes as a point varies, and so one needs
the log-Hölder continuity (see Chapter 2.1.2) in order to control the rate of

7



CHAPTER 1. INTRODUCTION

decrease or increase of function values. We refer to [21–24,51,52] for regularity
results on variable exponent spaces.

The last contribution is to prove the parabolic counterpart of the second
result in the framework of weighted Orlicz spaces, see Chapter 5. Moreover,
our result is to validate an immediate and very useful application of the
extrapolation theorem [44–46] to the setting of variable exponent spaces.
Indeed, the extrapolation and our result yield a Calderón-Zygmund type
estimate in the variable exponent spaces, see Chapter 5.3.

We note that Chapter 3 is based on joint work with Sun-Sig Byun and
Jihoon Ok [26]. Chapter 4 and Chapter 5 are parts of the submitted papers
[33] and [32] respectively, joint work with Sun-Sig Byun.

8



Chapter 2

Preliminaries

2.1 Elliptic equations

2.1.1 Notation

We start with some standard notation, which will be used throughout this
dissertation.

(1) x = (x′, xn) ∈ Rn for x′ = (x1, · · · , xn−1) ∈ Rn−1.

(2) B′r(x
′) = {y′ ∈ Rn−1 : |x′ − y′| < r}, Br(x) = {y ∈ Rn : |x− y| < r},

B′r = B′r(0), Br = Br(0), and B+
r = Br ∩ {xn > 0}.

(3) Br(x) = B′r(x
′)× (xn − r, xn + r), Br = Br(0), and B+

r = Br ∩ {xn > 0}.

(4) Ω is a bounded domain of Rn, n ≥ 2, and ∂Ω is the boundary of Ω.

(5) Ωr(x) = Ω ∩Br(x) and Ωr = Ω ∩Br (only used in Chapter 3);
Ωr(x) = Ω ∩ Br(x) and Ωr = Ω ∩ Br (only used in Chapter 4).

(6) dist(x, U) = inf {|x− y| : y ∈ U} is the distance from x to a set U .

(7) For each set U ⊂ Rn, |U | is the n-dimensional Lebesgue measure of U ,
and diam(U) is the diameter of U .

(8) For f ∈ L1
loc(Rn), f̄U stands for the integral average of f over a bounded

open set U ⊂ Rn, that is,

f̄U =

 
U

f(x) dx =
1

|U |

ˆ
U

f(x) dx.

9



CHAPTER 2. PRELIMINARIES

(9) For each ξ ∈ Rn and xn ∈ R, the integral average of the nonlinearity
a(ξ, ·, xn) over a bounded open set U ′ ⊂ Rn−1 is denoted by

āU ′(ξ, xn) =

 
U ′

a(ξ, z′, xn) dz′ =
1

|U ′|

ˆ
U ′

a(ξ, z′, xn) dz′.

(10) We denote by c to mean a universal constant greater than one that can
be computed in terms of known quantities, and so may be different from
line to line.

2.1.2 Variable exponent spaces

We here recall a brief overview of variable exponent Lebesgue and Sobolev
spaces. Let p(·) be a measurable function defined on Ω with

1 < γ1 ≤ p(·) ≤ γ2 <∞ (2.1.1)

for appropriate constants γ1 and γ2.
The variable exponent Lebesgue space Lp(·)(Ω) consists of all measurable

functions f : Ω→ R such that the modular

ρp(·)(f) :=

ˆ
Ω

|f(x)|p(x) dx

is finite. If f ∈ Lp(·)(Ω), then we define its norm to be

||f ||Lp(·)(Ω) := inf

{
λ > 0 : ρp(·)

(
f

λ

)
≤ 1

}
.

Then there is a close relationship between the norm and the modular:

min
{
ρp(·)(f)

1
γ1 , ρp(·)(f)

1
γ2

}
≤ ||f ||Lp(·)(Ω) ≤ max

{
ρp(·)(f)

1
γ1 , ρp(·)(f)

1
γ2

}
.

(2.1.2)
The variable exponent Sobolev space W 1,p(·)(Ω) consists of all functions

f ∈ Lp(·)(Ω) whose gradient Df exists in the weak sense and belongs to
Lp(·)(Ω), equipped with the norm

||f ||W 1,p(·)(Ω) := ||f ||Lp(·)(Ω) + ||Df ||Lp(·)(Ω,Rn) .

10



CHAPTER 2. PRELIMINARIES

We denote by W
1,p(·)
0 (Ω) the closure of C∞c (Ω) in W 1,p(·)(Ω) and W−1,p′(·)(Ω)

the dual space of W
1,p(·)
0 (Ω). They are all separable reflexive Banach spaces.

We next introduce the log-Hölder continuity which is the correct condi-
tion for regularly varying exponents. In particular, this condition plays an
essential role in a systematic analysis of variable exponent Lebesgue and
Sobolev spaces and PDEs with variable exponents, such as the boundedness
of the Hardy-Littlewood maximal operator, Sobolev’s inequality, Poincaré’s
inequality, etc; see the monographs [44, 51]. Given a function p(·) satisfying
(2.1.1), we say that p(·) is log-Hölder continuous in Ω if there exists a constant
H > 0 such that for all x, y ∈ Ω with |x− y| ≤ 1

2
,

|p(x)− p(y)| ≤ H

− log |x− y|
.

We remark that p(·) is log-Hölder continuous in Ω if and only if p(·) has a
modulus of continuity, that is, there exists a nondecreasing concave function
ω : [0,∞)→ [0,∞) with ω(0) = 0 and

|p(x)− p(y)| ≤ ω (|x− y|) for x, y ∈ Ω, (2.1.3)

and moreover

sup
0<r≤ 1

2

ω(r) log

(
1

r

)
≤ L (2.1.4)

for some constant L > 0.

2.1.3 Reifenberg flat domains

Let δ ∈
(
0, 1

8

)
and R > 0 be constants. The domain Ω is called (δ, R)-

Reifenberg flat if for each x0 ∈ ∂Ω and each r ∈ (0, R], there exists a coordi-
nate system {y1, · · · , yn} such that in this new coordinate system, the origin
is x0 and

Br ∩ {yn > δr} ⊂ Br ∩ Ω ⊂ Br ∩ {yn > −δr}. (2.1.5)

The boundary of this domain can be locally approximated by two hyperplanes
in the new coordinate system under the scale chosen. This domain may have
a very rough boundary including C1 domain or Lipschitz domain with a small
Lipschitz constant. We refer to [34, 69, 70, 90, 97] and the references therein
for a further discussion on Reifenberg flat domains.

11
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Figure 2.1: (δ, R)-Reifenberg flat domain.

We also use an interior and exterior measure density condition of Reifen-
berg flat domains, which can be found in [34]:

Lemma 2.1.1. If Ω is (δ, R)-Reifenberg flat, then we have

sup
0<r≤R

sup
y∈Ω

|Br(y)|
|Ω ∩Br(y)|

≤
(

2

1− δ

)n
≤
(

16

7

)n
, (2.1.6)

and

inf
0<r≤R

inf
y∈∂Ω

|Ωc ∩Br(y)|
|Br(y)|

≥
(

1− δ
2

)n
≥
(

7

16

)n
. (2.1.7)

2.1.4 Auxiliary results

We now recall some analytic and geometric properties, which are used in
Chapter 3–4.

We begin with the Hardy-Littlewood maximal function. For f ∈ L1
loc(Rn),

we define

Mf(y) =M(f)(y) := sup
r>0

 
Br(y)

|f(x)| dx (2.1.8)

and
MUf :=M(χUf)

if f is not defined outside a bounded open set U ⊂ Rn. Here χU is the
characteristic function of U . For simplicity, we drop the index U if U = Ω.

12
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We will use the following weak (1, 1) estimates and strong (p, p) estimates:

|{x ∈ Rn :Mf(x) > α}| ≤ c(n)

α

ˆ
Rn
|f | dx for all α > 0, (2.1.9)

and for 1 < p ≤ ∞,

||Mf ||Lp(Rn) ≤ c(n, p) ||f ||Lp(Rn) . (2.1.10)

The next lemma is a Vitali type covering lemma whose proof is similar to
that for Theorem 2.8 in [34].

Lemma 2.1.2. Suppose Ω is (δ, R)-Reifenberg flat. Consider the domain
ΩR0(x0) with 0 < R0 ≤ R and x0 ∈ Ω. Let 0 < ε < 1 and C ⊂ D ⊂ ΩR0(x0)
be two measurable sets such that

(i) |C| <
(

1
1000

)n
ε|BR0|, and

(ii) for any y ∈ C and any r0 ∈
(
0, R0

1000

]
with |C ∩ Br0(y)| ≥ ε|Br0(y)|,

Br0(y) ∩ ΩR0(x0) ⊂ D.

Then we have

|C| ≤
(

10

1− δ

)n
ε|D| ≤

(
80

7

)n
ε|D|.

Remark 2.1.3. Lemma 2.1.2 holds with ΩR0(x0) replaced by Ω.

We will also use the following measure theoretic property.

Lemma 2.1.4 (See [36, Lemma 7.3]). Let f be a measurable function in a
bounded open set U ⊂ Rn. Let θ > 0 and N > 1 be constants. Then, for
0 < q <∞, there holds

f ∈ Lq(U) ⇐⇒ S :=
∑
k≥1

N qk
∣∣{x ∈ U : |f(x)| > θNk

}∣∣ <∞
with the estimate

c−1θqS ≤
ˆ
U

|f |q dx ≤ cθq (|U |+ S) (2.1.11)

for some constant c = c(N, q) > 0.

13
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2.2 Parabolic equations

2.2.1 Notation

We start with some notation, which will be used throughout Chapter 5.

(1) Qr(x, t) = Br(x)×(t−r2, t+r2), Qr = Qr(0, 0), and Q+
r = Qr∩{xn > 0}.

(2) Q′r(x
′, t) = B′r(x

′)× (t− r2, t+ r2) and Q′r = Q′r(0, 0).

(3) Cr(x, t) = Br(x)× (t− r2, t+ r2) and Cr = Cr(0, 0).

(4) ΩT = Ω× (0, T ], T > 0, is the space-time domain, and
∂pΩT = (∂Ω× [0, T ]) ∪ (Ω× {0}) is the parabolic boundary of ΩT .

(5) Kr(x, t) = ΩT ∩Qr(x, t) and Kr = ΩT ∩Qr.

(6) For two points (x, t) and (y, s) ∈ Rn×R, the standard parabolic distance
dp between (x, t) and (y, s) is defined by

dp((x, t), (y, s)) = max
{
|x− y|,

√
|t− s|

}
.

(7) For f ∈ L1
loc(Rn × R), f̄U stands for the integral average of f over a

bounded open set U ⊂ Rn × R, that is,

f̄U =

 
U

f(x, t) dxdt =
1

|U |

ˆ
U

f(x, t) dxdt.

(8) For each ξ ∈ Rn and xn ∈ R, the integral average of the nonlinearity
a(ξ, ·, xn, ·) over a bounded open set U ′ ⊂ Rn−1 × R is denoted by

āU ′(ξ, xn) =

 
U ′

a(ξ, z′, xn, t) dz
′dt =

1

|U ′|

ˆ
U ′

a(ξ, z′, xn, t) dz
′dt.

2.2.2 Muckenhoupt weights

We now present some properties of Muckenhoupt weights from [58, Chapter
7].

14
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We say that a positive locally integrable function w(x, t) on Rn×R (called
a weight function) is an Ap weight, 1 ≤ p <∞ if there hold

[w]Ap := sup
Qr(x,t)

( 
Qr(x,t)

w(y, s) dyds

)( 
Qr(x,t)

w(y, s)−
1
p−1 dyds

)p−1

<∞

when p > 1, and

[w]A1 := sup
Qr(x,t)

( 
Qr(x,t)

w(y, s) dyds

) ∣∣∣∣w−1
∣∣∣∣
L∞(Qr(x,t))

<∞.

The [w]Ap is called the Ap constant of w.
Also, a weight function w is called an A∞ weight if there are two constants

c0 and α such that

w(E) ≤ c0

(
|E|
|C|

)α
w(C), (2.2.1)

for every parabolic cylinder C ⊂ Rn+1 and every measurable subset E of C.
Here w(E) :=

´
E
w(x, t) dxdt. The pair (c0, α) is called the A∞ constants of

w and is denoted by [w]A∞ .
It is well known that Ap ⊂ A∞ for all p ≥ 1 and that A∞ =

⋃
1≤p<∞Ap.

2.2.3 Weighted Orlicz spaces

We recall the definition and some properties of the weighted Orlicz spaces,
see [25] and the references therein for details.

A nonnegative and increasing convex function Φ on [0,∞) is called a
Young function if it satisfies the following properties:

Φ(0) = 0, lim
τ→∞

Φ(τ) =∞, lim
τ→0+

Φ(τ)

τ
= 0, lim

τ→∞

Φ(τ)

τ
=∞.

A Young function Φ is said to satisfy the ∆2-condition (or ∇2-condition),
denoted by Φ ∈ ∆2 (or Φ ∈ ∇2), if there exists a constant τ0 > 1 (or τ1 > 1)
such that for any τ > 0, we have Φ(2τ) ≤ τ0Φ(τ) (or 2τ1Φ(τ) ≤ Φ(τ1τ)). A
typical example of a Young function with the ∆2 ∩ ∇2-condition is Φ(τ) =
τ p (1 < p <∞).

For a Young function Φ ∈ ∆2∩∇2 and an A∞ weight w(x, t) on Rn×R, the
weighted Orlicz space LΦ

w(ΩT ) consists of all measurable functions f : ΩT → R

15
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such that the modular

ρΦ
w(f) :=

ˆ
ΩT

Φ(|f(x, t)|)w(x, t) dxdt

is finite. If f ∈ LΦ
w(ΩT ), then we define its norm as

||f ||LΦ
w(ΩT ) = inf

{
λ > 0 : ρΦ

w

(
f

λ

)
≤ 1

}
.

Then there is a close relationship between the norm and the modular:

c−1 ||f ||γ1

LΦ
w(ΩT )

≤ ρΦ
w(f) ≤ c ||f ||γ2

LΦ
w(ΩT )

(2.2.2)

for some constants c, γ1, γ2 > 1, independent of f .

2.2.4 Auxiliary results

We begin with the Hardy-Littlewood maximal function. For f ∈ L1
loc(Rn×R),

we define

Mf(y, s) =M(f)(y, s) := sup
r>0

 
Cr(y,s)

|f(x, t)| dxdt.

If f ∈ L1(U) for a bounded domain U ⊂ Rn+1, then we set Mf = Mf̄ ,
where f̄ is the zero extension of f from U to Rn+1. We will use the following
weak type estimate:

|{(x, t) ∈ Rn × R :Mf(x, t) > α}| ≤ c(n)

α

ˆ
Rn×R

|f | dxdt (2.2.3)

for all α > 0.
The next lemma is a Vitali type covering lemma.

Lemma 2.2.1 (See [25, Lemma 4.2]). Suppose that Ω is a (δ, R)-Reifenberg
flat domain with 0 < δ < 1

8
and that w is an A∞ weight. Let 0 < ε < 1 and

let C ⊂ D ⊂ ΩT be two measurable sets such that

(i) for any (y, s) ∈ ΩT , w(C ∩QR/100(y, s)) < εw(QR/100(y, s)), and

(ii) for any (y, s) ∈ ΩT and any r ∈ (0, R/100] with w(C ∩ Qr(y, s)) ≥
εw(Qr(y, s)), Qr(y, s) ∩ ΩT ⊂ D.
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Then we have
w(C) ≤ εc1w(D)

for some constant c1 depending only on n and [w]A∞.

We will also use the following measure theoretic property.

Lemma 2.2.2 (See [25, Lemma 4.6]). Let f be a measurable function in
ΩT , and let θ > 0 and N > 1 be two constants. Then for any pair (w,Φ) ∈
(A∞,∆2 ∩∇2), there holds

f ∈ LΦ
w(ΩT ) ⇐⇒ S :=

∑
k≥1

Φ(Nk)w
({

(x, t) ∈ ΩT : |f(x, t)| > θNk
})

<∞

with the estimate

c−1S ≤
ˆ

ΩT

Φ(|f |)w(x, t) dxdt ≤ c (w(ΩT ) + S) (2.2.4)

for some constant c = c(θ,N,Φ) > 0.
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Chapter 3

Regularity estimates for elliptic
measure data problems with
variable growth

There have been considerable theoretical advances in partial differential equa-
tions (PDEs) with variable exponent growth in recent years. The study of
these problems has also become an important research field, and it repre-
sents various phenomena in applied sciences: for instance, electrorheological
fluids [91], elasticity [99], flows in porous media [6], image restoration [43],
thermo-rheological fluids [5], and magnetostatics [42].

In this chapter, we consider the Dirichlet problem with measure data:{
− div a(Du, x) = µ in Ω,

u = 0 on ∂Ω,
(3.0.1)

where µ is a signed Radon measure on Ω with finite mass. We can assume, by
extending µ by zero to Rn, that µ is defined in Rn with |µ|(Ω) = |µ|(Rn) <∞.
The nonlinearity a = a(ξ, x) : Rn × Rn → Rn is differentiable in ξ and
measurable in x, and it satisfies the following variable exponent growth and
uniformly ellipticity conditions:

|ξ||Dξa(ξ, x)|+ |a(ξ, x)| ≤ Λ|ξ|p(x)−1, (3.0.2)

λ|ξ|p(x)−2|η|2 ≤ 〈Dξa(ξ, x)η, η〉 , (3.0.3)

for almost every x ∈ Rn, every η ∈ Rn, every ξ ∈ Rn \ {0}, and appropriate
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constants λ, Λ. Here Dξa(ξ, x) is the Jacobian matrix of a with respect to
ξ, and p(·) is a given continuous function in Ω satisfying

2− 1

n
< γ1 ≤ p(·) ≤ γ2 <∞. (3.0.4)

Note that (3.0.2) implies that a(0, x) = 0 for x ∈ Rn, and (3.0.3) yields the
following monotonicity condition:

〈a(ξ1, x)− a(ξ2, x), ξ1 − ξ2〉 ≥{
λ̃ |ξ1 − ξ2|p(x) if p(x) ≥ 2,

λ̃
(
|ξ1|2 + |ξ2|2

) p(x)−2
2 |ξ1 − ξ2|2 if 1 < p(x) < 2

(3.0.5)

for all x, ξ1, ξ2 ∈ Rn and for some constant λ̃ = λ̃(n, λ, γ1, γ2) > 0.

If γ1 > n, then the measure µ belongs to the dual space of W
1,p(·)
0 (Ω)

as a consequence of Morrey’s inequality and a duality argument, and so the
existence and uniqueness of a weak solution u to (3.0.1) are well under-
stood from the monotone operator theory, see for instance [95]. In this case,
regularity estimates for (3.0.1) have been extensively studied, see for exam-
ple [1, 2, 23, 28, 56, 59, 76]. For this reason, we only consider the case that
γ1 ≤ n for which a solution u of (3.0.1) in the distributional sense does not

necessarily become a weak solution in W
1,p(·)
0 (Ω). In this respect, we need to

consider a more general class of solutions below the duality exponent.

Definition 3.0.1. u ∈ W 1,1
0 (Ω) is a SOLA to the problem (3.0.1) under the

assumptions (3.0.2)–(3.0.4) if the nonlinearity a(Du, x) ∈ L1(Ω,Rn),

ˆ
Ω

〈a(Du, x), Dϕ〉 dx =

ˆ
Ω

ϕ dµ

holds for all ϕ ∈ C∞c (Ω), and moreover there exists a sequence of weak solu-

tions {uh}h≥1 ⊂ W
1,p(·)
0 (Ω) of the Dirichlet problems{
− div a(Duh, x) = µh in Ω,

uh = 0 on ∂Ω
(3.0.6)

such that
uh → u in W

1,max{1,p(·)−1}
0 (Ω) as h→∞, (3.0.7)

where µh ∈ L∞(Ω) converges weakly to µ in the sense of measure and satisfies
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for each open set V ⊂ Rn,

lim sup
h→∞

|µh|(V ) ≤ |µ|(V ), (3.0.8)

with µh defined in Rn by considering the zero extension to Rn.

Throughout this chapter, we consider µh := µ ∗ φh, where φh is the usual
mollifier, and then µh ∈ C∞(Ω) converges weakly to µ in the sense of measure
satisfying (3.0.8) and the following uniform L1-estimate:

||µh||L1(Ω) ≤ |µ|(Ω). (3.0.9)

With such µh, there exists a SOLA u of (3.0.1) belonging to W
1,q(·)
0 (Ω)

for all q(·) with

1 ≤ q(·) < min

{
n(p(·)− 1)

n− 1
, p(·)

}
.

