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Abstract

Singing voice separation (SVS) refers to the task or the method of decomposing

music signal into singing voice and its accompanying instruments. It has various

uses, from the preprocessing step, to extract the musical features implied in the

target source, to applications for itself such as vocal training.

This thesis aims to discover the common properties of singing voice and ac-

companiment, and apply it to advance the state-of-the-art SVS algorithms. In

particular, the separation approach as follows, which is named ‘characteristics-

based,’ is concentrated in this thesis. First, the music signal is assumed to be

provided in monaural, or as a single-channel recording. It is more difficult con-

dition compared to multiple-channel recording since spatial information cannot

be applied in the separation procedure. This thesis also focuses on unsupervised

approach, that does not use machine learning technique to estimate the source

model from the training data. The models are instead derived based on the

low-level characteristics and applied to the objective function. Finally, no ex-

ternal information such as lyrics, score, or user guide is provided. Unlike blind

source separation problems, however, the classes of the target sources, singing

voice and accompaniment, are known in SVS problem, and it allows to estimate

those respective properties.

Three different characteristics are primarily discussed in this thesis. Con-

tinuity, in the spectral or temporal dimension, refers the smoothness of the

source in the particular aspect. The spectral continuity is related with the tim-
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bre, while the temporal continuity represents the stability of sounds. On the

other hand, the low-rankness refers how the signal is well-structured and can

be represented as a low-rank data, and the sparsity represents how rarely the

sounds in signals occur in time and frequency.

This thesis discusses two SVS approaches using above characteristics. First

one is based on the continuity and sparsity, which extends the harmonic-

percussive sound separation (HPSS). While the conventional algorithm sep-

arates singing voice by using a two-stage HPSS, the proposed one has a single

stage procedure but with an additional sparse residual term in the objective

function. Another SVS approach is based on the low-rankness and sparsity. As-

suming that accompaniment can be represented as a low-rank model, whereas

singing voice has a sparse distribution, conventional algorithm decomposes the

sources by using robust principal component analysis (RPCA). In this thesis,

generalization or extension of RPCA especially for SVS is discussed, including

the use of Schatten p-/lp-norm, scale compression, and spectral distribution.

The presented algorithms are evaluated using various datasets and challenges

and achieved the better comparable results compared to the state-of-the-art

algorithms.

Keywords: Singing voice separation, Optimization, Music signal processing

Student Number: 2013-30733
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Chapter 1

Introduction

A signal obtained from a real-world is generally a mixture, in other words, it

consists of various co-occurring sources. When analyze or extract information

from the captured signal, mainly focusing on a specific target source, then the

others are considered as noise that disturbs the analysis procedure. In this case,

therefore, the appropriate algorithm to extract the target source and remove

the others, or source separation algorithm is required. Fig. 1.1 shows how source

separation algorithm works for an environmental audio signal as an example.

Source separation algorithms can be applied to various domains, and they

have been developed in domain- or task-specific in usual. When monitoring elec-

trical activities of neurons in the brain using electroencephalography (EEG)

or magnetoencephalogram (MEG), the captured signal is often corrupted by

undesired noise, such as eye blinking or muscle movement. Therefore source

separation is performed as a preprocessing step to extract the clean desired

signal from the observed mixture [1] . On the other hand, when a speech signal

1



1/31

Source 

Separation

Fig. 1.1 An example of source separation framework

is captured using a microphone for speech recognition, various environmental

noise may coincide. In this situation, source separation in terms of speech en-

hancement or noise reduction can be executed to prevent the degeneration of

recognition quality [2].

Music signals, which is the main aim of this thesis, is also mixtures since it

contains various instrumental tracks such as a drum, piano, guitar and so on,

and also has a singing voice or sound effects. However, the definition of ‘source’

in the music signal can be varied depending on the application. Some may aim

to extract a specific instrument such and considered a sum of all other ones

as noise [3], while some others separated all the instruments individually [4].

On the other hand, a single source can be considered as not only an individual

instrument but also a group of them. For example, harmonic-percussive sound

separation (HPSS) categorizes musical instruments into two groups, which are

2
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Source

separation

Music source

separation

• Speech separation or enhancement

• Brain imaging

• Instrument separation

• Harmonic-percussive sound separation

• Singing voice separation

Fig. 1.2 Category of source separation tasks, focusing on the singing voice sep-

aration.

harmonic instruments and percussive instruments [5, 6].

This thesis focuses on the separation of singing voice and its accompanying

instruments or singing voice separation (SVS), which is one of the music source

separation problems as shown in Fig. 1.2. Although the primary target source

of SVS is singing voice, this thesis also consider accompaniment as another

source rather than noise. Therefore the primary goal of this thesis is to develop

SVS algorithms which achieve high separation quality for both singing voice

and accompaniment.

The rest of this chapter is organized as follows. In 1.1 the motivations that

why SVS is important and is a challenging task are introduced. Several appli-

cations are listed in 1.2. Basic definitions of the task in both mathematical and

conceptual are derived in 1.3. The main goals of the thesis and the subtasks to

3



achieve it is described in 1.5, and the outline of the thesis is briefly introduced

in 1.6.

1.1 Motivation

Developing SVS algorithm is an important task for the following reasons. First,

most of the music has both singing voice and accompaniment. Although there

are some exceptions such as a cappella (singing voice only) or instrumental mu-

sic (accompaniment only), it is relatively rare, especially in the modern popular

music. Considering the usability of the algorithm, therefore SVS is one of the

music source separation algorithms that can be applied most widely.

In addition, singing voice and accompaniment have distinct roles and pro-

vide unique information for the music. In case of singing voice, the informa-

tion about singer, lyrics, lead melody, and even emotion of music can be ac-

quired. From the accompaniment, information about instruments played in mu-

sic, chords, and rhythm can be obtained. Since when analyzing a source the

other one is not just useless but disturbing analysis as noise, thus the separa-

tion of sources is important preprocessing step for the understanding of music.

However, developing SVS algorithm is challenging due to the following dif-

ficulties. First, it is difficult to represent singing voice using a simple model

because of its irregular patterns compared to other musical instruments. For

example, all the singers have different timbre based on their gender, age, na-

tionality or personal character. In addition, there are various singing styles

that one singer can do, including falsetto, shouting, screaming and so on. Since

singing voice is mostly based on the lyrics, it also has a variation depending

4



on the pronunciation and note. Therefore conducting a model which represent

the shared characteristics in these varied singing voice and which distinguish it

from other accompaniment may be the first step for the development of SVS.

1.2 Applications

SVS can be applied to the numerous applications. Below are the exam-

ples of them, which are categorized into three groups, singing voice-related,

accompaniment-related, and other applications.

Singing voice-related applications Various MIR tasks use singing voice

in music, and SVS is required as a preprocessing step when only the mixture

with accompaniment is provided for the tasks. Singer identification [7], singing

voice activity detection [8], singing voice melody estimation [9], lyric recognition

[10] and singing voice-to-lyric alignment [11] are the examples of singing voice-

related MIR applications.

Accompaniment-related applications First, SVS can be applied as the

one part of cascade instrument separation framework. For example, when sep-

arating singing voice, harmonic instruments, and percussive instruments, the

accompaniment signal separated using SVS can be considered as a sum of a har-

monic and percussive instrument. It also leads to various instrument-specific

MIR applications, such as chord estimation [12], or tempo and beat estima-

tion [13]. In addition, many other applications besides information retrieval use

accompaniment, including karaoke and vocal training.

5



Other applications Obtaining the individual sources from music allows the

diverse reproduction of the music or the rich listening experience of users. For

example, it can extend the conventional equalizer which scales for each fre-

quency in general to scales for each source [14]. In case of the music repro-

ducing such as remixing or upmixing, source separation allows the individual

source-wise processing including voice conversion or source localization [15]. In

addition, the source-wise processing is also useful for the music visualization

for the information retrieval [16] or artistic representation.

1.3 Definitions and keywords

When a mixture m is obtained, it can be represented as a sum of sound units

as follows:

m(n) =
∑
k

uk(n), (1.1)

where n denotes the time index, and uk denotes k-th sound unit. Under the

assumption that all the sound unit uk is corresponds to singing voice or accom-

paniment, then (1.1) can be alternately represented as follows:

m(n) = v(n) + a(n), (1.2)

where v and a denotes the singing voice and accompaniment signal occurred in

m, respectively, which can be represented as

v(n) =
∑
k∈V

uk(n), (1.3)

a(n) =
∑
k∈A

uk(n), (1.4)

6



where V is a set of sound unit indices which is correspond to singing voice, and

A is a complement set of V, which correspond to accompaniment. The main

goal of SVS is to find v and a in (1.2) from m.

For all the steps in studies for SVS, including model estimation and eval-

uation, defining which sound unit uk is correspond to singing voice and what

is not is mandatory. However, it is not required to be precise, and previous

studies tend to group them roughly to be intuitively agreeable. The following

definition may be an example, and it is used for this thesis. It is noted that

these are rough definitions and not considered precisely in the development of

the SVS algorithms presented in this thesis.

Singing voice is roughly defined as all the musical sounds played by using the

human voice. It includes singing, rapping, and chorus, and even scat, whistling,

screaming and growling. However, non-vocal sounds occurred from human such

as clapping is not considered as singing voice.

Accompaniment is defined as all the musical sound which is not considered

as singing voice. It includes all the typical instruments including piano, guitar,

and drum, and also synthesized sounds or sound effects.

1.4 Evaluation criteria

The evaluation criteria for SVS can be varied depending on the purpose of its

applications. One of the simplest method is to calculate the difference between

the original sources and the separated ones, by using mean square error, for

example. If the separated sources will be directly provided to user, then the

7



separation quality should be evaluated by them. On the other hand, the per-

formance difference of the specific application between with/without SVS can

be measured when SVS is used as a preprocessing step of it.

Belows are the detailed explanation for the evaluation approaches.

Numerical measurement

Numeric criteria simply measure the error in low-level between the estimated

and the target signals. Decomposition-based measurements presented by Vin-

cent et al. is one of the most widely used for the evaluation of blind source

separation and even for music source separation [17] . It decomposes the sepa-

rated output signal ŝ as follows:

ŝ = starget + einterf + enoise + eartif , (1.5)

where s denotes the original target source, and einterf , enoise, and eartif denotes

the errors, which are the interferences, additional noise e.g. sensor noise, and

the artifacts occur in the separation procedure, respectively. In music source

separation tasks, enoise is often ignored or considered as zero. Focusing on the

specific noise, separation quality can be measured as follows:

SIR = 10log10
||starget||2

||einterf ||2
, (1.6)

SAR = 10log10
||starget + einterf ||2

||eartif ||2
, (1.7)

SDR = 10log10
||starget||2

||einterf + eartif ||2
, (1.8)

where SIR, SAR, and SDR denotes the source-to-interferences ratio, source-to-

artifacts ratio, and source-to-distortion ratio, respectively. Here, SIR and SAR
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can be interpreted as ‘how much the non-target sources are eliminated’, and

‘how less the target source is damaged by artifacts’. SDR is considered as the

overall quality of the separation results.

In a signal with long time duration, the intensity of the signal is varied

over time. In this case, the above measurements are biased to the separation

results at the high-intensity time region by definitions, while human perception

is also sensitive to the errors in the low-intensity region. To narrow the gap

between human subjectivity and numerical evaluation results, segmental SDR,

which calculates the SDR for each segment of the source and takes an average

of them, can be used.

Several methods for summarizing the measurements of multiple data have

been used. Because each mixture can have different input signal-to-noise ra-

tio, normalized SDR calculates the gain of SDR comparing before and after

separation procedure. It is defined as follows:

NSDR = SDR(ŝ, starget)− SDR(m, starget), (1.9)

where m is a input mixture. In addition, global NSDR (GNSDR) calculates

the mean of the multiple evaluation data with weights by its respective time

duration. It is defined as follows:

GNSDR =

∑
i TiNSDRi∑

i Ti
, (1.10)

where Ti and NSDRi denote the time duration and NSDR of i-th data, respec-

tively.
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Subjective evaluation

Above numeric evaluation criteria does not exactly represents how human eval-

uate it subjectively. It is because of the difference between the energy of error

and how the listeners perceived it. For example, there are various revealed psy-

choacoustic characteristics or effects including perceptual scale of frequency [18]

, frequency dependent absolute threshold of hearing (ATH) or loudness [19, 20],

auditory masking [19], and missing fundamental [21]. In particular, when the

application provides the separated sources to users for being played, the sub-

jective quality of SVS can be more important than the numerical one.

Two different approach for evaluating the subjective quality is possible, and

the first one is to ask human directly. For example, Emiya et al. conducted an

evaluation protocol that asks users to address the following four tasks respec-

tively [22]:

1) rate the global quality compared to the reference for each test signal;

2) rate the quality in terms of preservation of the target source in each test

signal;

3) rate the quality in terms of suppression of other sources in each test

signal;

4) rate the quality in terms of absence of additional artificial noise in each

test signal.

Another approach is to use the evaluation algorithm that predicts the sub-

jective scores. Various algorithms are presented for the specific domains, for

instance, Perceptual evaluation of speech quality (PESQ) for speech signal.

In case of source separation, Perceptual evaluation methods for audio source

separation (PEASS), which consists of the overall, target-related, interference-
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related, and artifacts-related perceptual score is the most popular algorithm

[22].

Application-dependent evaluation

SVS can be used in variety of applications as discussed in Section 1.3. In this

case, the performance of applications can be used to evaluate the separation

quality since it is the main purpose of SVS. For example, the accuracy of melody

extraction, or singing voice detection was used to measure the separation quality

[23, 24, 25].

