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ABSTRACT 

 

Introduction: Tumor environment is established by various components 

including the malignant, stromal and immune cells. Single-cell transcriptome 

profiling of tumor samples allows the dissection of heterogeneous tumor cells 

and the neighboring stromal or immune cells. Precise characterization of the 

infiltrating immune cells may provide clues for novel immunotherapy 

strategies. 

 

Methods: A total of 515 individual cells from 11 breast cancer patients and 

162 cells from four advanced gastric cancer (AGC) patients were analyzed by 

single-cell RNA sequencing (RNA-seq). Reference single-cell transcriptomes 

for M1-type or M2-type macrophages were generated from normal blood-

derived monocytes after in vitro differentiation. 

 

Results: Copy number alteration patterns inferred from the single-cell RNA-

seq data separated tumor cells and non-tumor cells. Most of the non-tumor 

cells were immune cells. In breast cancer*, three distinct immune cell clusters 

of T lymphocytes, B lymphocytes, and macrophages were identified. T 

lymphocytes displayed immunosuppressive characteristics with a regulatory 

or exhausted phenotype. B lymphocytes were divided into two subgroups, the 

anti-apoptotic naïve/memory cell group and the highly proliferative B cell 

group. 
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  In AGC, all of the detected immune cells were tumor-associated 

macrophages (TAMs). When compared to the reference transcriptomes of the 

M1 or M2 macrophages, an M2-biased tendency was observed in the AGC 

TAMs with a heterogeneous level of polarization. In comparison, TAMs 

originating from breast cancer or colorectal cancer showed both M1-biased 

and M2-biased cells.  

 

Conclusions: This study demonstrates the power of single-cell RNA 

sequencing for the characterization of tumor-infiltrating immune cells to 

develop immunotherapeutic strategies. Single-cell transcriptome analysis 

subdivides the microenvironmental immune cells by cell types and their 

properties with heterogeneous levels of pathway activation. High resolution 

profiles can provide a new view on targeting the exhausted tumor-infiltrating 

lymphocytes or transforming the anti-inflammatory M2-type TAM to the pro-

inflammatory M1-type. 

 

 

 

* This work is based on published article in Nature Communications (1). 

------------------------------------- 

Keywords: Single-cell, Breast cancer, Advanced gastric cancer, 

Heterogeneity, Tumor microenvironment, Tumor-associated macrophages 

Student number: 2012-21802  
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INTRODUCTION 

  Gene expression profiling of bulk tumors reflects the features of non-tumor 

compartments, which are characterized by an admixture of stromal, immune, 

and endothelial cell infiltration, not only tumor cells. These admixtures form 

the tumor microenvironment and play a critical role in tumor initiation, 

progression, and treatment resistance. Microenvironmental gene expression 

signatures may present prognostic values independent of the intrinsic tumor 

subtype (2-4). Immune cell infiltrates are composed of cells from multiple 

lineages that may play pleiotropic roles in tumor immunity. Tumor-associated 

macrophages (TAMs) often promote tumor progression and metastasis, 

whereas CD8+ cytotoxic T cells and CD4+ Th1 cells elicit antitumor 

immunity and suppress tumor growth (5). Furthermore, T cells with 

regulatory or exhausted phenotype are associated with failure in antitumor 

immunity. A subset of B cells was proposed to promote tumor progression by 

affecting diverse cell types including T cells and TAMs (6). However, the 

presence of a large number of B cells in the tumor region is associated with a 

good prognosis (7). Altogether, the tumor microenvironment is formed 

through interactions between these variable cellular components and through 

communication with tumor cells. Whole genomic profile of the tumor 

microenvironment using bulk sample has limitations in finding cell type 

specific characters due to mixed cell composition and their complex 

interaction. 
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Immunotherapy has become a promising strategy for cancer treatment since 

knowledge of the microenvironment has become more established. Targeting 

suppressor T cells is one certified method of immunotherapy that may 

revitalize a suppressed immune system. Typical molecules that could change 

cytotoxic CD8+ T cells to the exhausted phenotype are PD-1 (PDCD1), which 

is found in T cells, and its ligand PD-L1 (CD274), which is expressed in 

antigen-presenting cells (8). In particular, blocking antibodies against PD-1 or 

PD-L1 were shown to have clinical efficacy in the treatment of melanoma and 

lung cancer (9) and has been applied to cancer types with the approval of the 

FDA. Many studies on the prognostic and therapeutic application of TAM are 

ongoing (10-15). Based on the anti-inflammatory function of M2-type 

macrophages, common methods used to investigate the impact of TAM 

invasion are the comparison of the M1/M2 ratio and the percentage of M2-

type macrophages by detecting standard markers such as HLA-DR or iNOS 

for M1-type and CD163 for M2-type macrophages (14, 15). However, 

marker-based approaches cannot reflect the polarization level of the 

macrophages or distinguish macrophages from other cells which also express 

same markers. 

Since Navin and his colleagues have proposed single-cell genome 

sequencing as a new approach for revealing the heterogeneity of tumors (16), 

many researchers have applied single-cell technology to cancer research (17, 

18). Among the genomic, transcriptomic, proteomic, and epigenomic 

platforms, the most common method currently is the single-cell RNA 

sequencing. Knowing the level of transcriptomic heterogeneity in the tumor 
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and the precise characterization of tumor and microenvironmental gene 

expression may help identify better molecular targets for prognosis and 

treatment (19). The characterization of tumor infiltrating immune cells with a 

single-cell RNA-seq may also provide a better strategy for overcoming 

immunosuppression and activating spontaneous immune surveillance (20). 

The general treatment procedure for breast cancer depends on the tumor 

subtype and the subtype classification criteria, which are well established. The 

traditional method for breast cancer subtyping is a histological examination of 

estrogen receptors (ER), progesterone receptors (PR), and human epidermal 

growth factor receptor 2 (HER2). Gene expression-based molecular subtyping 

(21, 22) and the application of molecular subtypes to RNA-seq data (23) 

support accurate treatment decisions. Since ER and HER2 are the clear 

markers and also the incontrovertible cause of cancer development, a 

treatment method that targets ER or HER2 pathways is a standard regimen for 

the ER-positive or HER2-positive subtypes, and is usually successful. In the 

case of triple-negative breast cancer (TNBC) type, however, there are no 

specific marker molecules for a targeted therapy even in expression profiles. 

Moreover, approximately 20% of ER-positive tumors are not treated with ER 

pathway-targeting endocrine therapy. Novel strategies for these cases may be 

developed through the investigation of a heterogeneous tumor’s environment. 

There are many environmental and genetic factors that influence the 

development of gastric cancer, including Helicobacter pylori (H. pylori) 

infection, smoking, diet (particularly one that is salt-rich), Epstein-Barr virus 

(EBV) infection, and various genetic and epigenetic changes that are 
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associated with the incidence of tumors (24-28). At an early stage, there are 

no certain symptoms except stomach discomfort, but as the cancer progresses, 

some evident symptoms that may appear include weight loss for an unknown 

reason, stomach pain, jaundice, and ascites. The considerable influence of 

environmental factors and the difficulty of recognizing symptoms often lead 

to a late diagnosis. For these reasons, gastric cancer is often diagnosed at an 

advanced stage, and is therefore very difficult to cure. Peritoneal ascites is a 

typical symptom of stage IV advanced gastric cancer (AGC). Malignant 

ascites contains a large amount of macrophages and peritoneum-derived 

mesothelial cells, as well as malignant and tumor-associated immune cells 

that originated from the primary tumor or peritoneal metastasis (29-31). 

To investigate heterogeneous characteristics of immune cells in the breast 

cancer microenvironment, 515 single cells from 11 patients with different 

breast cancer subtypes were analyzed in Part I. Single cell isolates from 

individual tumor tissues contained tumor and non-tumor microenvironmental 

cells. The immune populations were clearly disclosed; however, a detailed 

characterization of TAM was infeasible due to its low occurrence. In Part II, 

72 macrophage single-cell profiles were obtained from among 162 cells taken 

from four advanced gastric cancer patients. In addition, a total of 142 

transcriptomes for M1 or M2 macrophages were constructed from two healthy 

donors. Reference M1 and M2 cells were used to reveal the polarization level 

of the macrophage cells objectively and detect M1-polarized or M2-polarized 

cells within TAMs. 
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This study demonstrates the need for single-cell profiling to discover 

tumor-infiltrating lymphocytes (TILs) or TAMs with tumor-promoting 

features among heterogeneous cells. This approach could provide a clue to 

more accurate and efficient therapeutic methods. 
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MATERIALS AND METHODS 

1. Patients and tumor-derived specimens 

All patients and healthy donors in this study agreed to provide 

biospecimens through a consent form approved by the Institutional Review 

Board of Seoul National University Hospital and Samsung Medical Center 

(Institutional Review Board no. 1207-119-420, 2015-12-094-003 and 2016-

04-107-003). Primary breast cancer tissues were obtained from 11 patients 

diagnosed with invasive ductal carcinoma (IDC) and two metastatic lymph 

nodes were also collected from patient BC03 and BC07 (BC03LN, BC07LN). 

Ten of 11 patients had no any treatment prior to surgery but one patient 

(BC05) received neoadjuvant chemotherapy and Herceptin treatment. 

Regarding transcriptomic changes resulting from the drug response, the BC05 

sample was considered as an outlier and excluded after cell type definition. 

Molecular subtypes of breast tumors were predicted by transcriptomic profiles 

using the R package genefu (33). Peritoneal ascites from four AGC patients 

and one cerebrospinal fluid of patient AGC04 (AGC04CSF) were separately 

collected for the treatment purpose. These five specimens derived from AGC 

patients were utilized for single-cell RNA sequencing. 

 

2. Single cell isolation and cDNA amplification 

To prepare single-cell suspensions, the specimens of breast cancer tissues 

or lymph node metastases were dissociated for 2 hours immediately after 

surgery using both of enzymatic and mechanical methods. Suspending cells in 
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ascites or cerebrospinal fluid from advanced gastric cancer patients were 

collected by centrifuge. Dead cells in the single-cell isolates were removed by 

Ficoll gradient separation using Ficoll-PaqueTM PLUS (17-1440-02, GE 

Healthcare, Uppsala, Sweden), and finally 50,000 live cells were loaded onto 

an individual integrated fluidic circuit mRNA sequencing chip in the C1TM 

Single-Cell Auto Prep System (100-5760, Fluidigm, San Francisco, CA, 

USA). Applied chip type was determined by size distribution and average cell 

size of each sample. The 17–25-µm targeting chip was used only for AGC03 

and AGC04CSF samples, and rest of samples were loaded onto 10–17-µm 

targeting chip. 

