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Abstract

Effects of short-term exposure to 
sevoflurane on the survival, 
proliferation, apoptosis, and 

differentiation of neural precursor 
cells derived from human embryonic 

stem cells

Jin-Woo Park
Department of Medicine (Anesthesiology and Pain Medicine)

The Graduate School 
Seoul National University

Purpose: Data from animal experiments suggest that exposure to general 

anesthetics in early life inhibits neurogenesis and causes long-term memory deficit. 

Regarding a short operating time and popularity of sevoflurane in pediatric

anesthesia, it is important to verify effects of short period exposure to sevoflurane 

on developing brain.

Methods: We measured the effects of short-term exposure (2 h) to 3%, 6% or 8% 

sevoflurane, the most commonly used anesthetic, on neural precursor cells derived 

from human embryonic stem cells, SNUhES32. On days 1, 3, 5 and 7 post-

treatment, cell survival, proliferation, apoptosis and differentiation were analyzed.

Results: Treatment with 6% sevoflurane increased cell viability (P = 0.046) and 

decreased apoptosis (P = 0.014) on day 5, but didn’t last on day 7. Survival and

apoptosis were not affected by 3% and 8% sevoflurane; there was no effect of 
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proliferation at any of the tested concentrations. The differentiation of cells 

exposed to 6% or 8% sevoflurane decreased on day 1 (P = 0.033 and 0.036 for 6% 

and 8% sevoflurane, respectively) but was again normalized on days 3–7. 

Conclusion: The clinically relevant treatment with sevoflurane for 2 h induces no 

significant changes of the survival, proliferation, apoptosis and differentiation of 

human neural precursor cells, although supra-clinical doses of sevoflurane alter 

human neurogenesis transiently.

keywords: anesthetics, general; human embryonic stem cells; neurogenesis; 

sevoflurane

Student Number: 2016-30594
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1. Introduction

Mounting preclinical data from experiments in rodents and non-human 

primates suggest that exposure to clinically common general anesthetics such as 

sevoflurane, isoflurane and propofol during early postnatal period inhibits 

neurogenesis and causes long-term memory deficit (1-6). Some clinical studies 

have also shown that general anesthesia in early childhood can lead to long-term 

behavioral abnormalities (7-10).

Neural precursor cells (NPCs) derived from human embryonic stem cells (hESCs)

proliferate and differentiate to form mature neurons, astrocytes, or 

oligodendrocytes (11). The hESC-derived neurons established in vitro share 

morphologic, structural, physiological and functional traits with human neurons

(12, 13). The efficient culture, expansion and differentiation of human stem cells in 

vitro (11, 14) have allowed research into the effect of anesthetics on the developing 

human brain, without the ethical problems posed by in vivo studies in human 

infants and children (15, 16).

Sevoflurane is one of the most commonly used anesthetics in general anesthesia. 

Due to its low blood–gas partition coefficient and nonpungency, sevoflurane 

provides smooth inhalation induction and is, in many cases, the anesthetic of 

choice in pediatric patients (17). In infants or children who undergo general 

anesthesia for surgery or diagnostic procedures, the duration of anesthesia is 

relatively shorter than in adults and generally under 2 h (18). Therefore, it is of 

prime importance to elucidate whether a short-term sevoflurane exposure may 

cause detrimental effects on the developing brain.

In this study, we aimed to investigate the effects of short-term exposure to 
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sevoflurane on human neurogenesis and therefore used cultured hESCs as a model 

system to evaluate the potential neurotoxicity of 2-h exposure to sevoflurane on 

NPCs derived from hESCs.
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2. Materials and Methods

hESC line

Cells from the hESC line, SNUhES32 were maintained on 35-mm vitronectin-

coated dishes under standard culture conditions (5% CO2, 37°C) in an Essential 8 

medium (Thermo fisher scientific, Carlsbad, CA, USA) with 2% Essential 8 

supplement (Thermo fisher scientific). The medium was exchanged daily. Once a 

week, the cells were passaged by mechanical dispersion with flame-pulled Pasteur 

pipettes.     

