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Natural gas is one of the most abundant fossil fuels around the world. Cleaner 

energy source than other fossil fuels and world-wide presence of natural gas make 

it an attractive energy source. Despite of these advantages, the emission of 

unburned natural gas makes it difficult to use since the methane is recognized as 

the major portion of global warming gas. It contributes 25–34 times more to global 

warming than CO2 at equivalent emission rate and has quite long lifetime.

Therefore, complete oxidation of methane is one of the critical problems to solve 

for widening the use of methane without worrying about the environmental 

concern such as global warming. Except for the role as fuel, the utilization of 

methane has been limited mostly to the route of synthesis gases to produce liquid 

hydrocarbons and other chemical products, which is regarded as indirect methods. 

Such indirect process has weaknesses of high operating cost and low 
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thermodynamic efficiency due to the swing between endothermic and exothermic 

reaction. Hence, if methane is directly utilized as alternate feedstock to petroleum, 

it will be highly desirable from the economic point of view. Thus, many efforts 

have been made for the direct conversion of methane into more useful products like 

olefins, aromatics, and alcohols by using various catalysts for decades. However, 

harsh reaction conditions including high temperature and pressure are required to 

start the catalytic reaction such as complete oxidation of methane and direct 

conversion of methane to value-added chemicals because methane can be hardly 

activated due to its stable C-H bond. The methane activation is the key step to 

initiate such reactions. In order to overcome these difficulties, various catalysts 

were investigated and applied. Nevertheless, the activation of methane is still hard 

to be carried out because tough reaction condition can deactivate the catalyst. An 

alternative way to activate methane at low temperature would be to use plasma.

There are various thermal and non-thermal plasma sources such as dielectric 

barrier discharge (DBD), corona, gliding arc, rotating arc, spark, microwave, glow 

discharge and pulsed discharge. In the non-thermal plasma, high-energy electrons 

(1-20 eV) are produced and they can initiate the formation of other various radicals. 

Since electron mass is very light, non-thermal plasma gives rise to the increase in 

temperature by only few degrees. In this work, dielectric barrier discharge (DBD) 

plasma was used since it is easier to set up than other non-thermal plasma sources.

Firstly, the complete oxidation of methane was carried out in a dielectric barrier 

discharge (DBD) quartz tube reactor where both catalyst and plasma were 

hybridized into one in-plasma catalysis system. Non-PGM catalysts such as 

Co1Ni1Ox and CoCr2O4 were used as oxidation catalyst. Input voltage of the 

plasma-catalyst reactor maintained to 4kVp-p to minimize the effect of plasma 
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power for plasma-catalyst interaction. In the absence of catalyst, methane began to 

be oxidized to CO and CO2 even at room temperature, and the conversion 

increased with the increment of temperature since the active radicals were 

generated more abundantly under those conditions. However, large amount of CO 

were also produced in addition to CO2, especially at low temperature below 200 °C

when plasma was only used. In the presence of both plasma and catalyst, however, 

methane was oxidized even at room temperature mostly to CO2 with low CO 

selectivity over certain non-PGM catalyst like Co1Ni1Ox, indicating that the 

complete oxidation was successfully performed with the aid of catalyst. The role of 

plasma was to oxidize CH4 to produce CO, which was subsequently oxidized to 

CO2 over catalyst at low temperature. Hence, methane complete oxidation reaction 

proceeded at much lower temperature similar to PGM catalyst such as Pd/Al2O3, 

while maintaining low CO selectivity.

Next, oxidative coupling of methane (OCM) was carried out to produce C2 or C3

hydrocarbons from methane under plasma-catalyst hybrid system. Dielectric 

barrier discharge (DBD) plasma was applied as plasma source to lower the reaction 

temperature since catalyst only reaction required high temperature above 700 ºC. 

Plasma only reaction was performed to compare with plasma-catalyst hybrid 

reaction. We tried to seek appropriate support under plasma-catalyst hybrid 

reaction at low temperature. Among various supports, only SiO2 has shown the 

higher yield when combined with dielectric barrier discharge plasma than plasma 

only reaction. When various metals were impregnated on SiO2 to investigate the 

effect under plasma condition, it was found that Ag/SiO2 demonstrated the highest 

C2+ hydrocarbon yield of about 10% below the reaction temperature of 400 ºC. In 
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this process, oxygen was proved to play an essential role in the coupling of 

methane to C2+ hydrocarbons over Ag/SiO2 catalyst. However, Ag/SiO2 catalyst 

under plasma condition became deactivated with time-on-stream because of coking. 

