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Abstract 

Characterization of  

genomic perturbation sensitivity 

using 1000 genomes population 

 

임재현(Lim Jae Hyun) 

의학과 의과학 전공(The Department of Biomedical Sciences) 

College of Medicine  

Seoul National University  

 

Purpose: Transcriptome is perturbed by millions of genomic variants which could 

alter function of cells and phenotypes of organisms. As discovered in recent large 

Next-Generation Sequencing (NGS) project, Individual genome has at least 3 to 4 

million variants. Here, we applied perturbation network to human data from 1000 

genomes project data for interpreting genetic perturbation and characterized 

perturbation sensitive and tolerant genes.  

Methods: We integrated SIFT score of non-synonymous variants to calculate gene 

deleteriousness score and determine whether gene is perturbed or not. Perturbation 

network was constructed based on gene deleteriousness score and perturbation 

sensitivity was defined as in-degree of perturbation network. We categorized genes 

based on perturbation sensitivity and investigated evolutionarily, regulatory, and 

clinical properties of perturbation sensitive and tolerant genes.  

Results: Perturbation sensitive genes were in periphery of protein interaction 

network but evolutionarily conserved. They were regulated by less miRNA and 
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transcription factor and played a key role in cell-cell interaction. Out-degree of 

perturbation network did not show any significant biological properties. Lethal genes 

were in periphery of perturbation network and hub of protein interaction network. 

On the contrary, most disease genes were in hub of perturbation network and showed 

various trends in protein-interaction network. We drew joint network map and 

categorized disease by degree of both network.  

Conclusions: As in yeast perturbation network, perturbation sensitive genes were 

essential in survival of organism since they were evolutionarily conserved and 

related to interaction between cells. We confirmed that in-degree of perturbation 

network is better than out-degree of perturbation network for interpreting genetic 

perturbation. Disease genes can be categorized and visualized using both protein-

interaction network and perturbation network. In conclusion, perturbation sensitivity 

was valuable measure for interpreting genetic perturbation and assessing gene's 

biological and clinical properties.  

 

Key word: Genetic Perturbation, Transcriptome, Protein interaction network, 

Disease gene 

Student number: 2010-21974 
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1. Introduction 

 

1.1. Definition of Genetic Perturbation  

 

 Human genome is complex system with great diversity. Sequencing of individual 

genome by Next Generation Sequencing (NGS) technology reveals that each 

individual possesses at least 3 to 4 million variants  (1-3). The 1000 Genomes Project 

Consortium report genomes of 1,092 individuals sampled from 14 populations 

drawn from 4 continents. They provide validated haplotype map of 38 million single 

nucleotide polymorphisms, 1.4 million short insertions and deletions, and more than 

14,000 larger deletions. They also revealed that individuals from different 

populations have different profiles of common and rare variants distribution and not 

few of those are protein disrupting or located within transcription factor binding site.  

Moreover, MacArthur et al. (4) finds out that after stringent filtering, at least ~ 100 

genuine LoF variants are present in 'healthy' genomes. These variants cause 

structural and functional change of protein which might affect cis- or trans- gene 

expression (5-7).  

 Genetic perturbation is defined as perturbation caused by such variants whether they 

actually affect phenotypic change or not. An organism must stay in homeostasis and 

mitigate ripple effect of genetic perturbation, in common with the other kinds of 

stress like environmental change, endocrine signal, bacterial infection, even physical 

stress. Genes frequently perturbed by genetic perturbations are considered as stress-

responsive genes. Interpreting consequences of those genetic perturbation is 

important for understanding genotype-phenotype relationship. Within the framework 

of biological system, genetic perturbation consists of two components: perturbing 

genes and perturbed genes. Interpretation of genetic perturbation need to analyze 

either perturbing or perturbed genes.  
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1.2. Interpretation of genetic perturbation causing variants 

 

Most easy and direct way to understand genetic perturbation is direct annotation of 

variants. There are many traditional ways to annotate variants to predict functional 

change of protein, especially within coding regions. SIFT (8), PolyPhen (9, 10), and 

PhastCons (11) is example of classic methods for calculate variant function 

prediction score, which predict whether nonsynonymous changes are likely to have 

a deleterious effect on protein function  (12). They use sequence homology of related 

proteins to predict whether an amino acid substitution is likely to be deleterious to 

protein function based on the degree of conservation of the affected base throughout 

evolution.  

 Currently, filtering and annotating variants with reported phenotype is another 

method to interpret variants (13, 14). dbSNP (15, 16) was established by 1999 and 

contains almost all reported variants within human genome. By 2008, dbSNP build 

129 contained approximately 11 million single nucleotide polymorphisms and 3 

million short insertions and deletions. Genome-Wide Association Studies (GWAS) 

reveals many SNPs which related to complex traits as diabetes, inflammatory bowel 

disease, cancer and etc. Many studies use SNPs reported in GWAS catalog and 

dbSNP to filter out (17-19).  

 Major drawback of direct variant annotation is lack of interpretability, since gene 

is the main unit of all biological process. Without correlating variant-level annotation 

to gene-level annotation, variant itself does not have any biological meaning. Lee et 

al. (20) suggests simple but effective methods to compute gene-level deleteriousness 

score using variant-level score. They use SIFT algorithm to compute the variant 

score and define gene deleteriousness score as the geometric mean of variant scores 

for all nonsynonymous coding variants of the gene to evaluate. They utilize gene-

score scheme to pharmacogenomics area and proved robustness and effectiveness of 

their methods. We utilize that scheme to evaluate how gene is damaged by variants 

within coding region.  
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 Another important consideration is emerging multi-omics data, like transcriptome 

or methylome, with genome data to understand underlying biological link 

connecting genotype to phenotype. For example, Lappalainen et al. (21) sequenced 

mRNA and small RNA from lymphoblastoid cell line samples from 1000 genomes 

population. They infer genetic effects on the transcriptome using eQTL scheme and 

as a result, they reveal high resolution variant map which affect transcriptome. 