Derivation of NPCs from hESCs 

NPCs were derived from hESCs according to the protocol our colleague had 

reported (14). The hESC colonies were washed with phosphate-buffered saline 

(PBS) and detached with collagenase for 40 min. Shortly thereafter, the detached 

colonies were transferred into a microtube containing ESC medium and allowed to 

settle to the bottom. The colonies were then transferred onto 60-mm bacterial 

dishes containing Essential 6 medium (Thermo fisher scientific). After culture with 

a medium change every other day for 5–7 days, the resulting EBs were transferred 

by pipetting to 35-mm dishes coated with Matrigel (BD Bioscience, San Jose, CA, 

USA). They were then cultured in neural precursor (NP) selection medium 

(Dulbecco’s minimum essential medium/F12 medium supplemented with 0.5% N2 

supplement, 1 mM L-glutamine, 1% non-essential amino acids, 50 U/ml penicillin,

50 ㎍/ml streptomycin and 0.1 mM 2-mercaptoethanol), which was changed every 

other day. After 5 days of selection, abnormal EBs recognized by their cystic form 
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were removed. The NP selection medium was replaced with NP expansion medium 

(add 20ng/ml bFGF, 0.5% N2 medium was replaced with 1% N2 medium). The 

NPs were cultured with a change of medium every other day. Neural structures

having neural rosette or neural tube, seen as black clumps, appeared on day 5 and 

became larger by day 7. These were transferred to a 60-mm dish and incubated for 

~2 days, during which time they formed spherical clumps. The spherical clumps 

were cut with flame-pulled Pasteur pipettes into smaller pieces to generate neural 

spheres. After 5 days of culture, the spheres had enlarged, forming spherical neural 

masses, which were purified in four time processes to yield a homogenous 

population. 

Sevoflurane treatment

The NPCs were cut into small pieces mechanically and plated onto 96-well and 4-

well plates for enzyme-linked immunosorbent assay (ELISA) and 

immunofluorescence staining, respectively. The cells were divided into two groups 

and incubated in modular incubator chambers (MIC 101, Billups-Rosenberg Inc., 

Del Mar, CA, USA). The NPCs of the sevoflurane group were exposed to 3%, 6% 

or 8% sevoflurane (Abbott Laboratories, Lake Bluff, IL, USA), provided by a 

vaporizer connected to the chamber (5% CO2, 37°C), for 2 h. The cells in the 

chamber of the control group were cultured for 2 h without sevoflurane exposure. 

After treatment, the NPCs of both groups were cultured in neuronal differentiation 

medium, which was exchanged every other day. On days 1, 3, 5 and 7 post-

exposure, the NPCs were analyzed for viability, proliferation, differentiation and 

apoptosis.
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Determination of the medium concentration of sevoflurane 

by gas chromatography

Prior to the experiments, the concentrations of sevoflurane dissolved in the 

medium were determined using gas chromatography (GC) on an Agilent 7890A 

system (Agilent Technologies, Wilmington, DE, USA). A basal linear curve was 

obtained by GC measurement of four concentrations (0.25, 0.5, 1 and 5 mM) of 

sevoflurane in differentiation medium. After exposure of the cells to 3%, 6% and 8% 

sevoflurane (5% CO2, 37°C) for 2 h, the media were analyzed by GC; the 

sevoflurane concentration was calculated based on the basal linear curve.

Cell viability analysis 

Cell viability was determined colorimetrically using water-soluble tetrazolium salt 

(WST-1) assay kits (Roche Diagnostics, Basel, Switzerland). WST-1 was added to 

each well of the culture plates, which were then re-incubated for 2 h. WST-1 was 

reduced to dark yellow formazan by the action of cellular mitochondrial 

dehydrogenase. The reaction product was detected using a scanning multiwell 

spectrophotometer (ELISA reader) over the wavelength range of 420–480 nm. For 

each group, the assays were repeated for 12 samples.

Proliferation analysis 

Cell proliferation was evaluated in a bromodeoxyuridine (BrdU)-based ELISA 

(Roche Diagnostics, Basel, Switzerland). BrdU is incorporated at thymidine 

positions during DNA synthesis and can thus be used to assess cell proliferation. 
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NP suspensions were incubated for 2 h with diluted BrdU solution. The cells were 

fixed and their DNA denatured using FixDenat solution. After a 30-min incubation, 

anti-BrdU-peroxidase antibody was added to the cells for 90 min; the cells were 

then washed with washing solution. The reaction product was quantified based on 

the absorbance in an ELISA reader. For each test or control group, 12 samples were 

analyzed for cell proliferation.

Apoptosis analysis 

Cell apoptosis was quantified in a terminal deoxyribonucleotidyl transferase-

dUTP nick end labeling (TUNEL) assay using a commercially available detection 

kit (Click-iT® TUNEL Alexa Fluor® imaging assay kit, Invitrogen, Carlsbad, CA, 

USA), according to the manufacturer's instructions. NPCs were fixed with 4% 

paraformaldehyde for 15 min and permeabilized with Triton X-100 for 20 min. The 

reaction cocktail, including terminal deoxyribonucleotidyl transferase and dUTP, 

was then added to the NPCs for 60 min. Cells undergoing apoptosis contained

DNA strand breaks and thus incorporated dUTPs tagged with Alexa 594. Cell 

nuclei were then labelled with 4′, 6-diamidino-2-phenylindole (DAPI) (Vector 

Laboratories, Burlingame, CA, USA). Images of the TUNEL-stained cells were 

captured using an Olympus BX-60 fluorescence microscope (Olympus Corp., 

Tokyo, Japan). For each group, 12 random microscopic fields were imaged at 100× 

magnification.

