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Abstract

A study on the competition graphs of

d-partial orders

Jihoon Choi

Department of Mathematics Education

The Graduate School

Seoul National University

The competition graph C(D) of a digraph D is defined to be a graph

whose vertex set is the same as D and which has an edge joining two distinct

vertices x and y if and only if there are arcs (x, z) and (y, z) for some vertex

z in D. Competition graphs have been extensively studied for more than four

decades.

Cohen [13, 14, 15] empirically observed that most competition graphs

of acyclic digraphs representing food webs are interval graphs. Roberts [51]

asked whether or not Cohen’s observation was just an artifact of the construc-

tion, and then concluded that it was not by showing that if G is an arbitrary

graph, then G together with additional isolated vertices as many as the num-

ber of edges of G is the competition graph of some acyclic digraph. Then he

asked for a characterization of acyclic digraphs whose competition graphs

are interval graphs. Since then, the problem has remained elusive and it has

been one of the basic open problems in the study of competition graphs.

There have been a lot of efforts to settle the problem and some progress

has been made. While Cho and Kim [8] tried to answer his question, they

could show that the competition graphs of doubly partial orders are interval
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graphs. They also showed that an interval graph together with sufficiently

many isolated vertices is the competition graph of a doubly partial order.

In this thesis, we study the competition graphs of d-partial orders some

of which generalize the results on the competition graphs of doubly partial

orders.

For a positive integer d, a digraph D is called a d-partial order if V (D) ⊂
Rd and there is an arc from a vertex x to a vertex y if and only if x is

componentwise greater than y. A doubly partial order is a 2-partial order.

We show that every graph G is the competition graph of a d-partial order

for some nonnegative integer d, call the smallest such d the partial order

competition dimension of G, and denote it by dimpoc(G). This notion extends

the statement that the competition graph of a doubly partial order is interval

and the statement that any interval graph can be the competition graph of a

doubly partial order as long as sufficiently many isolated vertices are added,

which were proven by Cho and Kim [8]. Then we study the partial order

competition dimensions of some interesting families of graphs. We also study

the m-step competition graphs and the competition hypergraph of d-partial

orders.

Key words: competition graphs, d-partial orders, partial order competition

dimension, homothetic regular simplices, order types

Student Number: 2014–31199
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Chapter 1

Introduction

1.1 Basic notions in graph theory

In this section, we introduce some basic notions in graph theory, which shall

be frequently used in this thesis. For undefined terms, readers may refer to

[4].

A graph G is defined as an ordered pair (V,E) where V is a set and E

is a family of unordered pairs of elements in V . If V is a finite set, then G

is called a finite graph. Otherwise, G is called an infinite graph. An element

of V and an element of E are called a vertex and an edge of G, respectively.

If e = {u, v} is an edge, then we simply write it by uv for convenience when

there is no confusion. The set of vertices and the set of edges of a graph G

are called the vertex set and the edge set of G, respectively, and denoted by

V (G) and E(G), respectively.

Let G be a graph and e = {u, v} be an edge of G. Then we say that e

joins (or connects) u and v, u and v are the end vertices (or ends) of e, and

each of u and v is incident to e. In addition, we write u ∼G v and say that

u and v are adjacent in G.

Let G be a graph and {u, v} be an edge of G. If u = v, then the edge

{u, v} is called a loop. If u 6= v and there are more than one edge connecting
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u and v, then {u, v} is called a multiple edge or a parallel edge. A graph

having no loops and no multiple edges is said to be simple.

Let G be a graph and u be a vertex of G. A vertex of G which is adjacent

to u is called a neighbor of u. The set of all neighbors of u is called the (open)

neighborhood of u and is denoted by NG(u). The degree of the vertex u is

defined to be the number of edges incident to u and is denoted by dG(u) or

degG(u). A vertex with degree 0 is called an isolated vertex. For a positive

integer k, the set of k isolated vertices is denoted by Ik. When there is no

possibility of confusion, we sometimes omit the subscript G in the notations

defined above.

Two graphs G and H are said to be isomorphic if there exist bijections

fV : V (G) → V (H) and fE : E(G) → E(H) such that for every edge

e ∈ E(G), e connects vertices u and v in G if and only if fE(e) connects

vertices fV (u) and fV (v) in H . If G and H are isomorphic with bijections

fV and fE described above, then we write G ∼= H and call (fV , fE) a graph

isomorphism from G to H .

Let G be a graph. A graph H is called a subgraph of G if V (H) ⊂ V (G)

and E(H) ⊂ E(G). If H is a subgraph G, then G is called a supergraph of H .

For a nonempty subset S of V (G), the subgraph of G induced by S, denoted

by G[S], is the simple graph defined by V (G[S]) = S and E(G[S]) = {uv ∈
E(G) | u, v ∈ S}. For a nonempty proper subset S of V (G), G − S denotes

the subgraph of G induced by V (G) \ S. For notational simplicity, we write

G− v instead of G− {v} for a vertex v of G. An induced subgraph of G is a

graph induced by some nonempty subset of V (G). We say that G is H-free

if no induced subgraph of G is isomorphic to H .

Given a simple graph G, the complement G of G is defined to be a simple

graph obtained by reversing the adjacency of G, i.e., V (G) = V (G) and

E(G) = {uv | uv /∈ E(G)}.
A complete graph Kn is a graph with n vertices in which every pair of

vertices are adjacent. A vertex subset S of V (G) is called a clique if the
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induced subgraph G[S] is complete. We sometimes call a complete subgraph

a clique. A walk from a vertex v1 to a vertex vk+1 is an alternating sequence

v1, e1, v2, e2, . . . , vk, ek, vk+1

of vertices and edges where each vi (i = 1, . . . , k + 1) is a vertex of G and

each ej (j = 1, . . . , k) is an edge of G joining vi and vi+1. The length ℓ(W )

of a walk W is defined to be the number of edges belonging to it. If there

exists a walk starting from a vertex v to another vertex w, then we say that

v and w are connected by a walk. If any two vertices are connected by a

walk, then we say that the graph G is connected. Otherwise, G is said to be

disconnected. A maximally connected subgraph of G is called a (connected)

component of G. It is obvious that G is connected if and only if G has only

one connected component.

A walk

v1, e1, v2, e2, . . . , vk, ek, vk+1

is called a path if v1, . . . , vk+1 are all distinct, and called a cycle if v1 = vk+1

and v1, . . . , vk are all distinct. We denote a path on n vertices by Pn, and a

cycle on n vertices by Cn. If no subgraph of G is a cycle, then G is called

acyclic. A connected acyclic graph is called a tree. A graph is said to be

chordal if it does not contain a cycle of length at least four an as induced

subgraph.

A digraph (or directed graph)D is defined as an ordered pair (V (D), A(D))

where V (D) is a set and A(D) is a family of ordered pairs of elements in

V (D). If V (D) is a finite set, then D is said to be finite. Otherwise, D is

said to be infinite. An element of V (D) and an element of A(D) are called a

vertex and an arc (or directed edge) of D, respectively. The subdigraphs and

induced subdigraphs of a digraph are similarly defined as the subgraphs and

induced subgraphs of a graph. If (u, v) ∈ A(D), then we say that u and v are

the tail and the head of (u, v), respectively, so that the arc (u, v) goes from
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the tail u to the head v.

Let D be a digraph and u be a vertex of D. A vertex v is called an out-

neighbor (resp. in-neighbor) of u if (u, v) (resp. (v, u)) is an arc in D. The set

of all out-neighbors (resp. in-neighbors) of u is called the out-neighborhood

(resp. in-neighborhood) of u in D and denoted by N+
D (u) (resp. N

−
D(u)). The

outdegree d+D(u) is the number of arcs with tail u and the indegree d−D(u) is

the number of arcs with head u.

A directed walk from a vertex v1 to a vertex vk+1 is an alternating sequence

v1, a1, v2, a2, . . . , vk, ak, vk+1

of vertices and arcs where each vi (i = 1, . . . , k + 1) is a vertex and each aj

(j = 1, . . . , k) is an arc from vi to vi+1. The length ℓ(W ) of a directed walk

W is defined to be the number of arcs belonging to it. A directed walk

v1, a1, v2, a2, . . . , vk, ak, vk+1

is called a directed path if v1, . . . , vk+1 are all distinct, and called a directed

cycle if v1 = vk+1 and v1, . . . , vk are all distinct. If no subdigraph of D is a

directed cycle, then G is said to be acyclic.

Let G be a digraph. If we assign an orientation to each edges of G, then

the resulting digraph is called an orientation of G. If an orientation D of G

satisfies the property that (u, v), (v, w) ∈ A(D) imply (u, w) ∈ A(D), then

the orientation is said to be transitive.

In this paper, all the graphs and digraphs are assumed to be finite and

simple unless otherwise stated.
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Mathematical Notation

N : The set of positive integers

Z≥0 : The set of nonnegative integers

Z : The set of integers

R : The set of real numbers

Rd : The d-dimension Euclidean sapce R× R× · · · × R (d times)

Hd : The hyperplane {(x1, . . . , xd) ∈ Rd | x1 + x2 + · · ·+ xd = 0}
Hd

+ : The upper half-space {(x1, . . . , xd) ∈ Rd | x1 + x2 + · · ·+ xd > 0}
V (G) : The vertex set of a graph (or a digraph) G

E(G) : The edge set of a graph G

A(D) : The arc set of a digraph D

uv in G : The edge between a vertex u and a vertex v in a graph G

(u, v) in D : The arc from a vertex u to a vertex v in a digraph D

G[S] : The subgraph of a graphs G induced by a vertex subset S

G− S : The subgraph of a graph G induced by V (G) \ S
G− v : The subgraph of a graph G induced by V (G) \ {v}
G : The complement of a graph G

dG(u) : The degree of a vertex u in a graph G

d−D(u) : The indegree of a vertex u in a digraph D

d+D(u) : The outdegree of a vertex u in a digraph D

NG(u) : The neighborhood of a vertex u in a graph G

N−
D (u) : The in-neighborhood of a vertex u in a digraph D

N+
D (u) : The out-neighborhood of a vertex u in a digraph D

θv(G) : The vertex clique cover number of a graph G

θe(G) : The edge clique cover number of a graph G

Ik : The set of k isolated vertices

Kn : A complete graph of n vertices

Pn : A path of length n

Cn : A cycle of length n

5
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Figure 1.1: A digraph D and its competition graph C(D)

1.2 Competition graphs

1.2.1 A brief history of competition graphs

The notion of competition graph arose in the work of Cohen [13] in connection

with an application in ecology. Let D be a digraph which represents a food

web in an ecosystem which is obtained by drawing an arc from a predator

to a prey. The vertex set V (D) represents the set of species in the ecosystem

and an arc (x, y) ∈ A(D) means that a species x preys on a species y. One

important assumption in ecology is that two species compete if they have a

common prey. Hence the rivalry between species in a food web, which is an

important subject in ecology, can be represented by the competition graph of

D. The competition graph of a digraph is defined as follows (see Figure 1.1

for an example).

Definition 1.2.1. Given a digraph D, the competition graph C(D) of D is

a simple graph having the same vertex set as D and there is an edge {x, y}
in C(D) if and only if (x, z), (y, z) ∈ A(D) for some z ∈ V (D).

The ecological application of competition graphs was a primary motiva-

tion for the paper [14], the book [15], and many papers on this topic.
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The notion of competition graph also arises in a variety of other non-

biological contexts. Suppose that the vertex set of a digraphD can be divided

into two classes, A and B, and all arcs are from vertices of A to vertices of B.

Then we sometimes seek a restriction of the competition graph to the set A.

For instance, in communication network models, A is a set of transmitters, B

is a set of receivers, and there is an arc from u ∈ A to v ∈ B if a message sent

at u can be received at v. We then note that x and y in A interfere if signals

sent at x and y can be received at the same place, i.e., if and only if x and y

are adjacent in the competition graph. The problem of channel assignments

in communication networks can be looked at as the problem of coloring the

competition graph of a digraph (see [41, 43, 50, 55]). Competition graphs

also arise in studies of the structure of models of complex system arising

in modeling of energy and economic systems. In such models, we often use

matrices and set up linear programs. Let A be the set of rows and B be

the set of columns of a matrix M . Let D be a digraph such that A ∪ B is

the vertex set and there is an arc from a vertex u ∈ A to a vertex v ∈ B

if and only if the (u, v)-entry of M is nonzero. Then in the corresponding

linear program, the constraints corresponding to rows x and y involve a

common variable with nonzero coefficients if and only if x and y are adjacent

in the competition graph of D. In the literature, the competition graph is

called the row graph of matrix M . The row graph is useful in understanding

the structure of linear programs. The properties of row graphs are studied

in [21, 22, 23, 24]. For further applications on competition graphs, the readers

may refer to the survey articles by Kim [32] and Lundgren [38].

1.2.2 Competition numbers

Roberts [51] showed that if G is an arbitrary graph, then G together with

additional isolated vertices as many as the number of edges of G is the compe-

tition graph of some acyclic digraph. To show this, he constructed an acyclic

digraph which has the vertex set V (G) ∪ {vxy | xy ∈ E(G)} and the arc
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set
⋃

xy∈E(G){(x, vxy), (y, vxy)} and showed that its competition graph is G

together with the set {vxy | xy ∈ E(G)} of additional isolated vertices. Then

he defined the competition number k(G) of G as follows.

Definition 1.2.2. For a graph G, the competition number k(G) of G is de-

fined to be the smallest nonnegative integer k such thatG∪Ik is a competition

graph of some acyclic digraph.

In Definition 1.2.2, the acyclicity assumption on a digraph is natural in a

sense that the origination of competition graphs came from the study of the

competition relation in a food web.

Determining whether an arbitrary graph is the competition graph of some

acyclic digraph has been one of the most important research problems in the

field of competition graphs. Roberts [51] suggested to characterize the com-

petition graphs of acyclic digraphs by computing the competition numbers.

Yet, computing the competition number of a graph is in general not easy as

Opsut [45] has shown that computing the competition number is an NP-hard

problem. Nonetheless, there has been much effort to compute the exact value

or a bound of the competition numbers of some interesting graphs.

For a graph G, a set C of cliques of G is called an vertex clique cover

(resp. edge clique cover) of G if every vertex (resp. every edge) of G belongs

to at least one clique in C. The minimum cardinality of a vertex clique cover

(resp. edge clique cover) is called the vertex clique cover number (resp. edge

clique cover number) of G and denoted by θv(G) (resp. θe(G)).

Dutton and Brigham [16] characterized the competition graphs of acyclic

digraphs in terms of edge clique covers.

Theorem 1.2.3 ([16]). A graph G on n vertices is the competition graph of

an acyclic digraph if and only if G has an edge clique cover {C1, . . . , Cn} and

a labeling v1, . . . , vn of the vertices of G such that if vi ∈ Cj, then i > j.

Lundgren and Maybee [39] and Kim [31] characterized the graphs whose

competition numbers are at most m.
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Theorem 1.2.4 ([31, 39]). Let G be a graph on n vertices and m be a

nonnegative integer with m ≤ n. Then k(G) ≤ m if and only if G has an edge

clique cover {C1, C2, . . . , Cn+m−2} and a labeling v1, . . . , vn of the vertices of

G such that if vi ∈ Cj, then i ≥ j −m+ 1.

The competition numbers of some interesting families of graphs were given

by Roberts [51].

Theorem 1.2.5 ([51]). The competition number of a chordal graph is at

most 1.

Theorem 1.2.6 ([51]). If a graph G is nontrivial, connected, and triangle-

free, then k(G) = |E(G)| − |V (G)|+ 2.

Opsut [45] gave nice bounds for the competition number of an arbitrary

graph as follows.

Theorem 1.2.7 ([45]). For a graph G, θe(G)− |V (G)|+2 ≤ k(G) ≤ θe(G).

Theorem 1.2.8 ([45]). For a graph G, k(G) ≥ minv∈V (G)θ(NG(v)).

Opsut [45] also computed the competition number of a line graph. The

line graph of a graph is defined as follows.

Definition 1.2.9. For a graph G, the line graph L(G) of G is defined as a

graph with the vertex set E(G) and two vertices are adjacent in L(G) if and

only if they are adjacent in G as edges. A graph is called a line graph if it is

the line graph of a graph.

A graph is said to be locally cobipartite if the neighborhood of each vertex

can be covered by at most two cliques. It is easy to see that every line graph

is locally cobipartite.

The following theorem, which had been called Opsut’s conjecture, was

posed by Opsut [45] in 1982, partially solved by many researchers ([6, 46, 61,

62, 63, 64]), and was at last completely solved by McKay et al. [44] in 2014.

Theorem 1.2.10 ([44]). For a locally cobipartite graph G, k(G) ≤ 2 and the

equality holds if and only if θ(NG(v)) = 2 for any vertex v of G.

9



1.2.3 Interval competition graphs

If two sets A and B have a nonempty intersection, then we say that A and

B overlap or intersect. A graph G is called the intersection graph of a family

F of sets if there exists a bijection φ : V (G) → F such that two vertices x

and y are adjacent in G if and only if φ(x) ∩ φ(y) 6= ∅. A graph is said to be

interval if it is the intersection graph of a family of intervals on the real line.

The notion of interval graph was introduced independently by G. Hajós [26]

and S. Benzer [3]. Since the introduction of an interval graph, it has been ex-

tensively studied due to its important role in various fields such as scheduling

theory, chemistry, biology, and genetics.

For a simple example, consider a problem of scheduling the courses in a

university. Let {ci | i ∈ I} be the set of courses which are to be offered in the

next semester at a university and let Ti be the time interval for ci (i ∈ I).

We should assign each course to a lecture room in such a way that different

lecture rooms are assigned to different courses whenever their time intervals

intersect. To solve this problem, we define a graph G so that {ci | i ∈ I} is the
vertex set and cicj is an edge if and only if Ti∩Tj 6= ∅. By the way in which G

is defined, G is obviously an interval graph. Then the desired assignment of

lecture rooms can be obtained by coloring the vertices of the interval graph G

so that adjacent vertices receive different colors where each color represents

a lecture room. For another example, let c1, . . . , cn be chemical compounds

each of which must be kept at a particular temperature. For each i = 1, . . . , n,

suppose that the compound ci must be kept at a temperature in an interval

Ti. Then we ask how many warmers or refrigerators we need to store all the

compounds at an appropriate temperature. To solve the problem, we define

an interval graph G in the same way as the previous example, i.e., the vertex

set of G is {c1, . . . , cn} and cicj is an edge if and only if Ti∩Tj 6= ∅. It is well-
known that every interval graph satisfies the Helly property, that is, if K is

a clique in an interval graph, then the intervals corresponding to the vertices

in K have a nonempty intersection. Therefore, for every clique K of G, we
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v1

v2

v3v4 v5 v6

Figure 1.2: The asteroidal triple

can find a temperature which is suitable for every compound belonging to

K. Thus we need warmers or refrigerators as many as the number of cliques

which covers all the vertices of G. Hence we need warmers or refrigerators at

least as many as the vertex clique cover number θ(G). More applications of

interval graphs can be found in [20].

Due to their attractive properties, interval graphs have been extensively

studied both in pure mathematics and applied sciences. One of the inter-

esting and important problems on interval graphs was to characterize them.

Among many characterizations having been presented, we take a look at the

famous two results given by Lekkerkerker and Boland [37] and Gilmore and

Hofman [19].

The asteroidal triple (AT for short) is defined as a graph with the vertex

set {v1, v2, v3, v4, v5, v6} and the edge set {v1v2, v3v4, v5v6, v1v3, v3v5, v5v1} (see
Figure 1.2).

Theorem 1.2.11 ([37]). A graph is an interval graph if and only if it is

chordal and AT-free.

Theorem 1.2.12 ([19]). A graph is an interval graph if and only if it is

C4-free and its complement has a transitive orientation.

Interval graphs have a connection with food webs in ecology. Cohen [13,

14, 15] empirically observed that most competition graphs of acyclic digraphs
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representing food webs are interval graphs. Roberts [51] asked whether or not

Cohen’s observation was just an artifact of the construction, and then con-

cluded that it was not by showing that if G is an arbitrary graph, then G

together with additional isolated vertices as many as the number of edges

of G is the competition graph of some acyclic digraph. Then, he asked for

a characterization of acyclic digraphs whose competition graphs are interval

graphs. Since then the problem has remained elusive and it has been one

of the basic open problems in the study of competition graphs. There have

been a lot of efforts to settle the problem and some progress has been made.