After loading cells, single-cell capture was microscopically examined 

before cell lysis step. The single-cell amplification step including cell lysis, 

cDNA synthesis, and amplification was performed using the SMARTer Ultra 

Low RNA Kit (634936, Clontech, Mountain View, CA, USA) as the 

manufacturer’s recommendation. Following the manufacturer’s instructions, I 

added RNA spike-ins 1, 4, and 7 from ArrayControlTM RNA Spikes (AM1780, 

ThermoFisher, Waltham, MA, USA) to the lysis mix as experimental controls 

and I utilized these spike-ins to examine constant amplification at a quality 

check analysis (Figure 1-2A). Amplified cDNAs from single-cells were 

quantified by a Qubit® 2.0 Fluorometer (Life Technologies, Carlsbad, CA, 

USA) and qualified using a 2100 Bioanalyzer system (Agilent Technologies, 

Santa Clara, CA, USA) with high-sensitivity reagents. To run matched bulk 

tumor samples, total RNAs were extracted from ~1 × 105 cells or tumor 

tissues using the RNeasy Plus Micro kit (74034, Qiagen, Hilden, Germany) 
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and 10 ng of total RNA was used. Matched bulk profiles were generated 

under the same conditions as used for single cells from the cell lysis step. 

 

3. RNA-seq and data processing 

Successfully amplified 901 single-cell cDNAs (579 of breast cancer 

cDNAs, 180 of AGC cDNAs, and 142 of macrophage cDNAs) were 

respectively subjected to RNA sequencing in Part I and Part II. The 

sequencing libraries were constructed using the Nextera XT DNA Sample 

Prep Kit (FC-131-1024, Illumina) according to the manufacturer's instructions, 

and then the constructed libraries were sequenced using the HiSeq2500 

system in 100-bp paired-end mode. To assess the expression values of array 

control RNA spike-ins, reference sequences and the corresponding 

annotations were generated by merging three control RNA spike-ins 

(ThermoFisher) with the human genome reference sequences (hg19) and the 

GENCODE 19 annotations. The RNA reads were then aligned to the 

reference sequences using the 2-pass mode of STAR_2.4.0b (default 

parameters) (34), and relative gene expression was quantified as transcript per 

million (TPM) using RSEM v1.2.17 (default parameters) (35). Isoform 

expression levels for each gene were summed to derive the TPM values. 

Quality control assessment of aligned single-cell RNA-seq reads was 

performed using RNA-SeQC (36). To remove cells with low-quality 

sequencing values, four filtering criteria were applied; 1) number of total 

reads, 2) mapping rate, 3) number of detected genes, and 4) portion of 

intergenic region. 
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4. Estimation of gene expression level 

In breast cancer study, genes with low expression values were trimmed out 

by the following steps. First, TPM values less than one were considered 

unreliable and substituted with zero. Second, TPM values were log2-

transformed after adding a value of one. Third, genes expressed in less than 

10% of all tumor groups were removed. In total, 515 single cells and 17,779 

genes passed the QC criteria. The filtered 17,779 genes were also used for 

bulk tumor analyses. 

For transcriptome analysis, expression data were mean centered by 

subtracting the average log2(TPM+1) value for each gene with the following 

exceptions: for RNA spike-in analysis, comparisons between RNA-seq and 

qPCR results, measurement of intra-tumoral correlations, detection of 

chromosomal expression patterns, comparisons with immuno-fluorescence 

staining results, comparisons of immune marker expression, and application 

of self-normalizing tools such as geneset variation analysis (GSVA). As an 

estimate of the sensitivity and reproducibility of single-cell RNA sequencing, 

I obtained consistent log2(TPM+1) ratios for RNA spike-in 1 (12,200 

transcripts) and RNA spike-in 4 (912 transcripts) (Figure 1-2A). RNA spike-

in 7 with an estimated 62 transcript input was not detected. 

To certainly reduce effects of outlier and focus on remarkable features,  

TPM values were divided by 10 before log2-transformation in Part II study as 

Tirosh did (18). After copy number estimation from RNA-seq data for 

identifying tumor and non-tumor cells, eighteen cells expressed less than 
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1,000 genes were eliminated in further analysis. For transcriptome analysis, 

only the genes of log2(TPM/10+1) > 1 expressed in more than 10 cells each 

time was used. Except the cases of running self-normalizing GSVA or being 

expressed has its own meaning, expression values were rescaled by mean-

centering by each gene. I decided that being expressed has a meaning itself 

when inferring copy number alterations (CNAs) or comparing marker gene 

expression. 

 

5. Quantitative PCR for validation of RNA-seq 

A small amount quantitative PCR (qPCR) was performed with the 192.24 

Dynamic ArrayTM integrated fluidic circuit using DELTA gene assay (PN100-

3035, Fluidigm) to validate the expression level of single-cell RNA-seq data. 

Six breast cancer samples with diverse subtypes were selected, then six bulk 

cDNAs and corresponding 185 single-cell cDNAs were used in qPCR. 

Twenty-two representative genes including breast cancer subtype-specific 

markers (ESR1, PGR, and ERBB2) and cell-type specific markers (EPCAM, 

PTPRC, CDH1) were selected and two housekeeping genes (GAPDH and 

ACTB) were added. All primers were designed using the manufacture’s 

recommended software D3 assay design (PN 100-6812, Fluidigm) and are 

listed in Table 1-2. 

Before comparing qPCR and RNA-seq data, the Ct values of qPCR were 

converted to scales comparable to log2(TPM+1) of RNA-seq. Ct values were 

converted to negative values and genes with too low expression (-Ct < -20) 

were adjusted to -20. The inter-relations of two platforms were evaluated by 
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Pearson’s correlation, Spearman’s rank order correlation, and linear 

regression analysis. 

 

6. Inference of chromosomal expression patterns 

Chromosomal expression pattern gives highly comparable information to 

CNA (17). Cancer cells tend to exhibit distinct chromosomal expression 

pattern when compared to non-carcinoma cells, thus I used this approach to 

distinguish cancer cells from non-tumor cells. To prepare normal (baseline) 

expression level of breast or stomach tissues, firstly normal tissue expression 

profiles for breast or stomach were downloaded from GTEx v6 datasets 

(http://www.gtexportal.org/). Second, downloaded normal expression data 

was transformed to the corresponding scale as our data. Third, the average 

gene expressions of each tissue types were calculated for the overlapped 

genes with our filtered single cell data. 

To estimate gene expression patterns in the genomic position, the genes 

were sorted by their transcriptional start position. For the breast cancer 

analysis, the Z-scores of our breast cancer single-cell data for each gene were 

calculated by normalizing with the averaged expression profile of normal 

breast tissues. Then the inferred CNA patterns were estimated by the moving 

averages of 150 genes and centered values across genes per chromosome were 

used. For the advanced gastric cancer analysis, I applied the advanced process 

to remove an outlier effect (18). First, the expression data of our single-cell 

and GTEx normal tissue transcriptomes were separately normalized by Z-

scoring for each gene. Relative expression values were restricted to a range of 
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-3 to 3, then the moving averages of 150 genes were calculated and centered 

across genes. Lastly, the average of the estimated CNA values for the normal 

expression profiles were subtracted from the estimated CNA values of single-

cells. 

 

7. Immune cell type-specific gene expression profiling 

Three immune cell subgroups were identified in breast tumor micro-

environment by non-negative factorization (NMF) clustering (37) from 175 

non-tumor cells using 412 genes annotated in 11 non-overlapping immune 

cell types (38) (Table 1-3). To characterize the three immune cell clusters, the 

Receiver operating characteristic (ROC) test and likelihood-ratio test (LRT) 

based on zero-inflated data were performed using R package Seurat (39). 

Then, genes with a fold-change > 2 and an AUC > 0.7 were obtained as cell 

type-specific genes (LRT P<0.05) (Table 1-4). Gene ontology terms 

significantly enriched in cell type-specific genes were annotated by DAVID 

6.7 (https://david.ncifcrf.gov/) with a default option. To further characterize T 

or B cells by functional status, geneset variation analysis (GSVA) analysis 

was performed with selected gene sets from the literature (Table 1-5). 

 

8. Immunofluorescence staining 

  Immunofluorescence staining was carried out to assess the presence of 

tumor-infiltrating T or B cells in breast tumor tissues. T lymphocytes were 

double-stained with anti-CD3 (1:200; MA5-12577, Thermo Fisher, Waltham, 
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MA, USA) and anti-MARK3 (1:100; PA5-29328, Thermo Fisher) antibodies 

in the FFPE slides. B lymphocytes were double-stained with anti-CD20 

(1:200; MA5-13141, Thermo Fisher) and anti-PRPSAP2 (1:50; PA5-31237, 

Thermo Fisher) antibodies. Alexa488 labeled-anti-mouse and Alexa568 

labeled-anti-rabbit antibodies (1:50; Invitrogen) were used for double 

immunofluorescence with DAPI counterstaining. The numbers of CD3+ or 

CD20+ cells were assessed as average counts in three 0.125mm2 areas with 

maximal positive staining. 

 

9. Gene set variation analysis 

  To estimate pathway activation levels or evaluate gene expression 

signatures with a gene set level, a gene set variation analysis (GSVA) was 

performed using the R package gsva (40). Prior to GSVA analysis, over-

representation analysis was performed for all gene sets by the hypergeometric 

test and reliable gene sets with p-value < 0.05 were used. 

 

10. Construction of M1/M2 reference single-cell profiles 

Fresh PBMCs of two healthy donors were separated from whole blood 

samples by Ficoll-PaqueTM. Then only CD14+ monocytes were selected out 

using MACS human CD14 MicroBeads (130-050-201, Miltenyi Biotec 

GmbH, Bergisch Gladbach, Germany), Pre-Separation Filters (130-041-407, 

Miltenyi), and LS columns (130-041-401, Miltenyi) as following the 

manufacture’s recommend. To induce M0 macrophages, firstly isolated 
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CD14+ monocytes were seeded into FBS coated 24-well plate with a density 

of 1 × 105 cells/cm2. Seeded cells were cultured 7 days in RPMI1640 media 

supplied with 20% of FBS and 100ng/ml of M-CSF (574802, Biolegend, San 

Diego, CA, USA). At day 7, M-CSF containing media were removed and 

appropriate stimulating media with 100ng/ml LPS (L4524, Sigma-aldrich, St. 