1.5 Topics of interest

The primary goal of this thesis is to develop a novel algorithm for SVS. To this

end, the following sub-task is stated as shown in Fig. 1.3.

Characteristics Studying and finding the relevant characteristics for singing

voice and accompaniment. It should be able to represent and distinguish the

classes, as well as be applied easily to the objective function for SVS. In particu-

lar, this thesis mainly focuses on the three characteristics, which are continuity,

low-rankness, and sparsity.

Objective function Developing the objective function that represents SVS

task. The function will be considered relevant when its optimal solutions corre-

spond to the target singing voice and accompaniment. Two different approaches

are tried in this thesis, that one is based on the continuity and sparsity, while

another one is based on the low-rankness and sparsity.

11
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Characteristics
Objective 

function
Optimization

Singing voice 

separation

Fig. 1.3 Topics of interest in this paper. Developing SVS algorithm, which is

the primary goal of this thesis, can be decomposed into three subtasks: Finding

characteristics, deriving objective function using the characteristics, and solving

the objective function using relevant optimization method.

Optimization Deriving the optimization method for the presented objective

function. The method should minimize the objective function efficiently, which

means fast computational speed and low memory usage. In this thesis, convex

optimization methods are applied to the algorithms, including the augmented

Lagrangian multiplier (ALM) and auxiliary function method.
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1.6 Outline of the thesis

Chapter 2 describes the background of SVS. First, previous studies and al-

gorithms for SVS are briefly described. These are categorized into four groups,

which are characteristics-based, spatial, machine learning-based, and informed

approach. In addition, useful information for studying SVS is introduced in-

cluding public datasets and challenges. Finally, several evaluation criteria to

measure the separation quality is explained.

Chapter 3 consists of the discussions about the characteristics of singing

voice and accompaniment. Three different characteristics – continuity, low-

rankness, and sparsity – are discussed, including what those are and how singing

voice and accompaniment are different in terms of those characteristics.

Chapter 4 describes the SVS approach which is based on the continuity and

sparsity. The conventional algorithm, which separates singing voice by using

harmonic-percussive sound separation twice, is introduced. After that, the pro-

posed algorithms using harmonic-percussive-residual sound separation is pre-

sented.

Chapter 5 describes another approach which is based on the low-rankness

and sparsity. The conventional algorithm which is based on the robust principal

component analysis (RPCA) is introduced, and the proposed algorithm tries to

generalize or extend the conventional one. At first, RPCA which uses the nuclear

and the l1-norm is generalized to Schatten p-norm and lp-norm, and even adding

a proper scale compression step. In addition, another characteristics of singing

13



voice and accompaniment, which is called spectral distribution, is introduced,

and it is applied to RPCA which is called weighted RPCA.
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Chapter 2

Background

2.1 Spectrogram-domain separation framework

Various audio source separation algorithms share the similar framework, which

we called ‘spectrogram-domain separation framework’. Fig.2.1 shows the overall

flows of it and below is a brief explanation about it.

Time-frequency representation is a relevant alternate domain to analyze a

time signal. Short-time Fourier transform (STFT), which takes discrete Fourier

transform with sliding window is one of the most popular approach. A STFT

of x, X, is as follows:

X(f, t) =
∑
n

xt(n)e
−j2πfn

N , (2.1)

where xt(n) = w(n)x(Wt+n).N andW denote the size and hop size of window,

respectively. w is a windowing function, such as hamming or hanning function.

Since STFT is a linear operation, Additivity in (1.2) is hold as follows:
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STFT

Spectrogram

Singing voice separation

Wiener filtering

Inverse STFT

phase

magnitude

Fig. 2.1 Framework of spectrogram-domain singing voice separation

M(f, t) = V(f, t) +A(f, t). (2.2)

However, finding the characteristics of singing voice and accompaniment in

STFT domain is difficult because of phase which occurs irregularly. Therefore,

various audio source separation is done by discarding phase and remaining mag-
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nitude only as |M|, which is called spectrogram. In the spectrogram-domain

approach, it is often assumed that the additivity of (1.2) and (2.2) is approxi-

mately hold in spectrogram domain as follows:

|M(f, t)|2 = |V(f, t)|2 + |A(f, t)|2. (2.3)

More generalized assumption is used in some studies as follows:

|M(f, t)|2γ = |V(f, t)|2γ + |A(f, t)|2γ , (2.4)

where γ is in the range of (0, 1] and denotes the scale compression parameter.

For convenience, in the rest of the thesis |X|2γ with proper γ is simplified as

X. Fig. 2.2 shows an example of spectrogram of audio signal which is singing

voice.

The outputs using spectrogram-based separation framework are also spec-

trograms. However, this separated spectrogram has no information about phase,

thus it cannot be reconstruct the separated time signal. In addition, the ap-

proximation of (2.3) and (2.4) is not precise, so there may be errors after the

separation. To compensate these two problems, soft masking or Wiener-like fil-

tering is usually applied as a postprocessing step for source separation. It is

performed as follows:

V(f, t) =
V (f, t)

V (f, t) +A(f, t)
M(f, t), (2.5)

A(f, t) =
A(f, t)

V (f, t) +A(f, t)
M(f, t), (2.6)

The time-domain signals of the sources are then reconstructed from V and A

by using inverse STFT.

There are a number of modified version of above framework as follows.
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Fig. 2.2 An example of spectrogram of singing voice signal. The spectrogram is

zoomed to specific time-frequency range, and represented in log-scale for visual

convenience.

Spectrogram is replaced to the other time-frequency representation methods

such as constant-Q transform [26]. On the other hand, normalization technique

such as spectral standardization or principal component analysis can be used

when SVS algorithm is based on the machine learning-based approach [27].

Wiener filtering can be omitted or replaced to other masking techniques

such as binary masking [28].

Single stage framework , that separates singing voice and accompaniment

from mixture directly, can be modified to have multiple separation stage. In

this case, the sources are gradually enhanced via each separation stage, and the
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latter separation algorithm uses the enhanced sources from the output of the

former algorithm. Belows are the example of multiple stage separation frame-

works

– Singing voice activity detection (VAD) → RPCA [29]

– RPCA → f0 detection [24]

– Weighted RPCA (wRPCA)→ VAD→ wRPCA with updated weight [30]

– Deep neural network (DNN) → spatial estimation → DNN [27]

2.2 Approaches for singing voice separation

Conventional approaches and algorithms for SVS are introduced in this sec-

tion. In particular, the algorithm is grouped into four approaches, which are

named to characteristics-based, spatial, machine learning-based, and informed

approach. Characteristics-based SVS is an approach that estimates the sources

based on the characteristics nature of them. It can be considered as a funda-

mental approach even for the other extended ones, and it is the main aim of

this thesis. Spatial approach, in addition to the source characteristics, exploits

the mixing characteristics of sources which would represents the locations or

the room condition. Simple algorithms such as spatial filtering which assumed

that singing voice is always located in center also shows a remarkable separa-

tion results, and more complex ones tries to estimates the mixing or unmixing

matrix. In case of machine learning-based approach, it also estimates the source

characteristics also but by using the training data.
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Fig. 2.3 General approaches of singing voice separation.

2.2.1 Characteristics-based approach

Fundamental frequency-based approach

SVS based on fundamental frequency (f0) is one of the most traditional ap-

proach [31]. It is based on the observation that singing voice is the most pre-

dominant source in the most of music signal. In addition, the spectrum of

singing voice has a strong harmonic structure, with a few exceptions of un-

voiced sound. From these insights, f0-based SVS basically detects the sequence

of predominant f0 from the music and extract the time-frequency coefficients

which correspond to the harmonics of the sequence. Further studies have tried

to improve f0 detection algorithm, including preprocessing steps, to remove f0

and its harmonics which is not corresponds to singing voice, or to handle the

unvoiced singing voice [32]. However, f0-based approach has several drawbacks:

1) Separation quality highly depends on the accuracy of f0 detection algorithm.

2) It is not guaranteed that the detected f0 is corresponding to singing voice.

3) It cannot separate the singing voice which is not corresponds to f0, such as

plosive sounds.
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Repetition-based approach

Another remarkable approach for SVS is based on the repetitive nature of ac-

companiment [33, 34]. This is based on the observation that various musical

sources tend to repeat over time, depending on its tempo or speed. It happened

more especially in case of ‘background’ music sources, for example a drum loop

or guitar riff, while it is relatively weak in ‘foreground’ sources, which is singing

voice in general. REPET, which is based on these insights, separate singing

voice as follows. First, the tempo of music is estimated and the time length

of repetition is calculated based on it. Spectrogram is sliced to have the cal-

culated time length, and the repeating accompaniment is estimated by taking

median operation over the slices. The residuals in the spectrogram that cannot

be represented by using the median of slice is considered as singing voice and

separated. There are several algorithms that extend original REPET, includ-

ing adaptive accompaniment estimation using moving-median [35], or based on

similarity matrix [36].

2.2.2 Spatial approach

Spatial filtering

Most of popular music is produced in multi-channel format i.e. stereo. Although

those music ‘recordings’ are in general not recorded in real-world but mixed

in studio, spatial characteristics are often applied like real-world recording to

provide the spatial impression in music. In the studio mixing procedure, singing

voice is often located in the center, while other instruments are located widely

by using panning.
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Although this approach is cannot be verified because the direction of source

image indeed depends on the favor of music producer, but it is practically useful

and applied to many real-world music player or editor, such as audacity.

(Un)mixing matrix estimation

When capturing a sound by a microphone, it is considered that the captured

signal consists the information about original sound image and the spatial char-

acteristics, which is related with the path between the source and the micro-

phone. On the other hand, even if the music is mixed by the producer, he can

apply various spatial effects to the sources so that they can be perceived as

if they are in a specific location. While a monaural recording is difficult to

be decomposed into the original source and spatial effects, it can be tried in

multi-channel situation since all the microphones record the same source im-

ages, but at the different relative path. Independent component analysis is one

of the most popular algorithm in this approach for the blind source separation

problem [37].

In case of music source separation or even SVS, prior information for the

source images is often combined with spatial information. Ozerov et al. ex-

tended the conventional nonnegative matrix factorization (NMF) to deal with

the multichannel signal [38], and Nugraha et al. used DNN to estimate the

spectral distribution of the source images [27].

2.2.3 Machine learning-based approach

Machine learning-based source separation also can be considered as an approach

that uses the source characteristics. However, it estimates the characteristics
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model by learning from the training data, while the characteristics-based ap-

proach in general derives the objective function from the observation.

Nonnegative matrix factorization

NMF is an algorithm to represent a nonnegative matrix as a multiplication of

two (or more) nonnegative matrix. It is widely applied to music source sepa-

ration algorithms, because the nonnegative assumption is well-suited for music

spectrogram which is nonnegative and also can be approximated as a combina-

tion of nonnegative source spectrograms [4, 39, 40].

Deep learning

In the recent years, ‘deep learning’ approaches have achieved remarkable per-

formance in most of machine learning tasks, including recognition of image,

speech, or video, generating artistic images or music, and even mastering the

game of Go. It also has been applied to the music source separation and its

separation quality outperforms that of the other conventional approaches. Re-

markably, algorithms using deep learning approaches ranked on top in SiSEC

2016 and SiSEC 2015 [41, 42], while none of the submitted algorithms used

deep learning in SiSEC 2013 [43], which was held just before 2015.

2.2.4 informed approach

One may expect that the separation quality would be improved when the addi-

tional information is provided in the separation procedure, compared to when

using the waveform only. Informed source separation is an approach to reveal

which information can be applied and how to.
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Score of an instrument provides the information about when when is played

in which notes and how long it is continued. Since it is highly related with f0

trajectory, the audio signal corresponds to the score can be separated basically

by extracting the harmonic components of f0. Various algorithms for music

source separation have been presented [44, 45, 46], and even for SVS [47].

Lyrics of music represent the phonemes of singing voice. Since only singing

voice can have lyrics in music, it is expected to be a key information for separa-

tion. Most studies on SVS or speech separation use an example-based approach

that derives the source closer to the signal synthesized in the text or lyrics

[48, 49].

User-guided information can be various depending on the applications.

For example, users can guide the melody of singing voice by humming it. In

that case the SVS algorithm detects the melody sequence or f0 of humming,

then separates them and those harmonic components [50]. On the other hand,

user can guide directly by annotating where the sources exist or not on the

spectrogram. Although it requires to users the knowledge about spectrogram,

but ideally they can provides the perfectly aligned information in ideal. In

addition, separation results can be improved by interacting with the user [51,

52, 53, 54, 55, 56].
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2.3 Datasets and challenges

2.3.1 Datasets

MIR-1K dataset consists of 110 Chinese pop songs [32]. Singing voice and

accompaniment are recorded in the right and left channel, respectively, with

16,000Hz sample rate. Each music is divided into segments with 4 to 13 sec-

onds time duration and the number of segment is 1000. The people who sang

the singing voice track are 8 females and 11 males, and not professional singers.

In case of accompaniment track, it was played by using karaoke-style virtual in-

struments. MIR-1K dataset is one of the first dataset for SVS task that released

in public, and has reasonable size for evaluate the algorithms. However, it is

not enough for the machine learning approaches, especially deep learning ap-

proaches which requires training data. In addition, the genre or style in dataset

is slightly biased, and the quality of music such as sample rate, singing skills,

or karaoke-style accompaniments is far from real music.

iKala dataset is similar to the MIR-1K dataset but with better quality [29].

In consists of 252 30-second music clips which are excerpted from 206 musics.

100 additional excerpts are not released but reserved for MIREX. Each source is

recorded separately as MIR-1K dataset, but with 44,100Hz sample rate. For the

singing voice, six professional singers were hired to sing the songs. The dataset

is not publicly disclosed but is provided after the license agreement with the

exception of the clips for MIREX.