Although their analysis and results were similar to those of previous eQTL analysis, 

the dataset they built were important since it originated from 1000 genomes 

population. Before and after then, many eQTL analysis reveals that variants related 

to gene expression have strong tendency to affect phenotypes, especially disease (22-

25). Most eQTL analysis focus on variants that cause perturbations and 

characteristics of perturbed genes are often neglected. More importantly, most of 

eQTL analysis focus on variants located in regulatory region, not coding region. 

Therefore, eQTL can tell nothing about protein structure and function change. 

 

1.3. Interpretation of genetic perturbation using biological 

networks 

 

 Genetic perturbation not only causes single protein malfunction but also affects 

related proteins. Also, genes are not affected by single genetic perturbation but 

multiple events. Thus, systemic perspective is needed to incorporate such many-to-

many relations. Network, graph in mathematics, is used to model pairwise relations 

between objects and adopted to biology to understand the structure and the dynamics 

of the complex intercellular web of interactions underlying biological and clinical 

events (26, 27). 

 PPI network is one of the oldest and well-studied network in biology (28-32). Node 

of PPI network is protein and edge of PPI network is their physical interaction. Hub 

of PPI network is known to be essential in biological process and essential genes 
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tend to have higher degree of PPI network. For example,  Jeong et al. (29) claimed 

that lethal genes, which cause death of organism when it is disrupted, have higher 

PPI degree and located in hub of PPI network. Meanwhile, general properties of gene 

related to disease in PPI network are open to dispute. Disease genes does not show 

such strong tendency. Goh et al (30) claimed that there are no statistical relationship 

between disease and degree of PPI network. On the contrary, Ideker et al. (28) 

reported that disease genes forming a functional modular structure and has higher 

PPI degree. According to the work of Zhongming Zhao (33), cancer genes have the 

highest PPI degree followed by lethal genes, schizophrenia genes and neuro genes.  

 It is natural that PPI network is insufficient to characterize disease genes for many 

reasons. One is that since death of single cell does not trigger death of organism, 

disruption of lethal gene, mostly hub of PPI network, does not guarantee that it 

affects tissue- and higher architecture of organism. Because PPI network only 

reflects physical interaction of ‘static’ state of proteins and does not reflect cellular 

state which are extremely different because of differentiation and regulatory network. 

Especially, cell-cell interaction cannot be explained by inner-cellular protein 

network. Also, PPI network does not reflect relationship between genotype and 

transcriptome.  

eQTL network can break those limitations (34-36). eQTL network is bipartite 

directed network which nodes are variants and genes. Edges are given when a variant 

within a gene affect expression of other gene. eQTL network is powerful tool to 

predict downstream effects of many trait-associated variants (23). It reflects tissue-

specificity and cellular state (37). But still, eQTL network is indirect method to infer 

regulation and most importantly, tell nothing about protein function change of gene. 

Also, since eQTL network is built on variant-level analysis, interpretation of network 

cannot easily extend to gene level annotation.  
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1.4. Perturbation Network approach in Yeast  

 

 All of above mentioned methods focused on perturbing genes, not perturbed genes. 

Since cell is under strict regulation (38, 39), It is hard to say that whether a variant 

affects expression of certain gene or that gene is allowed to be affected. For example, 

tissue or cell-cycle specific regulations often change the relationships between 

variants and genes (40-42). To understand phenotypic effect of genetic perturbation, 

it is easy to evaluate perturbed genes, which reflects consequence of genetic 

perturbation after regulation and close to final functional change.  

 Perturbation network is effective way to measure how many gene's perturbed by 

certain perturbation (43, 44). Ohn et al. defined perturbation network as non-directed 

bipartite graph of two node groups; a group of 'genes' which showed significant 

changes in transcription level in the other group of 'deletion mutants' and links are 

made between nodes from each group based on the significance level assuming the 

'error model'. Perturbation sensitivity is defined as in-degree of gene node group. 

They constructed network from genome-wide transcriptional profiling study of 300 

perturbation experiments like gene deletions or drug treatments in Saccharomyces 

cerevisiae, yeast. They found out that perturbation sensitive genes are usually not 

essential, and their coding proteins have fewer physical interaction partners and more 

transcription factors bind to their upstream sequences.  

 Han et al. use same network and did more comprehensive analysis. They correlate 

perturbation network to PPI network and claimed that they are reciprocally 

correlated to each other. They found out that hub of perturbation network and PPI 

network are both evolutionarily conserved and their degree are negatively correlated. 

They also found out that PPI hubs are highly enriched with lethal genes but not 

disease genes, whereas perturbation network hubs are highly enriched with disease 

genes and not with lethal genes.  

 Perturbation network was well studied only in yeast, not human. Han et al. use yeast 

- human homolog genes to map disease genes to yeast genes but yeast - human 
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homolog genes are special itself because they are highly conserved genes. Moreover, 

they only analyse in-degree of network since gene node group only have in-degree. 

Finally, disease genes are highly heterogeneous group so categorizing those genes 

into subgroups may improve the results.  As in PPI network, it is possible that 

different disease genes tend to have different centrality in perturbation network.  

 

1.5. Purpose of study 

 

In this research, we examined the perturbation sensitivity of genes and characterize 

perturbation sensitive and tolerant genes. To this end, we build a perturbation 

network using genome and transcriptome data of 1000 genomes population. 1000 

genomes populations have enough genetic perturbations to perform a macroscopic 

analysis of perturbation sensitivity (1, 4, 45-47). 421 samples from the 1000 genomes 

populations also have RNA-seq data (21). We slightly modify classical perturbation 

network to apply this model to healthy human population data. In our analysis, 

perturbation network can be simply viewed as a directed graph of genes. We adopt 

concept of gene deleteriousness score to distinguish damaged genes from normal 

genes and build perturbation network to calculate perturbation sensitivity, which 

defined as in-degree of perturbation network. We evaluated biological characteristics 

of perturbation tolerant, perturbation sensitive, and perturbation causing genes and 

compare it to PPI network. We also evaluated lethal genes and various disease genes 

using perturbation sensitivity and the PPI network degree. As a result, we 

characterize genes with respect to perturbation sensitivity and suggest measure for 

predicting phenotypic effect due to genetic perturbation.   
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2. Materials and Methods 

 

2.1. Genome and transcriptome data from 1000 genomes 

populations.  

