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Abstract

Development of computer-aided 

detection system for metastatic 

brain tumor in magnetic resonance 

imaging using machine-learning 

algorithm

Leonard Sunwoo

The Department of Radiology

The Graduate School

Seoul National University

College of Medicine

Purpose: To assess the effect of computer-aided detection (CAD) of brain 

metastasis (BM) on radiologists’ diagnostic performance in interpreting three-

dimensional brain magnetic resonance (MR) imaging using follow-up 

imaging and consensus as the reference standard.

Materials and Methods: The institutional review board approved this 

retrospective study. The study cohort consisted of 110 consecutive patients 

with BM and 30 patients without BM. The training data set included MR 

images of 80 patients with 450 BM nodules. The test set included MR images 
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of 30 patients with 134 BM nodules and 30 patients without BM. We 

developed a CAD system for BM detection using template-matching and K-

means clustering algorithms for candidate detection and an artificial neural 

network for false-positive reduction. Four reviewers (two neuroradiologists 

and two radiology residents) interpreted the test set images before and after 

the use of CAD in a sequential manner. The sensitivity, false positive (FP) per 

case, and reading time were analyzed. A jackknife free-response receiver 

operating characteristic (JAFROC) method was used to determine the 

improvement in the diagnostic accuracy.

Results: The sensitivity of CAD was 87.3% with an FP per case of 302.4. 

CAD significantly improved the diagnostic performance of the four reviewers 

with a figure-of-merit (FOM) of 0.874 (without CAD) vs. 0.898 (with CAD) 

according to JAFROC analysis (p < 0.01). Statistically significant 

improvement was noted only for less-experienced reviewers (FOM without vs. 

with CAD, 0.834 vs. 0.877, p < 0.01). The additional time required to review 

the CAD results was approximately 72 sec (40% of the total review time).

Conclusion: CAD as a second reader helps radiologists improve their 

diagnostic performance in the detection of BM on MR imaging, particularly 

for less-experienced reviewers.

Keywords: Brain metastasis, Computer-aided detection, machine 

learning, Magnetic resonance imaging

Student Number: 2015-30589
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INTRODUCTION

Metastatic brain tumors are the most common brain tumors in adults [1]. 

Unfortunately, brain metastasis (BM) carries a dismal prognosis, with a 

median survival of only 1 month if left untreated [2]. With the use of whole-

brain radiation therapy (WBRT), which has been the primary treatment 

modality of BM for over 50 years [3], the prognosis of patients with BM 

remains poor, with a median survival of 4 to 6 months [4]. Because WBRT 

may induce neurocognitive function impairment in some patients [5, 6], 

stereotactic radiosurgery alone has been increasingly considered the first-line 

treatment for patients with limited BM [7, 8]. Additionally, growing evidence 

suggests that stereotactic radiosurgery can be safely used for patients with up 

to 10 BM nodules [9, 10]. Thus, the accurate determination of the number, 

size, and location of metastatic lesions on brain imaging has become crucial 

for selecting the most appropriate treatment method.

Introduction of three-dimensional (3D) sequences in magnetic 

resonance (MR) imaging, which allows the acquisition of thin-section 

thickness images in a reasonable time, has significantly enhanced the 

sensitivity of BM detection, particularly for small nodules [11]. However, this 

demands time and effort on radiologists due to the increased number of 

images, which can be on the order of hundreds for a single patient. In addition, 

the enhancement of a small vessels may occasionally be confused with a small 

metastatic nodule on magnetization-prepared rapid-gradient-echo (MP-RAGE) 

imaging [12, 13], which is currently the most widely used 3D T1-weighted 

imaging (T1WI) sequence.
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Computer-aided detection (CAD) was developed to assist 

radiologists by providing a second opinion. Previous studies have found that 

CAD increases the sensitivity of detecting lesions in the breast [14–16], lung 

[17–19], and colon [20–23]. While CAD has also been applied for the 

detection of BM on MR imaging [24–27], to our knowledge, no studies have 

yet attempted to validate its usefulness in clinical practice. In this study, we 

developed CAD software for the detection of BM and conducted an observer 

performance study. We aimed to assess the effect of CAD of BM on 

radiologists’ diagnostic performance in interpreting 3D brain MR imaging 

using follow-up imaging and consensus as the reference standard.
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MATERIALS AND METHODS

Observer study cohort

The institutional review board waived the need for written informed consent 

from the participants because this was a retrospective study, and the patient 

records and information were anonymized and de-identified prior to analysis. 