Louis, MO, USA) and 20ng/ml IFN-γ (570202, Biolegend) for M1 or 20ng/ml 

IL-4 (574002, Biolegend) and 20ng/ml IL-10 (571002, Biolegend) for M2 

were supplied. After additional 48hr of culture, cells were collected by 

smooth scrapping. A part of cells were triple-stained with PE/Cy7 anti-human 

CD14 antibody (325618, Biolegend), FITC anti-human CD80 

antibody(305206, Biolegend), and PE anti-human CD163 antibody (333606, 

Biolegend) for fluorescence-activated cell sorting (FACS) analysis. The 

remaining cells were separately loaded onto the 17–25-µm chips of the C1 

system then performed single-cell RNA-sequencing. 

 

11. Scoring of M2-like polarization 

To measure the similarity with M1-type or M2-type macrophages in each 

cell, I extracted M1-specific or M2-specific gene lists by LRT for zero-

inflated data using the constructed M1/M2 single-cell data. Genes with fold-

change > 2 and p-value of LRT < 0.05 were obtained from each donor and 

then overlapped genes were considered as core differentially expressed genes 

(DEGs). The score of each gene set was calculated by GSVA analysis and the 

M2-like polarization level (M2-like score) was expressed by subtracting the 

M1 score from the M2 score. Gene sets of M1, M2, or total macrophages 
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from bulk tissue data were collected from the published data (Table 1-3 and 

Table 1-5A) (38,41). Cell ordering was performed to visualize the biased 

polarization of macrophages in various tumor types using the M1/M2 cell 

specific genes by DDRTree algorithm (42) in R package Monocle 2.0 (43). 
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RESUTLS (PART-I) 

 

Separation and identification of immune cells 

from tumors by single-cell RNA sequencing in 

breast cancer 
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1-1. Pathologic profiles of patients for single-cell analysis 

Selected 11 patients represent the four subtypes of breast cancer: luminal A, 

luminal B, HER2, and triple negative. All but one of the surgical samples 

were obtained from chemotherapy-naïve patients, and the markers for 

subtyping were validated by pathological examination as ER-positive (BC01 

and BC02; luminal A), ER/HER2-positive (BC03; luminal B), HER2-positive 

(BC04, BC05, and BC06; HER2), and triple-negative (BC07-BC11; TNBC) 

invasive ductal carcinoma (Table 1-1). Regional metastatic lymph nodes were 

collected from the luminal B (BC03LN) sample and a triple negative breast 

cancer (BC07LN) sample. 

  Each tumor tissue manifested a diversely mixed cell composition with a 

differential level of immune cell infiltration (Figure 1-1). Luminal A type 

(BC01 and BC02) tumors were primarily enriched with tumor cells, whereas 

most TNBC type (BC07-11) tumors showed extensive immune cell 

infiltration (3) (Figure 1-1A). The high proportion of non-tumor components, 

including large numbers of tumor-infiltrating lymphocytes (TILs), 

demonstrates the need for single cell analysis to generate an accurate 

understanding of tumors and their microenvironments.  

 

1-2. Reliability of single-cell RNA sequencing 

To reproduce the tumor environment using single-cell sequencing, single 

cells were isolated using microfluidic chips (44) without prior cell-type 

selection. After filtering out unreliable, low-quality cells, RNA-seq data 
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generated from 515 single cells (containing 5.8 ± 1.3 million reads) was 

analyzed. Detection of constant ratios of two spiked-in RNAs assured the 

quality and consistency of all single-cell RNA-seq experiments (Figure 1-2A). 

Quantitative PCR analysis of the expression of 24 selected genes supported 

the data from single-cell RNA-seq (Figure 1-2B and Table 1-2). 

Tissue isolates was highly reflective of tumor tissue (Figure 1-2C). 

Comparisons between the averages of single cells and corresponding pooled 

samples (Figure 1-2D) demonstrated partial but significant correlations 

(Pearson’s r 0.16-0.63 with average 0.47, p < 0.001). Multiple regression 

analyses of the transcriptomes of different sized pools of single cells to those 

of bulk tumors (Figure 1-2E) provided a better representation of the tumor 

population with an increasing number of single cells. Altogether, single-cell 

RNA-seq could illustrate a significant portion of the tumor entity, yet tumor 

components were lost during the single cell isolation or sequencing processes. 

 

1-3. Separation of tumor and tumor-associated normal 

cells  

Because our RNA-seq data was produced without any prior selection of 

tumor cells, I speculated that non-tumor cells might be captured together with 

tumor cells. Bulk profiling using tumor tissue reflects the characteristics of all 

components of the tumor microenvironment, including tumor cells and 

surrounding microenvironmental cells. When profiling in single-cell analysis, 

this signature mixing problem is solved and the signatures of specific cell type 
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could be separated. In previous report, Patel and his colleagues utilized single-

cell RNA-seq to distinguish malignant and non-malignant cell in glioblastoma 

(17). They aligned the gene expression profile along to the genomic position 

and estimate copy number alterations (CNAs) using moving averages of the 

gene expression levels. I refer this inferred CNA pattern to chromosomal 

expression pattern to explain intuitively in this thesis, and used to separate the 

immune cells from the breast tumor cells and other mixed population. 

Unsupervised hierarchical clustering was performed using chromosomal 

expression patterns of 515 single cells and 11 matched bulk tumor tissues 

(Figure 1-3A). Total ten tumor-specific clusters from each patient and one 

large non-tumor cluster were identified. The patient-specific tumor cell 

clusters showed distinct chromosomal gene expression patterns, whereas non-

tumor cell cluster consisted of multiple patient cells and showed no clear 

patterns. The separation of the two large groups (tumor group vs. non-tumor 

group) was reconfirmed by the unsupervised principal component analysis 

(PCA) using the whole transcriptomic profiles (Figure 1-3B). The most 

principal component (PC1) was greatly affected by the number of detected 

genes, and the next major component (PC2) may be influenced by genomic 

instability. 

The detected non-tumor population potentially represents stromal cells — 

such as fibroblasts, adipocytes, or endothelial cells — or diverse immune cells, 

according to the histopathological examinations of the tumor tissues (Figure 

1-1). The expression level of representative marker genes (Figure 1-3C) was 

compared, and as expected, tumor cells classified using inferred CNAs 
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expressed numerous epithelial cell differentiation markers (KRT9, CDH1, and 

EPCAM), which non-tumor cells did not do. Instead, the majority of non-

tumor cells may have been immune cells since they expressed immune 

markers such as PTPRC and IL2RG. Only a few cells showed a fibroblast 

phenotype through the expression of fibroblast markers (HTRA1, FBN1, and 

FAP). After the removal of latent fibroblasts and unclassified cells, it is 

estimated that 175 tumor-associated immune cells were collected out of the 

515 single cells. 

 

1-4. Immune cell populations identified in tumor 

microenvironment 

Next, these putative 175 immune cells were further subdivided into three 

groups using non-negative matrix factorization (NMF) clustering with 

immune cell type-specific gene sets (38) (Figure 1-4 and Table 1-3). Of the 

results from k = 2 to k = 9, clustering into three clusters showed the clearest 

segmentation and the highest cophenetic coefficient value and the average 

silhouette width (Figure 1-4B and C). These results suggesting an optimal 

cluster of three. 

To investigate the identity of each cluster, cluster-specific genes were 

extracted by receiver operating characteristics (ROC) test and likelihood-ratio 

test (LRT) based on zero-inflated data (Figure 1-5A and Table 1-4). Gene 

ontology terms from the extracted gene sets characterized the identity of each 

cluster (Figure 1-5B). The largest group expressed immunoglobulins and B 
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cell-specific transcriptional factors, and many came from the tumor-infiltrated 

lymph nodes (Cluster 1/B cells; Figure 1-5B and Table 1-4A). The second 

group expressed T-cell receptors and T cell-specific markers, most of which 

were captured from primary tumor tissues (Cluster 2/T cells; Figure 1-5B and 

Table 1-4B). The third group also came from the primary tumor tissues and 

expressed markers for tissue macrophages (Cluster 3/Macrophages; Figure 1-

5B and Table 1-4C). 

The presence of tumor-infiltrating T and B lymphocytes was also assessed 

by immunostaining in tumor tissues with anti-CD3 (d+g+e) or anti-CD20 

antibodies (Figure 1-6A), which showed significant correlations with gene 

expression in the bulk tumor samples (p < 0.05) (Figure 1-6B). Among 10 

tumor tissues with T lymphocyte-specific gene expression and 

immunostaining, individual T lymphocyte capture was successful in four 

tissue isolates (Figure 1-6B). Individual B lymphocyte capture was successful 

in four out of seven tissues (Figure 1-6B). The results of additional marker 

staining for T and B lymphocytes were consistent with the single-cell RNA-

seq results (Figure 1-6C and D). These data support the validity of gene 

expression profiling for cell type specification, but also implicate limitations 

in single cell isolation from breast cancer tissues. 

 

1-5. Heterogeneity in tumor-infiltrating immune cells 

Further investigation was carried out using geneset variation analysis 

(GSVA) to clarify the phenotype of each cell (Figure 1-7). The expression 

level of immune signatures and marker genes reconfirmed the identity of each 
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cluster (Figure 1-7A). Comparing the activation levels of pathways associated 

with B cell functions, two subclasses of B lymphocytes were identified 

(Figure 1-7B and Table 1-5B). One group, mostly from TNBC tumors (BC07, 

BC07LN, and BC09), showed naïve/memory B cell gene expression 

signatures. Another group, mostly derived from the BC03 (luminal B tumor) 

lymph node, showed proliferation signatures associated with germinal center 

(GC) centroblasts/centrocytes (45). The formation of GC is an important 

feature of the antigen-activated immune response. 