Differentiation analysis

To evaluate neural cell differentiation, the differentiated cells were fixed with 4% 
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paraformaldehyde for 20 min, blocked for 1 h with 3% bovine serum albumin 

(BSA) and Triton X-100 in PBS and then incubated overnight at 4°C in 3% BSA 

containing anti-nestin and anti-β-III-tubulin antibodies. Nestin is an intermediate 

filament protein expressed in undifferentiated neural cells during development, 

whereas β-III tubulin is a microtubule protein present in differentiated neurons. The 

cells were incubated for 1 h with secondary antibodies tagged with Alexa 488 and 

594 for nestin and β-III tubulin, respectively. After labelling of the cell nuclei with 

DAPI (Vector Laboratories), immuno-fluorecence labeled cells were examined by 

fluorescence microscopy. Twelve random microscopic fields at 100× magnification 

were imaged for each group.

Statistical analysis

Differences between the sevoflurane and control groups at each time point were 

investigated using an unpaired Student’s t-test or the Mann–Whitney U-test for 

continuous variables with a normal or non-normal distribution, respectively. The 

data were also analyzed with a two-way repeated ANOVA to evaluate the 

difference between groups over time and the interactions group × time. All 

statistical analyses were performed using SPSS 19.0 software (SPSS Inc. Chicago, 

IL, USA). A P-value < 0.05 was considered to indicate statistical significance.
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3. Results

Concentration of sevoflurane in the medium

A basal linear curve was established from the gas chromatographs of the four 

sevoflurane dilutions. After incubation of the cells for 2 h in 3%, 6% and 8% 

sevoflurane, the medium concentrations of the anesthetic were 0.369, 0.756 and 

1.003 mM, respectively.  

Effects of sevoflurane on the survival of human NPCs 

Generation of the dark yellow formazan reaction product in the WST-1 assay was 

an indicator of cell survival. The survival of NPCs exposed to 3% or 8% 

sevoflurane was not significantly different from the control at any time point 

during the week after treatment. Following the exposure of NPCs to 6% 

Figure 3.1 Survival and proliferation of neural precursor cells (NPCs) measured using an 
enzyme-linked immunosorbent assay. The results are expressed as a percentage of the control 
value. (A) A water-soluble tetrazolium salt (WST-1) assay showed that 6% sevoflurane 
increased NPC survival on day 5 but had no significant effect compared with the control at 
other time points. Exposure to 3% and 8% sevoflurane also had no effect on cell survival. (B) 
Sevoflurane treatment did not alter NPC proliferation at any time point, as demonstrated in a 
bromodeoxyuridine (BrdU) assay. Error bar = standard deviation of the mean, * P < 0.05.
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sevoflurane, cell survival increased by 14% relative to control cells on day 5 (P =

0.046) (Figure 3.1A). However, on days 1 and 3 but also on day 7, survival of the 6% 

sevoflurane group did not differ significantly from that of the control group. There 

was no interaction group x time between control and any sevoflurane groups, 

indicating NPC exposure to the three sevoflurane concentrations did not 

significantly alter viability during the 7 days post-treatment.

Effects of sevoflurane on the proliferation of human NPCs 

Figure 3.2 Terminal deoxyribonucleotidyl transferase-dUTP nickend labeling (TUNEL) assay for 
estimating NPC Apoptosis. (A) TUNEL-stained cells (B) 4′, 6-diamidino-2-phenylindole (DAPI)-stained 
nuclei. (A) and (B) show the same microscopic field. (C) TUNEL assay is based on the incorporation of 
dUTPs within nuclei undergoing apoptosis (white arrows).The proportion of apoptotic cells is expressed 
as a percentage of DAPI-positive nuclei. (D) Exposure to 6% sevoflurane decreased apoptosis on day 5 
but had no effect on days 1, 3 and 7. Treatments with 3% or 8% sevoflurane did not cause any significant 
change in apoptosis on days 1–7. Error bar = standard deviation of the mean, * P < 0.05.
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The incorporation of BrdUs into DNA is proportional to the amount of cell 

proliferation. The sevoflurane groups did not show significant difference of 

proliferation compared with the control on any of the 4 days tested and over the 1-

week post-exposure (Figure 3.1B). 