 

The 1000 Genome Projects phase 1 dataset includes genomes of 1,026 individual 

samples from 14 subpopulations drawn from Europe, East Asia, sub-Saharan Africa 

and America. Within these samples, 462 samples from five populations have 

transcriptome data (21): the CEPH (CEU, n = 78), Finns (FIN, n = 89), British (GBR, 

n = 85), Toscano (TSI, n = 92) and Yoruba (YRI, n = 77). Overall, 421 samples have 

both genotype and transcriptome data. The genotype data were obtained from 1000 

genomes project page and transcriptome data were obtained from Geuvadis 

consortium page.  

We did functional reannotation of the variants from genotype data with VAT (48). 

We filter non-coding variants which are expected to have neutral effect on the protein 

function, and annotates the variant type using hg19 GENCODE (49) v12 as the 

genome reference. We only focus on autosomal variants and excluded variants 

located in sex chromosomes and indels. We also ruled out all synonymous variants 

and variants with 5% or less minor allele frequency for selecting common damaging 

variants. Overall, 327879 loci which at least 1 sample have nonsynonymous variants 

were included for further analysis.  

Transcriptome data were obtained from the Geuvadis RNA sequencing project. We 

considered FPKM (Fragments per kilo base of exon per million fragments mapped) 

as the expression level of each gene. We used upper quantile normalization to remove 

between sample difference. For further analysis, we only include 344 European 

subjects to minimize bias from race difference.   
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1000 Genomes Phase 1 
Genotype data: ~ 35M variants 

Common nonsynonymous  
coding variants: 327879 variants 

Gene score for 16371 genes 

Variants with SIFT score: 148278 
variants  

Perturbation Sensitivity Network 

SIFT Dataset 

1000 Genomes Phase 1  
Transcriptome data  

Figure 1. Flow chart for construction of perturbation network  
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2.2. Calculating gene deleteriousness scores.  

 

To evaluate deleteriousness of variants within coding-region, we use gene 

deleteriousness score (20) to evaluate how coding region variants affects 

corresponding protein’s function. Gene deleteriousness scores was defined as the 

geometric mean of a variant score which reflects combined effect of multiple 

nonsynonymous variants within a gene. We use ANNOVAR (50) to annotate variant 

using SIFT (8) algorithms. ANNOVAR also provides other variant function 

prediction scores as PolyPhen (9), LRT (51), Mutation Taster (52), CADD (53). We 

use variants with SIFT score lower than 0.7 and 16371 genes have at least one variant 

in at least one sample. We assume that a gene is damaged when combined gene 

damaging score is lower than 0.3. 2930 genes were damaged in each person, on 

average. To confirm our score, we tested multiple hypothesis for thresholds that 

decides damaging variants and deleterious gene. we also tested other variant function 

prediction score as PolyPhen. Finally, we tested classical ways to determine 

damaging of gene, that If at least one variants with SIFT score < 0.05 within a genic 

region then we consider that gene as damaged. 

 

2.3. Construction of perturbation network.  

 

To evaluate the effect of damaging genes, we built perturbation network derived 

from genome and transcriptome data of 1000 genomes projects populations 

mentioned above. Perturbation network is a directed network, that each node 

represents a protein-coding gene and each edge represents perturbation of successor 

gene expression due to damaging of its predecessor. We used student’s t-test to infer 

relationships between nodes with python statsmodel library. Edges were given only 

if p-value < 0.001 in t-test. We summarized flow chart for construction of 

perturbation network from 1000 genomes dataset in figure 1. We define Kin, 
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perturbation sensitivity, as in-degree of perturbation network for 23722 genes which 

have transcriptome data. We also investigate out-degree of network, Kout, for 8895 

genes which satisfied criteria for t-test. Out-degree of perturbation network is 

calculated only for gene which is damaged at least 5 samples. For further analysis, 

we categorized genes to 3 groups according to Kin. Perturbation sensitive genes have 

top 10% of Kin and perturbation tolerant genes bottom 10% of Kin. Neutral genes are 

the rest.   

 

2.4. Construction of Protein Interaction Network. 

 

 Human protein-protein interaction data were retrieved from BIOGRID (54) 

(release 3.4.138). Data were processed as follows: (i) only proteins in the 

perturbation networks were used; and (ii) only interactions of the ‘physical 

association’ type were used. As a result, PPI network was built as undirected network 

with 20249 nodes and 239932 edges with a node degree range from 1 to 498.  

 

2.5. Retrieving biological information for gene annotation  

 

We retrieve biological database to evaluate properties of perturbation sensitive and 

tolerant genes. dN/dS (evolutionary rate) is the ratio of the number of non-

synonymous substitutions per non-synonymous site (dN) to the number of 

synonymous substitutions per synonymous site (dS), which can be used as an 

indicator of selective pressure acting on a protein-coding gene (55, 56). We obtained 

dN/dS values of mouse-human homolog genes from BiomaRt (57). A number of 

paralogs and miRNA for each gene were obtained from Ensembl using BiomaRt. 

Each gene has 5.95 paralogs on average. We retrieved ENCODE ChIP-Seq data from 

UCSC data portal (41). Data were consisted of transcription factors and their binding 

sites. We included transcription factors that bind to a region 10 kb above each gene 
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and used them as the number of upstream binding transcription factors for each gene. 

We also conduct gene set enrichment test using DAVID (58). 

 

2.6. Excess retention.  

 

‘Excess retention’ is defined as the degree to which genes with a certain property A 

is over- or under-represented in m-core compared with that in the whole gene groups 

(59). M-core of a graph G is defined as a maximal connected subgraph of G in which 

all vertices have a degree of at least m (43). The fraction of genes with property A in 

the whole group with N genes is EA = NA / N. If m-core contains Nm genes and the 

number of genes with property A in m-core is NmA, then the excess retention of the 

genes with property A in m-core is given by EmA = (NmA / Nm) / (NA / N). 