From January 2015 through March 2016, 1751 consecutive MR imaging 

studies collected using a ‘BM work-up’ protocol from 1417 patients who had 

confirmed systemic malignancy were selected from the radiology database of 

Seoul National University Bundang Hospital. Two non-observer 

neuroradiologists (S.H.C. and B.S.C., with 16 and 18 years of clinical 

experience, respectively), who had access to the patients’ histories and follow-

up imaging studies, determined the reference standard of BM nodules based 

on consensus. Among these, 353 patients were excluded using the following 

criteria: (a) presence of metastasis involving bone, dura, or skin, or suspicious 

lesions for leptomeningeal seeding (n = 129); (b) presence of other 

pathological conditions, such as meningioma, vestibular schwannoma,

pituitary adenoma, cavernous malformation, or hemorrhagic infarction (n = 

64); (c) presence of equivocal nodule(s) determined to be BM (n = 99); (d) 

presence of excessive artifacts or poor image quality (n = 31); and (e) 

presence of more than 50 metastatic nodules (n = 30). For patients who 

underwent multiple MR imaging studies during the period, one study was 

chosen. After the initial selection, 80 patients with the presence of BM 

according to studies performed in 2015 were designated as the training set.
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Next, 30 patients with the presence of BM according to studies performed in 

2016 were designated as the test set. Among the 236 patients without evidence 

of BM on MR studies performed in the same period, 30 patients were 

randomly chosen after age and sex matching and included in the test set (Fig 

1).
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Fig 1. Flow diagram for patient selection. The diagram shows the initial case selection and final distribution of study cases into the training 

set and test set. Jan = January, Mar = March.
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Image acquisition

MR images were obtained with a 1.5-T (Intera; Philips Healthcare, Best, the 

Netherlands) or 3-T (Achieva or Ingenia; Philips Healthcare) MR scanner 

with an 8- or 32- channel head coil. MR imaging parameters for the 3D 

gradient-echo sequence (GRE) were as follows: field-of-view, 240 × 240 mm2; 

acquisition matrix, 240 × 240; slice thickness, 1 mm; number of excitations, 1; 

repetition time (TR), 8–10.6 msec; echo time (TE), 3.7–5.7 msec; and flip 

angle, 8°. For contrast enhancement, gadobutrol (Gadovist®, Bayer Schering 

Pharma AG, Berlin, Germany; 0.1 mmol/kg) was injected as a bolus 

intravenously. While CAD analyzed the 3D GRE contrast-enhanced T1WI 

only, non-observer reviewers (S.H.C. and B.S.C.) also assessed other imaging 

sequences in the routine protocol, including pre-contrast T1WI, T2-weighted 

images (T2WI), and fluid-attenuated inversion recovery (FLAIR) images.

Development of CAD software

The algorithm of the developed CAD software are classified into brain 

segmentation-phase, BM candidate detection-phase and BM discrimination-

phase algorithms. Fig 2 shows the complete flowchart of the proposed 

algorithms. 
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Fig 2. Flow diagram of our proposed CAD algorithms. TP = true positive, 

FP = false positive, ANN = artificial neural network.
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Normalization 

While the attenuation values of CT are absolute values, the signal intensity of 

MR imaging is a relative value. Therefore, the range of signal intensity differs 

depending on the scanning parameters. To solve this problem, we normalized 

the image by resampling the signal of the whole image to the same range 

based on the signal intensity at the initial seed position manually selected in 

the gray matter.

Brain segmentation 

We attempted to limit the region of interest to the brain by extracting the brain 

tissue from the source MR images. Restricting the algorithm to the brain 

region may reduce the potential false-positive (FP) nodules in anatomical

structures outside the brain region.

A 3D spherical-based seed region growing (SSRG) algorithm was 

used for brain segmentation based on the manually determined seed position 

in the gray matter. Seed region growing (SRG) is a general method of 

segmenting a homogeneous region by 3D expansion from a seed position (x, y, 

z). The SRG algorithm expands the region pixel by pixel [28, 29]. Therefore, 

when the signal intensity of a brain region is similar to those of neighboring 

structures, the brain segmentation might fail with only one pixel. To resolve 

this problem, we developed the SSRG algorithm, which expands the region 

when all pixels within the sphere comply with the expansion conditions. 
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BM candidate detection

BM typically has a spheroid-like structure and shows contrast enhancement 

on T1WI. Thus, BMs usually have well-defined borders with the surrounding 

anatomical tissue [30, 31]. However, large BMs tend to have irregular shapes. 

In addition, when internal necrosis is present, BM may appear as a peripheral 

rim-enhancing lesion. We proposed two types of algorithms according to the 

size of the nodules based on the characteristics of typical BM morphologies.