Beach boys dataset denotes a set of music recordings collected from the al-

bum Good Vibrations: Thirty Years of the Beach Boys and The Pet Sounds Ses-
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sions by Beach Boys which are released in 1993 and 1997, respectively [57, 58].

For each recordings, singing voice and accompaniment are provided separately

as split stereo recording (stereo format where one channel is singing voice and

the another one is accompaniment), or as two different recordings (a cappella

and instrumental). To use the dataset for SVS experiments, two channel or

recording is mixed and SVS algorithms tried to recover the original sources.

Although Beach boys dataset is valuable since it contains actual popular music

recordings which achieved huge success, the number of recording is small (5 [57]

and 10 [58], and 1 recording is duplicated) and all is from the same artist.

MSD100 and DSD100 dataset consists of 100 music and these are split to

development and test set. Each music consists of 4 recording, which are vocal

(singing voice), drum, bass, and others. When using it for the experiments of

SVS, the sum of drum, bass and others are considered as accompaniment. The

difference between MSD100 and DSD 100 is that the recordings in DSD100 is

scaled by professional music producer to be similar as real-world popular music

[41, 42] .

2.3.2 Challenges

A number of challenges about SVS were held to encourage researchers to develop

and share there algorithm.

MIREX or music information retrieval evaluation exchange is an annual chal-

lenge that consists of various tasks related with music information retrieval

problem. SVS was included as a subtask of MIREX since 2014. The partici-
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pants are asked to submit the source code of their SVS algorithm, then it is

evaluated by organizer by using iKala dataset.

SiSEC or signal separation evaluation campaign was held every one and half

year and consists of various source separation problems. Music source separation

is a subtask of campaign, which aims to separate the mixture to four sources

(vocals, drums, bass, and others). Because it is not mandatory to separated all

the individual sources, the task is useful even for SVS that separates singing

voice (vocals) and accompaniment (sum of all other sources).
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Chapter 3

Characteristics of music sources

3.1 Introduction

The characteristics of singing voice and accompaniment are discussed in this

chapter. Because characteristics-based SVS algorithms do not use any machine

learning approach to characterize the sources, it is required to find the charac-

teristics which represent each source well and even distinguish each based on

assumption and/or observation. In addition, these should be able to be repre-

sented in a mathematical format to so can be derived into objective function for

SVS. Therefore, appropriate characteristics should be able to lead the objective

function whose optimal solution corresponds to the separated sources.
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3.2 Spectral/temporal continuity

3.2.1 Continuity of a spectrogram

Continuity of a spectrogram denotes the similarity of its coefficients with its

neighbor ones, in other words, how smooth the spectrogram is. Since a spectro-

gram has a form with two dimension of frequency and time, continuity can be

individually considered for each dimension. If coefficients in a spectrogram is

highly similar with its neighbor to the frequency axis, then it can be said that

it has a high spectral continuity. On the other hand, it has a high temporal

continuity if its neighbor coefficients to the time axis are similar.

An audio signal which can be represented as a spectrogram with a high

a spectral/temporal continuity may be expected to be sounds as follows. If a

sound has a salient f0 with a strong harmonic structure, then its spectral con-

tinuity may be relatively low because a coefficient which belong to f0 harmonic

may have large value, while its neighbor which is not belong to f0 harmonic

is small. Therefore, it is expected that a spectrogram with high spectral con-

tinuity has broadband spectra. In case of temporal continuity, a spectrogram

with high temporal continuity is expected to consist of ‘stable’ sounds, which

is sustained for long time and rarely changed.

Continuity of spectrogram can be measured by calculating the overall differ-

ence between neighbor coefficients. Here, a difference can be defined in various

form but sum of square error is widely used thanks to its simplicity. Spectral

continuity of a spectrogram X, Cf (X) is defined as follows:

Cf (X) = −
∑
f,t

(Xf,t −Xf−1,t)
2. (3.1)
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Similarly, its temporal continuity Ct(X) is defined as follows:

Ct(X) = −
∑
f,t

(Xf,t −Xf,t−1)
2. (3.2)

In (3.1) and (3.2), the higher Cf and Ct means the higher continuity.

3.2.2 Continuity of musical sources

Each musical source has different degree of continuity. In case of percussive

instruments, such as drums, these have mostly unpitched broadband sound.1

On the other hand, since a percussive sound is occurred by a single hit of

instrument, it instantly attenuate and therefore it has a short sustain time.

Consequently, percussive sound has relatively high spectral continuity but low

temporal continuity.

Harmonic instruments has opposite characteristics compared to percussive

ones in terms of continuity. Most of harmonic instruments have pitched sound

that have strong harmonic structure, which is expected to have a low spectral

continuity. On the other hand, once a harmonic sound is played it continued

during the respective note length, so it is expected to have relatively stable

temporal characteristics, at least compared to the percussive one. Therefore,

harmonic sound has relatively low spectral continuity but high temporal conti-

nuity.

Singing voice also has different continuity characteristic compared to har-

monic or percussive instruments. Moreover, due to complex characteristics of

1There are also various pitched percussive instruments like glockenspiel. In this thesis,
however, percussive and harmonic instruments are distinguished based on those musical roles:
rhythmic or harmonic. Therefore pitched percussive instruments are also classified as harmonic
instruments. In addition, it is noted that the main purpose of defining percussive and harmonic
instrument in this thesis is to verify that the singing voice is hardly grouped into any of them.
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singing voice, its continuity is needed to be discussed with respective spec-

tral/temporal resolution of spectrogram. First, although it basically depends

on the syllables in lyrics, singing voice in general has strong harmonic structure

and f0 which is belongs to the note frequency. However, when large window

size is used for spectrogram, this spectral continuity goes stronger because the

neighbors of harmonic coefficients in spectrum also activated in a analysis win-

dow because of vibrato of singing voice. With a fixed analysis window size, it is

expected that the spectral continuity of singing voice is weaker than percussive

instruments but stronger than harmonic instruments.

In case of temporal continuity, although singing voice is sounded based on

the note length as harmonic instruments, it is relatively less ‘stable’ over time

due to the fast tremolo or vibrato of singing voice. If the analysis window

size goes smaller, enough to be faster than this unstable activity, then the

spectrogram may be more stable locally. With a fixed analysis window size,

it is expected that the temporal continuity of singing voice is stronger that

percussive instruments but weaker than harmonic instruments.

Fig. 3.1 shows the example spectrograms of sources, and its simple repre-

sentation emphasizing its continuity.

3.3 Low-rankness

3.3.1 Low-rankness of a spectrogram

Given a matrix X, its rank is the maximum number of linearly independent

columns of X. Representing or approximating data as a low-rank matrix is

widely applied in many applications, including data encoding or denoising in

image signal processing [59]. Since a spectrogram of audio signal is also a two-

31



1/31

(a) (b) (c)

Fig. 3.1 Comparison of continuity in (a) harmonic instruments, (b) percussive
instruments, and (c) singing voice. Top row is the excerpts of spectrogram, and
bottom row is their simplified representation as ridges. It is noted that singing
voice cannot be represented neither horizontal nor vertical ridges.

dimensional matrix, its rank is useful to analyze its characteristics.

The low-rankness of a matrix X, L(X), can be simply represented based on

its rank as follows:

L(x) = −rank(X), (3.3)

where the higher L(X) represents the more low-rankness. However, it is difficult

to use (3.3) directly for real-world applications. First, most of data captured in

real-world, even audio spectrograms, are full-rank due to its randomness and

noise. In addition, the rank minimization problem is known to be NP-hard [60].

To overcome these problems, the nuclear norm is often used as a approximation

of rank. the nuclear norm of X, ||X||∗, is defined by

||X||∗ =
∑
i

σi, (3.4)

where σi is the i-th singular value. it is noted that the nuclear norm is equivalent
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to the l1-norm of the singular values, while the rank, which is the number of

non-zero singular values, is equivalent to the l0-norm of them. Therefore, the

low-rankness of (3.3) can be approximated as

L(X) = −||X||∗. (3.5)

Practically, the rank or nuclear norm of a spectrogram of the audio signal is

related with the diversity of sounds in the signal. If it consists of many unique

sounds then it cannot be represented as a combination of a few number of the

spectra, and even of the orthogonal vectors, thus it leads to have higher rank.

On the contrary, if a few number of sounds are occurs repetitively in the signal,

its spectrogram may have low rank.

However, above discussion is not always hold, especially when excessively

many sounds occur in the signal. Because the sounds in the signal is not always

orthogonal, it is possible to approximately represent many spectra using a few

number of vectors. Moreover, the spectrogram of a mixture which consists of

excessively many sounds tends to be ‘blurred’, and can be represented as a

low-rank matrix.

3.3.2 Low-rankness of musical sources

To discuss about low-rankness of singing voice and accompaniment, the fol-

lowing characteristics of each have to be considered. At first, if there are many

sound elements in a source, then in general its spectrogram could be expected to

be a high-lank matrix. However, if those sound elements are similar and can be

approximated using a few spectra, then there still a possibility of low-rankness.

In addition, if many sound elements are simultaneously occurred then the ob-
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tained mixture spectrum can be ‘blurred’ and it also can be approximated by

using those smoothed spectrum model. Singing voice and accompaniment both

has a characteristics that leads to be low-rank or high-rank. Below is a detailed

discussion about those characteristics.

In case of accompaniment, every note produced by instruments can be con-

sidered as a unique sound elements. However, the number of these elements is

quite limited since most of musical accompaniment is composed using limited

number of instruments and notes. Instead those elements are frequently repro-

duced over the whole track, thus its spectrogram can be easily represented as

a combination of a few number of spectra, or unique vectors.

On the contrary, there are plenty of variation in singing voice, including the

singer characteristics (gender, age, singing style, etc.) and the pronunciation of

lyrics. In addition, the unit source of singing voice is rarely mixed since there

are in general one or a few number of singers in a music track. Therefore, it is a

reasonable conclusion that a spectrogram of singing voice may have high rank.

Fig. 3.2 shows the example spectrogram of singing voice and accompani-

ment, and Fig. 3.3 shows the singular values of the example singing voice and

accompaniment. Comparing singing voice and accompaniment in Fig. 3.3, the

most of energy is concentrated in a few number of singular values in case of

accompaniment.

3.4 Sparsity

3.4.1 Sparsity of a spectrogram

Sparsity of a matrix is the contrast concept with density of it. If the most of

elements in a matrix is zero, than it is called as a sparse matrix. When the
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(a) (b)

Fig. 3.2 Comparison of low-rankness and sparsity in (a) accompaniment and
(b) singing voice. Top row is the excerpts of spectrogram, and bottom row is
their simplified binary representation.
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Fig. 3.3 Singular value distribution of accompaniment and singing voice. These
are computed from the magnitude spectrogram after normalization. First 100
singular values are represented for visual convenience.

matrix has a unit variance, then it also can be considered that most of energy

of a matrix is concentrated in a few elements.
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In case of audio signal, the value of a coefficient in a spectrogram represents

the energy of in the respective time-frequency region, thus if a spectrogram is

sparse then it means that sounds mainly occur in specific time frame and/or

frequency bin, while there are almost silence in the other time or frequency.

Assuming there are many unique sounds with independent time-frequency

distribution which an audio signal consist of, then this audio signal tends to

have a Gaussian distribution due to the central limit theorem. In other words,

if a signal consist of a few unique sounds, it is expected that it may have a

distribution which is far from the Gaussian. Since a unique sound in general

have very sparse distribution because it rarely occurs over time, here ‘far from

the Gaussian’ means far to be sparse rather than far to be dense.

Ideally the sparsity of a matrix X, S(X), is represented by calculating the

number of nonzero coefficients in a matrix as follows.

S(x) = −nonzero(X) (3.6)

where nonzero denotes the number of nonzero coefficients. As the low-rankness,

it is also often relaxed using l1-norm as follows:

S(X) = −
∑
f,t

|Xf,t| (3.7)

It is noted that l1-norm can be considered as a convex relaxation of l0-norm,

which is equivalent to nonzero.

3.4.2 Sparsity of musical sources

A sparsity of musical source is related with the following factors. First, if the

source has strong harmonic structure, it is sparser than the source with broad-
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band spectra because most of energy is concentrated in a few harmonic coeffi-

cients. On the other hand, if the source is rarely played in music or has short

sustain time, it is expected to be sparse since there are many silence regions in

spectrogram which are closed to zero. Finally, the source which consist of many

instruments or is played in polyphonic, it is in general less sparse because the

coefficients in spectrogram tends to have a Gaussian distribution due to the

central limit theorem.

From the above discussion, it is expected that singing voice has sparser dis-

tribution compared to accompaniment: it has strong harmonic structure while

percussive instruments in accompaniment do not have, there are part without

singing voice in music especially between verses or lines, when accompaniment

is still played, and there are in usual one or a few number of singers in a mu-

sic recording and they sing in monophonic, while accompaniment consists of

various polyphonic instruments.

If we compare singing voice with a single instrument instead of accompa-

niment, there can be other instruments which has sparser distribution than

singing voice. When there is an instrument or a sound effect which is played

only once in a music, obviously it is much sparser than singing voice. How-

ever, this kind of instruments has not only has high sparsity, but also has

low-rankness those silence does not increase its rank. Therefore, singing voice

can be considered as one of the instrument with the highest sparsity compared

to its low-rankness.
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3.5 Experiments

This this section, the above discussions about the characteristics of musical

sources are empirically verified from the experiments using the actual dataset.

We used the development data in DSD100 dataset, which consists of 50 music

tracks with 44.1kHz sample rate. Each track contains four stereo sources, which

are vocals, drum, bass, and others.