 

 

 

2.7. Joint network map for visualization of gene sets. 

 

To characterize and visualize gene sets using both PPI network and perturbation 

network, we draw joint network map with degree of both network. We draw grid 

diagram consists of pie charts for comparing lethal genes versus disease genes. x-

axis indicate perturbation network bins and y-axis indicate PPI network bins. We 

binned genes by degree of perturbation network in equally spaced intervals and by 

logarithms of degree of PPI network in equally spaced intervals. We also draw 

heatmap with same axis and less bin numbers, 5. We binned genes by degree of 

perturbation network in equally spaced intervals and by logarithms of degree of PPI 

network in equally spaced intervals. On average, each grid consists of 566 genes. 

Data matrix contains odd ratios for gene set of interest  
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2.8. Clinical annotation of PSN 

 

We performed enrichment analysis of perturbation network by genes with clinical 

importance. Disease genes were retrieved from the GWAS catalogue (18) and OMIM 

(60). Lethality information of the mouse genes were retrieved from the MGI project 

page (61). Human orthologs of mouse lethal genes were regarded as human lethal 

genes. Cancer genes were retrieved from the COSMIC cancer gene census list (62). 

We also use GAD (63) for categorize disease genes.  
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3. Results 

 

3.1. Building Perturbation network  

 

 To construct perturbation network, we calculate gene deleteriousness score for each 

gene to determine whether function of corresponding protein has been changed. 

Gene deleteriousness score is calculated from SIFT Score using geometric mean of 

SIFT score of variants within a gene. As a result, each individual possesses 1841 

variants with SIFT score < 0.05 and 2930 genes with gene deleteriousness score < 

0.3. Figure 3(a) and 3(b) shows SIFT score and Gene score in one individual, 

HG00096. Since we assume gene deleteriousness score to 1.0 if there are no variants 

with SIFT score < 0.7, histogram of gene score shows higher proportion at bin of 1.0. 

Otherwise two histograms show similar distribution. 

 Next, we use gene deleteriousness score to construct perturbation network  

(Materials and methods.). We use t-test to determine whether gene expression is 

affected by gene deleteriousness score. Perturbation network consist of 23722 nodes 

and 504091 edges, with average degree of 21.25. All nodes are weakly connected 

with average shortest path length of 0.2, which implies that every gene is closely 

located to each other. We analyse in-degree and out-degree separately to investigate 

which genes are perturbation sensitive genes and which genes are perturbation 

causing genes. In degree of perturbation network, denoted as Kin, is ranged from 0 to 

166. On the contrary, out-degree of perturbation network, denoted as Kout, is ranged 

from 0 to 1205. Notice that only 6773 genes have out-degree due to limited sample 

size.  As shown in degree-distribution plots, Figure 3 (a), (b), both Kin and Kout shows 

log-normal distribution and p-value of shapiro-wilk test for log of Kin and Kout is 

4.76e-34 and 3.77e-14. Kin and Kout does not show statistically significant correlation. 

We also construct perturbation network with other criteria to determine whether gene 

is damaged and did same analysis which shows similar results.  
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Figure 2 Distribution of damaging score in HG00096. (a) Distribution of SIFT 

score. (b) Distribution of gene score. 
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Figure 3. Histogram for log2(Kin) and log2(Kout). Both in-degree and out-degree 

follow log-normal distribution. 
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3.2. Biological properties of perturbation network   

 

 To characterize biological properties of perturbation network, we categorize genes 

with Kin to 3 groups, perturbation sensitive genes, perturbation tolerant genes, and 

others. Perturbation sensitive genes are defined as genes with top 10% of Kin and 

perturbation tolerant genes are defined as genes with bottom 10% of Kin. We use 

ANOVA for statistical testing. We also use excess retention method to investigate 

trends of biological properties among perturbation sensitivity (Materials and 

Methods). We also categorize genes with Kout to 3 groups, perturbation causing genes, 

perturbation free genes, and others. Perturbation causing genes are defined as genes 

with top 10% of Kout and perturbation free genes are defined as genes with bottom 

10% of Kout.   

 

3.2.1. Correlation between perturbation network and PPI 

network   

 

We compared Kin and Kout with Kppi, degree of PPI network. As shown in figure 4 

(a), perturbation sensitive genes have low Kppi while perturbation tolerant genes have 

high Kppi (ANOVA p-value = 3.54e-13). Figure 4 (b), Excess retention plot, also 

shows similar trends which X-axis represents Kin and Y-axis represents excess 

retention of corresponding perturbation sensitivity. Red line, which denotes hub of 

PPI network which have top 10% of Kppi, diminish along Kin. As in previous study 

with yeast perturbation network (44), Genes highly connected in the protein 

interaction network are least likely to be hubs in the perturbation network, and vice 

versa. On the contrary, Kout does not show trends in excess retention plot (Figure 4 

(d)) but ANOVA and boxplot (Figure 4 (c)) shows that Perturbation Causing genes 

which have top 10% Kout weakly tends to have high Kppi (p-value = 0.056).  
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Figure 4. Relation between perturbation network and PPI network. (a) boxplot for 

PS(perturbation sensitive genes), N(neutral genes), PT(perturbation tolerant genes)  

against Kppi. (b) Excess retention plot for hub of PPI network among Kin. (c) 

boxplot for PC(perturbation causing genes), N(neutral genes), PT(perturbation free 

genes)  against Kppi. (d) Excess retention plot for hub of PPI network among Kout. 



１８ 

3.2.2. Relationship of perturbation network to Evolutionary 

feature and regulatory feature    

 

 According to the ‘neutral’ theory of molecular evolution, random mutations not 

affecting fitness of the organism causes molecular level evolutionary change (64). 