Cohen [15] approached the problem from a statistical point of view, trying

to build statistical models for the construction of a random acyclic digraph

D such that C(D) becomes an interval graph. Steif [60] showed that it is im-

possible to give a forbidden subdigraph characterization of acyclic digraphs

whose competition graphs are interval. Lundgren and Maybee [40] gave some

results which characterize such digraphs. However, their results essentially

boiled down to calculating C(D) and using one of the well-known character-

izations of an interval graph. While their results solve the problem, we are

still more interested in characterization in terms of properties of D. Since

the general problem of characterizing acyclic digraphs whose competition

graphs are interval seems difficult, Hefner et al. [27] attacked this problem

by putting a constraint on the indegrees and outdegrees of the vertices on

D. The study on acyclic digraphs whose competition graphs are interval led

to several new problems and applications in the field of competition graphs.

One of them is to characterize competition graphs of an interesting family

of digraphs. There have been a number of papers about competition graphs

of specific classes of digraphs. For instance, competition graphs of acyclic

digraphs have been studied in [16, 53], of arbitrary digraphs with or without

loops in [16, 38], of strongly connected digraphs in [18], of Hamiltonian di-

graphs in [18, 25], of interval digraphs in [36], for various classes of symmetric

digraphs in [42, 43, 50], of semiorders, of acyclic digraphs satisfying property

12
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(5, 2)
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(0, 4)

(4, 4)

(2, 5)

(1, 6)

D

Figure 1.3: A doubly partial order D

C(p), and of acyclic digraphs satisfying property C∗(p) in [35]. By means

of extending the results obtained in [35], Roberts (pers. comm.) proposed a

problem of characterizing competition graphs of doubly partial orders, which

is defined as follows.

Definition 1.2.13. The relation ≺ on a subset S of R2 defined by

(x1, x2) ≺ (y1, y2) ⇔ x1 < y1 and x2 < y2

is called a doubly partial order. A digraph D is called a doubly partial order

if D is isomorphic to a doubly partial order relation (S,≺) for a subset S of

R2. See Figure 1.3 for an example.

While Cho and Kim [8] tried to answer his question, they could show that

the competition graphs of doubly partial orders are interval graphs. They

also showed that an interval graph together with sufficiently many isolated

vertices is the competition graph of a doubly partial order.
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Theorem 1.2.14 ([8]). The competition graph of a doubly partial order is

an interval graph.

Theorem 1.2.15 ([8]). Every interval graph can be made into the compe-

tition graph of a doubly partial order by adding sufficiently many isolated

vertices.

Based on the observation that adding isolated vertices to a graph does not

destroy the structure of the original graph, the results of Cho and Kim [8]

can be summarized that the family of interval graphs and the family of

competition graphs of doubly partial orders are essentially the same in the

viewpoint of graph structure.

1.3 Variants of competition graphs

Since the introduction of competition graph, various variations of competi-

tion graphs have been introduced and studied by many researchers. For exam-

ple, common enemy graph by Lundgren and and Maybee [40], competition-

common enemy graph by Scott [54], niche graph by Cable et al. [5], p-

competition graph by Kim et al. [34], phylogeny graph by Roberts and

Sheng [52], m-step competition graph by Cho et al. [9], competition hyper-

graph by Sonntag and Teichert [56], and (i, j)-competition graph by Factor

and Merz [17] are variations of competition graphs which have been the most

extensively studied.

In this section, we will introduce the notions of m-step competition graph

and competition hypergraph, which will be dealt with in the thesis. For

more information on variants of competition graphs, readers may refer to the

survey articles by Kim [32] and Lundgren [38].
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1.3.1 m-step competition graphs

Cho et al. [9] introduced the notion of m-step competition graph of a digraph

as a generalization of the competition graph of D. Let D be a digraph and

m be a positive integer. A vertex y is called an m-step prey of a vertex x in

D if and only if there exists a directed walk from x to y of length m.

Definition 1.3.1. The m-step competition graph of a digraph D, denoted

by Cm(D), is defined to be the graph having the same vertex set as D and

having an edge xy if and only if there exists an m-step common prey of x

and y in D.

A relationship between the m-step competition graph and the ordinary

competition graph was given by Cho et al. [9] as follows.

Theorem 1.3.2 ([9]). For a digraph D and a positive integer m, Cm(D) =

C(Dm).

The notion of m-step competition graph is one of the important variants

of competition graph. Since its introduction, it has been extensively studied.

For example, the structural properties of m-step competition graphs were

given in [9, 29, 47], the characterizations of paths or cycles which is the

m-step competition graph of a digraph were studied in [2, 28, 66], and the

matrix sequence {Cm(D)}∞m=1 for a digraph D were studied in [7, 11, 30, 49].

The m-step competition graphs have a connection with the matrix theory.

Let B = {0, 1} denote the two-element Boolean algebra with addition (+)

and multiplication (·) defined by

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 1,

0 · 0 = 0, 0 · 1 = 0, 1 · 0 = 0, 1 · 1 = 1.

Let Bn be the set of all n× n matrices over B. We define a matrix operator
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Am

D(Am)

Γ(Am)

C(Dm(A))

�

Γ

C

Figure 1.4: A commutative diagram

Γ : Bn → Bn by Γ(A) = (γij) where

γij =











0 if i = j;

0 if i 6= j and the dot product of row i and row j of A is 0;

1 if i 6= j and the dot product of row i and row j of A is not 0.

Given a matrix A ∈ Bn, there exists a unique digraph whose adjacency matrix

is A. We call such a digraph the digraph of A and denote it by D(A). Then,

for a matrix A ∈ Bn and a positive integer m, the relationships between

Am, Γ(Am), D(Am), and C(Dm(A)) can be described by the commutative

diagram in Figure 1.4.

1.3.2 Competition hypergraphs

A hypergraph is a generalized notion of a graph. Formally, a hypergraph H is

defined as an ordered pair (V (H), E(H)) where V (H) is a set and E(H) is a

family of nonempty subsets of V . For a hypergraph H = (V (H), E(H)), the

elements in V (H) is called the vertices and the elements in E(H) is called

the hyperedges of H . A difference between a graph and a hypergraph is that

every edge of a graph consists of one or two vertices while a hyperedge of

a hypergraph may consists of any number of vertices. A hypergraph is said

to be k-uniform for some positive integer k if every hyperedge consists of
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x1

x2x3

x4

x5 x6

D CH(D)

x1

x2x3

x4

x5 x6

Figure 1.5: A digraph D and its competition hypergraph CH(D) which has
two hyperedges

exactly k vertices. We note that a graph may be regarded as a hypergraph

by regarding its edges as hyperedges consisting of one or two vertices.

The notion of competition hypergraph was introduced by Sonntag and

Teichert [56].

Definition 1.3.3. Given a digraph D, the competition hypergraph of D,

denoted by CH(D), is a hypergraph defined so that the vertex set of CH(D)

is V (D) and a subset e of V (D) is a hyperedge in CH(D) if and only if |e| ≥ 2

and e coincides with the in-neighborhood of some vertex in D (see Figure 1.5

for an example).

The notion of competition hypergraph is one of the important variants

of competition graphs. For significant results on this topic, readers may refer

to [48, 56, 57, 58, 59].

The first research results on the competition hypergraphs of d-partial or-

ders were given by Kim et al. [33]. They studied the competition graphs of

2-partial orders and showed that, contrary to the fact that the competition

graph of a 2-partial order is always an interval graph, the competition hy-

pergraph of a 2-partial order may not be an interval hypergraph, which will

be defined in Section 6.3. Then they characterized 2-partial orders whose
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competition hypergraphs are interval.

1.4 A preview of the thesis

In Chapter 2, we introduce the notion of d-partial order as an extension of

doubly partial order and study the competition graphs of d-partial orders.

Especially, we show that every graph together with sufficiently many isolated

vertices is the competition graph of a d-partial order for some positive integer

d, and then introduce a notion of partial order competition dimension of a

graph. In addition, we characterize the competition graphs of d-partial orders

by using homothetic regular simplices.

In Chapter 3, we present upper or lower bounds for the partial order

competition dimensions of some chordal graphs. Especially, we present a

sufficient condition for a chordal graph G to satisfy dimpoc(G) ≤ 3, and

present a family of chordal graphs G with dimpoc(G) > 3.

In Chapter 4, we introduce a notion of order type and then compute the

exact value of partial order competition dimension of all the complete bi-

partite graphs. In addition, by utilizing the notion of order type, we present

some graphs with partial order competition dimensions greater than three.

Furthermore, we give an upper bound for the partial order competition di-

mension of a graph in terms of its chromatic number and give an upper bound

for the partial order competition dimensions of planar graphs.

In Chapter 5, we study the m-step competition graphs of d-partial orders.

We show that, for an arbitrary positive integer m, every graph together with

some additional isolated vertices is the m-step competition graph of a d-

partial order for some positive integer d, and then introduce a notion of

partial order m-step competition dimension of a graph. Then we study it in

the aspect of the partial order competition dimension.

In Chapter 6, we study the competition hypergraph of d-partial orders.

We show that every hypergraph together with some additional isolated ver-
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tices is the competition hypergraph of a d-partial order for some positive

integer d, and then introduce a notion of partial order competition hyper-

dimension of a graph. Then we show that, for any positive integer d, there ex-

ists a hypergraph whose partial order competition hyper-dimension is greater

than d and that every interval hypergraph has the partial order competition

hyper-dimension at most three.
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Chapter 2

On the competition graphs of

d-partial orders1

2.1 The notion of d-partial order

In this section, we define a d-partial order which is an extension of a doubly

partial order to a general dimension. Let d be a positive integer. For x =

(x1, x2, . . . , xd), y = (y1, y2, . . . , yd) ∈ Rd, we write x ≺ y (resp. x � y) if

xi < yi (resp. xi ≤ yi) for each i = 1, . . . , d. If x � y or y � x, then we

say that x and y are comparable in Rd. Otherwise, we say that x and y

are incomparable in Rd. For a finite subset S of Rd, let DS be the digraph

defined by V (DS) = S and A(DS) = {(x,v) | v,x ∈ S,v ≺ x}. A digraph

D is called a d-partial order if there exists a finite subset S of Rd such that

D is isomorphic to the digraph DS. By convention, the zero-dimensional

Euclidean space R0 consists of a single point 0. In this context, we define

a digraph with exactly one vertex as a 0-partial order. Note that a doubly

1The material in the section is from the paper “On the competition graphs of d-partial
orders” by Jihoon Choi, Kyeong Seok Kim, Suh-Ryung Kim, Jung Yeun Lee, and Yoshio
Sano which appears in Discrete Applied Mathematics 204 (2016) 29–37 ([10]). The author
thanks Kyeong Seok Kim, Prof. Suh-Ryung Kim, Dr. Jung Yeun Lee, and Prof. Yoshio
Sano for allowing him to use its contents for his thesis.
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partial order is just a 2-partial order.

In this chapter, we study the competition graphs of d-partial orders. We

obtain their characterization which nicely extends results given by Cho and

Kim [8]. We also show that any graph can be made into the competition

graph of a d-partial order for some positive integer d as long as adding iso-

lated vertices is allowed. We then introduce the notion of the partial order

competition dimension of a graph. Especially, we study graphs whose partial

order competition dimensions are at most three.

2.2 The competition graphs of d-partial or-

ders

In this section, we use the following notation. We use a bold faced letter to

represent a point in Rd (d ≥ 2). For x ∈ Rd, let xi denote the ith component

of x for each i = 1, . . . , d. Let ei ∈ Rd be the standard unit vector whose

ith component is 1, i.e., e1 := (1, 0, . . . , 0), . . ., ed := (0, . . . , 0, 1). Let 1 be

the all-one vector (1, . . . , 1) in Rd. Note that, for x ∈ Rd, the standard inner

product of x and 1 is

x · 1 =

d
∑

i=1

xi.

For v1, . . . ,vn ∈ Rd, let Conv(v1, . . . ,vn) denote the convex hull of

v1, . . . ,vn ∈ Rd, i.e.,

Conv(v1, . . . ,vn) :=

{

n
∑

i=1

λivi |
n
∑

i=1

λi = 1, λi ≥ 0, 1 ≤ i ≤ n

}

.
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p = (p1, p2, p3)

H3 x

y

z

△2(p)

(−p2 − p3, p2, p3)

(p1,−p1 − p3, p3)

(p1, p2,−p1 − p2)

Figure 2.1: A point p ∈ H3
+ and the triangle △2(p)

2.2.1 The regular (d− 1)-dimensional simplex △
d−1(p)

Let Hd be the hyperplane in Rd defined by the equation x · 1 = 0, and let

Hd
+ be the open half space in Rd defined by the inequality x · 1 > 0, i.e.,

Hd := {x ∈ Rd | x · 1 = 0}, Hd
+ := {x ∈ Rd | x · 1 > 0}.

We fix a point p in Hd
+. Let △d−1(p) be the intersection of the hyperplane

Hd and the closed cone

{x ∈ Rd | xi ≤ pi (i = 1, . . . , d)}.

Lemma 2.2.1. For p ∈ Hd
+, the set△d−1(p) is the convex hull Conv(v1, . . . ,vd)

of the vectors v1, . . . ,vd defined by

vi = p− (p · 1)ei (i = 1, . . . , d).

Moreover, △d−1(p) is a regular (d− 1)-simplex.

Proof. Let v1, . . ., vd ∈ Rd be the intersections of the hyperplane Hd and
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the lines going through p with directional vectors e1, . . . , ed, respectively.

Then vi = p − (p · 1)ei for i = 1, . . . , d. By definition, we have △d−1(p) =

Conv(v1, . . . ,vd). Since v1, . . . ,vd are linearly independent, the set △d−1(p)

is a (d − 1)-simplex. Moreover, since the length of each edge of △d−1(p) is

equal to
√
2(p · 1), the simplex △d−1(p) is regular.

Note that the distance between p and each vertex of △d−1(p) is equal to

p·1. Moreover, the directional vector for the line passing through the vertices

vi and vj is ej − ei for distinct i, j in {1, . . . , d}. The center of △d−1(p) is
1
d

∑d

i=1 vi = p− 1
d
(p · 1)1. Therefore, the directional vector from this center

to the point p is parallel to the all-one vector 1, and the distance between

this center and the point p is 1√
d
(p · 1) which is 1√

2d
times the edge length of

△d−1(p).

We say that two geometric figures in Rd are homothetic if they are related

by a geometric contraction or expansion. From the above observation, we can

conclude the following:

Proposition 2.2.2. If p,q ∈ Hd
+, then △d−1(p) and △d−1(q) are homoth-

etic.

2.2.2 A bijection from Hd
+ to a set of regular (d − 1)-

simplices

Lemma 2.2.3. The vertices of △d−1(1) may be labeled as w1, . . . ,wd so

that wj − wi is a positive scalar multiple of ei − ej for any distinct i, j in

{1, . . . , d}.

Proof. By Lemma 2.2.1, the vertices of △d−1(1) are 1− dei for i = 1, . . . , d.

We denote 1− dei by wi to obtain the desired labeling.

Lemma 2.2.4. Let d be an integer with d ≥ 2. Suppose that Λ is a regular

(d−1)-simplex contained in the hyperplane Hd homothetic to △d−1(1). Then,

there exists p ∈ Hd
+ such that Λ = △d−1(p).
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Proof. Since Λ is homothetic to △d−1(1), there exists v1, . . . ,vd ∈ Rd which

are linearly independent such that Λ = Conv(v1, . . . ,vd) and vj − vi is a

positive scalar multiple of ei − ej for any distinct i and j in {1, . . . , d} by

Lemma 2.2.3. Moreover, vi · ei < vj · ei for any distinct i and j in {1, . . . , d}.
Let p ∈ Rd be a vector defined by pi : max{vk ·ei | 1 ≤ k ≤ d} (i = 1, . . . , d).

Then, Λ = △d−1(p). Since v1 ∈ Hd, we have v1 · 1 = 0. Since pi ≥ v1 · ei
for any i = 1, . . . , d, we have p · 1 ≥ v1 · 1 = 0. If p · 1 = 0, then we obtain

p = v1 and p1 = v1 · e1 < v2 · e1, which is a contradiction to the definition

of p1. Therefore p · 1 > 0, i.e., p ∈ Hd
+. Thus the lemma holds.

Let d be an integer with d ≥ 2. Let Fd−1
∗ be the set of the regular (d−1)-

simplices in the hyperplane Hd which are homothetic to △d−1(1). Let f∗ be

a map from Hd
+ to Fd−1

∗ defined by f∗(p) = △d−1(p). By Lemma 2.2.1 and

Proposition 2.2.2, △d−1(p) ∈ Fd−1
∗ and therefore the map f∗ is well-defined.

Proposition 2.2.5. For each integer d ≥ 2, the map f∗ : Hd
+ → Fd−1

∗ is a

bijection.

Proof. By Lemma 2.2.4, the map f∗ is surjective. Suppose that △d−1(p) =

△d−1(q). Since the centers of △d−1(p) and △d−1(q) are the same, we have

p − 1
d
(p · 1)1 = q − 1

d
(q · 1)1. Since the lengths of edges of △d−1(p) and

△d−1(q) are the same, we have
√
2(p · 1) =

√
2(q · 1). Therefore, we have

p = q. Thus the map f∗ is injective. Hence the map f∗ is a bijection.

Let Fd−1 be the set of the interiors of the regular (d − 1)-simplices in

the hyperplane Hd which are homothetic to △d−1(1). Then there is a clear

bijection ϕ : Fd−1
∗ → Fd−1 such that for each element in Fd−1

∗ , its ϕ-value is

its interior. Therefore we obtain the following corollary.

Corollary 2.2.6. For each integer d ≥ 2, the map ϕ ◦ f∗ : Hd
+ → Fd−1 is a

bijection.
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2.2.3 A characterization of the competition graphs of

d-partial orders

Let Ad−1(p) be the interior of the regular simplex △d−1(p), i.e., Ad−1(p) :=

int(△d−1(p)). Then

Ad−1(p) = {x ∈ Hd | x ≺ p}.

Proposition 2.2.7. For p,q ∈ Hd
+, △d−1(p) is contained in Ad−1(q) if and

only if p ≺ q.

Proof. Suppose that p ≺ q. Take a point a in△d−1(p). Then ak ≤ pk for each

k = 1, . . . , d. By the assumption that p ≺ q, ak < qk for each k = 1, . . . , d,

that is, a ≺ q. Thus △d−1(p) is contained in Ad−1(q).

Suppose that △d−1(p) is contained in Ad−1(q). Then, by Lemma 2.2.1,

p−(p ·1)ei (i = 1, . . . , d) are points in Ad−1(q). By the definition of Ad−1(q),

we have p− (p · 1)ei ≺ q (i = 1, . . . , d), which implies p ≺ q.

Lemma 2.2.8. Let d be a positive integer and let D be a d-partial order.

Then, two vertices v and w of D are adjacent in the competition graph of

D if and only if there exists a vertex a in D such that △d−1(a) ⊆ Ad−1(v) ∩
Ad−1(w).

Proof. By definition, two vertices v and w are adjacent in the competition

graph of D if and only if there exists a vertex a in D such that a ≺ v and

a ≺ w. By Proposition 2.2.7, a ≺ v and a ≺ w holds if and only if △d−1(a) ⊆
Ad−1(v) and △d−1(a) ⊆ Ad−1(w), that is, △d−1(a) ⊆ Ad−1(v) ∩ Ad−1(w).

Thus the lemma holds.

The following result extends Theorems 1.2.14 and 1.2.15.

Theorem 2.2.9. Let G be a graph and let d be an integer with d ≥ 2.

Then, G is the competition graph of a d-partial order if and only if there

exists a family F of the interiors of regular (d−1)-simplices in Rd which are
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contained in the hyperplane Hd and homothetic to Ad−1(1) and there exists

a one-to-one correspondence between the vertex set of G and F such that

(⋆) two vertices v and w are adjacent in G if and only if two elements in F
corresponding to v and w have the intersection containing the closure

of another element in F .