  In the tumor-infiltrating T cells, I analyzed gene expression signatures for T 

cell activation and functional status (Figure 1-7C and Table 1-5C). T 

lymphocytes in four patient tumors manifested distinct patterns for naïve, 

costimulatory, regulatory, exhaustion, and cytotoxicity expression signatures 

(8,46,47). The luminal B type tumor (BC03) had T lymphocytes with 

naïve/early costimulatory signatures in the primary tumor sites and T 

lymphocytes with more costimulatory molecule expression in the lymph 

nodes. One HER2+ tumor and two TNBC tumors (BC04 and BC07) were 

populated by T lymphocytes with the expression of regulatory T cell markers 

including IL2RA (also known as CD25) (47). The third TNBC tumor (BC09) 

had two types of T lymphocytes, one with a predominant exhaustion signature 

and another exhibiting both exhaustion and cytotoxicity signatures. T cells 

with a high exhaustion signature are targets of immune checkpoint blockade 

in clinical oncology. However, PD-1 expression was modest in our dataset, 

but expression of alternative inhibitory receptors such as TIGIT and LAG3(48) 

was frequently detected.  
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  The third immune cell group expressed transcripts for the 

monocyte/macrophage markers CD14 and CD68 (38) as well as phagocytic 

enzymes associated with macrophage function, suggestive of TAMs (Figure 

1-7A and Table 1-4C) (10). The cluster-specific genes were significantly 

enriched for genes involved in inflammation and defense mechanisms (Figure 

1-5B). Previous reports suggest that TAMs may show an immunosuppressive 

M2 signature, which promotes tumorigenesis by suppressing immune 

surveillance and inducing angiogenesis, rather than the activating M1 type 

signature (41). Indeed, the putative TAM populations expressed many M2-

type genes (Figure 1-7A and Table 1-5A) such as CD163, MS4A6A, and 

TGFBI (41), in addition to genes known to promote tumor progression and 

angiogenesis such as PLAUR (5) and IL-8 (49). Collectively, both innate and 

adaptive immune cell populations in the breast cancer samples displayed 

immune-suppressive gene expression characteristics. 
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Figure 1-1. Various immune infiltrating levels in breast tumor tissues. (A) 

Hematoxylin and eosin staining on FFPE slides. Microscopic findings 

indicated tumor and non-tumor cells, including tumor-infiltrating lymphocytes 

(TIL, 1-60%). Most of the TNBC tumors except BC10 were heavily 

infiltrated with lymphocytes whereas luminal A tumors showed enrichment 

with tumor cells. Scale bar, 100µm. (B) A part of the tumor tissue in (A) is 

magnified to show non-neoplastic cellular components as a representative. 

Scale bar, 25µm.  
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Figure 1-2. Reliability and representativeness of single-cell RNA-seq. (A) 

Consistent detection of normalized read counts for two array control RNA 

spike-ins in all single-cell samples. (B) Single-cell RNA-seq data showing a 

significant correlation with the matched qPCR results (Pearson’s r 0.78). The 

linear regression result is drawn as a dashed line. (C) Significant correlation 

in the RNA-seq data between the tumor tissues and pooled tumor tissue 

isolates (Pearson’s r 0.8). (D) Centered correlations between the average 

expressions of single cells and their matching bulk samples showing 

significant but partial representation of the bulk tumor by single cells 

(Pearson’s r 0.16-0.63 with average 0.47, p < 0.001). 
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Figure 1-2. (E) Multiple regression analysis was performed using expression 

levels of each single cell as the explanatory variable to predict the expression 

level of bulk tumors. Adjusted R-squares of multiple regression analysis were 

calculated by random sampling of single cells with 1,000 iterations. 

Horizontal red lines represent maximum adjusted R-square values.  

E



27 

 

 

Figure 1-3. Chromosomal expression patterns separate tumor and non-

tumor cells. (A) Unsupervised hierarchical clustering of the chromosomal 

gene expression pattern which reflects genomic copy number alterations 

mainly separates the tumor cell groups from the non-tumor cell cluster. Tumor 

cells have the patient-specific patterns whereas non-tumor cells are not. Each 

row represents profile of individual cells or matched bulk tumor tissues and 

triangle indicates bulk. Moving averages of 150 genes were calculated to infer 

the chromosomal expression pattern for each chromosome. (B) PCA shows 

the separation of tumor and non-tumor groups. (C) Representative gene 

expression levels (KRT19, CDH1, and EPCAM for epithelial cell; HTRA1, 

FBN1, and FAP for stromal cells; PTPRC, LAPTM5, and IL2RG for immune 

cells) confirmed the cell-type definition.  
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Figure 1-4. Subgrouping of non-tumor cells by NMF clustering. (A) NMF 

clustering analysis with immune gene sets for k = 2, k = 3, and k = 4. (B) The 

curve of cophenetic correlation coefficients. A peak was detected at k = 3, 

suggesting an optimal cluster of 3. (C) The silhouette width of each single cell 

for the k = 3 and k = 4 clusters. The k = 3 cluster had the highest average 

silhouette width (average Si = 0.95) relative to the other clusters. 
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Figure 1-5. Identification of immune cell populations in breast tumor 

microenvironment. (A, B) Immune cell clusters were characterized by gene 

ontology terms. The cluster-specific genes extracted by likelihood-ratio test 

(LRT) (A) were associated with B cells, T cells, or macrophages (MØ) 

respectively (B). 
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Figure 1-6. Immunostaining confirms the proportion of T or B 

lymphocytes in tumor tissues. (A) Immunofluorescence staining (IF) for 

CD3 or CD20 showing the infiltration of T or B lymphocytes in tumor tissues. 

Scale bar, 20µm. (B) Immunofluorescence staining results show significant 

correlations with gene expression in bulk tumor samples (Pearson’s r, 0.66 for 

CD3 and 0.67 for CD20). The linear regression result is drawn as a dashed 

line. Number of captured single-cells is marked with a color key. 
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Figure 1-6. (C) MARK3 or (D) PRPSAP2 were co-stained with the T cell 

marker CD3 or B cell marker CD20 respectively. Single cell level gene 

expression is presented at the bottom for comparison. Scale bar, 20µm.  
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Figure 1-7. Heterogeneity within tumor-infiltrating immune cells. (A) 

Gene set variation analysis (GSVA) using immune gene sets (upper panel) 

shows characteristics of three clusters. The third cluster, expected as tumor 

associated macrophages expressed high levels of M2-type genes. 
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Figure 1-7. (B, C) Hierarchical clustering using GSVA enrichment scores 

(upper panel) for B lymphocytes (B) and T lymphocytes (C) was performed. 

Two subclasses of B lymphocytes were identified, one with an expression 

signature of germinal center B cells and the other with that of naïve B 

lymphocytes. Among the T lymphocytes, there are cytotoxic and exhausted 

cells derived from the BC09 sample and the other cells are non-cytotoxic 

naïve T cells. Gene expression profiles for the used gene sets are presented in 

the lower panel. 
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Table 1-2. Information of primers used for quantitative PCR 

 

  

RefSeq ID Gene Symbol Forward Primer Reverse Primer

NM_002046 GAPDH AGGTCGGAGTCAACGGATTT TGACGGTGCCATGGAATTTG

NM_001101 ACTB ACTCTTCCAGCCTTCCTTCC CGTACAGGTCTTTGCGGATG

NM_000125 ESR1 GACAGGGAGCTGGTTCACA GACCTGATCATGGAGGGTCAAA

NM_000926 PGR AGCCAAGAAGAGTTCCTCTGTA TTGACTTCGTAGCCCTTCCA

NM_004448 ERBB2 ACAGGGAAAGCTGTGGGAAA TACGCCTCCAACACACTGAA

NM_005228 EGFR AGGTGAAAACAGCTGCAAGG CCAGAAGGTTGCACTTGTCC

NM_000633 BCL2 ATGTGTGTGGAGAGCGTCAA GTGCCGGTTCAGGTACTCA

NM_002417 MKI67 AGAGTAACGCGGAGTGTCA CTTGACACACACATTGTCCTCA

NM_000044 AR CTTTGCAGCCTTGCTCTCTA TCTGGTCGTCCACGTGTAA

NM_000546 TP53 GACTGTACCACCATCCACTACA AAAGCTGTTCCGTCCCAGTA

NM_001012270 BIRC5 GGACCACCGCATCTCTACAT GAAACACTGGGCCAAGTCTG

NM_018014 BCL11A AACCCCAGCACTTAAGCAAAC GGCCGTGGTCTGGTTCA

NM_000224 KRT18 TCCCATGTCCCAGTCAATTCC TACCTGGGAGGGGATGTTCA

NM_002276 KRT19 GGAGGTGTCATTGGAGCTGAA AGCAGCTTCCACCACTTCAA

NM_002051 GATA3 CACGGTGCAGAGGTACCC AGGGTAGGGATCCATGAAGCA

NM_004360 CDH1 AGTGCCAACTGGACCATTCA TCTAAGGCCATCTTTGGCTTCA

NM_001067 TOP2A GGTGTGGAACTAGAAGGCCT TCTGTTTCTCGTGGAGGGAC

NM_000201 ICAM1 AACCCCACAGTCACCTATGG TTCTGAGACCTCTGGCTTCG

NM_001432 EREG TTGTTTGCATGGACAGTGCA GCTTAAAGGTTGGTGGACGG

NM_080921 PTPRC GTGGCTTAAACTCTTGGCATTT GGGAAGGTGTTGGGCTTT

NM_002354 EPCAM CGTCAATGCCAGTGTACTTCA TTCTGCCTTCATCACCAAACA

NM_201442.2 C1S TACGGGGTTTGCTGCATACTA AGTGGCTACAAGGGACATCTAC

NM_000064.3 C3 GGCGTGTTCGTGCTGAATAA CCGATGTCTGCCTTCTCCA

NM_000346 SOX9 GTGCTCAAAGGCTACGACTG AGAAGTCTCCAGAGCTTGCC
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Table 1-3. List of immune gene sets used for NMF clustering 

 

Gene set name B cells T cells T helper cells CD8 T cells Cytotoxic cells NK cells Dendritic cells Eosinophils Macrophages Mast cells Neutrophils
Genes MS4A1 PRKCQ ICOS CD8B KLRD1 LOC643313 CD209 IL5RA MARCO PRG2 CSF3R

TCL1A CD3D LRBA CD8A KLRF1 GAGE2 CCL17 KCNH2 CXCL5 CTSG CYP4F3
HLA-DOB CD3G ITM2A PF4 GNLY ZNF747 HSD11B1 TKTL1 SCG5 TPSAB1 VNN3

PNOC CD28 FAM111A PRR5 CTSW XCL1 CCL13 EMR1 SULT1C2 SLC18A2 FPRL1
KIAA0125 LCK PHF10 SF1 KLRB1 XCL2 CCL22 CCR3 MSR1 MS4A2 KCNJ15

CD19 TRAT1 NUP107 LIME1 KLRK1 AF107846 PPFIBP2 ACACB CTSK CPA3 MME
CR2 BCL11B SEC24C DNAJB1 NKG7 SLC30A5 NPR1 THBS1 PTGDS TPSB2 IL8RA