As a preprocessing step, we first remixed or redefined the provided sources

to be harmonic instruments (bass+others), percussive instruments (drum), ac-

companiment (drum+bass+others), and singing voice (vocals). The sources are

then down-mixed to be mono by averaging two channels. Each tracks was split

to 10 seconds segments, and the total number of segments is 1276. Magni-

tude spectrograms are obtained using STFT with 4096 window size (93ms for

44.1kHz) and 1024 shift.

When measuring (3.1), (3.2), (3.5), or (3.7), its actual value might be mean-

ingless since it depends on not only its characteristics but also its scale, the

number of unit sounds, or the proportion of silence legion. For the measure-

ment that is invariant to these unintended conditions, we instead focused on

the relations between those values. Two different experiments are discussed in

this section, where the one compare the spectral and temporal continuity, while

the another one compare the sparsity and low-rankness.

Fig. 3.4 shows the spectral/temporal continuity of harmonic instruments,

singing voice, and percussive instruments, as well as the linear regression of

respective sources. As expected, harmonic instruments tends to have the higher

temporal continuity Ct compared to percussive ones, when fixing the spectral

continuity Cf . Singing voice, on the other hand, showed the intermediate char-
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acteristics between those two instruments. On the other hand, Fig. 3.5 shows

the comparison of low-rankness and sparsity of singing voice and accompani-

ment and those linear regression. Although there exists some overlap between

two sources, accompaniment tends to have higher low-rankness in the fixed

sparsity.

3.6 Summary

In this chapter, the characteristics of musical sources are discovered in the

spectrogram domain. Three characteristics were in particular focused, which

are spectral/temporal continuity, low-rankness, and sparsity. These were first

defined for a matrix or a general audio spectrogram, and the equations for the

measurements were also introduced. After that, the differences between singing

voice and accompaniment, in aspects of these characteristics, are discussed.

Table 3.1 shows the summary of discussion in this chapter. Because of the

unstable and unrepeated patterns of singing voice, it does not have continuous

or low-rank characteristics in general, but has sparse distribution. In case of

accompaniment spectrogram, in consists of many instruments which frequently

reproduce the same sound and it leads to have low-rankness but not sparsity.

The instruments in accompaniment can be categorized into to groups, which

are harmonic instruments with high temporal continuity and percussive instru-

ments with high spectral continuity.
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Fig. 3.4 Visualization of spectral/temporal continuity of the sources. Black lines
represent the linear regression with zero offset of harmonic instruments, singing
voice, and percussive instruments, from top to bottom. Each line has the re-
gression coefficient of 0.153, 0.389, and 0.797, respectively.
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Fig. 3.5 Visualization of sparsity and low-rankness of the sources. Black lines
represent the linear regression with zero offset of accompaniment and singing
voice, from top to bottom. Each line has the regression coefficient of 0.025 and
0.039, respectively.
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Table 3.1 Summary of the characteristics comparison between singing voice
and accompaniment. Blue H and red L denote that the source has high or low
characteristics respectively.
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Singing voice

Accompaniment

Harmonic Percussive

Continuity

Spectral L L H

Temporal L H L

Low-rankness L H

Sparsity H L
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Chapter 4

Singing voice separation using
continuity and sparsity

4.1 Introduction

In this chapter, based on the original work by Jeong et al. [61], an approach for

SVS using spectral/temporal continuity and sparsity is explained. As discussed

in Chapter 3, harmonic and percussive sounds can be distinguished in terms

of spectral/temporal continuity. Harmonic sound, which has strong harmonic

structure and long sustain time, has low spectral continuity and high tempo-

ral continuity. On the other hand, percussive sounds have relatively broadband

spectra and short sustain time, thus it leads to high spectral continuity and

low temporal continuity. Singing voice, which has strong harmonic structure

but also has unstable temporal dynamics, is closer to harmonic sounds than

to percussive ones, although it is also quite percussive compared to the other

harmonic instruments. From these observations, separation of singing voice has
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been tried to define the another source between harmonic and percussive in-

struments, and extract it by extending HPSS algorithms.

Two-stage HPSS framework is the one of the most widely applied approach

for SVS. At the first HPSS stage, the music signal is decomposed into two tracks,

which contain harmonic and percussive sound, and singing voice is included in

harmonic sound. The separated harmonic sound, which is in fact also contains

singing voice, is decomposed again in the second HPSS stage with different time-

frequency resolutions. In this stage the singing voice is separated by considering

it as percussive sound. Various HPSS algorithms have been tried to be applied to

SVS. Tachibana et al. used temporal/spectral continuity-based HPSS [5, 14, 23],

FitzGerald et al. used a median filtering and matrix factorization approach

[6, 26], and Zhu et al. used NMF and basis selection [62].

Our proposed algorithm is also based on the observation that singing voice

is neither exactly harmonic nor percussive. Instead of using the HPSS twice

in a cascaded way, we formulate the vocal separation problem in a single opti-

mization framework using additional constraints that allow the residual in the

HPSS process but forces it to be sparse and nonnegative.

The rest of this chapter is organized as follows. In Section 2, an algorithm of

SVS using two-stage HPSS, which gave a motivation for the proposed algorithm,

is described. In Section 3, the proposed algorithm is described, where we define

the objective function for optimization and present the derivation of the update

rule, including the pseudocode. In Section 4, we present the experimental results

and discussion, followed by conclusions and directions for future work in Section

5.
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4.2 SVS using two-stage HPSS

This section introduced the conventional SVS algorithm using two-stage HPSS.

From various algorithms based on a similar approach, The work of Tachibana

et al. that the proposed algorithm directly aims to extend is introduced [23].

4.2.1 Harmonic-percussive sound separation

In a music signal, the harmonic and percussive components usually have distinc-

tive characteristics. The harmonic sounds generally have a very strong harmonic

structure, and the sustain time is relatively long, resulting in parallel, horizontal

ridges in the spectrogram. On the other hand, the percussive sounds are very

short and broadband, and therefore shown as vertical ridges in the spectrogram.

Based on this observation, Ono et al. proposed an algorithm to separate the

harmonic and percussive components from the spectrogram by minimizing the

temporal/spectral gradients of the separated spectrograms to enhance the hor-

izontal/vertical ridges [5, 14]. By approximating that the spectrogram of music

is same as a sum of spectrogram of harmonic and percussive sounds, it can be

represented as follows:

M = |M|2γ = H + P, (4.1)

where M denotes the STFT of music signal, and M ∈ RF×T , H ∈ RF×T ,

and P ∈ RF×T denote the spectrogram of mixture, harmonic instruments, and

percussive instruments, respectively. F and T denote the number of frequency

bins and time frame, respectively.γ is a parameter to compress the original

magnitude spectrogram, to emphasize the difference of two sources in terms of
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continuity. Applying the continuity model in Chapter 3, Ono et al. proposed

the following objective function to separate each source by maximizing the

spectral/temporal continuity of percussive/harmonic sounds, respectively [5,

14]:

J(H,P ) =
1

2

∑
f,t

(Hf,t −Hf,t−1)
2 +

α

2

∑
f,t

(Pf,t − Pf−1,t)
2,

s.t. H + P = M, H ≥ 0, P ≥ 0,

(4.2)

whereXf,t denotes the (f, t)-th coefficient ofX, and α denotes a weight parame-

ter between the spectral and temporal continuity. The non-negativity constraint

is to make the separated H and P to be a spectrogram. On the other hand,

they also presented the variation of (4.2) whose equality between a mixture M

and a sum of H and P is relaxed by using Kullback–Leibler (KL) divergence

as follows:

J(H,P ) =
1

2

∑
f,t

(Hf,t −Hf,t−1)
2 +

α

2

∑
f,t

(Pf,t − Pf−1,t)
2

+
∑
f,t

Mf,tln
Mf,t

Hf,t + Pf,t
−Mf,t + (Hf,t + Pf,t),

H ≥ 0, P ≥ 0.

(4.3)

Besides above ones, various algorithms for HPSS have been presented. For

example, median filtering or NMF was applied for HPSS [6, 63].

4.2.2 SVS using two-stage HPSS

Meanwhile, the characteristics of a singing voice signal are very unique; thus,

it is difficult to classify it exclusively into harmonic or percussive components.

Even though singing voice signals contain a strong harmonic structure unlike
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HPSSa

HPSSb

Fig. 4.1 Framework for SVS using two-stage HPSS. HPSSa and HPSSb denote
HPSS with respective parameter settings.

percussive instruments, it reveals, at the same time, temporally unstable prop-

erties that are distinct from the harmonic ones. Practically, singing voice com-

ponents are usually shown as horizontal but rapidly changing harmonic ridges

in the spectrogram, thus it can be grouped into harmonic or percussive sounds

depending on the time-frequency resolution.

Based on these discussion, this resolution can be parameterized for the

HPSS algorithm to induce singing voice to be separated harmonics or percus-

sive sounds. In addition, when the music signal is decomposed by using HPSS

into harmonic instruments with singing voice and percussive instruments, then

the former one can be separated again into harmonic instruments and singing

voice by using HPSS again with different parameters. From these discussions,

SVS algorithm using two-stage HPSS was presented by Tachibana et al., and

Fig. 4.1 shows the framework of the algorithm [23].

Since the core insight for this SVS framework is to use HPSS twice, it is

possible the other HPSS methods can be implied. Fitzgarald et al. presented a

similar approach but using median filtering-based HPSS [26].
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4.3 Proposed algorithm

Improving the abovementioned SVS algorithm using two-stage SVS, the single-

stage SVS using harmonic-percussive-sparse separation algorithm is introduced

in this section.

Although singing voice has a unique characteristics that is different from

other instruments in terms of continuity, it is difficult to represent the numeric

threshold to distinguish it. Moreover, the sources cannot be classified precisely

due to the overlap between them as in Fig. 3.4.

Instead of representing the singing voice as moderate continuities, the pro-

posed SVS algorithm uses another characteristics, sparsity, to distinguish it

from the other instruments. In addition, instead of two-stage framework it sep-

arates all the sources by solving a single objective function. Fig. 4.2 shows the

framework of proposed algorithm. Assuming there are percussive and harmonic

instruments as well as singing voice in a music signal, its spectrogram can be

represented as a combination of the vertical and horizontal ridges, and sparse

components which are not continuous. Therefore, it is expected that the sources

can be separated by obtaining the ridges and components from it.

The proposed method is also similar with the other conventional SVS al-

gorithms, which described a singing voice signal as a residual that cannot be

represented using an accompaniment model [28, 33, 34, 35, 64, 65]. Furthermore,

a singing voice signal has a certain structure, which means that the energy of

the singing voice is concentrated in a few time/frequency bins, and thus is often

modeled using l1-norm minimization in the spectrogram domain [28, 64].

Taking into account the unique properties of a singing voice signal that

belongs to neither harmonic nor percussive sounds, we first assume that the
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Proposed SVS

Fig. 4.2 Framework for the proposed algorithm.

spectrogram of the music signal can be approximately represented as a sum of

the harmonic, percussive, and singing voice components as

M = |M|2γ = H + P + V, (4.4)

where M is the STFT of an input music signal, and M , H, P , and V denote

the scale-compressed spectrograms of the input, harmonic, percussive, and vocal

components, respectively. | · |2γ denotes the element-wise power operation, and

the scale parameter γ, in the interval of (0, 1], denotes the compression rate, as

presented by Ono et al. [5]. In this paper, we empirically set to be 0.25.

Based on the abovementioned characteristics of each component, we then

derive objective function J to separate the singing voice and the accompaniment
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as follows:

J(H,P, V ) =
1

2

∑
f,t

(Hf,t −Hf,t−1)
2 +

α

2

∑
f,t

(Pf,t − Pf−1,t)
2

+ϕ
∑
f,t

|Vf,t|,

s.t. H + P + V = M, H ≥ 0, P ≥ 0, V ≥ 0,

(4.5)

where f and t are the frequency and the time indices, respectively. Two parame-

ters, α and ϕ, are used to control the relative weights among the objective terms;

α > 0 denotes the relative smoothness of P ; and ϕ > 0 determines the weight

for the l1-norm minimization of the singing voice. In particular, in order to

guarantee the scale invariance of the objective function J , the value of ϕ should

be decided in the form ϕ = kE, where k is a constant, and E = 1
N

∑
f,t |Wf,t|,

where N denotes the number of coefficients in the spectrogram W . With this ϕ,

the objective function J(βH, βP, βV ) with the scaled input βW , where β > 0

is a scale parameter, can be expressed as β2J(H,P, V ), which leads to the same

separation results.

Basically, this objective function is similar to the conventional har-

monic/percussive separation algorithm; the first and second terms are the same

as the objective function in Ono’s algorithm [5]. However, by adding the third

term, which we want to be the vocal, to the objective function and by imposing

the sparsity and nonnegativity constraints to this extra term, we formulate the

vocal separation problem into a single optimization framework.

Here, we derive the iterative update rule to minimize the objective function.

Assuming that the present H, P , and V satisfy the nonnegativity constraints,

the absolute sign in the l1-norm in the singing voice term can be ignored and
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thus is modified as follows:

ϕ
∑
f,t

|Vf,t| = ϕ
∑
f,t

(Mf,t −Hf,t − Pf,t), (4.6)

and the objective function J(H,P, V ) can be represented as J(H,P ) by using

only H and P .

The differentiations of the objective function by H and P are given by

∂J

∂Hf,t
= (2Hf,t −Hf,t+1 −Hf,t−1)− ϕ,

∂J

∂Pf,t
= α(2Pf,t − Pf+1,t −Hf−1,t)− ϕ,

(4.7)

respectively. With the other terms fixed, the optimal values that make the

differentiations to be zero can easily be found as follows:

Hf,t ←
Hf,t+1 +Hf,t−1

2
+

ϕ

2
,

Pf,t ←
Pf+1,t + Pf−1,t

2
+

ϕ

2α
.