This existence follows from a priori Lq(·) estimate of the gradient of solutions
for the regularized problem of p(·)-Laplace type and a proper approximation
procedure, see [9, 16] and the references therein. Moreover, the condition

p(·) > 2 − 1
n

in (3.0.4) implies n(p(·)−1)
n−1

> 1, which ensures u ∈ W 1,1
0 (Ω). On

the other hand, if p(·) ≤ 2− 1
n
, then a solution does not belong to W 1,1

0 (Ω),
and so a new concept of solutions is needed. We refer to [10, 92] for details,
and we will no longer treat the case p(·) ≤ 2 − 1

n
here. It is worthwhile to

mention that the existence of a solution of (3.0.1) can also be obtained by
introducing the notion of renormalized solutions, see [9,47] and the references
given there.

The uniqueness of a SOLA remains still an open problem except when
linear problems with p(·) ≡ 2, see [89, 94] for counterexamples. We also
refer to [9,10,12–14,16,47,48,72,92] for a thorough discussion regarding the
existence and uniqueness of measure data problems.

3.1 Main results

We now introduce the main regularity assumptions on p(·), a and Ω.

Definition 3.1.1. Let R > 0 and δ ∈ (0, 1
8
). We say (p(·), a,Ω) is (δ, R)-

vanishing if the following (AP), (AA) and (AΩ) hold:
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(AP) A function p(·) has a modulus of continuity ω : [0,∞)→ [0,∞), and it
satisfies that

sup
0<r≤R

ω(r) log

(
1

r

)
≤ δ. (3.1.1)

(AA) For a bounded open set U ⊂ Rn, write

θ (a, U) (x) := sup
ξ∈Rn\{0}

∣∣∣∣∣ a(ξ, x)

|ξ|p(x)−1
−
(

a(ξ, ·)
|ξ|p(·)−1

)
U

∣∣∣∣∣ . (3.1.2)

Then, the nonlinearity a satisfies

sup
0<r≤R

sup
y∈Rn

 
Br(y)

θ (a, Br(y)) (x) dx ≤ δ. (3.1.3)

(AΩ) The domain Ω is (δ, R)-Reifenberg flat, see Chapter 2.1.3.

We are ready to state our main result in Chapter 3.

Theorem 3.1.2. Assume that (3.0.2)–(3.0.4) hold. Let 0 < q < ∞ and
let γ1 ≤ n. Then there exists a small constant δ = δ(n, λ,Λ, γ1, γ2, q) > 0
such that the following holds: if (p(·), a,Ω) is (δ, R)-vanishing for some R ∈
(0, 1), then for any SOLA u of the problem (3.0.1) there exists a constant
c = c(n, λ,Λ, γ1, γ2, ω(·), q, R,Ω) > 0 such that

||Du||Lq(Ω) ≤ cKs

{∣∣∣∣∣∣M1(µ)
1

p(·)−1

∣∣∣∣∣∣
Lq(Ω)

+ 1

}
(3.1.4)

for every constant s with 0 < s ≤ 1
2

(
n
n−1
− 1

γ1−1

)
< 1 depending only on n

and γ1, where

Ks :=
(
|µ|(Ω) + |µ|(Ω)

1
(γ1−1)(1−s) + 1

)n+1

.

Here M1(µ) is given in (1.2.2).

Remark 3.1.3. We point out that the term Ks in the estimate (3.1.4) re-
flects a deficiency of the normalization property of the problem (3.0.1) from
the presence of variable exponent p(·). On the other hand, in the constant
exponent case, that is, p(·) ≡ p, we can derive a more clean estimate than
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(3.1.4) by employing the normalization property. We would also like to note
that the constant c goes to +∞ when s ↘ 0, as we will see later in Remark
3.4.1 and Remark 3.4.2.

3.2 Comparison estimates in L1 for regular

problems

In this section, we assume that µ in the problem (3.0.1) is regular, which
means that

µ ∈ L1(Ω) ∩W−1,p′(·)(Ω). (3.2.1)

Then we derive comparison L1-estimates for the gradient of the weak solu-
tion u to (3.0.1) in localized boundary and interior regions. Note that by
(3.2.1), this weak solution u is well defined, that is, there exists a unique

u ∈ W 1,p(·)
0 (Ω) satisfying

ˆ
Ω

〈a(Du, x), Dϕ〉 dx =

ˆ
Ω

µϕ dx for all ϕ ∈ W 1,p(·)
0 (Ω). (3.2.2)

We denote, for a measurable set E ⊂ Rn,

|µ|(E) :=

ˆ
E

|µ(x)| dx.

Throughout this section, we assume that (p(·), a,Ω) is (δ, R)-vanishing.

3.2.1 Boundary comparisons

Let 0 < r ≤ R0

8
for small R0 > 0, to be selected later. Assume that the

following geometric setting:

B+
8r ⊂ Ω8r ⊂ B8r ∩ {xn > −16δr}. (3.2.3)

Let w ∈ u+W
1,p(·)
0 (Ω8r) be the weak solution of{

div a(Dw, x) = 0 in Ω8r,
w = u on ∂Ω8r.

(3.2.4)

In order to get the comparison result between the problems (3.0.1) and
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(3.2.4), it is helpful to define a new measure ν by

ν(E) = |µ|(E) + |E ∩ Ω| (3.2.5)

for a measurable set E ⊂ Rn, see Remark 3.2.2 for details. Hereafter in this
subsection, we write

p0 := p(0), p1 := inf
x∈Ω8r

p(x), p2 := sup
x∈Ω8r

p(x),

and

χ{p0<2} :=

{
0 if p0 ≥ 2,
1 if p0 < 2.

Lemma 3.2.1. Suppose that R0 > 0 satisfies

R0 ≤ min

{
R

2
,

1

ν(Ω) + 1
,

1´
Ω
|Du| dx+ 1

}
. (3.2.6)

Let 0 < r ≤ R0

8
and assume that Ω8r satisfies (3.2.3). If w ∈ u+W

1,p(·)
0 (Ω8r)

is the weak solution of (3.2.4), then there is a constant c = c(n, λ, γ1, γ2) > 0
such that

 
Ω8r

|Du−Dw| dx ≤ c

{[
ν(Ω8r)

rn−1

] 1
p0−1

+ χ{p0<2}

[
ν(Ω8r)

rn−1

]( 
Ω8r

|Du| dx
)2−p0

}
.

Proof. Since it has already been proved in the case p1 ≥ 2, see [16, Lemma
3.1], we only focus on the case p1 < 2.

Step 1. Dimensionless estimates We first consider the case that 8r = 1.
We then claim that  

Ω1

|Du−Dw| dx ≤ c, (3.2.7)

under the assumption that

|µ|(Ω1) + |µ|(Ω1)

(ˆ
Ω1

|Du| dx
)2−p1

≤ c, (3.2.8)

where two constants c depend on n, λ, γ1, and γ2. We will transfer back to
the general case in Step 2.

Let us denote Ω+
1 = {x ∈ Ω1 : p(x) ≥ 2}, Ω−1 = {x ∈ Ω1 : p(x) < 2},
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C±k = {x ∈ Ω±1 : k < |u(x) − w(x)| ≤ k + 1}, and D±k = {x ∈ Ω±1 :
|u(x)− w(x)| ≤ k} for k ∈ N ∪ {0}. We define the truncation operators

Tk(t) := max {−k,min{k, t}} , Φk(t) := T1 (t− Tk(t)) for t ∈ R. (3.2.9)

Since u and w are the weak solutions of (3.0.1) and (3.2.4), respectively, it
follows thatˆ

Ω1

〈a(Du, x)− a(Dw, x), Dϕ〉 dx =

ˆ
Ω1

µϕ dx (3.2.10)

for all ϕ ∈ W 1,p(·)
0 (Ω1).

First, substituting the test function ϕ = Tk(u−w) in (3.2.10), and using
(3.0.5) and (3.2.8), we obtain

λ̃

ˆ
D+
k

|Du−Dw|p(x) dx ≤
ˆ

Ω1

〈a(Du, x)− a(Dw, x), Du−Dw〉 dx

≤ k|µ|(Ω1) ≤ ck.

Then, for k ∈ N, we have

ˆ
D+
k

|Du−Dw| dx ≤
ˆ
D+
k

(|Du−Dw|+ 1)p(x) dx ≤ c(k + 1). (3.2.11)

Similarly, it follows that, for k ∈ N,

ˆ
C+
k

|Du−Dw|p(x) dx ≤ c

by putting the test function ϕ = Φk(u − w) in (3.2.10). Since p(x) ≥ 2 for
x ∈ C+

k , it follows from Hölder’s inequality that

ˆ
C+
k

|Du−Dw| dx ≤ |C+
k |

1
2

(ˆ
C+
k

(|Du−Dw|+ 1)p(x) dx

) 1
2

≤ c|C+
k |

1
2 .

From the definition of C+
k , we find

|C+
k | =

ˆ
C+
k

1 dx ≤
ˆ
C+
k

(
|u− w|
k

) n
n−1

dx = k−
n
n−1

ˆ
C+
k

|u− w|
n
n−1 dx.
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Therefore, we have

ˆ
C+
k

|Du−Dw| dx ≤ ck−
n

2(n−1)

(ˆ
C+
k

|u− w|
n
n−1 dx

) 1
2

. (3.2.12)

Then, by (3.2.11), (3.2.12), Hölder’s inequality and Sobolev’s inequality, we
discover that for k0 ∈ N,

ˆ
Ω+

1

|Du−Dw| dx =

ˆ
D+
k0

|Du−Dw| dx+
∞∑

k=k0

ˆ
C+
k

|Du−Dw| dx

≤ c(k0 + 1) + c
∞∑

k=k0

k−
n

2(n−1)

(ˆ
C+
k

|u− w|
n
n−1 dx

) 1
2

≤ c(k0 + 1) + c

[
∞∑

k=k0

k−
n
n−1

] 1
2
(
∞∑

k=k0

ˆ
C+
k

|u− w|
n
n−1 dx

) 1
2

≤ c(k0 + 1) + cH(k0)

(ˆ
Ω1

|Du−Dw| dx
) n

2(n−1)

,

(3.2.13)

where H(k0) :=
[∑∞

k=k0
k−

n
n−1

] 1
2
.

For obtaining a comparison estimate in Ω−1 , we now substitute the test
function ϕ = Φk(u− w) in (3.2.10) and use (3.0.5), to find that

ˆ
C−k

(
|Du|2 + |Dw|2

) p(x)−2
2 |Du−Dw|2 dx ≤ c|µ|(Ω1). (3.2.14)

On the other hand, from the fact that p1 ≥ γ1 > 2− 1
n
, we can determine

γ = γ(n, γ1) ∈ (0, 1) such that p1 ≥ γ1 > 2− γ
n
, and so

n(p1 − 1)

n− γ
≥ n(γ1 − 1)

n− γ
> 1. (3.2.15)

From Hölder’s inequality and (3.2.14), we see that for k ∈ N ∪ {0},

ˆ
C−k

((
|Du|2 + |Dw|2

) p(x)−2
2 |Du−Dw|2

) 1
p1

dx ≤ c [|µ|(Ω1)]
1
p1 |C−k |

p1−1
p1 .
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For k ∈ N, it follows from the definition of C−k that

ˆ
C−k

((
|Du|2 + |Dw|2

) p(x)−2
2 |Du−Dw|2

) 1
p1

dx

≤ c [|µ|(Ω1)]
1
p1

(ˆ
C−k

(
|u− w|
k

) n
n−γ

dx

) p1−1
p1

≤ c [|µ|(Ω1)]
1
p1

1

k
n(p1−1)
p1(n−γ)

(ˆ
C−k

|u− w|
n

n−γ dx

) p1−1
p1

.

On the other hand, for k = 0, we have that

ˆ
C−0

((
|Du|2 + |Dw|2

) p(x)−2
2 |Du−Dw|2

) 1
p1

dx ≤ c [|µ|(Ω1)]
1
p1 |B1|

γ2−1
γ1

≤ c [|µ|(Ω1)]
1
p1 .

From the two estimates above, Hölder’s inequality, Sobolev’s inequality, and
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(3.2.15), we discover that

I :=

ˆ
Ω−1

((
|Du|2 + |Dw|2

) p(x)−2
2 |Du−Dw|2

) 1
p1

dx

=

ˆ
C−0

((
|Du|2 + |Dw|2

) p(x)−2
2 |Du−Dw|2

) 1
p1

dx

+
∞∑
k=1

ˆ
C−k

((
|Du|2 + |Dw|2

) p(x)−2
2 |Du−Dw|2

) 1
p1

dx

≤ c [|µ|(Ω1)]
1
p1


∞∑
k=1

1

k
n(p1−1)
p1(n−γ)

(ˆ
C−k

|u− w|
n

n−γ dx

) p1−1
p1

+ 1


≤ c [|µ|(Ω1)]

1
p1


[
∞∑
k=1

1

k
n(p1−1)
n−γ

] 1
p1

(
∞∑
k=1

ˆ
C−k

|u− w|
n

n−γ dx

) p1−1
p1

+ 1


≤ c [|µ|(Ω1)]

1
p1


(ˆ

Ω1

|Du−Dw| dx
) n(p1−1)

p1(n−γ)

+ 1

 .

(3.2.16)
For x ∈ Ω−1 , we use Young’s inequality to find that

|Du−Dw| =
(
|Du|2 + |Dw|2

) p(x)−2
4 |Du−Dw|

(
|Du|2 + |Dw|2

) 2−p(x)
4

≤
(
|Du|2 + |Dw|2

) p(x)−2
4 |Du−Dw|

(
|Du|2 + |Dw|2 + 1

) 2−p1
4

≤ c
(
|Du|2 + |Dw|2

) p(x)−2
4 |Du−Dw||Du−Dw|

2−p1
2

+ c
(
|Du|2 + |Dw|2

) p(x)−2
4 |Du−Dw|

(
|Du|2 + 1

) 2−p1
4

≤ 1

2
|Du−Dw|+ c

((
|Du|2 + |Dw|2

) p(x)−2
4 |Du−Dw|

) 2
p1

+ c
(
|Du|2 + |Dw|2

) p(x)−2
4 |Du−Dw| (|Du|+ 1)

2−p1
2 .

Then it follows from Hölder’s inequality, (3.2.16), (3.2.8), and Young’s in-
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equality that

ˆ
Ω−1

|Du−Dw| dx ≤ cI + cI
p1
2

(ˆ
Ω1

|Du|+ 1 dx

) 2−p1
2

≤ c+ c

(ˆ
Ω1

|Du−Dw| dx
) n(p1−1)

p1(n−γ)

+ c

(ˆ
Ω1

|Du−Dw| dx
)n(p1−1)

2(n−γ)

≤ c+ c

(ˆ
Ω1

|Du−Dw| dx
) n(p1−1)

p1(n−γ)

.

(3.2.17)
Combining (3.2.13) with (3.2.17), we have

ˆ
Ω1

|Du−Dw| dx ≤ c+ c

(ˆ
Ω1

|Du−Dw| dx
) n(p1−1)

p1(n−γ)

+ ck0 + cH(k0)

(ˆ
Ω1

|Du−Dw| dx
) n

2(n−1)

.

Recall that n(p1−1)
p1(n−γ)

< p1(n−1)
p1(n−γ)

< 1. We then use Young’s inequality to find

ˆ
Ω1

|Du−Dw| dx ≤ c+ ck0 + cH(k0)

(ˆ
Ω1

|Du−Dw| dx
) n

2(n−1)

.

For n > 2, we know 0 < n
2(n−1)

< 1. Then there holds

ˆ
Ω1

|Du−Dw| dx ≤ c (3.2.18)

from Young’s inequality and by taking k0 = 1. For n = 2, we select k0 >
1 sufficiently large in order to satisfy that cH(k0) < 1. Then the desired
estimate (3.2.18) follows, and the claim (3.2.7) is now proved.

Step 2. Scaling and Normalization Let us define

ũ(y) =
u(8ry)

8Ar
, w̃(y) =

w(8ry)

8Ar
, µ̃(y) =

8rµ(8ry)

Ap0−1
, p̃(y) := p(8ry),

and

ã(ξ, y) =
a(Aξ, 8ry)

Ap0−1
(3.2.19)
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for y ∈ Ω1, ξ ∈ Rn and for some positive constant A, being determined below.
We readily check that ũ and w̃ are the weak solutions of

− div ã(Dũ, y) = µ̃ in Ω̃1 := Ω̃ ∩B1, (3.2.20)

where Ω̃ := {y ∈ Rn : 8ry ∈ Ω}, and{
− div ã(Dw̃, y) = 0 in Ω̃1

w̃ = ũ on ∂Ω̃1,
(3.2.21)

respectively. Moreover, we see that p1 ≤ p̃(y) ≤ p2 for y ∈ Ω1.
We next claim that ã satisfies the corresponding growth condition (3.0.2)

and uniformly ellipticity (3.0.3).
Indeed, if we set

A :=

[
ν(Ω8r)

rn−1

] 1
p0−1

+ χ{p0<2}

[
ν(Ω8r)

rn−1

]( 
Ω8r

|Du| dx
)2−p0

, (3.2.22)

and denote ξ̄ := Aξ and x := 8ry, then we discover that

|ξ||Dξã(ξ, y)|+ |ã(ξ, y)| ≤ A1−p0
{
|ξ̄||Dξ̄a(ξ̄, x)|+ |a(ξ̄, x)|

}
≤ Ap(x)−p0Λ|ξ̄|p̃(y)−1,

(3.2.23)

and

〈Dξã(ξ, y)η, η〉 = A2−p0
〈
Dξ̄a(ξ̄, x)η, η

〉
≥ A2−p0λ

∣∣ξ̄∣∣p(x)−2 |η|2

≥ Ap(x)−p0λ |ξ|p(x)−2 |η|2 = Ap(x)−p0λ |ξ|p̃(y)−2 |η|2 .
(3.2.24)

In addition, it follows from (3.2.5) and (2.1.6) that

A ≥
[
ν(Ω8r)

rn−1

] 1
p0−1

≥
[

8nr|B1||Ω8r|
|B8r|

] 1
p0−1

≥ 1

c
r

1
p0−1 . (3.2.25)
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On the other hand, we see from (2.1.6) and (3.2.6) that

A ≤ [ν(Ω) + 1]
1

γ1−1 r
− n−1
γ1−1

+ c [ν(Ω) + 1]

(ˆ
Ω

|Du| dx+ 1

)2−γ1

r−(n−1)−n(2−γ1)

≤ r
− n
γ1−1 + cr−n(3−γ1)−(2−γ1)

≤ cr−c̃

(3.2.26)

for some c̃ = c̃(n, γ1) > 1. In the case that p(x)−p0 ≥ 0, we find from (3.1.1)
and (3.2.25) that

Ap(x)−p0 ≥
(

1

c

)γ2−γ1

r
p(x)−p0
p0−1 ≥ 1

c
r
ω(16r)
γ1−1 ≥ 1

c
, (3.2.27)

and using (3.1.1) and (3.2.26), we discover

Ap(x)−p0 ≤ c

(
1

r

)ω(16r)c̃

≤ c. (3.2.28)

Similarly, in the case that p(x)− p0 < 0, then we infer from (3.1.1), (3.2.25),
and (3.2.26) that

1

c
≤ Ap(x)−p0 ≤ c (3.2.29)

for some constant c = c(n, γ1, γ2) > 0. In light of (3.2.23), (3.2.24), (3.2.27),
(3.2.28), and (3.2.29), we thus deduce

|ξ||Dξã(ξ, y)|+ |ã(ξ, y)| ≤ cΛ|ξ̄|p̃(y)−1,

and

〈Dξã(ξ, y)η, η〉 ≥ λ

c
|ξ|p̃(y)−2 |η|2

for some constant c = c(n, γ1, γ2) > 0.
We next prove that (3.2.8) holds for ũ and µ̃, instead of u and µ, respec-

tively. We recall (3.2.22) to see

|µ̃|(Ω̃1) = A1−p0
|µ|(Ω8r)

(8r)n−1
≤ 1. (3.2.30)
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Moreover we note that

|µ̃|(Ω̃1)

(ˆ
Ω̃1

|Dũ| dy
)2−p1

≤ cAp1−p0−1 |µ|(Ω8r)

rn−1

( 
Ω8r

|Du| dx
)2−p1

≤ cA−1 |µ|(Ω8r)

rn−1

( 
Ω8r

|Du| dx
)2−p1

,

(3.2.31)
as Ap1−p0 ≤ c by (3.2.25). But then we use (2.1.6), (3.2.6), and (3.1.1) to
discover that( 

Ω8r

|Du| dx
)2−p1

=

( 
Ω8r

|Du| dx
)(2−p0)+(p0−p1)

≤ c

( 
Ω8r

|Du| dx
)2−p0

((
16

7

)n
1

|B8r|

ˆ
Ω

|Du| dx
)p0−p1

≤ c

(
1

r

)ω(16r)(n+1)( 
Ω8r

|Du| dx
)2−p0

≤ c

( 
Ω8r

|Du| dx
)2−p0

.