First, we used a 3D template-matching algorithm for BM detection 

with a small spheroid-like structure. Specifically, we used two spherical 

template models (a solid type and an inner-hole type) to compensate for the 

internal necrosis. The size of the voxel was determined by considering the 

ratio between the in-plane pixel spacing and slice thickness. Three templates 

were created for each of the two models and had diameters of 2 mm, 3 mm, 

and 4 mm. The size of the inner hole was determined to be 50% of each 

template. Fig 3 shows the various templates created for each size and type.
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Fig 3. Six spherical templates by sizes (2, 3, and 4 mm) and types (solid and inner-hole).
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Within the extracted brain volume, we performed a convolution of 

the brain volume using the template models. We detected BM candidates by 

evaluating the similarity in each position in the brain volume. The normalized 

cross correlation (NCC) was selected as the similarity measure because it is 

independent of the voxel attenuation, as defined in Equation (1) [32, 33]. 

�

�
∑

(�(�,�,�)��)̅��(�,�,�)���̿

����
�,�,�           (1)

where n is the count of pixels, �(�, �, �) is the brain image, �(�, �, �) is the 

template, and � a̅nd � a̿re the means of the brain image and template, 

respectively. �� and �� are the standard deviations of the brain image and 

template, respectively.

We initially detected image coordinates that exceeded the 

experimentally determined threshold value of similarity measured by NCC in 

the brain volume. Then, labelling was performed for the detected coordinates, 

and a 3D spherical region was created using the center position of each label 

and the radius of the template. Finally, 3D spherical regions were considered 

as potential candidates.

Next, we used a K-means clustering algorithm for the detection of 

large BM nodules with irregular shapes. K-means clustering is one of the 

simplest unsupervised classification techniques and is widely used due to its 

simplicity. K-means clustering is an algorithm for grouping data into k 

clusters. The data are distributed over the nearest cluster by calculating the 

Euclidean distance between the data and the center of each cluster [34, 35].

After performing a pilot experiment with varying k values from 5 to 
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8 to determine the optimal k values for K-means clustering algorithm (Fig 4), 

we defined seven clusters (k = 7, i.e., attenuation of enhanced tissues, 

ambiguous attenuation between enhanced tissues and white matter, 

attenuation of white matter, ambiguous attenuation between white matter and 

gray matter, attenuation of gray matter, ambiguous attenuation between gray 

matter and necrotic tissue, and attenuation of necrotic tissue) and then 

performed K-means clustering on the attenuation of all coordinates in the 

brain images. Next, we aligned each cluster to a mean value of attenuation. 

On the aligned clusters, the ends had the highest or lowest attenuation. In 

other words, there is a high probability that clusters at both ends represent 

enhanced BM or BM including necrotic tissue. We performed 3D labelling on 

the coordinates of clusters at both ends. Morphological features were 

calculated for each label and used for the discrimination of BM. Finally, the 

labels with the feature values greater than the experimentally defined 

thresholds were considered as potential candidates. Other labels were defined 

as FP results and deleted.
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Fig 4. Results of a pilot experiment with varying K values for K-means clustering algorithm. A: The original image shows a tiny rim-

enhancing metastatic nodule in right superior cerebellum (red box). B: The nodule is obscured by the adjacent cluster (olive green 

color) when the image was processed with five clusters (k = 5). C: Although still partially obscured, the nodule is better demarcated by 

a new cluster (light green color), and the central necrotic portion is well-depicted by another cluster (sky blue color) when the image 

was processed with seven clusters (k = 7).
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BM discrimination from the candidates using machine 

learning

We removed the FP nodules from the BM candidates to improve the accuracy. 

For the discrimination of the nodule candidates, we used the artificial neural 

network (ANN) algorithm, which is a machine learning technique. ANNs are 

mathematical models based on biological neural networks [36]. They consist 

of interconnected groups of artificial neurons organized into layers. We used 

three layers: the input, output and hidden layers (Fig 5). The input layer 

consisted of 30 neurons, and we used 30 features measured from the BM 

candidate images as input neurons. 

We initially selected 272 features based on the histogram, 

morphology, and texture [37–39]. From among these, the following 30 

features were chosen using logistic regression analysis: volume, min, max, 

mean, standard deviation, variance, skewness, kurtosis, energy, entropy, 

fractal dimension (box counting), gray level co-occurrence matrix (GLCM)-

contrast, GLCM-dissimilarity, GLCM-homogeneity, GLCM-angular second 

moment (ASM), GLCM-energy, GLCM-probability max, GLCM-entropy, 

GLCM-correlation, GLCM-mean reference, GLCM-mean neighbor, GLCM-

variance reference, GLCM-variance neighbor, GLCM-standard deviation 

reference, GLCM-standard deviation neighbor, gray level run length matrix 

(GLRLM)-long run emphasis (LRE), GLRLM-gray level non-uniformity 

(GLN), GLRLM-run length non-uniformity (RLN), GLRLM-low gray level 

run emphasis (LGRE), and GLRLM-high gray level run emphasis (HGRE). 
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The output layer consisted of two neurons representing BM and non-BM. 