(4.8)

It can be interpreted that the optimal values are the sum of 1) averages of their

temporal/spectral neighbor components to minimize the gradient terms and 2)

extra values to minimize the residual components. Because these two terms are

obviously nonnegative, the nonnegativity constraints on H and P hold after

the update. However, since it does not hold for V , which is M − H − P , the

minimum boundary must be set to ensure the nonnegativity of V .

Algorithm 1 shows the overall procedure of the proposed SVS algorithm.

Steps 1 through 7 explain the abovementioned procedure. First, an input music

signal is transformed into the spectrogram domain using STFT and is scale-

compressed. Then, H and P are initialized to zero. For each iteration, H and

P are updated based on Steps 5 and 6, with a minimum filter to satisfy the
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nonnegativity condition of the singing voice component. After the iteration is

done, the scale-compressed spectrograms of singing voice and accompaniment,

which are the main aims of the algorithm, are estimated as Steps 8 and 9.

Because the separation is performed in the scale-compressed spectrogram

domain and the constraint of M = V + A does not ensure that M = V +A,

the perfect reconstruction of the input signal cannot be guaranteed using the

separated spectrograms. To overcome this problem, we use a generalized Wiener

filter as shown in Steps 10 and 11, where and are the separated singing voice

and accompaniment components in the original STFT domain. By using the

generalized Wiener filter, it is guaranteed that M = V+A; thus, they can be

directly converted into time domain signals using the inverse STFT. Finally, a

high-pass filter is applied as a postprocessing step to remove the components at

low frequencies from the vocal signal because vocal signal is rarely present at low

frequencies. The removed signal is considered to be part of the accompaniment

signal and is added to it.

4.4 Experimental evaluation

4.4.1 MIR-1k Dataset

To quantitatively evaluate the proposed vocal separation algorithm, we used the

MIR-1 K database, which consists of 1000 music clips sung by amateur singers

[32]. Singing voice and accompaniment tracks are recorded separately, and we

mixed the signals in -5 dB, 0 dB, and 5 dB singing voice-to-accompaniment

ratio (VAR) conditions.

We used the sampling rate of 16 kHz and the analysis window size of 1024

samples with a 3/4 overlapping ratio. The parameters α and ϕ were set to be
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Algorithm 1 Pseudocode for the optimization of singing voice separation al-
gorithm using harmonic-percussive-sparse separation.

1: M← STFT(m) ▷ m: music signal
2: M ← |M|2γ
3: H ← 0
4: P ← 0
5: while iter ≤ maxiter do
6: Hf,t ← min(

Hf,t+1+Hf,t−1

2 + ϕ
2 ,Mf,t − Pf,t)

7: Pf,t ← min(
Pf+1,t+Hf−1,t

2 + ϕ
2α ,Mf,t −Hf,t)

8: end while
9: V ←M −H − P

10: A← H + P

11: V←M V
1
2γ

V
1
2γ +A

1
2γ

12: A←M A
1
2γ

V
1
2γ +A

1
2γ

13: v ← ISTFT(V) ▷ ISTFT: inverse STFT
14: a← ISTFT(A)
15: â← LPF(v) ▷ LPF: low-pass filtering with predefined cutoff frequency
16: v ← v − â ▷ v: separated singing voice
17: a← v + â ▷ a: separated accompaniment

0.25 and 0.025E, respectively. The number of the iterations was 200. For fair

comparison, the final results were obtained using a high-pass filter with a 110 Hz

cut-off frequency, which is the same as that used in Tachibana’s algorithm [23],

while the highest performance was obtained when a 120 Hz cut-off frequency

was used. As a performance metric, we used GNSDR, which is widely used

for the evaluation of SVS algorithms. Detailed explanation for GNSDR is in

Section 1.

We evaluate the proposed algorithm with several conventional ones [23, 31,

32, 33]. To briefly describe each algorithms, Li first detects the f0 of singing

voice and separate its harmonic components [31], Hsu is similar with Li but
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Fig. 4.3 Comparison of GNSDR in different singing voice-to-accompaniment
conditions.

uses additional process for the ‘unvoiced’ singing voice using Gaussian mix-

ture model (GMM), and Rafii removes the repetitive component from a music

spectrogram which is considered as accompaniment [33]. Tachibana uses the

two-stage HPSS explained in Section 4.2.2 [23].

As shown in Fig. 4.3, the proposed method shows the highest GNSDR com-

pared to other conventional algorithms with VAR values of 0 dB and 5 dB. It

shows relatively low GNSDR with a VAR of -5 dB compared to Tachibana’s

algorithm. One possible explanation is that vocal components with small val-

ues tend to converge to zero because of the sparsity constraint. Finding an

additional compensation mechanism is required as a future work.
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4.4.2 Beach boys Dataset

For the next experiment, Real-world music with longer time length was used.

Although it is difficult to obtain original multitrack recordings for evaluation

purposes, the album Good Vibrations: Thirty Years of the Beach Boys by the

Beach Boys, which was released in 1993, contains several tracks where the vocal

is recorded in one channel and all the accompaniment in the other one [57].

Despite the limitations that these recordings are by the same artist and in the

same genre, they have been considered a useful dataset for the evaluation of

vocal separation algorithms in many papers [26, 35].

We set the parameters to be the same as those used in the MIR-1K exper-

iments, but the cut-off frequency of the high-pass filter was set differently to

100 Hz for a fair comparison [26, 35]. For the same reason, we computed the

mean SDR instead of GNSDR, and it was calculated using BSS-EVAL met-

rics [17]. Table 4.1 shows the overall separation performance achieved using

the Beach Boys dataset. Considering that the reported SDRs of the separated

vocal for FitzGerald’s method [26] were -1.48 dB, 1.54 dB, and 1.89 dB in -6

dB, 0 dB, and 6 dB input VAR conditions (no pretraining), respectively, the

results show that the proposed method achieves comparable or higher separa-

tion performance, even though a direct comparison is not appropriate because

the detailed experimental conditions such as the exact tracks used and the size

of the segmented input signal, as well as the main criteria for evaluation, were

not the same.
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Table 4.1 Evaluation results of proposed SVS algorithm using Beach boys
dataset. All the result is in dB.

1/31

Input VAR

Singing voice Accompaniment

SDR SIR SAR SDR SIR SAR

-6 dB -2.74 -1.08 6.14 5.85 8.09 11.12

0 dB 2.00 4.82 6.51 2.23 3.38 10.82

6 dB 5.80 11.87 7.35 -1.76 -0.89 9.76

4.4.3 iKala dataset in MIREX 2014

The presented algorithm was submitted to Music Information Retrieval Eval-

uation eXchange (MIREX) 2014. iKala datasets was used to evaluate the al-

gorithms, and three evaluation criteria, GNSDR for singing voice, GNSDR for

accompaniment, and running time, were used.

Parameters used in the submission is as follows. We used the analysis win-

dow size of 2048 samples with a 3/4 overlapping ratio. The parameters α and

ϕ were set to be 0.25 and 0.01E.

11 algorithms was submitted from 8 teams. Belows are the brief description

of the approach that each teams used.

IIY first separates singing voice and accompaniment using RPCA. Melody

contour of singing voice is then detected from the separated singing voice, by

using f0 detection and singing voice activity detection. The separated singing
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voice is enhanced again by extracting the f0-related harmonic components. This

study was later developed by Ikemiya et al. [24].

RNA detects singing voice using a support vector machine, and also detects

its predominant f0. Singing voice is isolated using detected f0 and harmonic si-

nusoidal modeling, then it is reconstructed from the estimated sinusoidal model

parameters. The accompaniment signal is obtained by subtracting the estimated

singing voice from music [66].

GW uses a Bayesian NMF approach, and the basis estimated by NMF are

clustered into two groups using K-means clustering or NMF [67].

RP uses REPET-SIM, which is a extended version of REPET [34]. To handle

the non-periodically repeating accompaniments, the similarity matrix is used

to find the indices of repeating components, while the conventional REPET

assumed that the components are repeated periodically based on its tempo.

Repeating spectrogram, which enhances the repeating components in the spec-

trogram is considered as accompaniment, and the residual is extracted as singing

voice [36]. This study is later extended by Rafii et al. [68].

LFR uses kernel additive modeling, which is based on local regression of a

specific time-frequency coefficient in spectrogram using its neighbor ones. Var-

ious types of kernel such as vertical (frequency axis) for percussive sounds,

horizontal (time axis) for harmonic sounds, periodic for repeating sounds, and

cross-shape for the detailed local characteristics. It is also combined with a

compression algorithm to reduce the computational cost [69].
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YC uses the spectral-temporal modulation features extracted from the au-

ditory spectrogram. Each time-frequency coefficients are clustered into three

groups, singing voice, harmonic, percussive sounds, by using a two-stage clus-

tering process [70].

HKHS used recurrent neural network. a magnitude spectrum of music mix-

ture is used as a model input, and the model is trained to predict the magnitude

spectra of singing voice and accompaniment which the mixture consists of. The

submission also presented several ideas, including mask estimation and the dis-

criminative objective function [71].

As shown in Table 4.2, the proposed algorithm which is denoted to JL1

achieved remarkable results in GNSDR for both singing voice and accompani-

ment. However, compared to the other algorithms with similar results, GNSDR

for accompaniment is slightly lower than that of singing voice, and it is needed

to be developed. In terms of computation efficiency, the proposed algorithm

was executed in the lowest runtime, and it makes the proposed algorithm to be

used in real-world applications.

4.5 Conclusion

Focusing on the unique characteristics of the vocal distinct from the accompa-

niment in a music signal, we proposed an algorithm for separating the vocal

and accompaniment signal from monaural music using a single optimization

framework.

We assumed that an accompaniment signal can be represented as the sum
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Table 4.2 Results of singing voice separation algorithms submitted to MIREX
2014. JL1 denotes the implementation of the proposed algorithm.

1/31

Name Algorithm
GNSDR (dB) Runtime

(hh)Voice Music

IIY2 RPCA+pitch 4.48 7.87 02

IIY1 RPCA+pitch 4.22 7.79 02

JL1 Proposed 4.16 5.63 01

RNA1 Pitch 3.69 7.32 06

GW1 NMF 2.89 5.25 24

RP1 Repetition 2.86 5.03 01

LFR1 KAM 0.65 3.09 03

YC1 EM -0.82 -3.12 13

HKHS1 RNN -1.40 0.35 06

HKHS2 RNN -1.94 0.52 06

HKHS3 RNN -2.48 0.14 06

of the sustained harmonic and percussive sounds, and that the sparse residual

components that cannot be regarded as exclusively either harmonic or percus-

sive may be identified as the vocal signal. Although the proposed algorithm is

an extended version of the previously proposed HPSS algorithm, which must

be used twice in succession for SVS, the derivation of the proposed algorithm

is simpler, and the quantitative evaluation demonstrates that it achieves im-

proved or comparable performance in various singing voice-to-accompaniment

conditions.

Because the proposed algorithm is based on the harmonic but nonstable

characteristics of a singing voice signal, which makes it distinguishable from
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both sustained harmonic and percussive accompaniment signals, it is obvious

that the performance degrades when the input music signal contains a nonsta-

ble harmonic accompaniment or a sustained vocal. For example, a guitar sound

with strong vibrato could be incorrectly separated as a vocal, while a sustained

vocal with weak fluctuation could be separated as an accompaniment. To over-

come these limitations of the proposed algorithm, we will exploit more charac-

teristics of singing voice and accompaniment signals and use machine-learning

approaches.
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Chapter 5

Singing voice separation using
low-rankness and sparsity

5.1 Introduction

Continuing Chapter 4, another approach for SVS which uses low-rankness and

sparsity is explained in this chapter. The contents of the chapter are based on

the original works by Jeong et al. [30, 72].

As discussed in Section 3.3, singing voice and accompaniment have salient

differences in terms of low-rankness, as well as sparsity. Because of repetitive

nature of accompaniment, it often can be represented as a combination of a

few numbers of vectors, whereas singing voice has strong sparsity because the

sounds occurred by voice rarely coincide. Assuming that a music spectrogram

can be represented as a sum of the singing voice and accompaniment, it is a

reasonable approach to separate them by decomposing the low-rank and sparse

components from those mixture.

61



If the low-rank component is the primary target in the low-rank/sparse

decomposition, then the residual components can be considered as errors or

noise with a sparse distribution. In this case, the decomposition procedure is

often explained as a low-rank approximation that is robust against noise. For

example, NMF, which approximates a nonnegative matrix as a multiplication

of two low-rank nonnegative matrices [73, 74], is extended to robust NMF by

using the sparse error function such as l2,1-norm [75], the difference between l1-

and l2-norm [76, 77], Cauchy function [78], correntropy induced metric [79], and

Huber function [79]. On the other hand, adding an additional outlier matrix

instead of changing error function is also widely used for the robustness of

NMF [64, 80]. In case of PCA, RPCA, which is similar to the PCA-based

dimensionality reduction but uses l1-norm error function, is one of the most

popular approach [81]. Various SVS algorithm have been proposed by using

above approaches. Sprechmann et al. proposed an SVS algorithm using robust

NMF [64], and Huang et al. used RPCA [28]. In this section, approaches for

SVS based on RPCA mainly focused.