(3.2.32)

Combining (3.2.31) with (3.2.32), we find that, for p0 < 2,

|µ̃|(Ω̃1)

(ˆ
Ω̃1

|Dũ| dy
)2−p1

≤ cA−1 |µ|(Ω8r)

rn−1

( 
Ω8r

|Du| dx
)2−p0

≤ c.

On the other hand, for p0 ≥ 2, it follows from (2.1.6), (3.2.6), and (3.1.1)
that ( 

Ω8r

|Du| dx
)2−p1

≤
( 

Ω8r

|Du| dx+ 1

)(2−p0)+(p0−p1)

≤ c. (3.2.33)

Then, from (3.2.31) and (3.2.33), we deduce that, for p0 ≥ 2,

|µ̃|(Ω̃1)

(ˆ
Ω̃1

|Dũ| dy
)2−p1

≤ cAp1−p0−1 |µ|(Ω8r)

rn−1
≤ cAp1−2.

If A > 1, then Ap1−2 ≤ 1. If A ≤ 1, then Ap0−1 ≤ A, and so we have that
Ap1−2 = Ap1−p0−1Ap0−1 ≤ Ap1−p0 ≤ c. Thus, the property (3.2.8) holds for ũ
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and µ̃.
From the estimate (3.2.7) in Step 1, we obtain

 
Ω̃1

|Dũ−Dw̃| dx =

 
Ω8r

|Du−Dw|
A

dx ≤ c

for some constant c = c(n, λ, γ1, γ2) > 0, which completes the proof.

Remark 3.2.2. If p(·) is a constant, then in step 2 of Lemma 3.2.1, the
nonlinearity ã directly satisfies the growth condition (3.0.2) and uniformly
ellipticity (3.0.3), and we can readily derive the condition (3.2.8). We refer
to [54,55] for details. In this case, we can prove Lemma 3.2.1 without intro-
ducing the measure ν. However, if p(·) is not a constant, then the log-Hölder
continuity of p(·) and the property of ν are crucial to proving (3.0.2), (3.0.3)
and (3.2.8) in step 2, see (3.2.25) and (3.2.26).

The following lemma yields some self-improving property for the homo-
geneous problem (3.2.4):

Lemma 3.2.3. Let M1 > 1. Suppose that R0 > 0 satisfies

R0 ≤ min

{
R

2
,
1

4
,

1

2M1

}
and ω(2R0) ≤ 1

2n
< 1. (3.2.34)

Then there exists a constant σ0 = σ0(n, λ,Λ, γ1, γ2) > 0 such that the follow-
ing holds: for any r ∈

(
0, R0

8

]
, if w is the weak solution of (3.2.4) with

ˆ
Ω8r

|Dw| dx+ 1 ≤M1, (3.2.35)

then there is a constant c = c(n, λ,Λ, γ1, γ2, t) > 0 such that for every t ∈
(0, 1],( 

Ωr̃(x̃0)

|Dw|p(x)(1+σ) dx

) 1
1+σ

≤ c

{( 
Ω2r̃(x̃0)

|Dw|p(x)t dx

) 1
t

+ 1

}
,

whenever 0 < σ ≤ σ0 and Ω2r̃(x̃0) ⊂ Ω8r with r̃ ≤ 4r.

Proof. To simplify notation, we write Br̃ ≡ Br̃(x̃0), B2r̃ ≡ B2r̃(x̃0), Ωr̃ ≡
Ωr̃(x̃0), Ω2r̃ ≡ Ω2r̃(x̃0), p̄1 := infx∈Ω2r̃

p(x), and p̄2 := supx∈Ω2r̃
p(x).
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We first consider the interior case, that is, Ω2r̃ = B2r̃. We take ηp̄2(w −
w̄B2r̃

) as a test function in (3.2.4), where η ∈ C∞0 (B2r̃) with 0 ≤ η ≤ 1, η ≡ 1
on Br̃, and |Dη| ≤ 2

r̃
. Then it follows from (3.0.5) and Young’s inequality

that  
Br̃

|Dw|p(x) dx ≤ c

{ 
B2r̃

∣∣∣∣w − w̄B2r̃

r̃

∣∣∣∣p̄2

dx+ 1

}
. (3.2.36)

Using Sobolev-Poincaré’s inequality, we have( 
B2r̃

∣∣∣∣w − w̄B2r̃

r̃

∣∣∣∣p̄2

dx

) 1
p̄2

≤ c

( 
B2r̃

|Dw|
np̄2
n+p̄2 dx

)n+p̄2
np̄2

. (3.2.37)

From (3.1.1) and (3.2.34), we note that p̄2 − p̄1 ≤ ω(4r̃) ≤ ω(2R0) ≤ 1
2n

. By
setting s := 1 + 1

2n
, we find that

p̄2

p̄2 − p̄1 + s
≥ np̄2

n+ 1
≥ np̄2

n+ p̄2

.

Then, by (3.2.36), (3.2.37) and Hölder’s inequality, we discover

 
Br̃

|Dw|p(x) dx ≤ c

{( 
B2r̃

|Dw|
np̄2
n+p̄2 dx

)n+p̄2
n

+ 1

}

≤ c

{( 
B2r̃

|Dw|
p̄2

p̄2−p̄1+s dx

)p̄2−p̄1+s

+ 1

}
.

But then the interpolation inequality yields( 
B2r̃

|Dw|
p̄2

p̄2−p̄1+s dx

) p̄2−p̄1+s
p̄2

≤
( 

B2r̃

|Dw|
p̄1
s dx

) s
p̄2

( 
B2r̃

|Dw| dx
) p̄2−p̄1

p̄2

.

Moreover, it follows from (3.2.34), (3.2.35) and (3.1.1) that( 
B2r̃

|Dw| dx
)p̄2−p̄1

≤
(ˆ

Ω8r

|Dw| dx
)p̄2−p̄1

|B2r̃|−n(p̄2−p̄1)

≤ cM1
ω(4r̃)(2r̃)−nω(4r̃)

≤ c

(
1

2R0

)ω(2R0)(
1

4r̃

)ω(4r̃)n

≤ c.
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Consequently, we have

 
Br̃

|Dw|p(x) dx ≤ c

{( 
B2r̃

|Dw|
p̄1
s dx

)s
+ 1

}
≤ c

{( 
B2r̃

|Dw|
p(x)
s dx

)s
+ 1

}
.

(3.2.38)

We next consider the boundary case, that is, Ω2r̃ 6= B2r̃. Without loss of
generality, one can assume that x̃0 ∈ ∂Ω∩B8r(0). Taking a test function ηp̄2u
to (3.2.4), and using Sobolev-Poincaré’s inequality along with the measure
density condition (2.1.7), we have

 
Ωr̃

|Dw|p(x) dx ≤ c

{( 
Ω2r̃

|Dw|
p̄1
s dx

)s( 
Ω2r̃

|Dw| dx
)p̄2−p̄1

+ 1

}
.

Now it follows from (3.2.34), (3.2.35), (2.1.6) and (3.1.1) that( 
Ω2r̃

|Dw| dx
)p̄2−p̄1

≤
(ˆ

Ω8r

|Dw| dx
)p̄2−p̄1

|Ω2r̃|−n(p̄2−p̄1)

≤ cM1
ω(4r̃)

((
7

16

)n
|B2r̃|

)−nω(4r̃)

≤ c.

Therefore, we have

 
Ωr̃

|Dw|p(x) dx ≤ c

{( 
Ω2r̃

|Dw|
p(x)
s dx

)s
+ 1

}
. (3.2.39)

Applying the modified version of Gehring’s lemma [57, Remark 6.12] to
the estimates (3.2.38) and (3.2.39), we finally reach the desired conclusion.

Corollary 3.2.4. Under the same assumptions as in Lemma 3.2.3, we have

 
Ωr̃(x̃0)

|Dw|p(x) dx ≤ c

{( 
Ω2r̃(x̃0)

|Dw| dx
)p̄2

+ 1

}
(3.2.40)

for some constant c = c(n, λ,Λ, γ1, γ2) > 0.
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Proof. From Hölder’s inequality and Lemma 3.2.3, we have

 
Ωr̃(x̃0)

|Dw|p(x) dx ≤ c

{( 
Ω2r̃(x̃0)

(|Dw|+ 1)p̄2t dx

) 1
t

+ 1

}

≤ c

{( 
Ω2r̃(x̃0)

(|Dw|+ 1)
p̄2
γ2 dx

)γ2

+ 1

}
≤ c

{( 
Ω2r̃(x̃0)

(|Dw|+ 1) dx

)p̄2

+ 1

}
,

by taking t = 1
γ2

for the second inequality. Thus, this corollary follows.

Now we will specifically derive the universal constant M1 given in Lemma
3.2.3. Suppose that R0 > 0 satisfies (3.2.6). Then from Lemma 3.2.1 and the
measure density condition (2.1.6), we calculate

ˆ
Ω8r

|Dw| dx ≤
ˆ

Ω8r

|Du| dx+ c|Ω8r|
[
ν(Ω8r)

rn−1

] 1
p0−1

+ cχ{p0<2}|Ω8r|
[
ν(Ω8r)

rn−1

]( 
Ω8r

|Du| dx
)2−p0

≤
ˆ

Ω

|Du| dx+ crα [ν(Ω)]
1

p0−1 + cχ{p0<2}r
βν(Ω)

(ˆ
Ω

|Du| dx
)2−p0

≤
ˆ

Ω

|Du| dx+ c diam(Ω)α [ν(Ω) + 1]
1

γ1−1

+ cχ{p0<2} diam(Ω)β [ν(Ω) + 1]

(ˆ
Ω

|Du| dx+ 1

)2−γ1

for some c = c(n, λ, γ1, γ2) > 0, where α := n− n−1
γ1−1

> 0, β := α(γ1− 1) > 0.
We define

M :=

ˆ
Ω

|Du| dx+ c diam(Ω)α [ν(Ω) + 1]
1

γ1−1 + 1.

Then we conclude thatˆ
Ω8r

|Dw| dx+ 1 ≤ (cχ{p0<2} + 1)M ≤ c0M =: M1 (3.2.41)
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for some c0 = c0(n, λ, γ1, γ2) > 0.
With this M1, we obtain the following higher integrability result which is

used later:

Lemma 3.2.5. Suppose that R0 > 0 satisfies (3.2.6), (3.2.34) with M1 given
in (3.2.41). Let w be the weak solution of (3.2.4) satisfying (3.2.3). Then we
have w ∈ W 1,p2(Ω3r) and the estimate

 
Ω3r

|Dw|p2 dx ≤ c

{( 
Ω8r

|Dw| dx
)p2

+ 1

}
(3.2.42)

for some constant c = c(n, λ,Λ, γ1, γ2) > 0.

Proof. We deduce from Lemma 3.2.3, (3.1.1), and [23, Section 3.3] that

 
Ω3r

|Dw|p2 dx ≤ c

{ 
Ω4r

|Dw|p(x) dx+ 1

}
.

Applying Corollary 3.2.4 with r̃ and x̃0 replaced by 4r and 0, we obtain the
desired estimate (3.2.42).

We next consider a new operator b = b(ξ, x) : Rn × Ω8r → Rn by

b(ξ, x) = a(ξ, x)|ξ|p2−p(x).

Then it satisfies the following growth and ellipticity conditions:

|ξ||Dξb(ξ, x)|+ |b(ξ, x)| ≤ 3Λ|ξ|p2−1, (3.2.43)

λ

2
|ξ|p2−2|η|2 ≤ 〈Dξb(ξ, x)η, η〉 (3.2.44)

for all η ∈ Rn, ξ ∈ Rn \ {0} and x ∈ Ω8r provided that

p2 − p1 ≤ ω(16r) ≤ ω(2R0) ≤ min

{
1,

λ

2Λ

}
, (3.2.45)

see [28] for details. Here λ and Λ are the constants given in (3.0.2) and (3.0.3),
respectively. We denote by b̄ = b̄(ξ) : Rn → Rn the integral average of b(ξ, ·)
on B+

8r, as

b̄(ξ) =

 
B+

8r

b(ξ, x) dx.
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Then b̄ also satisfies (3.2.43) and (3.2.44) with b(ξ, ·) replaced by b̄(ξ). More-
over, we observe that

sup
ξ∈Rn\{0}

∣∣b(ξ, ·)− b̄(ξ)
∣∣

|ξ|p2−1
= θ(a, B+

8r)(x),

where θ is defined in (3.1.2). Then we recall (3.1.3) to discover that

sup
0<r≤R

 
B+
r

θ(a, B+
r )(x) dx ≤ 4δ.

We next let v ∈ w+W 1,p2

0 (Ω3r) be the weak solution of the homogeneous
frozen problem {

div b̄(Dv) = 0 in Ω3r,
v = w on ∂Ω3r,

(3.2.46)

where w is the weak solution of (3.2.4), which belongs to W 1,p2(Ω3r) from
Lemma 3.2.5. By putting the test function v−w into (3.2.46), we derive the
standard energy estimate as follows:

 
Ω3r

|Dv|p2 dx ≤ c

 
Ω3r

|Dw|p2 dx. (3.2.47)

From Corollary 3.2.4, Lemma 3.2.5, and [23, Lemma 3.7], we obtain the
comparison estimate between (3.2.4) and (3.2.46), as we now state

Lemma 3.2.6. Suppose that R0 > 0 satisfies (3.2.6), (3.2.34), (3.2.45) with
M1 given in (3.2.41), and

p2 − p1 ≤ ω(16r) ≤ ω(2R0) ≤ σ0

4
, (3.2.48)

where σ0 is given in Lemma 3.2.3. Let w be the weak solution of (3.2.4)
satisfying (3.2.3), and let v be as in (3.2.46). Then there is a constant c =
c(n, λ,Λ, γ1, γ2) > 0 such that

 
Ω3r

|Dw −Dv|p2 dx ≤ cδ
σ0

4+σ0

{( 
Ω8r

|Dw| dx
)p2

+ 1

}
. (3.2.49)
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We now consider a weak solution v̄ ∈ W 1,p2(B+
2r) of the reference problem{

div b̄(Dv̄) = 0 in B+
2r,

v̄ = 0 on B2r ∩ {xn = 0}. (3.2.50)

Then we have the following Lipschitz regularity of v̄ up to the flat bound-
ary:

Lemma 3.2.7 (See [71]). For any weak solution v̄ ∈ W 1,p2(B+
2r) of (3.2.50),

we have Dv̄ ∈ L∞(B+
r ) and

||Dv̄||L∞(B+
r ) ≤ c

 
B+

2r

|Dv̄| dx (3.2.51)

for some c = c(n, λ,Λ, γ1, γ2) > 0.

Note that the constant c given in (3.2.51) actually depends only on n, λ,Λ,
and p2; however, since γ1 ≤ p2 ≤ γ2, we can choose c depending only on
n, λ,Λ, γ1, and γ2.

We can now state the comparison estimate between (3.2.46) and (3.2.50).

Lemma 3.2.8 (See [28]). For any 0 < ε < 1, there is δ = δ(n, λ,Λ, γ1, γ2, ε) >
0 such that if v ∈ W 1,p2(Ω3r) is the weak solution of (3.2.46) with (3.2.3),
then there exists a weak solution v̄ ∈ W 1,p2(B+

2r) of (3.2.50) such that

 
Ω2r

|Dv −Dv̄|p2 dx ≤ εp2

 
Ω3r

|Dv|p2 dx, (3.2.52)

where v̄ is extended by zero from B+
2r to Ω2r.

We finally summarize the comparison L1-estimates near a boundary re-
gion.

Lemma 3.2.9. Suppose that R0 > 0 satisfies (3.2.6), (3.2.34), (3.2.45), and
(3.2.48) with M1 given in (3.2.41). Let ρ > 1 and 0 < r ≤ R0

8
. Then, for any

0 < ε < 1, there exists a small constant δ = δ(n, λ,Λ, γ1, γ2, ε) > 0 such that

if (p(·), a,Ω) is (δ, R)-vanishing, u ∈ W
1,p(·)
0 (Ω), w ∈ u + W

1,p(·)
0 (Ω8r), and

v ∈ w + W 1,p2

0 (Ω3r) are the weak solutions of (3.0.1), (3.2.4), and (3.2.46),
respectively, with (3.2.3),

 
Ω8r

|Du| dx ≤ ρ and

[
ν(Ω8r)

rn−1

] 1
p0−1

≤ δρ, (3.2.53)
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where ν is given in (3.2.5), then there exists a weak solution v̄ ∈ W 1,p2(B+
2r)

of (3.2.50) such that

 
Ω2r

|Du−Dv̄| dx ≤ ερ and ||Dv̄||L∞(Ωr)
≤ cρ (3.2.54)

for some c = c(n, λ,Λ, γ1, γ2) > 0. Here v̄ is extended by zero from B+
2r to

Ω2r.

Proof. From Lemma 3.2.1, we have

 
Ω8r

|Du−Dw| dx ≤ cδmin{1,γ1−1}ρ and

 
Ω8r

|Dw| dx ≤ cρ. (3.2.55)

According to Hölder’s inequality and Lemma 3.2.6, we observe

 
Ω3r

|Dw −Dv| dx ≤
( 

Ω3r

|Dw −Dv|p2 dx

) 1
p2

≤ cδ
σ0

γ2(4+σ0)ρ, (3.2.56)

and  
Ω3r

|Dv| dx ≤ cρ. (3.2.57)

At this point that by Lemma 3.2.8 with ε replaced by ε̃, there is a weak
solution v̄ ∈ W 1,p2(B+

2r) of (3.2.50) such that

 
Ω2r

|Dv −Dv̄|p2 dx ≤ ε̃p2

 
Ω3r

|Dv|p2 dx.

We also discover from Hölder’s inequality, (3.2.47), and Lemma 3.2.5 that

 
Ω2r

|Dv −Dv̄| dx ≤ cε̃

{ 
Ω8r

|Dw| dx+ 1

}
≤ 2cε̃ρ ≤ ε

3
ρ (3.2.58)

by choosing small ε̃ such that 0 < ε̃ ≤ ε
6c

, and it follows from (3.2.57) and
(3.2.58) that  

Ω2r

|Dv̄| dx ≤ cρ. (3.2.59)
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Then we combine (3.2.55), (3.2.56) and (3.2.58), to discover

 
Ω2r

|Du−Dv̄| dx ≤
 

Ω2r

|Du−Dw|+ |Dw −Dv|+ |Dv −Dv̄| dx

≤ cδmin{1,p0−1}ρ+ cδ
σ0

γ2(4+σ0)ρ+
ε

3
ρ

≤ ερ,

by selecting δ sufficiently small.
On the other hand, according to Lemma 3.2.7, (3.2.58) and (3.2.59), we

obtain
||Dv̄||L∞(Ωr)

≤ cρ,

which completes the proof.

3.2.2 Interior comparisons

With the same spirit as in the boundary case, one can derive a comparison
estimate in L1 for the interior case, and we just sketch it here for the sake
of simplicity. Let 0 < r ≤ R0

8
with B8r(x0) ⊂⊂ Ω, where R0 is selected so

small that it satisfies (3.2.6), (3.2.34), (3.2.45), and (3.2.48) with M1 given
in (3.2.41). In this subsection, we denote

p0 := p(x0), p1 := inf
x∈B8r(x0)

p(x), p2 := sup
x∈B8r(x0)

p(x),

and
Bkr ≡ Bkr(x0) (k ∈ N) .

With the weak solution u ∈ W 1,p(·)
0 (Ω) of (3.0.1), let w ∈ u+W

1,p(·)
0 (B8r) be

the weak solution of {
div a(Dw, x) = 0 in B8r,

w = u on ∂B8r.
(3.2.60)

Then from the same argument for the boundary case, we have w ∈ W 1,p2(B3r).
Let v ∈ w +W 1,p2

0 (B3r) be the weak solution of{
div b̄(Dv) = 0 in B3r,

v = w on ∂B3r,
(3.2.61)
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where b̄ = b̄(ξ) : Rn → Rn is defined as

b̄(ξ) =

 
B8r

b(ξ, x) dx =

 
B8r

a(ξ, x)|ξ|p2−p(x) dx.