Proof. First we show the “only if” part. Let D be a d-partial order and let G

be the competition graph of D. Without loss of generality, we may assume

that V (D) ⊆ Hd
+ by translating each of the vertices ofD in the same direction

and by the same amount since the competition graph of D is determined only

by the adjacency among vertices of D. Consequently Ad−1(v) 6= ∅ for each

vertex v of D. Let F = {Ad−1(v) | v ∈ V (D)} and let f : V (G) → F be the

map defined by f(v) = Ad−1(v) for v ∈ V (D). Note that F ⊆ Fd−1. Since

the map f : V (G) → F is a restriction of the map ϕ ◦ f∗ : V (G) → Fd−1,

it follows from Corollary 2.2.6 that f is a bijection. By Lemma 2.2.8, the

condition (⋆) holds.

Second, we show the “if” part. Suppose that there exist a family F ⊆
Fd−1 and a bijection f : V (G) → F such that the condition (⋆) holds. By

Corollary 2.2.6, each element in F can be represented as Ad−1(p) for some

p ∈ Hd
+. Let D be a digraph with vertex set V (D) = {p ∈ Rd | Ad−1(p) ∈ F}

and arc set A(D) = {(p,q) | p,q ∈ V (D),p 6= q,△d−1(q) ⊆ Ad−1(p)}. By
Proposition 2.2.7, (p,q) ∈ A(D) if and only if q ≺ p, soD is a d-partial order.

Now, take two vertices v and w in G. Then, by the hypothesis and above

argument, v and w correspond to some points p and q in Rd, respectively, so

that v and w are adjacent if and only if both Ad−1(p) and Ad−1(q) contain

the closure of an element in F , that is, △d−1(r) for some r ∈ Rd. By the

definition of D, (p, r) ∈ A(D) and (q, r) ∈ A(D). Consequently, v and w are

adjacent if and only if the corresponding vertices p and q have a common

out-neighbor in D. Hence G is the competition graph of the d-partial order

D.
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2.2.4 Intersection graphs and competition graphs of

d-partial orders

Theorem 2.2.10. If G is the intersection graph of a finite family of homo-

thetic open regular (d− 1)-simplices, then G together with sufficiently many

new isolated vertices is the competition graph of a d-partial order.

Proof. Let A = {A1, . . . An} be a finite family of homothetic open regular

(d − 1)-simplices, and let G be the intersection graph of A with bijection

φ : A → V (G). For each distinct pair of i and j in {1, . . . , n} such that

Ai ∩ Aj 6= ∅, let Bij be an open regular (d− 1)-simplex homothetic A1 such

that the closure of Bij is contained in Ai ∩Aj . We can take such Bij so that

Bij ∩ Bi′j′ = ∅ for distinct pairs {i, j} and {i′, j′}. Let B = {Bij | i, j ∈
{1, . . . , n}, i 6= j, Ai ∩ Aj 6= ∅}. Then the family F := A ∪ B and a map

f : F → V (G) ∪ {z1, . . . , z|B|} such that f |A = φ and f(B) = {z1, . . . , z|B|}
satisfy the condition (⋆) in Theorem 2.2.9. Thus G ∪ {z1, . . . , z|B|} is the

competition graph of a d-partial order.

Lemma 2.2.11. If G is the intersection graph of a finite family F of homo-

thetic closed regular (d − 1)-simplices, then G is the intersection graph of a

finite family of homothetic open regular (d− 1)-simplices.

Proof. Let D = {△1, . . .△n} be a finite family of homothetic closed regular

(d − 1)-simplices, and let G be the intersection graph of D with bijection

φ : D → V (G). Let

ε =
1

3
min{d(△i,△j) | i, j ∈ {1, . . . , n},△i ∩△j = ∅}

where d(△i,△j) = inf{d(x,y) | x ∈ △i,y ∈ △j}.
We make each simplex in D (1 + ε) times bigger while the center of each

simplex is fixed. Then we take the interiors of these closed simplices. By

the choice of ε, the graph G is the intersection graph of the family of newly

obtained open simplices. Hence the lemma holds.

27



Theorem 2.2.12. If G is the intersection graph of a finite family F of

homothetic closed regular (d− 1)-simplices, then G together with sufficiently

many new isolated vertices is the competition graph of a d-partial order.

Proof. The theorem follows from Lemma 2.2.11 and Theorem 2.2.10.

Remark 2.2.13. In the case where d = 2, Theorem 2.2.12 is the same as

Theorem 1.2.15. Due to Theorem 1.2.14, the converse of Theorem 2.2.12 is

true for d = 2. In fact, we can show that the converse of Theorem 2.2.10 is

also true for d = 2.

The following example shows that the converses of Theorems 2.2.10 and

2.2.12 are not true for d = 3.

Example 2.2.14. Let G be a subdivision of K5 given in Figure 2.2. Then,

by Theorem 2.2.9, the family of homothetic equilateral triangles given in the

figure makes G together with 9 isolated vertices into the competition graph

of a 3-partial order. However, G is not the intersection graph of any family

of homothetic equilateral closed triangles. By Lemma 2.2.11, G is not the

intersection graph of any family of homothetic equilateral open triangles,

either.

Proof. Suppose that there exists a family F := {△(v) | v ∈ V (G)} of homo-

thetic equilateral closed triangles such that G is the intersection graph of F .

Since v1v2v3v4v1 is an induced cycle in G, the triangles △(v1), △(v2), △(v3),

and △(v4) are uniquely located as in Figure 2.3 up to the sizes of triangles.

Since the vertices v1, v3, and v4 are neighbors of both v5 and v7 in G whereas

v2 is not, and the vertices v5 and v7 are not adjacent in G, we may conclude

that the locations of △(v5) and △(v7) should be those for the triangles I and

II given in Figure 2.3. Since the triangle II cannot have intersections with

△(v2) and the triangle I, all of its sides are surrounded by △(v1), △(v2),

△(v3), and △(v4). Now, since v6 is adjacent to v5 and v7, △(v6) must have

intersections with both△(v5) and△(v7). However, it cannot be done without
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v1
v2

v3

v4 v5

v6

v7

A2(v1)

A2(v2)

A2(v3)
A2(v4)

A2(v5)

A2(v6)

A2(v7)

G

Figure 2.2: A subdivision G of K5 and a family of homothetic equilateral
triangles making G together with 9 isolated vertices into the competition
graph of a 3-partial order

having an intersection with one of △(v1), △(v2), △(v3), and △(v4), which is

a contradiction to the fact that none of v1, v2, v3, and v4 is adjacent to v6 in

G.

2.3 The partial order competition dimension

of a graph

Proposition 2.3.1. Let d be a positive integer. If G is the competition graph

of a d-partial order, then G is the competition graph of a (d+1)-partial order.

Proof. Let D be a d-partial order such that G is the competition graph of

D. For each v ∈ V (D) ⊆ Rd, we define ṽ ∈ Rd+1 by

ṽ =

(

v1, . . . , vd,

d
∑

i=1

vi

)

.
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△(v1)

△(v2)

△(v3)
△(v4)

I

II

Figure 2.3: An assignment of homothetic equilateral triangles to vertices v1,
v2, v3, v4, v5, v7 of G given in Figure 2.2

Then {ṽ | v ∈ V (D)} defines a (d+ 1)-partial order D̃. Since

ṽ ≺ w̃ ⇔ vi < wi (i = 1, . . . , d) and

d
∑

i=1

vi <

d
∑

i=1

wi

⇔ vi < wi (i = 1, . . . , d)

⇔ v ≺ w,

the (d + 1)-partial order D̃ is the same digraph as the d-partial order D.

Hence G is the competition graph of the (d+ 1)-partial order D̃.

Proposition 2.3.2 can be shown by using Theorem 8 in [65]. We present

a new proof from which Proposition 2.3.5 also follows.

Proposition 2.3.2. For any graph G, there exists positive integers d and

k such that G together with k isolated vertices is the competition graph of a

d-partial order.

Proof. Let n = |V (G)| and label the vertices of G as v1, . . . , vn. Fix four real

numbers r1, r2, r3, and r4 such that r1 < r2 < r3 < r4. We define a map
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φ : V (G) → Rn by

φ(vi)j =







r2 if j = i;

r4 if j 6= i.

We define a map ψ : E(G) → Rn by

ψ(e)k =







r1 if vk ∈ e;

r3 if vk /∈ e.

Let V = {φ(vi) | vi ∈ V (G)} ∪ {ψ(e) | e ∈ E(G)} ⊆ Rn. Then V defines an

n-partial order D. By definition, the in-neighborhood of the vertex ψ(e) ∈ V

is {φ(vi), φ(vj)} for an edge e = {vi, vj} of G and the in-neighborhood of the

vertex φ(v) ∈ V is the empty set for a vertex v. Thus the competition graph

of D is G together with isolated vertices as many as |E(G)|. Hence, by taking

d = n and k = |E(G)|, we complete the proof.

Now we may introduce the following notion. Recall that for a finite subset

S of Rd, DS is the digraph defined by V (DS) = S and A(DS) = {(x,v) |
v,x ∈ S,v ≺ x}.

Definition 2.3.3. For a graph G, we define the partial order competition

dimension dimpoc(G) of G as the smallest nonnegative integer d such that

G together with k isolated vertices is the competition graph of D for some

d-partial order D and some nonnegative integer k, i.e.,

dimpoc(G) := min{d ∈ Z≥0 | ∃k ∈ Z≥0, ∃S ⊆ Rd, s.t. G ∪ Ik = C(DS)},

where Z≥0 is the set of nonnegative integers and Ik is a set of k isolated

vertices.

Remark 2.3.4. Wu and Lu [65] introduced the notion of the dimension-

d poset competition number of a graph G, denoted by PKd(G), which is
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defined to be the smallest nonnegative integer p such that G together p

additional isolated vertices is isomorphic to the competition graph of a poset

of dimension at most d if such a poset exists, and to be∞ otherwise. By using

PKd(G), the partial order competition dimension of G can be represented

as dimpoc(G) = min{d | PKd(G) < ∞}. Therefore PKd(G) < ∞ implies

that dimpoc(G) ≤ d. In this respect, Proposition 3.2 and the “if” part of

Proposition 3.10 may follow from their result presenting the dimension-d

poset competition numbers of a complete graph with or without isolated

vertices, which are also shown to be trivially true in this paper.

Proposition 2.3.5. For any graph G, we have dimpoc(G) ≤ |V (G)|.

Proof. The proposition follows from the construction of a d-partial order in

the proof of Proposition 2.3.2.

For a graph G, the partial order competition dimension of an induced

subgraph of G is less than or equal to that of G. To show this, we need the

following lemmas.

Lemma 2.3.6. Let D be a digraph and let G be the competition graph of D.

Let S be a set of vertices. The competition graph of D[S] is a subgraph of

G[S], where D[S] and G[S] mean the subdigraph of D and the subgraph of

G, respectively, induced by S.

Proof. Let H be the competition graph of D[S]. Obviously, V (H) = S. Take

an edge {u, v} of H . By definition, there exists a vertex w in D[S] such that

(u, w) and (v, w) are arcs of D[S]. Consequently, (u, w) and (v, w) are arcs

of D and so {u, v} is an edge of G. Since u, v ∈ S, {u, v} is an edge of G[S].

Hence H is a subgraph of G[S].

Lemma 2.3.7. Let D be a transitive acyclic digraph and let G be the compe-

tition graph of D. For any non-isolated vertex u of G, there exists an isolated

vertex v of G such that (u, v) is an arc of D.
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Proof. Take a non-isolated vertex u of G. Since u has a neighbor w in G, u

and w have a common out-neighbor in D. Take a longest directed path in D

originating from u. We denote by v the terminal vertex of the directed path.

Since D is acyclic, the out-degree of v in D is zero and so v is isolated in G.

By the hypothesis that D is transitive, (u, v) is an arc of D.

Proposition 2.3.8. Let G be a graph and let H be an induced subgraph of

G. Then dimpoc(H) ≤ dimpoc(G).

Proof. Let d = dimpoc(G). Then, there exists a d-partial order D whose

competition graph is the disjoint union of G and a set J of isolated vertices.

Let I be the set of isolated vertices in G. Let S = V (H)∪ I ∪ J ⊆ Rd. Then

the digraph DS is a d-partial order. By Lemma 2.3.6, the competition graph

of DS is a subgraph of H ∪ (I \ V (H)) ∪ J .
Now take two adjacent vertices x and y in H . Then, since they are ad-

jacent in G, there exists a vertex v ∈ V (D) such that v ≺ x and v ≺ y.

If v is isolated in G or v ∈ J , then (x,v) and (y,v) belong to A(DS) by

definition. Suppose that v 6∈ I ∪ J . Then, by Lemma 2.3.7, there exists a

vertex w in I ∪ J such that w ≺ v. Then w ≺ x and w ≺ y and so (x,w)

and (y,w) belong to A(DS). Thus H ∪ (I \ V (H)) ∪ J is a subgraph of the

competition graph of DS and we have shown that it is the competition graph

of DS. Hence dimpoc(H) ≤ d and the proposition holds.

It does not seem to be easy to compute the partial order competition

dimension of a graph in general. In this context, we first characterize graphs

having small partial order competition dimensions. In such a way, we wish

to have a better idea to settle the problem.

Let Kn denote the complete graph with n vertices.

Proposition 2.3.9. Let G be a graph. Then, dimpoc(G) = 0 if and only if

G = K1.

Proof. The proposition immediately follows from the definition of 0-partial

order.
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Proposition 2.3.10. Let G be a graph. Then, dimpoc(G) = 1 if and only if

G = Kt+1 or G = Kt ∪K1 for some positive integer t.

Proof. First we remark that if D is a 1-partial order with V (D) ⊆ R1 and

v∗ ∈ V (D) is the minimum among V (D), then the competition graph of

D is the disjoint union of a clique V (D) \ {v∗} and an isolated vertex v∗.

Therefore, if dimpoc(G) = 1, then we obtain G = Kt+1 or G = Kt ∪K1 for

some nonnegative integer t. By Proposition 2.3.9, G 6= K1 and thus t is a

positive integer.

If G = Kt+1 or G = Kt ∪K1 for some positive integer t, then we obtain

dimpoc(G) ≤ 1. By Proposition 2.3.9, since G 6= K1, we have dimpoc(G) =

1.

Lemma 2.3.11. Let G be a graph such that dimpoc(G) ≥ 2 and let G′

be a graph obtained from G by adding isolated vertices. Then dimpoc(G) =

dimpoc(G
′).

Proof. Let a1, . . . , ak be the isolated vertices added to G to obtain G′. Let

d = dimpoc(G). Then G can be made into the competition graph a d-partial

order D by adding sufficiently many isolated vertices. Since d ≥ 2, we can

locate k points a1, . . . , ak in Rd corresponding to a1, . . . , ak so that no two

points in {a1, . . . , ak} are related by ≺ and that no point in V (D) and no

point in {a1, . . . , ak} are related by ≺. Indeed, we can do this in the following

way: for i = 1, . . . , k, let ai be a point in Rd defined by

(ai)1 = r1 + i; (ai)2 = r2 − i; (ai)j = 0 (j = 3, . . . , d),

where r1 := max{(v)1 | v ∈ V (D)} and r2 := min{(v)2 | v ∈ V (D)}.
Then G′ is the competition graph of D together with a1, . . . , ak and thus

dimpoc(G
′) ≤ dimpoc(G).

Since G is an induced subgraph of G′, by Proposition 2.3.8, dimpoc(G) ≤
dimpoc(G

′). Hence dimpoc(G) = dimpoc(G
′).
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Figure 2.4: A family of homothetic equilateral closed triangles

Proposition 2.3.12. Let G be a graph. Then, dimpoc(G) = 2 if and only

if G is an interval graph which is neither Ks nor Kt ∪ K1 for any positive

intergers s and t.

Proof. Suppose that dimpoc(G) = 2. By Theorem 1.2.14, G is an interval

graph. By Propositions 2.3.9 and 2.3.10, G is neither Ks nor Kt∪K1 for any

positive intergers s and t.

Suppose that G is an interval graph which is neither Ks nor Kt ∪ K1

for any positive intergers s and t. By Theorem 1.2.15, dimpoc(G) ≤ 2. By

Propositions 2.3.9 and 2.3.10 dimpoc(G) ≥ 2. Thus, dimpoc(G) = 2.

Proposition 2.3.13. If G is a cycle of length at least four, then dimpoc(G) =

3.

Proof. Let G be a cycle of length n with n ≥ 4. Note that G is not an interval

graph. By Propositions 2.3.9, 2.3.10, and 2.3.12, we have dimpoc(G) ≥ 3. Let

F be the family of n closed triangles given in Figure 2.4. Then the intersection

graph of F is the cycle of length n. By Theorem 2.2.12 with d = 3, G together

with sufficiently many isolated vertices is the competition graph of a 3-partial

order. Thus dimpoc(G) ≤ 3. Hence dimpoc(G) = 3.
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Theorem 2.3.14. If a graph G contains an induced cycle of length at least

four, then dimpoc(G) ≥ 3.

Proof. The theorem follows from Propositions 2.3.8 and 2.3.13.

Theorem 2.3.15. Let T be a tree. Then dimpoc(T ) ≤ 3, and the equality

holds if and only if T is not a caterpillar.

Proof. By Theorem 2.2.12 with d = 3, we need to show that there exists

a family of homothetic equilateral closed triangles in R2 whose intersection

graph is T . As a matter of fact, it is sufficient to find such a family in the

xy-plane with the base of each triangle parallel to the x-axis. We call the

vertex of a triangle which is opposite to the base the apex of the triangle.

We show the following stronger statement by induction on the number of

vertices:

For a tree T and a vertex v of T , there exists a family FT
v :=

{△(x) | x ∈ V (T )} of homothetic equilateral closed triangles

whose intersection graph is T such that, for any vertex x distinct

from v, the apex and the base of △(x) are below the apex and

the base of △(v), respectively.

We call the family FT
v in the above statement a good family for T and v.

If T is the tree having exactly one vertex, then the statement is vacuously

true. Assume that the statement holds for any tree on n− 1 vertices, where

n ≥ 2. Let T be a tree with n vertices. We fix a vertex v of T as a root. Let

T1, . . . , Tk (k ≥ 1) be the connected components of T − v. Then T1, . . . , Tk

are trees. For each i = 1, . . . , k, Ti has exactly one vertex, say wi, which is a

neighbor of v in T . We take wi as a root of Ti. By the induction hypothesis,

there exists a good family FTi

wi
for Ti and wi for each i = 1, . . . , k. Preserving

the intersection or the non-intersection of two triangles in FTi

wi
for each i =

1, . . . , k, we may translate the triangles in FT1

w1
∪ · · ·∪FTk

wk
so that the apexes

of △(w1), . . ., △(wk) are on the x-axis and any two triangles from distinct
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families do not intersect. Let δi be the distance between the apex of △(wi)

and the apex of a triangle which is the second highest among the apexes of

the triangles in FTi

wi
. Now we draw a triangle △(v) in such a way that the

base of △(v) is a part of the line y = −1
2
min{δ1, . . . , δk} and long enough

to intersect all of the triangles △(w1), . . . ,△(wk). Then the family FT
v :=

FT1

w1
∪· · ·∪FTk

wk
∪{△(v)} is a good family for T and v and thus the statement

holds. Hence, dimpoc(T ) ≤ 3 for a tree T .

Since trees which are interval graphs are caterpillars, the latter part of

the theorem follows from Propositions 2.3.9, 2.3.10, and 2.3.12.

Remark 2.3.16. In this chapter, we studied the competition graphs of d-

partial orders and gave a characterization by using homothetic open sim-

plices. Since any graph can be made into the competition graph of a d-partial

order for some positive integer d by adding isolated vertices, we introduced

the notion of the partial order competition dimension of a graph. We gave

characterizations of graphs having partial order competition dimension 0,

1, and 2. We also showed that cycles and trees have partial order compe-

tition dimension at most 3. It would be an interesting research problem to

characterize graphs G having partial order competition dimension 3.
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Chapter 3

On the partial order

competition dimensions of

chordal graphs1

In this chapter, we study the partial order competition dimensions of chordal

graphs. We thought that most likely candidates for the family of graphs

having partial order competition dimension at most three are chordal graphs

since both trees and interval graphs, which are chordal graphs, have partial

order competition dimensions at most three by Theorems 1.2.15 and 2.3.15.

In fact, we can show that chordal graphs have partial order competition

dimensions at most three if the graphs are diamond-free. However, contrary

to our presumption, we could show the existence of chordal graphs with

partial order competition dimensions greater than three.