However, during the stability test with time-on-stream, Ag/SiO2 catalyst with 

plasma became deactivated due to coking. Therefore, regeneration process was 

introduced after OCM reaction. As a result, it was found that plasma regeneration 

at 378 °C gave rise to the full recovery of activity while thermal regeneration did 

not due to partial removal of coke and sintering of Ag.

Finally, the direct methanol synthesis from methane was carried out in a plasma-

catalyst hybrid system. Since catalyst only reaction requires high pressure and 

batch reactor, dielectric barrier discharge (DBD) plasma was applied as a plasma 

source to overcome the difficulties. Among the transition metal oxides, Mn2O3-

coated glass bead showed the highest methanol yield about 12.3% in the plasma-

catalyst hybrid system. The reaction temperature was maintained below 100 ºC 

because of low plasma input power (from 1.3 kJ/L to 4.5 kJ/L). Furthermore, the 

reactivity of the catalyst was maintained for 10 h without changing the selectivity. 

The mechanistic study indicated that the plasma-induced OH radical generated on 

the transition metal oxide catalyst possessed high selectivity toward methane to 

produce methanol. 

Keywords: Methane activation, plasma-catalyst hybrid system, dielectric barrier 

discharge, low temperature reaction

Student Number: 2014-30264
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Chapter 1. Introduction

The utilization of fossil fuels such as coal, petroleum, and natural gas has 

produced large amount of energy. However, most of useful chemicals are 

manufactured from the petroleum. For a long period of time, natural gas have been 

much cheaper than petroleum [1]. Natural gas of which major component is 

methane is widely distributed all over the world [2]. The world-wide presence of 

natural gas and the fact that natural gas is regarded as clean energy source 

compared to other fossil fuels make it an attractive alternative energy source. 

Besides this, natural gas has potential technical and economic advantages due to 

achievable high fuel efficiencies and attractive cost, respectively [3]. Despite of 

these advantages, the emission of unburned natural gas makes it difficult to use 

since the methane is recognized as the major portion of global warming gas.

Therefore, treatment of residual natural gas is one of the critical problems to solve 

for widening the use of methane without worrying about the environmental 

concern such as global warming. The utilization of natural gas is limited to mostly 

fuel or synthesis gases to produce liquid hydrocarbons and other chemical products 

by indirect methods [4, 5]. These indirect processes have weaknesses of longer

time and higher cost for operation. In this circumstance, if natural gas is directly 

utilized as alternate feedstock to petroleum, it will be highly desirable for industrial 

catalysis reaction. Hence, many efforts have been performed for direct methane 

conversion into more useful products like olefins and aromatics for decades using 

various catalysts [6-10]. In order to deal with the methane emission and to convert 

the methane into useful products, the methane should be activated first.



1.1. Methane

Methane is the simplest alkane which has chemical formula CH4. It is the main 

constituent of natural gas and its abundance on Earth makes it an attractive fuel. 

However, capturing and storing it are regarded as challenge due to its gaseous state 

under normal conditions of temperature and pressure. Methane is a tetrahedral 

molecule with four equivalent C-H bonds. C-H bond of the methane is stable 

because of high bond energy (413 kJ/mol) [11]. The primary chemical reactions of 

methane are combustion, steam reforming to synthesis gas, and halogenation [12-

14]. In general, methane reactions are difficult to start and control due to the stable 

structure of it.



