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Abstract

Efficient Instantiation of LWE-based

Public-Key Encryption and Commitment

Schemes with application to Threshold

Cryptosystems

Jinsu Kim

Department of Mathematical Sciences

The Graduate School

Seoul National University

The Learning with Errors (LWE) problem has been used as a underlying

problem of a variety of cryptographic schemes. It makes possible construct-

ing advanced solutions like fully homomorphic encryption, multi linear map

as well as basic primitives like key-exchange, public-key encryption, signa-

ture. Recently, developments in quantum computing have triggered interest

in constructing practical cryptographic schemes. In this thesis, we propose ef-

ficient post-quantum public-key encryption and commitment schemes based

on a variant LWE, named as spLWE. We also suggest related zero-knowledge

proofs and LWE-based threshold cryptosystems as an application of the pro-

posed schemes. In order to achieve these results, it is essential investigating

the hardness about the variant LWE problem, spLWE. We describe its the-

oretical, and concrete hardness from a careful analysis.

Key words: lattice, learning with errors, LWE, sparse, public-key encryp-

tion, commitment, threshold cryptosystems

Student Number: 2014-30074
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Chapter 1

Introduction

With advances in quantum computing, many people in various fields are

working on making their information security systems resistant to quantum

computing. For example, the National Security Agency (NSA) has announced

a plan to change its Suite B guidance [NSA15], and the National Insti-

tute of Standards and Technology (NIST) is preparing a standardization of

post-quantum crypto for the transition into quantum-resistant cryptography

[NIS15]. There have been also substantial support for post-quantum cryp-

tography project from national funding agencies including the PQCRYPTO

projects [DL+15] in Europe.

In that sense, lattice-based cryptography is a promising field to conduct

practical quantum-resistant research. This is due to the seminal work of Ajtai

[Ajt96] who proved a reduction from the worst-case to the average-case for

some lattice problems. This means that certain problems are hard on aver-

age, as long as the related lattice problems are hard in all cases. This enables

provably secure constructions of cryptographic schemes unless all instances

of related lattice problems are easy to solve. Another remarkable work in

lattice-based cryptography is the introduction of Learning with Errors prob-

lem (LWE) by Regev in [Reg09]. This work shows that there exists a quantum

reduction from some worst-case lattice problems (the shortest independent

vectors problem, the shortest vector problem with a gap) to LWE. With a
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CHAPTER 1. INTRODUCTION

strong security guarantee, LWE makes versatile cryptographic constructions

possible including fully homomorphic encryption, multi-linear map which are

not ever constructed with classical problems. For more details, we refer to

the recent survey [Pei16].

In order to increase efficiency on lattice-based cryptographic schemes, ring

structured problems such as Learning with Errors over the ring (RLWE) and

NTRU [LPR10, Joe98] have received much attentions. A major advantage of

using a ring structure is that one can get a relatively smaller key size and

faster speed. For that reason, a lot of works about cryptographic schemes

with practical implementation have been proposed in RLWE and NTRU set-

tings: public-key encryptions ([DCRVV15, RVM+14, LSR+15]), signatures

([EBB13, DDLL13, GLP12]), key-exchanges ([BCNS15, Sin15]). However,

additional ring structures may give some advantages to attackers. As an ex-

ample, some analyses using the ring structure have been proposed recently.

In particular, some NTRU-based fully homomorphic encryptions proved val-

ueless [ABD16, CJL16] and some parameters of RLWE are confirmed to be

weak [HKK15, HKK16]. Hence, there are growing concerns about the security

gap for ring-structured cryptosystems.

On the other hand, it is reported that LWE-based signatures [DDLL13,

GLP12, DEBG+14] achieve good performance without the use of RLWE, and

studies of practicality of LWE-based key exchange protocols have been re-

cently started in [BCD+16]. However, less attention has been paid to effi-

cient instantiations of LWE-based cryptosystems, commitments and related

protocols. In that sense, proposing of efficient LWE-based public-key encryp-

tion and commitment schemes would be an interesting topic in lattice-based

cryptography. However, constructing of such schemes, which satisfy both

high levels of security and efficiency, is a very non-trivial work and would be

a hard task. it requires a suitable balance between security and efficiency to

constitute a complete proposal, which considers practical usage of them.

This thesis mainly concerns about efficient instantiations of LWE-based

public-key encryption and commitment schemes with a variant of LWE with

2



CHAPTER 1. INTRODUCTION

sparse secret which is known as spLWE in [CHK+16]. This also enables effi-

cient instantiations of LWE-based zero knowledge protocols as well. In par-

ticular, a zero knowledge proof of opening information of commitments, and

zero knowledge proofs which can prove some relations among those com-

mitments are suggested. All of theses allow us to make known LWE-based

threshold cryptosystems actively secure. In particular, this thesis suggest a

threshold version of LWE-based PKE, [48], which has active security, and

IND-CCA security in random oracle model.

On the other hand, the use of sparse secret for efficient instantiation has

one drawback. It requires relatively larger dimension than that of LWE to

maintain security. This is a significant factor for the performance of LWE-

based schemes. A important question then arises: How large dimension is

needed to maintain security? Our main observation is that the problem of

increase in dimension can be relieved by using a small modulus q. Since the

security of LWE is proportional to the size of dimension and error rate, smaller

modulus leads to larger error rate. In conclusion, we can choose a relatively

small modulus q in spLWE-based encryption and commitment schemes from

a thoughtful analysis.

In order to describe the conclusion, we first define the variant problem,

spLWE, and provide analysis for it: We show that spLWE can be reduced

from LWE, which means that the hardness of spLWE can also be based on

the worst-case lattice problems. We also extend all known LWE attacks to

investigate concrete hardness of spLWE. These are used to select efficient

and secure parameters. A remark is that we exclude the parameters which

have provable security from our reduction under the consideration about

practicality. Our reduction serves to guarantee the hardness of spLWE, but is

not tight enough to be useful in setting concrete parameters for our scheme.

Next, we propose post-quantum public-key encryption and commitment

schemes with related zero knowledge protocols based on spLWE. More con-

cretely, we suggest an IND-CPA PKE inspired from [Pei14] and its IND-CCA

conversion in the quantum random oracle model by applying the modified

3



CHAPTER 1. INTRODUCTION

Fujisaki-Okamoto conversion of Unruh [TU15]. In commitment case, we give

a variety of versions of commitment schemes which are based on a general-

ization of the LPN-based commitment scheme in [JKPT12]. We also propose

a commitment scheme dedicated for zero-knowledge proofs suggested in this

thesis. Finally, as a application, we show how to convert our PKE into a

threshold cryptosystem with active security.

List of Papers. This thesis contains results of the following articles:

• 김진수, 천정희: 랜덤선형부호의 복호화 문제와 그의 암호학적 응용. 한

국통신학회지 (정보와통신), 제32권 제6호, 30-38, 2015.

• Jung Hee Cheon, Kyoo Hyung Han, Jinsu Kim, Changmin Lee, and

Yongha Son. A practical post-quantum public-key cryptosystem based

on spLWE. In Information Security and Cryptology–ICISC 2016: 19th

International Conference, Seoul, South Korea, November 30–December

2, 2016, Revised Selected Papers, volume 10157, page 51. Springer,

2016.

• Jung Hee Cheon, Jinsu Kim, and Jae Hong Seo. spLWE-based Commit-

ment Scheme and Zero-Knowledge Proofs for Lattice-based Threshold

Cryptosystems.(In preparation)
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Chapter 2

Preliminaries

2.1 Notations

In this thesis, we use upper-case bold letters to denote matrices, and

lower-case bold letters for column vectors. For a distribution D, a ← D
denotes choosing an element according to the distribution of D and a← Dm

means that each component of a is sampled independently from D. For a

set A, U(A) means a uniform distribution on the set A and a← A denotes

choosing an element according to the uniform distribution on A. We denote

by Zq = Z/qZ = {0, 1 · · · , q − 1} and T = R/Z the additive group of real

numbers modulo 1, and Tq the a subgroup of T having order q, consisting

of {0, 1
q
, · · · , q−1

q
}. The 〈 , 〉 means the inner product of two vectors and [x]i

means the its i-th component.

2.2 Cryptographic notions

In this section, we provide cryptographic notions required in this thesis.

2.2.1 Key Encapsulation Mechanism

A key encapsulation mechanism (in short, KEM) is a key exchange algo-

rithm to transmit an ephemeral key to a receiver with the receiver’s public

5



CHAPTER 2. PRELIMINARIES

key. It differs from encryption scheme where a sender can choose a message.

The sender cannot intend to make a specific ephemeral key. A KEM with

ciphertext space C and key space K consists of polynomial time algorithms

Setup, Keygen, Encap(may be randomized), Decap(should be deterministic):

• Params outputs a public parameters.

• Keygen outputs a public encapsulation key pk and secret decapsulation

key sk.

• Encap takes an encapsulation key pk and outputs a ciphertext c ∈ C
and a key k ∈ K.

• Decap takes a decapsulation key sk and a ciphertext c, and outputs

some k ∈ K ∪ {⊥}, where ⊥ denotes decapsulation failure.

2.2.2 Commitment Scheme

Intuitively, commitment schemes can be regard as a digital version of a

secure box. Thus anyone can commit to secret values without revealing about

their information. Whenever checking for the committed values is needed, he

convinces to a verifier that the value claimed by the committer is indeed the

value in the secure box. we give a formal definition of commitment schemes

[JKPT12], [BKLP15] A commitment scheme with message spaceM consists

of PPT(probabilistic polynomial time) algorithms Setup, Com, Ver:

• Setup(1k, 1κ) The setup algorithm Setup takes as input 1k, 1κ for secu-

rity parameters k, κ, and outputs a public key pk with public parame-

ters.

• Com(pk,m) The commitment algorithm Com takes as input a public

key pk, and a message m ∈ M. It outputs a commitment c, and a

reveal value d.

6



CHAPTER 2. PRELIMINARIES

• Ver(pk, c,m, d) A verification algorithm Ver takes as input a public key

pk, a message m, a commitment c, and a reveal value d. It returns 1 or

0 to accept or reject, respectively.

Our commitment scheme satisfies the following security requirements:

• Correctness : The verification algorithm Ver outputs 1 with overwhelm-

ing probability for all m ∈ M whenever the inputs were computed

honestly, i.e.,

Pr
[
Ver(pk, c,m, d) = 1 : pk ← setup(1k, 1κ), (c, d)← Com(pk,m)

]
= 1− negl(k).

• Computational Hiding : Every commitment computationally hides the committed

messages. Formally, for every probabilistic polynomial time (PPT) adversary A

there is a negligible function negl(k) such that:

Pr


pk ← Setup(1k, 1κ), (m,m′, aux)← A(pk)

b = b′ : b← {0, 1}, (c, d) = Com(mb, pk)

b′ ← A(c, aux)

 ≤ 1

2
+ negl(k)

.

• Perfect Binding : Every commitment cannot be opened to different messages. This

means that the following holds with overwhelming probability over the choice of

the public key pk ← Setup(1k, 1κ):

(Ver(pk, c,m, d) = 1) ∧ (Ver(pk, c,m′, d′) = 1)⇒ m = m′

2.2.3 Zero-Knowledge Proofs and Σ-Protocols

A zero-knowledge proof of knowledge is a two party, prover and verifier

(in short, P and V), protocol. In this protocol, P can convince V that he

knows some secret information without revealing anything about the secret

apart from what is exposed by the claim itself. (For a formal definition,

see Bellare and Goldreich’s work [BG92]). Proof of knowledges are usually

designed by using Σ-protocols [Cra96, Dam10]. Our Zero-knowledge proofs

are instantiations of the following definition, which is a generalization of

the standard notion of Σ-protocols, and is introduced by Benhamouda et al.

7



CHAPTER 2. PRELIMINARIES

[BCK+14, BKLP15] in order to achieve negligible soundness error probability

of their protocols without parallel repetitions.

Definition 2.2.1. Let (P, V ) be a two-party protocol, where V is PPT, and

let L,L′ ⊆ {0, 1}∗ be languages with witness relations R ⊆ R′ ⊆ {0, 1}∗ ×
{0, 1}∗. Then (P, V ) is called a Σ′ -protocol for R,R′ with completeness error

α, challenge set C, public input c and private input w, if and only if it satisfies

the following conditions:

• Three-move form:

• On input (c, w), P computes a commitment t and sends it to V .

• On input c, V samples a challenge d← C and sends it to P .

• P sends a response s to the verifier.

• V accepts or rejects the proof depending on the protocol transcript

(t, d, s) with public input c. Here, (t, d, s) is called accepting tran-

script, if the verifier accepts the protocol run with (t, d, s).

• Completeness: Whenever (c, w) ∈ R, V accepts with probability 1− α
for some 0 ≤ α ≤ 1.

• Special soundness: There exists a PPT algorithm E (the knowledge

extractor) which takes two accepting transcripts (t, d, s), (t, d′, s′) where

d 6= d′, and outputs w′ such that (c, w′) ∈ R′.

• Special honest-verifier computational zero-knowledge: There exists a

PPT algorithm S (the simulator) taking c ∈ L and d ∈ C as inputs,

that outputs triples (t, d, s) whose distribution is computationally in-

distinguishable from accepting protocol transcripts generated by real

protocol runs.

We would like to give intuitive remarks regarding the above definition.

First, α > 0 means even an honest prover sometimes fails to prove knowl-

edge correctly. This is the case of our zero-knowledge proofs like [BCK+14,

8



CHAPTER 2. PRELIMINARIES

BKLP15, BDOP16], which have rejection sampling procedures in their proto-

cols. Second, special soundness property says that even an dishonest prover,

which does not know any w’s such that (c, w) ∈ R′ can knows a witness w0

such that (c, w0) ∈ R′ from the given two accepting transcripts. Thus, an

dishonest prover can answer correctly at most one challenge, i.e. the sound-

ness error is 1/|C|. ([Dam10]) Finally, the existence of a such simulator in

zero-knowledge property means the corresponding real protocol reveals no

information about w. Unlike real protocols, a challenge d is determined in

advance before fixed a commitment t in the proof. This is possible by rewind-

ing the random tape of a honest-verifier.

2.3 Lattices

A lattice L ⊆ Rm is a set of integer linear combinations of a {b1, · · · ,bn}
which is a subset of independent column vectors in Rm,

L = {
n∑
i=1

aibi : ai ∈ Z}

The set of vectors {b1, . . . ,bn}, and its matrix form B are called a basis, and

basis matrix of L respectively. Two bases matrices B1 and B2 describe the

same lattice, if and only if B2 = B1U, where U is a unimodular matrix, i.e.

det(U) = ±1, U ∈ Zm×m. Dimension of a lattice is defined as cardinality of

a basis, i.e. n = dim(L). If n = m, we call lattice L to a full rank lattice. A

sublattice is a subset L′ ⊂ L which is also a lattice. We define determinant

(volume) of L by

det(L) :=
√

det(BTB)

A length of the shortest vector in a lattice L(B) is denoted by λ1(L(B)).