The rest of this section is organized as follows. In Section 5.2, the algorithms

of RPCA and its application to SVS are introduced, and their limitations and

improvement methods are discussed. In Section 5.3, generalization of conven-

tional RPCA using Schatten p- and lp-norm is described. In Section 5.4, another

extended RPCA which uses weighted l1-norm is introduced, as well as its appli-

cation for SVS using the spectral distribution and singing voice activity. Finally,

we make a summary in Section 5.5.
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5.2 SVS using robust principal component analysis

5.2.1 Robust principal component analysis

Ideally, the low-rank and the sparse components can be decomposed from their

mixture by solving the following optimization problem:

J(L, S) = rank(L) + λ nonzero(S),

s.t. L+ S = M,

(5.1)

where M ∈ RF×T , L ∈ RF×T , and S ∈ RF×T are the mixture, low-rank, and

sparse matrix, respectively. rank(·) and nonzero(·) denote the rank and the

number of nonzero components in a matrix, respectively. λ denotes the relative

weight between two terms. Since above objective function is difficult to solve,

Candès et al. presented its convex relaxation, or RPCA, as follows [81]:

J(L, S) = |L|∗ + λ|S|1,

s.t. L+ S = M,

(5.2)

where |·|∗ and |·|1 denote the nuclear norm (sum of singular values) and l1-norm

(sum of the absolute values of matrix elements), respectively. These properly

approximate rank(·) and nonzero(·) in (5.1) and allow to solve it in a convex

formulation. As in (5.1), λ decides the relative importance between two norms.

Candès et al. suggested λ = 1/
√
max(F, T ) [81], and Huang et al. generalized

it as λ = k/
√

max(F, T ) with a parameter k [28].

5.2.2 Optimization for RPCA using augmented Lagrangian
multiplier method

ALM method is one efficient method for optimization of (5.2) which uses the

following objective function [81]:
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J(L, S) = |L|∗ + λ|S|1+ < Y,L+ S −M > +
µ

2
||L+ S −M ||2F , (5.3)

which is also often alternately written as follows [82]:

J(L, S) = |L|∗ + λ|S|1 +
µ

2
||L+ S −M +

1

µ
Y ||2F . (5.4)

When S is fixed, (5.4) can be simplified as follows:

J(L) =
1

2
||L− F ||2F +

1

µ
|L|∗, (5.5)

where F = M − S − 1
µY . Likewise, it can be simplified when L is fixed as

J(S) =
1

2
||S −G||2F +

λ

µ
|S|1, (5.6)

where G = M − L− 1
µY . Optimization of (5.2) using a generic Lagrange mul-

tiplier algorithm is done by minimizing L and S in (5.3) or (5.4), and updating

the Lagrange multiplier matrix Y via Yk ← Y + µ(L+ S −M).

More practically, one can take a strategy that iteratively minimize L and S

of (5.5) and (5.6), respectively, which is easier to find the optimal solution for

each iteration. The optimal L in (5.5) can be directly obtained as

L← UF δ1/µ(ΛF )VF , (5.7)

where UXΛXVX = X is the singular value decomposition of X. δ is the element-

wise shrinkage operator that is δτ (x) = sgn(x)max(|x| − τ, 0). Similarly, the

optimal S in (5.6) can be obtained as

S ← δλ/µ(G). (5.8)

Algorithm 2 describe a pseudocode for the optimization of RPCA.
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Algorithm 2 Pseudocode for the optimization of robust principal component
analysis

1: set 0 < ρ < 1, µ > 0
2: L, S, Y ← 0
3: while iter ≤ maxiter do
4: update L as (5.7)
5: update S as (5.8)
6: update Y by Y ← Y + µ(L+ S −M)
7: (optional) update µ by µ > ρµ
8: end while

5.2.3 SVS using RPCA

Huang et al. suggested that RPCA can be applied to separate the singing voice

and the accompaniment from music signal [28]. Fig. 5.1 shows the concept of

RPCA-based SVS algorithm. In the case of accompaniment, instruments often

reproduce the same sounds in the same music, therefore its magnitude spectro-

gram can be represented as a low-rank matrix. On the contrary, singing voice

has a sparse distribution in the spectrogram domain due to its strong harmonic

structure. Therefore, M , L, and S in (5.2) can be considered as a spectrogram

of the input music, accompaniment, and singing voice, respectively. After the

separation is done in the spectrogram domain, the waveforms of sources are

obtained by performing inverse STFT with the same phase of original mixture.

Although RPCA has been successfully applied to SVS, there is still plenty

of room for improvement. One of the main factor of its limits is the simplicity of

RPCA. Since RPCA has only one parameter, λ, it is difficult to adapt SVS by

using the parameter tuning strategy. In addition, the nuclear norm and l1-norm

in RPCA, which is used for the simplicity in convex optimization, is not exactly

fitted for the practical SVS task.
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RPCA-based SVS

Fig. 5.1 Framework for the RPCA-based SVS.

Several improvement methods can be applied to overcome the above limits.

First, two norms in RPCA can be generalized by using Schatten p- and lp-

norm. The advantage of the norm generalization is not only modifying RPCA

to be closer to the ideal low-rank/sparse decomposition, but also adding more

parameters that can be tuned to maximize the separation quality. However,

additional consideration for optimization is required since it is not convex when

0 ≤ p < 1. In addition, the generalization can be also tried in terms of a

preprocessing of input matrix.

Another improvement method is applying the task-specific characteristics

into the algorithm. Since the input and output matrix of RPCA for SVS is

a time-frequency representation of music signal, it would be appropriate to
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apply the temporal-spectral characteristics of musical sources. Considering the

spectral characteristics, a spectral distribution is one of the most important

factor to distinguish sources. On the other hand, temporal activation can be

also useful to represents the temporal characteristics.

5.3 SVS using generalized RPCA

5.3.1 Generalized RPCA using Schatten p- and lp-norm

The nuclear norm and the l1-norm in RPCA are specific cases of the Schatten

p-norm and lp-norm when p = 1. From the definition of the lp-norm of a vector,

the lp-norm of a matrix S can be defined as follows:

||S||p = (
∑
f,t

(|Sf,t|p))
1
p . (5.9)

Similarly, the Schatten p-norm of matrix L is defined as

||L||Sp = (
∑
i

σp
i )

1
p . (5.10)

Although (5.9) and (5.10) strictly define the norms only when p ≥ 1, in this

thesis, we do not differentiate them from a quasi-norm, which means 0 < p < 1

as in [82]. Thus, the lp-norm and the Schatten p-norm to the p power are

||S||pp =
∑
f,t

(|Sf,t|p), (5.11)

||L||pSp =
∑
i

σp
i . (5.12)

When p is closed to zero, ||S||pp and ||L||pSp approximately represent the number

of non-zero components and that of the non-zero singular values of S and L,

which denote the sparsity and rank, respectively. Therefore, we can reasonably
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infer that the smaller p is, the closer to (5.1) our approximation becomes. Prac-

tically, a gap exists between the ideal model and the real situation, and the

optimal p may lie in 0 < p < 1. In this paper, we use the same p for the two

norms for convenience and to reduce the number of parameters. The aim of the

extended RPCA using the Schatten p- and lp-norms (pRPCA) is to minimize

the following objective function:

J(L, S) = ||L||pSp + λ||S||pp.

s.t. L+ S = M,

(5.13)

It is noted that (5.13) is non-convex, and there is a trade-off between (5.2)

(convex but further from (5.1)) and (5.13) (closer to (5.1) but non-convex). A

more suitable function for a particular application may be determined through

experimental comparison.

5.3.2 Comparison of pRPCA with robust matrix completion

To solve (5.13), we refer to an existing similar algorithm for the matrix com-

pletion [82]. The presented objective function is as expressed as follows:

J(L) = ||LΩ −MΩ||pp + γ||L||pSp, (5.14)

where MΩ = {Mf,t|(f, t) ∈ Ω} denotes the given (observed) values in matrix

M . The aim of (5.14) is to estimate original matrix L from the incomplete and

noisy observation using the low-rank and the sparse noise models. If all values

in M are given and L −M is introduced to matrix S, the objective function

can be expressed with equality constraint as follows:

J(L, S) = ||L||pSp + λ||S||pp,

s.t. L− S = M,

(5.15)
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where λ ∝ 1/γ. It is noted that (5.15) is the same as (5.13) except for the sign

of S in the equality constraint.

5.3.3 Optimization method of pRPCA

In order to solve (5.13), we apply the method of ALM which is also used in

RPCA [81] and Schatten p-/lp- norm robust matrix completion [82]. It uses the

following unconstrained objective function:

J(L, S) = ||L||pSp + λ||S||pp +
µ

2
||S + L−M +

1

µ
Λ||2F , (5.16)

where Λ is an ALM. It aims to solve (5.16) by incrementing it iteratively. When

L is fixed, (5.16) can be simplified as follows:

J(S) =
1

2
||S −H||2f +

λ

µ
||S|||pp, (5.17)

where H = M − L− 1
µΛ. Likewise, when S is fixed, (5.16) can be simplified as

follows:

J(L) =
1

2
||L−G||2F +

1

µ
||L|||pSp, (5.18)

where G = M − S − 1
µΛ.

Algorithm 3 describes the iterative procedure to solve (5.13). For details in

solving (5.17) and (5.18), please refer to [82].

5.3.4 Discussion of the normalization factor for λ

In this section, we discuss the normalization factor for λ under various p values.

Let us assume we have matrix M , which is separated into L + S = M using
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Algorithm 3 Pseudocode for the optimization of pRPCA

1: set 0 < ρ < 1, µ > 0
2: L, S, Y ← 0
3: while iter ≤ maxiter do
4: update S by solving (5.17)
5: update L by solving (5.18)
6: update Y by Y ← Y + µ(L+ S −M)
7: update µ by µ > ρµ
8: end while

pRPCA with J(L, S) = ||L||pSp+λ||S||pp. If we have another matrix M ′, which is

an n-times repetition of M as M ′ = [MM · · ·MM ], we expect that M ′ should

be separated using pRPCA into L′ + S′ + M ′ , where L′ = [LL · · ·LL] and

S′ = [SS · · ·SS]. On the basis of this objective, we propose normalization factor

λ′ , where λ = kλ′, as follows: if the singular value decomposition (SVD) of L

is ULΛLVL, then the SVD of L′ is L′ = U(
√
nΛ)(

√
n−1[V V · · ·V V ]). Therefore,

the Schatten p-norm of L′ to the p power is given by

||L′||pSp = n
p
2 ||L||pSp. (5.19)

On the other hand, the p-norm of S′ to the p power is given by

||S′||pp = n||S||pp, (5.20)

From this property, the proper normalization factor λ′ can be determined to

make |L′||pSp + λ||S′||pp = n
p
2 ||L||pSp + nkλ′||S||pp be equal to |L||pSp + λ||S||pp =

||L||pSp + kλ′||S||pp as

λ′ = n
p
2
−1. (5.21)

Thus, λ′ should be changed depending on the relative size of the matrix, i.e., to

the power p
2 − 1 to be exact. In general, we finally determine λ′ by considering
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both the dimensions of the matrix as follows:

λ′ = max(f, t)
p
2
−1. (5.22)

We note that λ′ =
√

max(f, t)−1 when p = 1, which is the same as that

suggested for RPCA [81].

5.3.5 Generalized RPCA using scale compression

In practical experiments, the magnitude spectrogram is not a suitable domain

for audio source separation. Instead, a proper scale compression can increase the

separation performance [14, 61]. We present the extended RPCA by applying

a scale compression and generalized Wiener filtering step (SC-RPCA). The

objective function of the SC-RPCA is expressed as follows:

J(L, S) = ||L̂||∗ + λ||Ŝ||1,

s.t. L̂+ Ŝ = Mα,

(5.23)

where 0 < α < 1. It is noted that the optimization process of the SC-RPCA is

same as that of the RPCA except by taking the input matrix as Mα instead of

M . To obtain L and S from L̂ and Ŝ, we used the generalized Wiener filters as

follows:

Sf,t =
Ŝf,t

L̂f,t + Ŝf,t

Mf,t, (5.24)

Lf,t =
L̂f,t

L̂f,t + Ŝf,t

Mf,t. (5.25)

These filters allow perfect reconstruction of the input M from the separated

components L and S.
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5.3.6 Experimental results

The MIR-1K dataset is used to evaluate the proposed algorithms [32]. It consists

of 1000 wav files of Chinese karaoke pop songs from amateur singers. Each file

contains vocal and accompaniment tracks recorded separately with a 4–13-s

duration and 16-kHz sampling rate. We also used the BSS-EVAL 3.0 as the

evaluation criteria, which includes SIR, SAR, and SDR [17].

In all experiments, we first mix the signals in -5, 0, and 5-dB VAR. The

spectrograms of the mixtures are generated using a 1024-size Hamming window

with a hop size of 256. First, we discuss the value of λ for the SC-RPCA.

Table 5.1 lists the GNSDR result of the separated singing voice and shows that

smaller k values (where λ = kλ′) are needed for a smaller α value because when

α becomes smaller, the spectrogram of the input music becomes smoother and

can be easily approximated using the low-rank model. Therefore, to maintain

the overall amount of residual matrix S, the weight of the l1-norm minimization

should be smaller. From Table 5.1, we determine the values of α and k to be

0.4 and 0.6, respectively. On the other hand, the other parameters in pRPCA

(k = 1.5, p = 0.4) and the conventional RPCA (k = 1.5) are also chosen

empirically to maximize the separation performance.

The overall separation performance using RPCA, pRPCA, and SC-RPCA

are listed in Table 5.2 and Table 5.3. The interesting point shown in the ta-

bles is that pRPCA tends to show better performance in higher VARs, whereas

SC-RPCA shows better performance in lower VARs. However, both algorithms

show better results than the conventional RPCA in most of the mixing condi-

tions.
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Table 5.1 GNSDR of the separated singing voice using SC-RPCA over various
values of α and k. The input VAR is 0 dB

1/31

α

0.3 0.4 0.5 0.6

k

0.4 4.51 3.86 3.02 2.39

0.6 4.47 4.74 4.11 3.43

0.8 3.51 4.65 4.64 4.18

1 2.41 3.92 4.52 4.47

Table 5.2 Performance comparison of the separated singing voice.