1The material in the section is from the paper “On the partial order competition
dimensions of chordal graphs” by Jihoon Choi, Suh-Ryung Kim, Jung Yeun Lee, and
Yoshio Sano which appears in Discrete Applied Mathematics 222 (2017) 89–96 ([12]).
The author thanks Prof. Suh-Ryung Kim, Dr. Jung Yeun Lee, and Prof. Yoshio Sano for
allowing him to use its contents for his thesis.
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3.1 Basic properties on the competition graphs

of 3-partial orders

The following key theorem is a special case of Theorem 2.2.9 for the case

where d = 3.

Theorem 3.1.1. A graph G is the competition graph of a 3-partial order if

and only if there exists a family F of homothetic open equilateral triangles

contained in the plane {x = (x1, x2, x3) ∈ R3 | x1 + x2 + x3 = 0} and there

exists a one-to-one correspondence A : V (G) → F such that

(⋆) two vertices v and w are adjacent in G if and only if two elements

A(v) and A(w) have the intersection containing the closure △(x) of an

element A(x) in F .

The following sufficient condition for a graph being the competition graph of

a 3-partial order is an immediate consequence of Lemma 2.2.11 when d = 3.

Theorem 3.1.2. If G is the intersection graph of a finite family of homoth-

etic closed equilateral triangles, then G together with sufficiently many new

isolated vertices is the competition graph of a 3-partial order.

By the definition of the partial order competition dimension of a graph, we

have the following:

Corollary 3.1.3. If G is the intersection graph of a finite family of homo-

thetic closed equilateral triangles, then dimpoc(G) ≤ 3.

Note that the converse of Corollary 3.1.3 is not true by Example 2.2.14. In

this context, one can guess that it is not so easy to show that a graph has

partial order competition dimension greater than three.

The correspondence A in Theorem 2.2.9 is the map Ad−1 defined in Sec-

tion 2.2 with d = 3. To illustrate it when d = 3, let H := {x = (x1, x2, x3) ∈
R3 | x1+x2+x3 = 0} andH+ := {x = (x1, x2, x3) ∈ R3 | x1+x2+x3 > 0}. For
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a point v = (v1, v2, v3) ∈ H+, let p
(v)
1 , p

(v)
2 , and p

(v)
3 be points in R3 defined by

p
(v)
1 := (−v2−v3, v2, v3), p(v)2 := (v1,−v1−v3, v3), and p(v)3 := (v1, v2,−v1−v2),
and let △(v) be the convex hull of the points p

(v)
1 , p

(v)
2 , and p

(v)
3 , i.e., △(v) :=

Conv(p
(v)
1 , p

(v)
2 , p

(v)
3 ) =

{

∑3
i=1 λip

(v)
i |∑3

i=1 λi = 1, λi ≥ 0 (i = 1, 2, 3)
}

. Then

it is easy to check that △(v) is an closed equilateral triangle which is con-

tained in the plane H. Let A(v) be the relative interior of the closed triangle

△(v), i.e., A(v) := rel.int(△(v)) =
{

∑3
i=1 λip

(v)
i |∑3

i=1 λi = 1, λi > 0 (i = 1, 2, 3)
}

.

Then A(v) and A(w) are homothetic for any v, w ∈ H+.

For v ∈ H+ and (i, j) ∈ {(1, 2), (2, 3), (1, 3)}, let l(v)ij denote the line

through the two points p
(v)
i and p

(v)
j , i.e., l

(v)
ij := {x ∈ R3 | x = αp

(v)
i + (1 −

α)p
(v)
j , α ∈ R}, and let Rij(v) denote the following region:

Rij(v) := {x ∈ R3 | x = (1−α−β)p(v)k +αp
(v)
i +βp

(v)
j , 0 ≤ α ∈ R, 0 ≤ β ∈ R, α+β ≥ 1},

where k is the element in {1, 2, 3} \ {i, j}; for k ∈ {1, 2, 3}, let Rk(v) denote

the following region:

Rk(v) := {x ∈ R3 | x = (1+α+β)p
(v)
k −αp(v)i −βp(v)j , 0 ≤ α ∈ R, 0 ≤ β ∈ R},

where i and j are elements such that {i, j, k} = {1, 2, 3}. (See Figure 3.1 for

an illustration.)

If a graph G satisfies dimpoc(G) ≤ 3, then, by Theroem 2.2.9, we may

assume that V (G) ⊆ H+ by translating each of the vertices of G in the same

direction and by the same amount.

Lemma 3.1.4. Let D be a 3-partial order and let G be the competition graph

of D. Suppose that G contains an induced path uvw of length two. Then

neither A(u) ∩ A(v) ⊆ A(w) nor A(v) ∩A(w) ⊆ A(u).

Proof. We show by contradiction. Suppose that A(u) ∩ A(v) ⊆ A(w) or

A(v)∩A(w) ⊆ A(u). By symmetry, we may assume without loss of generality

thatA(u)∩A(v) ⊆ A(w). Since u and v are adjacent inG, there exists a vertex
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p
(v)
1

p
(v)
2

p
(v)
3

△(v)

R23(v)

R3(v)

R13(v)

R1(v) R12(v) R2(v)

Figure 3.1: The regions determined by v. By our assumption, for any vertex
u of a graph considered in this paper, p

(u)
1 , p

(u)
2 , p

(u)
3 correspond to p

(v)
1 , p

(v)
2 ,

p
(v)
3 respectively.

a ∈ V (G) such that△(a) ⊆ A(u)∩A(v) by Theorem 2.2.9. Therefore △(a) ⊆
A(w). Since △(a) ⊆ A(u), u and w are adjacent in G by Theorem 2.2.9,

which is a contradiction to the assumption that u and w are not adjacent in

G. Hence the lemma holds.

Definition 3.1.5. For v, w ∈ H+, we say that v and w are crossing if

A(v) ∩A(w) 6= ∅, A(v) \ A(w) 6= ∅, and A(w) \ A(v) 6= ∅.

Lemma 3.1.6. Let D be a 3-partial order and let G be the competition graph

of D. Suppose that G contains an induced path xuvw of length three. Then

u and v are crossing.

Proof. Since u and v are adjacent in G, there exists a vertex a ∈ V (G) such

that △(a) ⊆ A(u) ∩ A(v) by Theorem 2.2.9. Therefore A(u) ∩ A(v) 6= ∅. If
A(v) ⊆ A(u), then A(v)∩A(w) ⊆ A(u), which contradicts Lemma 3.1.4. Thus

A(v)\A(u) 6= ∅. If A(u) ⊆ A(v), then A(x)∩A(u) ⊆ A(v), which contradicts

Lemma 3.1.4. Thus A(u) \ A(v) 6= ∅. Hence u and v are crossing.

Lemma 3.1.7. If v and w in H+ are crossing, then p
(x)
k ∈ △(y) for some

k ∈ {1, 2, 3} where {x, y} = {v, w}.
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Proof. Since v and w are crossing, we have A(v)∩A(w) 6= ∅, A(v)\A(w) 6= ∅,
and A(w)\A(v) 6= ∅. Then one of the vertices of the triangles △(v) and △(w)

is contained in the other triangle, thus the lemma holds.

Definition 3.1.8. For k ∈ {1, 2, 3}, we define a binary relation
k→ on H+ by

x
k→ y ⇔ x and y are crossing, and p

(y)
k ∈ △(x)

for any x, y ∈ H+.

Lemma 3.1.9. Let x, y, z ∈ H+. Suppose that x
k→ y and y

k→ z for some

k ∈ {1, 2, 3} and that x and z are crossing. Then x
k→ z.

Proof. Since x
k→ y, p

(x)
l 6∈ Ri(y) ∪ Rij(y) ∪ Rj(y) for each l ∈ {1, 2, 3},

where {i, j, k} = {1, 2, 3} Since y
k→ z, p

(z)
l ∈ Ri(y)∪Rij(y) ∪Rj(y) for each

l ∈ {i, j}. Since x and z are crossing, p
(z)
k ∈ △(x).

Definition 3.1.10. For k ∈ {1, 2, 3}, a sequence (v1, . . . , vm) of m points in

H+, where m ≥ 2, is said to be consecutively tail-biting in Type k if vi
k→ vj

for any i < j (see Figure 3.2). A finite set V of points in H+ is said to be

consecutively tail-biting if there is an ordering (v1, . . . , vm) of V such that

(v1, . . . , vm) is consecutively tail-biting.

3.2 The partial order competition dimensions

of diamond-free chordal graphs

A diamond of a graphG is an induced subgraph G isomorphic to the complete

tripartite graph K1,1,2. We call the edge connecting the partite sets of size 1

the diagonal of the diamond. A graph G is said to be diamond-free if G does

not contain a diamond.

In this section, we show that a chordal graph has partial order competition

dimension at most three if it is diamond-free.
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A(v1) A(v2) A(v3)A(v4)

(a)

A(v1)A(v2)A(v3)A(v4)

(b)

A(v1)

A(v2)

A(v3)

A(v4)

(c)

Figure 3.2: The sequences (v1, v2, v3, v4) in (a), (b), (c) are consecutively tail-
biting of Type 1, 2, 3, respectively.
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A block graph is a graph such that each of its maximal 2-connected sub-

graphs is a complete graph. The following is well-known.

Lemma 3.2.1 ([1, Proposition 1]). A graph is a block graph if and only if

the graph is a diamond-free chordal graph.

Note that a block graph having no cut vertex is a disjoint union of com-

plete graphs. For block graphs having cut vertices, the following lemma holds.

Lemma 3.2.2. Let G be a block graph having at least one cut vertex. Then

G has a maximal clique that contains exactly one cut vertex.

Proof. Let H be the subgraph induced by the cut vertices of G. By definition,

H is obviously a block graph, so H is chordal and there is a simplicial vertex

v in H . Since v is a cut vertex of G, v belongs to at least two maximal cliques

of G. Suppose that each maximal clique containing v contains another cut

vertex of G. Take two maximal cliques X1 and X2 of G containing v and

let x and y be cut vertices of G belonging to X1 and X2, respectively. Then

both x and y are adjacent to v in H . Since G is a block graph, X1 \ {v}
and X2 \ {v} are contained in distinct connected components of G− v. This

implies that x and y are not adjacent in H , which contradicts the choice of

v. Therefore there is a maximal clique X containing v without any other cut

vertex of G.

Lemma 3.2.3. Every block graph G is the intersection graph of a family

F of homothetic closed equilateral triangles in which every clique of G is

consecutively tail-biting.

Proof. We show by induction on the number of cut vertices of G. If a block

graph has no cut vertex, then it is a disjoint union of complete graphs and the

statement is trivially true as the vertices of each complete subgraph can be

formed as a sequence which is consecutively tail-biting (refer to Figure 3.2).

Assume that the statement is true for any block graph G with m cut

vertices where m ≥ 0. Now we take a block graph G with m+1 cut vertices.
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By Lemma 3.2.2, there is a maximal clique X that contains exactly one cut

vertex, say w. By definition, the vertices of X other than w are simplicial

vertices.

Deleting the vertices of X other than w and the edges adjacent to them,

we obtain a block graph G∗ with m cut vertices. Then, by the induction

hypothesis, G∗ is the intersection graph of a family F∗ of homothetic closed

equilateral triangles satisfying the statement. We consider the triangles cor-

responding to w. Let C and C ′ be two maximal cliques of G∗ containing

w. By the induction hypothesis, the vertices of C and C ′ can be ordered as

v1, v2, . . . , vl and v
′
1, v

′
2, . . . , v

′
l′, respectively, so that vi

k→ vj if i < j, for some

k ∈ {1, 2, 3} and that v′i′
k′→ v′j′ if i

′ < j′, for some k′ ∈ {1, 2, 3}.
Suppose that △(vi) ∩△(v′j) 6= ∅ for vi and v

′
j which are distinct from w.

Then vi and v
′
j are adjacent in G

∗, which implies the existence of a diamond

in G since maximal cliques have size at least two. We have reached a contra-

diction to Lemma 3.2.1 and so △(vi)∩△(v′j) = ∅ for any i, j. Therefore there

is a segment of a side on△(w) (with a positive length) that does not intersect

with the triangle assigned to any vertex in G∗ other than w since there are

finitely many maximal cliques in G∗ that contain w. If the side belongs to

l
(w)
ij for i, j ∈ {1, 2, 3}, then we may order the deleted vertices and assign the

homothetic closed equilateral triangles with sufficiently small sizes to them

so that the closed neighborhood of v is consecutively tail-biting in Type k

for k ∈ {1, 2, 3} \ {i, j} and none of the triangles intersects with the triangle

corresponding to any vertex other than w in G∗. It is not difficult to see that

the set of the triangles in F∗ together with the triangles just obtained is the

one desired for F .

As block graphs are not necessarily interval graphs, the following result

extends a known family of graphs with partial order competition dimension

three.

Theorem 3.2.4. For any diamond-free chordal graph G, dimpoc(G) ≤ 3.
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Proof. The theorem follows from Corollary 3.1.3 and Lemma 3.2.3.

3.3 Chordal graphs having partial order com-

petition dimension greater than three

In this section, we present infinitely many chordal graphsG with dimpoc(G) >

3.

We first show two lemmas which will be repeatedly used in the proof of

the theorem in this section.

Lemma 3.3.1. Let D be a 3-partial order and let G be the competition graph

of D. Suppose that G contains a diamond K4 − e as an induced subgraph,

where u, v, w, x are the vertices of the diamond and e = vx. If the sequence

(u, v, w) is consecutively tail-biting in Type k for some k ∈ {1, 2, 3}, then
p
(x)
i ∈ Ri(v) and p

(x)
j /∈ Rj(v) hold or p

(x)
i /∈ Ri(v) and p

(x)
j ∈ Rj(v) hold

where {i, j, k} = {1, 2, 3}.

Proof. Without loss of generality, we may assume that k = 3. We first claim

that p
(x)
1 ∈ R1(v) ∪ R2(v) ∪ R12(v). Suppose not. Then p

(x)
1 ∈ R := H \

(R1(v) ∪ R2(v) ∪ R12(v)). Since A(x) and A(v) are homothetic, A(x) ⊆ R.

Thus A(w) ∩A(x) ⊆ A(w) ∩R. Since (u, v, w) is consecutively tail-biting in

Type 3, A(w)∩R ⊆ A(v). Therefore A(w)∩A(x) ⊆ A(v), which contradicts

Lemma 3.1.4. Thus p
(x)
1 ∈ R1(v) ∪ R2(v) ∪ R12(v). By symmetry, p

(x)
2 ∈

R1(v) ∪ R2(v) ∪ R12(v).

Suppose that both p
(x)
1 and p

(x)
2 are in R12(v). Since A(x) and A(v) are

homothetic, A(x)∩R ⊆ A(v). By the hypothesis that (u, v, w) is consecutively

tail-biting in Type 3, we have A(u) ⊆ R. Therefore A(x)∩A(u) ⊆ A(x)∩R.
Thus A(x) ∩ A(u) ⊆ A(v), which contradicts Lemma 3.1.4. Therefore p

(x)
1 ∈

R1(v)∪R2(v) or p
(x)
2 ∈ R1(v)∪R2(v). Since p

(x)
1 ∈ R2(v) (resp. p

(x)
2 ∈ R1(v))

implies p
(x)
2 ∈ R2(v) (resp. p

(x)
1 ∈ R1(v)), which is impossible, we have p

(x)
1 ∈

R1(v) or p
(x)
2 ∈ R2(v).
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Figure 3.3: The graph H

Suppose that both p
(x)
1 ∈ R1(v) and p

(x)
2 ∈ R2(v) hold. Then A(v) ⊆

A(x) since A(v) and A(x) are homothetic. Then A(u) ∩A(v) ⊆ A(x), which

contradicts Lemma 3.1.4. Hence p
(x)
1 ∈ R1(v) and p

(x)
2 /∈ R2(v) hold or p

(x)
1 /∈

R1(v) and p
(x)
2 ∈ R2(v) hold.

Let H be the graph on vertex set {t, u, v, w, x, y} such that {t, u, v, w}
forms a complete graph K4, x is adjacent to only t and v, and y is adjacent

to only u and w in H (see Figure 3.3 for an illustration).

Lemma 3.3.2. Let D be a 3-partial order and let G be the competition

graph of D. Suppose that G contains the graph H as an induced subgraph and

(t, u, v, w) is consecutively tail-biting in Type k for some k ∈ {1, 2, 3}. Then,
for i, j with {i, j, k} = {1, 2, 3}, p(x)i ∈ Ri(u) implies p

(y)
j ∈ Rj(v).

Proof. Without loss of generality, we may assume that k = 3. It is suffi-

cient to show that p
(x)
1 ∈ R1(u) implies p

(y)
2 ∈ R2(v). Now suppose that

p
(x)
1 ∈ R1(u). Since (t, u, v, w) is a tail-biting sequence of Type 3, (t, u, v) and

(u, v, w) are tail-biting sequences of Type 3. Since {t, u, v, x} induces a dia-

mond and (t, u, v) is a consecutively tail-biting sequence of Type 3, it follows

from Lemma 3.3.1 that p
(x)
1 ∈ R1(u) and p

(x)
2 6∈ R2(u) hold or p

(x)
1 /∈ R1(u)

and p
(x)
2 ∈ R2(u) hold. Since p

(x)
1 ∈ R1(u), it must hold that p

(x)
1 ∈ R1(u) and

p
(x)
2 6∈ R2(u). Since A(u) and A(x) are homothetic and p

(x)
1 ∈ R1(u), we have

A(u) ⊆ A(x) ∪R23(x).
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Since {u, v, w, y} induces a diamond and (u, v, w) is a consecutively tail-

biting sequence of Type 3, it follows from Lemma 3.3.1 that p
(y)
1 ∈ R1(v) and

p
(y)
2 6∈ R2(v) hold or p

(y)
1 6∈ R1(v) and p

(y)
2 ∈ R2(v) hold. We will claim that

the latter is true as it implies p
(y)
2 ∈ R2(v). To reach a contradiction, suppose

the former, that is, p
(y)
1 ∈ R1(v) and p

(y)
2 6∈ R2(v). Since A(v) and A(y) are

homothetic and p
(y)
1 ∈ R1(v), we have A(v) ⊆ A(y) ∪ R23(y). We now show

that A(x) ∩ A(v) ⊆ A(y). Take any a ∈ A(x) ∩ A(v). Since A(v) ⊆ A(y) ∪
R23(y), we have a ∈ A(y)∪R23(y). Suppose that a 6∈ A(y). Then a ∈ R23(y).

This together with the fact that a ∈ A(x) implies A(y) ∩ R23(x) = ∅. Since
A(u) ⊆ A(x) ∪R23(x), we have

A(u) ∩A(y) ⊆ (A(x) ∪R23(x)) ∩A(y)
= (A(x) ∩ A(y)) ∪ (R23(x)) ∩A(y))
= (A(x) ∩ A(y)) ∪ ∅
= A(x) ∩ A(y) ⊆ A(x).

Therefore A(u)∩A(y) ⊆ A(u)∩A(x). Since u and y are adjacent in G, there

exists b ∈ V (G) such that △(b) ⊆ A(u) ∩ A(y). Then △(b) ⊆ A(u) ∩ A(x),
which is a contradiction to the fact that u and x are not adjacent in G. Thus

a /∈ R23(y) and so a ∈ A(y). Hence we have shown that A(x) ∩ A(v) ⊆
A(y). Since x and v are adjacent in G, there exists c ∈ V (G) such that

△(c) ⊆ A(x) ∩ A(v). Then △(c) ⊆ A(v) ∩ A(y), which is a contradiction to

the fact that v and y are not adjacent in G. Thus we have p
(y)
1 6∈ R1(v) and

p
(y)
2 ∈ R2(v). Hence the lemma holds.

Definition 3.3.3. For a positive integer n, let Gn be the graph obtained

from the complete graph Kn by adding a path of length 2 for each pair of

vertices of Kn, i.e., V (Gn) = {vi | 1 ≤ i ≤ n} ∪ {vij | 1 ≤ i < j ≤ n} and

E(Gn) = {vivj | 1 ≤ i < j ≤ n} ∪ {vivij | 1 ≤ i < j ≤ n} ∪ {vjvij | 1 ≤ i <

j ≤ n}.