More generally, the i-th successive minima λi(L) is defined as the smallest

radius r such that dim(span(L ∩ B(r))) ≥ i where B(r) is a n dimensional

ball with radius r. There exist several bounds and estimations for the length

of the shortest vector in a lattice.

9



CHAPTER 2. PRELIMINARIES

• Minkowski’s first theorem: λ1(L(B)) ≤
√
n(detL(B))1/n

• Gaussian heuristic: λ1(L(B)) ≈
√

n
2πe

det(L(B))1/n.

The dual lattice of L, denoted L̄, is defined to be L̄ = {x ∈ Rn : ∀v ∈
L, 〈x,v〉 ∈ Z}. In this thesis, we mainly deal with q-ary integer lattices when

solving LWE problem. A q-ary lattice is a full-ranked lattice Λ such that

qZm ⊆ Λ ⊆ Zm. Such q-ary lattices with a basis matrix A ∈ Zm×n are

denoted by,

Λq(A) = {x ∈ Zm|∃y ∈ Zn : x = Ay mod q}

Λ⊥q (A) = {x ∈ Zm|Ax = 0 mod q}

We would like to note that given a matrix A ∈ Zmn, one can find a basis

of Λq(A). With high probability, the determinant of a q-ary lattice is qm−n

when m is relatively larger than n.

We recall the Gram-Schmidt orthogonalization that is closely related with

lattice basis reduction. The Gram-Schmidt algorithm computes orthogonal

vectors {b∗1, . . . ,b∗m} iteratively as follows:

b∗i = bi −
∑
j<i

µi,jb
∗
j where µi,j =

bi·b∗j
b∗j ·b∗j

.

The goal of lattice (basis) reduction is to find a good basis for a given lattice.

A basis is considered good, when the basis vectors are almost orthogonal and

correspond approximately to the successive minima of the lattice. Perfor-

mance of lattice reduction algorithms is evaluated by the root Hermite factor

δ0 defined by

δ0 = (||v||/det(L)1/n)1/n

where v is the shortest vector of the reduced output basis.

10
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2.4 Discrete Gaussian Distribution

For given s > 0, a discrete Gaussian distribution over a lattice L ⊆ Rm

centered at v ∈ Rm is defined as DL,v,s(x) = ρv,s(x)/ρv,s(L) for any x ∈ L,

where

ρv,s(x) = exp(−π‖x− v‖2/s2) and ρs(L) :=
∑
x∈L

ρv,s(x).

We note that the standard deviation is σ = s/
√

2π. Alternatively, we can

represent the Gaussian function ρv,s(x) as ρv,σ(x) then the discrete Gaussian

distribution DL,v,s(x) is defined as DL,v,s(x) = DL,v,σ(x) = ρv,σ(x)/ρv,σ(L)

where

ρv,σ(x) = exp(−‖x− v‖2/2σ2) and ρv,σ(L) :=
∑
x∈L

ρv,σ(x).

When L = Z, v = 0, we omit the subscript L, v respectively and denote

DZm,v,σ(x) by Dm
v,σ(x). We collect some useful lemmas related to a discrete

Gaussian distribution.

Lemma 2.4.1 ([Ban95], Lemma 2.4). For any real s > 0 and T > 0, and

any vector x ∈ Rn, we have

Pr[|〈x, Dn
Z,s〉| ≥ T · s‖x‖] < 2 exp(−π · T 2).

Lemma 2.4.2 ([Reg05], Corollary 3.10). Let L be an n-dimensional lat-

tice, let u, z ∈ Rn be arbitrary vectors, and let r, α be positive real numbers.

Assume that (1/r2 + (‖z/α‖)2)−1/2 ≥ ηε(Λ) for some ε < 1/2. Then the dis-

tribution of 〈z, v〉 + e where v ← DL+u,r and e ← Dα is within statistical

distance 4ε of Dβ for β =
√

(r‖z‖)2 + α2.

Lemma 2.4.3 ([GPV08], Lemma 3.1). For any ε > 0 and an n-dimensional

lattice Λ with basis matrix B, the smoothing parameter ηε(Λ) ≤ ‖B̃‖ ln(2n(1+

1/ε))/π where ‖B̃‖ denotes the length of the longest column vector of B̃ which

11
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is the Gram-Schmidt orthogonalization of B.

Lemma 2.4.4 ([Lyu12], Lemma 4.4). Tail Bounds of discrete Gaussians:

• For any k > 0, Pr [|z| > kσ; z ← Dσ] ≤ 2 exp(−k2/2).

• For any k > 1, Pr [‖z‖ > kσ
√
m; z← Dm

σ ] < km exp(m−mk2/2).

2.5 Computational Problems

2.5.1 SVP

The Shortest Vector Problem(SVP) is one of well-known lattice problem.

The goal is to find a shortest non-zero lattice vector, given a basis of a lattice

Λ. An important variant is the Unique Shortest Vector Problem (uSVP). In

this problem, one knows in advance that λ2(Λ) > αλ1(Λ) for a fixed factor

α > 1 and is called α−uSVP. A detailed analysis with experiments about

uSVP is conducted by Albrecht et al. [AFG13]. They claimed that the attack

succeeds with high probability if

λ2(Λ)

λ1(Λ)
≥ τδm

where τ is a constant depending on a lattice reduction algorithm used. They

also show τ ≈ 0.4 for the BKZ case. For random lattices, the attack succeeds

if

τδm ≤
√
m det(Λ)1/m√

2πeλ1(Λ)

from the Gaussian heuristic.

2.5.2 LWE and Its Variants

For integers n, q ≥ 1, a vector s ∈ Znq , and a distribution φ on R, let Aq,s,φ

be the distribution of the pairs (a, b = 〈a, s〉 + e) ∈ Tnq × T, where a ← Tnq
and e← φ.

12
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Definition 2.5.1 (Learning with Errors (LWE)). For integers n, q ≥ 1, an

error distribution φ over R, and a distribution D over Znq , LWEn,q,φ(D), is to

distinguish (given arbitrarily many independent samples) the uniform distri-

bution over Tnq × T from Aq,s,φ with a fixed sample s← D.

We note that a search variant of LWE is the problem of recovering s

from (a, b) = (a, 〈a, s〉 + e) ∈ Tnq × T sampled according to Aq,s,φ, and these

are also equivalently defined on Znq × Zq rather than Tnq × T for discrete

(Gaussian) error distributions over Zq. Let LWEn,m,q,φ(D) denotes the case

when the number of samples are bounded by m ∈ N. We simply denote

LWEn,q,φ when the secret distribution D is U(Znq ). In many cases, φ is a

(discrete) Gaussian distribution so we simply denote by LWEn,m,q,s instead of

LWEn,m,q,φ. We remark that in the above definition, Aq,s,φ can be substituted

by the distribution over Znq×Zq for a distribution φ on Z by sampling a← Znq .

Clearly these two problems are equivalent.

Let z = Ats mod q ∈ Λq(A). The Search-LWE problem naturally can be

considered as a bounded distance decoding problem (BDD) in Λq(A) with

b = z + e mod q. If one can solve the BDD problem and recover z, then

finding s is easy.

We denote binLWE by the LWE problem whose secret vector is sampled

from uniform distribution over {0, 1}n. For a set Xn,ρ,θ which consists of

the vectors s ∈ Zn whose nonzero components are in {±1,±2,±4, · · · ,±ρ},
and the number of nonzero components is θ, we write spLWEn,m,q,s,ρ,θ as the

problem LWEn,m,q,s(U(Xn,ρ,θ)). We also consider a variant of LWE, LWEn,q,≤α,

in which the amount of noise is some unknown β ≤ α as in [BLP+13].

Similarly, spLWEn,q,≤α,ρ,θ can be defined by the same way.

2.6 Known Attacks for LWE

There are a number of known attacks for LWE. One of those attack was

introduced by Arora and Ge [AG11]. This attack is an algebraic attack, which

requires a lot of LWE samples to be applied. A combinatorial approach for

13
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solving LWE was introduced in [BKW03]. This attack is a generalization of

LPN solving algorithms, and is called BKW attack. It is known that the

algorithm also requires too many samples. Thus, commonly these attacks

are not considered for parameter selection.

Unlike these attacks, lattice based attacks are usually considered as prac-

tical attacks and used for parameter selections. One of a basic lattice based

approach is the distinguishing attack. In [LP11], a direct decoding attack is

also proposed, and showed that it is more powerful than the distinguishing

attack. several variants of the decoding attack, including the enumeration

attack are also proposed [LN13]. A embedding approach to reduce LWE to

the u-SVP is also investigated in [AFG13, BG14b] as mentioned in section

2.5.1.

2.6.1 The Distinguishing Attack

The goal of this attack is to distinguish whether the vector b sampled

from an LWE distribution or from the uniform distribution over Zmq , when

(A,b) is given. The attack first finds a small vector in the dual lattice

Λq(A)⊥ = {v ∈ Zm|Av = 0 mod q}

. Then, it checks whether |〈v,b〉| is small or not. If b was sampled uniformly

random, 〈v,b〉 is uniformly random in Zq, thus the value is not small in

general. In case b comes from an LWE distribution, 〈v, b〉 = 〈e, b〉 is small

when v is small enough. A typical setting is that the distinguisher outputs

“LWE sample” if the absolute value of the inner product is smaller than

q/4, and “uniform sample” otherwise. The following lemma says that the

distinguishing advantage is bounded by exp(−π(‖v‖s/q)2) for any setting.

Lemma 2.6.1 ([LP11]). Given LWEn,m,q,s samples and a vector v of length

‖v‖ in the lattice L = {w ∈ Zmq : wTA ≡ 0 mod q}, the advantage of

distinguishing 〈v, e〉 from uniform random is close to exp(−π(‖v‖s/q)2).

14
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2.6.2 The Decoding Attack

A natural approach for LWE is that one solves a CVP derived from LWE

instances. More specifically, since b = As+e mod q, we get b = As+e+ qx

for some integer vector x ∈ Zm. Thus, by solving the CVP problem in the

lattice Λq(A) with target vector b, one can get the vector As + qx, and s.

The known algorithms to solve CVP are the nearest-plane algorithm in-

troduced by Babai [Bab86], its generalizations [LP11] or enumeration [LN13].

The performance of all these algorithms only depends on the error distribu-

tion of LWE. Therefore, we expect that there are no improved version of such

attacks for sparse secret variants.

15



Chapter 3

LWE with Sparse Secret,

spLWE

In this chapter, we show the theoratical hardness of spLWE via a security

reduction. This implies that spLWE is as hard as worst-case lattice problems.

For that, we provide a reduction from LWE to spLWE by generalizing the

techniques used in [BLP+13]. For concrete hardness, we also present modified

attacks for spLWE, which exploit the sparsity of secret vectors from all known

existing attacks for LWE and binLWE [BG14, BGPW16].

3.1 History

In 2005, Regev provide a quantum reduction from worst-case lattice prob-

lems to the average case problem, LWE in [Reg05]. In 2010, Goldwasser et

al. gave a reduction from the standard LWE to LWE with binary secret in

[GKPV10]. In 2013, a classical version of reductions for LWE are proved, and

the reduction for LWE with binary secret is more refined in [BLP+13]. The

worst case results for LWE with uniformly distributed error are also reported

in [MP13]. The reduction for LWE with uniformly distributed error requires

a restriction on the number of samples. On the other hand, the result for

binLWE has no limitation on the number of samples.
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The hardness of binLWE was proved to show robustness of the LWE in

terms of leakage-resilient cryptography in [GKPV10]. The main idea of the

reduction is that they substituted a uniformly random matrix A in binLWE

by many bunches of LWE samples. In other words, the binLWE samples

(A,As + e) is converted to (BC + Z,BCs + Zs + e) where A← Zm×nq , s←
{0, 1}n, e ← Dm

Z,σ,B ← Zm×lq ,C ← Zl×nq ,Z ← Dm×n
Z,β . The latter component

BCs + Zs + e can be viewed as LWE samples from that Cs is uniform

random by the leftover hash lemma, and a small perturbation of the Gaussian

distribution Zs+e is close to another Gaussian one. Finally, (BC+Z,BCs+

Zs+e) is computationally indistinguishable from uniform random under the

standard LWE assumption and by standard hybrid lemma. This reduction

was improved in [BLP+13]. In this reduction, the standard deviation β is only

bounded by
√

10nσ. The refined reduction was introduced to show classical

hardness of LWE. That was accomplished by considering the part Zs + e in

continuous case.

3.2 Theoratical Hardness

As a prior work, we recall some definitions for variants of LWE and some

notion, which were introduced in [BLP+13] to show the reduction between

binLWE and LWE.

Definition 3.2.1 (“first-is-errorless” LWE). For integers n, q ≥ 1 and an

error distribution φ over R, the “first-is-errorless” variant of the LWE problem

is to distinguish between the following two scenarios. In the first, the first

sample is uniform over Tnq ×Tq and the rest are uniform over Tnq ×T. In the

second, there is an unknown uniformly distributed s ∈ {0, . . . , q − 1}n, the

first sample we get is from Aq,s,{0} (where {0} denotes the distribution that

is deterministically zero) and the rest are from Aq,s,φ.

Definition 3.2.2 (extLWE). For integers n,m, q, t ≥ 1, a set X ⊆ Zm, and

a distribution χ over 1
q
Zm, the extLWEn,m,q,χ,X is as follows. The algorithm

gets to choose x ∈ X and then receives a tuple (A, (bi)i∈[t], (〈ei,x〉)i∈[t]) ∈
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Tn×mq × (Tmq )t × (1
q
Z)t. Its goal is to distinguish between the following two

cases. In the first, A ∈ Tn×mq is chosen uniformly, ei ∈ 1
q
Zm are chosen from

χ, and bi = AT si+ei mod 1 where si ∈ {0, . . . , q−1}n are chosen uniformly.

The second case is identical, except that the bi are chosen uniformly in Tmq
independently of everything else.

Definition 3.2.3 (Quality of a set). A set X ⊂ Zm is said of quality ξ if

given any x ∈ X, we can efficiently find a unimodular matrix U ∈ Zm×m

such that if U ′ ∈ Zm×(m−1) is the matrix obtained from U by removing its

leftmost column then all of the columns of U ′ are orthogonal to z and its

largest singular value is at most ξ. It denoted by Qual(X).

We give a lemma to show a reduction to spLWE from the standard LWE in

section 4.1.

Lemma 3.2.1. The quality of a set X ⊆ {0,±1,±2, . . . ,±ρ}m, ρ = 2l is

bounded by 1 +
√
ρ.