IGHG1 CD2 NAP1L4 ARHGAP8 GZMH SGMS1 CD1B GALC COLEC12 TPSB2 IL8RB
FCRL2 TRBC1 BATF GZMM SIGIRR MCM3AP VASH1 RNU2 GPC4 GATA2 FCGR3B

BLK TRAC ASF1A SLC16A7 ZBTB16 TBXA2R F13A1 CLC PCOLCE2 HDC DYSF
COCH ITM2A FRYL SFRS7 RUNX3 CDC5L CD1E HIST1H1C CHIT1 LOH11CR2A FCAR

OSBPL10 SH2D1A FUSIP1 APBA2 APOL3 LOC730096 MMP12 CYSLTR2 KAL1 SIGLEC6 CEACAM3
IGHA1 CD6 YME1L1 C4orf15 RORA FUT5 FABP4 HRH4 CLEC5A ELA2 HIST1H2BC

TNFRSF17 CD96 TRA LEPROTL1 APBA2 FGF18 CLEC10A RNASE2 ME1 CMA1 HPSE
ABCB4 NCALD RPA1 ZFP36L2 WHDC1L1 MRC2 SYT17 CAT DNASE2B PGDS CPPED1
BLNK GIMAP5 UBE2L3 GADD45A DUSP2 RP5-886K2.1 MS4A6A LRP5L CCL7 MLPH CREB5
GLDC TRA ANP32B MYST3 GZMA SPN CTNS SYNJ1 FN1 ADCYAP1 S100A12

MEF2C CD3E DDX50 ZEB1 PSMD4 GUCA1A THBS4 CD163 SLC24A3 TNFRSF10C
IGHM SKAP1 C13orf34 ZNF609 PRX CARD9 GPR44 GM2A CALB2 SLC22A4

FAM30A PPP2R5C C12orf47 FZR1 ABCG2 KBTBD11 SCARB2 KIT TECPR2
SPIB SLC25A12 THUMPD1 ZNF205 CD1A HES1 BCAT1 TAL1 SLC25A37

BCL11A ATF2 VAMP2 AL080130 PPARG ABHD2 RAI14 ABCC4 BST1
GNG7 CD28 ZNF91 ZNF528 RAP1GAP TIPARP COL8A2 PPM1H CRISPLD2
IGKC GOLGA8A ZNF22 MAPRE3 SLC7A8 SMPD3 APOE MAOB G0S2
CD72 IFNG TMC6 BCL2 GSTT1 MYO15B CHI3L1 HPGD SIGLEC5

MICAL3 LTA FLT3LG NM_017616 PDXK TGIF1 ATG7 SCG2 CD93
BACH2 APBB2 CDKN2AIP ARL6IP2 FZD2 RRP12 CD84 PTGS1 MGAM

IGL DOK5 TSC22D3 PDLIM4 CSF1R IGSF2 FDX1 CEACAM8 ALPL
CCR9 IL12RB2 TBCC TRPV6 HS3ST2 RCOR3 MS4A4A MPO FPR1

QRSL1 APOD RBM3 LDB3 CH25H EPN2 SGMS1 NR0B1 PDE4B
DTNB ZBTB32 ABT1 ADARB1 LMAN2L C9orf156 EMP1 LOC339524 LILRB2

HLA-DQA1 CD38 C19orf6 SMEK1 SLC26A6 SIAH1 CYBB
SCN3A CSF2 CAMLG TCTN2 BLVRB CD68

SLC15A2 CTLA4 PPP1R2 TINAGL1 NUDT9
CD70 AES IGFBP5 PREP
DPP4 KLF9 ALDH1B1 TM7SF4

EGFL6 PRF1 NCR1 TACSTD2
BST2 KIR3DL2 CD1C

DUSP5 SPON2 CCL1
LRP8 KIR2DL3 EBI3
IL22 GZMB INDO

DGKI KIR3DS1 LAMP3
CCL4 KIR3DL1 OAS3

GGT1 TCC38 IL3RA
LRRN3 PMEPA1

SYNGR3 IL21R
ATP9A KIR3DL3
BTG3 KIR2DS5
CMAH KIR2DS2

HBEGF GTF3C1
SGCB KIR2DS1
PMCH S1PR5
AHI1 DUSP4

PTGIS RRAD
CXCR6 PLA2G6
EVI5 NIBP
IL26 FOXJ1
MB MARCH6

NEIL3 MADD
GSTA4 LPCAT4
PHEX MPPED1

SMAD2 MUC3B
CENPF
ANK1

ADCY1
LOC728210

LAIR2
SNRPD1
MICAL2
DHFR

WDHD1
BIRC5

SLC39A14
HELLS
LIMA1

CDC25C
CDC7

GATA3
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Table 1-4. Cluster-specific gene lists identified at a single cell resolution 

 

  

A. B cell upregulated
Gene symbol Fold change P-value

(LRT test)
AUC

(ROC test)
Gene symbol Fold change P-value

(LRT test)
AUC

(ROC test)
Gene symbol Fold change P-value

(LRT test)
AUC

(ROC test)
IGLC1 12.37 3.9.E-12 0.70 DCAF12 4.43 1.6.E-11 0.71 SEL1L3 2.69 4.9.E-11 0.79
FCRLA 8.11 0.0.E+00 0.84 ABCA6 4.26 1.8.E-11 0.72 BCAR3 2.67 4.9.E-10 0.73

RN7SL627P 7.98 3.7.E-15 0.74 GPR18 4.16 8.9.E-16 0.81 SSBP2 2.66 3.3.E-12 0.75
RN7SL639P 7.98 3.7.E-15 0.74 PAX5 4.11 0.0.E+00 0.89 BCAS4 2.66 4.2.E-15 0.77

GCSAM 7.81 7.8.E-16 0.75 CTA-250D10.23 4.09 0.0.E+00 0.77 FAM3C 2.65 2.0.E-08 0.72
VNN2 7.78 0.0.E+00 0.77 MCTP2 4.06 1.6.E-12 0.71 TMED8 2.65 2.7.E-11 0.75

AICDA 7.77 0.0.E+00 0.78 CDK14 4.04 7.7.E-12 0.74 FAM210A 2.64 3.0.E-08 0.70
IGHG4 7.68 0.0.E+00 0.80 BRI3BP 4.01 2.5.E-11 0.72 KIAA0922 2.64 2.1.E-12 0.80

VPREB3 7.17 0.0.E+00 0.84 LPP 3.93 5.1.E-14 0.76 PTK2 2.60 3.4.E-08 0.73
RGS13 7.16 0.0.E+00 0.85 NCF1 3.84 1.7.E-12 0.71 MZB1 2.60 5.5.E-08 0.71

SNX29P1 7.05 0.0.E+00 0.80 ENTPD4 3.83 6.1.E-10 0.72 KBTBD8 2.55 1.8.E-13 0.78
E2F5 6.77 1.8.E-13 0.70 DTX1 3.81 7.9.E-13 0.72 FAM208B 2.49 1.7.E-08 0.73

PNOC 6.68 7.2.E-14 0.72 POU2AF1 3.75 0.0.E+00 0.82 LAT2 2.46 4.0.E-11 0.79
FCRL1 6.65 2.4.E-14 0.72 RRM2B 3.70 2.1.E-10 0.72 BIK 2.40 9.7.E-14 0.77

AC079767.4 6.55 2.2.E-12 0.70 RAB30 3.70 0.0.E+00 0.87 HLA-DOB 2.37 6.9.E-09 0.72
ELL3 6.48 0.0.E+00 0.78 FAM3C2 3.51 1.7.E-11 0.70 ADAM28 2.35 7.0.E-10 0.76

IGHG1 6.37 0.0.E+00 0.86 RRAS2 3.51 4.3.E-14 0.79 SEC14L1 2.34 1.4.E-07 0.75
EBF1 6.11 0.0.E+00 0.82 SHCBP1 3.50 4.0.E-10 0.72 PHF6 2.33 3.3.E-08 0.73

CCDC144B 6.09 0.0.E+00 0.80 CTD-2369P2.2 3.44 1.7.E-14 0.82 MEF2C 2.33 0.0.E+00 0.88
IGKC 6.09 5.6.E-16 0.85 DNAJC10 3.39 1.6.E-12 0.77 UBE2J1 2.31 4.0.E-09 0.76

CD79A 6.02 0.0.E+00 0.92 PRKD3 3.35 2.5.E-14 0.82 CLIC4 2.29 3.0.E-06 0.71
CD19 5.89 0.0.E+00 0.78 HAUS8 3.23 1.0.E-07 0.71 TRAK1 2.25 7.9.E-07 0.70

LINC00877 5.87 2.1.E-13 0.71 KLHL6 3.22 2.6.E-10 0.75 RPRD1B 2.22 2.0.E-08 0.72
CCDC144A 5.86 4.4.E-16 0.76 LRMP 3.10 0.0.E+00 0.86 SWAP70 2.12 0.0.E+00 0.87

STAG3 5.85 1.6.E-11 0.71 HDAC9 3.10 7.8.E-16 0.82 LY9 2.12 1.9.E-10 0.75
RALGPS2 5.80 3.3.E-16 0.76 P2RX5 3.09 6.3.E-12 0.72 FAM76B 2.08 2.3.E-09 0.74

ZNF608 5.64 0.0.E+00 0.78 COBLL1 3.06 7.5.E-15 0.79 PIK3C2B 2.07 1.0.E-10 0.71
CD22 5.57 0.0.E+00 0.89 ST6GAL1 3.04 0.0.E+00 0.84 RHOH 2.04 2.1.E-12 0.81

PRPSAP2 5.40 5.6.E-16 0.80 DGKD 2.97 6.1.E-09 0.72 CCNB1 2.04 1.0.E-06 0.72
MS4A1 5.39 0.0.E+00 0.97 BLNK 2.91 6.4.E-12 0.79 MRPS27 2.03 2.6.E-08 0.72
P2RY8 5.33 1.1.E-13 0.71 BANK1 2.81 5.2.E-13 0.74 SPATS2 2.03 2.5.E-07 0.71
IGHG3 5.11 0.0.E+00 0.86 SMIM14 2.79 0.0.E+00 0.81 SNX22 2.02 2.8.E-12 0.72
GMDS 5.06 2.3.E-11 0.71 EIF2AK3 2.75 2.7.E-13 0.79 TMEM156 2.02 4.9.E-07 0.72
NEIL1 4.96 1.1.E-12 0.74 EAF2 2.74 0.0.E+00 0.85 IGLC3 2.01 1.9.E-08 0.71