1.2. Plasma

Plasma is one of the four fundamental states of matter, which was first 

introduced by chemist Irving Langmuir in the 1920s [15]. Plasma can simply be 

considered as a gaseous mixture of negatively charged electrons and highly 

charged positive ions. The overall charge of the plasma is roughly zero. Plasma 

production is from the distinct separation of these ions and electrons that produces 

electric field, which in turn, produces electric currents and magnetic fields. Unlike 

the other three states of solid, liquid, and gas, plasma does not freely exist in the 

Earth under normal surface conditions, and can only be artificially generated by 

heating neutral gases or by subjecting that gas into a strong electromagnetic field 

[16]. Plasma can be divided into thermal and non-thermal plasma. There are 

various thermal and non-thermal plasma sources such as dielectric barrier 

discharge (DBD), corona, gliding arc, rotating arc, spark, microwave, glow 

discharge and pulsed discharge with catalyst or without catalyst [17, 18].

1.2.1. Thermal Plasma

In the case of thermal plasma, a state of local thermodynamic equilibrium is 

approached. Therefore, the temperature of electrons and bulk gas becomes almost 

same. Thermal plasma have numerous advantages including high temperature, high 

intensity, non-ionizing radiation, and high-energy density. Due to high mobility of 

atoms, molecules, ions, and electrons the energy applied to plasma is captured by 

electrons and transferred to heavy particles via elastic collision. Because of high 

electron number density, elastic collision frequencies are very high, which leads to 

the rapid thermal equilibrium. The heat source is also directional with sharp 

interfaces and sheer thermal gradients that can be controlled independently of 



chemistry. While burning fossil fuels can hardly achieve temperature over 2000 °C

while the electrically generated thermal plasma can reach temperature of 20000 °C

or more [19]. Thermal plasma technologies are used for a various applications 

involving coating techniques, fine powder synthesis, metallurgy, and treatment of 

hazardous waste materials. However, thermal plasma is not appropriate to use with 

catalyst because high temperature of the plasma can destruct or deactivate the 

catalyst.

1.2.2. Non-thermal plasma

In general, non-thermal plasma is the plasma that is not in thermodynamic 

equilibrium because the ion temperature is different from the electron temperature. 

In the non-thermal plasma condition, thermal motion of the ions can be neglected. 

This leads to the fact that there is no pressure force and the magnetic force can be 

ignored. Consequently, only the electric force is considered to act on the particles. 

High-energy electrons (1-20 eV) are produced and they can initiate the formation 

of other various radicals. Because electron mass is very light, non-thermal plasma 

gives rise to the increase in temperature by only few degrees [20]. Hence, non-

thermal plasma is also referred to as “cold plasma” or “non-equilibrium plasma” 

[21]. As such, partially ionized gas can be created using simple reactor 

configuration and relatively inexpensive power source, while almost isothermal 

reaction condition is maintained. This plasma is used for the applications like local 

surface modification or surface activation because the ions, atoms, and molecules 

remain relatively cold and do not cause thermal damage to the surface. This 

property enables it to be utilized for low temperature chemistry, plasma etching, 

deposition, surface modification, and treatment of heat sensitive materials. Various 



non-thermal plasma sources are currently being used for combining with catalytic 

system since non-thermal plasma scarcely influence the catalyst. Among those, 

DBD requires alternating voltage and at least one dielectric barrier between high 

voltage electrode and ground electrode [22]. Because of the dielectric barrier, the 

DBD is a non-equilibrium discharge, which means that high temperature electrons 

are created in the micro-discharges. They can initiate plasma-induced chemical 

reactions without increasing the temperature substantially.



1.3. Plasma-catalyst hybrid system

Plasma and catalyst have their own advantages and disadvantages. The catalyst 

is highly selective while it is active only at high temperature since reactants must 

overcome the activation energy. On the other hand, the plasma can be highly 

reactive even at room temperature although it is nonselective. Hence, the 

hybridization of plasma and catalyst into one system can provide complementary 

or even synergistic results for the reactant activation at low temperature [23]. 

Previous studies have shown the positive effect of using a plasma-catalyst

combination system on various reactions such as oxidation, dissociation, reduction, 

and reforming [24-28]. Heterogeneous catalyst can be combined with non-thermal 

plasma in two ways: the catalyst in the discharge zone (in-plasma catalysis, IPC) or 

the catalyst after the discharge zone (post-plasma catalysis, PPC) as shown in 

Figure 1-1. Catalyst can be put into a reactor as a packed bed in several ways, such 

as a layer of catalyst material or coating on the reactor wall or electrodes [29]. In 

order to maximize an influence of short-lived radical on catalytic reactions, it is 

desirable for plasma to take place near the catalyst surface. Hence, IPC hybrid 

system was applied in this study.