The ANN model used in our study had a feed-forward architecture 

and was trained by using the back-propagation algorithm with the hyperbolic 

tangent activation function (1.7159 tanh2 3⁄ �) [40]. The result of an output 

node represents the likelihood that a nodule may be classified into each 

corresponding class. Thus, in this study, the output was interpreted as the 

probability that a BM candidate is a true-positive (TP) nodule. 
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Fig 5. Example of an ANN for FP reduction of BM candidates using computer features.
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Thresholds of nodule detection

The main algorithms we used in our CAD software were template-matching 

and K-means clustering. These algorithms use a threshold value to determine 

the BM candidates, and the detection result depends on the threshold value. 

Lower threshold values provide higher sensitivity and more FP results 

(algorithm A). In contrast, higher threshold values provide lower sensitivity 

and fewer FP results (algorithm B). Thus, we developed two versions of the 

CAD software using algorithm A and algorithm B and applied them in the 

experiments.

Clinically, it is important to detect as many BM nodules as possible. 

Therefore, we selected algorithm A as the main algorithm, and observer 

performance was evaluated using the CAD software with algorithm A. In 

addition, the stand-alone performances were evaluated using both algorithm A 

and algorithm B.

Observer performance study

Four radiologists who were blinded to the patients’ histories and pathological 

data independently reviewed MR image sets in a random order. Reviewers 1 

and 2 were radiology residents (in the fourth year and second year of training, 

respectively), and reviewers 3 and 4 were board-certified neuroradiologists 

with 7 years of clinical experience. Review sessions were performed in a 

sequential manner [17, 21]. First, a reviewer searched for potential nodules on 

each study without the use of CAD marking (referred to as without CAD). The 
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reviewers were encouraged to identify all BM candidates regardless of their 

size and to record their confidence score based on the likelihood that the 

candidate was a true BM using a five-point scale (1 = definitely not a BM, 2 = 

probably not a BM, 3 = indeterminate, 4 = probably a BM, 5 = definitely a 

BM). When the reviewer completed nodule detection for each case, the 

reading time was automatically recorded. Then, the reviewer reviewed each 

marked nodule to assign a confidence score. 

Second, once score assignment was complete, pre-processed CAD 

markings with probability scores determined using the CAD algorithm with 

maximized sensitivity were displayed. The reviewer was then allowed to add 

any new nodules or remove previously marked nodules. The reviewer was 

also allowed to modify the confidence scores. The additional reading time was 

automatically recorded separately. This second reading session was referred to 

as with CAD. A screenshot of our proposed CAD software is shown in Fig 6.
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Fig 6. A sample image of our proposed CAD software.
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Statistical analysis

To determine the improvement in the diagnostic accuracy using CAD as a 

second reader, a jackknife free-response receiver operating characteristic 

(JAFROC) analysis was performed [43, 44]. JAFROC software (version 4.2.1; 

http://www.devchakraborty.com) was used to compute a figure-of-merit 

(FOM), which is defined as the probability that lesions, including unmarked 

lesions, are rated higher than non-lesion marks (analogous to the area under 

the receiver operating characteristic curve). 

The sensitivities and FP markings per patient of the reviewers and the 

CAD algorithms were evaluated. Among the nodules marked by the reviewers, 

those with confidence scores equal to or higher than 3 were considered 

positive, whereas those with confidence scores of 1 and 2 were considered 

negative. Subgroup analysis on a patient-by-patient basis was also performed, 

in which a reviewer’s assessment was assumed to be correct when at least one 

lesion was correctly detected for patients with BM or when no lesion was 

marked for control studies. If no lesion was correctly marked in a study with 

BM, or if an FP nodule was marked in a control study, then the assessment 

was considered incorrect.

Fisher’s exact test, the Mann-Whitney U test, the Wilcoxon test, and Pearson’s 

correlation were used to analyze the demographic data of the subjects and the 

reading time of the reviewers. Statistical analyses were performed with SPSS 

(version 24.0 for Windows, SPSS, Chicago, IL, USA) or MedCalc (version 

16.8.4, MedCalc Software, Mariakerke, Belgium). P values of less than 0.05 

were considered to be statistically significant.
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RESULTS

Patient demographics

The clinical characteristics of the subjects are summarized in Table 1. The 

primary malignancies that the patients harbored included lung cancer (n = 

112), breast cancer (n = 13), colorectal cancer (n = 5), renal cell carcinoma (n 

= 3), melanoma (n = 1), ovarian cancer (n = 1), hepatocellular carcinoma (n = 

1), gastric cancer (n = 1), follicular thyroid carcinoma (n = 1), cutaneous 

squamous cell carcinoma (n = 1), osteosarcoma (n = 1), and synovial sarcoma 

(n = 1). One patient with lung cancer was also diagnosed with advanced 

gastric cancer. 