SNX29P2 4.93 0.0.E+00 0.91 LYPLAL1 2.73 1.6.E-07 0.71 NR4A1 2.00 6.6.E-06 0.71
PLCG2 4.85 0.0.E+00 0.83 TEX9 2.72 3.2.E-12 0.71
CD79B 4.55 0.0.E+00 0.89 FANCA 2.72 2.3.E-09 0.71

B. T cell upregulated
Gene symbol Fold change P-value

(LRT test)
AUC

(ROC test)
Gene symbol Fold change P-value

(LRT test)
AUC

(ROC test)
Gene symbol Fold change P-value

(LRT test)
AUC

(ROC test)
IFNG 6.19 7.7.E-10 0.71 RORA 3.63 3.7.E-10 0.75 CD96 2.78 6.0.E-14 0.81
CD3G 5.06 0.0.E+00 0.90 SH2D1A 3.43 1.1.E-16 0.79 MAF 2.77 1.0.E-07 0.73
CD3D 4.46 0.0.E+00 0.94 PRKCH 3.30 1.0.E-09 0.75 CCL5 2.75 3.8.E-06 0.72

INPP4B 4.07 3.0.E-11 0.72 TRAT1 3.24 5.0.E-10 0.71 TIGIT 2.73 1.1.E-09 0.75
CD2 4.06 0.0.E+00 0.95 FYN 3.07 2.7.E-13 0.82 SLA 2.68 6.8.E-09 0.74
ITK 3.90 8.9.E-10 0.73 ARAP2 2.93 5.3.E-09 0.75 TRAC 2.66 2.2.E-16 0.87

STAT4 3.77 9.6.E-12 0.77 ITM2A 2.82 1.1.E-16 0.82 TRBC2 2.35 0.0.E+00 0.91
IL32 3.64 0.0.E+00 0.91 CD3E 2.81 2.2.E-15 0.78 RARRES3 2.01 3.2.E-06 0.73
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Table 1-4. (continued) 

 

  

C. Macrophage upregulated
Gene symbol Fold change P-value

(LRT test)
AUC

(ROC test)
Gene symbol Fold change P-value

(LRT test)
AUC

(ROC test)
Gene symbol Fold change P-value

(LRT test)
AUC

(ROC test)
C1QB 9.79 2.3.E-12 0.72 PLXDC2 3.73 4.6.E-11 0.74 CST3 2.64 0.0.E+00 0.93

CD163 9.28 1.1.E-15 0.73 CREG1 3.70 3.8.E-11 0.75 VAMP3 2.62 9.5.E-09 0.74
IL1B 9.14 2.8.E-14 0.72 MNDA 3.69 8.1.E-13 0.81 VAMP5 2.61 1.6.E-06 0.74

FCGR3A 8.61 4.5.E-14 0.75 KIAA1598 3.68 2.1.E-08 0.73 BEST1 2.60 6.4.E-09 0.79
CCL2 8.52 1.9.E-11 0.72 GPNMB 3.67 7.3.E-09 0.72 RBM47 2.58 2.1.E-07 0.76

TMEM176B 8.24 0.0.E+00 0.80 MYOF 3.66 9.3.E-10 0.77 CEBPB 2.52 2.0.E-07 0.70
CXCL9 7.97 7.3.E-12 0.73 TIMP1 3.65 2.0.E-07 0.75 PSAP 2.51 1.7.E-09 0.82

FCGR1A 7.69 1.4.E-11 0.71 AXL 3.65 3.6.E-15 0.80 TGFBI 2.50 6.9.E-14 0.83
APOC1 7.59 5.2.E-15 0.79 LAIR1 3.60 1.4.E-10 0.75 CXCL16 2.49 1.0.E-08 0.73

FN1 7.51 3.3.E-16 0.83 CD68 3.60 1.6.E-14 0.85 TIMP2 2.48 2.3.E-12 0.78
TMEM176A 7.09 3.9.E-12 0.72 MS4A6A 3.60 1.1.E-16 0.84 ITM2B 2.47 2.2.E-08 0.80

S100A9 6.72 2.1.E-10 0.73 TYROBP 3.55 0.0.E+00 0.88 CPVL 2.44 2.2.E-07 0.70
APOE 6.68 1.4.E-12 0.71 RASSF4 3.54 3.0.E-11 0.77 IGSF6 2.44 9.8.E-12 0.75

SLAMF8 6.66 2.9.E-11 0.71 DSE 3.51 3.3.E-16 0.78 HEXB 2.42 1.5.E-09 0.79
CD14 6.35 4.2.E-13 0.76 FTL 3.50 0.0.E+00 0.88 CTSC 2.41 8.6.E-10 0.81

CXCL10 6.05 5.4.E-10 0.75 KCTD12 3.23 1.2.E-13 0.77 BRI3 2.39 1.9.E-07 0.73
FCGR2A 5.72 7.2.E-12 0.75 FCER1G 3.21 0.0.E+00 0.87 GPX1 2.36 7.1.E-11 0.84

RP11-1143G9.4 5.63 1.3.E-15 0.81 FCGRT 3.21 5.3.E-11 0.79 MARCKS 2.36 1.6.E-07 0.77
HNMT 5.55 4.4.E-12 0.71 CTSB 3.17 3.3.E-13 0.85 CAPG 2.33 7.8.E-08 0.79
PLBD1 5.48 7.3.E-14 0.70 HLA-DQB2 3.09 5.4.E-05 0.72 IFITM3 2.33 1.1.E-10 0.83

A2M 5.35 0.0.E+00 0.82 SLC8A1 3.05 2.8.E-07 0.70 S100A11 2.31 1.8.E-11 0.88
CXCL2 5.06 1.8.E-10 0.74 IER3 3.04 4.2.E-08 0.72 HLA-DQA2 2.29 1.3.E-07 0.77
MAFB 5.02 1.1.E-16 0.80 MFSD1 3.03 2.7.E-11 0.82 LST1 2.28 6.4.E-10 0.80
MSR1 4.87 1.8.E-12 0.75 PLAUR 3.00 5.4.E-13 0.81 TNFSF13B 2.25 4.4.E-11 0.80
PLAU 4.81 1.6.E-09 0.72 IL18 3.00 2.8.E-10 0.74 RNASET2 2.23 1.7.E-07 0.77
CTSL 4.69 3.1.E-14 0.82 ANKRD22 2.96 1.5.E-09 0.72 FTLP3 2.23 2.4.E-10 0.80

SIRPA 4.66 1.9.E-13 0.76 ATP6AP1 2.93 9.2.E-07 0.71 LPCAT2 2.20 2.6.E-11 0.71
FGL2 4.62 6.2.E-12 0.76 SOD2 2.90 9.7.E-08 0.77 CD63 2.20 1.8.E-07 0.78
LYZ 4.55 2.3.E-15 0.82 GLUL 2.86 8.5.E-09 0.79 CCL4 2.20 2.7.E-04 0.70

SERPING1 4.51 0.0.E+00 0.88 IFIT1 2.83 4.4.E-06 0.71 LILRB4 2.19 1.5.E-09 0.75
SCARB2 4.40 4.2.E-11 0.76 IFI27 2.82 1.5.E-13 0.87 HLA-DRB6 2.16 6.2.E-08 0.72
CLEC7A 4.36 7.9.E-15 0.84 CCND1 2.79 7.4.E-08 0.71 MS4A7 2.13 2.2.E-06 0.72

AIF1 4.20 6.1.E-14 0.83 IFIT3 2.71 4.5.E-05 0.71 ATOX1 2.12 3.0.E-06 0.75
PILRA 4.19 6.1.E-11 0.71 GNAQ 2.71 4.1.E-11 0.77 DAB2 2.09 2.2.E-15 0.81

C15orf48 4.00 4.0.E-12 0.76 IL8 2.71 8.8.E-08 0.76 NAGK 2.02 5.2.E-07 0.76
FAM26F 3.97 3.0.E-09 0.71 NPC2 2.70 1.0.E-15 0.90 IFI30 2.02 6.6.E-09 0.81

SERPINA1 3.80 9.7.E-11 0.75 NRP1 2.70 1.7.E-08 0.73
RIN2 3.77 5.6.E-10 0.73 RNASE6 2.66 4.3.E-07 0.73
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Table 1-5. Gene lists used in gene set variation analysis 

 

  

A. M1/M2 gene sets B. B cell signature gene sets
Gene set name M1_UP M2_UP Gene set name Anti-apoptosis Naïve / Memory Cytokines Pro-apoptosis Proliferation Germinal center

Genes CCR7 GPR86 Genes BCL2 BMI1 CCL5 BIK ASK BCL7A
IL2RA P2RY5 CASP8 CD24 CCR1 FAS AURKA CD27

IL15RA TGFBR2 FAIM3 CD69 CCR6 LGALS1 AURKB CD36
IL7R HRH1 TNFSF10 CR1 CCR7 AURKC CD80

CXCL11 TLR5 ENTPD1 CLR1 BUB1B HGF
CCL19 DCL-1 FCER2 GPR9 CCNA2 MME

CXCL10 MSR1 FCGR2B IFNGR1 CCNB1 MYBL1
CXCL9 CXCR4 FCGRT IL10RB CCNB2 RGS13

TNF DECTIN1 IGHD IL15 CCNE2 TNFSF8
CCL5 P2RY14 IL24 CCNF

CCL15 DCSIGN IL2RB CDC20
IL12B CLECSF13 IL2RG CDC25B
IL15 MS4A6A IL4R CDC45

TRAIL CD36 IL6 CDC6
IL6 MS4A4A IL8 CDK1

CCL20 MRC1 TGFB1 CDK5
PBEF1 IGF1 TGFB3 CDKN2C
ECGF1 CCL23 TGFBR2 CENPA

BCL2A1 CCL18 TNFRSF1B CENPE
FAS CCL13 TNFSF11 CENPF

BIRC3 SLC21A9 XCL1 CHEK1
GADD45G SLC4A7 CIP2

HSXIAPAF1 SLC38A6 DEEPEST
SLC7A5 CTSC E2F5

SLC21A15 HEXB ECA39
SLC2A6 LIPA FOXA1

SLC31A2 ADK GADD45A
INDO HNMT GADD45B

PLA1A TPST2 GTSE1
OASL CERK HEC1

CHI3L2 HS3ST2 KIF11
HSD11B1 LTA4H KIF22

AK3 CA2 KIF23
SPHK1 ALOX15 MAD2L1
PFKFB3 HS3ST1 MCM3
PSME2 TGFBI MCM4
PFKP SEPP1 MCM6

PSMB9 CHN2 MCM7
PSMA2 FN1 MKI67
OAS2 FGL2 NCAPD2
PTX3 GAS7 NDN

CSPG2 EGR2 NEK2
APOL3 MAF PCNA
IGFBP4 PLK4
APOL1 PTTG1
PDGFA RABGAP1
EDN1 RAD17

APOL2 RFC3
INHBA RGL2
APOL6 RPA3
HESX1 SIL-TAL1

IRF1 TFDP1
ATF3 TMPO
IRF7 TPX2

TTK
UBE2C
WEE1
ZW10
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Table 1-5. (continued) 