Figure 1-1. Schematic overview of two plasma-catalyst hybrid system 

configurations; (a) in-plasma catalysis (IPC) and (b) post-plasma catalysis (PPC).



1.4. Voltage-charge Lissajous method

According to the gas discharge theory, the load characteristics of a reactor are 

equivalent to that of a capacitor, and the DBD process is equal to the charge and 

discharge transitions of the capacitor [30, 31]. The capacitor was placed between 

the ground electrode of the reactor and the ground to examine the transported 

charges. According to the equations (1) and (2) in the following, the plasma power 

can be obtained by measuring the area of the V-Q Lissajous cyclogram. The slope 

of discharge transitions is equal to dielectric capacitance, and that of capacitive 

transitions is equal to the total capacitance of the discharge reactor [30].

P = 	
1

T
� U(t)I(t)dt
�

�

=	
1

T
�U(Q)dQ = C�f �U(U�)dU� = 	f ∙ S										(1)

Specific	input	energy(J/L) = 	
P	(W)

gas	flow	rate(� �⁄ )
																				(2)

Where P = discharge power, T = time, I = current, U = voltage, Q = charge, CM = 

measuring capacitor, UC = voltage of measuring capacitor, f = frequency, S = area 

of Lissajous figure.



1.5. Objectives

Although the methane activation reaction has been studied for decades, the 

methane activation reaction using plasma-catalyst hybrid system was rarely 

investigated. This thesis mainly consists of studying the synergistic effect between 

plasma and catalyst on the methane activation reaction in order to suggest

appropriate catalyst and optimum plasma condition for the treatment of methane 

and selective production of value-added chemicals directly from methane. Plasma 

only reaction is investigated first in order to establish a reference for plasma-

catalyst hybrid reaction. The plasma only reaction is helpful for understanding the 

effect of plasma on the methane activation reaction. Based on the results of plasma 

only reaction, various supports and catalysts are introduced with the purpose of 

selectively producing the target chemicals such as carbon dioxide, ethane, ethylene, 

propane, propylene, and methanol.



Chapter 2. Complementary effect of plasma-catalyst 
hybrid system on methane complete oxidation over 
non-PGM catalysts

2.1. Introduction

Natural gas and shale gas are attracting public attention because of its 

widespread reserves and cleanness compared to other fossil fuels. Nowadays, it is 

used as a fuel of combined heat power (CHP) and natural gas vehicles (NGV) [32]. 

However, methane, which is the main component of natural gas, is hard to be 

burned completely. Such unburned methane is the second most important 

anthropogenic greenhouse gas in the atmosphere after CO2 [33]. Shine et al. [34]

reported that methane possesses about 25–34 times more global warming potential 

than CO2 at equivalent emission volume. Thus, in order to solve this problem, non-

PGM catalysts [35-40] as well as noble metal catalysts especially like palladium-

based catalysts [41-45] have been employed. However, methane activation at low 

temperature (i.e. below 200 °C) is still difficult to implement compared to other 

exhaust gases such as CO, NOx, or hydrocarbons. Therefore, the combination of 

plasma and catalyst is currently attracting attention as a method of supplementing 

the catalysts [46]. Plasma is a partially or fully ionized gas phase composed of 

various particles like electrons, ions, atoms, and molecules [21]. Various thermal 

and non-thermal plasma sources, including dielectric barrier discharge (DBD), 

corona, arc, spark, microwave, and glow discharge have been studied [18, 47]. 

Plasma can divide into thermal and non-thermal plasma depending on plasma 

temperature [17]. Thermal plasma is in a phase where almost all components are at 

thermal equilibrium. Therefore, high temperature (>10,000 K) thermal energy is 



generated all over the plasma zone. On the other hand, in non-thermal plasma, the 

electrons can attain high energy of 1 – 10 eV (10,000-100,000 K) and activate 

other various molecules while the gas temperature can remain as low as ambient 

temperature [48]. Thus, temperature is not in thermal equilibrium and it quite 

differs between the electrons and the other particles like ions, atoms, and molecules 

[20]. Generally, dielectric barrier discharge (DBD) was selected for realizing the 

non-thermal plasma.