Then we have Dv ∈ L∞(B2r) and

||Dv||L∞(B2r)
≤ c

 
B3r

|Dv| dx

for some c = c(n, λ,Λ, γ1, γ2) > 0, see [49] for details.
We now state the comparison L1-estimates for the interior case.

Lemma 3.2.10. Suppose that R0 > 0 satisfies (3.2.6), (3.2.34), (3.2.45),
and (3.2.48) with M1 given in (3.2.41). Let ρ > 1 and 0 < r ≤ R0

8
. Then,

for any 0 < ε < 1, there exists a small constant δ = δ(n, λ,Λ, γ1, γ2, ε) > 0
such that if p(·) and a(ξ, x) satisfy the assumptions (AP) and (AA) in

Definition 3.1.1, respectively, and if u ∈ W
1,p(·)
0 (Ω), w ∈ u + W

1,p(·)
0 (B8r),

and v ∈ w + W 1,p2

0 (B3r) are the weak solutions of (3.0.1), (3.2.60), and
(3.2.61), respectively, with

 
B8r

|Du| dx ≤ ρ and

[
ν(B8r)

rn−1

] 1
p0−1

≤ δρ, (3.2.62)

where ν is given in (3.2.5), then

 
B3r

|Du−Dv| dx ≤ ερ and ||Dv||L∞(B2r)
≤ cρ (3.2.63)

for some c = c(n, λ,Λ, γ1, γ2) > 0.

3.3 Covering arguments

Now, we consider a SOLA u of (3.0.1) and the weak solutions uh, h ∈ N, of
(3.0.6), where µh = µ∗φh with φh the usual mollifier. Suppose that (p(·), a,Ω)
is (δ, R)-vanishing. Since µh ∈ C∞(Ω), one can apply all the results obtained
in Chapter 3.2 to u = uh and µ = µh. In this case, we denote by wh, vh, and
v̄h the weak solutions to (3.2.4) or (3.2.60), (3.2.46) or (3.2.61), and (3.2.50),
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respectively. Moreover, we assume that R0 > 0 satisfies

R0 ≤ min

{
R

2
,

1

6M1

,
1´

Ω
|Du| dx+ 2

,
1

ν(Ω) + 2

}
, (3.3.1)

ω(2R0) ≤ min

{
λ

2Λ
,

1

2n
,
σ0

4

}
, (3.3.2)

where ν, M1, and σ0 are given in (3.2.5), (3.2.41), and Lemma 3.2.3, respec-
tively. Then, thanks to (3.0.7) and (3.0.8), we see that R0 satisfies (3.2.6),
(3.2.34), (3.2.45), and (3.2.48) with (u, µ) replaced by (uh, µh) for sufficiently
large h.

For any fixed ε ∈ (0, 1) and N > 1, we define

λ0 :=
1

ε|BR0|

{ˆ
Ω

|Du| dx+ 1

}
> 1 (3.3.3)

and upper-level sets: for k ∈ N ∪ {0},

Ck :=
{
x ∈ Ω :M(|Du|)(x) > Nk+1λ0

}
,

Dk :=
{
x ∈ Ω :M(|Du|)(x) > Nkλ0

}
∪
{
x ∈ Ω : [M1(ν)(x)]

1
p(x)−1 > δNkλ0

}
.

Note that ε and N will be determined later as universal constants depending
only on n, λ,Λ, γ1, γ2, and q.

We now verify two assumptions of the Vitali type covering lemma (Lemma
2.1.2).

Lemma 3.3.1. There exists a constant N1 = N1(n) > 1 such that for any
fixed N ≥ N1 and k ∈ N ∪ {0},

|Ck| ≤
ε

(1000)n
|BR0|. (3.3.4)

Proof. For each k ∈ N ∪ {0}, |Ck| ≤ |C0|. Thus, we only need to show that
(3.3.4) holds for k = 0. It follows from (2.1.9) and (3.3.3) that

|C0| = |{x ∈ Ω :M(|Du|)(x) > Nλ0}|

≤ c

Nλ0

ˆ
Ω

|Du| dx ≤ cε

N
|BR0| ≤

ε

(1000)n
|BR0|,
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by selecting N ≥ N1 = c(1000)n > 1.

Lemma 3.3.2. There is a constant N2 = N2(n, λ,Λ, γ1, γ2) > 1 so that for
any ε > 0, there exists a small constant δ = δ(n, λ,Λ, γ1, γ2, ε) > 0 such that
for any fixed N ≥ N2, k ∈ N ∪ {0}, y0 ∈ Ω and r0 ≤ R0

1000
, if

|Ck ∩Br0(y0)| ≥ ε|Br0(y0)|, (3.3.5)

then Ωr0(y0) ⊂ Dk.

Proof. We simply write λk := Nkλ0 > 1, where N ≥ N2 > 1. We argue
by contradiction. Suppose that there exists y1 ∈ Ωr0(y0) such that y1 /∈ Dk.
Then we have

1

|Br(y1)|

ˆ
Ωr(y1)

|Du| dx ≤ λk and

[
ν(Br(y1))

rn−1

] 1
p(y1)−1

≤ c(n, γ1)δλk

(3.3.6)
for all r > 0.

We divide the proof into two cases: an interior and a boundary case.
Case 1. The interior case B10r0(y1) ⊂ Ω.
Since y1 ∈ Ωr0(y0), we see that B8r0(y0) ⊂ B10r0(y1). We set

p1 := inf
x∈B8r0 (y0)

p(x) and p2 := sup
x∈B8r0 (y0)

p(x).

Then it follows that p2 − p1 ≤ ω(16r0).
From (3.3.6), we have

 
B8r0 (y0)

|Du| dx ≤ |B10r0(y1)|
|B8r0(y0)|

 
B10r0 (y1)

|Du| dx ≤
(

5

4

)n
λk,

and it follows from (3.0.7) that for any ε̃ ∈ (0, 1),

 
B8r0 (y0)

|Du−Duh| dx ≤ ε̃λk (3.3.7)
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for h large enough. Then we discover

 
B8r0 (y0)

|Duh| dx ≤
 
B8r0 (y0)

|Du| dx+

 
B8r0 (y0)

|Du−Duh| dx

≤
((

5

4

)n
+ ε̃

)
λk.

We next claim that [
ν(B8r0(y0))

rn−1
0

]p(y1)−p(y0)

≤ c (3.3.8)

for some constant c = c(n) > 0.
If p(y1) > p(y0), then p(y1)− p(y0) ≤ ω(16r0), and so we see from (3.3.1)

and (3.1.1) that[
ν(B8r0(y0))

rn−1
0

]p(y1)−p(y0)

≤
(

1

r0

)(n−1)ω(16r0)

(ν(Ω) + 1)ω(16r0)

≤ c

(
1

r0

)nω(16r0)

≤ ceδn ≤ c.

If p(y1) < p(y0), then p(y0) − p(y1) ≤ ω(16r0), and so we find from (3.1.1)
and (3.2.5) that[

ν(B8r0(y0))

rn−1
0

]p(y1)−p(y0)

=

[
8nr0|B1|ν(B8r0(y0))

|B8r0|

]p(y1)−p(y0)

≤ [8nr0|B1|]p(y1)−p(y0) ≤ c

(
1

16r0

)ω(16r0)

≤ ceδ ≤ c.

In any case, we obtain the inequality (3.3.8). We therefore have from (3.3.6)
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and (3.3.8) that[
ν(B8r0(y0))

rn−1
0

] 1
p(y0)−1

=

[
ν(B8r0(y0))

rn−1
0

] 1
p(y1)−1

+
p(y1)−p(y0)

(p(y0)−1)(p(y1)−1)

≤
[
ν(B10r0(y1))

rn−1
0

] 1
p(y1)−1

[
ν(B8r0(y0))

rn−1
0

] p(y1)−p(y0)
(p(y0)−1)(p(y1)−1)

≤ cδλk.

In addition, it follows from (3.0.8) that

[
νh(B8r0(y0))

rn−1
0

] 1
p(y0)−1

≤

[
ν(B8r0(y0)) + ε̄

rn−1
0

] 1
p(y0)−1

≤ c1δλk,

by selecting ε̄ small enough, the constant c1 depending only on n, γ1, and γ2.
Here νh is given in (3.2.5) with µ replaced by µh.

Consequently, we obtain

 
B8r0 (y0)

|Duh| dx ≤ c2λk and

[
νh(B8r0(y0))

rn−1
0

] 1
p(y0)−1

≤ c2δλk, (3.3.9)

where c2 := max
{(

5
4

)n
+ ε̃, c1

}
. Applying Lemma 3.2.10 with x0, ρ, r, and ε

replaced by y0, c2λk, r0, and η, respectively, we can find δ = δ(n, λ,Λ, γ1, γ2, η)
such that  

B3r0 (y0)

|Duh −Dvh| dx ≤ c2ηλk,

||Dvh||L∞(B2r0 (y0)) ≤ cc2λk =: c3λk

(3.3.10)

for some c3 = c3(n, λ,Λ, γ1, γ2) > 0. Thus, we have from (3.3.7) and (3.3.10)
that

 
B2r0 (y0)

|Du−Dvh| dx ≤
(

4n +

(
3

2

)n)
c2ηλk =: c4ηλk (3.3.11)

by choosing sufficiently small ε̃ with ε̃ ≤ c2η.
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Now we claim that

Ck ∩Br0(y0) = {x ∈ Br0(y0) :M(|Du|)(x) > Nλk}
⊂
{
x ∈ Br0(y0) :MB2r0 (y0)(|Du−Dvh|)(x) > λk

}
=: Q,

(3.3.12)
provided N ≥ N2 ≥ max {3n, 1 + c3}.

Let y 6∈ Q. If y 6∈ Br0(y0), then it is done. Suppose y ∈ Br0(y0). If r̃ < r0,
then Br̃(y) ⊂ B2r0(y0). We have from (3.3.10) that

 
Br̃(y)

|Du| dx ≤
 
Br̃(y)

χB2r0 (y0)|Du−Dvh| dx+

 
Br̃(y)

|Dvh| dx

≤MB2r0 (y0)(|Du−Dvh|)(y) + c3λk

≤ (1 + c3)λk.

If r̃ ≥ r0, then Br̃(y) ⊂ B2r̃(y0) ⊂ B3r̃(y1). We have from (3.3.6) that

1

|Br̃(y)|

ˆ
Ωr̃(y)

|Du| dx ≤ 3n

|B3r̃(y)|

ˆ
Ω3r̃(y1)

|Du| dx ≤ 3nλk.

Consequently, we have

M(|Du|)(y) ≤ max {(1 + c3)λk, 3
nλk} .

Choosing N2 ≥ max {1 + c3, 3
n}, we have y 6∈ Ck ∩Br0(y0), that is, the claim

(3.3.12) holds.
Using (3.3.12), (2.1.9), and (3.3.11), we discover

|Ck ∩Br0(y0)| ≤
∣∣{x ∈ Br0(y0) :MB2r0 (y0)(|Du−Dvh|)(x) > λk

}∣∣
≤ c

λk

ˆ
B2r0 (y0)

|Du−Dvh| dx ≤ cc4η|Br0(y0)| < ε|Br0(y0)|,

by selecting η and δ that satisfy the last inequality above, which is a contra-
diction to (3.3.5).

Case 2. The boundary case B10r0(y1) 6⊂ Ω.
At first we find a boundary point ỹ1 ∈ ∂Ω∩B10r0(y1). Since 640r0 ≤ R0 <

R
2

and the domain Ω is (δ, R)-Reifenberg flat, there exists a coordinate system,
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which we still denote by x = (x1, · · · , xn), with the origin at ỹ1, such that

B640r0 ∩ {xn > 640δr0} ⊂ Ω640r0 ⊂ B640r0 ∩ {xn > −640δr0}.

We select δ so small with 0 < δ < 1
16

. Then we see that B480r0(640δr0en) ⊂
B640r0 , where en = (0, · · · , 0, 1). Translating this coordinate system to the
xn-direction 640δr0, still say x-coordinate, we observe

B+
480r0

⊂ Ω480r0 ⊂ B480r0 ∩ {xn > −1280δr0}. (3.3.13)

Since |y1| ≤ |y1 − ỹ1| + |ỹ1| ≤ 10r0 + 640δr0 ≤ 50r0 in the new coordinate,
we have

Ω2r0(y0) ⊂ Ω3r0(y1) ⊂ Ω60r0 and Ω480r0 ⊂ Ω640r0(y1). (3.3.14)

We denote
p1 := inf

x∈Ω480r0

p(x) and p2 := sup
x∈Ω480r0

p(x).

Then it follows that p2 − p1 ≤ ω(960r0).
To obtain the corresponding estimates (3.3.9) in the boundary case, we

deduce from (3.1.1), (3.3.6), (3.3.13), and (3.3.14) that

 
Ω480r0

|Du| dx ≤ c5λk and

[
ν(Ω480r0)

rn−1
0

] 1
p(0)−1

≤ c5δλk (3.3.15)

for some constant c5 = c5(n, γ1) > 0. Moreover, it follows from (3.0.7), (3.0.8)
and (3.3.15) that, for any ε̃ ∈ (0, 1),

 
Ω480r0

|Duh| dx ≤ (c5 + ε̃)λk =: c6λk and

[
νh(Ω480r0)

rn−1
0

] 1
p(0)−1

≤ c6δλk

for h large enough. Applying Lemma 3.2.9 with ρ, r, and ε replaced by c6λk,
60r0, and η, respectively, we can find δ = δ(n, λ,Λ, γ1, γ2, η) such that

 
Ω120r0

|Du−Dv̄h| dx ≤ c6ηλk,

||Dv̄h||L∞(Ω60r0 ) ≤ cc6λk =: c7λk

(3.3.16)
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for some c7 = c7(n, λ,Λ, γ1, γ2) > 0. Here we have chosen sufficiently small ε̃
such that ε̃ ≤ c6η

2
.

Proceeding as in Case 1, we infer

Ck ∩Br0(y0) = {x ∈ Ωr0(y0) :M(|Du|)(x) > Nλk}
⊂
{
x ∈ Ωr0(y0) :MΩ2r0 (y0)(|Du−Dv̄h|)(x) > λk

} (3.3.17)

provided N ≥ N2 ≥ max {3n, 1 + c7}.
Thus, we have from (3.3.17), (2.1.9), (3.3.14) and (3.3.16) that

|Ck ∩Br0(y0)| ≤
∣∣{x ∈ Ωr0(y0) :MΩ2r0 (y0)(|Du−Dv̄h|)(x) > λk

}∣∣
≤ c

λk

ˆ
Ω2r0 (y0)

|Du−Dv̄h| dx

≤ c|Ω120r0|
λk

 
Ω120r0

|Du−Dv̄h| dx

≤ cc6η|Br0(y0)| < ε|Br0(y0)|

by taking η sufficiently small, as a consequence δ = δ(n, λ,Λ, γ1, γ2, ε) is also
determined. This is a contradiction to (3.3.5).

3.4 Global Calderón-Zygmund type estimates

We are now ready to prove Theorem 3.1.2.

Proof of Theorem 3.1.2. Choosing N = max{N1, N2} from Lemma 3.3.1 and
Lemma 3.3.2, we can apply Lemma 2.1.2 to obtain

|Ck| ≤
(

80

7

)n
ε|Dk| =: ε1|Dk| for k ∈ N ∪ {0}.

As a consequence above and its iteration argument, we deduce the power
decay estimates for the level sets ofM(|Du|) to increasing levels, as follows:∣∣{x ∈ Ω :M(|Du|)(x) > Nkλ0

}∣∣
≤ εk1 |{x ∈ Ω :M(|Du|)(x) > λ0}|

+
k∑
i=1

εi1

∣∣∣{x ∈ Ω : [M1(ν)(x)]
1

p(x)−1 > δNk−iλ0

}∣∣∣ . (3.4.1)

49



CHAPTER 3. REGULARITY ESTIMATES FOR ELLIPTIC MEASURE
DATA PROBLEMS WITH VARIABLE GROWTH

Now we write

S :=
∞∑
k=1

N qk
∣∣{x ∈ Ω :M(|Du|)(x) > Nkλ0

}∣∣ .
Then we have from (3.4.1) and (2.1.11) that

S ≤
∞∑
k=1

N qkεk1 |{x ∈ Ω :M(|Du|)(x) > λ0}|

+
∞∑
k=1

N qk

k∑
i=1

εi1

∣∣∣{x ∈ Ω : [M1(ν)(x)]
1

p(x)−1 > δNk−iλ0

}∣∣∣
≤ |Ω|

∞∑
k=1

(N qε1)k

+
∞∑
i=1

(N qε1)i
∞∑
k=i

N q(k−i)
∣∣∣{x ∈ Ω : [M1(ν)(x)]

1
p(x)−1 > δNk−iλ0

}∣∣∣
≤

∞∑
i=1

(N qε1)i
{

2|Ω|+ c

(δλ0)q

ˆ
Ω

M1(ν)
q

p(x)−1 dx

}
.

Now we select ε1 with N qε1 = 1
2
, and then we can take ε and a corresponding

δ = δ(n, λ,Λ, γ1, γ2, q) > 0. Consequently, we find

S ≤ 2|Ω|+ c

λq0

ˆ
Ω

M1(ν)
q

p(x)−1 dx. (3.4.2)

According to (2.1.11) and (3.4.2), we have

ˆ
Ω

|Du|q dx ≤
ˆ

Ω

M(|Du|)q dx ≤ cλq0 (|Ω|+ S)

≤ c

{
|Ω|λq0 +

ˆ
Ω

M1(ν)
q

p(x)−1 dx

}
≤ c

{
|Ω|
|BR0|q

(ˆ
Ω

|Du| dx+ 1

)q
+

ˆ
Ω

M1(ν)
q

p(x)−1 dx

} (3.4.3)

for some c = c(n, λ,Λ, γ1, γ2, q) > 0.
On the other hand, it follows from the estimate (3.4.7) in Remark 3.4.1
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that ˆ
Ω

|Du| dx ≤ c(n, λ, γ1, γ2, s,Ω)
{
|µ|(Ω) + [|µ|(Ω)]

1
(γ1−1)(1−s)

}
.

Since R0 satisfies (3.3.1) and (3.3.2) with M1 given in (3.2.41), we see from
the estimate above that

1

R0

≤ c

R

{
|µ|(Ω) + [|µ|(Ω)]

1
(γ1−1)(1−s) + 1

}
for some constant c = c(n, λ, γ1, γ2, ω(·), s,Ω) > 0 and for some R < 1. Thus,
it follows that

ˆ
Ω

|Du|q dx ≤ cKq
s

{ˆ
Ω

M1(ν)
q

p(x)−1 dx+ 1

}
(3.4.4)

for some c = c(n, λ,Λ, γ1, γ2, ω(·), q, R, s,Ω) > 0. Here we define

Ks :=
(
|µ|(Ω) + [|µ|(Ω)]

1
(γ1−1)(1−s) + 1

)n+1

.

Recalling the definition (3.2.5), we have that for x ∈ Ω,

M1(ν)(x) := sup
r>0

rν(Br(x))

|Br(x)|
≤ sup

r>0

r|µ|(Br(x))

|Br(x)|
+ sup

r>0

r|Br(x) ∩ Ω|
|Br(x)|

≤ M1(µ)(x) + c(n)diam(Ω) ≤M1(µ)(x) + c(n)|Ω|
1
n .

Then we haveˆ
Ω

M1(ν)
q

p(x)−1 dx ≤
ˆ

Ω

M1(µ)
q

p(x)−1 dx+ c|Ω|
q

n(γ1−1)
+1
. (3.4.5)

The estimates (3.4.4) and (3.4.5) yield the desired estimate (3.1.4). This
completes the proof.

Remark 3.4.1. We derive a standard estimate for measure data. Consider
the regularized problem (3.0.6), we denote, for k ∈ N,

Dk := {x ∈ Ω : |uh(x)| ≤ k} and Ck := {x ∈ Ω : k < |uh(x)| ≤ k + 1}.
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Then from (3.2.2), (3.0.5), and (3.0.9), we have

ˆ
Dk

|Duh|p(x) dx ≤ ck|µ|(Ω) and

ˆ
Ck

|Duh|p(x) dx ≤ c|µ|(Ω)

by substituting test functions ϕ = Tk(uh) and ϕ = Φk(uh) in (3.2.2), re-
spectively. Here the functions Tk and Φk are defined as in (3.2.9). Then we
discover ˆ

Dk

|Duh| dx ≤
ˆ
Dk

(|Duh|+ 1)p(x) dx ≤ ckν(Ω),

where ν is given in (3.2.5). If 1
γ1−1

< t < n
n−1

, then it follows that

ˆ
Ck

|Duh| dx ≤
(ˆ

Ck

|Duh|γ1 dx

) 1
γ1

|Ck|
1
γ1′

≤ c [ν(Ω)]
1
γ1

(ˆ
Ck

(
|uh|
k

)t
dx

) 1
γ1′

≤ c [ν(Ω)]
1
γ1

(
1

k

) t
γ1′
(ˆ

Ck

|uh|t dx
) 1

γ1′

,

where γ1′ is the Hölder conjugate of γ1. Then we see that

ˆ
Ω

|Duh| dx ≤ cν(Ω) + c [ν(Ω)]
1
γ1

∞∑
k=1

(
1

k

) t
γ1′
(ˆ

Ck

|uh|t dx
) 1

γ1′

︸ ︷︷ ︸
(∗)

.