  

  

C. T cell signature gene sets
Gene set name Cytotoxic Exhausted Regulatory Naïve Costimulatory G1/S G2/M

Genes CST7 BTLA IL2RA CCR7 ICOS ATAD2 ANLN
GZMA CTLA4 IL4R LEF1 CD226 BLM ANP32E
GZMB HAVCR2 IL7 SELL SLAMF1 BRIP1 AURKA
IFNG LAG3 TGFB1 TCF7 TNFRSF14 CASP8AP2 AURKB

NKG7 PDCD1 TGFB3 TNFRSF25 CCNE2 BIRC5
PRF1 TIGIT TGFBI TNFRSF9 CDC45 BUB1

TNFSF10 TGFBR1 CDC6 CBX5
CDCA7 CCNB2

CHAF1B CDC20
CLSPN CDC25C
DSCC1 CDCA2

DTL CDCA3
E2F8 CDCA8
EXO1 CDK1
FEN1 CENPA

GINS2 CENPE
GMNN CENPF
HELLS CKAP2
MCM2 CKAP2L
MCM4 CKAP5
MCM5 CKS1B
MCM6 CKS2

MLF1IP CTCF
MSH2 DLGAP5
NASP ECT2
PCNA FAM64A

POLA1 G2E3
POLD3 GAS2L3
PRIM1 GTSE1
RAD51 HJURP

RAD51AP1 HJURP
RFC2 HMGB2
RPA2 HMMR
RRM1 HN1
RRM2 KIF11
SLBP KIF20B
TIPIN KIF23
TYMS KIF2C
UBR7 LBR

UHRF1 MKI67
UNG NCAPD2

USP1 NDC80
WDR76 NEK2

NUF2
NUSAP1
PSRC1

RANGAP1
SMC4

TACC3
TMPO

TOP2A
TPX2
TTK

TUBB4B
UBE2C
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RESUTLS (PART-II) 

 

Uncovering heterogeneous polarization levels 

of tumor-associated macrophages using 

single-cell RNA sequencing 
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1-1. Separation of macrophages in advanced gastric 

cancer environment by single-cell RNA-seq 

Single cell transcriptome data from the peritoneal metastatic ascites of four 

gastric cancer patients and the cerebrospinal fluid metastasis of the AGC04 

patient (AGC04CSF) were acquired without any prior selection (Table 2-1). 

Because all of the patients diagnosed as being in an advanced stage of cancer 

with ascites or additional regional metastasis, all samples were collected after 

receiving treatment according to pathological marker expression. 

To identify the macrophage cells in our AGC data, the CNA pattern was 

initially inferred from each cell in order to separate tumor cells (Figure 2-1A). 

Hierarchical clustering of inferred chromosomal expressions displayed four 

tumor groups (except AGC04) and one non-tumor group. Unsupervised 

clustering using an shared nearest neighbor (SNN) algorithm classified 

clusters of each cell and PCA analysis reconfirmed the separation of the 

clusters by PC1 (Figure 2-1B and C). Moreover, a non-linear dimensional 

reduction method called t-Distributed Stochastic Neighbor Embedding (tSNE) 

(50), which is frequently used to visualize clear clustering over PCA, 

perfectly mirrored the groups in Figure 2-1A (Figure 2-1B and C).  

In general, the cells contained in malignant ascites could be tumor cells, 

tumor-associated immune cells, peritoneum-derived mesothelial cells 

originated from primary tumor or peritoneal metastasis (29-31). The cell types 

of the two clusters were identified by the expression of the several marker 

genes, including EPCAM for epithelial cells, CA125 for peritoneal 
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mesothelial cells, and CD68 for macrophages (Figure 2-1D). Most of the cells 

in Cluster 1 strongly expressed EPCAM, whereas most of the cells in Cluster 

2 expressed CD68, suggesting that Cluster 2 is a cluster of macrophages. 

Notably, the non-tumor mesothelial cells that expressed CA125 were 

clustered in a tumor cluster without EPCAM expression. These few 

mesothelial cells were distinctly grouped by chromosomal expressions. 

Altogether, only the macrophage cells in the tumor microenvironment were 

separated by in silico analysis. 

 

2-2. Construction of M1 and M2 single-cell transcriptome 

profiles 

The M2-type macrophages are well known to have anti-inflammatory 

functions and an increased M2/M1 ratio is associated with a poor prognosis in 

ovarian or lung cancer (14,15). To evaluate the obtained single-cell TAM type, 

reference transcriptomes for M1- or M2-type macrophages were constructed 

by single-cell RNA-seq from two healthy donors (Figure 2-2). A total of 97 

individual M1 cells (38 from donor 1 and 59 from donor 2) and 45 individual 

M2 cells (18 from donor 1 and 27 from donor 2) were sequenced. The 

differentiation and polarization of PBMC monocytes as M1 or M2 was 

validated using cell morphology and marker expression (Figure 2-2A and B). 

Unsupervised PCA showed that the macrophage cells are mainly separated 

by macrophage type and then separated by origin donor (Figure 2-2C). 

Marker gene expressions of single-cell data reaffirmed the cell type and found 
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that marker gene expression patterns and levels were very similar between the 

two donors despite the different number of cells (Figure 2-2D). As a result, 

M1 and M2 transcriptomes were correctly produced, but partial differences 

between the samples according to the donor still remained. 

 

2-3. M2 scoring using reference transcriptomes 

  In a previous report, the gene expression profiles of various states of 

macrophages were already established by microarray-based data (41). The 

authors also provided the differentially expressed genes (DEGs) between the 

M1 and M2 populations (Table 1-5A). To examine the DEGs of M1 and M2 

with a single-cell resolution, an LRT test was performed first based on zero-

inflated data, and gene lists were extracted from each donor (Figure 2-3A). 

Considering the differences derived from the donors, the 148 and 38 genes 

repeatedly extracted from the two donors were selected as M1 cell-specific 

and M2 cell-specific signature genes. In the bulk profiling of DEGs, only 20 

out of 54 genes in M1 and nine out of 43 genes in M2 were detected as DEGs 

in single-cell profiles. The gene expression levels of the 97 bulk-derived 

DEGs were examined in single cells, and the 29 overlapping genes showed 

higher expression changes with significance (Student’s t-test P < 1e5) (Figure 

2-3B), suggesting that these 29 persistently observed genes may provide new 

markers for both in bulk and single-cell levels. 

Next, the level of M2-polarization in TAMs was estimated through GSVA 

using our reference transcriptomes to obtain DEG sets. When evaluating M2-

polarization by using TAMs, both AGC TAM and BC TAM seemed to have a 
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balanced polarization at a similar level (Figure 2-4A). After applying 

reference transcriptomes to set the extreme point of M1 or M2, however, both 

AGC TAM and BC TAM showed M2-biased intermediate polarization 

(Figure 2-4A and B). Furthermore, the same analysis was repeatedly 

performed using different set of genes. When using single-cell derived gene 

sets, even though both AGC and BC TAMs showed an intermediate level of 

M2-polarization, strong M2 polarization in AGC TAMs was observed. Taken 

together, this analysis performed with reference profiles may assist in the 

prevention of a distorted perspective produced by internal comparison, and 

the usage of single cell-derived gene sets provides more objective results in 

single-cell data. 

 

2-4. Heterogeneous polarization levels of TAMs in 

various tumor types 

Many studies have proven the high correlation between M2-like TAM and 

poor survival rate (10-15), but a negative result has also been reported in some 

tumor types such as colorectal cancer (CRC) (51). Therefore, the levels of 

M2-like polarization of TAMs in three tumor types — AGC, BC, and CRC — 

were compared using collected single-cell data (1,32) (Figure 2-5). All of the 

TAMs from these three tumor types presented an intermediate level of M2-

like polarization with variable median scores (Figure 2-5A). In comparison, 

most M2-like macrophages were AGC TAMs. Using the single-cell derived 
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gene sets shortened the range of wide-spreading M1 or M2 reference cells, 

which also supports the requirement for appropriate gene sets. 

Clustering the cells by the dimensional reduction method predominantly 

divided them by their origin tissue (Figure 2-5A). In order to define the state 

of TAMs with continuous M2-like scores, cells were sorted using a DDRTree 

algorithm (42,43) to order cells using gene expression profiles (Figure 2-5B). 

Cell ordering using core DEGs classified a total of three states: State 1 with 

reference M2 cells and some TAMs, State 2 with M1 cells from donor 1 and 

others with TAMs, and State 3 with only the M1 cells of donor 2. As shown 

in the previous results, all AGC TAMs were classified as State 1, which is the 

M2 group. In case of BC and CRC, however, the M1-like polarized TAMs 

were also observed in State 2. All of our results support the mixed existence 

of M1-like and M2-like TAMs in the microenvironment. Additionally, the 

results showed the various proportions of M2-like TAMs and the 

heterogeneity in the polarization level according to the tumor type. 
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Figure 2-1. Separation of tumor-associated macrophages from malignant 

cells. (A) Non-cancerous cells are distinguished from cancerous cells by using 

the CNA patterns estimated from the chromosomal expression levels. For 

each chromosome, the chromosomal gene expression pattern was estimated 

using the moving average of 150 genes. The level of chromosomal expression 

in each cell was normalized with an average value of GTEx normal tissue. 

Each row represents single cells. 
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Figure 2-1. (B) PCA (upper) shows that the most important component by 

which cells are clustered is their cancerous property. Further dimension 

reduction using tSNE (lower) separates non-cancerous cell clusters and 

patient-specific carcinoma cell clusters. (C) The classification of the cluster of 

each cell by a shared nearest neighbor (SNN) algorithm. (D) The expression 

of marker genes for epithelial cells (EPCAM), peritoneal mesothelial cells 

(CA125), and macrophages (CD68) shows clusters of carcinoma cells and 

macrophages. 
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Figure 2-2. Construction of the single-cell transcriptomes of M1 and M2 

macrophages derived from normal PBMCs. (A) The experimental design 

and morphology of polarized M1 and M2. (B) The expression of macrophage 

markers were examined by FACS. CD80, an M1-specific marker, is only 

expressed in M1-polarized macrophages, whereas the M2-specific marker 

CD163 is more highly expressed in M2-polarized macrophages than in M1. 