The training set consisted of 80 patients with 450 metastatic nodules, 

and the test set included 134 metastatic nodules from 30 patients with BM. 

The distribution of the nodule sizes is shown in Fig 7. No significant 

difference was found in the median size of the nodules between the two sets. 

However, the proportion of small nodules (1 to 3 mm in diameter) was 

significantly larger in the test set than in the training set (p = 0.01).
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Fig 7. Bar graph of the nodule size distributions in the training and test 

sets. The relative frequency of nodules with diameters of 1 to 3 mm differed 

significantly between the two groups (p = 0.01).
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Table 1. Clinical characteristics of the patients

Training set 

(n = 80)

Test set 

(n = 60)
p value

Age (years)*a 60.4 ± 12.0 63.5 ± 11.7 0.127

Sex (male:female)a 42:38 30:30 0.865

Number of nodulesa 450 134†

Size of nodules (mm)**b 5 (3–9) 4.5 (2–9) 0.096

Primary malignancya

Lung cancer 62 (77.5%) 50‡ (83.3%) 0.522

Breast cancer 9 (11.3%) 4 (6.7%) 0.396

Colorectal cancer 4 (5%) 1 (1.7%) 0.392

Renal cell 

carcinoma
2 (2.5%) 1 (1.7%) 1.0

Melanoma 1 (1.7%) 0.429

Ovarian cancer 1 (1.3%) 1.0

Follicular thyroid 

carcinoma
1 (1.7%) 0.429

Gastric cancer 1‡ (1.7%) 0.429

Osteosarcoma 1 (1.7%) 0.429

Hepatocellular 

carcinoma
1 (1.7%) 0.429

Cutaneous 

squamous cell 

carcinoma

1 (1.3%) 1.0

Synovial sarcoma 1 (1.3%) 1.0

  *Values are the means ± standard deviations. 
   **Values are medians with interquartile ranges. 

  †The test set included 30 patients with brain metastasis and 30 patients 

without brain metastasis.

  ‡One patient had double primary cancers: lung cancer and gastric cancer.

  a and b p values were calculated using either aFisher’s exact test or the bMann-

Whitney U test.  
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Stand-alone performance of CAD

Two CAD algorithms were independently analyzed (Table 2). Algorithm A 

exhibited a sensitivity of 87.3% (117/134 nodules) and an FP per patient of 

302.4. In contrast, algorithm B showed a sensitivity of 75.4% (101/134 

nodules) and an FP per patient of 35.5. For algorithm A, Figs 8 and 9 show 

examples of TP and FP nodules identified using CAD. No significant 

difference was found in the median processing time between the two 

algorithms (264.7 sec vs. 268.6 sec, p = 0.52). For both algorithms, the 

probability score was significantly higher in the metastasis group than in the 

non-metastasis group (p < 0.01 and p < 0.01, respectively). When tiny nodules 

less than or equal to 2 mm in diameter were excluded, the sensitivity was 

increased to 92.7% (89/96 nodules) for algorithm A and 82.3% for algorithm 

B (79/96 nodules). 
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Fig 8. Examples of true positive results using algorithm A. Examples of the correct detection of BM by CAD software. 
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Fig 9. Examples of false positive (FP) results using algorithm A. Examples of the incorrect detection (FPs) by CAD software. Common 

sources of FPs included the cortical vessel (A & B), dural sinus (C), and choroid plexus (D).
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Table 2. Comparison of the nodule detection performances of algorithm A 

and algorithm B

Algorithm A Algorithm B

Sensitivity 87.3%

(117/134)

75.4%

(101/134)

Sensitivity (>2 mm) 92.7%

(89/96)

82.3%

(79/96)

FP per case
302.4 35.5

Processing time (sec) 264.7

(200.1–383.7)

268.6

(204.0–387.0)
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Observer performance study

The performances of the reviewers before and after the application of CAD 

are summarized in Table 3. The average sensitivity and FP per patient for BM 

detection without CAD by the four reviewers were 77.6% and 0.18, 

respectively. With CAD, the sensitivity and FP per patient were 81.9% and 

0.18, respectively. According to JAFROC analysis, the FOM value was 

significantly increased by the use of CAD (0.87 without CAD vs. 0.90 with 

CAD, p < 0.01).