Proof. Let x ∈ X and without loss of generality, we assume leftmost k com-

ponents of x are nonzero, remainings are zero, and |[x]i| ≤ |[x]i+1| for nonzero

components after reordering. We have [x]i+1 = ±2ti [x]i for some ti ≤ l. Now

consider the upper bidiagonal matrix U whose diagonal is all 1 and whose

diagonal above the main diagonal is y ∈ Zm−1 such that [x]i+1− [y]j[x]i = 0

for 1 ≤ j ≤ k − 1, and rightmost (m − k) components of y are 0. Since

[x]i+1 = ±2ti [x]i, it follows that [y]j is 2tj or −2tj . Then U is clearly unimod-

ular (det(U) = 1) and all the columns except the first one are orthogonal to

x. Moreover, by the triangle inequality, we can bound the norm (the largest

singular value) of U by the sum of that of the diagonal 1 matrix and the

off-diagonal matrix of which clearly have norm at most
√
ρ.

3.2.1 A Reduction from LWE to spLWE

To show our reduction for spLWE, we need extLWEm problem whose hard-

ness was proved in [BLP+13]. They showed that for a set X of quality ξ,
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there exists a reduction from LWEk,m,q,s to extLWEm
(k+1,n,q,β=

√
s2ξ2+s2,X)

. (Here,

n ≤ m) Based on a reduction from LWE to extLWE in [BLP+13], we prove

a reduction of spLWE as shown in the diagram below. Here, ω, γ and s are

constant satisfying the following:

ω = sρ
√

2θ(2 + 2
√
ρ+ ρ), γ = ρs

√
θ(2 + 2

√
ρ+ ρ), β ≥ (ln(2n(1 + 1/ε))/π)1/2

q
.

Because Qual(Xn,ρ,θ) < 1+
√
ρ by lemma 3.2.1, extLWE

k+1,n,q,s
√

(1+
√
ρ)2+1,Xn,ρ,θ

is hard based on the hardness of LWEk,n,q,s. Following theorem shows that

spLWEn,m,q,≤ω,ρ,θ problem can be hard based on the hardness of LWEk,m,q,γ

and extLWE
n,m,q,s

√
(1+
√
ρ)2+1,Xn,ρ,θ

for the ω, γ > 0 as above. In particular, if

log
((
n
θ

)
· (2l + 2)θ

)
≥ k log q+2 log(1/δ), there is a reduction from LWEk,m,q,s

to spLWEn,m,q,≤ω,ρ,θ.

LWE(k,m,q,s)

1st-LWE(k+1,n,q,s)

extLWE
(k+1,n,q,s

√
ξ2+1,Xn,ρ,θ)

extLWEm
(k+1,n,q,s

√
ξ2+1,Xn,ρ,θ)

spLWE(n,m,q,≤ω,ρ,θ)

LWE(k+1,m,q,γ)

Theorem4

Qual(Xn,ρ,θ) ≤ ξ = 1 +
√
ρ, Adv < 33ε/2

Qual(Xn,ρ,θ) ≤ ξ = 1 +
√
ρ, Adv < m

Theorem 3.2.1. Let k, n, m, ρ = 2l, θ, q ∈ N, ε ∈ (0, 1/2), and δ, ω,β,γ > 0
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such that

β ≥
√

2 ln(2n(1 + 1/ε))/π/q where β = s
√

(1 +
√
ρ)2 + 1,

ω = ρβ
√

2θ, γ = ρβ
√
θ, log

((
n

θ

)
· (2l + 2)θ

)
≥ k log q + 2 log(1/δ).

There exist (two) reductions to spLWEn,m,q,≤ω,ρ,θ from extLWEmk,n,q,β,Xn,ρ,θ , LWEk,m,q,γ.

An advantage of A for spLWEn,m,q,≤ω,ρ,θ(D) is bounded as follows:

Adv[A] ≤ 2Adv[C1] + Adv[C2] + 4mε+ δ

for the algorithms (distinguishers) of extLWEmk,n,q,β,Xn,ρ,θ , LWEk,m,q,γ, C1 and

C2 respectively.

Proof. The proof follows by a sequence of distribution to use hybrid argument

as stated in [BLP+13]. We take into account the following six distributions:

H0:= {(A,b = ATx + e) | A ← Tn×mq ,x ← Xn,ρ,θ, e ← Dm
α′ for α′ =√

β2‖x‖2 + γ2 ≤ ρβ
√

2θ = ω}.

H1:={(A,ATx −NTx + ê mod 1) | A ← Tn×mq ,x ← X,N ← Dn×m
1
q
Z,β , ê ←

Dm
γ }.

H2:= {(qCTB + N, qBTCx + ê) | B ← Tk×mq ,C ← Tk×nq , x ← X,N ←

Dn×m
1
q
Z,β , ê← Dm

γ }.

H3:= {(qCTB + N,BT s + ê) | s ← Zkq , B ← Tk×mq ,C ← Tk×nq , N ←

Dn×m
1
q
Z,β , ê← Dm

γ }.

H4:= {(qCTB + N,u) | u← Tm, B← Tk×mq ,C← Tk×nq , N← Dn×m
1
q
Z,β}.

H5:= {(A,u) | A← Tn×mq ,u← Tm}.

Let Bi be the distinguisher for the distributions between Hi and Hi+1

for 0 ≤ i ≤ 4. There are some efficient transformations from the distri-

butions (C,A,NTz), (C, Â,NTz) to H1, H2, from (B,BT s + ê), (B,u) to
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H3, H4, and from (C, Â), (C,A) to H4, H5. In fact, the samples (C, Â,NTz),

(B,BT s+ ê), and (C, Â) are extLWEmk,n,q,β,X , LWEk,m,q,γ and extLWEmk,n,q,β,{0n}

samples respectively. The others are uniform distribution samples in the cor-

responding domain. It follows that Adv[B1], Adv[B3], Adv[B4] are bound by

the distinguishing advantages of extLWEmk,n,q,β,X , LWEk,m,q,γ, extLWEmk,n,q,β,{0n}

respectively.

Since ‖x‖ ≤ ρ
√
θ, and β ≥

√
2 ln(2n(1 + 1/ε))/π/q ≥

√
2ηε(Zn)/q from

lemma 2.4.3, it follows that the statistical distance between −NTx + ê and

Dm
α′ is at most 4mε by lemma 2.4.2. This gives Adv[B0] ≤ 4mε. The last

Adv[B2] is bound by δ from the Leftover hash lemma. To sum up, Adv[A] ≤
2Adv[C1] +Adv[C2] + 4mε+ δ with trivial reduction to extLWEmk,n,q,β,{0n} from

extLWEmk,n,q,β,X .

3.3 Concrete Hardness

There exist many attacks for LWE including a dual attack and primal

attacks ([APS15, DM15]). Here, we exclude a combinatorial BKW algorithm,

the Arora and Ge algorithm and their variants, as they are not suitable in

our case ([ACF+14, AG11, DTV15, KF15, GJS15]). Since the analysis of

traditional dual attack is based on the (discrete) Gaussian error (and secret

in the LWE normal form), these traditional attacks are not directly applicable

to spLWE. Therefore, we modify those attacks to analyze concrete hardness

of spLWE. We also consider random guess on a sparse secret vector s.

3.3.1 Dual Attack (distinguish version)

Assume that we are given (A,b) ∈ Zm×nq × Zmq and want to distinguish

whether they are uniform random samples or spLWE samples. For a constant

c ∈ R with c ≤ q, consider a lattice Lc(A) defined by

Lc(A) =
{

(x,y/c) ∈ Zm × (Z/c)n : xTA = y mod q
}
.
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If the samples (A,b) came from spLWE, for (x,y) ∈ Lc(A), we have

〈x,b〉 = 〈x,As + e〉

= 〈x,As〉+ 〈x, e〉

= c〈y, s〉+ 〈x, e〉 mod q

For a sufficiently small vector (v,w) ∈ Lc(A), the value 〈v,b〉 mod q be-

comes small when the samples are spLWE ones, and 〈v,b〉 mod q is uniformly

distributed when (A,b) came from the uniform distribution. Hence, one can

decide whether the samples came from spLWE distribution or uniform dis-

tribution from the size of 〈v,b〉 mod q with some success probability. We

now determine how small a vector (v,w) must be found as follows. First, we

estimate the length of (v,w) ∈ Lc(A). One can easily check that

Im 0

1

c
AT q

c
In


is a basis matrix of Lc(A). Hence, we can figure out dim(Lc(A)) = m +

n and det(Lc(A)) = (q/c)n.

Therefore, a lattice reduction algorithm with a root Hermite factor δ0

gives (v,w) ∈ Lc(A), such that

||(v,w)|| = δm+n
0 (q/c)

n
m+n , (3.3.1)

and the length is minimized when m =
√
n(log q − log c)/ log δ0 − n.

Next, we consider the distribution of c〈w, s〉 + 〈v, e〉 mod q. Here, we

assume that the coefficients of sparse vector s are independently sampled

by (b1d1, b2d2, . . . , bndn) where di ← Ber(n, θ/n), bi ← {±1,±2,±4, . . . ,±ρ},
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and ρ = 2l for some l ∈ Z≥0. Since c〈w, s〉 is the sum of many indepen-

dent random variables, asymptotically it follows a Gaussian distribution with

mean 0, and variance (c||w||)2 · 2θ(4
l+1−1)

3n(2l+2)
. From that 〈v, e〉 follows a Gaus-

sian distribution with mean 0, variance (σ||v||)2, and lemma 2.6.1, we have

distinguishing advantage

exp(−π(s′/q)2) where s′ =
√

2π

√
σ2||v||2 + c2

2θ(4l+1 − 1)

3n(2l + 2)
||w||2. (3.3.2)

From above equations 3.3.1, 3.3.2 with distinguishing advantage ε, we need

to find small δ0 such that

δ0 = (c/q)
−n

(m+n)2 (
q

M

√
ln(1/ε)/π)1/(m+n)

where M =
√

2π
√
σ2 m

m+n
+ c2 2θ(4

l+1−1)
3n(2l+2)

n
m+n

.

3.3.2 Dual Attack (search version)

In this section, we assume the Geometric Series Assumption (GSA) on q-

ary lattices, introduced by Schnorr [Sch03], and this will be used to estimate

the length of last vector of BKZ 2.0 reduced basis. Let B = {b1, · · · ,bn} be

a basis for an n-dimensional lattice Λ, which is reduced by the BKZ 2.0 with

root Hermite factor δ0, then the GSA says:

‖b∗i ‖ = βi−1 · ‖b∗1‖ for some constant 0 < β ≤ 1,

where {b∗1, · · · ,b∗n} is the Gram-schmidt orthogonalization of {b1, · · · ,bn}.
From ‖b1‖ = δn0 · det(B)1/n, we have:

det(B) =
n∏
i=1

‖b∗i ‖ =
n∏
i=1

βi−1 · ‖b∗1‖ = β
(n−1)n

2 · δn2

0 · det(B).
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From the equation above, it follows that β = δ
−2n2/(n−1)n
0 . Since BKZ reduced

basis satisfies bi = b∗i +
i−1∑
j=0

µij · b∗j with |µij| ≤ 1/2, one can show that,

‖bi‖ ≤ ||b1|| ·

√
1− β2i−2

4− 4β2
+ β2i−2.

We now describe the dual attack against a small number of LWE instances

(A,As + e) = (A,b) ∈ Zm×n×Zm. For some constant c ∈ N with c ≤ q, we

consider a scaled lattice Λc(A).

Λc(A) = {(x,y/c) ∈ Zm × (Zn/c) : xA = y mod q}.

A dimension and determinant of the lattice Λc(A) is n+m and (q/c)n respec-

tively. With the assumptions above, we can obtain vectors {(vi,wi)}1≤i≤n in

Λc(A) such that,

‖(vi,wi)‖ ≤ δm+n
0 · (q/c)

n
m+n ·

√
1− β2i−2

4− 4β2
+ β2i−2 ≈ δm+n

0 (q/c)
n

m+n ·
√

1

4− 4β2
.

Clearly, the element (vi,wi) in Λc(A) satisfies

vi · b = vi · (A · s + e) = 〈c ·wi, s〉+ 〈vi, e〉 = 〈(vi,wi), (e, c · s)〉 mod q.

If, for 1 ≤ i ≤ n, (vi,wi) is short enough to satisfy ‖(vi,wi)‖·‖(e, c·s)‖ < q/2,

the above equation hold over Z. Then we can recover e and s by solving the

system of linear equations. Since, ‖(e, cs)‖ ≈
√
n · σ2 + c2 · ‖s‖2, condition

for attack is following:

δn+m0 · (q/c)
n

m+n ·

√
n · σ2 + c2 · ‖s‖2

4− 4β2
<
q

2

for constant 0 < c ≤ q. To find an optimized constant c, we assume m = n.

In this case, the size is optimized with c =
√
n · σ2/||s||2. Therefore, final
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condition to success attack is following:

2δ4n0 · σ · ‖s‖ ·
√
n < q(1− β2).

3.3.3 Modified Embedding Attack.

One can reduce the LWE problem to unique-SVP problem via Kannan’s

embedding technique. First, we consider a column lattice

Λq(A
′) = {y ∈ Zm+1 : y = A′x mod q} for A′ =

(
1 0

−b A

)
.

The vector (1, e)T is in lattice Λq(A
′) and its size is approximately σ

√
m. If

this value is sufficiently smaller than λ2(Λq(A
′)) (≈

√
m
2πe
q(m−n)/m), one can

find the vector (1, e)T via some lattice reduction algorithms. In particular, the

vector (1, e)T can be found with high probability with the BKZ algorithms

in [AFG13], if
λ2(Λm+1)

λ1(Λm+1)
=
λ2(Λq(A))

||(1, e)||
≥ τ · δm0 ,

where τ ≈ 0.4. For spLWE case, we can obtain a much larger gap than

that of the ordinary attack for LWE. We now consider a scaled lattice Λc(B)

generated by the following matrix:

B =


1 0 0

0 cIn 0

−b A qIm


for a constant 0 < c < 1. The vector (1, cs, e)T is in this lattice and its size

is approximately
√
m · σ2 + c2‖s‖2. Define a matrix B′ as following,

B′ =

(
cIn 0

A qIm

)
.
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We have

λ1(Λc(B)) =
√
m · σ2 + c2 · ||s||2

and

λ1(Λc(B
′)) =

√
n+m

2πe
· det(Λc(B

′))1/(n+m) =

√
n+m

2πe
· (qmcn)1/n+m

. Therefore, it is necessary to find the root Hermite factor δ0 such that:√
n+m

2πe
· (qmcn)1/n+m ≥ 0.4 · δn+m0 ·

√
m · σ2 + c2‖s‖2

⇔
√

n+m

2πe · (m · σ2 + c2‖s‖2)
· (qmcn)1/n+m ≥ 0.4 · δn+m0

The left part of inequality above is maximized when c =
√
nσ2/‖s‖, so we

have: √
1

2πe · σ2

(
qm ·

(
σ
√
n

‖s‖

)n)1/(n+m)

≥ 0.4 · δn+m0

3.3.4 Improving Lattice Attacks for spLWE

A time complexity of all attacks suggested in this paper is heavily de-

pend on the dimension of lattices used in the attacks. Therefore, if one can

reduce the dimension of lattices, one can obtain a high advantage to solve the

LWE problem. In this section, we introduce two techniques to improve lattice-

based attacks for spLWE instances. The first thing is a method of ignoring

some components of a sparse secret and the other is a method of trading be-

tween dimension and modulus, which has been introduced in [BLP+13]. For

convenience, we denote T (m) as the expected time of solving m-dimensional

LWE.