Plasma and catalyst possess their merits and demerits. The catalyst possesses 

high selectivity while it needs high thermal energy to activate. On the other hand, 

the plasma can be reactive even at room temperature whereas it is nonselective and 

crashes the molecules randomly. Hence, the hybridization of plasma and catalyst 

into one system is expected to offer complementary or even synergistic effect on 

the catalytic reaction as the past researchers reported [29, 49]. Herein, the plasma-

catalyst hybrid system was applied to observe such effects between plasma and 

catalyst for methane complete oxidation. According to our previous work [50], 

palladium-based catalyst under specific condition showed synergistic effect with 

dielectric barrier discharge (DBD). In this paper, the less expensive non-PGM 

catalysts such as CoCr2O4 and Co1Ni1Ox were used to investigate the hybridization 

effect of dielectric barrier discharge (DBD) and non-PGM catalyst on methane 

complete oxidation.



2.2. Experimental

2.2.1. Reaction system

A schematic view of plasma-catalyst system and equivalent circuit of DBD 

reaction system are presented in Figure 2-1(a) and 2-1(b), respectively. It consisted 

of a 1000:1 high voltage probe (Tektronics P6015A), a current probe (Pearson 

electronics 6585), and a capacitor (1000 pF) for measuring voltage (V), current (A), 

and transferred electric charge (Q), respectively. All output signals were 

transmitted to a 100MHz digital oscilloscope (Tektronics DPO 2014) which was 

utilized to calculate discharge power by the V-Q Lissajous figure method [30, 51].

The catalysts in bead form (Φ=425-600μm) were placed on the quartz filter at 

the middle of reactor, inside the plasma discharge zone. The height of catalyst bed 

varied from 5mm to 7mm since the weight of catalyst was 0.5g while their density 

differed from each other. The catalyst bed temperature was measured and recorded 

using K type thermocouple which was protected by another quartz tube just below 

the filter in the reactor. Another thermocouple in the furnace was used to control 

the setting temperature. 

The DBD reactor was made of a quartz tube with an inner diameter of 10mm a 

thickness of 1.3mm and a length of 500mm. The filter was located at the middle of 

reactor and its thickness was 2.5mm. In the DBD reactor, catalyst zone and plasma 

zone were combined at same position to minimize the recombination of active 

radicals produced by the plasma before reacting at the catalyst surface. Electrical 

discharge of the reactor was DBD. It consisted of a stainless steel rod of which 

thickness was 3mm. The rod was centered in a quartz tube reactor, fixed with a 

groove at the filter and Teflon ferrule. The outer surface of the reactor was 

surrounded by copper foil with a length of 22 mm and a thickness of 0.05mm. The 



length of discharge zone was 22 mm, and the gap was 5 mm, resulting in the 

reaction volume of about 1.7 cm3. To create the discharge, an AC high voltage was 

generated with a maximum of 4kVp-p by arbitrary function generator (GW INSTEK 

AFG-2012) and amplified by high voltage amplifier (TREK 20/20C-HS) with a 

maximum peak voltage of 20kV and a variable frequency up to 20 kHz. All 

experiments were carried out under identical conditions of waveform (sinusoid), 

driving frequency (4 kHz), and applied voltage (4 kVp-p). The atmospheric pressure 

was maintained in the same quartz reactor.
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Figure 2-1. (a) Schematic view of plasma-catalyst system and (b) Equivalent circuit 

of DBD reaction system.



2.2.2. Preparation of catalysts

The Co/Cr mixed oxides catalyst was prepared by a coprecipitation method 

following the procedure in the reference [52]. A diluted aqueous ammonia (30-33%) 

solution (Sigma-Aldrich) was added drop by drop to a mixed aqueous solution of 

chromium nitrate nonahydrate (Sigma-Aldrich) and cobalt nitrate hexahydrate 

(Sigma-Aldrich) with continuous stirring at 60 °C until the pH value reached 

9.1±0.2. The precipitates were filtered, washed several times and dried in an oven 

at 105 °C overnight. Finally, the dried materials were calcined at 500 °C for 3 h. 