Effects of sevoflurane on apoptosis by human NPCs 

The proportion of TUNEL-stained (apoptotic) cells was determined as a 

percentage of the DAPI-positive nuclei (Figure 3.2A–C). NPC apoptosis in the 6% 

sevoflurane group was reduced by ~20% (P = 0.014) relative to the control group 

(Figure 3.2D) only on day 5, with no apparent effect on days 1, 3 and 7. In the 3% 

and 8% sevoflurane treatments, there was no significant change in apoptosis versus 

Figure 3.3 NPC differentiation examined by immunofluorescence staining. Same microscopic 
field: (A) DAPI-stained nuclei, (B) anti-nestin staining of undifferentiated neural cells, (C) anti-
β-III tubulin staining of microtubule elements in differentiated neurons and (D) merge image. 
The ratio of β-III tubulin to nestin was used as an indicator of the relative rate of differentiation. 
(E) In cultures treated with 6% and 8% sevoflurane, the ratio significantly decreased on day 1 
but not on days 3, 5 or 7. Treatment with 3% sevoflurane had no effect on the ratio on days 1–7. 
Error bar = standard deviation of the mean, * P < 0.05.
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the control on days 1–7. Repeated ANOVA showed that exposure to any dose of 

sevoflurane did not significantly influence apoptosis during the 1-week experiment. 

Effects of sevoflurane on human NPC differentiation

Differentiation from progenitor cell to neuron was determined from the ratio of 

the number of cells that stained with anti-β-III tubulin antibody versus the number 

of cells that stained positively with nestin (Figure 3.3A–D). In cells exposed for 2 h 

to 3% sevoflurane, there was no change in the ratio of β-III tubulin to nestin

compared with the control on days 1, 3, 5 and 7 after treatment (Figure 3.3E). In 

the 6% and 8% sevoflurane groups, the ratios were significantly lower than those 

of the controls on day 1 (P = 0.033 and 0.036 for 6% and 8% sevoflurane, 

respectively) but not on days 3, 5 and 7. NPC differentiation significantly increased 

during the 1-week experiment in both the control and the experimental groups, 

with no effect induced by exposure to any of the three sevoflurane concentrations. 
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4. Discussion

This study investigated the effect of sevoflurane treatment on NPCs derived from 

hESCs. While animal studies using neural stem cells or neural precursor cells have 

demonstrated the neurotoxicity of general anesthetics, the effect of sevoflurane on 

neurogenesis of human stem cells has not been previously investigated (19).

The chosen sevoflurane concentrations, as well as exposure duration, reflected the 

clinical environment of general anesthesia during early-life surgery. Minimum 

alveolar concentrations (MACs) of sevoflurane in neonates and children younger 

than 12 years old are 3.3% and 2.5%, respectively (20). We therefore chose 3% 

sevoflurane as the dose to elucidate the effect of a clinical sevoflurane dose on 

NPCs. Additional treatments with 6% and 8% sevoflurane were designed to 

explore dose-dependent toxicity, which might reflect the risk of high anesthetic

level over than 1 MAC. This situation might be encountered during the volatile 

induction of general anesthesia with sevoflurane or accidentally. According to a 

previous study analyzing pharmacokinetics of sevoflurane, arterial blood 

concentration of sevoflurane is equilibrated to about 1.9% during general 

anesthesia with 3.5% of sevoflurane in adult patients (21). Based on the physical 

properties of sevoflurane, 1.9% blood concentration means 9.861 mg of 

sevoflurane in 100 ml blood that is equal to 0.493 mM in molar concentration (21). 

Therefore, the concentrations of sevoflurane in the medium measured by gas 

chromatography (0.369 mM at 3.0% of sevoflurane) implicate that the sevoflurane 

treatment in our study could mimic, to some degree, a clinical situation under 

general anesthesia with sevoflurane. 

Our results showed that a 2-h exposure of NPCs to 3% and 8% sevoflurane did 
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not affect the survival, proliferation and apoptosis of human NPCs 1, 3, 5 and 7 

days after treatment; this differed from the results obtained in animal studies, in 

which the neurotoxicity of general anesthetics was consistently demonstrated. In 

those investigations, the concentration and duration of general anesthesia were the 

two main factors determining neurotoxicity (22-24). Therefore, a longer than 2 h or 

repeated exposure to sevoflurane may be a favorable condition to show anesthetic 

toxicity (25, 26). However, the effects of short-term sevoflurane treatment deserve 

to be investigated, considering the short duration of early life anesthesia. In 

addition, the level of anesthetic treatment in our study was the concentration that 

could induce considerable neural death in previous animal studies (4, 27).