Ignoring Components on Secret Vectors.

Most entries of a secret vector s are zero. Therefore, by ignoring some com-

ponents, one can reduce the dimension of LWE. More precisely, we delete k
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entries of secret vector s and its corresponding column of A. For convenience,

we denote it as s′ and A′, respectively. If the deleted components of s are

zero, the following equation also hold:

A · s + e = A′ · s′ + e mod q.

The probability Pk that the selected k entries are zero is
(
n−θ
k

)
/
(
n
k

)
. It implies

that one can reduce the n-dimensional LWE to (n−k)-dimensional LWE with

probability Pk. In other words, solving 1/Pk instances in (n−k)-dimensional

LWE, one can expect to solve the n dimension LWE. Hence, in order to guar-

antee λ bits security, it gives:

T (n− k)/Pk ≥ 2λ. (3.3.3)

Modulus Dimension Switching.

In [BLP+13], they describe a modulus dimension switching technique for

LWE instances. Using the corollary 3.4 in [BLP+13], for n, q, θ, w that divides

n and ε ∈ (0, 1/2), one can reduce a LWEn,q,≤α instances to LWEn/w,qw,≤β in-

stances, where β is a constant satisfying β2 ≥ α2 + (4/π) ln(2n(1 + 1/ε)) ·
θ/q2 ≈ α2. Along this reduction, a secret vector s = (s1, s2, · · · , sn) of

spLWEn,q,≤α,ρ,θ is changed to s′′ = (s1 + qs2 + · · · + qw−1sw, · · · , sn−w+1 +

· · ·+ qw−1sn) of spLWEn/w,qw,≤β,ρ′,θ′ . Hence, if one can recover the s′′ by solv-

ing LWEn/w,qw,≤β,ρ′,θ′ instances, one can also reveal the vector s. Let t be the

number of a set W = {swi|swi 6= 0, 1 ≤ i ≤ n/w} and P ′w be the probability

of t = 0, i.e. P ′w is equal to

(
n−θ
n/w

)(
n
n/w

) . When t is not zero, the expected size of

‖s′′‖ is
√
tqw. In that case, applying the attacks in section 4.2, 6.1 and 6.2 to

converted n/w-dimensional LWE instances is not a good approach to obtain

higher the advantage. Hence, we only consider the case t = 0. We can obtain

the following conditions to get λ-bit security:

T (n/w)/P ′w ≥ 2λ. (3.3.4)
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By combining the ignoring k components with modulus dimension switch-

ing techniques, we can reach the final condition to obtain the λ-bit security:

T ((n− k)/w)/(PkP
′
w) ≥ 2λ. (3.3.5)
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Chapter 4

LWE-based Public-Key

Encryptions

In this chapter, we briefly review the previous LWE-based public key en-

cryptions, which have IND-CPA security. In terms of design principle, all of

them are similar. Therefore, we try to give a alteration on the base problem

and choose a different construction strategy. In particular, we propose an

efficient instantiation of a PKE scheme based on spLWE. We first construct

an IND-CPA PKE and convert it to an IND-CCA scheme in the quantum

random oracle model by applying a modified Fujisaki-Okamoto conversion of

Unruh. Our implementation shows that the 256-bit IND-CCA scheme takes

313 µ seconds and 302 µ seconds respectively for encryption and decryption

with the parameters that have 128-bit quantum security.

4.1 History

The LWE-based public-key encryption scheme which is mostly related ours

is introduced by Regev [Reg05]. This encryption scheme uses LWE dimension

n, modulus q, width s, and number of samples m as parameters and can be

described as follows:

• The secret key vector s ∈ Znq is sampled randomly from Znq ,and the
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public key is m samples of LWE, (A,b) ∈ Zm×nq ×Zmq where b = As+e

• In order to encrypt a bit µ ∈ {0, 1} using the public key A, one chooses

a uniformly random vector x ∈ {0, 1}m and outputs the ciphertext as

c = (c1, c2) = (xTA, 〈x,b〉+ bq/2cµ).

• For decryptions with the secret key s, one computes c2 − 〈c1, s〉 =

bq/2cµ+ 〈x, e〉, and checks whether it is closer to 0 or to q/2.

The above encryption is information-theoretically secure for sufficiently

large m by the well-known Left-over Hash lemma, and the decryption is

correct as long as the size of decryption error 〈e,x〉 is less than q/4. It requires

the modulus q to be large enough relative to the magnitude of decryption

error. It is known that one can choose parameters s = Θ(
√
n) and q = Õ(n),

which correspond to the error rate of α = s/q = 1/Õ(
√
n) and worst-case

approximation factors of γ = Õ(n3/2) in order to secure under a worst-case

assumption.

A dual version of LWE-based encryption scheme was proposed by Gen-

try, Peikert, and Vaikuntanathan [GPV08]. Unlike the Regev’s encryption

scheme, the public keys are subset-sum instances and the ciphertexts are

LWE instances. Thus, a public keys has many possible secret keys, and this is

useful for constructing a variety of more advanced cryptosystems including

IBE.

In 2011, a more compact LWE-based encryption scheme was proposed

by Lindner and Peikert [LP11] with concrete parameters which are derived

from a new decoding attack for LWE. In this encryption scheme, public keys,

and ciphertexts are LWE instances. Unlike the encryptions mentioned above,

it only relies on computational arguments, the LWE assumption, and does

not require the statistical lemma. As a result, the keys and ciphertexts are

smaller than those in the above LWE-based schemes by a factor of about log

q.
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4.2 spLWE-based Instantiations

In this section, we describe a public-key encryption scheme whose security

is based on spLWE. One of advatages of our scheme is that the ciphertext

size is smaller than those of the previous works [Reg05, LP11]. We also use

a noisy subset sum in our encryption algorithm which is proposed in the

previous LWE-based encryption scheme [LP11], but our message encoding

method is different: we first construct a KEM(key encapsulation mechanism)

based on spLWE, and conceal messages as a OTP manner with an ephemeral

key shared by the KEM.

We propose two versions of our encryption scheme based on the spLWE-

based KEM, where one is IND-CPA secure and the other is an IND-CCA

secure under the conversion proposed in [TU15]. We note that these different

types of schemes can be applied to various circumstances.

4.2.1 Our Key Encapsulation Mechanism

We use a reconciliation technique in [Pei14] which is the main tool to

construct our spLWE-based KEM. In our KEM, the sender generates a random

number v ∈ Z2q for some even integer q > 0, and sends 〈v〉2 where 〈v〉2 :=

[b2
q
·vc]2 ∈ Z2 to share bve2 := [b1

q
·ve]2 ∈ Z2 securely. For all vectors v ∈ Zk2q,

〈v〉2 and bve2 are naturally defined by applying 〈〉2 and be2 component-

wise, respectively. The receiver recovers bve2 from 〈v〉2 and sk using a special

function named rec. The reconciliation function rec is defined as follows.

Definition 4.2.1. For disjoint intervals I0 :=
{

0, 1, · · · ,
⌊
q
2

⌉
− 1
}
, I1 :={

−
⌊
q
2

⌋
, · · · ,−2,−1

}
and E =

[
− q

4
, q
4

)
∩ Z, we define

rec : Z2q × Z2 → Z2 where rec(w, b) :=

0 if w ∈ Ib + E mod 2q,

1 otherwise.

It is naturally extended to a vector-input function rec : Zk2q × Zk2 → Zk2 by

applying rec component-wise.
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The following lemmas show that 〈v〉2 reveals no information about bve2,
and rec decapsulates bve2 correctly when it is provided with a proper ap-

proximation of v.

Lemma 4.2.1. If v ∈ Z2q is uniformly random, then bve2 is uniformly ran-

dom given 〈v〉2.

Proof. Suppose that 〈v〉2 = b ∈ Z2. It implies that v is uniform over Ib∪ (q+

Ib). If v ∈ Ib, then bve2 = 0, and if v ∈ (q + Ib), then bve2 = 1. Therefore

bve2 is uniformly random over {0, 1} given 〈v〉2.

Lemma 4.2.2. For v, w ∈ Z2q, if |v − w| < q/4, then rec(w, 〈v〉2) = bve2.

Proof. Let 〈v〉2 = b ∈ Z2, then v ∈ Ib ∪ (q+ Ib). Then bve2 = 0 if and only if

v ∈ Ib. Since (Ib +E)−E = Ib + (− q
2
, q
2
) and (q + Ib) are disjoint (mod 2q),

we know that v ∈ Ib if and only if w ∈ Ib + E.

The purpose of our KEM is sharing the ephemeral key from uTAs+ error

and the reconciliation function between two parties as in [Pei14]. Here, we

describe our spLWE-based KEM for k-bit sharing as follows.

• KEM.Params(λ): generate a bit-length of shared key k, a bit-length of

seed y and spLWE parameters n,m, q, s, ρ, θ, s′, ρ′, θ′ with λ-bit security.

Publish all parameters by pp.

• KEM.Keygen(pp): sample seedA ← {0, 1}y,A ← Gen(seedA),E ←
Dm×k

Z,s and S ← U(Xn,ρ,θ)
k, and compute B = AS + E ∈ Zm×kq . For a

secret key sk = S, publish a corresponding public key pk = (seedA,B).

• KEM.Encap(pk,pp): sample u ← Xm,ρ′,θ′ , (e1, e2) ← Dk
Z,s′ × Dn

Z,s′ and

e3 ∈ {0, 1}k. Let v = uTB + e1 ∈ Zkq and v̄ = 2v + e3 ∈ Zk2q. Compute

c1 = 〈v̄〉2 ∈ Zk2 and c2 = uTA + e2 ∈ Znq from A ← Gen(seedA).

Send a ciphertext c = (c1, c2) ∈ Zk2 × Znq to the receiver, and store an

ephemeral secret key µ = bv̄e2 ∈ Zk2.

• KEM.Decap(c, sk): If q is odd, compute w = 2c2
TS ∈ Zkq , and ouput

µ = rec(w, c1).
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We would like to note that if q is even, the doubling process in the en-

capsulation phase, i.e. converting v = uTB + e1 to v̄ = 2v + e3, is not

required.

4.2.2 Our KEM-Based Encryption Scheme

We now construct a public key encryption scheme based on the spLWE-

based KEM in the previous section. When the message slot increases by one,

the ciphertext spaces of our scheme grow only one or two bits, which is more

efficient than the known LWE based encryption schemes [Reg05], [LP11],

where the growth is about log q bits.

PKE1 (IND-CPA) :

With a key exchange mechanism which shares a `-bit length key, it is

well-known that one can convert it into a public key encryption of the `-

bit length message having the same security as the key exchange mechanism.

This conversion only includes XOR operations after generating an ephemeral

key. Note that the ciphertext space is given as Znq ×Z2`
2 , which is very efficient

than Zn+`q , ciphertext spaces of other LWE-based scehems.

PKE1 is described as follows.

• PKE1.Params(λ): let ` be a message length, and run KEM.Params(λ)

with k = `. Publish all parameters by pp.

• PKE1.Keygen(pp): output a key pair (pk, sk)← KEM.Keygen(pp).

• PKE1.Enc(pk,m, pp): for c, µ← KEM.Encap(pk,pp), let c′ = m⊕µ and

output a ciphertext (c, c′).

• PKE1.Dec((c, c
′), sk): for µ = KEM.Decap(c, sk), output m = c′ ⊕ µ.
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PKE2 (IND-CCA) :

We can apply the transformation suggested in [TU15], which can improve

security of the existing public key encryption schemes. As a trade-off of secu-

rity, this scheme requires a more complex construction than PKE1, but note

that this also use light operations such as XOR or hashing, which are not

serious tasks for implementation.

We specially denote the encryption phase of PKE1 by PKE1.Enc(pk,m, pp; r)

to emphasize that a random bit-string r is used for random sampling. Here,

PKE1.Enc(pk,m, pp; r) becomes deterministic.

It also requires quantumly secure hash functionsG : {0, 1}k1+` → {0, 1}∗, H :

{0, 1}k1 → {0, 1}k2 and H ′ : {0, 1}k1 → {0, 1}k3 , where ki will be de-

termined later. With these parameters, our scheme has a ciphertext space

Znq ×Zk1+k2+k3+`2 , which also gradually increases with the growth of message

slot.

PKE2 is described as follows.

• PKE2.Params(λ): let ` be a message length and ki > 0 be integers such

that hash functions G : {0, 1}k1+` → {0, 1}∗, H : {0, 1}k1 → {0, 1}k2

and H ′ : {0, 1}k1 → {0, 1}k3 have λ-bit security. Let pp be an output of

KEM.Params(λ) with k = k1. Publish `, pp and ki.

• PKE2.Keygen(pp): output a key pair (pk, sk)← KEM.Keygen(k1).

• PKE2.Enc(pk,m, pp, ki): randomly choose ω ← {0, 1}k1 , and let cm =

H(ω)⊕m. Compute ch = H ′(ω) and (c, c′)← PKE1.Enc(pk, ω;G(ω||cm)).

Output a ciphertext (c, c′, ch, cm).

• PKE2.Dec((c, c
′, ch, cm), sk, pp, ki): compute ω = PKE1.Dec((c, c

′), sk)

and m = H(ω)⊕cm. Check whether (c, c′) = PKE1.Enc(pk, ω;G(w||cm))

and ch = H ′(ω). If so, output m, otherwise output ⊥ .
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4.2.3 Security

In this section, we show (IND-CPA, IND-CCA) security of our encryp-

tion scheme (PKE1, PKE2). Security of our encryption scheme is reduced to

security of KEM and security of KEM comes from hardness of spLWE. Conse-

quently, under the hardness of spLWE, PKE1 can reach to IND-CPA security

and PKE2 achieves further quantumly IND-CCA security with the random

oracle assumption. Here is a statement for security of KEM.

Theorem 4.2.1. Under the spLWEn,m,q,s,ρ,θ, and spLWEn,m,q,s′,ρ′,θ′ assump-

tion, our KEM is IND-CPA secure.

Proof. (Sketch) By Lemma 3, one cannot extract any information about

µ = bve2 with c1. Moreover, even if one can know some information of v,

the distribution of (c2,v) can be regarded as LWE instances as :

(c2,v) = (uT ·A + e2,u
T ·B + e1) = (C,C · S + e′)

for C = uT ·A + e2 and for some e′. Thus, hardness of spLWE insures that

the distribution of (c2,v) is indistinguishable from the uniform distribution

over Znq × Zkq .

We refer [Pei14] for the detailed IND-CPA game-based proof, where the

only difference is that we assume the hardness of spLWE, not RLWE.