The Co/Ni mixed oxides catalysts were also prepared by a coprecipitation method. 

The solution of sodium carbonate (Alfar Aesar) was dropped to a mixed aqueous 

solution of cobalt nitrate hexahydrate (Sigma-Aldrich) and nickel nitrate 

hexahydrate (Alfar Aesar) with continuous stirring at 60 °C until the pH value 

reached 9.1±0.2. The precipitates were filtered, washed several times and dried in 

an oven at 105 °C overnight. Finally, the dried materials were calcined at 500 °C, 

600 °C, 700 °C for 3 h which were named as Co1Ni1Ox(500), Co1Ni1Ox(600), 

Co1Ni1Ox(700), respectively. The catalysts were sieved to the particle size of 425-

600 µm. Solid-state phases was identified with XRD (RIGAKU SMARTLAB) 

with a Cu Kα radiation operated at 40 kV and 50 mA. Specific surface area of 

catalysts was also determined by the BET method using ASAP 2010 instrument 

(Micromeritics Co.).

2.2.3. Activity measurement

The catalytic activity was measured at atmospheric pressure in the same quartz 

reactor. The reactants were 2500 ppm CH4, 2.5% O2, balanced in He. The total gas 

flow was maintained to 200 ml/min. Each gas mixture was controlled by using 



mass flow controllers (SIERRA). Outflow gases passing through the discharge 

region were analyzed by gas chromatography (AGILENT GC 6890N) equipped 

with a thermal conductivity detector (TCD) and a 60/80 Carboxen-1000 packed 

column, which allowed us to measure H2, O2, N2, CO, CO2, CH4, C2H4, C2H6 and 

C2H2. Methane conversion was examined at steady-state condition in the presence 

and in the absence of catalyst, while increasing the temperature from room 

temperature to 400 °C by 50 or 100 °C. Methane conversion and selectivity of CH4, 

CO, and CO2 species are defined as:

Conversion(���) =
���(��������	���)

���(����������	���)
× 100[%]																		(3)

Selectivity(CO) =
���(��������	��)

���(���������	���)
× 100[%]																					(4)

Selectivity(���) =
���(��������	���)

���(���������	���)
× 100[%]																				(5)



2.3. Results and discussion

2.3.1. Textural properties of catalysts

XRD analysis was performed to investigate the crystalline structures of the 

catalysts. The powder X-ray diffraction patterns for the calcined CoCr2O4 and 

Co1Ni1Ox catalysts are shown in Figure 2-2. As shown in Figure 2-2(A), XRD 

patterns of CoCr2O4 catalyst showed well resolved peaks characteristic of cubic 

spinel structure and matches well with the reference data (JCPDS 22-1084).

All Co1Ni1Ox catalysts exhibited Co3O4 (JCPDS 42-1467), NiCo2O4 (JCPDS 20-

0781), and NiO (JCPDS 47-1049) phases. Since Co3O4 and NiCo2O4 had same 

spinel structure with similar lattice parameter (Co3O4 : 8.084 Å, NiCo2O4 : 8.110

Å), the detailed analysis of the XRD pattern in the region of the main peak was 

performed, as indicated by the right box of Figure 2-2(B). At first, the 

Co1Ni1Ox(500) contained NiCo2O4 phase and NiO phase. However, as the 

calcination temperature increased, the spinel phase decomposed to form Co3O4 and 

NiO, thus the peak at 36.8° was slightly shifted from that of NiCo2O4 to that of 

Co3O4. Also, the crystalline size of the catalysts increased sharply with increasing 

calcination temperature. Co1Ni1Ox catalysts peaks observed at 2θ = 36.8° and 43.5° 

can be assigned to the NiCo2O4 (311), and NiO (200) phases, respectively. NiCo2O4

peaks of Co1Ni1Ox(600) and Co1Ni1Ox(700) split into two peaks, assigned to Co3O4

and NiO phases. Note that the crystalline size of the NiO became bigger as 

evidenced by the sharpened NiO (111) peak. Also, NiCo2O4 (311) peak positions 

were changed to Co3O4 (311) as the calcination temperature increased. Such 

change in peak positions originated from the thermal decomposition of NiCo2O4

into Co3O4 and NiO in Co1Ni1Ox sample at elevated temperature.