For the radiology residents (reviewers 1 and 2), the sensitivity and 

FP per patient without CAD were 67.9% and 0.10, respectively. With CAD, 

the sensitivity was improved to 76.1%, while the FP per patient was slightly 

elevated to 0.12. For the neuroradiologists (reviewers 3 and 4), the sensitivity 

and FP per patient without CAD were 87.3% and 0.25, respectively. After 

reviewing the CAD results, the sensitivity and FP per patient changed to 88.7% 

and 0.25, respectively. Specifically, the two residents found 22 TP nodules 

and five FP nodules upon reviewing the CAD results. However, they were 

also able to remove three FP nodules with the aid of CAD. The experienced 

reviewers detected two additional TP nodules and three additional FP nodules 

with CAD but discarded one TP nodule and three FP nodules. Overall, the use 

of CAD led to the detection of 23 TP nodules at the cost of 2 additional FP 

nodules by the four reviewers. Per-reviewer JAFROC analysis revealed that 

both reviewers 1 and 2 showed significant improvement in their nodule 

detection performance (p = 0.01 and p < 0.01, respectively), whereas neither 
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reviewers 3 nor 4 exhibited a statistically significant improvement (p = 0.19 

and p = 0.67, respectively). A representative case is shown in Fig 10.

When tiny nodules with diameters less than or equal to 2 mm were 

excluded, the average sensitivities for less-experienced reviewers were 85.4% 

without CAD and 90.1% with CAD. For experienced reviewers, the average 

sensitivities were 93.2% without CAD and 93.8% with CAD.

Among the 30 patients with BM, reviewers failed to detect at least 

one TP nodule in 6.7% (8/120) of the cases. Notably, CAD successfully 

detected all of the missed nodules. With the aid of CAD, the reviewers 

detected three initially missed nodules; thus, the reviewers detected at least 

one TP nodule in 95.8% (115/120 cases). Among the 30 patients without BM, 

reviewers detected at least one FP nodule in 5% (6/120 cases). After 

reviewing the CAD results, one reviewer successfully removed one FP nodule; 

thus, the reviewers found at least one FP nodule in 4.2% (5/120) of cases. 

Overall, the reviewers correctly classified patients without CAD and with 

CAD in 94.2% (226/240) and 95.8% (230/240) of the cases, respectively.
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Fig 10. 3D gradient-echo contrast-enhanced T1-weighted MR images in 

an 81-year-old female patient with metastatic lung cancer. A and B: Axial 

(A) and coronal (B) images show a tiny enhancing nodule at the left inferior 

temporal gyrus (arrowhead). This nodule was missed by all four reviewers but 

was successfully detected by CAD. C: On the navigation MR image for a 

gamma-knife surgery performed 2 days after (A) and (B), the nodule showed 

no interval changes. D: On the follow-up MR image taken after 3 months, the 

nodule disappeared.
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The median reading times without and with CAD were 114.4 sec and 

72.1 sec, respectively. No significant difference was found in the overall 

reading time between less-experienced and experienced reviewers (178.5 sec 

vs. 174.3 sec, p = 0.13). However, less-experienced reviewers spent 

significantly less time than experienced reviewers in reviewing the images 

without CAD (98.5 sec vs. 121.5 sec, p < 0.01). In contrast, less-experienced 

reviewers spend significantly more time than experienced reviewers on 

reviewing the CAD results (74.3 sec vs. 58.3 sec, p < 0.01). We found only a 

weak positive trend between the number of total nodules detected by CAD 

and the additional reading time with CAD (r = 0.24, p = 0.06).

The total reading time for patients with BM was significantly longer 

than that for patients without BM (202.8 sec vs. 161.3 sec, p < 0.01). 

Although the reading time without CAD differed significantly between 

patients with BM and without BM (144.5 sec vs. 94.4 sec, p < 0.01), the 

reading time with CAD was not significantly different between the two 

groups (59.4 sec vs. 76.0 sec, p = 0.38). 
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Table 3. Comparison of the reviewers’ nodule detection performances 

Reviewer 1 Reviewer 2 Reviewer 3 Reviewer 4 Average

Without 

CAD

With 

CAD

Without 

CAD

With 

CAD

Without 

CAD

With 

CAD

Without 

CAD

With 

CAD

Without 

CAD

With 

CAD

Sensitivity
69.4%

(93/134)

76.8%

(103/134)

66.4%

(89/134)

75.3%

(101/134)

86.6%

(116/134)

88.1%

(118/134)

88.1%

(118/134)

88.8%

(119/134)
77.6% 81.9%

Sensitivity 

(> 2 mm)

85.4%

(82/96)

88.5%

(85/96)

85.4%

(82/96)

91.7%

(88/96)

91.7%

(88/96)

92.7%

(89/96)

94.8%

(91/96)

94.8%

(91/96)
89.3% 91.9%

FP per case
0.15

(9/60)

0.17

(10/60)

0.05

(3/60)

0.07

(4/60)

0.25

(15/60)

0.2

(12/60)

0.25

(15/60)

0.3

(18/60)
0.18 0.18

Reading 

time (sec)