Thus, proteins important for survival of the organism must have lower rate of 

evolution.  evolutionary changes at the molecular level are caused by drift and 

fixation of random mutations that do not affect the fitness of the organism. For 

example, hubs of the PPI network have lower dN/dS ratio (65). In this analysis, we 

use mouse-human ortholog dN/dS to evaluate protein evolutionary rate. As 

previously reported, Kppi shows negative correlation to dN/dS value, which implies 

hub of PPI networks tend to evolve slowly. Kin shows similar trends with Kppi, that 

perturbation sensitive genes also have low dN/dS, or evolutionarily conserved  

(Figure 5 (a), (b) ANOVA p-value = 0.023). On the other hand, Kout does not show 

any significant trends with dN/dS. Just as hubs of PPI network, perturbation sensitive 

genes have evolved slowly, and their sequence divergences are under high 

evolutionary selection pressure, which implies that they both are essential for 

survival of organism. We also analyse relationship between number of paralogs and 

network degrees. Paralogs are defined as more closely related gene family members 

caused by gene duplication and expected to perform similar function as in the 

ortholog and have similar neighbour and node degrees in PPI network and regulatory 

network (66, 67). In our analysis, Kin is positively correlated to number of paralogs. 

(Figure 5 (c)(d), ANOVA p-value = 1.30e-8). 
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Figure 5. Biological properties of Kin. (a) Boxplot for dN/dS. (b) Excess retention 

plot for dN/dS. red line denotes evolutionarily conserved genes. (c) Boxplot for 

number of paralogs. (d) Excess retention plot for number of paralogs. Red line 

denotes genes with less paralogs. (e) Boxplot for miRNA targets. (f) Excess 

retention plot for miRNA targets. Red line denotes genes with less miRNA targets. 

(g) Boxplot for number of transcription factor. (h) Excess retention plot for number 

of transcription factor. Red line denotes genes with less transcription factor target.  
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Figure 6. Biological properties of Kout. (a) Boxplot for dN/dS. (b) Excess retention 

plot for dN/dS. red line denotes evolutionarily conserved genes. (c) Boxplot for 

number of paralogs. (d) Excess retention plot for number of paralogs. Red line 

denotes genes with less paralogs. (e) Boxplot for miRNA targets. (f) Excess 

retention plot for miRNA targets. Red line denotes genes with less miRNA targets. 

(g) Boxplot for number of transcription factor. (h) Excess retention plot for number 

of transcription factor. Red line denotes genes with less transcription factor target. 
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 miRNA is small non-coding RNA molecule which plays key role in regulation of 

gene expression (68-70). Especially, miRNA related to fine-tuning of target activity 

and coordinated regulation. Perturbation sensitive genes tend to be targeted by less 

miRNAs (Figure 5 (e), (f) ANOVA p-value = 1.10e-6). Kout does not show significant 

correlation to miRNA.  Number of upstream binding transcription factor grossly 

reflects centrality of regulatory network (41). Kin is negatively correlated to number 

of transcription factor (Figure 5 (g), (h) ANOVA p-value = 1.8e-18).  

Kout does not show any significant trends. Namely, perturbation sensitive genes are 

controlled by less transcription factor.   

 In conclusion, perturbation sensitive genes have lower PPI degree but evolutionarily 

conserved, less targeted by miRNA and transcription factor, and have many paralogs. 

On the contrary, Kout does not show any significant biological properties (Figure 6 

(a) ~ (h)). Finally, we checked robustness of biological properties of perturbation 

sensitivity. Figure 7 summarizes results from various threshold of gene damaging.  
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Figure 7. Results from various threshold of gene damaging. First row 

represents results of lower gene score, 0.1. Second row represents results of 

using SIFT score instead of gene score. Third row represents results of using 

PolyPhen score to calculate gene score. Independent from methods for 

deriving perturbation network, perturbation sensitive genes are evolutionarily 

conserved and inversely correlated to PPI network.   
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3.2.3. Functional annotation of perturbation network using 

GO terms 

 

We conduct gene set enrichment test using DAVID (58) for 3 groups of genes; genes 

with high perturbation sensitivity which are considered as perturbation sensitive 

genes, genes with low perturbation sensitivity or perturbation tolerant genes, and 

genes with high Kout which named as perturbation causing genes. Within top 20 

gene sets with respect to p-value, Perturbation causing genes are annotated as 

‘apoptosis’, ‘regulation of synaptic transmission’, ‘protein domain specific binding’, 

‘behaviour’, ‘regulation of neurological system process’, and ‘antigen receptor-

mediated signalling pathway’ with GOTERM_BP_FAT. Perturbation sensitive genes 

are annotated as ‘cell adhesion’, ‘biological adhesion’ with GOTERM_BP_FAT and 

‘extracellular region part’, ‘plasma membrane part’, ‘basement membrane’ with 

GOTERM_CC_FAT. Perturbation tolerant genes are annotated as ‘ubiquitin-

dependent protein catabolic process’, ‘M phase’, ‘mitotic cell cycle’ with 

GOTERM_BP_FAT and ‘nuclear lumen’, ‘nucleoplasm’ with GOTERM_CC_FAT. 

(Table 1 ~ 6) 
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Table 1. Pathway annotation of perturbation sensitive gene using DAVID 

GOTERM_BP_FAT 

 

 
 
   

GOTERM_BP_FAT p-value 

GO:0007155~cell adhesion 1.68E-12 

GO:0022610~biological adhesion 1.76E-12 

GO:0050865~regulation of cell activation 1.89E-05 

GO:0002684~positive regulation of immune system process 5.30E-05 

GO:0016337~cell-cell adhesion 6.56E-05 

GO:0007267~cell-cell signaling 6.72E-05 

GO:0009611~response to wounding 9.68E-05 

GO:0002694~regulation of leukocyte activation 1.07E-04 

GO:0042127~regulation of cell proliferation 1.34E-04 

GO:0050867~positive regulation of cell activation 1.82E-04 

GO:0060429~epithelium development 2.20E-04 

GO:0051249~regulation of lymphocyte activation 3.02E-04 

GO:0006954~inflammatory response 3.20E-04 

GO:0044057~regulation of system process 3.65E-04 

GO:0008015~blood circulation 4.20E-04 

GO:0003013~circulatory system process 4.20E-04 

GO:0002696~positive regulation of leukocyte activation 4.37E-04 

GO:0006952~defense response 4.56E-04 

GO:0008284~positive regulation of cell proliferation 5.23E-04 

GO:0010604~positive regulation of macromolecule 
metabolic process 

5.32E-04 
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Table 2. Pathway annotation of perturbation sensitive genes using DAVID 