Definition 3.3.4. For a positive integer m, the Ramsey number r(m,m,m)
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is the smallest positive integer r such that any 3-edge-colored complete graph

Kr of order r contains a monochromatic complete graph Km of order m.

Lemma 3.3.5. Let m be a positive integer at least 3 and let n be an integer

greater than or equal to the Ramsey number r(m,m,m). If dimpoc(Gn) ≤ 3,

then there exists a sequence (x1, . . . , xm) of vertices of Gn such that {x1, . . . , xm}
is a clique of Gn and that any subsequence (xi1 , . . . , xil) of (x1, . . . , xm) is

consecutively tail-biting, where 2 ≤ l ≤ m and 1 ≤ i1 < · · · < il ≤ m.

Proof. Since the vertices vi and vj of Gn are internal vertices of an induced

path of length three by the definition of Gn, it follows from Lemma 3.1.6

that the vertices vi and vj of Gn are crossing. By Lemma 3.1.7, for any

1 ≤ i < j ≤ n, there exists k ∈ {1, 2, 3} such that vi
k→ vj or vj

k→ vi. Now

we define an edge-coloring c : {vivj | 1 ≤ i < j ≤ n} → {1, 2, 3} as follows:

For 1 ≤ i < j ≤ n, we let c(vivj) = k so that vi
k→ vj or vj

k→ vi. Then, by the

definition of r(m,m,m), Kn contains a monochromatic complete subgraph

K with m vertices.

Suppose that the edges of K have color k, where k ∈ {1, 2, 3}. We assign

an orientation to each edge xy of K so that x goes toward y if x
k→ y. In that

way, we obtain a tournament
−→
K with m vertices. It is well-known that every

tournament has a directed Hamiltonian path. Therefore,
−→
K has a directed

Hamiltonian path. Let x1 → x2 → · · · → xm be a directed Hamiltonian path

of
−→
K . Then, by Lemma 3.1.9, xi

k→ xj for any i < j. Thus any subsequence

(xi1 , . . . , xil) of (x1, . . . , xm) is consecutively tail-biting, where 2 ≤ l ≤ m and

1 ≤ i1 < · · · < il ≤ m.

Since the graph Gn is chordal, the following theorem shows the existence

of chordal graphs with partial order competition dimensions greater than

three. Given a graph G and a set X consisting of six vertices in G, we say

that X induces an H if it induces a subgraph of G isomorphic to H.

Theorem 3.3.6. For n ≥ r(5, 5, 5), dimpoc(Gn) > 3.
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Proof. We prove by contradiction. Suppose that dimpoc(Gn) ≤ 3 for some n ≥
r(5, 5, 5). By Lemma 3.3.5, Gn contains a consecutively tail-biting sequence

(v1, . . . , v5) of five vertices in Type k such that {v1, . . . , v5} is a clique of Gn

and that (vi1 , vi2 , vi3) is a consecutively tail-biting sequence for any 1 ≤ i1 <

i2 < i3 ≤ 5 and (vi1 , vi2, vi3 , vi4) is a consecutively tail-biting sequence for

any 1 ≤ i1 < i2 < i3 < i4 ≤ 5. Without loss of generality, we may assume

that k = 3.

Since {v1, v2, v3, v13} induces a diamond and (v1, v2, v3) is a consecutively

tail-biting sequence of Type 3, it follows from Lemma 3.3.1 that p
(v13)
1 ∈

R1(v2) and p
(v13)
2 6∈ R2(v2) hold or p

(v13)
1 /∈ R1(v2) and p

(v13)
2 ∈ R2(v2) hold.

We first suppose that p
(v13)
1 ∈ R1(v2) and p

(v13)
2 6∈ R2(v2). Since {v1, v2, v3, v4, v13, v24}

induces an H and (v1, v2, v3, v4) is a consecutively tail-biting sequence of Type

3, it follows from Lemma 3.3.2 and p
(v13)
1 ∈ R1(v2) that p

(v24)
2 ∈ R2(v3). Since

{v1, v2, v3, v5, v13, v25} induces an H and (v1, v2, v3, v5) is a consecutively tail-

biting sequence of Type 3, it follows from Lemma 3.3.2 and p
(v13)
1 ∈ R1(v2)

that

p
(v25)
2 ∈ R2(v3). (3.3.1)

Since {v2, v3, v4, v5, v24, v35} induces an H and (v2, v3, v4, v5) is a consecutively

tail-biting sequence of Type 3, it follows from Lemma 3.3.2 and p
(v24)
2 ∈ R2(v3)

that

p
(v35)
1 ∈ R1(v4). (3.3.2)

Since {v1, v3, v4, v14} induces a diamond and (v1, v3, v4) is a consecutively tail-

biting sequence of Type 3, it follows from Lemma 3.3.1 that p
(v14)
1 ∈ R1(v3)

and p
(v14)
2 6∈ R2(v3) hold or p

(v14)
1 /∈ R1(v3) and p

(v14)
2 ∈ R2(v3) hold. Suppose

that p
(v14)
1 ∈ R1(v3) and p

(v14)
2 6∈ R2(v3). Since {v1, v3, v4, v5, v14, v35} induces

an H and (v1, v3, v4, v5) is a consecutively tail-biting sequence of Type 3, it

follows from Lemma 3.3.2 and p
(v14)
1 ∈ R1(v3) that

p
(v35)
2 ∈ R2(v4). (3.3.3)
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Since {v3, v4, v5, v35} induces a diamond and (v3, v4, v5) is a consecutively tail-

biting sequence of Type 3, it follows from Lemma 3.3.1 that p
(v35)
1 ∈ R1(v4)

and p
(v35)
2 /∈ R2(v4) hold or p

(v35)
1 /∈ R1(v4) and p

(v35)
2 ∈ R2(v4) hold, which is

a contradiction to the fact that both (3.3.2) and (3.3.3) hold. Thus

p
(v14)
1 6∈ R1(v3) and p

(v14)
2 ∈ R2(v3). (3.3.4)

Since {v1, v2, v4, v14} induces a diamond and (v1, v2, v4) is a consecutively tail-

biting sequence of Type 3, it follows from Lemma 3.3.1 that p
(v14)
1 ∈ R1(v2)

and p
(v14)
2 /∈ R2(v2) hold or p

(v14)
1 /∈ R1(v2) and p

(v14)
2 ∈ R2(v2) hold. Suppose

that p
(v14)
1 6∈ R1(v2) and p

(v14)
2 ∈ R2(v2). Since {v1, v2, v4, v5, v14, v25} induces

an H and (v1, v2, v4, v5) is a consecutively tail-biting sequence of Type 3, it

follows from Lemma 3.3.2 and p
(v14)
2 ∈ R2(v2) that

p
(v25)
1 ∈ R1(v4). (3.3.5)

By (3.3.1) and (3.3.5), since A(v4) and A(v25) are homothetic, we have

p
(v25)
2 ∈ R2(v4). (3.3.6)

Since {v2, v4, v5, v25} induces a diamond and (v2, v4, v5) is a consecutively tail-

biting sequence of Type 3, it follows from Lemma 3.3.1 that p
(v25)
1 ∈ R1(v4)

and p
(v25)
2 /∈ R2(v4) hold or p

(v25)
1 /∈ R1(v4) and p

(v25)
2 ∈ R2(v4) hold, which is

a contradiction to the fact that both (3.3.5) and (3.3.6) hold. Thus p
(v14)
1 ∈

R1(v2) and p
(v14)
2 6∈ R2(v2).

Since A(v3) and A(v14) are homothetic, we have

p
(v14)
1 ∈ R1(v3), (3.3.7)

contradicting (3.3.4).

In the case where p
(v13)
1 6∈ R1(v2) and p

(v13)
2 ∈ R2(v2), we also reach a

contradiction by applying a similar argument.
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Hence, dimpoc(Gn) > 3 holds for any n ≥ r(5, 5, 5).

Remark 3.3.7. We have shown that there are chordal graphs with partial

order competition dimension greater than three and that there are chordal

graphs with partial order competition dimension at most three such as chordal

diamond-free graphs. In this vein, it would be interesting to characterize the

chordal graphs with partial order competition dimension at most three.
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Chapter 4

The partial order competition

dimensions of bipartite graphs1

In this chapter, we compute the partial order competition dimensions of all

the complete bipartite graphs. We show that every bipartite graph has partial

order competition dimension at most four, and it is equal to four when the

bipartite graph contains K3,3 as a subgraph. To do so, we introduce a useful

notion “the order type for two points in R3” and give an upper bound of the

POC of a graph in terms of its chromatic number. We also utilize the upper

bound to show that the partial order competition dimension of every planar

graph is at most 4.

4.1 Order types of two points in R3

Take two distinct points u := (u1, u2, u3) and v := (v1, v2, v3) in R3. For a

nonempty proper subset S of {1, 2, 3}, we write u �S v if ui ≤ vi for each

i ∈ S.

1The material in the section is from the paper “The partial order competition dimen-
sions of bipartite graphs” by Jihoon Choi, Soogang Eoh, Suh-Ryung Kim, Yeun Lee, and
Prof. Yoshio Sano. The author thanks Soogang Eoh, Prof. Suh-Ryung Kim, Dr. Jung Yeun
Lee, and Prof. Yoshio Sano for allowing him to use its contents for his thesis.
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Suppose that u and v are incomparable in R3. Then there exists a par-

tition {S1, S2} of the set {1, 2, 3} such that either u �S1
v and v �S2

u or

u �S2
v and v �S1

u (the equalities cannot hold at the same time in each

case). We call such a partition {S1, S2} an order type for {u, v}.
The following lemma is obvious by the definition of order types for a pair

of points in R3.

Lemma 4.1.1. Let u and v be distinct incomparable points in R3. Then

{u, v} has order types {{1}, {2, 3}} or {{2}, {1, 3}} or {{3}, {1, 2}}.

Note that order types of {u, v} are not unique, for example, for the two points

u = (1, 2, 5) and v = (1, 3, 4) in R3, {u, v} has order types {{1, 2}, {3}} and

{{2}, {1, 3}}.
The order types of two points in R3 have the following geometric inter-

pretation. Two sets in Rd are said to be homothetic if the two sets are related

by a geometric contraction or expansion.

For k ∈ {1, 2, 3} and v ∈ H+, let ∠k(v) be the following region:

∠k(v) := {x ∈ R3 | x = p
(v)
k +α(p

(v)
i −p(v)k )+β(p

(v)
j −p(v)k ), 0 ≤ α ∈ R, 0 ≤ β ∈ R},

where i and j are elements such that {i, j, k} = {1, 2, 3} (see Figure 4.1).

By Lemma 4.1.1, a pair {u, v} of incomparable points in R3 has an order

type {{k}, {1, 2, 3} \ {k}} for some k ∈ {1, 2, 3}. Now we are ready to give a

geometric interpretation for a pair {u, v} having an order type {{k}, {1, 2, 3}\
{k}}.

Lemma 4.1.2. For two incomparable points u and v in H+ and for an integer

k ∈ {1, 2, 3}, v �{k} u and u �{1,2,3}\{k} v if and only if ∠k(u) ( ∠k(v).

Proof. Let u = (u1, u2, u3) and v = (v1, v2, v3). Since v ∈ H+, v1+v2+v3 > 0.
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Without loss of generality, we may assume k = 1. Now

p
(u)
1 = (−u2 − u3, u2, u3)

= (−v2 − v3, v2, v3) + ((v2 − u2) + (v3 − u3), u2 − v2, u3 − v3)

= (−v2 − v3, v2, v3) + (v2 − u2, u2 − v2, 0) + (v3 − u3, 0, u3 − v3)

= p
(v)
1 + α(v1 + v2 + v3,−v1 − v2 − v3, 0) + β(v1 + v2 + v3, 0,−v1 − v2 − v3)

= p
(v)
1 + α(p

(v)
2 − p

(v)
1 ) + β(p

(v)
3 − p

(v)
1 )

where α =
v2 − u2

v1 + v2 + v3
and β =

v3 − u3
v1 + v2 + v3

. Since p
(v)
2 −p

(v)
1 and p

(v)
3 −p

(v)
1

form a basis of H, α and β are the unique coefficients satisfying the above

equalities. Then

v �{1} u, u �{2,3} v ⇔ u2 ≤ v2, u3 ≤ v3 (u and v are incomparable)

⇔ α ≥ 0 and β ≥ 0 (v1 + v2 + v3 > 0)

⇔ p
(u)
1 ∈ ∠1(v)

⇔ ∠1(u) ⊂ ∠1(v) (A(u) and A(v) are homothetic)

⇔ ∠1(u) ( ∠1(v) (u and v are distinct)

and so the lemma follows.

Theorem 4.1.3. For two incomparable points u and v in H+ and for an

integer k ∈ {1, 2, 3}, the pair {u, v} has an order type {{k}, {1, 2, 3} \ {k}}
if and only if ∠k(u) ( ∠k(v) or ∠k(v) ( ∠k(u).

Proof. By Lemma 4.1.2, v �{k} u and u �{1,2,3}\{k} v if and only if ∠k(u) (

∠k(v), and u �{k} v and v �{1,2,3}\{k} u if and only if ∠k(v) ( ∠k(u) for any

integer k ∈ {1, 2, 3}. Therefore the theorem follows.

Let D be a 3-partial order. Since D can be embedded in R3, we may

identify a vertex in D with a point in R3. In this vein, for two vertices x and

y in D, we use both expressions “x ≺ y” and “(y, x) is an arc in a 3-partial

order” without distinction.
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p
(v)
1

p
(v)
2

p
(v)
3

A(v)

Figure 4.1: The shaded region represents ∠1(v).

Lemma 4.1.4. Suppose that there is a common order type {S1, S2} for each

pair of the three points x1, x2, x3 ∈ R3. Then, for some permutation σ on

{1, 2, 3}, xσ(1) �S1
xσ(2) �S1

xσ(3) and xσ(1) �S2
xσ(2) �S2

xσ(3).

Proof. By the hypothesis, �S1
is a total order on {x1, x2, x3}. Therefore there

exists a permutation σ on {1, 2, 3} such that xσ(1) �S1
xσ(2) �S1

xσ(3). Since

y1 �S1
y2 if and only if y1 �S2

y2 for any pair {y1, y2} of points in Rd with

the order type {S1, S2}, the lemma immediately follows.

Lemma 4.1.5. Let D be a 3-partial order and let x and y be non-isolated

vertices in C(D). If x and y are nonadjacent in C(D), then x and y are

incomparable in R3.

Proof. By contradiction. Suppose x � y or y � x. By symmetry, we may

assume x � y. Since x is non-isolated, x has a neighbor z in C(D). Then

there exists w ∈ V (D) such that w is a common out-neighbor of x and z in

D, i.e., w ≺ x and w ≺ z. By the assumption x � y, w ≺ x implies w ≺ y.

Therefore w is a common out-neighbor of x and y in D. Thus x and y are

adjacent in C(D), which is a contradiction.

Theorem 4.1.6. Suppose that xyzwx is an induced cycle of length 4 in the

competition graph of a 3-partial order D. Then {x, z} and {y, w} do not share

an order type in common.
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Proof. By identifying the vertices of D with points in R3, we may assign

coordinates in R3 to x, y, z, and w so that x = (x1, x2, x3), y = (y1, y2, y3), z =

(z1, z2, z3), and w = (w1, w2, w3). By Lemma 4.1.5, x and z are incomparable,

and so are y and w. Therefore the order types for {x, z} and the order types

for {y, w} are well-defined. Suppose to the contrary that {x, z} and {y, w}
share a common order type. Without loss of generality, we may assume that

they share {{1}, {2, 3}} as a common order type and that x �{1} z and

y �{1} w, i.e.,

x1 ≤ z1, z2 ≤ x2, z3 ≤ x3; y1 ≤ w1, w2 ≤ y2, w3 ≤ y3. (4.1.1)

Since yz is an edge in C(D), there exists a vertex a = (a1, a2, a3) in D

such that a ≺ y and a ≺ z, from which the inequalities a2 < z2, a3 < z3, and

a1 < y1 follow. Then a2 < z2 and z2 ≤ x2 in (4.1.1) give a2 < x2. Similarly,

a3 < z3 and z3 ≤ x3 give a3 < x3. If y1 ≤ x1, then a1 < x1 by the inequality

a1 < y1, so we have a ≺ x, which contradicts the fact that x and z are not

adjacent in C(D). Thus y1 > x1.

Since xw is an edge in C(D), there exists a vertex b = (b1, b2, b3) in D

such that b ≺ x and b ≺ w. Then we apply an argument parallel to the one

given in the previous paragraph to deduce x1 > y1. Now we have y1 > x1

and x1 > y1, which is impossible. Hence the theorem holds.

4.2 An upper bound for the the partial order

competition dimension of a graph

In this section, we derive an upper bound for the partial order competition

dimension of a graph in terms of its chromatic number. We utilize it to show

that any graph with chromatic number 4 has the partial order competition

dimension 4 if it contains the cocktail-party graph as a subgraph. with four

partite sets as an induced subgraph. In addition, we present some graphs
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with partial order competition dimension greater than three.

Theorem 4.2.1. For an integer n ≥ 4 and a graph G with χ(G) ≤ n
⌊

n−1
2

⌋

,

dimpoc(G) ≤ n.

Proof. From a graph with chromatic number less than k, we may construct

a graph with chromatic number k by adding sufficient many vertices so that

the added vertices are adjacent to each other and to each vertex of the given

graph. Therefore, by Proposition 2.3.8, it is sufficient to prove the statement

for a graph with chromatic number n
⌊

n−1
2

⌋

. Let G be a graph with chro-

matic number n
⌊

n−1
2

⌋

. Then the vertex set of G is partitioned into n
⌊

n−1
2

⌋

independent sets. By the same proposition, we may assume that the inde-

pendent sets have the same size. Let q be the size of each independent set.

Now we group the independent sets into n groups V1, . . . , Vn of the same size

and denote the independent sets belonging to Vj by V1,j , V2,j, . . . , V⌊n−1

2
⌋,j for

each j = 1, . . . , n.

To have the vertices of G embedded in Rn, we will assign coordinates in

Rn to each vertex of G as follows. We start with a square matrix N of order

n such that the (n, j)-entry is j, the (n− 1, j)-entry is j − 1, the (1, j)-entry

is j − 2, the (2, j)-entry is j − 3, (we identify 0, −1, and −2 with n, n − 1,

and n−2, respectively) for each j = 1, . . . , n, and the remaining entries of N

may be any integers in {1, . . . , n} as long as no same number appears twice

in each column (while a row may contain identical elements). See Figure 4.2

for an example.

For each j = 1, . . . , n, we carry out the following procedure. We let cj be

the q
⌊

n−1
2

⌋

× 1 matrix which contains V1,j , V2,j, . . . , V⌊n−1

2
⌋,j in this order as

blocks and in which the block corresponding to Vi,j is a q × 1 matrix whose

entries are the vertices of Vi,j for i = 1, . . . ,
⌊

n−1
2

⌋

. Then we denote by c−1
j

the q
⌊

n−1
2

⌋

× 1 matrix obtained by reversing the order of the blocks in cj

and the order of the vertices in each block. Now, for i = 1, . . . ,
⌊

n−1
2

⌋

, we

cyclically permute the blocks corresponding to Vi,j in cj and c−1
j l times and

denote the resulting matrix by cj,l and c−1
j,l for each l = 1, . . . ,

⌊

n−1
2

⌋

− 1.
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N =





















6 7 1 2 3 4 5
5 6 7 1 2 3 4
2 5 6 7 1 2 2
4 4 5 6 7 1 3
3 3 4 5 6 7 1
7 1 2 3 4 5 6
1 2 3 4 5 6 7





















Figure 4.2: An example of N when n = 7

cj =





V1,j
V2,j
V3,j



 , c−1
j =





V −1
3,j

V −1
2,j

V −1
1,j



 ,

Cj =







cj,1 :=





V3,j
V1,j
V2,j



 , cj,2 :=





V2,j
V3,j
V1,j



 , c−1
j,1 :=





V −1
2,j

V −1
1,j

V −1
3,j



 , c−1
j,2 :=





V −1
1,j

V −1
3,j

V −1
2,j











.

Figure 4.3: Examples of cj, c
−1
j , and Cj for j = 1, . . . , 7 when n = 7. We

regard Vi,j in each 3q × 1 matrix as a q × 1 block with the entries in the set
Vi,j. In addition, V −1

i,j means the q×1 matrix obtained by turning Vi,j upside
down.