131.0 

(93.0–

183.0)

65.5 

(44.0–

123.0)

64.0 

(42.0–

88.5)

64.0 

(45.5–

108.5)

148.5 

(136.0–

172.0)

47.5 

(39.0–

67.0)

93.5 

(62.0–

127.0)

67.0 

(48.0–

93.0)

114.4 

(92.0–

144.5)

72.1 

(50.9–

90.8)

FOM 0.839 0.876 0.832 0.877 0.905 0.915 0.923 0.925 0.874 0.898

Reading time values are medians with interquartile ranges in the parentheses. CAD = computer-aided detection, FOM = figure-of-merit.
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DISCUSSION

In the present study, we developed CAD software, evaluated its stand-alone 

performance, and conducted an observer performance study. The sensitivity of 

the CAD software itself was between that of the experienced 

neuroradiologists and the radiologists in training. CAD significantly improved 

the diagnostic performances of the four reviewers, as indicated by the FOM 

determined by JAFROC analysis (without CAD vs. with CAD, 0.874 vs. 

0.898, p < 0.01). The median time required to review the CAD results was 

approximately 72 sec (40% of the total review time). Notably, the two trainees 

detected 22 additional TP nodules after reviewing the CAD results. Although 

CAD significantly improved the overall performance of the reviewers, a 

statistically significant improvement was noted only for less-experienced 

reviewers (FOM without vs. with CAD, 0.834 vs. 0.877, p < 0.01). 

Technical advances in 3D MR imaging have significantly improved 

the sensitivity of BM detection. However, concomitantly increased numbers 

of images per study have raised the burden of reading and the risk of detection 

failure. Missed BM nodules may underestimate the cancer staging, lead to 

inappropriate treatment, and negatively affect the prognosis. To address this 

issue, efforts have been increasingly focused on improving the diagnostic 

accuracy using CAD. CAD does not overlook a lesion because of exhaustion 

or other extrinsic factors. Thus, when used as a second reader, CAD may be 

feasible for time-consuming tasks, such as detecting BM nodules. 

The sensitivities of BM detection in previous CAD studies ranged 

from 30.2% to 93.5% [24–27], which are comparable to that of our study. 
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However, the FP per patient in previous studies ranged from 5.18 to 34.8 [24–

26], which are lower than that of our study. In contrast to all but one of these 

studies [25], we enrolled consecutive patients to minimize selection bias. 

However, whereas the other study [25] enrolled a small cohort of patients in a 

prospective manner, we enrolled a relatively large cohort in a retrospective 

manner. Our data contained a relatively high proportion of nodules equal to or 

smaller than 3 mm in diameter. Additionally, this proportion was higher in the 

test set than in the training set (Fig 7, 43.3% vs. 31.1%, p < 0.01). Therefore, 

the inclusion of a larger proportion of small or less-conspicuous nodules (i.e., 

nodules that are relatively difficult to detect), at least partially due to 

consecutive enrolment, might have affected the overall performance observed 

in our study. When nodules smaller than 2 mm were removed, the sensitivity 

was improved (from 87.3% to 92.7% for algorithm A).

When unassisted, neuroradiologists showed higher sensitivity for 

BM detection than the radiology residents at the cost of slightly more FPs. 

However, the less-experienced reviewers seem to have benefited more from 

the aid provided by CAD than the experienced reviewers. This finding is 

consistent with previous studies of CAD for computed tomography (CT) 

colonography [20–22]. While the reviewers detected a total of 23 additional 

TP nodules after reviewing the CAD results, the use of CAD also resulted in 

the detection of two additional FP nodules. This increase in the FP per case 

was minimal given the large number of FP nodules identified by CAD. Indeed, 

most of the FP nodules detected by CAD were easily rejected by human 

reviewers because of their typical locations (Fig 9). The weak correlation 



38

between the number of nodules marked by CAD and the time spent on 

reviewing the CAD results also supports this observation. In addition, the 

significant improvement in FOM with the use of CAD suggests that the 

increased FP was disproportionately offset by increased sensitivity.

The strategy of our proposed algorithm was to first detect the BM 

candidates as sensitively as possible and then discriminate TP nodules from 

FP nodules. We used a template-matching algorithm to find small BMs. While 

other similar studies used larger templates with a minimum diameter of 3.4 

mm, we were able to find smaller nodules by using smaller templates. In 

addition, other studies used only one type of template model [24, 26], whereas 

we used two spherical types of template models (solid and inner-hole to detect 

necrotic nodules. In our data, the actual size of one voxel was 1.0 × 1.0 × 1.0 

mm3. Hence, an 1-mm template would cover only one voxel, which is too 

small for accurate BM detection. Thus, we determined that the minimum 

template size is 2 mm. Interestingly, we were able to detect some BM nodules 

that were 1 mm in size using a 2-mm-diameter template. We speculate that the 

difference in size between the template and the BM is one cause of the 

increased FPs. We expect to reduce the numbers of FPs by using a 1-mm 

template on higher-resolution images.