The examined samples are colored with borders (black for the monocyte, blue 

for the M1 macrophage, and red for the M2 macrophage) in (A). 
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Figure 2-2. (C) Unsupervised PCA primarily separates M1 and M2 

macrophage cells by PC1. (D) The gene expression level of macrophage 

markers in single-cells. The expression level is calculated using 

log2(TPM/10+1), and the thick black line indicates the median value. 
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Figure 2-3. Extracting differentially expressed genes from M1 and M2 

single-cell transcriptomes. (A) The overlapping differentially expressed 

genes (DEGs) from both donors leave 186 core DEGs for M1-specific or M2-

specific signatures. When compared with the published gene set derived from 

M1 and M2 bulks (Martinez FO et al.), only 29 genes are repeatedly extracted 

in single-cell and in bulk. (B) The validated 29 genes of the published gene 

set show a significant difference in expression between M1 and M2 single-

cells (p < 1e5). The x-axis indicates a log2-fold-change in the average 

expression of M1 and M2 single-cells and the y-axis is a negative log10 of the 

p-value obtained by a Student’s t-test. 
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Figure 2-4. Application of the reference transcriptome gives more 

objective insight about the M2-like polarization level in TAMs. (A) 

Geneset variation analysis (GSVA) was performed in the TAMs both without 

(first rows) and with (2, 3, and 4 rows) the reference cells. The tendency of 

M2-like polarization is observed after adding the single-cell M1 and M2 cells 

as the reference. The M2-like score (x-axis) is calculated as the score of M2 

DEGs minus the score of M1 DEGs. (B) Ordering cells by the diverse gene 

sets’ GSVA score confirms that the newly constructed DEG lists derived from 

single-cells provide a more distinctive score for TAMs. 
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Figure 2-5. Heterogeneous M2-biased levels in the macrophages of 

various tumor types. (A) The unsupervised clustering by t-SNE (top) and the 

projection of M2-like scores (middle) of various TAMs together. The biased 

levels of macrophages by tumor origin are summarized in the violin plots 

(bottom). The median is marked with a black dot in the violin plot. The M2-

like score (x-axis) is calculated as the score of M2 DEGs minus the score of 

M1 DEGs.  
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Figure 2-5. (B) The ordering of cells with M1/M2 single-cell DEGs using the 

DDRTree algorithm. The dispersion of macrophages into M1 or M2 is plotted 

at the bottom by tumor origin. The TAMs from AGC are predominantly 

polarized to the M2 type, whereas half of the TAMs from BC and CRC are 

more M1-like cells. Each cell is colored by its tumor origin (top left), pseudo 

time (top middle), M2-like score (top right), or state (bottom). 
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DISCUSSION 

Conventionally, the study of tumor-infiltrating immune cells has been 

conducted using pre-defined immune populations based on known surface 

marker expression. Here, I used an inferred genomic feature, i.e. 

chromosomal expression pattern to separate tumor and immune cells without 

prior marker selection. Single-cell analysis without marker selection allows to 

simultaneous capture of various components in the tumor microenvironment. I 

could clearly separate the signatures of tumor and tumor-infiltrating immune 

cells using transcriptomic analysis of single-cell isolates, which together 

defined the characteristics of cancer. In the non-tumor cell analysis of breast 

cancer, I classified non-tumor cells into three immune cell types with 

activating and suppressive gene expression signatures. The reference single-

cell transcriptomes of normal blood-derived M1 and M2 macrophages were 

utilized to present a more objective polarization level of TAM separated in 

silico from AGC. When comparing TAMs from various cancer types with 

reference transcriptomes, each tumor type showed a difference in M1/M2 

balance. All of these results suggest dynamic immune cell interactions and a 

distinct immune system status in each tumor. 

  The role of the immune system in tumor progression has been extensively 

studied, and the results of these studies have provided the basis for successful 

immunotherapy in multiple cancer types (9,52). Tumors are thought to evade 

natural immune surveillance either by immunologic ignorance or by active 

suppression. T cell infiltration may be a key determinant by which the evasion 
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pathway operates. Among immune cell infiltrates mostly obtained from 

TNBC tumors, I found a number of T cells with high cytokine and chemokine 

expression, which is indicative of ongoing immune responses. Interestingly, 

these T cells also manifested immuno-suppressive phenotypes of exhausted 

(8,46) or regulatory T cells (47). Therapeutic strategies to overcome T cell 

exhaustion, i.e., immune checkpoint blockade, have been developed that 

target CTLA-4 and PD-1/PD-L1, and these strategies have demonstrated 

significant efficacy in treating melanoma and non-small cell lung cancer (9). 

Clinical trials of these treatment strategies for other cancer types, including 

breast cancer, are in progress as a mono- or combination therapy. Search for 

new immune checkpoint targets is ongoing and early clinical trials for 

additional checkpoint molecules such as LAG3 (53) have begun. In our 

single-cell dataset, most T cells expressed LAG3 and/or TIGIT (54) (Figure 1-

7C), suggesting that they are potential targets for checkpoint inhibition.  

Transforming anti-inflammatory M2 cells into pro-inflammatory M1 cells 

is one strategy for cancer treatment, and the re-polarization of M2 

macrophages to the M1-type is possible by changing the microenvironment 

(55). In gastric cancer, there is a report showing that M1/M2 conversion by 

changing the in vitro culture condition is similar to the progression of the 

tumor’s condition (56), suggesting the inverted possibility of M2 to M1 

conversion. By comparing differentiated M1 and M2 single-cell 

transcriptomes, M1-specific and M2-specific genes were extracted, and 

applying these genes allowed for the objective estimation of the M2-

polarization level and macrophage status. Macrophages collected from fluid 
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metastasis of AGC showed the most M2-biased features compared to other 

cancer types (Figure 2-5), but the reason for this remains uncertain. One 

possibility is that there exists a sampling bias caused by using samples 

harvested at the most malignant state, stage IV. Alternatively, these results 

may be derived from the difference in tumor types or tissue-specific 

properties. Most peritoneal macrophages are M2-type. The origin cell type 

could be identified by comparing ambiguous cells with normal cell 

transcriptomes of each cell type. In spite of some limitations, our results 

suggest that single-cell profiling could be used to discover new targets for 

M2/M1 conversion and to evaluate the state of TAM and any changes that 

occur. 

Though there was no marker selection, I collected only a small number of 

tentative cancer-associated fibroblasts or epithelial cells, and no endothelial 

cells in breast cancer, probably due to the limitations of the cell isolation and 

capture methods. Similarly, few mesothelial cells and no TIL population were 

detected in advanced gastric cancer. The partial representation of bulk tumor 

transcriptomes by those of single cells (Figure 1-2D and E) also suggests 

limitations of sampling in the current approach. To overcome this limitation 

and to profile the entire tumor microenvironment, cell isolation techniques 

enabling large scale, unbiased sampling especially no size limitation need to 

be explored (39, 57). 

Overall, considering the diverse immune cell types, single-cell expression 

profiling is particularly important for the accurate characterization of tumor-

infiltrating immune cells and may provide some clues for immunotherapy. 
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Furthermore, the results of this study also demonstrate the requirement for 

large-scaled single-cell gene expression profiling with reduced sampling 

biases for the inclusive characterization of heterogeneous immune cells. 
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국문 초록 

서론: 암 미세 환경은 종양 세포, 기질 세포 및 면역 세포의 세포 

혼합을 비롯한 다양한 구성 요소에 의해 형성된다. 종양 샘플의 단

일 세포 전사체 프로파일링은 이질성의 종양 세포 및 주변 기질 세

포 혹은 면역 세포의 구분을 가능하게 한다. 침윤성 면역 세포의 정

확한 특성 규명은 면역 요법을 위한 새로운 전략에 대한 단서를 제

공 할 수 있다. 

 

방법: 총 11 명의 유방암 환자로부터 얻은 515 개의 세포와 4 명의 

진행성 위암 (AGC) 환자로부터 얻은 162 개의 세포가 단일 세포 

RNA 시퀀싱 (RNA-seq) 을 통해 분석되었다. M1 형 또는 M2 형 대식

세포에 대한 단일 세포 전사체는 정상 혈액 유래 단핵 세포로부터 

실험적인 분화를 거쳐 생성되었다. 

 

결과: 단일 세포 RNA-seq 데이터에서 유추된 유전자 복제수 변이 

(CNA) 패턴은 종양 세포와 비 종양 세포를 구분하였다. 비 종양 세

포의 대부분은 면역 세포의 특징을 보였다. 유방암에서는 T 림프구, 

B 림프구 및 대식세포의 세 가지 면역 세포가 확인되었다. T 림프구

는 조절 T 세포나 exhausted T 세포의 표현형을 보이며 면역 억제성 

특징을 나타냈다. B 림프구는 두 개의 하위 그룹으로 나뉘어졌는데, 
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하나는 세포 사멸을 억제하는 미접촉 T 세포 혹은 기억 T 세포 그

룹이고, 다른 하나는 활발히 증식하는 B 세포 그룹이다. 

  AGC 에서 모든 면역 세포는 종양 관련 대식 세포 (TAM)였다. M1 

또는 M2 대식세포의 기준 전사체와 비교했을 때, AGC 의 종양 관련 

대식 세포에서 M2 편향된 성향이 이질적인 극화 수준으로 관찰되었

다. 이와 대조적으로, 유방암 또는 대장암에서 비롯된 종양 관련 대

식 세포는 M1 또는 M2 으로 편향된 세포를 모두 나타내었다. 

 

결론: 종합적으로, 단일 세포 전사체 분석은 암 미세 환경에 있는 

면역 세포를 세포 유형과 경로 활성화의 이질적인 수준에 따라 세

분화하고, 이는 소진된 종양 침윤성 림프구를 표적으로 하거나 항염

증성 M2 형 TAM 을 염증성 M1 형으로 전환시키는 방법에 새로운 

관점을 제공 할 수 있다. 이 연구는 면역 요법 전략을 개발하기 위

해 종양에 침투하는 면역 세포의 특성을 규명하는 데에 있어 단일 

세포 RNA 시퀀싱의 능력을 입증한다. 

 

 

 

------------------------------------- 

주요어 : 단일 세포, 유방암, 위암, 세포 이질성, 암 미세 환경, 종양 

관련 대식 세포 
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