Let Cj be the set of cj,l and c−1
j,l for each l = 1, . . . ,

⌊

n−1
2

⌋

− 1. Obviously

|Cj| = 2
⌊

n−1
2

⌋

− 2. Refer to Figure 4.3 for an illustration.

We will replace each entry of N with a q
⌊

n−1
2

⌋

× 1 matrix with entries in

V (G) to obtain a matrix M in the following way. For each j = 1, . . . , n, we

replace j in the nth row of N with cj , and j in the second row of N and j in

the (n− 1)st row of N with c−1
j (refer to Figure 4.4 for an illustration). Now

we wish to locate each matrix in
⋃n

j=1 Cj exactly once in the n− 3 remaining

rows of N so that j in each row is replaced with an q
⌊

n−1
2

⌋

× 1 matrix in Cj
for each j = 1, . . . , n. If n is odd, then the desired process works to giveM in

which an q
⌊

n−1
2

⌋

× 1 matrix in Cj appears in each column of M exactly once

for each j = 1, . . . , n. If n is even, then there is one j in N which has not yet
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M =





























c6,1 c7,1 c1,1 c2,1 c3,1 c4,1 c5,1

c−1
5 c−1

6 c−1
7 c−1

1 c−1
2 c−1

3 c−1
4

c2,2 c5,2 c6,2 c7,2 c1,2 c−1
2,1 c−1

2,2

c4,2 c−1
4,1 c−1

5,1 c−1
6,1 c−1

7,1 c−1
1,1 c3,2

c−1
3,1 c−1

3,2 c−1
4,2 c−1

5,2 c−1
6,2 c−1

7,2 c−1
1,2

c−1
7 c−1

1 c−1
2 c−1

3 c−1
4 c−1

5 c−1
6

c1 c2 c3 c4 c5 c6 c7





























Figure 4.4: An example of M when n = 7

been replaced and we replace it with a matrix arbitrarily chosen from Cj for
each j = 1, . . . , n.

We are ready to assign a coordinate [v] to each vertex v of G. Fix j ∈
{1, . . . , n}. We determine the jth component of [v] as follows. By definition,

v appears exactly once in each column of M . Suppose that v appears in the

ith row from the bottom in the jth column for some i ∈ {1, . . . , nq
⌊

n−1
2

⌋

}.
Then we let the jth component of [v] be 2i. We denote the jth component

of [v] by [v]j for each j = 1, . . . , n.

For two adjacent vertices v and w inG, we add a vertex xvw toG satisfying

[xvw]j = min{[v]j, [w]j} − 1 for each j = 1, . . . , n. Then, for two adjacent

vertices v and w, xvw ≺ v and xvw ≺ w in Rn. Let I be the set of those added

vertices and D be the n-partial order induced by the points in V (G) ∪ I. In
order to show that the competition graph of D is G together with I, we need

to check the following:

(i) There is no arc between any two vertices of G in D.

(ii) For any adjacent vertices v and w in G, N+(xvw) = ∅ and N−(xvw) =

{v, w} where N+(xvw) and N
−(xvw) denote the out-neighborhood and

the in-neighborhood of xvw, respectively, in D.

To show (i), we take two vertices v and w in G. Then v ∈ Vi and w ∈ Vj
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for some i, j ∈ {1, . . . , n}. If i = j, then there exist a column in which v

is above w and a column in which w is above v since there exist a column

containing ci and a column containing c−1
i . If i 6= j, then either ci or c−1

i

is above cj in the jth column while either cj or c−1
j is above ci in the ith

column, and so v is above w in the jth column while w is above v in the ith

column. Therefore,

(§) there exists a column in which v is above w for any two vertices v and

w in G

and so any two vertices of G are not adjacent in D.

To show (ii), we take two adjacent vertices v and w and a vertex u in G

distinct from v and w. In addition, we take a vertex in I distinct from xvw.

Then it is in the form of xv′w′ for some adjacent vertices v′ and w′ such that

{v, w} 6= {v′, w′}. Without loss of generality, we may assume v and v′ are

vertices not in {v, w} ∩ {v′, w′}.
Then u ∈ Vp,i, v ∈ Vq,j, and w ∈ Vr,k for some i, j, k ∈ {1, . . . , n} and

p, q, r ∈ {1, . . . ,
⌊

n−1
2

⌋

}. If i 6= j and i 6= k, then there exists a column of M

in which u is below v and w since one of cj , c
−1
j and one of ck, c

−1
k are above

ci in the ith column. To show that such a column exists even for the case

i = j or i = k, suppose i = j or i = k. Without loss of generality, we may

assume i = j. We first consider the case i = k. Then j = k, which implies

q 6= r as v and w are adjacent. Then p 6= q or p 6= r. Since i = j = k, u,

v, and w belong to ci and c−1
i and we may assume p 6= q. Assume that u is

below w in ci (resp. c
−1
i ). If v is below u in ci (resp. c

−1
i ), then there exists

an q
⌊

n−1
2

⌋

× 1 matrix in Ci which was obtained by cyclically permuting the

blocks in ci (resp. c
−1
i ) and in which the block corresponding to Vp,i is at

the bottom. Since u is below w in ci or c
−1
i , we may conclude that there is

a column of M in which u is below v and w in this case. Finally consider

the case i 6= k. If u is below v in ci, then u is below v and w in the ith

column. Suppose that u is above v in ci. Then u is below v in c−1
i . Thus, if

k 6= i + 1 (resp. k = i + 1), then u is below v and w in the (i + 1)st (resp.
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(i+ 3)rd) column of M (we identify n+1, n+2, and n+3 with 1, 2, and 3,

respectively). Hence we have shown that, for adjacent vertices v and w and

a vertex u distinct from v and w, there exists a column of M in which u is

below v and w, that is,

[u]l ≤ min{[v]l, [w]l} − 2 (4.2.1)

for some l ∈ {1, . . . , n}. Therefore u cannot be an out-neighbor of xvw. On

the other hand, there exists a column of M in which u is above v by (§), so,
by the definition of xvw,

[xvw]l′ ≤ [v]l′ < [u]l′

for some l′ ∈ {1, . . . , n}. Thus u cannot be an in-neighbor of xvw. Hence

N+(xvw) ∩ V (G) = ∅ and N−(xvw) ∩ V (G) = {v, w}. (4.2.2)

Suppose to the contrary that xvw and xv′w′ are adjacent in D. Without loss of

generality, we may assume xv′w′ ≺ xvw. By the definition of xvw, xvw ≺ v and

xvw ≺ w. Then, by the transitivity of ≺, xv′w′ ≺ v, which contradicts (4.2.2)

as v and w were arbitrarily chosen adjacent vertices. Therefore

N+(xvw) ∩ I = N−(xvw) ∩ I = ∅. (4.2.3)

Thus, by (4.2.2) and (4.2.3), (ii) holds. Hence we have shown that the

competition graph of D is G together with |E(G)| isolated vertices and

dimpoc(G) ≤ n.

As a planar graph has chromatic number at most 4 by the four color theorem,

we have the following corollary immediately.

Corollary 4.2.2. For every planar graph G, dimpoc(G) ≤ 4.

Recall that, for a positive integer n, the cocktail-party graph K2×n is the
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complete multipartite graph with n partite sets all of which are of size two,

i.e., K2×n is the graph defined by

V (K2×n) =

n
⋃

i=1

{xi, yi}, E(K2×n) =

n
⋃

i=1

n
⋃

j=i+1

{xixj , xiyj, xjyi, yiyj}.

Theorem 4.2.3. The partial order competition dimension of K2×4 is 4.

Proof. Since χ(K2×4) = 4, dimpoc(K2×4) ≤ 4 by Theorem 4.2.1.

Suppose to the contrary that dimpoc(K2×4) ≤ 3. Then K2×4 together

with some isolated vertices is the competition graph of a 3-partial order. Let

{xi, yi} (i = 1, . . . , 4) be the 4 partite sets of K2×4. Then xi and yi are in-

comparable in R3 by Lemma 4.1.5. Thus, by Lemma 4.1.1, order types for

{xi, yi} exist for each i = 1, . . . , 4. Since there are only three possible order

types by the same lemma, there exist at least two partite sets {xi, yi} and

{xj , yj} which have a common order type by the Pigeonhole principle. How-

ever, xixjyiyjxi is an induced 4-cycle of K2×4 and we reach a contradiction

to Theorem 4.1.6. Thus dimpoc(K2×4) ≥ 4 and the theorem is true.

By Proposition 2.3.8 and Theorems 4.2.1 and 4.2.3, the following corollary

is immediately true:

Corollary 4.2.4. If a graph G contains K2×4 as an induced subgraph and

has chromatic number 4, then dimpoc(G) = 4.

Since K2×n, Km1,...,mn
, and the complement of the cycle Cl contains the

cocktail-party graph K2×4 as an induced subgraph for n ≥ 4, mi ≥ 2 for

each i = 1, . . . , n, and l ≥ 12, we obtain the following corollaries.

Corollary 4.2.5. For any integer n ≥ 4, dimpoc(K2×n) > 3.

Corollary 4.2.6. Let Km1,...,mn
be a complete multipartite graph with at least

four partite sets of size at least two. Then dimpoc(Km1,...,mn
) > 3.

Let Cn denote the complement of a cycle of length n.
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Corollary 4.2.7. For any integer n ≥ 12, dimpoc(G) > 3.

We can slightly improve Corollary 4.2.7 as follows.

Theorem 4.2.8. For any integer n ≥ 10, dimpoc(Cn) > 3.

Proof. Take an integer n ≥ 10 and let Cn = v1v2 . . . vnv1. Suppose to the con-

trary that dimpoc(Cn) ≤ 3. Then, by definition, Cn together with some iso-

lated vertices is the competition graph of a 3-partial order. By Lemma 4.1.5,

for i = 1, . . . , n, vi and vi+1 are incomparable in R3 and so, by Lemma 4.1.1,

the order types for {vi, vi+1} exist (we identify vn+1 with v1). Without loss

of generality, we may assume that {{1}, {2, 3}} is an order type for {v1, v2}.
For each i ∈ {4, . . . , n − 2}, v1viv2vi+1v1 is an induced 4-cycle of Cn, so, by

Theorem 4.1.6, {vi, vi+1} does not have the order type {{1}, {2, 3}} for any

i ∈ {4, . . . , n − 2}. Therefore {vn−1, vn}, {vn, v1}, {v1, v2}, {v2, v3}, {v3, v4}
are the only possible consecutive pairs of vertices on Cn that might have the

order type {{1}, {2, 3}}. Note that vn−1v2vnv3vn−1 and vnv3v1v4vn are in-

duced 4-cycles of Cn. By Theorem 4.1.6, neither {v2, v3} and {vn−1, vn} nor

{v1, vn} and {v3, v4} share a common order type. Thus at most three consec-

utive pairs of vertices on Cn have the order type {{1}, {2, 3}}. By a similar

argument, at most three consecutive pairs have the order type {{2}, {1, 3}}
and at most three consecutive pairs have the order type {{3}, {1, 2}}. Hence
n ≤ 9 and we reach a contradiction.

4.3 Partial order competition dimensions of

bipartite graphs

In this section, we show that the partial order competition dimension of the

graphs containing K3,3 as an induced subgraph is 4 and compute partial order

competition dimensions of complete bipartite graphs.

Theorem 4.3.1. For any graph G containing K3,3 as an induced subgraph,

dimpoc(G) > 3.
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Proof. By Proposition 2.3.8, it suffices to show dimpoc(K3,3) > 3. Let X =

{x1, x2, x3} and Y = {y1, y2, y3} be the partite sets of K3,3. Suppose to the

contrary that dimpoc(K3,3) ≤ 3. Then K3,3 together with some isolated ver-

tices becomes the competition graph of a 3-partial order D.

Since X is an independent set in K3,3, any two vertices in X are incom-

parable by Lemma 4.1.5. Similarly, any two vertices in Y are incomparable.

If there exist x ∈ X and y ∈ Y satisfying x � y or y � x, N(x) ⊂ N(y)

or N(y) ⊂ N(x) in K3,3, which is impossible. Therefore x and y are incom-

parable for any x ∈ X and y ∈ Y . This observation together with the fact

that each of the nine edges in K3,3 is a maximal clique imply that we need

at least nine additional isolated vertices inducing the nine edges of K3,3.

We denote the isolated vertex inducing the edge xiyj by zij for i, j ∈
{1, 2, 3}. We may assign coordinates to xi, yj, zij in R3 so that xi = (x

(1)
i , x

(2)
i , x

(3)
i ),

yj = (y
(1)
j , y

(2)
j , y

(3)
j ), and zij = (z

(1)
ij , z

(2)
ij , z

(3)
ij ) for all i, j ∈ {1, 2, 3}.

Since any two vertices in X (resp. Y ) are incomparable, and any vertex

in X and any vertex in Y are incomparable by the above observation, the

order types for {xi, xj} (resp. {yi, yj}) for distinct i and j in {1, 2, 3}, and
the order types for {x, y} for x ∈ X and y ∈ Y are well-defined.

Take a pair {xi, xj} from X and a pair {yk, yl} from Y . Then xiykxjylxi

is an induced 4-cycle in K3,3 and so {xi, xj} and {yk, yl} do not share a

common order type by Theorem 4.1.6. Since the pairs {xi, xj} and {yk, yl}
were arbitrarily chosen, we can conclude that every pair from X and every

pair from Y do not share a common order type.

If two pairs from X have distinct order types and two pairs from Y have

distinct order types, then one of the two pairs fromX and one of the two pairs

from Y must share a common order type by the Pigeonhole principle since

there are only three order types, which contradicts the previous observation.

Thus either the three pairs from X or the three pairs from Y share a common

order type. Without loss of generality, we may assume that {x1, x2}, {x2, x3},
and {x1, x3} share an order type {{1}, {2, 3}}. Then, by Lemma 4.1.4, we
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may assume that x1 �{1} x2 �{1} x3, i.e.,

x
(1)
1 ≤ x

(1)
2 ≤ x

(1)
3 , x

(2)
1 ≥ x

(2)
2 ≥ x

(2)
3 , x

(3)
1 ≥ x

(3)
2 ≥ x

(3)
3 . (4.3.1)

Suppose that there exists i ∈ {1, 2, 3} such that y
(1)
i ≤ x

(1)
2 . Since z3i is

the isolated vertex inducing the edge x3yi, we have z3i ≺ x3 and z3i ≺ yi.

Therefore we have three inequalities z
(2)
3i < x

(2)
3 , z

(3)
3i < x

(3)
3 , and z

(1)
3i < y

(1)
i .

Then the first inequality z
(2)
3i < x

(2)
3 and the second inequality z

(3)
3i < x

(3)
3

and (4.3.1) give z
(2)
3i < x

(2)
2 and z

(3)
3i < x

(3)
2 . In addition, the third inequality

z
(1)
3i < y

(1)
i and the assumption y

(1)
i ≤ x

(1)
2 give z

(1)
3i < x

(1)
2 . Therefore we

have shown z3i ≺ x2. Then x2 and x3 are adjacent in K3,3 and reach a

contradiction. Thus y
(1)
i > x

(1)
2 for each i = 1, 2, 3.

To show that {x2, yi} does not have an order type {{1}, {2, 3}} for any

i = 1, 2, 3, suppose to the contrary that there exists i ∈ {1, 2, 3} such that

x
(2)
2 ≥ y

(2)
i and x

(3)
2 ≥ y

(3)
i . Since z1i is the isolated vertex inducing the edge

x1yi, we have z1i ≺ x1 and z1i ≺ yi. Therefore we have three inequalities

z
(1)
1i < x

(1)
1 , z

(2)
1i < y

(2)
i , and z

(3)
1i < y

(3)
i . Then z

(1)
1i < x

(1)
1 and the first inequal-

ity in (4.3.1) give z
(1)
1i < x

(1)
2 . In addition, z

(2)
1i < y

(2)
i , z

(3)
1i < y

(3)
i together

with our assumption that x
(2)
2 ≥ y

(2)
i and x

(3)
2 ≥ y

(3)
i give z

(2)
1i < x

(2)
2 and

z
(3)
1i < x

(3)
2 . Therefore we have shown z1i ≺ x2. Then x1 and x2 are adja-

cent in K3,3, which is impossible. Thus {x2, yi} does not have an order type

{{1}, {2, 3}} for any i = 1, 2, 3. Hence {x2, yi} has an order type {{2}, {1, 3}}
or {{3}, {1, 2}} for each i = 1, 2, 3. Then, by the Pigeonhole principle, there

exists two vertices yj, yk ∈ Y such that {x2, yj} and {x2, yk} share a com-

mon order type. Without loss of generality, we may assume that they have

{{2}, {1, 3}} as a common order type. As we have shown that y
(1)
j > x

(1)
2 and

y
(1)
k > x

(1)
2 , we have

y
(1)
j > x

(1)
2 , y

(2)
j ≤ x

(2)
2 , y

(3)
j ≥ x

(3)
2 ; y

(1)
k > x

(1)
2 , y

(2)
k ≤ x

(2)
2 , y

(3)
k ≥ x

(3)
2 .

(4.3.2)

Without loss of generality, we may assume y
(2)
j ≤ y

(2)
k . Since z2i is the isolated
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vertex inducing the edge x2yj, we have z2i ≺ x2 and and z2i ≺ yj. Therefore

we have three inequalities z
(1)
2i < x

(1)
2 , z

(3)
2i < x

(3)
2 , and z

(2)
2i < y

(2)
j . Then

the first and the second inequalities together with the fourth and the sixth

inequalities in (4.3.2) give z
(1)
2i < y

(1)
k and z

(3)
2i < y

(3)
k . In addition, the third

inequality and the assumption y
(2)
j ≤ y

(2)
k give z

(2)
2i < y

(2)
k . Therefore we have

shown z2i ≺ yk. Then yj and yk are adjacent in K3,3, which is impossible.

Hence dimpoc(K3,3) > 3.

Since any n-partite graph has chromatic number at most 4 for n = 2, 3, 4,

by Theorems 4.2.1 and 4.3.1, the following corollaries are immediately true:

Corollary 4.3.2. For any n-partite graph containing K3,3 as an induced

subgraph for n = 2, 3, 4, dimpoc(G) = 4.

Corollary 4.3.3. For any positive integers m,n ≥ 3, dimpoc(Km,n) = 4.

Remark 4.3.4. By Proposition 2.3.10, dimpoc(K1,1) = 1. By Proposition 2.3.12,

dimpoc(K1,n) = dimpoc(Kn,1) = 2 for n ≥ 2.

By Theorem 2.2.9, the family of homothetic equilateral triangles given in

Figure 4.5 makes K2,n together with 2n isolated vertices into the competi-

tion graph of a 3-partial order. Thus dimpoc(K2,n) = dimpoc(Kn,2) ≤ 3. By

Propositions 2.3.13 and 2.3.8, dimpoc(K2,n) = dimpoc(Kn,2) ≥ 3 for n ≥ 2, so

dimpoc(K2,n) = dimpoc(Kn,2) = 3 for n ≥ 2.
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...

A(x1) A(x2)
A(y1)

A(y2)
A(y2)

A(yn)

△ △

△ △

△△

△△

Figure 4.5: A family of homothetic equilateral triangles on the hyperplane
x+ y + z = 0 making K2,n with bipartition ({x1, x2}, {y1, . . . , yn}) together
with 2n isolated vertices into the competition graph of a 3-partial order.
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Chapter 5

On the m-step competition

graphs of d-partial orders1

In this chapter, we defined the notion of m-step competition graph which

is an important variants of competition graph. Then we study the m-step

competition graphs of d-partial orders and generalize some results on the

competition graphs of d-partial orders.

For two vertices x and y in a d-partial order D which satisfy x ≺ y in

Rd, we sometimes write x
D≺ y to emphasize the digraph D. For a graph G

and a nonnegative integer k, G∪ Ik is the graph obtained from G by adding

k isolated vertices.