We removed the FPs using an ANN algorithm, which is a type of 

machine learning technique. We selected 30 out of 272 features using logistic 

regression analysis to effectively reduce the FPs. The ANN algorithm was 

superior to other machine learning classifiers in our training data, for which 

the support vector machine (SVM) algorithm [43] showed an accuracy of 
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57.9%, the Bayes classifier algorithm [44] showed an accuracy of 83.2%, and 

the boosting algorithm [45] showed an accuracy of 83.1%; the accuracy of the 

ANN algorithm was 87.7%. Despite the use of the ANN algorithm, 

approximately 12% of the correctly detected nodules were removed during the 

FP-removal process. To reduce the chance of removing a correctly detected 

nodule, the amount of training data should be increased, and BMs of various 

sizes and shapes should be included. In addition, the features used in the ANN 

model should be further optimized. 

Our proposed method required approximately 4 min to process the 

MR images. This is much shorter than the processing times reported in other 

studies [24, 26], which ranged from 15 to 50 min. In addition, the time needed 

to review the CAD results was, on average, approximately 72 sec. Therefore, 

once the CAD results using our proposed method can be provided to the 

radiologists before reading, this strategy could be applied to clinical practice 

with an acceptable range of extra time.

In addition to the retrospective nature of this study, our study has 

limitations. First, most of the subjects with BM did not undergo pathologic 

confirmation of the brain lesions. To address this problem, two independent 

reviewers determined the ground truth based on consensus with access to 

clinical information and follow-up imaging studies. Second, although we 

included a relatively large number of subjects compared to previous studies, 

the sample size was still too small to train the algorithm sufficiently. In the 

future, we believe that the performance could be improved by using a larger 

amount of data and more recent algorithms, such as convolutional neural 
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networks.
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CONCLUSIONS

In conclusion, using CAD as a second reader helps radiologists improve their 

diagnostic performance in the detection of BM on MR imaging, particularly 

for less-experienced reviewers.
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국문 초록

목적: 3 차원 자기공명영상에서 뇌전이암 결절을 발견하는 컴퓨터

보조 진단 시스템을 개발하고, 이를 이용하여 영상의학과 의사의

진단 정확도가 향상되는지 평가하기 위함.

방법: 이 연구는 분당서울대학교병원 임상연구윤리센터의 승인을 받

았다. 이 연구의 환자군은 110 명의 연속적인 뇌전이암 환자와 30

명의 뇌전이암이 없는 환자들로 구성되었다. 학습용 데이터셋은

450 개의 뇌전이암 결절이 포함된 80 명의 환자의 자기공명영상으

로 구성되었고, 평가용 데이터셋은 134 개의 뇌전이암 결절이 포함

된 30 명의 뇌전이암 환자의 자기공명영상과 뇌전이암 결절이 없는

30 명의 자기공명영상으로 구성되었다. Template-matching 알고

리즘과 K-평균 군집화 알고리즘을 이용하여 뇌전이암 결절의 후보

군을 검출하고, 인공신경망을 이용하여 위양성 결절을 제거하는 방

법으로 컴퓨터 보조진단 시스템 (CAD) 을 제작하였다. 4 인의 영상

의학과 의사들이 CAD 이용 전과 후로 평가용 데이터셋의 영상을

순차적인 방식으로 판독하였다. 뇌전이암 결절 발견의 민감도, 환자

당 위양성 결절수, 그리고 판독시간을 평가하였다. 진단적 정확도는

jackknife free-response receiver operating characteristic 

(JAFROC) 방식을 이용하여 평가하였다.
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결과: CAD 시스템의 뇌전이암 결절 발견의 민감도는 87.3%, 환자

당 위양성 결절의 수는 302.4 개였다. 4 명의 평가자의 진단적

정확도는 CAD 의 도움을 받았을 때 유의하게 향상되었다

(Figure-of-merit, 0.874 (CAD 도움 전) vs. 0.898 (CAD 도

움 후) (p < 0.01)). 개별적으로는 경험이 적은 영상의학과 의

사들만 진단정확도의 유의한 향상을 보였다 (p < 0.01). CAD 

결과를 추가적으로 판독하는데 더 필요한 시간은 대략 72 초였

다 (전체 판독시간의 약 40%).

결론: CAD 를 이차 평가자로 이용하면 영상의학과 의사, 특히 경험

이적은 영상의학과 의사의 뇌전이암 발견 정확도를 증가시킬

수 있다.

-------------------------------------

---------
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