GOTERM_CC_FAT 

 
   

GOTERM_CC_FAT p-value 

GO:0044421~extracellular region part 3.01E-12 

GO:0044459~plasma membrane part 1.98E-11 

GO:0005887~integral to plasma membrane 1.49E-08 

GO:0005886~plasma membrane 2.16E-08 

GO:0031226~intrinsic to plasma membrane 4.07E-08 

GO:0005615~extracellular space 5.45E-08 

GO:0005604~basement membrane 1.07E-07 

GO:0031012~extracellular matrix 1.19E-07 

GO:0005576~extracellular region 1.84E-07 

GO:0044420~extracellular matrix part 2.07E-07 

GO:0005578~proteinaceous extracellular matrix 6.30E-07 

GO:0009897~external side of plasma membrane 1.31E-05 

GO:0009986~cell surface 2.74E-05 

GO:0045202~synapse 3.94E-05 

GO:0000786~nucleosome 8.19E-05 

GO:0031091~platelet alpha granule 1.68E-04 

GO:0044456~synapse part 6.52E-04 

GO:0032993~protein-DNA complex 0.0010 

GO:0043235~receptor complex 0.0032 

GO:0042995~cell projection 0.0047 
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Table 3. Pathway annotation of perturbation tolerant genes using DAVID 

GOTERM_BP_FAT 

   

GOTERM_BP_FAT p-value 

GO:0006511~ubiquitin-dependent protein catabolic process 0.0070 

GO:0000279~M phase 0.0086 

GO:0000278~mitotic cell cycle 0.0157 

GO:0000087~M phase of mitotic cell cycle 0.0164 

GO:0043009~chordate embryonic development 0.0176 
GO:0009792~embryonic development ending in birth or egg 
hatching 0.0194 

GO:0007051~spindle organization 0.0226 
GO:0051006~positive regulation of lipoprotein lipase 
activity 0.0243 

GO:0045087~innate immune response 0.0284 

GO:0000280~nuclear division 0.0294 

GO:0007067~mitosis 0.0294 

GO:0007283~spermatogenesis 0.0316 

GO:0048232~male gamete generation 0.0316 

GO:0000188~inactivation of MAPK activity 0.0340 

GO:0007049~cell cycle 0.0352 

GO:0022402~cell cycle process 0.0370 
GO:0045923~positive regulation of fatty acid metabolic 
process 0.0386 

GO:0048285~organelle fission 0.0393 

GO:0007585~respiratory gaseous exchange 0.0401 

GO:0010741~negative regulation of protein kinase cascade 0.0401 
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Table 4. Pathway annotation of perturbation tolerant genes using DAVID 

GOTERM_CC_FAT 

 

   

GOTERM_CC_FAT p-value 

GO:0031981~nuclear lumen 0.0083 

GO:0005654~nucleoplasm 0.0087 

GO:0070013~intracellular organelle lumen 0.0191 

GO:0043233~organelle lumen 0.0224 

GO:0031974~membrane-enclosed lumen 0.0251 

GO:0016605~PML body 0.0309 

GO:0070652~HAUS complex 0.0321 

GO:0044451~nucleoplasm part 0.0328 

GO:0000159~protein phosphatase type 2A complex 0.0346 

GO:0005882~intermediate filament 0.0358 

GO:0000775~chromosome, centromeric region 0.0374 

GO:0045111~intermediate filament cytoskeleton 0.0412 

GO:0005694~chromosome 0.0493 

GO:0008287~protein serine/threonine phosphatase complex 0.0568 

GO:0043195~terminal button 0.0612 

GO:0005625~soluble fraction 0.0661 

GO:0044427~chromosomal part 0.0723 

GO:0016604~nuclear body 0.0875 

GO:0005819~spindle 0.0890 

GO:0031981~nuclear lumen 0.0083 
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Table 5. Pathway annotation of perturbation causing genes using DAVID 

GOTERM_BP_FAT  

GOTERM_BP_FAT p-value 

GO:0006915~apoptosis 0.0081 

GO:0050804~regulation of synaptic transmission 0.0092 

GO:0012501~programmed cell death 0.0094 

GO:0008219~cell death 0.0126 

GO:0016265~death 0.0136 

GO:0051969~regulation of transmission of nerve impulse 0.0137 

GO:0007610~behavior 0.0160 

GO:0031644~regulation of neurological system process 0.0167 

GO:0050851~antigen receptor-mediated signaling pathway 0.0188 

GO:0042981~regulation of apoptosis 0.0213 

GO:0043067~regulation of programmed cell death 0.0236 

GO:0010941~regulation of cell death 0.0244 

GO:0006401~RNA catabolic process 0.0256 

GO:0009057~macromolecule catabolic process 0.0286 
GO:0002429~immune response-activating cell surface 
receptor signaling pathway 0.0292 

GO:0002074~extraocular skeletal muscle development 0.0342 
GO:0002768~immune response-regulating cell surface 
receptor signaling pathway 0.0354 

GO:0043068~positive regulation of programmed cell death 0.0372 

GO:0010942~positive regulation of cell death 0.0382 

GO:0030111~regulation of Wnt receptor signaling pathway 0.0445 
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Table 6. Pathway annotation of perturbation causing genes using DAVID 

GOTERM_CC_FAT 

  

GOTERM_CC_FAT p-value 

GO:0034399~nuclear periphery 0.0208 

GO:0045211~postsynaptic membrane 0.0292 

GO:0005881~cytoplasmic microtubule 0.0376 

GO:0043235~receptor complex 0.0500 

GO:0005637~nuclear inner membrane 0.0589 

GO:0044456~synapse part 0.0623 
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3.3. Clinical implication of perturbation network against PPI 

network    

 

3.3.1. Lethal genes versus disease genes  

 

 Lethal genes are known to have a strong tendency to be located at the functional 

centre of the interactome, while there has been much debate about the centrality of 

disease genes. We used perturbation sensitivity, which is reciprocal to the PPI 

network, to characterize disease genes. First, we compared disease genes versus 

lethal genes (Materials and Methods). Although disease is not specific term but 

general term for disturbance of organism homeostasis, we assume that union of 

GWAS and OMIM genes as disease genes since they have large enough group of 

disease genes.  