1/31

Input VAR

-5 dB 0 dB 5 dB

GNS

DR
SIR SAR

GNS

DR
SIR SAR

GNS

DR
SIR SAR

RPCA 3.53 0.83 6.15 3.91 6.99 8.41 3.08 12.89 10.60

pRPCA 3.52 1.15 5.63 4.06 7.12 8.63 4.04 12.84 12.26

SC-RPCA 4.25 1.76 6.54 4.74 8.31 8.81 4.01 14.34 11.29

5.4 SVS using RPCA and spectral distribution

5.4.1 RPCA with weighted l1norm

Since λ in (5.2) is a global parameter for all the element of M , or Mf,t, once its

value is decided then all Mf,t have the same importance for the low-rankness of

Lf,t and the sparsity of Sf,t. However, it is not always proper in actual situation,

and might be too simple. For example, if we know that Lf,t = 0 for some (f, t),

we may able to choose the value of λ to be λ = 0 for those element. If Sf,t = 0,
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Table 5.3 Performance comparison of the separated accompaniment.

1/31

Input VAR

-5 dB 0 dB 5 dB

GNS

DR
SIR SAR

GNS

DR
SIR SAR

GNS

DR
SIR SAR

RPCA 1.36 7.96 12.92 2.97 3.98 12.24 4.11 -0.02 11.14

pRPCA 1.27 9.76 9.90 4.09 6.90 9.17 6.97 4.60 8.20

SC-RPCA 1.59 8.03 14.07 3.48 4.59 12.58 5.29 1.45 10.63

on the contrary, we may set λ → ∞. To apply the different weight for each

element, we present RPCA with weighted l1-norm, or wRPCA, which replace

λ to the weighting matrix Λ as:

minimize |L|∗ + |Λ⊗ S|1,

s.t. L+ S = M,

(5.26)

where ⊗ denotes the element-wise multiplication operator. Note that |Λ ⊗ S|1

is a weighted l1-norm of S, which has been presented in a number of previous

studies [83, 84]. To solve (5.26), optimization method for RPCA such as ALM

method can be directly used, just by replacing λ to Λ.

5.4.2 Proposed method: SVS using wRPCA

We extended previous RPCA-based SVS framework, by using wRPCA instead

of RPCA in particular. We refer several previous studies to design the separation

framework [29, 85, 86].
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Nonnegativity constraint

At first, we added a nonnegativity constraint in (5.26) as follows:

minimize |L|∗ + |Λ⊗ S|1,

s.t. L+ S = M, L ≥ 0, S ≥ 0.

(5.27)

This constraint prevent that large value of Λf,t makes large negative value for

S. The optimization of (5.27) is similar as of (5.2) or (5.26) but L and S are

rectified as x← max(x, 0) in every iteration.

Two-stage framework using VAD

There were two opposite studies on SVS and VAD. Chan et al. suggested that

additional vocal activity information can improve SVS [29]. On the other hand,

Lehner and Widmer suggested that SVS can improve the accuracy of VAD al-

gorithm [25]. To apply both of these suggestions, we conducted the two-stage

framework as shown in Fig. 5.2. At the first stage, the sources are separated

without vocal activity information. Next, vocal activity is detected using the

separated singing voice. In the second separation stage, the sources are sepa-

rated again with detected vocal activity information. We basically used VAD

algorithm presented by Lehner et al. which uses well-designed mel-frequency

cepstral coefficients (MFCC) as features [86]. In addition, we also used the vo-

cal variance features which were also proposed in their other studies [85]. For

the classification, we used random forest with 500 trees, and used threshold of

0.55. As a post-processing step, median filtering was applied to the frame-wise

classification results with 7 frames filter length (1.4s). Note that above frame-

work is also based on the previous study [86]. Because the temporal resolution

of spectrogram and VAD might be different, we aligned them by considering
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SVSa VAD

SVSb

Fig. 5.2 Framework of singing voice separation using two-stage wRPCA and
VAD.

those absolute time indices so that we can obtain the frame-wise VAD results.

Choosing the value for Λ

We choose the value of Λ as follows. At first, we decompose Λ as

Λ = kλ∆, (5.28)

where λ is 1/
√

max(F, T ) suggested by Candès et al. [81], and k is a global

parameter used by Huang et al. [28]. In this work, we empirically set it to be

k = 0.6. ∆ is a element-wise weighting matrix which is our main interest.

To select the appropriate value for ∆, we basically focused on the fact that ∆

should be smaller when singing voice is relatively stronger than accompaniment,

and be larger in the opposite case. If we try to set the frequency-wise weight,

therefore it might be reasonable to use the ratio of their variance as

∆f,t =
bA(f)

bV (f)
, (5.29)
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where bA(f) and bV (f) are the variances of the accompaniment and singing

voice, respectively, in f -th frequency bin. Assuming both singing voice and

accompaniment have the Laplacian distribution, they can be estimated by cal-

culating the l1-norm for each frequency bin in the training data as follows:

bA(f) =
∑
t

|Af,t|,

bV (f) =
∑
t

|Vf,t|,
(5.30)

where A and V are the training data of the accompaniment and singing voice,

respectively, that all the spectrograms of tracks in the training set are concate-

nated over time. Note that we assume that both accompaniment and singing

voice for training are from the same music, those therefore have the same time

length.

This variance ratio might be different when only vocal-activated frames

are estimated. At least it will be smaller than (5.29) in overall, since all the

non-vocal frames where singing voice is absent are excluded. In addition, since

we know that there is no singing voice in the non-vocal frames, we can set

the weight for those frames to infinite so the singing voice can be successfully

eliminated. Consequently, we set ∆̂ for the second separation stage as follows:

∆̂f,t =


b̂A(f)

b̂V (f)
, if p(t) = 1,

∞, otherwise,

(5.31)

where p(t) is the vocal activity information for the t-th frame: p(t) = 1 for

the vocal-activated frames and 0 for the non-vocal ones. b̂A(f) and b̂V (f) are

similar as bA(f) and bV (f), respectively, but estimated from the vocal-activated

frames only as
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b̂A(f) =
∑
t

|Âf,t|,

b̂V (f) =
∑
t

|V̂f,t|,
(5.32)

where Â and V̂ are the excerpts of A and V , respectively, which include the

vocal-activated frames (p(t) = 1) only.

Handling multi-channel signals

Real-world music data are mostly provided in a multi-channel format e.g. stereo.

Although the spatial information is helpful for better separation results, it is

beyond the scope of this work. Therefore, the tracks are mixed down to a single-

channel format. We simply took an average of spectrograms over channel and

perform RPCA (or wRPCA) to this averaged spectrogram. We were concerned

that the data is spatially biased if we take an average of waveform (center

enhanced) or perform the algorithms to each channel separately (left/right en-

hanced). After the separation of M = L + S is done, the separated singing

voice and accompaniment of original multi-channel signal is obtained by using

the Wiener-like filter (or soft mask) as L/(L + S) for the accompaniment or

S/(L+ S) for the singing voice for each channel.

5.4.3 Experimental results using DSD100 dataset

We applied our SVS algorithm to the dataset and the evaluation criteria from

sixth community-based signal separation evaluation campaign (SiSEC 2016):

professionally-produced music recordings (MUS) [87]. This campaign provided

Demixing Secrets Dataset 100 (DSD100), which consist 50 tracks for training

(‘dev’) and other 50 for testing (‘test’). All the tracks are sampled at 44.1kHz
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and have stereo channels. Because there are 4 sources (vocals, bass, drums, and

others) for each track, we considered the sum of bass, drums, and others as

accompaniment. We used the dev set only to set Λ and Λ̂, and even to train the

VAD algorithm. In our experiments, VAD scores 0.87 F-score and 84% accuracy

from the test set. As the evaluation criteria, it measures SDR, image-to-spatial

distortion ratio (ISR), SIR, and SAR based on BSS-Eval [17]. To generate the

spectrogram of music, we took the magnitude of short-time Fourier transform

with Hanning window of 4096 samples and half overlap.

Fig. 5.3 shows the comparison of conventional RPCA, wRPCA, and two-

stage wRPCA with VAD, and Tabel 5.4 shows the numerical values of the

median of SDR. From this result, we can find that the proposed wRPCA im-

prove SDR score for both singing voice and accompaniment, and even VAD

does. However, the improvement from VAD is considerably degraded in the

test set compared to the dev set. Considering that VAD for dev data makes

almost perfect accuracy since it is trained by itself, we can expect that the bet-

ter VAD algorithm is required to maximize its effectiveness. Example results

are shown in Fig. 5.4 and Fig. 5.5. Compared to the conventional RPCA, it is

observed that wRPCA successfully improve the separation quality, especially

in the low-frequency region, and even VAD does in the non-vocal frames in

particular.

5.4.4 Comparison with state-of-the-arts in SiSEC 2016

The presented SVS algorithms using wRPCA was submitted to SiSEC

2016:MUS. This task aims to separates music into 4 sources, which are la-

beled as vocal, drum, bass, and others, but it is not mandatory to obtain all
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Fig. 5.3 Comparison of singing voice separation results using (1) conventional
RPCA, (2) proposed wRPCA, and (3) wRPCA with VAD.

the sources. In addition, a sum of drum, bass, and other is considered as ac-

companiment, thus separating singing voice and accompaniment only is also

possible.

Fig. 5.6 Fig. 5.7 show the results of the submissions in SiSEC 2016. Belows

are the brief explanation for the submissions.
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Table 5.4 Numerical values of median SDR in Fig. 5.3.

SDR (dB)
dev test

RPCA wRPCA wRPCA
w/ VAD RPCA wRPCA wRPCA

w/VAD

Singing voice -0.83 3.80 4.74 -0.51 3.54 3.92

Accompaniment 4.78 9.68 10.52 5.00 9.13 9.45
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Fig. 5.4 Log-spectrograms of example mixture, singing voice, and accompani-
ment. Audio clips are excerpted from ‘AM Contra - Heart Peripheral’ in the
dev set of DSD100.

GRA used ensemble methods with multiple DNNs. The DNNs are trained

with those respective setting, such as target (source or mask), masking type

(binary or soft), or discriminate objective function [88].

HUA used a conventional RPCA-based SVS algorithm [28].

KON used RNN that jointly optimize the mask [89].

RAF used REPET-based separation algorithms as RP in Section 4.4.3 [34,

35, 36].
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(a) RPCA (b) wRPCA (c) wRPCA with VAD
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Fig. 5.5 Log-spectrograms of separated singing voice (top) and accompaniment
(bottom). Input mixture is same as in Fig. 5.4.

KAM used KAM as LFR in Section 4.4.3 [69].

CHA used CNN which uses spectrograms as an input and output. In partic-

ular, it used the different size for the convolution filters in each layer, to have

vertical or horizontal shape [90].

DUR used a mid-level representation, including pitch and timbre, which is

provided by a source/filter model [91].

OZE used the flexible audio source separation toolbox (FASST), which

conducts source separation frameworks using generalized expectation-

82



maximization [92].

STO used DNN-based algorithm, which uses STFT of common fate model

(CFM) as an input and an output of separation model [93].

NUG used Two-stage multichannel DNN which has a similar framework to

UHL [27, 94].

UHL used DNN, bi-directional LSTM, or those linear combination to learn a

model that obtains the musical instruments from the music spectrogram. It used

two-stage network framework, that the spectral densities of instruments in mono

are estimated in the first stage, then it is recursively updated in second stage

with spatial parameter updates. In addition, it applied several data augmented

technique that randomizing the channel order, source amplitudes, or source

combination to generate a mixture [27, 95].

IBM is not a submitted algorithm, but it is displayed as an expected maxi-

mum performance using the ideal binary mask.

The submitted algorithms can be categorized into two groups. The first one

is conventional approaches, which is based on the characteristics modeling or

statistic estimation. On the other hand, another approaches are based on ma-

chine learning, including NMF, DNN, convolutional neural network (CNN), or

recurrent neural network (RNN). Fig. 5.6 and Fig. 5.7 show that the proposed

methods outperform the conventional approaches. Moreover, they also shows

the comparable results with the deep learning-based approaches.
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Fig. 5.8 (a) ( bA(f)
bV (f))

−1 (black) and ( b̂A(f)

b̂V (f)
)−1 (blue) where (·)−1 is for visibility,

and (b) the enlarged plot in the range of (500, 2000), which is marked as a yellow
square. Red dotted line denotes the frequencies that correspond to musical note
(C#5 to B6).

5.4.5 Discussion

Since the main contribution of our work is the use of Λ and Λ̂, more accurately,

∆ and ∆̂, we discuss in depth about the characteristics of them. Fig. 5.8 shows

the plots of ( bA(f)
bV (f))

−1 and ( b̂A(f)

b̂V (f)
)−1 where (·)−1 is for visibility. Higher value

means that the singing voice is stronger than the accompaniment in that fre-

quency bin. What follows are several interesting insights we found from these

plots.

- ( bA(f)
bV (f))

−1 and ( b̂A(f)

b̂V (f)
)−1 both show similar trends but only the scales are

different, and we expect it means that the spectral characteristics of accompa-
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niment are similar between in vocal and non-vocal frames.

- Singing voice is extremely weaker than accompaniment in very low fre-

quency range (lower than 100Hz). It is reasonable because singing voice is

mostly distributed in f0 and its harmonics, which is rarely occur in those range,

while some instruments such as bass and drums can be. Some previous studies

for SVS have applied this characteristics by using high-pass filtering [61, 23].