It is well-known in many cryptographic texts that PKE1 has the same se-

curity level with KEM. Hence, security of PKE1 has been demonstrated from

the previous theorem. Moreover, the transformation of [TU15] gives quan-

tumly IND-CCA security for PKE2, when it is converted from an IND-CPA

secure PKE with random oracle modeled hashes. When the aforementioned

statements are put together, we can establish the following security theorem.

Theorem 4.2.2. Assuming the hardness of spLWEn,m,q,s,ρ,θ, spLWEn,m,q,s′,ρ′,θ′,

PKE1 is IND-CPA secure, and PKE2 is quantumly IND-CCA secure with

further assumption that the function G,H and H ′ are modeled as random

oracles.
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Proof. (Sketch) We only need to show that PKE2 is IND-CCA secure. The

transformation of [TU15] actually make an IND-CCA secure public key en-

cryption from a public key encryption which is well-spread and one-way, and

we briefly explain why (IND-CPA) PKE1 is well-spread and one-way.

• Well-spreadness: Note that a ciphertext of PKE1 is of the form

(c1, c2) =
(
〈2(uTB + e1) + e3〉2,uTA+ e2

)
,

where u ← Xm,ρ′,θ′ , (e1, e2) ← Dk
Z,s′ ×Dn

Z,s′ . From hardness of spLWE,

distributions of uTB+e1 ∈ Zkq and uTA+e2 ∈ Znq are statistically close

to uniform distributions over Zkq and Znq , and then PKE1 is well-spread.

• One-wayness: With an oracle O finding m from PKE1.Enc(pk,m) for

any pk with probability ε, an adversary equipped with O wins the

IND-CPA game for PKE1 with bigger advantage than ε
2
: After given

PKE1.Enc(pk,mb), the adversary outputs the answer of O. It can be

easily shown that the advantage is bigger than ε
2
.

4.2.4 Correctness

Similar to the security case, correctness of our (IND-CPA, IND-CCA)

encryption scheme is dependent on that of our spLWE-based KEM. We remark

that generally, one can obtain some correctness condition for all LWE variants

by examining a bound of error term in the proof below. Here, we assume

s = s′, ρ = ρ′ and θ = θ′, which is used for our parameter instantiation.

Theorem 4.2.3. Let n,m, σ, ρ, θ be parameters in spLWEn,m,q,σ,ρ,θ, and ` be

the shared key length in KEM. For a per-symbol error probability γ, the KEM

decapsulates correctly if

q ≥ 8sρ

√
2θ

π
ln(2/γ).
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Proof. As shown in the description of KEM.Decap, the ephemeral key is de-

capsulated correctly if |v̄ − w| < q/4 by lemma 4.2.2. Since v̄ = 2uTAS +

2uTE + 2e1 + e3, and w = 2uTAS + 2e2S, it is rephrased by

|2uT · E− 2e1 · S + 2e2 + e3| < q/4,

which is equivalent to

|2〈u, [E]j〉+ 2〈−e1, [S]j〉+ 2[e2]j + [e3]j| < q/4, 1 ≤ j ≤ `

where u← Xm,ρ′,θ′ , [S]j ← Xn,ρ,θ, [E]j ← Dm
Z,s, e1 ← Dn

Z,s′ , [e2]j ← DZ,s′ , [e3]j ←
{0, 1}. For simplicity, we ignore the small term 2[e2]j + [e3]j. (This is com-

pensated in our final choice of parameters.) By applying lemma 5.3.1 to a

(m + n) dimensional vector x = (u, [S]j) and the bound Ts‖x‖ = q/8, we

came to have per-symbol error probability γ,

γ = 2 exp(−π(
q

8sρ
√

(2θ)
)2)

from T = q

8sρ
√
2θ

. From the equation above, we get the bound on q as the

statement.

4.3 Implementation

We have suggested concrete parameters for both classical and quantum

security, implementation results of our scheme and a comparison table with

the previous LWE-based PKE [LP11] and RLWE-based PKE [LPR10]. In 128-

quantum bit security, the IND-CPA version of our encryption took about

314µs and the IND-CCA version of our encryption takes 313µs for 256-bit

messages on Macbook Pro with CPU 2.6GHz Intel Core i5 without paral-

lelization.
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4.3.1 Parameter Selection

In order to deduce appropriate parameters, we assume that the best

known classical and quantum sieving algorithm in dimension k runs in time

20.292k and 20.265k respectively [BDGL16, Laa15]. The BKZ 2.0 lattice basis

reduction algorithm gives the root Hermite factor δ0 ≈ ( k
2πe

(πk)1/k)1/2(k−1)

for block size k [Che13], and the iteration number of exact SVP solver is
n3

k2
log n [HPS11].

We also consider a direct CVP attack by sieving [Laa16], modified dual

(distinguish) and embedding attack. Moreover, since our secret key is a sparse

vector, our attack can be improved if one can guess some components of secret

to be zero. After that, we can apply the attack to a smaller dimensional spLWE

instances. We denote the probability of the correct guessing t components

from n components by pn,t,θ. It can be computed as
(
n−θ
t

)
/
(
n
t

)
.

To sum up, the parameters must satisfy the followings for the classical

and quantum security:

• n log q · (2l + 1)θ ·
(
n
θ

)
> 22λ from bruteforce attack (grover algorithm),

where
(
n
θ

)
= n!

(θ!)(n−θ!) (For classical security, 2λ becomes λ)

• Let T (n, q, θ, s, l) be a BKZ 2.0 running time to get root Hermite factor

δ0, which satisfies the following equation:

δ0 = max
1<c<q,1≤m≤n

{
(c/q)

−n
(m+n)2 (

q

M

√
ln(1/ε)/π)1/(m+n)

}
where

M =
√

2π ·

√
σ2

m

m+ n
+ c2

2θ(4l+1 − 1)

3n(2l + 2)

n

m+ n
.

Taking into the probability pn,t,θ, our parameters should satisfy the

following:

min
t

{
1

pn,t,θ
· T (n− t, q, θ, s, l)

}
> 2λ where pn,t,θ =

(
n− θ
t

)
/

(
n

t

)
.
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• To prevent the direct CVP attack, n and θ should satisfy the following

equation:

min
t

{
1

pn,t,θ
· 20.265(n−t)

}
> 2λ

For classical security, 0.265 becomes 0.292.

• For the correctness, q ≥ 8sρ
√

2θ
π

ln(2/γ) by the Lemma 4.2.2.

• The parameters k1 and k2 are a symmetric key length of XOR opera-

tions, and k3 is a length of hash value. For λ-bit security, it is known

that k1 and k2 should be λ (2λ) and k3 should be 2λ (3λ) in classical

(quantum) security model.

4.3.2 Implementation Result

We use C++ on a Linux-based system, with GCC compiler and apply

the Eigen library (www.eigen.tuxfamily.org), which makes vector and matrix

operations fast. To sample u efficiently in our encryption algorithm, we as-

sume that there are only one non-zero element in each n/θ-size block. To

follow the previous reduction and security proof, we need a sampling of dis-

crete Gaussian distribution when we generate error vectors in key generation

and encryption algorithm. We use box-muller transformation to generate dis-

cretized Gaussian distribution. In the case below, message space length is

32-byte and secret key is ternary vector. We used PC (Macbook Pro) with

CPU 2.6GHz Intel Core i5 without parallelization.

Parameters IND-CPA IND-CCA

λ n q s θ Setup(ms) Enc(µs) Dec(µs) Cptx(byte) Enc(µs) Dec(µs) Cptx(byte)

72 300 382 5 27 9.8 96 41 401 116 130 435

96 400 441 5 36 16.3 167 62 513 181 182 548

128 565 477 5 42 29.3 273 102 700 291 282 733

Table 4.1: Implementation result in classical hardness with 256 bit message

Parameters IND-CPA IND-CCA

λ n q s θ Setup(ms) Enc(µs) Dec(µs) Cptx(byte) Enc(µs) Dec(µs) Cptx(byte)

72 300 410 5 31 9.8 96 41 401 108 130 435

96 400 477 5 42 16.0 163 56 514 186 191 548

128 565 520 5 50 129.5 314 106 770 313 302 804
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Table 4.2: Implementation result in quantum hardness with 256 bit message

We also compare our implemetation with software implementation in

[GFS+12], which implements LWE-based PKE [LP11] and Ring version PKE

[LPR10, LPR13]. Their implementation is executed on an Intel Core 2 Duo

CPU running at 3.00 GHz PC. Parameters in each rows are secure in same

security parameters.

Our scheme [GFS+12] LWE RLWE

(n, q, s, θ) Enc Dec (n, q, s) Enc Dec Enc Dec

(150, 285, 5.0, 15) 0.027 0.011 (128, 2053, 6.77) 3.01 1.24 0.76 0.28

(300, 396, 5.0, 29) 0.063 0.019 (256, 4093, 8.87) 11.01 2.37 1.52 0.57

(400, 545, 5.0, 55) 0.109 0.026 (384, 4093, 8.35) 23.41 3.41 2.51 0.98

(560, 570, 5.0, 60) 0.223 0.04 (512, 4093, 8.0) 46.05 4.52 3.06 1.18

Table 4.3: Our scheme vs. LWE vs. RLWE: Time in milliseconds for encryp-
tion and decryption for a 16-byte plaintext.

The table above shows that our PKE scheme is about 20 times faster

than RLWE-based PKE scheme in [LPR10, LPR13]. The sparsity of secret

vector make modulus size q smaller and complexity in encryption/decryption

algorithm lower.
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Chapter 5

LWE-based Commitments and

Zero-Knowledge Proofs

In this chapter, we propose a new post-quantum commitment scheme

which can commit to arbitrary vectors over Zq. Our scheme satisfies compu-

tational hiding and perfect binding properties under spLWE-assumption. To

the best of our knowledge, our scheme is the first LWE-based commitment

scheme where the message space does not restricted to any subspace. We

show that our commitment scheme is efficient when used as a subblock of

zero-knowledge proof of opening information of commitments. We also con-

struct zero-knowledge proofs which can prove some relations among those

commitments. All of theses allow us to make known LWE-based threshold

cryptosystems actively secure. In particular, we suggest a efficient thresh-

old version of LWE-based PKE, [CHK+16], which achieves active security in

random oracle model. To the best of our knowledge, this is the first actively

secure LWE-based threshold cryptosystem which has no additional assump-

tion like DL, RLWE problem, and has no restriction on threshold conditions.
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5.1 History

Commitment schemes [Blu82] are basic building blocks in designs of cryp-

tographic protocols and have a lot of applications including a classical ap-

plication, coin flipping over telephone. Intuitively, they can be described as

a electronic version of lockable box. When used to commit to some value in

zero-knowledge proofs, they can enforce regular behavior of corrupted parties.

As a result, it is possible to make protocols secure against active attackers.

Prime examples of these are threshold signatures and threshold decryption.

In threshold decryption, the decryption key of a original public-key encryp-

tion scheme is split to N shares and then distributed to N servers, so that

any t servers can decrypt collaborately. By giving suitable proofs for partial

decryption via some NIZKs, malicious behaviors of partial decryption servers

can be detected. This prevents outputing of unusual decryption results. In

other words, it guarantees robustness property.

In context of lattice based cryptography, the first LWE-based threshold

cryptosystem, a threshold version of Regev’s PKE [Reg09], was given in

[BD10]. After then threshold versions of PKE and FHE’s were proposed

for various purpose including Multi-Party Computation (MPC), electronic

votes [MSS11, XXZ11, AJLA+12, MW16]. (See [BGGK17] for more details)

A limitation of these threshold PKE’s, and FHE’s is that they only achieve

passive or semi-honest security.(c.f. One can achieve active security without

additional tools by adjusting the threshold with Shamir’s secret sharing as

in [BD10]). In this background, we construct LWE-based NIZKs in order

to enforce robustness on LWE-based cryptosystems as well as homomorphic

cryptosystems. For efficiency reason, we construct them in random oracle

model by transforming interactive zero-knowledge proofs via the well-known

technique ’Fiat-Shamir Heuristic’ [FS86].

In order to construct zero-knowledge proofs that checks each server per-

forms decryption correctly, it is essential to consider commitment schemes

which can commit arbitrary vectors over Zq. There are several related works

in lattice-based cryptography: A commitment scheme based on SIS problem
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was introduced in [KTX08], and an ring variant of the scheme was suggested

in [Xag10]. However, the message space is restricted to a binary space. The

LWE-based commitment scheme [ZTH10] is also the case. Thereafter, Jain

et al. also proposed a bit commitment scheme whose security is based on

the Learning Parity with Noise (LPN) problem, and zero-knowledge proofs

to prove general relations. A RLWE version of the scheme in [JKPT12] was

introduced in [XXW13, BCK+14]. The soundness error of all related zero-

knowledge proofs achieve a non-negligible soundness error. This cause many

parallel repetitions in order to get negligible soundness error. However, an

improved RLWE-based commitment scheme which is perfectly binding and

computationally hiding, and corresponding zero-knowledge protocols were

proposed in [BKLP15]. The message space is a vector space over Zq, and

they gave zero-knowledge proofs with negligible soundness error. On the

other hand, Ring-SIS-based commitment and related zero knowledge pro-

tocols were suggested in [BDOP16].

Therefore, in post-quantum sense, we can only exploit RLWE or Ring-SIS

based commitments and the related zero-knowledge proofs for actively secure

threshold cryptosystems. This enforces assuming the hardness of ring variant

problems even the underlying cryptosystems are based on hard problems over

generic lattices, not ideal lattices like LWE, SIS. In this thesis, we suggest

commitment schemes and zero-knowledge proofs based on LWE for actively

secure LWE-based threshold cryptosystems. In particular, we use spLWE that

is a variant of LWE with sparse secret vectors in order to improve their

efficiency.

5.2 spLWE-based Instantiations

We first consider a LWE-based commitment scheme which is analogous

to the one in [JKPT12]. Informally, for dimension n, the number of samples

m, and modulus q, the commitment with message space Zlq is in the form

Am+Br+e mod q, where (A,B) ∈ Zm×lq ×Zm×nq is a public random matrix,

43



CHAPTER 5. LWE-BASED COMMITMENTS AND
ZERO-KNOWLEDGE PROOFS

r ∈ Znq is a uniformly random vector, and e ∈ Zmq is a short error vector.

This commitment scheme is computationally hiding under LWE assumption.

In particular, the distribution of Br + e mod q is statistically close to the

uniform, and random distribution. Thus, it can hide message information.

The scheme is perfect binding. This property follows from that A(m−m′)+

B(r − r′) = e − e′ mod q does not hold overwhelmingly for sufficiently

large q and m, since ‖e − e′‖ is small. Here, the probability that the above

equation holds only depends on the cardinalities of message and randomness

domains under the consideration of union bounds. Thus, using of relatively

small dimensions l, n and small vectors r’s rather than arbitrary vectors

over Znq leads to more efficient instantiations of the LWE-based commitment

scheme. In this background, spLWE is a suitable hard problem for efficient

instantiations.