 We used multiple logistic regression to distinguish lethal genes and disease genes 

using Kin, Kout, and Kppi as predictors. As a result, disease genes have high Kin (p-

value = 8.63e-25, figure 11) but not correlated to Kppi. On the contrary, lethal genes 

have high Kppi (p-value = 1.76e-69, figure 10) but not correlated to Kin. We binned 

whole genes using both Kin and Kppi to draw 2-dimentional heatmap to characterize 

lethal genes and disease genes. Consistent with many previous reports (29, 33, 44) 

and result of our multiple logistic regression, lethal genes have enriched upper left 

region of heatmap which have high Kppi and low Kin. On the other hand, disease genes 

have enriched right or right upper region of heatmap which have high Kin. Figure 8 

shows summary. As a result, we can infer that disease genes are closely associated 

with perturbation sensitivity and weakly or rarely associated with degree of protein 

interaction network. We also draw grid diagram for schizophrenia genes versus lethal 

genes (Figure 9). 
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Figure 8. Joint grid diagram for lethal genes and disease genes. (A) A grid diagram 

that consists of pie charts that demonstrate the proportion of four groups of genes

(green : lethal non-disease genes, red : disease non-lethal genes, yellow : disease-

lethal genes, and grey : non-lethal non-disease genes) at each degree bin. (B~E) 

Excess retention plots for (B) Lethal genes in perturbation network core, (C) Lethal 

genes in PPI network core, (D) Disease genes in perturbation network core, (E) 

Disease genes in PPI network core. 
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Figure 9. Joint grid diagram for lethal genes and schizophrenia genes.  (A) A grid 

diagram that consists of pie charts that demonstrate the proportion of four groups of 

genes (green : lethal non-schizophrenia genes, red : schizophrenia non-lethal genes, 

yellow : schizophrenia -lethal genes, and grey : non-lethal non- schizophrenia genes) 

at each degree bin. (B~E) Excess retention plots for (B) lethal genes in perturbation 

network core, (C) lethal genes in PPI network core, (D) schizophrenia genes in 

perturbation network core, (E) schizophrenia genes in PPI network core. 
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Figure 10. Joint heatmap for lethal genes. Number of each cell denotes odd ratio of 

lethal genes. Red lines of right excess retention plot indicate lethal genes.  
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Figure 11. Joint heatmap for disease genes. Number of each cell denotes odd ratio 

of lethal genes. Red lines of right excess retention plot indicate disease genes. 
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Figure 12. Joint heatmap for visualizing 4 disease gene group: asthma, 

sclerosis, schizophrenia, and cancer. Number of each cell denotes odd ratio of 

corresponding disease genes. Red lines of right excess retention plot also 

indicate corresponding disease genes.  
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3.3.2. Disease gene classification using both Kppi and Kin  

 

We classify disease genes into small groups to categorize diseases with Kin and Kppi 

using heatmap and excess retention plot (Methods and Materials.). Figure 12 and 13 

shows heatmaps plotted by various disease gene groups. GWAS and OMIM consists 

of heterogeneous studies with various diseases. We consider genes as certain disease 

gene only if name of study including disease name. For example, we build asthma 

gene sets with genes which DISEASE/TRAIT column of GWAS catalogue includes 

'asthma' or 'Asthma'. We plot for well-studied disease genes : asthma, systemic 

sclerosis, schizophrenia, and cancer (Figure 12). Asthma, systemic sclerosis, 

schizophrenia genes show low Kppi and high Kin, while cancer genes from COSMIC 

tend to have high Kppi and low Kin.  

 

 We also use GAD (63), The Genetic Association Database, to categorize disease 

genes. GAD categorize disease genes by organ systems, as cardiovascular, 

neurological, metabolic, and etc. Figure 13. (a)~(p) shows heatmap and excess 

retention plot for disease genes categorized by organ systems. All categories of 

disease gene enriched in high Kin except cancer and renal genes, while Kppi is varied 

across categories. Figure 15 shows disease classification using clinical gene sets we 

used. Cancer genes, lethal genes, GAD neurological genes, and genes from OMIM 

clearly form clusters which implies similarities between those phenotypes.  
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Figure 13. Joint heatmap for visualizing disease gene categories classified in 

GAD. Number of each cell denotes odd ratio of corresponding disease genes. Red 

lines of right excess retention plot also indicate corresponding disease genes. 
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Figure 14. Joint heatmap for visualizing disease gene categories classified in 

GAD(continued). Number of each cell denotes odd ratio of corresponding disease 

genes. Red lines of right excess retention plot also indicate corresponding disease 

genes. 
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Figure 15. Heatmap for disease classification. Each cell denotes mantel statistics of 
pair of two disease gene sets.  
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4. Discussion 

 

 Perturbation network is built from 1000 genomes population whose participants are 

declared themselves to be healthy and does not have any clinical information. There 

are numerous non-synonymous variants in normal population and little studies 

reported their effect. We integrate non-synonymous variants within genic region to 

evaluate damaging of a gene and apply it to elucidate perturbation sensitivity of 

genes. As in yeast perturbation network, Kin is reciprocally correlated to Kppi. Also, 

contrary to popular belief, perturbation sensitive genes are evolutionary conserved 

than perturbation tolerant genes. It is consistent with result from yeast data and 

implies that hub of perturbation network plays an important role in survival of 

organism as hub of PPI network. It also consistent with yeast perturbation network 

that Kin is related to disease genes, not lethal genes.  