In our study, on day 5 after exposure to 6% sevoflurane, a decrease in apoptosis 

and an increase in cell viability were determined. These effects were not observed 

on day 3 and were not maintained until day 7, suggesting that they were cumulative, 

slow to emerge, but also transient. A neuroprotective effect of general anesthetics 

has been reported in several studies (23, 28-31). However, in animal studies, the 

enhancement of cell survival by general anesthetics was achieved with a lower 

concentration or with a shorter exposure duration than tested in our study (30). It 

was reported that a 1-h exposure to 1 MAC or 1.5 MAC sevoflurane increased the 

number of viable neural stem cells isolated from rat embryos (23).

Our results suggest that the resistance of human neurogenesis to sevoflurane 

anesthesia is more considerable than expected from previous animal research. 

These findings may reflect the ontogenetic differences in the neural development of 

humans versus that of animals. The developing brain is susceptible to anesthetic 

neurotoxicity during growth spurt period (24, 32, 33). However, for example in 
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rodents, maturation of the nervous system is largely postnatal, whereas in humans 

it is prenatal (34). Drug potency and vulnerability also differ between animals and 

humans. In fact, the common aspects of the neurotoxicity pathway of sevoflurane 

among species remain largely unknown.

We also evaluated the differentiation of human NPCs exposed to sevoflurane. 

Seven days after a 2-h treatment with 3% sevoflurane, there was no difference in 

the degree of differentiation compared with the control. This finding agrees with a 

previous study in which clinically relevant concentrations of sevoflurane did not 

alter the differentiation of rat hippocampal neural stem cells (23). In the present

study, supraclinical doses (6% and 8%) of sevoflurane decreased the rate of 

differentiation on day 1, but the effect disappeared by day 3 until day 7. Moreover, 

This transient effect of sevoflurane on the differentiation of NPCs is quite similar 

to the isoflurane effect on the NPCs differentiation in our previous study.(35) On 

the other hand, an animal study reported 4% sevoflurane hindered the 

differentiation of mouse embryonic stem cells for over a week (36). In comparison 

to animal cells, human tissues seem to regain their capacity for normal 

differentiation in response to treatment with high sevoflurane dose.

The few human clinical studies reporting anesthetic neurotoxicity were 

retrospective and were vulnerable to limitations such as inadequate sample size, 

bias and the lack of standardized outcome measure (8-10). The General Anesthesia 

compared to Spinal anesthesia (GAS) study is one of the several ongoing large-

scale prospective studies that seek to overcome the limits of previous clinical 

studies (7). Its advantages are the investigation of a single general anesthetic agent 

in the setting of one surgical procedure, such that biases and logistical problems 
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can be avoided. The preliminary report of the GAS study concluded that general 

and regional anesthesia are functionally equivalent, which is consistent with our 

results (37). The consensus between preclinical and clinical human studies is 

meaningful for parents and clinicians. Although the GAS study is still in progress 

and the primary outcome has yet to be assessed, its preliminary conclusions 

indicate that general anesthesia with sevoflurane under clinical conditions need not 

be avoided (38, 39).

The current work has several limitations. First, the cells were derived from a cell 

line (hESC) that may differ from precursor cells generated and regulated within a 

living organism. Thus, neurogenesis, a complex, dynamic process that occurs over 

a lifetime, could not be reproduced perfectly. It is an innate weak point for studies 

using cultured stem cells. The signals for neural progenitor or stem cell 

proliferation, apoptosis and differentiation are closely correlated and 

developmentally regulated. Therefore, sevoflurane sensitivity may vary depending 

on the developmental stage (40, 41) whereas we investigated the changes in hESC-

derived NPCs only for a week. Further studies are needed to determine the long-

term effects of sevoflurane on NPCs or to analyze the neurotoxicity of sevoflurane 

during the different stages of human neurogenesis. Second, we did not evaluate the 

effects of long-term (> 2 h) exposure to sevoflurane in which significant 

neurotoxicity could occur. Previous animal studies have identified possible 

mechanisms of sevoflurane neurotoxicity. The let-7a-Lin 28 signaling pathway and 

ERK phosphorylation were demonstrated to be involved in sevoflurane-induced 

toxicity in the developing brain (36, 42). Although we did not investigate 

neurotoxic pathway of sevoflurane because there was no significant toxic effect 
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persisting 7 days after treatment, mechanistic studies are needed to identify and 

prevent a potential neurotoxicity after sevoflurane exposure for a longer duration 

than 2 hours.     