Applying Hölder’s inequality and Sobolev’s inequality to (∗), we find that

(∗) ≤

(
∞∑
k=1

(
1

k

) tγ1
γ1′
) 1

γ1
(
∞∑
k=1

ˆ
Ck

|uh|t dx

) 1
γ1′

≤ c

(ˆ
Ω

|uh|
n
n−1 dx

) (n−1)t
nγ1′

|Ω|(1− (n−1)t
n ) 1

γ1′

≤ c

(ˆ
Ω

|Duh| dx
) t

γ1′

|Ω|(1− (n−1)t
n ) 1

γ1′

(3.4.6)
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for some constant c = c(n, γ1, t) > 0. Thus, we have

ˆ
Ω

|Duh| dx ≤ c

{
ν(Ω) + [ν(Ω)]

1
γ1

(ˆ
Ω

|Duh| dx
) t

γ1′

|Ω|(1− (n−1)t
n ) 1

γ1′

}

for some constant c = c(n, λ, γ1, γ2, t) > 0. From the fact that γ1 ≤ n, on
the other hand, we see that t < n

n−1
≤ γ1′. Then it follows from Young’s

inequality that

ˆ
Ω

|Duh| dx ≤ cν(Ω) +
1

2

ˆ
Ω

|Duh| dx+ c [ν(Ω)]
1

γ1−(γ1−1)t |Ω|(1− (n−1)t
n ) 1

γ1′−t .

Then we have from (3.0.7) that

ˆ
Ω

|Du| dx ≤ c
{
ν(Ω) + [ν(Ω)]

1
γ1−(γ1−1)t |Ω|(1− (n−1)t

n ) 1
γ1′−t

}
.

Therefore we obtain from (3.2.5) that

ˆ
Ω

|Du| dx ≤ c
{
|µ|(Ω) + [|µ|(Ω)]

1
(γ1−1)(1−s)

}
(3.4.7)

for some constant c = c(n, λ, γ1, γ2, s,Ω) > 0, where we have selected t :=
1

γ1−1
+ s for small s with 0 < s ≤ 1

2

(
n
n−1
− 1

γ1−1

)
< 1.

We clearly point out that this constant c goes to +∞ as s↘ 0, since the
exponent tγ1

γ1′ = 1 in the first inequality of (3.4.6).

Remark 3.4.2. If p(·) is a constant, then we infer from Remark 3.2.2 and
(3.4.3) that

ˆ
Ω

|Du|q dx ≤ c

{
|Ω|
Rnq

(ˆ
Ω

|Du| dx
)q

+

ˆ
Ω

M1(µ)
q
p−1 dx

}
(3.4.8)

for some c = c(n, λ,Λ, p, q) > 0. On the other hand, a standard estimate for
measure data can be obtained by the normalization property for the problem
(3.0.1), that is,

ˆ
Ω

|Du| dx ≤ c(n, λ, p)

ˆ
Ω

M1(µ)
1
p−1 dx. (3.4.9)

53



CHAPTER 3. REGULARITY ESTIMATES FOR ELLIPTIC MEASURE
DATA PROBLEMS WITH VARIABLE GROWTH

Indeed, the proof of (3.4.9) is similar to that of Lemma 3.2.1. Using (3.4.8)
and (3.4.9), we derive

ˆ
Ω

|Du|q dx ≤ c

ˆ
Ω

M1(µ)
q
p−1 dx

for some constant c = c(n, λ,Λ, p, q, R,Ω) > 0. This is the main estimate
in [88]. However, in the case that p(·) is not a constant, the normalization
property of (3.0.1) does not hold, and so (3.4.9) is no longer satisfied. See
also Remark 3.4.1.
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Chapter 4

Optimal regularity for elliptic
measure data problems in
variable exponent spaces

Consider the Dirichlet problem with measure data{
− div a(Du, x) = µ in Ω,

u = 0 on ∂Ω,
(4.0.1)

where µ be a signed Radon measure on Ω with finite total variation |µ|(Ω) <
∞. Here we assume that µ is defined in Rn by considering the zero extension
to Rn, and the nonlinearity a = a(ξ, x) : Rn ×Rn → Rn is differentiable in ξ
and measurable in x, and it satisfies the following conditions:

|ξ||Dξa(ξ, x)|+ |a(ξ, x)| ≤ Λ|ξ|, (4.0.2)

λ|η|2 ≤ 〈Dξa(ξ, x)η, η〉 , (4.0.3)

for every x, η ∈ Rn, ξ ∈ Rn \ {0}, and some constants λ, Λ. Note that
(4.0.2) implies that a(0, x) = 0 for x ∈ Rn, and (4.0.3) yields the following
monotonicity condition:

〈a(ξ1, x)− a(ξ2, x), ξ1 − ξ2〉 ≥ λ̃ |ξ1 − ξ2|2

for all x, ξ1, ξ2 ∈ Rn and some constant λ̃ = λ̃(n, λ) > 0.
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4.1 Main results

A solution u of (4.0.1) will be treated in the sense of distribution which
does not generally belong to a weak solution in W 1,2

0 (Ω) (consider Laplace’s
equation with the Dirac measure). For this reason, it is necessary to generalize
a class of solutions below the natural exponent.

Definition 4.1.1. u ∈ W 1,1
0 (Ω) is a SOLA to the problem (4.0.1) under the

assumptions (4.0.2) and (4.0.3) if the nonlinearity a(Du, x) ∈ L1(Ω,Rn),

ˆ
Ω

〈a(Du, x), Dϕ〉 dx =

ˆ
Ω

ϕ dµ

holds for all ϕ ∈ C∞c (Ω), and moreover there exists a sequence of weak solu-
tions {uh}h≥1 ⊂ W 1,2

0 (Ω) of the Dirichlet problems{
− div a(Duh, x) = µh in Ω,

uh = 0 on ∂Ω
(4.1.1)

such that
uh → u in W 1,1

0 (Ω) as h→∞,

where µh ∈ L∞(Ω) converges weakly to µ in the sense of measure and satisfies
for each open set V ⊂ Rn,

lim sup
h→∞

|µh|(V ) ≤ |µ|(V ), (4.1.2)

with µh defined in Rn by the zero extension of µh to Rn.

Here we consider µh := µ∗φh, where φh is the standard mollifier, and then
µh ∈ C∞(Ω) converges weakly to µ in the sense of measure, the following
uniform L1-estimate holds:

||µh||L1(Ω) ≤ |µ|(Ω), (4.1.3)

and such a SOLA u of (4.0.1) belongs to W 1,q
0 (Ω) such that

uh → u in W 1,q
0 (Ω) for all q ∈

[
1,

n

n− 1

)
. (4.1.4)

We now state the main assumption on a and Ω in Chapter 4.
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Definition 4.1.2. We say (a,Ω) is (δ, R)-vanishing of codimension 1 if for
every point y ∈ Ω and number r ∈

(
0, R

3

]
, the following conditions hold.

(i) If dist(y, ∂Ω) > r
√

2, then there exists a new coordinate system depend-
ing only on y and r, still denoted by {x1, · · · , xn}, in which the origin
is y and  

Br√2

∣∣θ(a,Br√2)(x)
∣∣ dx ≤ δ,

where

θ(a,Br)(x) := sup
ξ∈Rn\{0}

∣∣a(ξ, x′, xn)− āB′r(ξ, xn)
∣∣

|ξ|
,

and āB′r(ξ, xn) is the integral average of a(ξ, ·, xn) over B′r ⊂ Rn−1.

(ii) If dist(y, ∂Ω) = |y − y0| ≤ r
√

2 for some y0 ∈ ∂Ω, then there is
a new coordinate system depending only on y and r, still denoted by
{x1, · · · , xn}, in which the origin is y0+3δren, where en := (0, · · · , 0, 1),

B+
3r ⊂ Ω3r ⊂ B3r ∩ {(x′, xn) : xn > −6δr}, (4.1.5)

and  
B3r

|θ(a,B3r)(x)| dx ≤ δ.

Remark 4.1.3. (i) The number δ is a sufficiently small universal constant
with δ ∈

(
0, 1

8

)
, as determined later in the proof of Theorem 4.1.4. This

number is invariant under the dilation scaling for the problem (4.0.1).
On the other hand, the number R is given arbitrary.

(ii) The numbers r
√

2 and 3r above are selected so that the size is large
enough so that rotation in any direction is allowed.

(iii) If (a,Ω) is (δ, R)-vanishing of codimension 1, then for each point and
sufficiently small scale, there is a coordinate system for which the non-
linearity a(ξ, ·) is merely measurable in the xn variable and of small
BMO in the other variables x′. Moreover, the domain Ω with (4.1.5) is
called a (δ, R)-Reifenberg flat domain, see also Chapter 2.1.3.
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(iv) If (4.1.5) holds, then there is the following measure density condition:

sup
0<r≤R

3

sup
y∈Ω

|Br(y)|
|Ω ∩ Br(y)|

≤

(
2
√

2

1− δ

)n

≤

(
16
√

2

7

)n

, (4.1.6)

which can be found in [29].

We are ready to present our main results in Chapter 4.

Theorem 4.1.4. Assume that (4.0.2) and (4.0.3) are hold, and that u is a
SOLA of the problem (4.0.1). Let 0 < R < 1 and let p(·) be log-Hölder contin-
uous satisfying (2.1.1). Then there is a small constant δ = δ(n, λ,Λ, γ1, γ2, L) ∈(
0, 1

8

)
such that if (a,Ω) is (δ, R)-vanishing of codimension 1, then there ex-

ists a constant c0 = c0(n, λ,Λ, γ1, ω(·), R,Ω) > 1 so that for any x0 ∈ Ω and

R0 ∈
(

0, 1
c0(|µ|(Ω)+1)

]
, we have

 
ΩR0

(x0)

|Du|p(x) dx ≤ c

{( 
Ω4R0

(x0)

|Du|
p(x)
p− dx

)p−

+

 
Ω4R0

(x0)

M1(µ)p(x) dx+ 1

} (4.1.7)

for some constant c = c(n, λ,Λ, γ1, γ2, L) > 0, where p− := infx∈Ω4R0
(x0) p(x).

Moreover, we have

ˆ
Ω

|Du|p(x) dx ≤ c


(ˆ

Ω

M1(µ)p(x) dx

)n(γ2−1)+γ2
γ1

+ 1

 (4.1.8)

and
||Du||Lp(·)(Ω) ≤ c ||M1(µ)||Lp(·)(Ω) , (4.1.9)

where the constants c depend only on n, λ, Λ, γ1, γ2, ω(·), L, R, and Ω. Here
M1(µ) is given in (1.2.2).

Remark 4.1.5. We know from (4.1.4) that u ∈ W 1,q
0 (Ω) for all 1 ≤ q < n

n−1
,

and then the first term of the right-hand side in (4.1.7) is well defined by

selecting c0 sufficiently large with p(x)
p−

< n
n−1

for x ∈ Ω4R0(x0), see Chapter
4.4.1 for details.
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Remark 4.1.6. The condition on the above nonlinearity a is a possibly opti-
mal assumption for the estimates (4.1.7)–(4.1.9). In other words, if a(ξ, ·) has
two or more measurable coefficients, then these estimates are not generally
satisfied even in the constant exponent case p(·) ≡ p, see [74]. For the mea-
surability in one variable, there have been regularity results for linear elliptic
equations, see [29, 30, 35, 53]. Recently, Byun and Kim [20] considered non-
linear elliptic equations, without measure data, to obtain global Lp estimates
for the gradient of a weak solution under the assumptions (4.0.2), (4.0.3),
and Definition 4.1.2. They obtained the desired results by proving Lipschitz
regularity for limiting problems. It is worth noting that we refer to [61] for
the case of problems having p-growth under the same condition (Definition
4.1.2).

A main ingredient in our proof is to derive a power decay estimate of

the upper-level sets of |Du|
p(x)
p− for a SOLA u on a small ball B with p− =

infx∈B p(x). We employ some properties of the SOLA, comparison estimates
along with higher integrability of homogeneous problems and the log-Hölder
continuity of p(·), and then the so-called maximal function technique which
was introduced in [37,98]. The difficulty in the present work comes from the
measure data µ and the presence of the variable exponent p(·), and so more
complicated and finer analysis than that previously made in [20, 23] has to
be carefully carried out in the whole process.

4.2 Comparison estimates for regular prob-

lems

In Chapter 4.2, we consider the regular problem (4.1.1), where µh = µ ∗ φh
with φh the standard mollifier. We as always assume that (a,Ω) is (δ, R)-
vanishing of codimension 1. This section develops the comparison L1-estimates
for the gradient of the weak solution uh to (4.1.1) in localized boundary and
interior regions. We denote, for a measurable set E ⊂ Rn,

|µh|(E) :=

ˆ
E

|µh(x)| dx.
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4.2.1 Boundary comparisons

Let 0 < r ≤ R
8

. Assume that (a,Ω) is (δ, R)-vanishing of codimension 1 such
that

B+
8r ⊂ Ω8r ⊂ B8r ∩ {xn > −16δr}, (4.2.1)

and  
B8r

|θ(a,B8r)(x)| dx ≤ δ, (4.2.2)

where δ is to be determined later in a universal way.
Let wh ∈ uh+W 1,2

0 (Ω8r) be the weak solution of the homogeneous problem{
div a(Dwh, x) = 0 in Ω8r,

wh = uh on ∂Ω8r.
(4.2.3)

Using the measure density condition (4.1.6), we can extend the compari-
son result in [66, Lemma 2] up to the boundary.

Lemma 4.2.1. If wh ∈ uh +W 1,2
0 (Ω8r) is the weak solution of (4.2.3) satis-

fying (4.2.1), then there exists a constant c = c(n, λ, q) > 0 such that

 
Ω8r

|Duh −Dwh|q dx ≤ c

[
|µh|(Ω8r)

rn−1

]q
for all q ∈

(
0,

n

n− 1

)
. (4.2.4)

Applying Gehring’s lemma to the weak solution wh of (4.2.3), we discover
some higher integrability result, see [57, Remark 6.12], as we now state.

Lemma 4.2.2. There exists a constant σ0 = σ0(n, λ,Λ) > 0 such that the
following holds: for any r ∈

(
0, R

8

]
, if wh is the weak solution of (4.2.3)

satisfying (4.2.1), then for any 0 < σ ≤ σ0 and Ω2r̃(x̃0) ⊂ Ω8r with r̃ ≤ 4r,
there is a constant c = c(n, λ,Λ, t) > 0 such that( 

Ωr̃(x̃0)

|Dwh|2(1+σ) dx

) 1
1+σ

≤ c

( 
Ω2r̃(x̃0)

|Dwh|2t dx
) 1

t

for all t ∈ (0, 1].

From Hölder’s inequality and Lemma 4.2.2, we can directly obtain the
following estimate.
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Corollary 4.2.3. Under the same assumptions as in Lemma 4.2.2, we have

 
Ωr̃(x̃0)

|Dwh|2 dx ≤ c

( 
Ω2r̃(x̃0)

|Dwh| dx
)2

for some constant c = c(n, λ,Λ) > 0.

We next consider the homogeneous frozen problem{
div āB′4r(Dvh, xn) = 0 in Ω4r,

vh = wh on ∂Ω4r,
(4.2.5)

where wh is the weak solution of (4.2.3). Then vh ∈ wh + W 1,2
0 (Ω3r) is the

weak solution of (4.2.5), and the operator āB′4r satisfies (4.0.2) and (4.0.3)
with a(ξ, ·, xn) replaced by āB′4r(ξ, xn). Moreover, we derive the standard
energy estimate  

Ω4r

|Dvh|2 dx ≤ c

 
Ω4r

|Dwh|2 dx, (4.2.6)

by substituting the test function vh−wh into the weak formulation of (4.2.5).
The following lemma demonstrates some comparison result between two

problems (4.2.3) and (4.2.5).

Lemma 4.2.4 (See [20, Lemma 5.6]). Suppose that Ω8r satisfies (4.2.1) and
(4.2.2). If wh and vh are the weak solutions of (4.2.3) and (4.2.5), respec-
tively, then there is a constant c = c(n, λ,Λ) > 0 such that

 
Ω4r

|Dwh −Dvh|2 dx ≤ cδ
σ0

1+σ0

( 
Ω8r

|Dwh| dx
)2

,

where σ0 is given in Lemma 4.2.2.

Let us assume now v̄h ∈ W 1,2(B+
3r) is a weak solution of the reference

problem {
div āB′4r(Dv̄h, xn) = 0 in B+

3r,
v̄h = 0 on B3r ∩ {xn = 0}. (4.2.7)

We can now state some comparison estimate and Lipschitz regularity
result.

Lemma 4.2.5 (See [20, Lemma 5.8]). For any ε ∈ (0, 1), there is δ =
δ(n, λ,Λ, ε) > 0 such that if vh ∈ wh + W 1,2

0 (Ω4r) is the weak solution
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of (4.2.5) with (4.2.1) and (4.2.2), then there exists a weak solution v̄h ∈
W 1,2(B+

3r) of (4.2.7) such that

 
Ω3r

|Dvh −Dv̄h|2 dx ≤ ε2
 
Ω4r

|Dvh|2 dx,

and

||Dv̄h||L∞(Ω2r)
≤ c

 
Ω3r

|Dv̄h| dx

for some constant c = c(n, λ,Λ) > 0. Here v̄h is extended by zero from B+
3r

to Ω3r.

We finally summarize the comparison L1-estimates near a boundary re-
gion.

Lemma 4.2.6. Let ρ > 1 and 0 < r ≤ R
8

. Then for any 0 < ε < 1, there

exists a small constant δ = δ(n, λ,Λ, ε) > 0 such that if uh ∈ W 1,2
0 (Ω),

wh ∈ uh + W 1,2
0 (Ω8r), and vh ∈ wh + W 1,2

0 (Ω4r) are the weak solutions of
(4.1.1), (4.2.3), and (4.2.5), respectively, with (4.2.1), (4.2.2) and

 
Ω8r

|Duh| dx ≤ ρ and
|µh|(Ω8r)

rn−1
≤ δρ,

then there is a weak solution v̄h ∈ W 1,2(B+
3r) of (4.2.7) such that

 
Ω3r

|Duh −Dv̄h| dx ≤ ερ and ||Dv̄h||L∞(Ω2r)
≤ cρ

for some constant c = c(n, λ,Λ) > 0. Here v̄h is extended by zero from B+
3r

to Ω3r.

Proof. We first have from Lemma 4.2.1 (q = 1) that

 
Ω8r

|Duh −Dwh| dx ≤ cδρ and

 
Ω8r

|Dwh| dx ≤ cρ. (4.2.8)

Hölder’s inequality and Lemma 4.2.4 yield

 
Ω4r

|Dwh −Dvh| dx ≤
( 

Ω4r

|Dwh −Dvh|2 dx
) 1

2

≤ cδ
σ0

2(1+σ0)ρ, (4.2.9)
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and  
Ω4r

|Dvh| dx ≤ cρ. (4.2.10)

According to Lemma 4.2.5 with ε replaced by ε̃, there exists a weak solu-
tion v̄h ∈ W 1,2(B+

3r) of (4.2.7) such that

 
Ω3r

|Dvh −Dv̄h|2 dx ≤ ε̃2
 
Ω4r

|Dvh|2 dx.

Then we see from this estimate, Hölder’s inequality, (4.2.6), Corollary 4.2.3,
and (4.2.8) that

 
Ω3r

|Dvh −Dv̄h| dx ≤ cε̃

 
Ω8r

|Dwh| dx ≤ cε̃ρ ≤ ε

3
ρ (4.2.11)

by choosing ε̃ sufficiently small, and it follows from (4.2.10) and (4.2.11) that

 
Ω3r

|Dv̄h| dx ≤ cρ. (4.2.12)

Finally, we combine (4.2.8), (4.2.9) and (4.2.11), to obtain

 
Ω3r

|Duh −Dv̄h| dx ≤
 
Ω3r

|Duh −Dwh|+ |Dwh −Dvh|+ |Dvh −Dv̄h| dx

≤ cδρ+ cδ
σ0

2(1+σ0)ρ+
ε

3
ρ

≤ ερ,

by selecting δ small enough.
On the other hand, in light of Lemma 4.2.5 and (4.2.12), we obtain

||Dv̄h||L∞(Ω2r)
≤ cρ,

which completes the proof.