Table 2-1 lists the specific surface area of all prepared catalysts. CoCr2O4 had the 



surface area of 88 m2/g, which is the largest value of all catalysts. Surface area of 

Co1Ni1Ox decreased as calcination temperature increased. This was also consistent 

with XRD results that the crystalline size of the phases in the catalysts were sharply 

increased which led to decline of specific surface area with increasing calcination 

temperature.



Figure 2-2. XRD patterns of CoCr2O4 catalyst (A) and Co1Ni1Ox catalysts (B) with 

different calcination temperature; (a) 500°C, (b) 600°C, (c) 700°C.

(A)

(B)



Table 2-1. Specific surface area of the catalysts

Catalyst Specific surface area(m2/g)

CoCr2O4 88

Co1Ni1Ox(500) 37

Co1Ni1Ox(600) 27

Co1Ni1Ox(700) 6



2.3.2. Methane oxidation reaction under plasma only or catalyst only 

condition

Firstly, the methane conversion over various non-PGM catalysts in the absence 

of plasma in addition to one under plasma only condition is shown in Figure 2-3

and Table 2-2. In the absence of plasma, all catalysts started to be activated above 

200°C as indicated in light-off temperature of Table 2-2. CoCr2O4 showed the best 

performance among them. Co1Ni1Ox catalysts exhibited poor activity as the 

calcination temperature increased. This is due to the decrease of specific surface 

area and the collapse of spinel structure as demonstrated in XRD pattern. In 

catalyst only condition, complete oxidation of methane occurred, since CO2 was 

only detectable product. Current results over these catalysts have similar activity to 

that previously reported in the literature for methane complete oxidation [52-56].

Meanwhile, the methane oxidation reaction was carried out under plasma only 

condition to compare the reaction of plasma and that of catalyst. As summarized in 

Table 2-2, plasma only condition gave rise to the lowest T50 (202 °C), where CO 

selectivity (47%) was extremely high. The CO selectivity decreased dramatically to 

1% with increasing the temperature (T90) to 410 °C, implying that the plasma 

required enough thermal energy to oxidize CO to CO2. It can be summarized that 

non-PGM oxide catalyst requires high temperature (or thermal energy) to 

completely oxidize methane, while plasma only condition demonstrates the high 

methane conversion with high CO selectivity at low temperature.
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Figure 2-3. Light-off curves of CH4 oxidation over non-PGM catalysts as a 

function of temperature in the absence of plasma.



*CO selectivity is defined as

�����������	(��) =	
����	(��������	��)

����	(���������	���)
	× ���	[%].

Table 2-2. Light-off temperature of methane oxidation over plasma only and 

catalyst only system

Condition
Light-off temperature(°C)

T10 T50 T90

Catalyst only

CoCr2O4 255 312 359

Co1Ni1Ox(500) 261 351 407

Co1Ni1Ox(600) 318 401 478

Co1Ni1Ox(700) 440 579 -

Plasma only
(CO selectivity(%))*

- 202(47) 410(1)



2.3.3. Methane oxidation under plasma-catalyst hybrid condition

The catalysts were placed inside the discharge zone of plasma to inspect the 

plasma-catalyst hybridization effect. This hybridization concept was based on other 

previous plasma-catalyst hybrid applications [57-61]. Especially, the former result 

[50] indicated the synergistic effect between DBD plasma and palladium-based 

catalysts. It was found that the combination of plasma and catalyst showed better 

reactivity and selectivity than catalyst only or plasma only.