5.2.1 Our spLWE-based Commitments

In this section, we propose a new spLWE-based commitment scheme,

which is closely related to zero-knowledge proofs. The setup algorithm chooses

a spLWE dimension n, the number of sample m, a weight θ, a bound of non-

zero coefficient ρ, a prime modulus q, a message space rank l, and a bound

of elements in a challenge set β, and set width parameters s1, s2, s3, and

rejection sampling parameters α1, α2. The commitment algorithm computes

the commitment vector c with public random matrices A,B and randomness

vectors r, e. The verification algorithm checks if the commitment computed

from opening informations (m′, r′, e′, f ′) is indeed the commitment c, and the

norm of randomness vector used in the commitment c is sufficiently small.

Finally our commitment scheme is described as follows:

• Setup(1κ, 1k): Set parameters n,m, q, l, θ, ρ, β ∈ N and s1, s2, s3 ∈ R
with 2κ, 2k-bit security where s2 = α2βρ

√
2πθ, s3 = 2α3s1β

√
m for

some α1, α2 ∈ R≥1 and q is prime. Sample seedA ← {0, 1}y1 , seedB ←
{0, 1}y2 . The public commitment key pk is (seedA, seedB).
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• Com(m ∈ Znq ): Generate random matrices A ← Gen(seedA),B ←
Gen(seedB) where (A,B) ∈ Zm×lq × Zm×nq and sample r ← Xn,ρ,θ,

e← Dm
Z,s1 , compute

c = Com(m, r, e) = Am + Br + e mod q

.

• Ver(c, (m′, r′, e′, f ′)): Given a commitment c with a opening infomation

(m, r, e, f), the verifier accepts if and only if Am′+B(f ′−1r′)+f ′−1e′ =

c, ‖r′‖∞ ≤ 24s2/
√

2π, ‖e′‖∞ ≤ 24s3/
√

2π, |f ′| ≤ β.

We would like note that honest committer can open his commitment by

setting as f ′ = 1, r′ = r, e′ = e. Here, we also relax the verification condition

in order to prove soundness property of our related zero-knowledge proto-

cols. The distribution of e, Dm
Z,s1 , is not bounded, but we set that the norm

of e is bounded with overwhelming probability. This leads to correctness of

our scheme. As mentioned above, our commitment scheme satisfies compu-

tational hiding property under spLWE assumption. The following theorem

shows that the commitment scheme satisfies statistical binding property.

Theorem 5.2.1. Let m = kn with k > 2, l = n and β ≤ 2
n
4
−1− 1

2
. Assuming

the hardness of spLWEn,m,q,s1,ρ,θ with the following condition

log q ≥ 2

k − 1
log(24σ2 + 1) +

2k

k − 1
log(24σ3 + 1) + 1,

the above commitment scheme is correct and satisfies the computational

hiding and statistical binding properties.

Proof. We prove correctness, computational hiding and statistical binding

properties in this order.

Correctness: This is obvious since ‖r‖∞ ≤ ρ < s2 < 24s2/
√

2π for r← Xn,ρ,θ,

‖e‖∞ ≤ 12s1/
√

2π with probability 1− 2−100 for e← Dm
Z,s1 , which is strictly
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less than 24s3/
√

2π and f ′ = 1 ≤ β.

Computational hiding: Under the spLWEn,m,q,s1,ρ,θ-assumption, Br+e mod q

is pseudo-random, thus Am + Br + e mod q is also pseudo-random.

Statistical binding: Let c be a commitment with two opening infomations

(m, r, e, f), (m′, r′, e′, f ′) where m 6= m′. Then

Am + B(f−1r) + f−1e = c = Am′ + B(f ′−1r′) + f ′−1e′ mod q

and so

A(m−m′) + B(f−1r− f ′−1r′) = f ′−1e′ − f−1e mod q.

Let m′′ = m−m′ 6= 0. Now, we have that

Pr[Am′′+B(f−1r−f ′−1r′) = (f ′−1e′−f−1e) mod q : A← Zm×lq ,B← Zm×nq ] =
1

qm
.

By taking union bound over all m′′, r, r′, e, e′, f, f ′, we have the overall prob-

ability that there exist m′′ 6= 0 satisfying the above eqation is at most

ql(24σ2 + 1)2n(24σ3 + 1)2m(2β + 1)2

qm

This probability is negligible in n if

ql/n(24σ2 + 1)2(24σ3 + 1)2m/n(2β + 1)2/n

qm/n
≤ 1

c

for some constant 1 < c ≤ 2 or equivalently,

log c+ 2 log(24σ2 + 1) +
2m

n
log(24σ3 + 1) +

2

n
log(2β + 1) ≤ m− l

n
log q,

and log c+ 2
n

log(2β+1) ≤ 1 under the conditions in the Theorem. Therefore,

the overall probability is c−n, which is negligible in n.
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5.2.2 Proof for Opening Information

In order to prove zero-knowledgeness of protocols, it is essential that one

can construct a simulator that statistically simulates the accepting tran-

scripts. The following lemmas will be exploited for these purposes.

Lemma 5.2.1 ([Lyu12] Theorem 4.9, Rejection Sampling). Let n, T ∈ N be

natural numbers and U ⊆ Zn, such that all elements in U have norm less than

T . Let further D : U → R be a probability distribution and σ ∈ ω(T
√

log n).

Then there exists a constant M ∈ O(1) such that the output distributions of

the algorithms A1, A2 where

• A1 : draw v← D, z← Dn
σ and output (z,v) with probability Dnσ (z)

MDnv,σ(z)
.

• A2 : draw v← D, z← Dn
σ and output (z,v) with probability 1

M
.

have at most statistical distance 2 − ω(log n)/M . In particular A1 outputs

something with probability at least 1− 2−ω(logn)/M . For a concrete instantia-

tion σ = αT for α ∈ R>0, we have M = exp(12/α+1/(2α2)) and the outputs

of A1 and A2 are within statistical distance 2−100/M .

Intuitively, the rejection sampling lemma says that some small translation

of a discrete Gaussian distribution with sufficiently large standard deviation

can be hidden by rejecting the sampling with a certain policy.

We now describe our zero-knowledge proofs. Let c = Am+Br+e mod q

be a commitment that is published by the prover. The prover can prove

that he knows a valid opening information of c from the following protocol

without revealing secret information. The public input is c and the private

input is (m, r, e):

• P computes t = Aµ + Bρ + η where µ ← Zlq, ρ ← Dn
σ2
, η ← Dm

σ3
, and

sends t to V.

• V sends a random integer d ∈ [−β, β] ∩ Z.
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• P checks d ∈ [−β, β] ∩ Z, and computes sm = µ+ dm mod q, sr = ρ+

dr mod q, se = η+de mod q. If d = 0, P sends sm, sr, se to V. Otherwise,

P sends sm, sr, se to V with probability p = Dn
σ2

(ρ)/M2D
n
dr,σ2

(ρ) ×
Dn
σ3

(η)/M3D
n
de,σ3

(η), and ⊥ with probability 1− p.

• V accepts iff t + dc = Asm + Bsr + se mod q, ‖sr‖∞ ≤ 12σ2, and

‖se‖∞ ≤ 12σ3.

We now prove that the above protocol is indeed a zero-knowledge proof.

Theorem 5.2.2. The protocol is a Σ′-protocol with completeness error close

to 1
β

+ β−1
βM2M3

overwhelmingly for the relations:

Proof. We prove the protocol satisfies the following properties:

• Completeness: The verifier accepts with overwhelming probability if the

protocol is not aborted by the prover, and the accepting probability is

close to 1
2β+1

+ 2β
(2β+1)M2M3

overwhelmingly.

• Special Soundness: Given a commitment c and a pair of accepting tran-

scripts (t, d, (sm, sr, se)), (t, d, (s′m, s
′
r, s
′
e)) where d 6= d′, we can extract

a vaild opening information of c.

• Honest-Verifier Zero-Knowledge: Transcripts of the protocol with an

honest verifier can be simulated with computationally indistinguishable

distribution.

Completeness: When d = 0, P sends sm = µ, sr = ρ, se = η to V. Thus

t+dc = t = Aµ+Bρ+η = Asm+Bsr+se mod q. Since ρ← Dn
σ2
, η ← Dm

σ3
,

‖sr‖∞ = ‖ρ‖∞ ≤ 12σ2, and ‖se‖∞ = ‖η‖∞ ≤ 12σ3 with overwhelming

probability by lemma 5.3.1.

In the case d 6= 0, P sends sm = µ+dm, sr = ρ+dr, se = η+de to V with

probability close to 1
M2M3

overwhelmingly by the rejection sampling lemma.

Thus Asm + Bsr + se = Aµ+ Bρ+ η+ d(Am + Br + e) = t + dc. Note that

the distribution of sr = ρ+ dr, se = η + de are statistically close to Dn
σ2
, Dm

σ3
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respectively by the rejection sampling lemma. Hence, ‖sr‖∞ ≤ 12σ2, and

‖se‖∞ ≤ 12σ3 with overwhelming probability by lemma 5.3.1. Therefore, V

accepts with probability close to 1
2β+1

+ 2β
(2β+1)M2M3

overwhelmingly.

Special Soundness: Suppose two accepting transcripts (t, d, (sm, sr, se)),

(t, d, (s′m, s
′
r, s
′
e)) where d 6= d′ are given. Then the following equations are

hold:

t + dc = Asm + Bsr + se mod q

t + d′c = As′m + Bs′r + s′e mod q

By subtracting the above equations, we get:

(d− d′)c = A(sm − s′m) + B(sr − s′r) + (se − s′e) mod q

In other words, we have a witness ((d − d′)−1(sm − s′m), (sr − s′r), (se −
s′e), d − d′) for (A,B, c) such that ‖sr − s′r‖∞ ≤ 24σ2, and ‖se − s′e‖∞ ≤
24σ3. Note that the binding property of the commitment scheme implies

(d− d′)−1(sm − s′m) = m.

Honest-Verifier Zero-Knowledge: Let c and challenge d are given as in-

puts. First, the simulator samples s′m ← Zlq, s′r ← Dn
σ2

, and s′e ← Dm
σ3

, and

computes t = As′m + Bs′r + s′e − dc. In the case d = 0, the simulator out-

puts (t, 0, (s′m, s
′
r, s
′
e)). This is statistically indistinguishable from accepting

transcripts of the real protocol, since the distribution of response (s′m, s
′
r, s
′
e)

is statistically indistinguishable from the the distribution of real response

by the rejection sampling lemma, and t is uniquely determined by s′m, s
′
r, s
′
e,

and d in the real protocol and in the simulation. When d 6= 0, the simulator

outputs (t, d, (s′m, s
′
r, s
′
e)) with probability 1

M2M3
. Otherwise, the simulator

outputs (t0, d,⊥) where t0 ← Zmq . The non-aborting case of this simulation

is indistinguishable from the non-aborting case of the real protocol simil-

lary. Bρ + η mod q in t = Aµ + Bρ + η mod q in real protocol can be

regarded as an instance of LWEn,m,q,σ3(D
n
σ2

), which is hard under the condi-

tion, spLWEn,m+n,q,s1,ρ,θ is hard. Thus t is computationally indistinguishable
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from t0, which is sampled from uniform random distribution over Zmq .

5.3 Application to LWE-based Threshold Cry-

tosystems

5.3.1 Zero-Knowledge Proofs of Knowledge for Thresh-

old Decryption

Proof for Committed Messages

Like our zero-knowledge proof of opening information, let c = Am +

Br + e mod q be a commitment that is published by the prover. The prover

can prove that c is a commitment of the message m. This can be done by

showing that the prover can prove he knows a valid randomness of c without

revealing it. In this case, the public input is (c,m) and the private input is

(r, e):

• P computes t = Bρ + η mod q where ρ ← Dn
σ2
, η ← Dm

σ3
, and sends t

to V.

• V sends a random integer d ∈ [−β, β] ∩ Z.

• P checks d ∈ [−β, β] ∩ Z, and computes sr = ρ + dr mod q, se =

η + de mod q. If d = 0, P sends sm = 0, sr, se to V. Otherwise, P

sends sm = 0, sr, se to V with probability p = Dn
σ2

(ρ)/M2D
n
dr,σ2

(ρ) ×
Dn
σ3

(η)/M3D
n
de,σ3

(η), and ⊥ with probability 1− p.

• V accepts iff sm = 0, t + dc = Bsr + se, ‖sr‖∞ ≤ 12σ2, and ‖se‖∞ ≤
12σ3.

We now prove that the above protocol is indeed a zero-knowledge proof.

Theorem 5.3.1. The protocol is a Σ′-protocol with completeness error close

to 1
β

+ β−1
βM2M3

overwhelmingly for the relations:
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Proof. We can prove completeness, special soundness, and HVCZK of this

protocol as in the previous case. The only difference is sm = 0. In this case,

the simulator set the s′m as 0 vector.

• Completeness: The verifier accepts with overwhelming probability if the

protocol is not aborted by the prover, and the accepting probability is

close to 1
2β+1

+ 2β
(2β+1)M2M3

overwhelmingly.

• Special Soundness: Given a commitment c and a pair of accepting tran-

scripts (t, d, (0, sr, se)), (t, d, (0, s′r, s
′
e)) where d 6= d′, we can extract a

vaild opening information of c.

• Honest-Verifier Zero-Knowledge: Transcripts of the protocol with an

honest verifier can be simulated with computationally indistinguishable

distribution.

Proof of Linear Relation

We now describe our zero-knowledge proof of linear relation. Let ci =

Ami + Bri + ei mod q for i = 1, 2 be commitments that are published

by the prover such that m2 = g(m1) for a linear function g. The goal of

following protocol is to prove the linear relation of commited messages in

zero-knowledge fashion. This can be done by modifying the previous zero-

knowledge proof of opening information. The public inputs are ci and g for

i = 1, 2, and the private inputs are (ri, ei) for i = 1, 2:

• P computes ti = Aµi+Bρi+ηi mod q for i = 1, 2 where µ1 ← Zlq, µ2 =

g(µ1), ρi ← Dn
σ2
, ηi ← Dm

σ3
for i = 1, 2, and sends t1, t2 to V.

• V sends a random integer d ∈ [−β, β] ∩ Z.

• P checks d ∈ [−β, β]∩Z, and computes sm,i = µi+dmi mod q, sr,i = ρi+

dri mod q, se,i = ηi+dei mod q for i = 1, 2. If d = 0, P sends sm,i, sr,i, se,i
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for i = 1, 2 to V. Otherwise, P sends sm,i, sr,i, se,i for i = 1, 2 to V with

probability p =
∏2

i=1D
n
σ2

(ρi)/M2,iD
n
dri,σ2

(ρi)×Dn
σ2

(ηi)/M3,iD
n
dei,σ2

(ηi),

and ⊥ with probability 1− p.