4.2.2 Interior comparisons

In this subsection we derive comparison L1-estimates for the interior case in
a similar way that we derived their counterparts in the previous subsection.
We just outline it for the sake of completeness.
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Let 0 < r ≤ R
8

with B8r(x0) ⊂⊂ Ω. With the weak solution uh ∈ W 1,2
0 (Ω)

of (4.1.1), we consider the weak solution wh ∈ uh + W 1,2
0 (B8r(x0)) of the

homogeneous problem{
div a(Dwh, x) = 0 in B8r(x0),

wh = uh on ∂B8r(x0).
(4.2.13)

Next let vh ∈ wh+W 1,2
0 (B4r(x0)) be the weak solution of the homogeneous

frozen problem {
div āB′4r(Dvh, xn) = 0 in B4r(x0),

vh = wh on ∂B4r(x0).
(4.2.14)

Then we have Dvh ∈ L∞(B2r(x0)) with the estimate

||Dvh||L∞(B2r(x0)) ≤ c

 
B4r(x0)

|Dvh| dx

for some constant c = c(n, λ,Λ) > 0, see [49] for details.
We now state the comparison L1-estimates in an interior region.

Lemma 4.2.7. Let ρ > 1 and 0 < r ≤ R
8

. Then, for any ε ∈ (0, 1), there is
a small constant δ = δ(n, λ,Λ, ε) > 0 such that if (a,Ω) is (δ, R)-vanishing
of codimension 1, and if uh ∈ W 1,2

0 (Ω), wh ∈ uh + W 1,2
0 (B8r(x0)), and vh ∈

wh + W 1,2
0 (B4r(x0)) are the weak solutions (4.1.1), (4.2.13), and (4.2.14),

respectively, with

 
B8r(x0)

|Duh| dx ≤ ρ and
|µh|(B8r(x0))

rn−1
≤ δρ,

then we have 
B4r(x0)

|Duh −Dvh| dx ≤ ερ and ||Dvh||L∞(B2r(x0)) ≤ cρ

for some constant c = c(n, λ,Λ) > 0.
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4.3 Covering arguments

Now, we consider a SOLA u of (4.0.1) and suppose that (a,Ω) is (δ, R)-
vanishing of codimension 1. Moreover, we assume that R0 > 0 satisfies

R0 ≤ min

{
1

16
√

2
,
R

8
√

2
,

1´
Ω
|Du| dx+ 1

,
1

|µ|(Ω) + 1

}
, (4.3.1)

ω(8R0

√
2) ≤ min

{
1,
σ0γ1

2
,

γ1

4(n− 1)

}
, (4.3.2)

where σ0 is given in Lemma 4.2.2. Fix any x0 ∈ Ω and consider Ω4R0(x0). In
this section we omit the center x0 for simplicity. We set

p− := inf
x∈Ω4R0

p(x) and p+ := sup
x∈Ω4R0

p(x).

For any fixed ε ∈ (0, 1) and N > 1, we define

λ0 :=
1

ε

{ 
Ω4R0

|Du|
p(x)
p− dx+ 1

}
> 1 (4.3.3)

and upper-level sets: for k ∈ N ∪ {0},

Ck :=

{
x ∈ ΩR0 :M

(
|Du|

p(·)
p− χΩ4R0

)
(x) > Nk+1λ0

}
,

Dk :=

{
x ∈ ΩR0 :M

(
|Du|

p(·)
p− χΩ4R0

)
(x) > Nkλ0

}
∪
{
x ∈ ΩR0 : [M1(µ)(x)]

p(x)
p− > δNkλ0

}
,

whereM andM1 are given in (2.1.8) and (1.2.2), respectively, while χ is the
standard characteristic function. Note that ε and N are to be chosen later
depending only on n, λ,Λ, γ1, γ2, and L.

We now verify two assumptions of the Vitali type covering lemma (Lemma
2.1.2).

Lemma 4.3.1. There exists a constant N1 = N1(n) > 1 such that for any
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fixed N ≥ N1 and k ∈ N ∪ {0},

|Ck| <
ε

(1000)n
|BR0|. (4.3.4)

Proof. For each k ∈ N∪{0}, |Ck| ≤ |C0|. Thus, it suffices to prove that (4.3.4)
holds for k = 0. We have from (2.1.9) and (4.3.3) that

|C0| =
∣∣∣∣{x ∈ ΩR0 :M

(
|Du|

p(·)
p− χΩ4R0

)
(x) > Nλ0

}∣∣∣∣
≤ c

Nλ0

ˆ
Ω4R0

|Du|
p(x)
p− dx ≤ cε

N
|BR0 | <

ε

(1000)n
|BR0|,

by selecting N1 large enough.

Lemma 4.3.2. There is a constant N2 = N2(n, λ,Λ, γ1, γ2, L) > 1 so that
for any ε > 0, there exists a small constant δ = δ(n, λ,Λ, γ1, γ2, L, ε) > 0
such that for any fixed N ≥ N2, k ∈ N ∪ {0}, y0 ∈ Ck and r0 ≤ R0

1000
, if

|Ck ∩Br0(y0)| ≥ ε|Br0(y0)|, (4.3.5)

then Br0(y0) ∩ΩR0 ⊂ Dk.

Proof. We write λk := Nkλ0 > 1, where N ≥ N2 > 1. The proof is by
contradiction. Were Br0(y0)∩ΩR0 ⊂ Dk false, there exists y1 ∈ Br0(y0)∩ΩR0

such that y1 /∈ Dk. Then we have

1

|Br(y1)|

ˆ
Br(y1)∩Ω4R0

|Du|
p(x)
p− dx ≤ λk, and

[
|µ|(Br(y1))

rn−1

] p(y1)
p−
≤ c(n, γ1, γ2)δλk,

(4.3.6)

for all r > 0.

Before proving this lemma, we outline the plan of the proof.

(i) We first divide the proof into two cases: B10r0
√

2(y1) ⊂ Ω and B10r0
√

2(y1) 6⊂
Ω.

(ii) We transfer the exponent powers in (4.3.6) from p(·)
p−

to 1, see (4.3.8)

and (4.3.15).
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(iii) We apply Lemma 4.2.7 (Lemma 4.2.6) to obtain the L1 comparison
estimates for the interior (boundary) case, see (4.3.9) and (4.3.16).

(iv) We transfer the exponent powers in the comparison estimates from 1

to p(·)
p−

, see (4.3.11) and (4.3.17).

(v) We arrive at a contradiction by using standard technique of the covering
argument mentioned in [37,98].

Note that the log-Hölder continuity, from (ii) and (iv), is an essential ingre-
dient in correcting the exponent powers.

Case 1. The interior case B10r0
√

2(y1) ⊂ Ω.
Since y1 ∈ Br0(y0) ∩ΩR0 , we see that

B8r0(y0) ⊂ B10r0
√

2(y1) ⊂ B10r0
√

2(y1) ⊂ Ω4R0 .

We set
p1 := inf

x∈B8r0 (y0)
p(x) and p2 := sup

x∈B8r0 (y0)

p(x).

Then it follows that p2 − p1 ≤ ω(16r0

√
2), and for x ∈ B8r0(y0),

1 < γ1 ≤ p− ≤ p1 ≤ p(x) ≤ p2 ≤ p+ ≤ γ2 <∞.

Using Hölder’s inequality, (4.3.1), (4.3.6), and (2.1.4), we have

 
B8r0 (y0)

|Du| dx =

( 
B8r0 (y0)

|Du| dx

) p2−p1
p2

+
p1
p2

≤

( 
B8r0 (y0)

|Du| dx+ 1

)ω(16r0
√

2)
γ1

( 
B8r0 (y0)

|Du|
p1
p− dx

) p−
p2

≤ c

(
1

r0

) (n+1)ω(16r0
√

2)
γ1

( 
B10r0

√
2(y1)

|Du|
p(x)
p− dx+ 1

) p−
p2

≤ c(n, γ1, γ2, L)λ
p−
p2
k ,
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and it follows from (4.1.4) that for any ε̃h ∈ (0, 1) and q ∈
[
1, n

n−1

)
,

 
B8r0 (y0)

|Du−Duh|q dx ≤ ε̃h (4.3.7)

for h large enough. Then these estimates imply

 
B8r0 (y0)

|Duh| dx ≤ c1λ
p−
p2
k

for some constant c1 = c1(n, γ1, γ2, L) > 0.
On the other hand, we compute from (4.3.1), (4.3.6), and (2.1.4) that

|µ|(B8r0(y0))

rn−1
0

=

[
|µ|(B8r0(y0))

rn−1
0

] p2−p(y1)
p2

[
|µ|(B8r0(y0))

rn−1
0

] p(y1)
p2

≤
(

1

r0

) (n−1)ω(16r0
√

2)
γ1

(|µ|(Ω) + 1)
ω(16r0

√
2)

γ1

[ |µ|(B10r0
√

2(y1))

rn−1
0

] p(y1)
p2

≤
(

1

r0

)nω(16r0
√

2)
γ1

cδ
p−
p2 λ

p−
p2
k

≤ c(n, γ1, γ2, L)δ
γ1
γ2 λ

p−
p2
k ,

and so, we have from (4.1.2) that

|µh|(B8r0(y0))

rn−1
0

≤ |µ|(B8r0(y0))

rn−1
0

+
εh

rn−1
0

≤ cδ
γ1
γ2 λ

p−
p2
k + δ

γ1
γ2 ≤ c2δ

γ1
γ2 λ

p−
p2
k

for some constant c2 = c2(n, γ1, γ2, L) > 0, by selecting εh sufficiently small

with εh ≤ rn−1
0 δ

γ1
γ2 .

Consequently, we obtain

 
B8r0 (y0)

|Duh| dx ≤ c3λ
p−
p2
k and

|µh|(B8r0(y0))

rn−1
0

≤ c3δ
γ1
γ2 λ

p−
p2
k , (4.3.8)

where c3 := max {c1, c2}. Applying Lemma 4.2.7 with x0, ρ, r, δ, and ε

replaced by y0, c3λ
p−
p2
k , r0, δ

γ1
γ2 , and η, respectively, we find that there is
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δ = δ(n, λ,Λ, γ1, γ2, η) > 0 such that

 
B4r0 (y0)

|Duh −Dvh| dx ≤ c3ηλ
p−
p2
k and

||Dvh||L∞(B2r0 (y0)) ≤ cc3λ
p−
p2
k =: c4λ

p−
p2
k

(4.3.9)

for some constant c4 = c4(n, λ,Λ, γ1, γ2, L) > 0. Then (4.3.7) and (4.3.9)
imply

 
B2r0 (y0)

|Du−Dvh| dx ≤ (4n + 2n) c3ηλ
p−
p2
k =: c5ηλ

p−
p2
k (4.3.10)

by choosing ε̃h sufficiently small with ε̃h ≤ c3η.
We next claim that 

B2r0 (y0)

|Du−Dvh|
p(x)
p− dx ≤ c6η

1
2λk,∣∣∣∣∣∣∣∣|Dvh| p(·)p−

∣∣∣∣∣∣∣∣
L∞(B2r0 (y0))

≤ c6λk

(4.3.11)

for some constant c6 = c6(n, λ,Λ, γ1, γ2, L) > 0.
Clearly, we compute from (4.3.9) that∣∣∣∣∣∣∣∣|Dvh| p(·)p−

∣∣∣∣∣∣∣∣
L∞(B2r0 (y0))

≤ sup
x∈B2r0 (y0)

(|Dvh(x)|+ 1)
p2
p−

≤ c

(
||Dvh||

p2
p−
L∞(B2r0 (y0)) + 1

)
≤ cλk.
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Returning to (4.3.11), we have from Hölder’s inequality and (4.3.10) that

 
B2r0 (y0)

|Du−Dvh|
p(x)
p− dx =

 
B2r0 (y0)

|Du−Dvh|
1
2

+
(
p(x)
p−
− 1

2

)
dx

≤

( 
B2r0 (y0)

|Du−Dvh| dx

) 1
2
( 
B2r0 (y0)

|Du−Dvh|
2
p(x)
p−
−1
dx

) 1
2

≤ cη
1
2λ

p−
2p2
k

( 
B2r0 (y0)

|Du−Dvh|
2
p(x)
p−
−1
dx

) 1
2

=: cη
1
2λ

p−
2p2
k I1.

It follows from (4.3.9) that

I2
1 ≤

 
B2r0 (y0)

(|Du|+ |Dvh|+ 1)
2
p2
p−
−1

dx

≤ c

{ 
B2r0 (y0)

|Du|2
p2
p−
−1
dx+

 
B2r0 (y0)

|Dvh|
2
p2
p−
−1
dx+ 1

}

≤ c

{ 
B2r0 (y0)

|Du|2
p2
p−
−1
dx+ λ

2− p−
p2

k

}
=: c

(
I2 + λ

2− p−
p2

k

)
.

Continuously, we discover from (4.3.7), Lemma 4.2.1, Lemma 4.2.2, and
(4.3.8) that

I2 ≤ c

 
B2r0 (y0)

|Du−Duh|
2
p2
p−
−1
dx+ c

 
B2r0 (y0)

|Duh −Dwh|
2
p2
p−
−1
dx

+ c

 
B2r0 (y0)

|Dwh|
2
p2
p−
−1
dx

≤ c

ε̃hλ2− p−
p2

k +

[
|µh|(B2r0(y0))

rn−1
0

]2
p2
p−
−1

+

( 
B4r0 (y0)

|Dwh| dx

)2
p2
p−
−1


≤ cλ
2− p−

p2
k ,

since 2 p2

p−
−1 ≤ 1+2p+−p−

p−
≤ 1+2ω(8R0

√
2)

γ1
≤ 1+min

{
1

2(n−1)
, σ0

}
, according
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to (4.3.2). Then we combine these estimates above, to obtain

 
B2r0 (y0)

|Du−Dvh|
p(x)
p− dx ≤ c6η

1
2λk

for some c6 = c6(n, λ,Λ, γ1, γ2, L) > 0. We thereby establish the claim
(4.3.11).

Next we claim that

Ck ∩Br0(y0) =

{
x ∈ Br0(y0) :M

(
|Du|

p(·)
p− χΩ4R0

)
(x) > Nλk

}
⊂
{
x ∈ Br0(y0) :M

(
|Du−Dvh|

p(·)
p− χB2r0 (y0)

)
(x) > λk

}
=: Jk,

(4.3.12)

provided N ≥ N2 ≥ max
{

2
γ2
γ1
−1

(1 + c6), 3n
}

.

Let y 6∈ Jk. If y 6∈ Br0(y0), then (4.3.12) is done. Suppose y ∈ Br0(y0). If
r̃ < r0, then Br̃(y) ⊂ B2r0(y0) ⊂ Ω4R0 . It follows from (4.3.11) that

|Du(x)|
p(x)
p− ≤ 2

γ2
γ1
−1

(
|Du(x)−Dvh(x)|

p(x)
p− + |Dvh(x)|

p(x)
p−

)
≤ 2

γ2
γ1
−1

(
|Du(x)−Dvh(x)|

p(x)
p− + c6λk

)
for almost every x ∈ Br̃(y). Integrating over Br̃(y) gives

 
Br̃(y)

|Du|
p(x)
p− dx ≤ 2

γ2
γ1
−1

{
M
(
|Du−Dvh|

p(·)
p− χB2r0 (y0)

)
(y) + c6λk

}
≤ 2

γ2
γ1
−1

(1 + c6)λk.

If r̃ ≥ r0, then Br̃(y) ⊂ B2r̃(y0) ⊂ B3r̃(y1). We have from (4.3.6) that

1

|Br̃|

ˆ
Br̃(y)∩Ω4R0

|Du|
p(x)
p− dx ≤ 3n

|B3r̃|

ˆ
B3r̃(y1)∩Ω4R0

|Du|
p(x)
p− dx ≤ 3nλk.

Consequently, we obtain

M
(
|Du|

p(·)
p− χΩ4R0

)
(y) ≤ max

{
2
γ2
γ1
−1

(1 + c6)λk, 3
nλk

}
.
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Choosing N2 ≥ max
{

2
γ2
γ1
−1

(1 + c6), 3n
}

, we have y 6∈ Ck ∩ Br0(y0), that is,

the claim (4.3.12) holds.
We finally conclude, using (4.3.12), (2.1.9), and (4.3.11), that

|Ck ∩Br0(y0)| ≤
∣∣∣∣{x ∈ Br0(y0) :M

(
|Du−Dvh|

p(·)
p− χB2r0 (y0)

)
(x) > λk

}∣∣∣∣
≤ c

λk

ˆ
B2r0 (y0)

|Du−Dvh|
p(x)
p− dx ≤ cc6η

1
2 |Br0(y0)| < ε|Br0(y0)|,

by selecting η and δ that satisfy the last inequality above, which is a contra-
diction to (4.3.5).

Case 2. The boundary case B10r0
√

2(y1) 6⊂ Ω.

We find a boundary point ỹ1 ∈ ∂Ω ∩ B10r0
√

2(y1). Since 540r0 ≤ R0 ≤ R
8
√

2

and the domain Ω is (δ, R)-Reifenberg flat of codimension 1, there exists a
coordinate system, which we still denote x = (x1, · · · , xn), with the origin at
ỹ1 + 480δr0en, such that

B+
480r0

(0) ⊂ Ω480r0(0) ⊂ B480r0(0) ∩ {xn > −960δr0}, (4.3.13)

and  
B480r0

|θ(a,B480r0)(x)| dx ≤ δ.

We select δ so small with 0 < δ < 1
24

. Then we have

Ω2r0(y0) ⊂ Ω3r0(y1) ⊂ Ω120r0(0), and

Ω480r0(0) ⊂ Ω540r0(y1) ⊂ ΩR0(y0) ⊂ Ω4R0 ,
(4.3.14)

since |y1| ≤ |y1 − ỹ1| + |ỹ1| ≤ 20r0 + 480δr0 ≤ 40r0 in the new coordinate.
We denote

p1 := inf
x∈Ω480r0 (0)

p(x) and p2 := sup
x∈Ω480r0 (0)

p(x).

Then p2 − p1 ≤ ω(960r0).
We next obtain the estimates in the boundary case corresponding to
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(4.3.8). From (2.1.4), (4.3.1), (4.3.6), (4.3.13), and (4.3.14), we have

 
Ω480r0 (0)

|Du| dx ≤ c7λ
p−
p2
k and

|µ|(Ω480r0(0))

rn−1
0

≤ c7δ
γ1
γ2 λ

p−
p2
k (4.3.15)

for some constant c7 = c7(n, γ1, γ2, L) > 0. Furthermore, it follows from
(4.1.4), (4.1.2) and (4.3.15) that

 
Ω480r0 (0)

|Duh| dx ≤ c8λ
p−
p2
k and

|µh|(Ω480r0(0))

rn−1
0

≤ c8δ
γ1
γ2 λ

p−
p2
k

for h large enough and some constant c8 = c8(n, γ1, γ2, L) > 0. Applying

Lemma 4.2.6 with ρ, r, δ, and ε replaced by c8λ
p−
p2
k , 60r0, δ

γ1
γ2 , and η, respec-

tively, we deduce that there exists δ = δ(n, λ,Λ, γ1, γ2, η) > 0 such that

 
Ω180r0 (0)

|Duh −Dv̄h| dx ≤ c8ηλ
p−
p2
k and

||Dv̄h||L∞(Ω120r0 (0)) ≤ cc8λ
p−
p2
k =: c9λ

p−
p2
k

(4.3.16)

for some constant c9 = c9(n, λ,Λ, γ1, γ2, L) > 0. Then (4.1.4) and (4.3.16)
imply  

Ω120r0 (0)

|Du−Dv̄h| dx ≤ c10ηλ
p−
p2
k .

Proceeding as in Case 1, we infer

 
Ω120r0 (0)

|Du−Dv̄h|
p(x)
p− dx ≤ c11η

1
2λk and∣∣∣∣∣∣∣∣|Dv̄h| p(·)p−

∣∣∣∣∣∣∣∣
L∞(Ω120r0 (0))

≤ c11λk

(4.3.17)

for some constant c11 = c11(n, λ,Λ, γ1, γ2, L) > 0, and moreover

Ck ∩Br0(y0) =

{
x ∈ Ωr0(y0) :M

(
|Du|

p(·)
p− χΩ4R0

)
(x) > Nλk

}
⊂
{
x ∈ Ωr0(y0) :M

(
|Du−Dv̄h|

p(·)
p− χΩ2r0 (y0)

)
(x) > λk

} (4.3.18)
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provided N ≥ N2 ≥ max
{

2
γ2
γ1
−1

(1 + c11), 3n
}

.