 Different from yeast perturbation network, Kin does not follow scale-free 

distribution, but follow log-normal distribution irrelevant to the method for building 

perturbation network. It is also different from yeast perturbation network that in yeast, 

perturbation sensitive genes act as stress-responsive genes but in human, 

perturbation sensitive genes function as signalling molecule and located in cellular 

membrane or extracellular matrix. It may be caused by difference between single 

celled organism and multicellular organism. Extracellular environment of 

multicellular organism is strictly controlled and structured as cell to cell signalling 

system.  

 Previous report about topological characteristics of disease genes in PPI network 

were inconsistent, while lethal genes consistently reported as hub of PPI network. 

As we shown, most disease genes are correlated to perturbation network, not PPI 

network. Disease is not fatality of single cell but change of cell-cell interaction and 

function. Since perturbation network reflects cell’s response to external signal or 

stress, genes related to chronic systemic diseases located in hub of perturbation 
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network, not PPI network. In comparison, for example, cancer genes located in hub 

of PPI network since cancer is typical single cell disease. In our analysis, most 

disease genes tend to have high Kin and various Kppi while Cancer related genes are 

only categories of disease genes which have low Kin and extremely high Kppi. 

Although caner affect surrounding tissues, cancer itself is originated from single cell 

and evolved solely. On the other hands, most diseases do not be originated from 

single cell and does not dramatically change cell's function. For example, asthma is 

hypersensitive inflammatory disease and most related cells function as usual without 

stimulus. Though, we can infer a gene’s clinical importance using both PPI network 

and perturbation network. Genes located hub of PPI network may cause death of 

single cell while genes located hub of perturbation network may cause malfunction 

of single cell and change of response to external signal and stress.  

 We considered the genes that were most 'perturbed' to be hub of perturbation 

network, while many others (71) considered the most perturbing genes to be hubs. 

'Perturbing gene' is about how many genes are perturbed by certain gene and 

'Perturbed gene' is about how many genes perturb that gene. In our analysis, out-

degree does not have any significant biological implications. The most severely 

perturbing genes must be the essential genes and disturbance of essential genes may 

cause complete cell death, hence impacting all genes. Therefore, bias to non-lethal 

genes is inevitable. In contrast, the definition of the most perturbed genes is unbiased 

because the effect of lethal mutation can equally be applied to all genes. Also, genetic 

perturbation is mitigated by several biological mechanisms, it is impossible to 

connect genotype to phenotype directly. Rather, perturbed genes are closer to final 

consequence of genetic perturbation and may have biological and clinical 

implications.  

In this study, we figure out how transcriptome is regulated and react to perturbation 

using normal populations’ transcriptome perturbation sensitivity. Perturbation 

sensitivity genes are important for not only survival of single cell but also 

harmonious reaction to cell-cell interaction and external stress. Evolutional 
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evaluation of these genes confirm that these genes are evolutionarily conserved and 

important for survival of organism, not single cell. These genes also related to 

disease genes, especially chronic systemic disease. Perturbation sensitivity will 

supplement static character of protein interaction network and ease understanding of 

genome in network. Altogether, perturbation sensitivity is valuable measure for 

assessing gene's biological and clinical properties. 
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국문 초록 

 

연구 목적: 유전자의 발현은 수많은 유전체 돌연변이에 의해서 교란되며, 

이는 세포의 기능과 개체의 표현형에 큰 영향을 준다. 최근의 대규모 차세대 

염기서열분석 프로젝트에서 밝혀지고 있듯, 한사람의 유전체는 적어도 

300 만개의 돌연변이를 가지고 있는 것으로 알려져 있다. 본 논문에서는 

이러한 유전체 교란을 해석하고 교란에 민감한 유전자의 특징을 살펴보고자 

전사체 교란 네트워크를 1000 유전체 프로젝트 데이터를 통해 구성해 

보았다.  

연구 방법: 본 연구에서는 단백질 코딩 영역 내 비 동일 변이의 시프트 점수를 

종합하여 유전자 손상 정도를 평가하였다. 이를 기반으로 전사체 교란 

네트워크를 구성하고, 유전자의 내향 연결 정도를 교란 민감도로 정의하였다. 

유전자를 교란 민감도에 따라 분류하고 교란 민감 유전자와 교란 둔감 

유전자의 진화적, 생물학적, 그리고 임상적 특징을 조사하였다.  

결과: 교란 민감 유전자는 단백질 상호작용 네트워크의 변방에 위치해 

있었으나 진화적으로 보존되어 있었다. 이들은 상대적으로 적은 수의 미소 

전사체와 전사인자에 의해 조절되고 있으며, 세포 간의 상호작용에 중요한 

역할을 하고 있었다. 전사체 교란 네트워크의 외향 연결 정도는 중요한 

생물학적 의미를 가지고 있지 않았다. 치사 유전자의 경우 교란 네트워크의 

말단이면서 단백질 상호작용 네트워크의 중심부에 위치해 있었다. 반면, 

대부분의 질병 유전자들의 경우 교란 네트워크의 중심이면서 단백질 

상호작용 네트워크의 말단에 위치해 있었다. 두 네트워크를 모두 사용하여, 

질병을 분류하기 위한 연합 네트워크 도표를 그려보았다.  

결론: 효모에서의 연구와 마찬가지로, 교란 민감 유전자는 유전적으로 

보존되어 있고 세포 간의 상호작용에 관여하여 개체의 생존에 필수적이었다. 
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또한, 내향 연결정도가 외향 연결정도에 비해 유전자 교란을 해석하는데 

유용하다는 것을 확인하였다. 질병 유전자는 단백질 상호작용 네트워크와 

교란 네트워크를 동시에 활용하여 시각화 되고 분류될 수 있었다. 

결론적으로, 교란 민감도는 유전자의 생물학적 임상적 특성을 분석하고 

유전체 교란을 평가하는데 가치 있는 지표가 될 것이다.  

 

주요어: 유전체 교란, 전사체, 단백질 상호작용 네트워크, 질병 유전자  

학번: 2010-21974 
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