• V accepts iff ti + dci = Asm,i + Bsr,i + se,i mod q, ‖sr,i‖∞ ≤ 12σ2, and

‖se,i‖∞ ≤ 12σ3 for i = 1, 2, and sm,2 = g(sm,1).

We now prove that the above protocol is indeed a zero-knowledge proof.

Theorem 5.3.2. The protocol is a Σ′-protocol with completeness error close

to 1
2β+1

+ 2β

(2β+1)
∏2
i=1M2,iM3,i

overwhelmingly for the relations:

Proof. We prove the protocol satisfies the following properties:

• Completeness: The verifier accepts with overwhelming probability if the

protocol is not aborted by the prover, and the accepting probability is

close to 1
2β+1

+ 2β

(2β+1)
∏2
i=1M2,iM3,i

overwhelmingly.

• Special Soundness: Given commitments c1, c2 and a pair of accepting

transcripts

(t1, t2, d, (sm,1, sm,2, sr,1, sr,2, se,1, se,2))

(t1, t2, d
′, (s′m,1, s

′
m,2, s

′
r,1, s

′
r,2, s

′
e,1, s

′
e,2))

where d 6= d′, we can extract a vaild opening information of c1, and c2.

• Honest-Verifier Zero-Knowledge: Transcripts of the protocol with an

honest verifier can be simulated with computationally indistinguishable

distribution.

We can prove completeness, special soundness, and HVCZK of this pro-

tocol as in the previous case. The only difference is sm = 0. In this case, the

simulator set the s′m as 0 vector.

Completeness: When d = 0, P sends sm,i = µi, sr,i = ρi, se,i = ηi to V for

i = 1, 2. Thus ti + dci = ti = Aµi + Bρi + ηi = Asm,i + Bsr,i + se,i mod q

for i = 1, 2. Since ρi ← Dn
σ2
, ηi ← Dm

σ3
, ‖sr,i‖∞ = ‖ρi‖∞ ≤ 12σ2, and
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‖se,i‖∞ = ‖ηi‖∞ ≤ 12σ3 for i = 1, 2 with overwhelming probability by lemma

5.3.1. Note that sm,2 = µ2 = g(µ1) = g(sm,1)

In the case d 6= 0, P sends sm,i = µi+dmi, sr,i = ρi+dri, se,i = ηi+dei to

V with probability close to 1∏2
i=1M2,iM3,i

overwhelmingly by the rejection sam-

pling lemma. Thus Asm,i+Bsr,i+se,i = Aµi+Bρi+ηi+d(Ami+Bri+ei) =

ti+dci for i = 1, 2. Note that the distributions of sr,i = ρi+dri, se,i = ηi+dei

for i = 1, 2 are statistically close to Dn
σ2
, Dm

σ3
respectively by the rejection

sampling lemma. Hence, ‖sr,i‖∞ ≤ 12σ2, and ‖se,i‖∞ ≤ 12σ3 for i = 1, 2

with overwhelming probability by lemma 5.3.1, and sm,2 = µ2 + dm2 =

g(µ1) + dg(m1) = g(sm,1). Therefore, V accepts with probability close to
1

2β+1
+ 2β

(2β+1)(
∏2
i=1M2,iM3,i)

overwhelmingly.

Special Soundness: Suppose given two accepting transcripts

(t1, t2, d, (sm,1, sm,2, sr,1, sr,2, se,1, se,2)),

(t1, t2, d
′, (s′m,1, s

′
m,2, s

′
r,1, s

′
r,2, s

′
e,1, s

′
e,2))

where d 6= d′. Then the following equations are hold:

ti + dci = Asm,i + Bsr,i + se,i mod q

ti + d′ci = As′m,i + Bs′r,i + s′e,i mod q

By subtracting the above equations, we get:

(d− d′)ci = A(sm,i − s′m,i) + B(sr,i − s′r,i) + (se,i − s′e,i) mod q

In other words, we have a witness ((d−d′)−1(sm,i−s′m,i), (sr,i−s′r,i), (se,i−
s′e,i), d−d′) for (A,B, ci) such that ‖sr,i−s′r‖∞ ≤ 24σ2, and ‖se−s′e‖∞ ≤ 24σ3

for i = 1, 2.

Honest-Verifier Zero-Knowledge: Let c1, c2 and challenge d are given as

inputs. First, the simulator samples s′m,1 ← Zlq, s′r,i ← Dn
σ2

, s′e,i ← Dm
σ3

, and

53



CHAPTER 5. LWE-BASED COMMITMENTS AND
ZERO-KNOWLEDGE PROOFS

computes s′m,2 = g(s′m,1), ti = As′m,i+Bs′r,i+s′e,i−dci for i = 1, 2. In the case

d = 0, the simulator outputs (t1, t2, 0, (s
′
m,1, s

′
m,2, s

′
r,1, s

′
r,2, s

′
e,1, s

′
e,2)). This is

statistically indistinguishable from accepting transcripts of the real protocol,

since the distribution of response (s′m,1, s
′
m,2, s

′
r,1, s

′
r,2, s

′
e,1, s

′
e,2) is statistically

indistinguishable from the the distribution of real response by the rejection

sampling lemma, and ti is uniquely determined by s′m,i, s
′
r,i, s

′
e,i, and d in

the real protocol and in the simulation. When d 6= 0, the simulator outputs

(t1, t2, 0, (s
′
m,1, s

′
m,2, s

′
r,1, s

′
r,2, s

′
e,1, s

′
e,2)) with probability

∏2
i=1M2,iM3,i. Oth-

erwise, the simulator outputs (t0,1, t0,2, d,⊥) where t0,i ← Zmq for i = 1, 2.

The non-aborting case of this simulation is indistinguishable from the non-

aborting case of the real protocol simillary. Bρi+ηi mod q in ti = Aµi+Bρi+

ηi mod q in real protocol can be regarded as an instance of LWEn,m,q,σ3(D
n
σ2

),

which is hard under the condition, spLWEn,m+n,q,s1,ρ,θ is hard. Thus ti is

computationally indistinguishable from t0,i, which is sampled from uniform

random distribution over Zmq

Proof of Sum

We now describe our zero-knowledge proof of sum. Let ci = Ami+Bri+

ei mod q for i = 1, 2, 3 be commitments that are published by the prover

such that m3 = m1 + m2. The goal of following protocol is to prove the sum

relation of commited messages in zero-knowledge fashion. The idea of the

zero-knowledge proof is similar to the previous proof of linear relation. We

now describe the zero-knowledge proof of sum as follows. The public inputs

are ci for i = 1, 2, 3, and the private inputs are (ri, ei) for i = 1, 2, 3:

• P computes ti = Aµi + Bρi + ηi mod q for i = 1, 2, 3 where µ1, µ2 ←
Zlq, µ3 = µ1 + µ2, ρi ← Dn

σ2
, ηi ← Dm

σ3
for i = 1, 2, 3, and sends t1, t2, t3

to V.

• V sends a random integer d ∈ [−β, β] ∩ Z.
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• P checks d ∈ [−β, β] ∩ Z, and computes sm,i = µi + dmi mod q, sr,i =

ρi + dri mod q, se,i = ηi + dei mod q for i = 1, 2, 3. If d = 0, P sends

sm,i, sr,i, se,i for i = 1, 2, 3 to V. Otherwise, P sends sm,i, sr,i, se,i for

i = 1, 2, 3 to V with probability p =
∏3

i=1D
n
σ2

(ρi)/M2,iD
n
dri,σ2

(ρi) ×
Dn
σ3

(ηi)/M3,iD
n
dei,σ2

(ηi), and ⊥ with probability 1− p.

• V accepts iff ti + dci = Asm,i + Bsr,i + se,i mod q, ‖sr,i‖∞ ≤ 12σ2, and

‖se,i‖∞ ≤ 12σ3 for i = 1, 2, 3, and sm,3 = sm,1 + sm,2.

We now prove that the above protocol is indeed a zero-knowledge proof.

Theorem 5.3.3. The protocol is a Σ′-protocol with completeness error close

to 1
2β+1

+ 2β

(2β+1)
∏3
i=1M2,iM3,i

overwhelmingly for the relations:

Proof. We prove the protocol satisfies the following properties:

• Completeness: The verifier accepts with overwhelming probability if the

protocol is not aborted by the prover, and the accepting probability is

close to 1
2β+1

+ 2β

(2β+1)
∏3
i=1M2,iM3,i

overwhelmingly.

• Special Soundness: Given commitments c1, c2, c3 and a pair of accept-

ing transcripts

(t1, t2, t3, d, (sm,1, sm,2, sm,3, sr,1, sr,2, sr,3, se,1, se,2, se,3))

(t′1, t
′
2, t
′
3, d, (s

′
m,1, s

′
m,2, s

′
m,3, s

′
r,1, s

′
r,2, s

′
r,3, s

′
e,1, s

′
e,2, s

′
e,3))

where d 6= d′, we can extract a vaild opening information of c1, c2 and

c3.

• Honest-Verifier Zero-Knowledge: Transcripts of the protocol with an

honest verifier can be simulated with computationally indistinguishable

distribution.

We can prove completeness, special soundness, and zero knowledgeness

of this protocol as in the previous case, proof of linear relation. The only

difference is sm = 0. In this case, the simulator set the s′m as 0 vector.
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Proof of Bound

We now describe our zero-knowledge proof of bound. Let c = Am +

Br + e mod q be a commitment that is published by the prover. The goal

of the following protocol is to prove the smallness of committed messages

in zero-knowledge fashion. The idea of the zero-knowledge proof is to check

smallness of a commited message when a short random vector is added. We

now describe the zero-knowledge proof of bound as follows. The public inputs

is c , and the private inputs is (m, r, e):

• P computes t = Aµ+ Bρ+ η where µ← ([−βm(1 + γm
2
, βm(1 + γm

2
)]∩

Z)l, ρ← Dn
σ2
, η ← Dm

σ3
, and sends t to V.

• V sends a random integer d← {0, 1}.

• P checks d ∈ {0, 1}, and computes sm = µ + dm mod q, sr = ρ +

dr mod q, se = η + de mod q. When d = 0, if ‖sm‖∞ > γmβm/2,

P sends ⊥, otherwise sends sm, sr, se to V. When d 6= 0, if ‖sm‖∞ >

γmβm/2, P sends ⊥, otherwise sends sm, sr, se to V with probability

p = Dn
σ2

(ρ)/M2D
n
dr,σ2

(ρ)×Dn
σ2

(η)/M3D
n
de,σ2

(η), and ⊥ with probability

1− p.

• V accepts iff t + dc = Asm + Bsr + se mod q, ‖sm‖∞ ≤ γmβm/2,

‖sr‖∞ ≤ 12σ2, and ‖se‖∞ ≤ 12σ3.

We now prove that the above protocol is indeed a zero-knowledge proof.

Theorem 5.3.4. The protocol is a Σ′-protocol with completeness error close

to p′

2
+ p′

2M2M3
overwhelmingly for the relations where p′ = (1− 2βm

2βm(1+γm/2)+1
)l:

Proof. We prove the protocol satisfies the following properties:

• Completeness: The verifier accepts with overwhelming probability if the

protocol is not aborted by the prover, and the accepting probability is

close to p′

2
+ p′

2M2M3
overwhelmingly.

56



CHAPTER 5. LWE-BASED COMMITMENTS AND
ZERO-KNOWLEDGE PROOFS

• Special Soundness: Given a commitment c and a pair of accepting tran-

scripts (t, d, (sm, sr, se)), (t, d, (s′m, s
′
r, s
′
e)) where d 6= d′, we can extract

a vaild opening information of c whose infinite norm of message m is

bounded by γmβm/2.

• Honest-Verifier Zero-Knowledge: Transcripts of the protocol with an

honest verifier can be simulated with computationally indistinguishable

distribution.

Completeness: The probability that a single coefficient of sm will cause

an abortion of the protocol is 2βm
2βm(1+γm/2)+1

. Thus, the probability that sm

will cause an abortion of the protocol is 1− (1− 2βm
2βm(1+γm/2)+1

)l = 1− p′.
When d = 0, and ‖sm‖∞ ≤ γmβm/2, P sends sm = µ, sr = ρ, se = η

to V. Thus t + dc = t = Aµ + Bρ + η = Asm + Bsr + se mod q. Since

ρ ← Dn
σ2
, η ← Dm

σ3
, ‖sr‖∞ = ‖ρ‖∞ ≤ 12σ2, and ‖se‖∞ = ‖η‖∞ ≤ 12σ3

with overwhelming probability by lemma 5.3.1. The probability that this

case occurs is p′

2

In the case d = 1, if ‖sm‖∞ ≤ γmβm/2, P sends sm = µ + m, sr =

ρ+r, se = η+e to V with probability close to 1
M2M3

overwhelmingly by the re-

jection sampling lemma. Thus Asm+Bsr+se = Aµ+Bρ+η+(Am+Br+e) =

t + dc. Note that the distribution of sr = ρ + r, se = η + e are statisti-

cally close to Dn
σ2
, Dm

σ3
respectively by the rejection sampling lemma. Hence,

‖sr‖∞ ≤ 12σ2, and ‖se‖∞ ≤ 12σ3 with overwhelming probability by lemma

5.3.1. Therefore, V accepts with probability close to p′

2
+ p′

2M2M3
overwhelm-

ingly.

Special Soundness: Suppose two accepting transcripts (t, d, (sm, sr, se)),

(t, d, (s′m, s
′
r, s
′
e)) where d 6= d′ are given. Then the following equations are

hold:

t + dc = Asm + Bsr + se mod q

t + d′c = As′m + Bs′r + s′e mod q
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By subtracting the above equations, we get:

(d− d′)c = A(sm − s′m) + B(sr − s′r) + (se − s′e) mod q

In other words, we have a witness ((d − d′)−1(sm − s′m), (sr − s′r), (se −
s′e), d−d′) for (A,B, c) such that ‖sr− s′r‖∞ ≤ 24σ2, and ‖se− s′e‖∞ ≤ 24σ3.

Note that ‖(d− d′)−1(sm − s′m)‖∞ = ‖sm − s′m‖∞ ≤ 2‖sm‖∞ = γmβm.

Honest-Verifier Zero-Knowledge: Let c and challenge d are given as in-

puts. First, the simulator samples s′m ← {−γmβm/2, γmβm/2}l, s′r ← Dn
σ2

,

and s′e ← Dm
σ3

, and computes t = As′m+Bs′r + s′e−dc. In the case d = 0, the

simulator outputs (t, 0, (s′m, s
′
r, s
′
e)) with probability p′. This is statistically

indistinguishable from accepting transcripts of the real protocol, since the

distribution of response (s′m, s
′
r, s
′
e) is statistically indistinguishable from the

the distribution of real response by the rejection sampling lemma, and t is

uniquely determined by s′m, s
′
r, s
′
e, and d in the real protocol and in the simu-

lation. When d = 1, the simulator outputs (t, d, (s′m, s
′
r, s
′
e)) with probability

p′

M2M3
. Otherwise, the simulator outputs (t0, d,⊥) where t0 ← Zmq . The non-

aborting case of this simulation is indistinguishable from the non-aborting

case of the real protocol simillary. Bρ+ η mod q in t = Aµ+ Bρ+ η mod q

in real protocol can be regarded as an instance of LWEn,m,q,σ3(D
n
σ2

), which

is hard under the condition, spLWEn,m+n,q,s1,ρ,θ is hard. Thus t is computa-

tionally indistinguishable from t0, which is sampled from uniform random

distribution over Zmq .