5.1 A characterization of the m-step compe-

tition graphs of d-partial orders

Recall that, in Section 2.2.2, for a point p in Hd
+, △d−1(p) is a closure of

Ad−1(p) with respect to the usual topology in Rd, and that Fd−1 is defined

to be the set of regular (d − 1)-simplices in Rd which are contained in the

1The material in the section is from the paper “On the m-step competition graphs of
d-partial orders” by Jihoon Choi.
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hyperplane Hd and homothetic to △d−1(1). Then the bijection ϕ◦f∗ : Hd
+ →

Fd−1 defined in 2.2.2 naturally induces the following bijection.

Corollary 5.1.1. For each integer d ≥ 2, the function △d−1 : Hd
+ → Fd−1

mapping p to △d−1(p) is a bijection.

As an analogue of Theorem 2.2.9 which characterizes the competition

graphs of d-partial orders, we present the following theorem which charac-

terizes the m-step competition graphs of d-partial orders.

Theorem 5.1.2. For positive integers d and m, a graph G is the m-step

competition graph of a d-partial order if and only if there exist a subset F of

Fd−1 and a bijection f : V (G) → F such that

(⋆) two vertices v and w are adjacent in G if and only if there exist se-

quences (v0, v1, . . . , vm) and (w0, w1, . . . , wm) of vertices of G such that

v0 = v, w0 = w, vm = wm, the interior of f(vi) (resp. f(wi)) includes

f(vi+1) (resp. f(wi+1)) for i = 0, 1, . . . , m− 1.

Proof. (⇒) Suppose that G is the m-step competition graph of a d-partial

order D. By translating each vertex of D by T : v 7→ v+ k1 for a sufficiently

large real number k, we may obtain a d-partial order all of whose vertices

belong to Hd
+ and is isomorphic to D. Therefore we may assume all the

vertices of D are located in Hd
+. Let F = {△d−1(v) | v ∈ V (D)}. Then

F ⊂ Fd−1. Let f : V (G) → F be the function defined by f(v) = △d−1(v).

By Corollary 5.1.1, f is a bijection. The condition (⋆) immediately follows

from the definition of m-step competition graph and Proposition 2.2.7.

(⇐) Suppose that there exist a subset F of Fd−1 and a bijection f :

V (G) → F such that the condition (⋆) holds. By Corollary 5.1.1, each ele-

ment in F can be written as △d−1(p) for some p ∈ Hd
+. Let S = {p ∈ Rd |

△(p) ∈ F}. Then DS is a d-partial order. Take two vertices v and w in G.

Then, by Proposition 2.2.7 and the condition (⋆), v and w are adjacent in G

if and only if v and w have a common m-step prey in DS. Therefore G is the

m-step competition graph of the d-partial order DS.
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5.2 Partial order m-step competition dimen-

sions of graphs

In this section, we introduce the notion of partial order m-step competition

dimension of a graph as a generalization of that of partial order competition

dimension of a graph and investigate basic properties of the m-step compe-

tition graphs of d-partial orders in terms of it.

Lemma 5.2.1. Let D be a transitive digraph and m be a positive integer.

Then an m-step prey of x is a k-step prey of x for each k = 1, . . . , m.

Proof. Let y be an m-step prey of x. Then there exists a directed path P

from x to y of length m. Since D is transitive, there is an arc from x to every

vertex on P . Therefore there exists a directed path from x to y of length k

for each k = 1, . . . , m.

Lemma 5.2.2. Let D be a d-partial order for a positive integer d. Then there

exists (d+ 1)-partial order D̃ which is isomorphic to D.

Proof. The lemma immediately follows from the proof of Proposition 2.3.1.

The following theorem is a generalization of Proposition 2.3.1.

Proposition 5.2.3. If a graph G is the m-step competition graph of a d-

partial order for some positive integers m and d, then G is the m-step com-

petition graph of a (d+ 1)-partial order.

Proof. Let G be them-step competition graph of a d-partial orderD for some

positive integersm and d. Then, by Lemma 5.2.2, there exists a (d+1)-partial

order D̃ which is isomorphic to D. Therefore G = Cm(D) ∼= Cm(D̃). Thus

G is the m-step competition graph of a (d+ 1)-partial order.
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A vertex subset K of a graph G is called a clique if every pair of vertices

in K is an edge in G. For a clique K and an edge e of a graph G, we say

that K covers e (or e is covered by K) if and only if K contains the two end

points of e.

Theorem 5.2.4. Let G be a graph and m be a positive integer. Then there

exist positive integers d and k such that G together with k isolated vertices is

the m-step competition graph of a d-partial order.

Proof. Let |V (G)| = n and label the vertices of G as v1, . . . , vn. We define a

map φ : V (H) → Rn by

φ(vi)j =







2 if j = i;

4 if j 6= i.

Let θ = θe(G) and C = {C1, C2, . . . , Cθ} be an edge clique cover of G con-

sisting of maximal cliques in G. For each i ∈ {1, . . . , θ}, we define a map

ψi : C → Rn by ψi(C)k = 1− i
m+1

if vk ∈ C and ψi(C)k = 3− i
m+1

if vk 6∈ C.

Let V = φ(V (G))∪
(

⋃θ

i=1 ψ(C)
)

= {φ(vi) | vi ∈ V (G)}∪
(

⋃θ

i=1{ψ(C) | C ∈ C}
)

⊆
Rn. Then V defines an n-partial order D. By the construction of D, it easily

be checked that Thus Cm(D) = G∪Imθ. Hence, by taking d = n and k = mθ,

we complete the proof.

By Proposition 5.2.3 and Theorem 5.2.4, we are ready to define the notion

partial order competition dimension of a graph.

Definition 5.2.5. For a graph G and a positive integer m, we define the

partial order m-step competition dimension dimpoc(G;m) of G as the smallest

nonnegative integer d such that G together with k isolated vertices is the m-

step competition graph ofD for some d-partial orderD and some nonnegative

integer k, i.e.,

dimpoc(G;m) := min{d ∈ Z≥0 | ∃k ∈ Z≥0, ∃S ⊆ Rd, s.t. G ∪ Ik = Cm(DS)}.
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It immediately follows from the definition that dimpoc(G; 1) = dimpoc(G) for

every graph G.

Proposition 5.2.6. For any graph G and any positive integerm, dimpoc(G;m) ≤
|V (G)|.

Proof. The proposition follows from the construction of the d-partial order

D in the proof of Theorem 5.2.4.

As Propositions 2.3.9, 2.3.10, and 2.3.12 characterize graphs with small

partial order competition dimensions, it is natural to ask which graphs have

small partial order m-step competition dimensions. For a positive integer m,

it is easy to characterize graphs G with dimpoc(G;m) ≤ 1.

Proposition 5.2.7. Let G be a graph and m be a positive integer m. Then

dimpoc(G;m) = 0 if and only if G = K1.

Proof. It is clear by the definition of a 0-partial order.

Proposition 5.2.8. Let G be a graph and m be a positive integer m. Then

dimpoc(G;m) ≤ 1 if and only if G = Kt ∪ Is for some nonnegative integers

t and s with t ≥ 1 and s ≤ m. Especially, dimpoc(G;m) = 1 if and only if

G = Kt+1 or G = Kt ∪ Is for some positive integers t and s with s ≤ m.

Proof. Let D be a 1-partial order with V (D) = {v1, . . . , vn}. We may as-

sume that the vertices of D are labeled so that v1 < v2 < · · · < vn in R.

Then, for each i ≤ m, vi has no m-step prey in D, so it is an isolated ver-

tex in Cm(D). If i > m, then vi has v1 as an m-step prey in D and so

the set {vm+1, vm+2, . . . , vn} is a clique in Cm(D) unless it is empty. Since

we may take one of the isolated vertices as a clique of size one if the set

{vm+1, vm+2, . . . , vn} is empty, we may conclude that G = Kt ∪ Is for some

nonnegative integers t and s with t ≥ 1 and s ≤ m if dimpoc(G;m) ≤ 1.

Conversely, suppose that G = Kt∪Is for some nonnegative integers t and

s with t ≥ 1 and s ≤ m. We denote the vertices of in Kt by x1, . . . , xt and
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the vertices in Is by y1, . . . , ys if s 6= 0. Then we assign a coordinate in R to

each vertex of G by yi = i for i = 1, . . . , s and xj = j + s for j = 1, . . . , t.

Take a set J of m − s points in R with negative coordinates. Then the set

V (G) ∪ J ⊂ R induces a 1-partial order and its m-step competition graph is

G ∪ Im−s. Thus dimpoc(G;m) ≤ 1.

The equality part follows from Propositions 5.2.7.

Park et al. [47] studied the m-step competition graphs of 2-partial orders

and presented the following results.

Theorem 5.2.9 ([47]). For any positive integer m, the m-step competition

graph of a 2-partial order is an interval graph.

Theorem 5.2.10 ([47]). For any positive integer m, an interval graph with

sufficiently many isolated vertices is the m-step competition graph of a 2-

partial order.

In terms of partial order m-step competition dimension, the results of

Park et al. [47] can be restated as follows:

Proposition 5.2.11. Let G be a graph and m be a positive integer. Then

dimpoc(G;m) ≤ 2 if and only if G is an interval graph.

Proof. The ‘if’ part immediately follows from Theorem 5.2.10. To show the

‘only if’ part, suppose dimpoc(G;m) ≤ 2. Then there exists a 2-partial order

D whose m-step competition graph equals G ∪ Ik for some k ∈ Z≥0. By

Theorem 5.2.9, G ∪ Ik is interval and so G is interval.

The following proposition implies that deleting some isolated vertices

from a graph does not increase the partial order m-step competition di-

mension.

Proposition 5.2.12. For a graph G and positive integers k andm, dimpoc(G;m) ≤
dimpoc(G ∪ Ik;m).
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Proof. Let d = dimpoc(G ∪ Ik;m). Then there exists a d-partial order D

whose m-step competition graph equals (G∪ Ik)∪ Is for some s ∈ Z≥0. Since

(G ∪ Ik) ∪ Is = G ∪ Ik+s, dimpoc(G;m) ≤ d.

As a matter of fact, in Proposition 5.2.12, the equality mostly holds except

for some specific graphs.

Proposition 5.2.13. For a graph G and positive integersm and k, dimpoc(G∪
Ik;m) > dimpoc(G;m) if and only if G = K1 or G = Kt ∪ Is for some non-

negative integers t and s with t ≥ 1 and m− k < s ≤ m.

Proof. (⇐) By Propositions 5.2.7 and 5.2.8, dimpoc(K1 ∪ Ik;m) = 1 > 0 =

dimpoc(K1;m). Suppose that G = Kt ∪ Is for some nonnegative integers t

and s with t ≥ 1 and m−k < s ≤ m. Since G∪Ik = G∪Is+k and s+k > m,

dimpoc(G∪Ik;m) > 1 by Proposition 5.2.8. Yet, since s ≤ m, dimpoc(G;m) =

1 by the same proposition. Therefore dimpoc(G ∪ Ik;m) > dimpoc(G;m).

(⇒) Let d = dimpoc(G;m). Assume d ≥ 2. Then there exists a d-partial

order D whose m-step competition graph is G ∪ Is for some s ∈ Z≥0. We let

α = max{v1 | (v1, v2, . . . , vd) ∈ V (D)} and β = min{v2 | (v1, v2, . . . , vd) ∈ V (D)},

which are well-defined as d ≥ 2. Let zi = (α + i, β − i, 0, . . . , 0) ∈ Rd for

each i = 1, . . . , k and S = V (D) ∪ {z1, . . . , zk} ⊂ Rd. Then DS is a d-partial

order. By definition, no vertex in {z1, . . . , zk} is comparable with any vertex

of DS in Rd. Therefore Cm(DS) = Cm(D) ∪ Ik = (G ∪ Is) ∪ Ik = (G ∪
Ik) ∪ Is. Thus dimpoc(G ∪ Ik;m) ≤ d, which contradicts the hypothesis that

dimpoc(G∪ Ik;m) > dimpoc(G;m). Hence d ≤ 1. Then, by Proposition 5.2.8,

G = Kt ∪ Is for some nonnegative integers t and s with t ≥ 1 and s ≤ m. If

s > m− k, when we are done. Suppose s ≤ m− k or s+ k ≤ m. Then, since

G ∪ Ik = G ∪ Is+k,

d = dimpoc(G;m) < dimpoc(G ∪ Ik;m) ≤ 1
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by our assumption and Proposition 5.2.8. Thus d = 0. Hence G = K1 by

Proposition 5.2.7.

5.3 dimpoc(G;m) in the aspect of dimpoc(G)

We recall that dimpoc(G) = dimpoc(G; 1) for every graph G. As Cho and

Kim [8] showed that the interval graphs are exactly the graphs satisfying

dimpoc(G) ≤ 2, Proposition 5.2.11 tells us that dimpoc(G) ≤ 2 if and only

if dimpoc(G;m) ≤ 2 for every positive integer m. Now it is natural to ask

whether or not dimpoc(G) ≤ d if and only if dimpoc(G;m) ≤ d for a graph

G and positive integers m and d with d ≥ 2. In this section, we shall answer

this question.

Definition 5.3.1. Let d be a positive integer. A d-partial order D is said

to satisfy the distinct coordinate property (DC-property for short) provided

that, for each i = 1, . . . , d, the ith coordinates of the vertices of D are all

distinct.

For a d-partial order D and an ordered pair (i, k) ∈ {1, . . . , d} × R, we

partition V (D) into three disjoint subsets

Vi,k(D) = {(a1, . . . , ad) ∈ V (D) | ai = k},
V +
i,k(D) = {(a1, . . . , ad) ∈ V (D) | ai > k},
V −
i,k(D) = {(a1, . . . , ad) ∈ V (D) | ai < k},

and let Γ(D) = {(i, k) ∈ {1, . . . , d} × R : |Vi,k(D)| ≥ 2}.

It is clear from the definition that a d-partial order D satisfies the DC-

property if and only if Γ(D) = ∅.

Proposition 5.3.2. Given a positive integer d and a d-partial order D, there

exists a d-partial order D′ isomorphic to D such that such that D′ satisfies

the DC-property.
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Proof. If Γ(D) = ∅, then we let D′ = D to finish the proof. Suppose Γ(D) 6=
∅. Take an element (i, k) ∈ Γ(D). Let Vi,k = {v1, . . . , vl} (l ≥ 2) and V ∗

i,k =

{v∗1, . . . , v∗ℓ} where v∗j is the point in Rd−1 obtained from vj ∈ Rd by deleting

its ith coordinate. Then V ∗
i,k defines a (d − 1)-partial orders D∗. Since D∗ is

acyclic, we may assume that the labeling of the vertices of Vi,k guarantees

that v∗j
D∗

≺ v∗j′ only if j > j′. Now we define a new d-partial order Di,k with

vertex set {φi,k(v) ∈ Rd | v ∈ V (D)} with φi,k(v) defined by

φi,j(v) =



















v if v ∈ V −
i,k,

v + jej , if v ∈ Vi,k and v = vj,

v + ℓej if v ∈ V +
i,k,

where ej is the j
th standard basis vector in Rd. By the way of construction,

Di,k is isomorphic to D and |Γ(Di,k)| = |Γ(D)| − 1. If Γ(Di,k) = ∅, then we

let D′ = Di,k to finish the proof. Otherwise, we repeat this process until we

obtain a d-partial order D′ satisfying Γ(D′) = ∅, which is a desired digraph.

For a directed path P in a digraph, the length ℓ(P ) of P is defined to be

the number of arcs in P .

Lemma 5.3.3. Let G be the m-step competition graph of a d-partial D for

some positive integers m and d. If vertices u and v are adjacent in G, then

they have an m-step common prey which has outdegree 0 in D.

Proof. Take two adjacent vertices u and v in G. Then, by the definition

Cm(D), u and v have an m-step common prey, say z, in D. Take a longest

directed path P starting from z in D. Let w be the terminus of P . Then w

is an (m + ℓ(P ))-step common prey of u and v. Therefore w is an m-step

common prey of u and v by Lemma 5.2.1. If w had an out-neighbor in D,

it would either P would extend to a longer directed path or a directed cycle
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would be yielded in D, both of which are impossible. Thus w is a desired

vertex.

Theorem 5.3.4. For a graph G and a positive integer m, dimpoc(G;m) ≥
dimpoc(G;m+ 1).

Proof. If G = K1, then dimpoc(G;m) = 0 = dimpoc(G;m + 1) by Proposi-

tion 5.2.7. Suppose G 6= K1. Then dimpoc(G;m) ≥ 1 by Proposition 5.2.7.

Let d = dimpoc(G;m). Then there exists a d-partial order D such that

Cm(D) = G ∪ Ik for some k ∈ Z≥0. By Proposition 5.3.2, we may assume

that D satisfies the DC-property. Then δ > 0 for

δ = min
i
{|ai − bi| : (a1, . . . , ad) and (b1, . . . , bd) are distinct vertices of D}.

Let Y be the set of vertices of D with outdegree 0. Then Y 6= ∅ since D is

acyclic. Let

Z =

{

φ(y) | φ(y) = y − δ

2
(1, . . . , 1) ∈ Rd, y ∈ Y

}

.

Then the set S := V (D) ∪ Z ⊂ Rd defines the d-partial order DS. By

the DC-property of D and by choice of δ, it is not difficult to check that

N−
DS

(φ(y)) = {y} ∪N−
D (y) and N

+
DS

(φ(y)) = ∅ for each y ∈ Y . Furthermore,

by the definitions of Y and Z, the set of vertices of outdegree 0 in DS is Z

and the set of vertices of outdegree 1 in DS is Y .

We claim that Cm(D) and Cm+1(DS) have the same edge sets. Take an

edge uv in Cm(D). By Lemma 5.3.3, u and v have an m-step common prey y

which has outdegree 0 in D. Since Y is the set of vertices of D with outdegree

0, y ∈ Y . Since φ(y) is a 1-step prey of y in DS, φ(y) is an (m + 1)-step

common prey of u and v in DS. Hence uv is an edge in Cm+1(DS).

Conversely, take an edge uv in Cm+1(DS). By Lemma 5.3.3, u and v have

an (m + 1)-step common prey z which has outdegree 0 in DS. Then there
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exist directed paths

Pu : u = u0 → u1 → · · · → um−1 → um → um+1 = z

and

Pv : v = v0 → v1 → · · · → vm−1 → vm → vm+1 = z

of length m + 1 in DS. Since Z is the set of vertices of DS with outdegree

0, z ∈ Z and so z = φ(y) for some y ∈ Y . Since DS is transitive and

um−1 → um → φ(y) in DS, we have um−1 → φ(y). Then um−1 ∈ N−
DS

(φ(y)) =

{y}∪N−
D(y). However, um−1 6= y, for otherwise um−1 has outdegree 1 in DS,

which is impossible as um−1 → um and um−1 → φ(y). Thus um−1 ∈ N−
D (y).

Hence the sequence P ′
u : u = u0 → u1 → · · ·um−1 → y is a directed path in

D from u to y of length m. Similarly, P ′
v : v = v0 → v1 → · · · vm−1 → y is

a directed path in D from v to y of length m. Then y is an m-step common

prey of u and v in D. Therefore uv is an edge in Cm(D).

Thus we have shown that Cm(D) and Cm+1(DS) have the same edge set.

Since Cm(D) = G∪ Ik, we have Cm+1(DS) = (G∪ Ik)∪ Iℓ = G∪ Ik+ℓ where

ℓ = |Z|. Hence dimpoc(G;m+ 1) ≤ d.

By applying induction on m, we obtain the following corollary from The-

orem 5.3.4.

Corollary 5.3.5. For every graph G and every positive integerm, dimpoc(G) ≥
dimpoc(G;m).

5.4 Partial order competition exponents of

graphs

In this section, we define an analogue concept of exponent for graphs in the

aspect of partial order m-step competition dimensions.
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For a (0, 1)-matrix with Boolean operation, it is well known that the

matrix sequence {Am}∞m=1 converges to the all-one matrix J if and only if

A is primitive. The smallest positive integer M such that m ≥ M implies

Am = J is called the exponent of A.

Let G be a graph. Then the integer-valued sequence {dimpoc(G;m)}∞m=1

is bounded by Proposition 5.2.6 and decreasing by Theorem 5.3.4. Therefore

there exists a positive integer M such that dimpoc(G;m) is constant for all

m ≥M . We call the smallest such M the partial order competition exponent

of G and denote it by exppoc(G).

Proposition 5.4.1. For any graph G with dimpoc(G; 1) = 1, exppoc(G) = 1.