- Some peaks can be found from the envelope, that are located around 0.7,

1.5, 3, and 8kHz. we expect it is related with the formants of singing voice.

- From Fig. 5.8 (b), we found an interesting phenomena that the singing

voice is relatively weak in the frequency bins which correspond to the musical

notes compared to those neighbor frequency bins. Although it needs more ex-

periments to clarify the reason, we made some possible hypotheses as follows:

1) the mainlobe of singing voice may wider than that of accompaniment, 2)

singing voice has stronger vibrato in general, and it may cause the ‘blurred

peak’ in a long window length, or 3) singers frequently fail to sound exact note

frequency, and make more errors than the instrumental players.

5.5 Summary

In this section, SVS algorithms based on low-rankness of accompaniment and

sparsity of singing voice were discussed. The conventional RPCA-based SVS

algorithm was briefly discussed, including its motivation and algorithm as well

as its optimization method.

Although the RPCA concept is appropriate for SVS problem, it still needs

to be extended or generalized for this specific usage. Two generalized RPCA-

based approaches have been presented in this section. First, we have proposed
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the application of the Schatten p- and lp-norms instead of the nuclear norm

and l1-norm, respectively. We have also presented a simple scale compression

process to make a spectrogram more proper representation for decomposition.

Experimental results show that both methods yield performance better than

or comparable to the conventional RPCA. Our next step will be to minimize

the computational intensity of pRPCA. Because most of the operation time is

spent by SVD, we would be able to significantly reduce it using the inexact SVD

used in RPCA [81]. Furthermore, we plan to combine pRPCA and SC-RPCA

in a single framework. Finally, we will investigate the use of other acoustic

characteristics, such as harmonicity or timbre, to help separate vocal from the

rest.

As another work, we replaced the l1-norm term to the weighted l1-norm, and

proposed to use the frequency-dependent variance ratio between singing voice

and accompaniment to make the weighting matrix. In addition, we apply VAD

for SVS by conducting a two-stage separation framework. In future works, we

will investigate a method for finding a better weighting matrix Λ. The spatial

information that is discarded in the current study also will be tried to be applied

in the separation procedure.

87



Chapter 6

Conclusion and Future Work

6.1 Conclusion

The goal of the thesis was to develop SVS system by applying the common

properties of singing voice and accompaniment in music signals. To this end,

we first discussed for the three distinct characteristics, that is, continuity, low-

rankness, and sparsity (Chapter 3). This discussion includes the definitions,

those mathematical representations, as well as those meaning in audio spectro-

grams. In addition, musical sources such as harmonic instruments, percussive

instruments, accompaniment, and singing voice are discussed in terms of those

characteristics. It was even empirically shown by using the actual music data.

Algorithms for SVS was presented based on these characteristics. First, we

presented an algorithm based on the continuity and sparsity (Chapter 4). In

particular, we extended the conventional SVS algorithm which uses two-stage

HPSS, by applying additional sparse residual which is considered as singing
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voice. An objective function for the single-stage separation framework is derived,

and its separation quality evaluated by using various datasets and challenges

shows better or comparable results compared to other conventional algorithms.

Another approach uses the low-rankness and sparsity, and we have presented

several generalization or extension method for the original RPCA-based SVS

algorithm (Chapter 5). We first proposed to generalize the nuclear norm and

l1-norm to Schatten p-norm and lp-norm, which are closer to ideal low-rankness

and sparsity, and even allow SVS algorithm to use one more parameter p. On the

other hand, wRPCA, which extends RPCA by using weighted l1-norm instead of

l1-norm, was introduced. We introduced another useful characteristics, spectral

distribution, and presented wRPCA-based SVS algorithm whose weight is set

based on this characteristics.

6.2 Contributions

The main contributions of this thesis can be summarized in the following points:

• A broad range of review on SVS: A comprehensive review of SVS was

provided. The importance and applications of SVS have been introduced,

as well as the important keywords and evaluation criteria. We have catego-

rized the algorithms for SVS into four groups–characteristics-based, spa-

tial, machine learning-based and inform approach–and introduced those

representative methods. Finally, we have listed the popular datasets and

challenges.

• In-depth discussion of singing voice and accompaniment char-

acteristics: We have discussed how singing voice and accompaniment
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can be distinguished, especially in terms of the low-level features. Three

characteristics, continuity, low-rankness, and sparsity have mainly been

focused. We also have shown the numerical estimation results for those

characteristics using the actual music data.

• A novel algorithm for SVS using continuity and sparsity: We

presented a novel SVS algorithm, which extends HPSS algorithm but with

an additional sparse residual. Simple optimization strategy have also been

presented. The separation quality have been evaluated by using various

datasets, and verified that the presented algorithm shows the better or

comparable quality with efficient computation, compared to the state-of-

the-art algorithms.

• Generalized RPCA-based SVS using Schatten p- and lp-norm:

We presented pRPCA as an generalized version of RPCA with Schatten

p- and lp-norm, which is more accurate to approximate the rank and

sparsity. We have also discussed the optimization method of pRPCA as

well as the normalization factor for the weighting parameter. In addition,

we have applied pRPCA for the SVS task. The optimal parameters for

the SVS task have been found empirically, and the separation quality has

been evaluated in various mixing condition.

• Scale compression for RPCA-based SVS: We have presented a sim-

ple method to improve the RPCA-based SVS by using scale compression.

From the experimental results, we have empirically found the compression

rate which shows the highest separation quality.
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• RPCA with weighted l1-norm: We have presented wRPCA, that re-

place the l1-norm of RPCA into weighted l1-norm. It allows to choose the

different importance between low-rankness and sparsity, for each coeffi-

cients in the matrix.

• wRPCA-based SVS applying the spectral distribution and VAD:

We have presented a novel SVS algorithm which is based on wRPCA.

We have used the spectral distribution of sources to decide the values of

weights. We have also presented the two-stage SVS framework which uses

vocal activity detection. Compared to the conventional RPCA-based SVS

algorithm, the proposed algorithm shows the meaningful improvements in

numerical evaluation.

6.3 Future work

6.3.1 Discovering various characteristics for SVS

In this thesis, we have discussed various characteristics of singing voice and

accompaniment, including continuity, low-rankness, sparsity as well as spectral

distribution. Unfortunately, because all the proposed SVS algorithms use only

a subset of them, integrating all the characteristics into a single separation

algorithm remains as a future task. In addition, there are also other important

characteristics which have been widely used in other SVS algorithms but did

not mainly focused in this thesis, including the predominant f0 of singing voice

or repetition of accompaniment, and it is even needed to be integrated in the

future.

In addition, it is required to discover novel characteristics for SVS. Con-

sidering other music source separation or MIR-related tasks, there are various
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features which imply the musical concepts. For example, harmonicity has been

widely used for music transcription, and vibrato or tremolo have been applied

for instrument recognition, as well as singing voice detection. Group sparsity,

which is similar to sparsity but for each group rather than each element, is

useful for NMF to let a source to occur in the specific time region but totally

eliminated in the other region. As a future work, in-depth discussion for this

characteristics, especially for singing voice and accompaniment, is required.

6.3.2 Expanding to other SVS approaches

As introduced in 2.2, the characteristics-based SVS can be considered as the

lowest-level approach. To maximize the separation quality, it is mandatory to

expand the methods to the higher-level approach, such as spatial or machine

learning-based one.

One simple method is to use the separation results of characteristics to

estimate the power spectral density (PSD) for spatial approach. Assuming that

all the unit sounds in a source occurs in the same location, the multi-channel

observation can be modeled by using PSD of source and the filters for each

microphone. Therefore, knowing PSD can be helpful to improve the separation

quality in spatial approaches. Similarly, the separation results can be used as a

prior in case of machine learning-based approach such as NMF-based SVS.

6.3.3 Applying the characteristics for deep learning models

Deep learning is a part of machine learning methods, whose features are not

designed by human engineers but learned from data using a general-purpose

learning procedure. It outperforms the conventional approaches in almost all
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the machine learning tasks regardless of the field, including image (object recog-

nition [96]), natural language (translation [97]), audio (speech recognition [98]),

and even games (the game of Go [99]). As discussed in 5.4.4, deep learning-

based method also top-ranked in SVS with huge performance gap compared to

conventional ones.

Can knowledge of source characteristics be helpful for deep learning-based

SVS algorithms, even though it may be expected to learn those characteristics

by themselves? It may be debatable. Since deep learning model learns the char-

acteristics by itself, domain knowledge can be considered not only information

but also kind of bias. Moreover, since deep learning studies are trying to develop

an end-to-end framework, which uses a raw signal as an input data without any

preprocessing or feature extraction, one may expect that characteristics-based

approaches will become increasingly meaningless.

However, we still believe that it is still useful, especially for architecture

design. Because deep learning architectures consist of multiple layers, which

represents from the low-level features to its abstracted high-level ones, it is

helpful to guide the model what to learn in the low layer and how to abstract

those features in the high layer. For example, we have shown that proper settings

for receptive field in neural network can improve genre recognition accuracy

[100]. As the future work, it is required to design the relevant architecture by

implying the characteristics of data.
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[93] F.-R. Stöter, A. Liutkus, R. Badeau, B. Edler, and P. Magron, “Common

fate model for unison source separation,” in Proceedings of IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing (ICASSP).

IEEE, 2016, pp. 126–130.

[94] A. A. Nugraha, A. Liutkus, and E. Vincent, “Multichannel audio source

separation with deep neural networks,” IEEE/ACM Transactions on

Acoustics, Speech, and Signal Processing, vol. 24, no. 9, pp. 1652–1664,

2016.

[95] S. Uhlich, M. Porcu, F. Giron, M. Enenkl, T. Kemp, N. Takahashi, and

Y. Mitsufuji, “Improving music source separation based on deep neural

networks through data augmentation and network blending,” in Proceed-

ings of IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP). IEEE, 2017.

[96] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision

108



and pattern recognition (CVPR), 2016, pp. 770–778.
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초 록

보컬 분리란 음악 신호를 보컬 성분과 반주 성분으로 분리하는 일 또는 그 방법을

의미한다. 이러한 기술은 음악의 특정한 성분에 담겨 있는 정보를 추출하기 위한

전처리 과정에서부터, 보컬 연습과 같이 분리 음원 자체를 활용하는 등의 다양한

목적으로 사용될 수 있다.

본 논문의 목적은 보컬과 반주가 가지고 있는 고유한 특성에 대해 논의하고

그것을 활용하여 보컬 분리 알고리즘들을 개발하는 것이며, 특히 ‘특징 기반’ 이

라고 불리는 다음과 같은 상황에 대해 중점적으로 논의한다. 우선 분리 대상이

되는 음악 신호는 단채널로 제공된다고 가정하며, 이 경우 신호의 공간적 정보를

활용할 수 있는 다채널 환경에 비해 더욱 어려운 환경이라고 볼 수 있다. 또한

기계 학습 방법으로 데이터로부터 각 음원의 모델을 추정하는 방법을 배제하며,

대신 저차원의 특성들로부터 모델을 유도하여 이를 목표 함수에 반영하는 방법

을 시도한다. 마지막으로, 가사, 악보, 사용자의 안내 등과 같은 외부의 정보 역시

제공되지 않는다고 가정한다. 그러나 보컬 분리의 경우 암묵 음원 분리 문제와는

달리 분리하고자 하는 음원이 각각 보컬과 반주에 해당한다는 최소한의 정보는

제공되므로 각각의 성질들에 대한 분석은 가능하다.

크게 세 종류의 특성이 본 논문에서 중점적으로 논의된다. 우선 연속성의 경

우 주파수 또는 시간 측면으로 각각 논의될 수 있는데, 주파수축 연속성의 경우

소리의 음색적 특성을, 시간축 연속성은 소리가 안정적으로 지속되는 정도를 각각

나타낸다고 볼 수 있다. 또한, 저행렬계수 특성은 신호의 구조적 성질을 반영하며

해당 신호가 낮은 행렬계수를 가지는 형태로 표현될 수 있는지를 나타내며, 성김

특성은 신호의 분포 형태가 얼마나 성기거나 조밀한지를 나타낸다.
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본 논문에서는 크게 두 가지의 보컬 분리 방법에 대해 논의한다. 첫 번째 방

법은 연속성과 성김 특성에 기반을 두고 화성 악기-타악기 분리 방법 (harmonic-

percussive sound separation, HPSS) 을 확장하는 방법이다. 기존의 방법이 두

번의 HPSS 과정을 통해 보컬을 분리하는 것에 비해 제안하는 방법은 성긴 잔여

성분을 추가해 한 번의 보컬 분리 과정만을 사용한다. 논의되는 다른 방법은 저행

렬계수특성과성김특성을활용하는것으로,반주가저행렬계수모델로표현될수

있는반면보컬은성긴분포를가진다는가정에기반을둔다.이러한성분들을분리

하기 위해 강인한 주성분 분석 (robust principal component analysis, RPCA) 을

이용하는방법이대표적이다.본논문에서는보컬분리성능에초점을두고 RPCA

알고리즘을 일반화하거나 확장하는 방식에 대해 논의하며, 트레이스 노름과 l1 노

름을 각각 샤텐 p 노름과 lp 노름으로 대체하는 방법, 스케일 압축 방법, 주파수

분포 특성을 반영하는 방법 등을 포함한다. 제안하는 알고리즘들은 다양한 데이

터셋과 대회에서 평가되었으며 최신의 보컬 분리 알고리즘들보다 더 우수하거나

비슷한 결과를 보였다.

주요어: 보컬 분리, 최적화, 음악 신호 처리

학 번: 2013-30733
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