An advantage of our study was that the effects of sevoflurane were examined at 

four different time points rather than a single one, which increased the reliability of 

the assays and allowed comprehensive inferences to be drawn from the 

accumulated data (23, 36, 43). Despite a few differences at specific time points, 2 h 

exposure to sevoflurane was shown not to affect the overall survival, proliferation, 

apoptosis and differentiation of human NPCs during the 1-week post-treatment.

Moreover, as the first in vitro study to investigate the effects of sevoflurane on 

human tissues, our work provides powerful and essential information. In human 

cells unlike in animal cells, not only cell viability but also cell differentiation was 

relatively unaffected by sevoflurane. A previous clinical study demonstrated that 

multiple exposures, but not a single exposure, to general anesthetics caused long-

term learning disabilities (10). These findings must be taken into account in further 

studies on the effects of anesthetics on human neurogenesis, by the inclusion not 

only of dose-response analyses but also of different clinical conditions, such as 

multiple exposures or combinations of anesthetic agents.  

In conclusion, we report that clinically relevant doses of sevoflurane do not affect 

the survival, proliferation, apoptosis, or differentiation of human NPCs. Although 

supraclinical doses exerted toxic or protective effects on human neural cells, these 

were limited and transient. 



17

5. References

1. Loepke AW, Istaphanous GK, McAuliffe JJ, 3rd, Miles L, Hughes EA, McCann 
JC, et al. The effects of neonatal isoflurane exposure in mice on brain cell viability, adult 
behavior, learning, and memory. Anesth Analg. 2009;108(1):90-104.
2. Fang F, Xue Z, Cang J. Sevoflurane exposure in 7-day-old rats affects 
neurogenesis, neurodegeneration and neurocognitive function. Neuroscience bulletin. 
2012;28(5):499-508.
3. Fujimoto S, Ishikawa M, Nagano M, Sakamoto A. Influence of neonatal 
sevoflurane exposure on nerve development-related microRNAs and behavior of rats. 
Biomedical research. 2015;36(6):347-55.
4. Zheng H, Dong Y, Xu Z, Crosby G, Culley DJ, Zhang Y, et al. Sevoflurane 
anesthesia in pregnant mice induces neurotoxicity in fetal and offspring mice. 
Anesthesiology. 2013;118(3):516-26.
5. Kodama M, Satoh Y, Otsubo Y, Araki Y, Yonamine R, Masui K, et al. Neonatal 
desflurane exposure induces more robust neuroapoptosis than do isoflurane and sevoflurane 
and impairs working memory. Anesthesiology. 2011;115(5):979-91.
6. Wang SQ, Fang F, Xue ZG, Cang J, Zhang XG. Neonatal sevoflurane anesthesia 
induces long-term memory impairment and decreases hippocampal PSD-95 expression 
without neuronal loss. European review for medical and pharmacological sciences. 
2013;17(7):941-50.
7. Sun L. Early childhood general anaesthesia exposure and neurocognitive 
development. British journal of anaesthesia. 2010;105 Suppl 1:i61-8.
8. DiMaggio C, Sun LS, Kakavouli A, Byrne MW, Li G. A retrospective cohort 
study of the association of anesthesia and hernia repair surgery with behavioral and 
developmental disorders in young children. Journal of neurosurgical anesthesiology. 
2009;21(4):286-91.
9. Kalkman CJ, Peelen L, Moons KG, Veenhuizen M, Bruens M, Sinnema G, et al. 
Behavior and development in children and age at the time of first anesthetic exposure. 
Anesthesiology. 2009;110(4):805-12.
10. Wilder RT, Flick RP, Sprung J, Katusic SK, Barbaresi WJ, Mickelson C, et al. 
Early exposure to anesthesia and learning disabilities in a population-based birth cohort. 
Anesthesiology. 2009;110(4):796-804.
11. Brokhman I, Gamarnik-Ziegler L, Pomp O, Aharonowiz M, Reubinoff BE, 
Goldstein RS. Peripheral sensory neurons differentiate from neural precursors derived from 
human embryonic stem cells. Differentiation; research in biological diversity. 
2008;76(2):145-55.
12. Johnson MA, Weick JP, Pearce RA, Zhang SC. Functional neural development 
from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. 
The Journal of neuroscience : the official journal of the Society for Neuroscience. 
2007;27(12):3069-77.
13. Cho MS, Lee Y-E, Kim JY, Chung S, Cho YH, Kim D-S, et al. Highly efficient 
and large-scale generation of functional dopamine neurons from human embryonic stem 
cells. Proceedings of the National Academy of Sciences of the United States of America. 
2008;105(9):3392-7.
14. Cho MS, Hwang DY, Kim DW. Efficient derivation of functional dopaminergic 
neurons from human embryonic stem cells on a large scale. Nat Protoc. 2008;3(12):1888-
94.
15. Zhou Z, Ma D. Anaesthetics-induced neurotoxicity in developing brain: an update 
on preclinical evidence. Brain sciences. 2014;4(1):136-49.
16. Wang C, Liu F, Patterson TA, Paule MG, Slikker W, Jr. Utilization of neural stem 
cell-derived models to study anesthesia-related toxicity and preventative approaches. 