Proof. Since {dimpoc(G;m)}∞m=1 is decreasing, 1 = dimpoc(G; 1) ≥ dimpoc(G; 2) ≥
· · · and so dimpoc(G;m) = 1 for all m ∈ Z>0. Hence exppoc(G) = 1.

Proposition 5.4.2. For any positive integer M , there exists a graph G such

that dimpoc(G; 1) = 2 and exppoc(G) =M .

Proof. Take an interval graph G which is not Kt ∪ Is for any t ∈ Z>0 and

s ∈ Z≥0. Then dimpoc(G;m) = 2 for any m ∈ Z>0 by Propositions 5.2.8

and 5.2.11. Therefore exppoc(G) = 1.

LetM be a positive integer at least two. Consider the graph H = Kt∪IM
where t is an arbitrary positive integer. Then dimpoc(H ;M − 1) = 2 and

dimpoc(H ;M) = 1 by Proposition 5.2.8. Therefore exppoc(H) =M .

Proposition 5.4.3. For any graph G with dimpoc(G; 1) = 3, exppoc(G) = 1.

Proof. Cho and Kim [8] showed that the interval graphs are exactly the

graphs satisfying dimpoc(G; 1) ≤ 2. Therefore G is not an interval graph.

Thus dimpoc(G;m) > 2 for any m ∈ Z>0 by Proposition 5.2.11. On the

other hand, by Corollary 5.3.5, dimpoc(G;m) ≤ dimpoc(G; 1) = 3 and so

dimpoc(G;m) = 3 for any m ∈ Z>0. Hence exppoc(G) = 1.
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Chapter 6

On the competition

hypergraphs of d-partial orders1

In this chapter, we study the competition hypergraphs of d-partial orders

and generalize the results given by Kim et al. [33].

6.1 A characterization of the competition hy-

pergraphs of d-partial orders

In this section, we characterize the competition hypergraphs of d-partial or-

ders.

Theorem 6.1.1. A hypergraph H is the competition hypergraph of a d-partial

order if and only if there exists a family F of homothetic open d-regular

simplices contained in the hyperplane {x = (x1, . . . , xd) ∈ Rd | x1+ · · ·+xd =
0} and there exists a one-to-one correspondence A : V (G) → F such that

(⋆) {u1, . . . , ut} ∈ E(H) if and only if there exists a vertex x of H such

1The material in the section is from the paper “On the competition hypergraphs of d-
partial orders” by Jihoon Choi and Suh-Ryung Kim. The author thanks Prof. Suh-Ryung
Kim for allowing him to use its contents for his thesis.
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that △(x) ⊂ A(ui) for each i = 1, . . . , t but △(x) 6⊂ A(u) for any

u /∈ {u1, . . . , ut}.

Proof. (⇒) Suppose that H is the competition hypergraph of a d-partial

order D. By translating each vertex of D by T : v 7→ v+ k1 for a sufficiently

large real number k, we may obtain a d-partial order all of whose vertices

belong to Hd
+ and is isomorphic to D. Therefore we may assume all the

vertices of D are located in Hd
+. Let F = {△d−1(v) | v ∈ V (D)}. Then

F ⊂ Fd−1. Let f : V (H) → F be the function defined by f(v) = △d−1(v).

By Corollary 5.1.1, f is a bijection. The condition (⋆) immediately follows

from the definition of competition hypergraph and Proposition 2.2.7.

(⇐) Suppose that there exist a subset F of Fd−1 and a bijection f :

V (H) → F such that the condition (⋆) holds. By Corollary 5.1.1, each ele-

ment in F can be written as △d−1(p) for some p ∈ Hd
+. Let S = {p ∈ Rd |

△(p) ∈ F}. Then DS is a d-partial order. Take a subset {u1, . . . , ut} of ver-

tices ofH . Then, by Proposition 2.2.7 and the condition (⋆), {u1, . . . , ut} is an
hyperedge in H if and only if there exists a vertex x in DS with {u1, . . . , ut}
as its in-neighborhood in DS. Therefore H is the competition hypergraph of

the d-partial order DS.

6.2 The partial order competition hyper-dimension

of a hypergraph

Proposition 6.2.1. Let d be a positive integer. If H is the competition hyper-

graph of a d-partial order, then H is the competition hypergraph of a (d+1)-

partial order.

Proof. Let H be the competition hypergraph of a d-partial order D for some

positive integer d. Then, by Lemma 5.2.2, there exists a (d+1)-partial order

D̃ which is isomorphic to D. Therefore H = CH(D) ∼= CH(D̃). Thus H is

the competition hypergraph of a (d+ 1)-partial order.
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Theorem 6.2.2. For any hypergraph H, there exist positive integers d and

k such that H together with k isolated vertices is the competition hypergraph

of a d-partial order.

Proof. The proof is exactly parallel to that of Proposition 2.3.2. Let |V (H)| =
n and label the vertices of H as v1, . . . , vn. We define a map φ : V (H) → Rn

by

φ(vi)j =







2 if j = i;

4 if j 6= i.

We define a map ψ : E(H) → Rn by

ψ(e)k =







1 if vk ∈ e;

3 if vk /∈ e.

Let V = {φ(vi) | vi ∈ V (H)} ∪ {ψ(e) | e ∈ E(H)} ⊆ Rn. Then V defines an

n-partial order D. By the construction of D, it easily follows that CH(D) =

H ∪ I|E(H)|. Hence, by taking d = n and k = |E(H)|, we complete the

proof.

By Proposition 6.2.1 and Theorem 6.2.2, we can define a notion of di-

mension of a hypergraph.

Definition 6.2.3. For a hypergraph H , we define the partial order competi-

tion hyper-dimension dimpoch(H) of H as the smallest nonnegative integer d

such that H together with k isolated vertices is the competition hypergraph

of D for some d-partial order D and some nonnegative integer k, i.e.,

dimpoch(H) := min{d ∈ Z≥0 | ∃k ∈ Z≥0, ∃S ⊆ Rd, s.t. H ∪ Ik = CH(DS)},

where Z≥0 is the set of nonnegative integers and Ik is a set of k isolated

vertices.
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Proposition 6.2.4. For any hypergraph H, we have dimpoch(H) ≤ |V (H)|.

Proof. The proposition follows from the construction of the d-partial order

in the proof of Theorem 6.2.2.

The notion of partial order competition hyper-dimension is applicable to

a graph as long as it is regarded as a hypergraph.

Example 6.2.5. We consider the complete graph K3 with the vertex set

{a, b, c}. Suppose to the contrary that dimpoch(K3) ≤ 2. Then K3 together

with some isolated vertices becomes the competition hypergraph of a 2-partial

order D. By identifying the vertices of D with points in R2, we may assign

coordinates a, b, c so that a = (a1, a2), b = (b1, b2), and c = (c1, c2). Since they

are three points in R2, one of a, b, c has the property that its x-coordinate is

greater than or equal to those of the other two vertices; so is its y-coordinate.

Without loss of generality, we may assume that a1 ≥ max{b1, c1} and a2 ≥
max{b2, c2}. Since b and c are adjacent in K3, they have a common out-

neighbor, say d, in D. Since a1 ≥ max{b1, c1} and a2 ≥ max{b2, c2}, d is an

out-neighbor of a in D. Therefore {a, b, c} forms a hyperedge in K3, which is

a contradiction. Thus dimpoch(K3) ≥ 3. By Proposition 6.2.4, dimpoch(K3) ≤
|V (K3)| = 3. Hence dimpoch(K3) = 3.

By Proposition 2.3.10, dimpoc(K3) = 1 and so dimpoc(K3) 6= dimpoch(K3).

Therefore it is natural to ask how different dimpoc(G) and dimpoch(G) are.

Proposition 6.2.6. For a graph G, dimpoc(G) ≤ dimpoch(G).

Proof. Let d = dimpoch(G). Then there exists a d-partial order D such that

the hypergraph G together with additional isolated vertices is the competi-

tion hypergraph of D. As G is actually a graph, this implies dimpoc(G) ≤
d.

The following proposition gives a sufficient condition for a graph G sat-

isfying dimpoc(G) = dimpoch(G).

84



v1

v2

v3 v4

v5

Figure 6.1: A graph G with dimpoc(G) = dimpoch(G) = 3

Proposition 6.2.7. If a graph G is triangle-free, then dimpoc(G) = dimpoch(G).

Proof. Let G be a triangle-free graph and let dimpoc(G) = d. Then G ∪ Ik

is the competition graph of a d-partial order for some nonnegative integer k.

Since G is triangle-free, each vertex in D has at most two in-neighbors, and

so the the competition hypergraph of D equals G∪Ik. Therefore dimpoc(G) ≥
dimpoch(G). Thus the proposition follows from Proposition 6.2.6.

Remark 6.2.8. The converse of Proposition 6.2.7 is not true. For example,

it can be easily checked that the graph G with V (G) = {v1, v2, v3, v4, v5} and

E(G) = {v1v2, v2v3, v3v4, v4v5, v5v1, v1v4} (see Figure 6.1) satisfies dimpoc(G) =

dimpoch(G) = 3 even if it contains a triangle.

It might be interesting to find out whether or not there exists a hy-

pergraph with arbitrarily large partial order competition hyper-dimension.

Proposition 6.2.6 tells us that it is more likely than for We may answer this

question by utilizing the notion of Ramsey number.

Definition 6.2.9. For a positive integer m, the Ramsey number r(m; k) =

r(m,m, . . . ,m) (m appears k times) denotes the smallest positive integer

r such that any k-edge-colored complete graph Kr of order r contains a

monochromatic complete graph Km of order m.

Now we extend the notion of order types defined in 4.1. Let d be a positive

integer. Take two distinct points u = (u1, . . . , ud) and v = (v1, . . . , vd) in Rd.
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For a nonempty proper subset S of {1, . . . , d}, we write u �S v if ui ≤ vi for

each i ∈ S.

Suppose that u and v are incomparable in Rd. Then there exists a par-

tition {S1, S2} of the set {1, . . . , d} such that u �S1
v and v �S2

u. We call

such a partition {S1, S2} an order type for {u, v}.
Conversely, for a partition {S1, S2} of {1, 2, . . . , d}, let x = (x1, . . . , xd)

be the point in Rd defined so that xi = 1 if i ∈ S1, xi = 2 if i ∈ S2, and let

y = (3, 3, . . . , 3)− x. Then it is easy to see that x and y are incomparable in

Rd, and that {S1, S2} is an order type of x and y.

Therefore, for two points u and v which are incomparable in Rd, the

number of possible order types for {u, v} is equal to the Stirling number

S(n, 2) of second kind, which is known to be equal to 2n−1 − 1.

The following two lemma is an analogue of Lemma 4.1.4.

Lemma 6.2.10. Suppose that three points x1,x2,x3 ∈ Rd satisfy the property

that there is a common order type {S1, S2} for each pair of them. Then, for

some permutation σ on {1, 2, 3}, xσ(1) �S1
xσ(2) �S1

xσ(3) and xσ(1) �S2

xσ(2) �S2
xσ(3).

Proof. The proof is exactly parallel to that of Lemma 4.1.4. Since any pair

of x1, x2, x3 is comparable by �S1
by the hypothesis, �S1

is a total order

on {x1, x2, x3}. Therefore there exists a permutation σ on {1, 2, 3} such that

xσ(1) �S1
xσ(2) �S1

xσ(3). Since y1 �S1
y2 if and only if y1 �S2

y2 for any

pair {y1,y2} of points in Rd of order type {S1, S2}, the lemma immediately

follows.

Theorem 6.2.11. For any positive integers d and n satisfying n ≥ r(3;S(d, 2)),

dimpoch(Kn) > d.

Proof. We prove this by contradiction. Suppose dimpoch(Kn) ≤ d. Then, by

definition, there exists a d-partial order D such that CH(D) equals Kn ∪ Ik
for some nonnegative integer k. We may identify the vertices of CH(D) and

Kn ∪ Ik with points in Rd.
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Let v1, . . . ,vn denote the vertices of Kn. Suppose that vi ≺ vj for some

distinct i and j. Then every out-neighbor of vi is an out-neighbor of vj in

D. This implies that every hyperedge of Kn containing vi must contain vj ,

which is not the case for Kn. Therefore vi 6≺ vj for any distinct i and j.

For a time being, we regard the hypergraph Kn as a graph which hap-

pen to be the complete graph with vertex set {v1, . . . ,vn}. Then we define

an S(d, 2)-edge-coloring c in the following way. If {vi,vj} is of order type

{S1, S2}, then c(vivj) = {S1, S2} (in case where {vi,vj} has more than one

order type, we just take any order type and assign). Then, by the defini-

tion of r(3, S(d, 2)), Kn contains a monochromatic complete subgraph K

with three vertices, say vi, vj, and vk, that is, for some partition {S1, S2}
of {1, . . . , d}, each pair of vi,vj ,vk has order type {S1, S2}. Therefore, by
Lemma 6.2.10, the three vertices can be labeled as vi = (v

(i)
1 , . . . , v

(i)
d ),

vj = (v
(j)
1 , . . . , v

(j)
d ), and vk = (v

(k)
1 , . . . , v

(k)
d ) so that v

(i)
l ≤ v

(j)
l ≤ v

(k)
l if

l ∈ S1, and v
(i)
l ≥ v

(j)
l ≥ v

(k)
l if l ∈ S2. Thus min{v(i)l , v

(k)
l } ≤ v

(j)
l for each

l = 1, . . . , d.

By the definition of Kn, {vi,vk} is a hyperedge of Kn. Therefore there

exists w = (w1, . . . , wd) ∈ V (D) \ {vi,vj,vk} such that N−1
D (w) = {vi,vk}.

Then w ≺ vi and w ≺ vj and so wi ≤ min{v(i)l , v
(k)
l } for each l = 1, . . . , d.

As we have shown that min{v(i)l , v
(k)
l } ≤ v

(j)
l , we have wl ≤ v

(j)
l for each l =

1, . . . , d. Thus w ≺ vj and this contradicts the fact that N−1
D (w) = {vi,vk}.

Hence dimpoch(Kn) > d.

Remark 6.2.12. Theorem 6.2.11 asserts that there exists a hypergraph with

arbitrarily large partial order competition hyper-dimension. On the other

hand, dimpoc(Kn) = 1 by Proposition 2.3.10 for n ≥ 2 and we can conclude

that that the difference between dimpoc(G) and dimpoch(G) can be arbitrarily

large.
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6.3 Interval competition hypergraphs

A hypergraph H = (V,E) is said to be interval if there exists a injective

function f : V → R such that, for each e ∈ E(H), there exists an interval

on R which contains all elements of e, but does not contain the image of any

vertex not in e.

Kim et al. [33] showed that an interval hypergraph may have partial

order competition hyper-dimension greater than 2, and then characterized

the interval hypergraphs H with dimpoch(H) ≤ 2. By the way, all the interval

hypergraphs turn out to have partial order competition hyper-dimension at

most three.

Proposition 6.3.1. Every interval hypergraph H satisfies dimpoch(H) ≤ 3.

Proof. Let H be an interval hypergraph with n vertices. Then the vertices of

H can be linearly ordered as v1, v2, . . . , vn on the real line R so that each vi

is to the left of vi+1 and that every hyperedge is of the form {vi, vi+1, . . . , vj}.
Now we will construct a 3-partial order whose competition hypergraph

is CH(D) ∪ I|E(H)|. For each i = 1, . . . , n, we assign vi := (i, i, 3n − 2i) ∈
R3. Figure 6.2 shows how the vertices v1, . . . , vn are located in R3 and the

corresponding A(v1), . . . , A(vn) are located on the hyperplane x+ y+ z = 0.

We note that every pair of v1, . . . , vn has an order type {{1, 2}, {3}}.
Take a hyperedge e of H . Then it is of the form e = {vj , vj+1, . . . , vk}

for some j and k with j < k. Refer to Figure 6.3 for an arrangement of

A(vj−1), . . . , A(vk+1) on the hyperplane x + y + z = 0. We observe that the

shaded region in Figure 6.3 is included in A(vi) for each i = j, j + 1, . . . , k

but is disjoint with any of A(v1), . . . , A(vj−1), A(vk+1), . . . , A(vk), and that

the shaded regions corresponding to hyperedges e and f are disjoint if e 6= f .

Based on this observation, we add a new isolated vertex ψ(e) ∈ R3 to H for

which △(ψ(e)) is included in the interior of the shaded region in Figure 6.3.

Then V (H) ∪ {ψ(e) | e ∈ E(H)} defines a 3-partial order D. By the way of

constructing D, ψ(e) 6= ψ(f) for distinct hyperedges e and f , and the out-
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v1
v2· · ·

vn−1
vn

x

yz

x+ y + z = 0

A(v1)

A(v2)
...

A(vn−1)

A(vn)

x y

z

Figure 6.2: The points v1, . . . , vn with vi = (i, i, 3n − i) ∈ R3 shown on the
left and A(v1), . . . , A(vn) on the hyperplane x+y+z = 0 shown on the right.

A(vj−1)

A(vj)

...

...

A(vk)

A(vk+1)

Figure 6.3: The triangles A(vj−1), . . . , A(vk+1) on the hyperplane x+y+z = 0.
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neighborhood of ψ(e) in D is equal to e for each hyperedge e of H . Hence

CH(D) = CH(D) ∪ I|E(H)|.
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국문초록

유향그래프 D의 경쟁그래프 C(D)란 D와 같은 꼭짓점의 집합을 갖고,

두 개의 꼭짓점 x와 y가 인접할 필요충분조건이 D의 적당한 꼭짓점 z에

대하여 (x, z)와 (y, z)가 모두 D의 유향변인 것으로 주어지는 그래프이다.

경쟁그래프는 지난 40년간 아주 활발하게 연구되어 왔다.

Cohen [13, 14, 15]은 먹이사슬을 나타내는 비순환 유향그래프의 경쟁

그래프는 대부분 구간그래프임을 경험적으로 관찰하였다. Roberts [51]는

Cohen의 관찰이 인위적인 구성에 의한 결과였는지에 대해 질문을 제기했

으며, 비순환 유향그래프의 경쟁그래프가 항상 구간그래프가 되는 것은

아니라는 결론을 얻었다. 이를 증명하는 과정에서 임의로 주어진 그래프

G에 변의 개수만큼의 고립꼭짓점을 추가하면 그 결과물이 적당한 비순환

유향그래프의경쟁그래프로나타내어짐을보였다. 그러고 나서 Roberts는

비순환유향그래프 D의경쟁그래프 C(D)가 구간그래프가되도록하는 D

의 특징에 대한 질문을 제기했다. 그 후 이 문제는 경쟁그래프에서 가장

중요하고 근본적인 미해결 문제 중 하나로 남아있다. 많은 연구자들이 이

문제를해결하기위해여러가지풀이를시도했으며,부분적인해답이제시

되었다. Cho와 Kim [8]은 이 문제에답하기 위하여 2-반순서의경쟁그래프

는 항상 구간그래프가 되며, 역으로 임의의 구간그래프에 충분한 개수의

고립꼭짓점을붙여주면그결과물이적당한 2-반순서의경쟁그래프가됨을

보였다.

본 학위논문에서는 d-반순서의 경쟁그래프의 구조를 연구하며, 2-반순

서의 경쟁그래프의 연구결과의 일부를 일반화한다.

어떤유향그래프 D가적당한자연수 d에대하여다음두조건을만족할

때 D를 d-반순서라 정의한다: (i) V (D) ⊂ Rd; (ii) (x,y) ∈ A(D)일 필요충

분조건은 각 i = 1, . . . , d에 대하여 x의 i번째 성분이 y의 i번째 성분보다

큰 것이다.

임의로 주어진 그래프 G에 충분한 개수의 고립꼭짓점을 붙여주면 그

결과물이 적당한 자연수 d에 대하여 어떤 d-반순서의 경쟁그래프가 됨을



보이고, 그러한 d중에서 가장 작은 값을 G의 반순서 경쟁 차원이라 부르

며 dimpoc(G)로 표기한다. 이를 통해 Cho와 Kim [8]의 결과를 일반화하며,

구조가 흥미로운 그래프의 반순서 경쟁차원을 계산한다. 또한 d-반순서의

m-step 경쟁그래프 및 경쟁하이퍼그래프도연구한다.

주요어휘: 경쟁그래프, d-반순서, 반순서 경쟁차원, 닮은 정단체, 순서형

학번: 2014–31199
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