5.3.2 Actively Secure Threshold Cryptosystems

In this section, we explain how to convert LWE-based cryptosystems

into actively secure threshold cryptosystem with the proofs which is intro-

duced in previous section. This conversion can be applied to a broad class of

LWE-based PKE’s and FHE’s such as [Reg09], [LP11], [CHK+16], [GSW13],

[BV14], [ZB12] satisfying the following properties. The decryption algorithm

consists of two procedures. In the first step, the algorithm takes as input a
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secret key sk ∈ Zn×lq and a ciphertext ct ∈ Zlq and computes a function fct,

which is linear in sk to output encode(m) + e where each ei ∈ [−B,B] is an

error term bounded by for some B � q and m ∈ {0, 1}l is the message of the

ciphertext ct. In the second step, it properly decodes the output of the first

step to recover message m. Since the decryption algorithm performs linear

function fct with the key sk, one can construct a threshold version of the de-

cryption naively: Simply split the secret key sk with a linear secret sharing

scheme Π with some access structure A on a set of servers S = {S1, . . . , SN}
into sk1, . . . , skN , and transmit the secret key share ski to the server Si for

all i. Then each server compute fct(ski) as a partial decryption. For any set

T ∈ A ⊆ 2S, there exist a set of coefficients {ci}i∈T such that
∑

i∈T ciski = sk

and then by linearity of fct, the combiner gets cifct(ski) = encode(m) + e.

To sum up, naive version of threshold decryption can be obtained by apply-

ing a linear secret sharing since the decryption algorithm consists of linear

operations. However, a sufficient numbers of outputs of partial decryption

allows a reconstruction of the secret key share ski by linearty of fct. In order

to adress this problem, a masking is necessary i.e. each server must output

the partial decryption as

fct(ski) + esmudge

where each component of esmudge is sampled from a uniform distribution over

sufficiently large interval. The following lemma tell us how big error bounds

are required. This technique is known as ”smudging”.

Lemma 5.3.1 ([Koh16] , Smudging). Let k be the security parameter and let

negl : N → R>0 be a negligible function. Let b1(k), b2(k) ∈ N be bounds with

b1(k)/b2(k) ≤ negl(k). Let e(k) ∈ [−b1, b1] be an arbitrary integer and ψ(k) be

the uniform distributionon [−b2, b2]∩Z. Then the distribution e+ψ obtained

by drawing an ẽ ∈ ψ and returning e + ẽ, is statistically indistinguishable to

the distribution ψ.

By applying the above technique, we get a LWE-based threshold cryp-

tosystem that is passively secure, and IND-CCA secure in random oracle
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model. One can convert the threshold cryptosystem to a actively secure one

by adding some additional proof for decryption procedure. This can be done

via non-interactive version of the previous zero-knowledge proofs. One can

obtain these proofs by applying the “Fiat-Shamir Heuristic”: The challenge

c is computed by a prover as c = H(t), where H : {0, 1}∗ → {0, 1}t be

a hash function. Let proofi = (proofbd,i, prooflin,i, proofsum,i, proofmes,i) be

the non-interactive version of the previous zero-knowledge proofs. Sine one

can get negligible soundness error and overwhelming completeness error from

parallel repeations, we assume the proof proofi also achieves that. We first

thresholdize the spLWE-based KEM in [CHK+16].

• TKEM.Params(λ): generate a bit-length of seed y and spLWE param-

eters n,m, q, s, ρ, θ, s′, ρ′, θ′ with λ-bit security. Publish all parameters

by pp.

• TKEM.Keygen(pp): sample seedA ← {0, 1}y,A ← Gen(seedA), e ←
Dm

Z,s and s← U(Xn,ρ,θ), and compute b = As+e ∈ Zmq . For a secret key

sk = s, s is randomly divided into t pieces sk1 = s1, . . . , skt = st. The

verification key vk is the description of the commitment scheme. The

verification key share vki = Com(ski), ski is the opening information

of vki. publish a corresponding public key pk = (seedA,b).

• TKEM.Encap(pk,pp): sample u← Xm,ρ′,θ′ , (e1, e2)← DZ,s′ ×Dn
Z,s′ and

e3 ∈ {0, 1}. Let v = uTb + e1 ∈ Zq and v̄ = 2v + e3 ∈ Z2q. Compute

c1 = 〈v̄〉2 ∈ Z2 and c2 = uTA + e2 ∈ Znq from A ← Gen(seedA).

Send a ciphertext c = (c1, c2) ∈ Z2 × Znq to the receiver, and store an

ephemeral secret key µ = bv̄e2 ∈ Z2.

• TKEM.PartialDecap(c, ski, vk, vki): Compute wi = 2c2
T si + esm,i ∈ Zq,

Com(esm,i), Com(c2
T si), Com(c2

T si+esm,i), and send them with proofi.

• TKEM.Combine(c, {wi}ti=1, {vki}ti=1, (Com(esm,i), Com(c2
T si), Com(c2

T si+

esm,i)), proofi): If one of proofs is invalid, output ⊥. Otherwise, Com-

pute
∑
wi = 2c2

T s +
∑
esm,i, and output µ = rec(

∑
wi, c1).
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We now construct a (t, t)-threshold public cryptosystem based on the

spLWE-based threshold KEM.

• TPKE1.Params(λ): let ` be a message length, and run TKEM.Params(λ)

with `. Publish all parameters by pp.(For simple description, we assume

that l = 1.)

• TPKE1.Keygen(pp): output a key pair, and secret key shares (pk, sk),

s1, . . . , st, and verification key vk, its shares vki’s← TKEM.Keygen(pp).

• TPKE1.Enc(pk,m, pp): for c, µ ← TKEM.Encap(pk,pp), compute c′ =

m⊕ µ and output a ciphertext (c, c′).

• TPKE1.PartialDec((c, c
′), ski, vk, vki): Output wi, Com(esm,i), Com(c2

T si),

Com(c2
T si + esm,i), proofi ← TKEM.PartialDecap(c, ski, vk, vki)

• TPKE1.Combine((c, c′), {wi}ti=1, (Com(esm,i), Com(c2
T si), Com(c2

T si+

esm,i)), proofi): for µ = TKEM.Combine(c, {wi}ti=1, (Com(esm,i), Com(c2
T si),

Com(c2
T si + esm,i)), proofi), output m = c′ ⊕ µ.

Finally, we have a LWE-based threshold public-key cryptosystem PKE2 which

is actively secure in random oracle model.

• PKE2.Params(λ): let ` be a message length and ki > 0 be integers such

that hash functions G : {0, 1}k1+` → {0, 1}∗, H : {0, 1}k1 → {0, 1}k2

and H ′ : {0, 1}k1 → {0, 1}k3 have λ-bit security. Let pp be an output of

KEM.Params(λ) with k1. Publish `, pp and ki.

• PKE2.Keygen(pp): output a key pair, and secret key shares (pk, sk),

s1, . . . , st, and verification key vk, its shares vki’s← TKEM.Keygen(pp).

• PKE2.Enc(pk,m, pp, ki): randomly choose ω ← {0, 1}k1 , and let cm =

H(ω)⊕m. Compute ch = H ′(ω) and (c, c′)← PKE1.Enc(pk, ω;G(ω||cm)).

Output a ciphertext (c, c′, ch, cm).
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• PKE2.PartialDec((c, c
′, ch, cm), ski, vk, vki): Output wi, Com(esm,i), Com(c2

T si),

Com(c2
T si + esm,i), proofi ← KEM.PartialDecap(c, ski, vk, vki)

• PKE2.Combine((c, c′, ch, cm), {wi}ti=1, pp, ki, Com(c2
T si), Com(c2

T si +

esm,i)), proofi): Compute ω = PKE1.Combine((c, c′), {wi}ti=1, Com(c2
T si),

Com(c2
T si + esm,i)), proofi) and m = H(ω) ⊕ cm. Check whether

(c, c′) = PKE1.Enc(pk, ω;G(w||cm)) and ch = H ′(ω). If so, output

m, otherwise output ⊥ .
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Conclusions

In this thesis, we introduced a variant of LWE with a sparse secret, spLWE

for more efficient construction of public-key encryption and commitment

schemes. First, we define the variant problem, spLWE, and provide analy-

sis for it: We show that spLWE can be reduced from LWE, which means that

the hardness of spLWE can also be based on the worst-case lattice problems,

gapSVP and SIVP. On the other hand, we exclude the parameters which

have provable security from our reduction since it is not tight enough to be

useful in parameter setting. We also extend all known LWE attacks in order

to estimate concrete hardness of spLWE. These are used to select efficient

and secure parameters: It requires relatively larger dimension than that of

LWE to maintain security. However, we verify that the problem of increase

in dimension can be relieved by using a small modulus q. In conclusion, we

can choose more compact parameters in spLWE-based encryption and com-

mitment schemes. Of course, new developments of cryptanalysis for spLWE

with a bigger community would be required.

From the analysis of spLWE, we propose efficient post-quantum public-key

encryption and commitment schemes with related zero knowledge protocols

based on spLWE: We suggest an IND-CPA PKE and its IND-CCA conversion

in the quantum random oracle model by applying the modified Fujisaki-

Okamoto conversion of Unruh. In commitment case, we give a variety of
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versions of commitment schemes which are based on LWE and its variants.

In particular, we also propose a commitment scheme dedicated for the zero-

knowledge proofs suggested in this thesis. Finally, as a application, we show

how to convert our PKE into a threshold cryptosystem which has active

security with previous constructions.
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국문초록

랜덤선형부호의 복호화 문제(Learning with Errors)는 2005년 Regev가 소개한 이후

로다양한암호학적스킴을설계하는데이용되고있다.최근에는키교환,공개키암호,

서명 스킴과 같은 기본적인 암호학적 알고리즘 뿐만아니라 완전 동형암호, 다중 선

형함수와 같은 고차원의 암호학적 알고리즘을 설계하는데 이용되고 있다. 한편 최근

양자 컴퓨팅 기술의 급속한 발전으로 인해 이론적인 연구보다는 보다 더 실제로 사

용될 수 있는 암호학적 스킴을 연구, 개발하는일이 중요해졌다. 이러한 배경에서, 이

논문에서는 양자 컴퓨터 시대를 대비한 효율적인 공개키 암호 및 commitment 스

킴 또한 이와 관련된 영지식 증명 프로토콜과 LWE 문제 기반의 임계암호시스템을

제안한다. 효율성을 위해 특별히 랜덤선형부호의 복호화 문제에서 비밀 벡터를 스파

스한벡터로생성하는변형된형태를사용하며,이변형된문제의어려움및제안하는

스킴들의 안전성을 제시한다.

주요어휘:격자,랜덤선형부호의복호화문제,스파스백터,공개키암호, com-

mitment, 임계 암호시스템

학번: 2014-30074


	1.Introduction
	2.Preliminaries
	2.1 Notations
	2.2 Cryptographic notions
	2.2.1 Key Encapsulation Mechanism
	2.2.2 Commitment Scheme
	2.2.3 Zero-Knowledge Proofs and Sigma-Protocols

	2.3 Lattices
	2.4 Discrete Gaussian Distribution
	2.5 Computational Problems
	2.5.1 SVP
	2.5.2 LWE and Its Variants

	2.6 Known Attacks for LWE
	2.6.1 The Distinguishing Attack
	2.6.2 The Decoding Attack


	3.LWE with Sparse Secret, spLWE
	3.1 History
	3.2 Theoratical Hardness
	3.2.1 A Reduction from LWE to spLWE

	3.3 Concrete Hardness
	3.3.1 Dual Attack (distinguish version)
	3.3.2 Dual Attack (search version)
	3.3.3 Modifed Embedding Attack
	3.3.4 Improving Lattice Attacks for spLWE


	4.LWE-based Public-Key Encryptions
	4.1 History
	4.2 spLWE-based Instantiations
	4.2.1 Our Key Encapsulation Mechanism
	4.2.2 Our KEM-Based Encryption Scheme
	4.2.3 Security
	4.2.4 Correctness

	4.3 Implementation
	4.3.1 Parameter Selection
	4.3.2 Implementation Result


	5.LWE-based Commitments and Zero-Knowledge Proofs
	5.1 History
	5.2 spLWE-based Instantiations
	5.2.1 Our spLWE-based Commitments
	5.2.2 Proof for Opening Information

	5.3 Application to LWE-based Threshold Crytosystems
	5.3.1 Zero-Knowledge Proofs of Knowledge for Threshold Decryption
	5.3.2 Actively Secure Threshold Cryptosystems


	6.Conclusions


<startpage>9
1.Introduction 1
2.Preliminaries 5
  2.1 Notations 5
  2.2 Cryptographic notions 5
       2.2.1 Key Encapsulation Mechanism 5
       2.2.2 Commitment Scheme 6
       2.2.3 Zero-Knowledge Proofs and Sigma-Protocols 7
  2.3 Lattices 9
  2.4 Discrete Gaussian Distribution 11
  2.5 Computational Problems 12
       2.5.1 SVP 12
       2.5.2 LWE and Its Variants 12
  2.6 Known Attacks for LWE 13
       2.6.1 The Distinguishing Attack 14
       2.6.2 The Decoding Attack 15
3.LWE with Sparse Secret, spLWE 16
  3.1 History 16
  3.2 Theoratical Hardness 17
       3.2.1 A Reduction from LWE to spLWE 18
  3.3 Concrete Hardness 21
       3.3.1 Dual Attack (distinguish version) 21
       3.3.2 Dual Attack (search version) 23
       3.3.3 Modifed Embedding Attack 25
       3.3.4 Improving Lattice Attacks for spLWE 26
4.LWE-based Public-Key Encryptions 29
  4.1 History 29
  4.2 spLWE-based Instantiations 31
       4.2.1 Our Key Encapsulation Mechanism 31
       4.2.2 Our KEM-Based Encryption Scheme 33
       4.2.3 Security 35
       4.2.4 Correctness 36
  4.3 Implementation 37
       4.3.1 Parameter Selection 38
       4.3.2 Implementation Result 39
5.LWE-based Commitments and Zero-Knowledge Proofs 41
  5.1 History 42
  5.2 spLWE-based Instantiations 43
       5.2.1 Our spLWE-based Commitments 44
       5.2.2 Proof for Opening Information 47
  5.3 Application to LWE-based Threshold Crytosystems 50
       5.3.1 Zero-Knowledge Proofs of Knowledge for Threshold Decryption 50
       5.3.2 Actively Secure Threshold Cryptosystems 58
6.Conclusions 63
</body>