18

Molecular neurobiology. 2013;48(2):302-7.
17. Lerman J. Sevoflurane in pediatric anesthesia. Anesth Analg. 1995;81(6 
Suppl):S4-10.
18. Fingar KR, Stocks C, Weiss AJ, Steiner CA. Most Frequent Operating Room 
Procedures Performed in U.S. Hospitals, 2003-2012: Statistical Brief #186.  Healthcare 
Cost and Utilization Project (HCUP) Statistical Briefs. Rockville (MD)2006.
19. Skalova S, Svadlakova T, Shaikh Qureshi WM, Dev K, Mokry J. Induced 
pluripotent stem cells and their use in cardiac and neural regenerative medicine. Int J Mol 
Sci. 2015;16(2):4043-67.
20. Hatch DJ. New inhalation agents in paediatric anaesthesia. British journal of 
anaesthesia. 1999;83(1):42-9.
21. Lu CC, Tsai CS, Ho ST, Chen WY, Wong CS, Wang JJ, et al. Pharmacokinetics of 
sevoflurane uptake into the brain and body. Anaesthesia. 2003;58(10):951-6.
22. Zhang Y, Dong Y, Zheng H, Shie V, Wang H, Busscher JJ, et al. Sevoflurane 
inhibits neurogenesis and the Wnt-catenin signaling pathway in mouse neural progenitor 
cells. Current molecular medicine. 2013;13(9):1446-54.
23. Nie H, Peng Z, Lao N, Dong H, Xiong L. Effects of Sevoflurane on Self-Renewal 
Capacity and Differentiation of Cultured Neural Stem Cells. Neurochemical Research. 
2013;38(8):1758-67.
24. Sinner B, Becke K, Engelhard K. General anaesthetics and the developing brain: 
an overview. Anaesthesia. 2014;69(9):1009-22.
25. Zhang X, Liu S, Newport GD, Paule MG, Callicott R, Thompson J, et al. In Vivo 
Monitoring of Sevoflurane-induced Adverse Effects in Neonatal Nonhuman Primates Using 
Small-animal Positron Emission Tomography. Anesthesiology. 2016;125(1):133-46.
26. Xiao H, Liu B, Chen Y, Zhang J. Learning, memory and synaptic plasticity in 
hippocampus in rats exposed to sevoflurane. International journal of developmental 
neuroscience : the official journal of the International Society for Developmental 
Neuroscience. 2016;48:38-49.
27. Wang S, Peretich K, Zhao Y, Liang G, Meng Q, Wei H. Anesthesia-induced 
neurodegeneration in fetal rat brains. Pediatric research. 2009;66(4):435-40.
28. Sun X, Fang B, Zhao X, Zhang G, Ma H. Preconditioning of Mesenchymal Stem 
Cells by Sevoflurane to Improve Their Therapeutic Potential. PLoS ONE. 
2014;9(3):e90667.
29. Lucchinetti E, Zeisberger SM, Baruscotti I, Wacker J, Feng J, Zaugg K, et al. 
Stem cell-like human endothelial progenitors show enhanced colony-forming capacity after 
brief sevoflurane exposure: preconditioning of angiogenic cells by volatile anesthetics. 
Anesth Analg. 2009;109(4):1117-26.
30. Wei H, Liang G, Yang H. Isoflurane preconditioning inhibited isoflurane-induced 
neurotoxicity. Neuroscience letters. 2007;425(1):59-62.
31. Zhao P, Zuo Z. Isoflurane preconditioning induces neuroprotection that is 
inducible nitric oxide synthase-dependent in neonatal rats. Anesthesiology. 
2004;101(3):695-703.
32. Jevtovic-Todorovic V, Boscolo A, Sanchez V, Lunardi N. Anesthesia-induced 
developmental neurodegeneration: the role of neuronal organelles. Frontiers in neurology. 
2012;3:141.
33. Loepke AW, Soriano SG. An assessment of the effects of general anesthetics on 
developing brain structure and neurocognitive function. Anesth Analg. 2008;106(6):1681-
707.
34. Rice D, Barone S, Jr. Critical periods of vulnerability for the developing nervous 
system: evidence from humans and animal models. Environmental health perspectives. 
2000;108 Suppl 3:511-33.
35. Sohn HM, Kim HY, Park S, Han SH, Kim JH. Isoflurane decreases proliferation 
and differentiation, but none of the effects persist in human embryonic stem cell-derived 