Finally, we conclude from (4.3.18), (2.1.9), (4.3.14) and (4.3.17) that

|Ck ∩Br0(y0)| ≤
∣∣∣∣{x ∈ Ωr0(y0) :M

(
|Du−Dv̄h|

p(·)
p− χΩ2r0 (y0)

)
(x) > λk

}∣∣∣∣
≤ c

λk

ˆ
Ω2r0 (y0)

|Du−Dv̄h|
p(x)
p− dx

≤ c|Ω120r0(0)|
λk

 
Ω120r0 (0)

|Du−Dv̄h|
p(x)
p− dx

≤ cc11η
1
2 |Br0(y0)| < ε|Br0(y0)|

by taking η sufficiently small. As a consequence δ = δ(n, λ,Λ, γ1, γ2, L, ε) is
also determined. This is a contradiction to (4.3.5).

Choosing N = max{N1, N2} from Lemma 4.3.1 and Lemma 4.3.2, we can
apply Lemma 2.1.2 to derive the following power decay estimates:

Corollary 4.3.3. Under the same assumptions as in Lemma 4.3.1 and Lemma
4.3.2, we have

|Ck| ≤
(

80

7

)n
ε|Dk| =: ε1|Dk| for k ∈ N ∪ {0}.

In addition, by iteration, we obtain∣∣∣∣{x ∈ ΩR0 :M
(
|Du|

p(·)
p− χΩ4R0

)
(x) > Nkλ0

}∣∣∣∣
≤ εk1

∣∣∣∣{x ∈ ΩR0 :M
(
|Du|

p(·)
p− χΩ4R0

)
(x) > λ0

}∣∣∣∣
+

k∑
i=1

εi1

∣∣∣∣{x ∈ ΩR0 : [M1(µ)(x)]
p(x)
p− > δNk−iλ0

}∣∣∣∣ .
(4.3.19)

4.4 Calderón-Zygmund type estimates

We first obtain standard energy type estimate for the problem (4.0.1), which
will be used to prove Theorem 4.1.4.
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Lemma 4.4.1. Assume that (4.0.2) and (4.0.3), and let 1 ≤ q < n
n−1

. If u is
a SOLA of (4.0.1), then there exist positive constants c̄1 and c̄2, depending
only on n, λ, q, and Ω, such that

ˆ
Ω

|Du|q dx ≤ c̄1|µ|(Ω) ≤ c̄2

ˆ
Ω

M1(µ) dx. (4.4.1)

Proof. Since |µ|(Ω) ≤ diam(Ω)n−1M1(µ)(x) for all x ∈ Ω, the second in-
equality of (4.4.1) holds. We set

ũ(y) =
u(x0 + ry)

Ar
, µ̃(y) =

rµ(x0 + ry)

A
, and ã(Aξ, y) =

a(Aξ, x0 + ry)

A
,

where r := diam(Ω), x0 ∈ Ω,

A :=
|µ|(Ω)

rn−1
, and Ω̃ := {y ∈ Rn : x0 + ry ∈ Ω} ⊂ B1.

Here we extend u and µ by zero to Rn. Then we see that the operator ã
satisfies (4.0.2) and (4.0.3), and ũ is a SOLA of the following problem{

− div ã(Dũ, y) = µ̃ in Ω̃,

ũ = 0 on ∂Ω̃.
(4.4.2)

Fix q ∈ [1, n
n−1

). If
´

Ω̃
|Dũ| dy =

´
B1
|Dũ| dy ≤ c, then

´
Ω
|Du| dx ≤ crnA,

that is, the first inequality of (4.4.1) holds. Thus, it suffices to show that´
B1
|Dũ| dy ≤ c.
Consider the regularized problem (4.1.1) with uh replaced by ũh. We

denote, for k ∈ N,

Dk := {y ∈ B1 : |ũh(y)| ≤ k} and Ck := {y ∈ B1 : k < |ũh(y)| ≤ k + 1}.

Then (4.1.3) implies

ˆ
Dk

|Dũh|2 dy ≤ ck and

ˆ
Ck

|Dũh|2 dy ≤ c

by substituting test functions Tk(ũh) and Φk(ũh), respectively, into the weak
formulation of (4.4.2). Here the functions Tk and Φk are given in (3.2.9). We

75



CHAPTER 4. OPTIMAL REGULARITY FOR ELLIPTIC MEASURE
DATA PROBLEMS IN VARIABLE EXPONENT SPACES

discover ˆ
Dk

|Dũh|q dy ≤
ˆ
Dk

(|Dũh|+ 1)2 dy ≤ c(k + 1).

From the definition of Ck, we see

|Ck| =
ˆ
Ck

1 dy ≤
ˆ
Ck

(
|ũh|
k

) nq
n−q

dy = k−
nq
n−q

ˆ
Ck

|ũh|
nq
n−q dy.

It therefore follows from Hölder’s inequality that

ˆ
Ck

|Dũh|q dy ≤ ck−
nq(2−q)
2(n−q)

(ˆ
Ck

|ũh|
nq
n−q dy

) 2−q
2

.

Then we discover from Hölder’s and Sobolev’s inequality that for k0 ∈ N,

ˆ
B1

|Dũh|q dy ≤ c(k0 + 1) + c
∞∑

k=k0

k−
nq(2−q)
2(n−q)

(ˆ
Ck

|ũh|
nq
n−q dy

) 2−q
2

≤ c(k0 + 1) + c

[
∞∑

k=k0

k−
n(2−q)
n−q

] q
2
(
∞∑

k=k0

ˆ
Ck

|ũh|
nq
n−q dy

) 2−q
2

≤ c(k0 + 1) + cH(k0)

(ˆ
B1

|Dũh|q dy
)n(2−q)

2(n−q)

,

where H(k0) :=
[∑∞

k=k0
k−

n(2−q)
n−q

] q
2

. Note that n(2−q)
n−q > 1, since q < n

n−1
.

For n > 2, we know 0 < n(2−q)
2(n−q) < 1, and then the above estimate and

Young’s inequality yield

ˆ
B1

|Dũh|q dy ≤ c(n, λ, q,Ω) (4.4.3)

by putting k0 = 1. For n = 2, we know n(2−q)
2(n−q) = 1. We take an integer k0 > 1

so that cH(k0) < 1
2
. Then (4.4.3) also holds. Using this estimate and letting

h go to zero, we conclude from (4.1.4) that
´
B1
|Dũ|q dy ≤ c, which completes

the proof.
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4.4.1 Local estimates

We first obtain local estimates for the problem (4.0.1).

Proof of (4.1.7). We first recall (4.3.1) and (4.3.2). Fix anyR0 ∈
(

0, 1
c0(|µ|(Ω)+1)

]
with

1

c0(n, λ,Λ, γ1, ω(·), R,Ω)
:= min

{
1

16
√

2
,
R

8
√

2
,

1

c̄1

,
ω−1(d)

8
√

2

}
, (4.4.4)

where the constant c̄1 is given in Lemma 4.4.1 (q = 1),

d := min

{
1,
σ0γ1

2
,

γ1

4(n− 1)

}
, and ω−1(t) := sup {r ∈ (0, 1) : ω(r) ≤ t}

for t > 0. Note that the function ω−1 is well defined by the definition of
ω. Then we see from Lemma 4.4.1 that this R0 above satisfies (4.3.1) and
(4.3.2), and one can apply all the results obtained in Chapter 4.3 as follows.

Set

S :=
∞∑
k=1

Nkp−

∣∣∣∣{x ∈ ΩR0(x0) :M
(
|Du|

p(·)
p− χΩ4R0

(x0)

)
(x) > Nkλ0

}∣∣∣∣ ,
where λ0 and N are given in (4.3.3) and (4.3.19), respectively, and p− :=
infx∈Ω4R0

(x0) p(x). Then we deduce from (4.3.19), Fubini’s theorem, and Lemma
2.1.4 that

S ≤
∞∑
i=1

(Nγ2ε1)i
{

2|ΩR0(x0)|+ c

(δλ0)p−

ˆ
ΩR0

(x0)

M1(µ)
p(x)
p− dx

}
.

Now we select ε1 with Nγ2ε1 = 1
2
, and then we can take ε and a corresponding

δ = δ(n, λ,Λ, γ1, γ2, L) > 0. Consequently, we obtain

S ≤ 2|ΩR0(x0)|+ c

λ
p−
0

ˆ
ΩR0

(x0)

M1(µ)
p(x)
p− dx. (4.4.5)
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Finally, according to Lemma 2.1.4, (4.4.5), and (4.3.3), we conclude

 
ΩR0

(x0)

|Du|p(x) dx ≤
 
ΩR0

(x0)

M
(
|Du|

p(·)
p− χΩ4R0

(x0)

)p−
dx

≤ cλ
p−
0

(
1 +

S

|ΩR0(x0)|

)
≤ c

{
λ
p−
0 +

 
ΩR0

(x0)

M1(µ)
p(x)
p− dx

}

≤ c

{( 
Ω4R0

(x0)

|Du|
p(x)
p− dx+ 1

)p−

+

 
Ω4R0

(x0)

M1(µ)p(x) dx+ 1

}

for some constant c = c(n, λ,Λ, γ1, γ2, L) > 0. This completes the proof.

4.4.2 Global estimates

Now we extend the local estimates (4.1.7) up to the boundary by a standard
covering argument.

Proof of (4.1.8). Let R0 = 1
c0(|µ|(Ω)+1)

, where c0 is given in (4.4.4). Since Ω̄

is compact, we can cover Ω̄ by a collection of finitely many balls, each of
which has radius R0

3
and center in Ω. By the Vitali covering lemma, there

exists a finite family of disjoint open balls
{
BR0

3
(yi)
}m
i=1

, yi ∈ Ω, such that

Ω̄ ⊂
⋃m
i=1BR0(yi). Note that there is a constant c depending only on the

dimension n so that

m∑
i=1

ˆ
Ω4R0

(yi)

f dx ≤ c

ˆ
Ω

f dx.

Then our applying the estimate (4.1.7) with yi (i ∈ N) in place of x0

yields

ˆ
Ω

|Du|p(x) dx ≤
m∑
i=1

ˆ
ΩR0

(yi)

|Du|p(x) dx

≤ c
m∑
i=1

{
Rn

0

( 
Ω4R0

(yi)

[|Du|+ 1]
pi+
pi− dx

)pi−

+

ˆ
Ω4R0

(yi)

[
M1(µ)p(x) + 1

]
dx

}

≤ c

{
R
n(1−γ2)
0

(ˆ
Ω

[|Du|+ 1]1+ 1
4(n−1) dx

)γ2

+

ˆ
Ω

[
M1(µ)p(x) + 1

]
dx

}
,
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since

pi+
pi−

= 1 +
pi+ − pi−

pi−
≤ 1 +

ω(8R0

√
2)

γ1

≤ 1 +
1

4(n− 1)
<

n

n− 1
,

where pi− := infx∈Ω4R0
(yi) p(x), and pi+ := supx∈Ω4R0

(yi)
p(x).

Finally, we obtain, using Lemma 4.4.1 and Hölder’s inequality, that

ˆ
Ω

|Du|p(x) dx

≤ c

{(ˆ
Ω

M1(µ) dx

)n(γ2−1)(ˆ
Ω

M1(µ) dx

)γ2

+

ˆ
Ω

M1(µ)p(x) dx+ 1

}

≤ c


(ˆ

Ω

M1(µ)γ1 dx

)n(γ2−1)+γ2
γ1

+

ˆ
Ω

M1(µ)p(x) dx+ 1


≤ c


(ˆ

Ω

[M1(µ) + 1]p(x) dx

)n(γ2−1)+γ2
γ1

+ 1


for some constant c = c(n, λ,Λ, γ1, γ2, ω(·), L,R,Ω) > 0.

We are now in a position to prove the desired estimate (4.1.9).

Proof of (4.1.9). First let us define

ū =
u

A
, µ̄ =

µ

A
, and ā(ξ, x) =

a(Aξ, x)

A
,

for some positive constant A > 0. Then it readily check that ā satisfies (4.0.2)
and (4.0.3), (ā,Ω) is (δ, R)-vanishing of codimension 1, and ū is a SOLA of
the following problem{

− div ā(Dū, x) = µ̄ in Ω,
ū = 0 on ∂Ω.

Set A := ||M1(µ)||Lp(·)(Ω). We may as well assume ||M1(µ)||Lp(·)(Ω) > 0. Then
we know ||M1(µ̄)||Lp(·)(Ω) = 1.

On the other hand, (2.1.2) implies that
´

Ω
M1(µ̄)p(x) dx = 1. Further-

more, in light of (2.1.2) and (4.1.8), we have ||Dū||Lp(·)(Ω) ≤ c
1
γ1 . Consequently
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we conclude that
||Du||Lp(·)(Ω) ≤ c ||M1(µ)||Lp(·)(Ω)

for some constant c = c(n, λ,Λ, γ1, γ2, ω(·), L,R,Ω) > 0.
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Chapter 5

Global weighted Orlicz
estimates for parabolic measure
data problems: Application to
estimates in variable exponent
spaces

In this chapter we study the Cauchy-Dirichlet problem with measure data{
ut − div a(Du, x, t) = µ in ΩT ,

u = 0 on ∂pΩT ,
(5.0.1)

where the nonhomogeneous term µ is a signed Radon measure on ΩT with
finite total variation |µ|(ΩT ) < ∞. We assume that µ is defined in Rn+1 by
considering the zero extension to Rn+1, and the nonlinearity a = a(ξ, x, t) :
Rn ×Rn ×R→ Rn is assumed to be measurable in x and t and satisfies the
following structure conditions:{

|ξ||Dξa(ξ, x, t)|+ |a(ξ, x, t)| ≤ Λ|ξ|,
λ|η|2 ≤ 〈Dξa(ξ, x, t)η, η〉 , (5.0.2)

for every x, η ∈ Rn, t ∈ R, ξ ∈ Rn \ {0}, and some positive constants λ,Λ.
The aim of Chapter 5 is to develop a global Calderón-Zygmund type

estimate for a solution to the problem (5.0.1) in weighted Orlicz spaces. More
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precisely, we deduce a weighted norm inequality for the spatial gradient of a
solution to (5.0.1) in the setting of Orlicz spaces by essentially proving that
for any pair (w,Φ) ∈ (A∞,∆2 ∩∇2), there holds

ˆ
ΩT

Φ(|Du|)w dxdt ≤ c

ˆ
ΩT

Φ(M1(µ))w dxdt

for some positive constant c, being independent of u and µ, under possibly
optimal regularity assumptions on both a and Ω, see Chapter 5.1 for details.
Here M1(µ) is the fractional maximal function of order 1 for µ defined by

M1(µ)(x, t) := sup
r>0

|µ|(Qr(x, t))

rn+1
for (x, t) ∈ Rn × R. (5.0.3)

The present work improves the previous works [25,31], where weak solu-
tions are considered, to a very general extent. When dealing with a measure
µ on the right-hand side of (5.0.1), it does not generally belong to the dual
of the energy space C([0, T ];L2(Ω)) ∩ L2(0, T ;W 1,2

0 (Ω)), and so we need a
very general notion of solution beyond that of weak solution, as we will see
in Chapter 5.1.

The nonlinearity a(ξ, ·, ·) is allowed to be merely measurable with respect
to one of the spatial variables and of small bounded mean oscillation (BMO)
in the other spatial variables and time variable. This makes it different from
the very interesting measure data problems [82,83] in which the nonlinearity
a has a small BMO in the all spatial variables.

Our proof consists in showing a decay estimate of the upper-level sets of
the maximal function of |Du| by means of M1(µ) in the frame of weighted
Orlicz spaces. In the process we make difference estimates by comparing the
problem (5.0.1) with an associated homogeneous problem, see Chapter 5.2.

A main point in Chapter 5 is to validate a practical application of the
extrapolation theorem [44–46] to the setting of variable exponent spaces. This
application confirms that obtaining weighted Lp estimates for the problem
(5.0.1) essentially leads to obtaining Lp(·) estimates. Indeed, the application
of the extrapolation and our result (Theorem 5.1.4) yield the Lp(·) estimate
of the gradient of a solution to (5.0.1), see Chapter 5.3.
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5.1 Main results

A solution u of (5.0.1) will be treated in the sense of distribution. This does
not in general belong to a weak solution in C([0, T ];L2(Ω))∩L2(0, T ;W 1,2

0 (Ω))
(consider the heat equation with the Dirac measure). For this reason, it is
necessary to extend a class of solutions below the natural exponent.

Definition 5.1.1. u ∈ L1(0, T ;W 1,1
0 (Ω)) is a SOLA to (5.0.1) if the nonlin-

earity a ∈ L1(ΩT ,Rn),

ˆ
ΩT

−uϕt + 〈a(Du, x, t), Dϕ〉 dxdt =

ˆ
ΩT

ϕ dµ

holds for all ϕ ∈ C∞c (ΩT ), and moreover there exists a sequence of weak
solutions {uh}h≥1 ⊂ C([0, T ];L2(Ω)) ∩ L2(0, T ;W 1,2

0 (Ω)) of the regularized
problems {

(uh)t − div a(Duh, x, t) = µh in ΩT ,
uh = 0 on ∂pΩT

(5.1.1)

such that
uh → u in L1(0, T ;W 1,1

0 (Ω)) as h→∞,

where µh ∈ L∞(ΩT ) converges weakly to µ in the sense of measure and sat-
isfies that for each open set Q ⊂ Rn+1,

lim sup
h→∞

|µh|(Q) ≤ |µ|(Q̄), (5.1.2)

with µh defined in Rn+1 by the zero extension of µh to Rn+1 \ ΩT .

Here we regard {µh} as a sequence of smooth functions derived from the
measure µ via mollification. Then µh converges weakly to µ in the sense
of measure, and the uniform L1-estimate, ||µh||L1(ΩT ) ≤ |µ|(ΩT ), holds, see
also [63, Lemma 5.1].

A method of approximation in [11, 12] gives the existence of a SOLA u
to the problem (5.0.1), and the results in [11,12] imply that such a SOLA u
of (5.0.1) belongs to Lq(0, T ;W 1,q

0 (Ω)) such that

uh → u in Lq(0, T ;W 1,q
0 (Ω)) for all q ∈

[
1,
n+ 2

n+ 1

)
. (5.1.3)

On the other hand, the uniqueness of a SOLA is still a main open problem
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except for the linear case, a(ξ, x, t) = a(x, t)ξ, see [85] and the references
therein.

We start with the main regularity assumptions on a and Ω.

Definition 5.1.2. We say (a,Ω) is (δ, R)-vanishing of codimension 1 if for
every point (y, s) ∈ ΩT and every number r ∈

(
0, R

3

]
, the following conditions

hold.

(i) If dist(y, ∂Ω) > r
√

2, then there exists a new coordinate system depend-
ing only on (y, s) and r, still denoted by {x1, · · · , xn, t}, in which the
origin is (y, s) and

 
Qr
√

2

∣∣θ(a, Qr
√

2)(x, t)
∣∣ dxdt ≤ δ,

where

θ(a, Qr)(x, t) := sup
ξ∈Rn\{0}

∣∣a(ξ, x′, xn, t)− āQ′r(ξ, xn)
∣∣

|ξ|
,

and āQ′r(ξ, xn) is the integral average of a(ξ, ·, xn, ·) over Q′r ⊂ Rn−1×R.

(ii) If dist(y, ∂Ω) = dist(y, y0) ≤ r
√

2 for some y0 ∈ ∂Ω, then there is
a new coordinate system depending only on (y, s) and r, still denoted
by {x1, · · · , xn, t}, in which the origin is (y0, s) + 3δren, where en :=
(0, · · · , 0, 1),

B+
3r ⊂ B3r ∩ Ω ⊂ B3r ∩ {(x′, xn, t) : xn > −6δr}, (5.1.4)

and  
Q3r

|θ(a, Q3r)(x, t)| dxdt ≤ δ.

Remark 5.1.3. (i) Definition 5.1.2 is the parabolic version of Definition
4.1.2, see also Remark 4.1.3.

(ii) If (a,Ω) is (δ, R)-vanishing of codimension 1, then a(ξ, ·) is merely mea-
surable in the xn variable and of small BMO in the other variables x′

and t. Moreover, the domain Ω with (5.1.4) is called a (δ, R)-Reifenberg
flat domain, see Chapter 2.1.3. This domain also satisfies the following
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measure density condition:

sup
0<r≤R

3

sup
(y,s)∈ΩT

|Qr(y, s)|
|ΩT ∩Qr(y, s)|

≤

(
2
√

2

1− δ

)n+2

≤

(
16
√

2

7

)n+2

. (5.1.5)

We are now ready to present our main results in Chapter 5.