19

neural progenitor cells. Journal of anesthesia. 2017;31(1):36-43.
36. Yi X, Cai Y, Zhang N, Wang Q, Li W. Sevoflurane inhibits embryonic stem cell 
self-renewal and subsequent neural differentiation by modulating the let-7a-Lin28 signaling 
pathway. Cell and tissue research. 2016;365(2):319-30.
37. Davidson AJ, Disma N, de Graaff JC, Withington DE, Dorris L, Bell G, et al. 
Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-
regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled 
trial. Lancet. 2016;387(10015):239-50.
38. Pound P, Bracken MB. Is animal research sufficiently evidence based to be a 
cornerstone of biomedical research? Bmj. 2014;348:g3387.
39. Hansen TG. Anesthesia-related neurotoxicity and the developing animal brain is 
not a significant problem in children. Paediatric anaesthesia. 2015;25(1):65-72.
40. LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR. GABA and 
glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron. 
1995;15(6):1287-98.
41. Ryu JR, Hong CJ, Kim JY, Kim EK, Sun W, Yu SW. Control of adult 
neurogenesis by programmed cell death in the mammalian brain. Molecular brain. 
2016;9:43.
42. Yufune S, Satoh Y, Akai R, Yoshinaga Y, Kobayashi Y, Endo S, et al. Suppression 
of ERK phosphorylation through oxidative stress is involved in the mechanism underlying 
sevoflurane-induced toxicity in the developing brain. Scientific reports. 2016;6:21859.
43. Zhou L, Wang Z, Zhou H, Liu T, Lu F, Wang S, et al. Neonatal exposure to 
sevoflurane may not cause learning and memory deficits and behavioral abnormality in the 
childhood of Cynomolgus monkeys. Scientific reports. 2015;5:11145.



20

요약(국문초록)

사람 배아 줄기세포로부터 얻어낸 신

경 전구세포의 생존, 증식, 아포토시

스, 분화에 대한 세보플루란 단기 노

출의 영향

목적: 동물 세포를 이용한 기존 실험들의 결과에 따르면 어린 시기에 노

출된 전신마취제에 의해 신경 발달 과정을 저해되고 장기적인 기억력 감

퇴 등이 유발될 수 있다. 세보플루란은 소아 마취에서 가장 흔하게 사용

되는 전신마취제 중 하나이며, 소아 수술의 경우 성인 수술에 비해 비교

적 수술 및 마취 시간이 짧기 때문에 세보플루란의 단기 노출이 발달과

정 중의 뇌에 미치는 영향을 파악하는 것은 임상적으로 매우 중요하다. 

방법: 사람 배아 줄기세포(SNUhES32)로부터 분화시킨 신경 전구세포

를 3%, 6% 그리고 8%의 세보플루란에 각각 노출 시킨 뒤 그 영향을

파악하고자 하였다. 세보플루란 노출 후 1, 3, 5 그리고 7일 째 되는 시

점에 세포의 생존, 증식, 아포톱시스, 그리고 분화 정도를 측정 및 분석

하였다. 

결과: 6% 세보플루란 처치 후 5일 째 세포의 생존이 증가하고 (P = 



21

0.046) 아포톱시스가 감소하였다 (P = 0.014). 하지만 이러한 효과는

노출 후 7일 째 까지 지속되지는 않았다. 반면 3% 및 8%의 세보플루란

노출은 세포의 생존 및 아포톱시스에 영향을 미치지 않았다. 세포 증식

의 경우, 어떠한 농도의 세보플루란 노출에 의해서도 유의한 증식의 변

화는 유발되지 않았다. 노출 후 1일 째, 세보플루란 6% 와 8% 그룹에

서 유의한 세포 분화의 저하가 발생하였다 (6% 와 8% 세보플루란 그

룹에서 각각 P = 0.033 그리고 0.036). 세포 분화는 노출 후 3일 이후

로는 정상화 되었다. 

결론: 임상적인 수준의 단기 세보플루란 노출은 사람 신경 전구세포의

생존, 증식, 아포톱시스 그리고 분화에 유의한 영향을 미치지 않으며, 

임상적 수준 이상의 높은 농도의 세보플루란 노출은 사람의 신경 발달

과정에 일시적인 변화를 유발할 수 있다. 

주요어: 전신마취제, 사람 배아 줄기세포, 신경 발달 과정, 세보플루란

학 번: 2016-30594
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