Theorem 5.1.4. Let u be a SOLA of the problem (5.0.1). Assume that Φ
satisfies ∆2 ∩ ∇2-condition and that w is an A∞ weight. Then there is a
small constant δ = δ(n, λ,Λ,Φ, [w]A∞) ∈

(
0, 1

8

)
such that if (a,Ω) is (δ, R)-

vanishing of codimension 1 for some R > 0, then there holds

||Du||LΦ
w(ΩT ) ≤ c ||M1(µ)||LΦ

w(ΩT ) , (5.1.6)

for some constant c = c (n, λ,Λ,Φ, [w]A∞ , R,ΩT ) > 0.

Remark 5.1.5. The estimate (5.1.6) is a generalization of the estimate in
the weighted Lebesgue spaces, previously established in [20, 25, 31], from two
aspects. When Φ(τ) = τ p (p > 1), it reduces to

ˆ
ΩT

|Du|pw(x, t) dxdt ≤ c

ˆ
ΩT

M1(µ)pw(x, t) dxdt ∀p ∈ (1,∞).

It also holds for w ∈ Ap for all p ≥ 1, as Ap ⊂ A∞.

5.2 Proof of Theorem 5.1.4

5.2.1 Comparisons

Let us for simplicity assume that our solution u of (5.0.1) is defined on Ω×R
as follows: for t ≥ T the solution and the equation can be extended by taking
µ = 0 so that all the properties in question are preserved. For t ≤ 0 one can
use the zero extension of u. Thus, it suffices to consider only the estimates
on the lateral boundary.

This subsection will discuss the comparison L1-estimates for the spatial
gradient of the weak solution uh to the regularized problem (5.1.1) only in a
localized cylinder near the boundary, as analogous estimates in the interior
cylinder can be derived in a similar way.
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We denote, for a measurable set E ⊂ Rn × R,

|µh|(E) :=

ˆ
E

|µh(x)| dxdt.

Let 0 < r ≤ R
8

. Assume that (a,Ω) is (δ, R)-vanishing of codimension 1 such
that

B+
8r ⊂ B8r ∩ Ω ⊂ B8r ∩ {xn > −16δr}, (5.2.1)

and  
Q8r

|θ(a, Q8r)(x, t)| dxdt ≤ δ, (5.2.2)

where δ is determined later in a universal way.
Let wh ∈ uh+C([−(8r)2, (8r)2];L2(B8r∩Ω))∩L2(−(8r)2, (8r)2;W 1,2

0 (B8r∩
Ω)) be the weak solution of the homogeneous problem{

(wh)t − div a(Dwh, x, t) = 0 in K8r,
wh = uh on ∂pK8r.

(5.2.3)

Using the measure density condition (5.1.5), we can extend the compar-
ison result in [67, Lemma 4.1] (or [55, Lemma 4.1]) up to the boundary, as
we now state.

Lemma 5.2.1. If wh is the weak solution of (5.2.3) satisfying (5.2.1), then
there exists a constant c = c(n, λ, q) > 0 such that

 
K8r

|Duh −Dwh|q dxdt ≤ c

[
|µh|(K8r)

rn+1

]q
for all q ∈

(
0,
n+ 2

n+ 1

)
.

We now need a higher integrability result of the weak solution wh to
(5.2.3), as we have seen in [17,62].

Lemma 5.2.2. There exists a constant σ0 = σ0(n, λ,Λ) > 0 such that the
following holds: for any r ∈

(
0, R

8

]
, if wh is the weak solution of (5.2.3)

satisfying (5.2.1), then for any 0 < σ ≤ σ0 and K2r̃(x̃0, t̃0) ⊂ K8r with
r̃ ≤ 4r, there is a constant c = c(n, λ,Λ, t) > 0 such that( 

Kr̃(x̃0,t̃0)

|Dwh|2(1+σ) dxdt

) 1
1+σ

≤ c

( 
K2r̃(x̃0,t̃0)

|Dwh|2t dxdt
) 1

t

for all t ∈ (0, 1].
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From Hölder’s inequality and Lemma 5.2.2, we directly deduce

Corollary 5.2.3. Under the same assumptions as in Lemma 5.2.2, we have

 
Kr̃(x̃0,t̃0)

|Dwh|2 dxdt ≤ c

( 
K2r̃(x̃0,t̃0)

|Dwh| dxdt
)2

for some constant c = c(n, λ,Λ) > 0.

Let vh ∈ wh+C([−(4r)2, (4r)2];L2(B4r∩Ω))∩L2(−(4r)2, (4r)2;W 1,2
0 (B4r∩

Ω)) be the weak solution to the homogeneous frozen problem{
(vh)t − div āQ′4r(Dvh, xn) = 0 in K4r,

vh = wh on ∂pK4r.
(5.2.4)

Note that the operator āQ′4r satisfies the structure condition (5.0.2) with
a(ξ, ·, xn, ·) replaced by āQ′4r(ξ, xn). Then we have the following comparison
result between (5.2.3) and (5.2.4).

Lemma 5.2.4. Assume that K8r satisfies (5.2.1) and (5.2.2). Let wh and
vh be the weak solutions of (5.2.3) and (5.2.4), respectively. Then there is a
constant c = c(n, λ,Λ) > 0 such that

 
K4r

|Dwh −Dvh|2 dxdt ≤ cδσ1

( 
K8r

|Dwh| dxdt
)2

,

where σ1 is the constant depending only on σ0 given in Lemma 5.2.2.

Proof. The proof is similar to that of the elliptic case (see [20, Lemma 5.6]).

We next consider the limiting problem{
(v̄h)t − div āQ′4r(Dv̄h, xn) = 0 in Q+

3r,
v̄h = 0 on Q3r ∩ {xn = 0}, (5.2.5)

to deduce the following comparison estimate between (5.2.4) and (5.2.5), and
Lipschitz estimate for (5.2.5).

Lemma 5.2.5. For any small ε ∈ (0, 1), there is δ = δ(n, λ,Λ, ε) > 0 such
that if vh is the weak solution of (5.2.4) with (5.2.1) and (5.2.2), then there is
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a weak solution v̄h ∈ C([−(3r)2, (3r)2];L2(B+
3r))∩L2(−(3r)2, (3r)2;W 1,2(B+

3r))
of (5.2.5) such that

 
K3r

|Dvh −Dv̄h|2 dxdt ≤ ε2
 
K4r

|Dvh|2 dxdt, (5.2.6)

and

||Dv̄h||L∞(K2r)
≤ c

 
K3r

|Dv̄h| dxdt (5.2.7)

for some constant c = c(n, λ,Λ) > 0. Here v̄h is extended by zero from Q+
3r

to K3r.

Proof. The estimate (5.2.6) can be obtained from the compactness argument
(for instance [27, Lemma 3.8]). On the other hand, combining the interior
Lipschitz estimate (see [19, Section 4]) of the problem (5.2.5) and the reflec-
tion argument (see [20, Section 4]) yields the estimate (5.2.7).

We finally combine Lemma 5.2.1, Lemma 5.2.4 and Lemma 5.2.5 to find
the boundary comparison L1-estimate.

Lemma 5.2.6. Let ρ > 1 and 0 < r ≤ R
8

. Then for any 0 < ε < 1, there
exists a small δ = δ(n, λ,Λ, ε) > 0 such that if uh, wh, and vh are the weak
solutions of (5.1.1), (5.2.3), and (5.2.4), respectively, with (5.2.1), (5.2.2)
and  

K8r

|Duh| dxdt ≤ ρ and
|µh|(K8r)

rn+1
≤ δρ,

then there exists a weak solution v̄h of (5.2.5) such that

 
K3r

|Duh −Dv̄h| dxdt ≤ ερ and ||Dv̄h||L∞(K2r)
≤ cρ

for some constant c = c(n, λ,Λ) > 0. Here v̄h is extended by zero from Q+
3r

to K3r.

5.2.2 Covering arguments

For any fixed ε ∈ (0, 1) and N > 1, we define upper-level sets as follows:

C := {(x, t) ∈ ΩT :M (|Du|) > N} ,
D := {(x, t) ∈ ΩT :M (|Du|) > 1} ∪ {(x, t) ∈ ΩT :M1(µ) > δ} ,
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where M1 is given in (5.0.3).

Lemma 5.2.7. Let w be an A∞ weight. There is a constant N = N(n, λ,Λ) >
1 so that for any ε > 0, there exists a small constant δ = δ(n, λ,Λ, [w]A∞ , ε) >
0 such that if u is a SOLA of (5.0.1) with (a,Ω) is (δ, R)-vanishing of codi-
mension 1, and

w (C ∩Qr(y, s)) ≥ εw (Qr(y, s)) (5.2.8)

for some cylinder Qr(y, s) with (y, s) ∈ ΩT and 100r ≤ R, then Qr(y, s) ∩
ΩT ⊂ D.

Proof. The proof is similar to that of the elliptic case in [37, Lemma 1.3] (see
also [31, Lemma 5.3], [83, Lemma 3.2], [88, Proposition 3.1], or [79, Lemma
10]). For the sake of completeness, we sketch the proof.

Step 1. Assume that Qr(y, s) ∩ ΩT 6⊂ D. Then there would exist a point
(y1, s1) ∈ Qr(y, s) ∩ ΩT such that (y1, s1) /∈ D, that is,

 
Qr(y1,s1)

|Du| dxdt ≤ 1 and
|µ|(Qr(y1, s1))

rn+1
≤ δ for all r > 0. (5.2.9)

Step 2. We divide the proof into two cases: the interior
(
Q10r

√
2(y1, s1) ⊂ ΩT

)
and the boundary

(
Q10r

√
2(y1, s1) 6⊂ ΩT

)
cases. We only consider the bound-

ary case, as the interior case can be proved in a same way.
Step 3. Let Q10r

√
2(y1, s1) 6⊂ ΩT . Then there exists a boundary point

(ỹ1, s1) ∈ (∂Ω× (0, T ])∩Q10r
√

2(y1, s1). We remark that the boundary point
in the bottom of ΩT can be treated in the same way. Definition 5.1.2 implies
that there is a new coordinate system modulo rotation and translation, which
we still denote by {x1, · · · , xn, t}, with the origin is (ỹ1, s1) + 30δren, where
en := (0, · · · , 0, 1),

B+
30r ⊂ B30r ∩ Ω ⊂ B30r ∩ {(x′, xn, t) : xn > −60δr}, Qr(y, s) ⊂ Q6r,

and  
Q30r

|θ(a, Q30r)(x, t)| dxdt ≤ δ.

Then it follows from (5.2.9), (5.1.3) and (5.1.2) that

 
K30r

|Duh| dxdt ≤ c and
|µh|(K30r)

rn+1
≤ cδ
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for h sufficiently large.
Step 4. According to Lemma 5.2.6 and Definition 5.1.1, we deduce that

for any 0 < η < 1, there exists a constant δ = δ(n, λ,Λ, η) > 0 such that

 
K10r

|Du−Dv̄h| dxdt ≤ cη and ||Dv̄h||L∞(K10r)
≤ c. (5.2.10)

Step 5. We now have from (5.2.10) that

C ∩Qr(y, s) ⊂ {(x, t) ∈ Kr(y, s) :M (|Du−Dv̄h|) > 1} ∩K6r (5.2.11)

by choosing N = N(n, λ,Λ) large enough.
Step 6. We employ (5.2.11), (2.2.3) and (5.2.10) to obtain

|C ∩Qr(y, s)| ≤ c

ˆ
K10r

|Du−Dv̄h| dxdt ≤ c2η|Qr(y, s)| (5.2.12)

for some constant c2 = c2(n, λ,Λ) > 1.
Step 7. We finally conclude, using (2.2.1) and (5.2.12), that

w (C ∩Qr(y, s)) ≤ c0

(
|C ∩Qr(y, s)|
|Qr(y, s)|

)α
w (Qr(y, s))

≤ c0(c2η)αw (Qr(y, s)) < εw (Qr(y, s))

by taking η sufficiently small. As a consequence, δ is also determined, which
is a contradiction to (5.2.8).

Lemma 5.2.7, Lemma 2.2.1 and the iterative procedure yield the following
power decay estimate.

Lemma 5.2.8. In addition to the assumptions as in Lemma 5.2.7, suppose
that

w
(
C ∩QR/100(y, s)

)
< εw

(
QR/100(y, s)

)
for all (y, s) ∈ ΩT . (5.2.13)
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Then we have

w
({

(x, t) ∈ ΩT :M (|Du|) > Nk
})

≤ εk1w ({(x, t) ∈ ΩT :M (|Du|) > 1})

+
k∑
i=1

εi1w
({

(x, t) ∈ ΩT :M1(µ) > δNk−i}) , (5.2.14)

where ε1 := εc1 and the constant c1 is given in Lemma 2.2.1.

5.2.3 Calderón-Zygmund type estimates

We first derive standard energy type estimate for the problem (5.0.1), which
will be used to prove Theorem 5.1.4.

Lemma 5.2.9. Let 1 ≤ q < n+2
n+1

. If u is a SOLA of (5.0.1) satisfying (5.0.2),
then there exists a constant c = c(n, λ, q,ΩT ) > 0 such that(ˆ

ΩT

|Du|q dxdt
) 1

q

≤ c

ˆ
ΩT

M1(µ) dxdt. (5.2.15)

Proof. From [11, Lemma 2.2] and the scaling invariance property of (5.0.1),
we deduce the estimate (5.2.15). We refer to Lemma 4.4.1 for the elliptic
case.

We are now in a position to prove the main result in Chapter 5.

Proof of Theorem 5.1.4. In light of the scaling invariance property of (5.0.1),
we may take R = 1 and assume that

||M1(µ)||LΦ
w(ΩT ) = δ and

ˆ
ΩT

M1(µ) dxdt ≤ cδ. (5.2.16)

Here the second inequality of (5.2.16) is derived from [25, Lemma 4.1] and
the property A∞ =

⋃
1≤p<∞Ap.

We employ (2.2.1), (2.2.3), (5.2.15) and (5.2.16) to obtain the condition
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(5.2.13) as follows:

w
(
C ∩Q1/100(y, s)

)
w
(
Q1/100(y, s)

) ≤ c0

(
|C ∩Q1/100(y, s)|
|Q1/100(y, s)|

)α
≤ c|C|α ≤ c

(ˆ
ΩT

|Du| dxdt
)α
≤ c

(ˆ
ΩT

M1(µ) dxdt

)α
≤ cδα < ε

by taking δ sufficiently small.
Set

S :=
∞∑
k=1

Φ(Nk)w
({

(x, t) ∈ ΩT :M (|Du|) > Nk
})
,

where N is given in (5.2.14).
According to Lemma 2.2.2 and scaling invariance property of (5.0.1), it

suffices to show that S is finite. Note that the ∆2-condition of Φ implies that
there exists a constant N1 depending only on N such that Φ(Nk) ≤ Nk

1 Φ(1).
Then we deduce from (5.2.14), Fubini’s theorem, (2.2.4), (2.2.2) and (5.2.16)
that

S ≤ Φ(1)
∞∑
k=1

(N1ε1)kw ({(x, t) ∈ ΩT :M (|Du|) > 1})

+ Φ(1)
∞∑
i=1

(N1ε1)i
∞∑
k=i

Φ(Nk−i)w
({

(x, t) ∈ ΩT :M1(µ) > δNk−i})
≤ c

{
w(ΩT ) +

ˆ
ΩT

Φ

(
M1(µ)

δ

)
w(x, t) dxdt

} ∞∑
i=1

(N1ε1)i

≤ c (n, λ,Λ,Φ, [w]A∞ ,ΩT ) ,

by selecting ε with N1ε1 = N1c1ε ≤ 1
2
, and thereby a corresponding δ. This

completes the proof.

5.3 Application

In this section, we obtain the global Calderón-Zygmund type estimate for
the problem (5.0.1) in the variable exponent spaces from Theorem 5.1.4 and
the extrapolation (Proposition 5.3.1).

We recall a brief overview of variable exponent spaces and log-Hölder

92



CHAPTER 5. GLOBAL WEIGHTED ORLICZ ESTIMATES FOR
PARABOLIC MEASURE DATA PROBLEMS: APPLICATION TO
ESTIMATES IN VARIABLE EXPONENT SPACES

continuity, see the monographs [44, 51] for details. Let p(·) be a measurable
function defined on ΩT with

1 < γ1 ≤ p(·) ≤ γ2 <∞ (5.3.1)

for some constants γ1 and γ2. The variable exponent Lebesgue space Lp(·)(ΩT )
consists of all measurable functions f : ΩT → R satisfying

ˆ
ΩT

|f(x, t)|p(x,t) dxdt <∞,

equipped with the Luxemburg norm

||f ||Lp(·)(ΩT ) = inf

{
λ > 0 :

ˆ
ΩT

(
|f(x, t)|

λ

)p(x,t)
dxdt ≤ 1

}
.

We introduce the log-Hölder continuity, which is crucial for proving im-
portant properties such as the boundedness of the Hardy-Littlewood maxi-
mal operator, Sobolev’s inequality, Poincaré’s inequality, etc. Given a func-
tion p(·) satisfying (5.3.1), we say that p(·) is log-Hölder continuous in ΩT

if there exists a constant L > 0 such that for all (x, t), (y, s) ∈ ΩT with
dp((x, t), (y, s)) ≤ 1

2
,

|p(x, t)− p(y, s)| ≤ L

− log dp((x, t), (y, s))
,

where dp is the standard parabolic distance, see Chapter 2.2.1.
We now mention the following variable version of the extrapolation the-

orem introduced by Rubio de Francia:

Proposition 5.3.1 (See [44, Corollary 5.32]). Let U be a bounded domain
of Rn+1. Suppose that for some p0 ≥ 1 the following inequality holds: for all
w ∈ Ap0,

ˆ
U

F (x, t)p0w(x, t) dxdt ≤ cp0

ˆ
U

G(x, t)p0w(x, t) dxdt,

where (F,G) is a pair of nonnegative and measurable functions.
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Given a log-Hölder continuous function p(·) satisfying (5.3.1), we have

||F ||Lp(·)(U) ≤ c ||G||Lp(·)(U) , (5.3.2)

where the constant c = c(n, γ1, γ2, L, U) > 1.

Remark 5.3.2. It was recently proved that there is a more general version
of the extrapolation. Indeed, we can extend the estimate (5.3.2) to that in the
weighted variable exponent Lebesgue space (see [46]) or that in the generalized
Orlicz space (see [45]) under some proper conditions.

From Proposition 5.3.1 and Theorem 5.1.4, we discover

Theorem 5.3.3. Let p(·) be log-Hölder continuous satisfying (5.3.1). Under
the same assumptions as in Theorem 5.1.4, we have

||Du||Lp(·)(ΩT ) ≤ c ||M1(µ)||Lp(·)(ΩT ) , (5.3.3)

where the constant c = c (n, λ,Λ, γ1, γ2, L,R,ΩT ) > 0.

Proof. We apply Theorem 5.1.4 when Φ(τ) = τ p0 and w is an Ap0 weight
with p0 > 1, to discover

ˆ
ΩT

|Du|p0w(x, t) dxdt ≤ c

ˆ
ΩT

M1(µ)p0w(x, t) dxdt.

According to Proposition 5.3.1 with F = |Du| and G = M1(µ), we obtain
the estimate (5.3.3).
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[15] V. Bögelein, Global Calderón-Zygmund theory for nonlinear parabolic
systems, Calc. Var. Partial Differential Equations 51 (2014), no. 3-4,
555–596.
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국문초록

이 학위논문에서는 매끄럽지 않은 경계를 가지는 영역 하에서 측도데이터를

가지는 비선형 타원형 및 포물형 방정식에 대한 대역적인 칼데론-지그문트
유형의 추정값에 대하여 연구한다. 비선형성과 영역의 경계에 대한 최소한의
조건하에서 해의 그래디언트가 주어진 측도데이터의 극대함수와 대역적으로

동등한 적분가능성이 가지는 것을 증명함으로써 최적의 칼데론-지그문트 유
형의 추정값을 입증한다. 우리는 변수지수 성장조건을 가지는 비선형 타원형
방정식, 가측 비선형성을 가지는 타원형 및 포물형 방정식에 대하여 각각 대
역적인 칼데론-지그문트 유형의 추정값을 제시한다.

주요어휘: 측도데이터, 정칙성, 칼데론-지그문트 추정값, 라이펜버그 영역, 변
수지수, 외삽법
학번: 2013-30896
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