Methane conversions on plasma-catalyst hybrid system and plasma only 

condition are shown in Figure 2-4(a) as a function of temperature. Unlike the 

catalyst only reactions (Figure 2-3), all oxidation reactions began at room 

temperature under the hybrid condition. As shown above, catalytic performance of 

CoCr2O4 was the highest among any other catalysts in this research. When DBD 

plasma was applied, however, the circumstance was reversed. At low temperature, 

plasma dominantly influences the activity so that plasma only reaction showed the 

highest methane conversion. All catalysts presented somewhat antagonistic effect 

on methane oxidation under DBD plasma condition. Among them, CoCr2O4 had 

the most significant antagonistic result and Co1Ni1Ox showed similar effects which 

was better than that of CoCr2O4 regardless of the calcination temperature. This was 

also confirmed in Figure 2-5 indicating that current peaks were getting smaller in 

the order of plasma only>Co1Ni1Ox>CoCr2O4. Accordingly, the specific input 

energy decreased 186 J/L>168 J/L>162 J/L. This meant plasma generation could 

be interrupted by the packing material like catalyst in this case. Above about 250

°C, catalysts were activated, thus the order of methane conversion was reversed 

again. At high temperature, catalyst with high catalytic performance showed high 

methane conversion in the hybrid system.



Only methane conversion cannot provide the sufficient information to evaluate 

the plasma-catalyst hybrid system, since CH4 can be converted to either CO or CO2. 

Hence, the CO selectivity result of hybrid reactions is shown in Figure 2-4(b). As 

described in Table 2-2 and Figure 2-4(b), the CO selectivity increased to about 50% 

in the absence of the catalyst. The selectivity results were varied depending on the 

loaded catalyst. The Co1Ni1Ox(500) catalyst had the lowest CO selectivity while 

the CoCr2O4 showed the highest CO selectivity. The CO selectivity of Co1Ni1Ox

catalysts was significantly enhanced when the calcination temperature was above 

700°C. According to the chemical equation in the previous literature [50], CO2

formation could be affected by the reaction of CH4 oxidation or CO oxidation. 

Therefore, this should be checked by examining the CO oxidation ability of the 

catalysts. Figure 2-6 presents the CO oxidation ability over the catalysts, which

explained how the CO selectivity was determined under plasma-catalyst hybrid 

system. CoCr2O4 catalyst with the highest methane conversion and the lowest CO 

conversion had the highest CO selectivity when combined with the plasma. Also, 

Co1Ni1Ox(700) catalyst which showed the lower CO conversion presented the 

higher CO selectivity than other Co1Ni1Ox catalysts. In this sense, it was confirmed 

that the CO selectivity of plasma-catalyst hybrid reaction was not governed by 

methane oxidation ability but also by CO oxidation ability of each catalysts. 

Therefore, it can be concluded that plasma play a main role in oxidizing CH4 to CO 

while the specific catalyst is able to oxidize CO to CO2 at low temperature. The 

Co1Ni1Ox(500) catalyst under plasma-catalyst hybrid condition demonstrated the 

similar activity and selectivity to those of the PGM catalysts such as Pd/Al2O3 as 

shown in Figure 2-4(a). The Pd/Al2O3 showed complete oxidation to CO2 thus the 

CO selectivity was not presented in Figure 2-4(b).
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catalyst hybrid system at 4kVp-p compared with Pd/Al2O3, (b) CO selectivity plot 

over non-PGM catalysts with DBD plasma.
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conditions: 1000ppm CO, 1% O2, balanced in He without DBD plasma).



Chapter 3. Plasma-catalyst hybrid system using 
Ag/SiO2 for oxidative coupling of methane (OCM) 
and subsequent regeneration at low temperature

3.1. Introduction

Methane is the major component of natural gas, which is one of the abundant 

fossil fuels on earth [2]. However, the utilization of methane has been limited to the 

route of synthesis gases to produce liquid hydrocarbons and other chemical 

products, which is regarded as indirect methods [4, 5]. Such indirect process has 

weaknesses such as high operating cost and low thermodynamic efficiency. Hence, 

if methane is directly utilized as alternative feedstock to petroleum, it will be 

highly desirable from the economic point of view. Therefore, many efforts have 

been made to directly convert methane into more useful products like olefins or 

aromatics by using various catalysts for decades [6, 7, 62-64]. Among them, direct 

synthesis of C2 and C3 hydrocarbons which are suitable for chemical feedstocks has 

been extensively investigated [65-67]. There are two ways to produce these 

hydrocarbons directly from methane with one step. One is oxidative coupling of 

methane (OCM) and the other is non-oxidative coupling of methane (non-OCM). 

Non-OCM uses only methane as reactant gas and thus the coking problem occurs 

seriously. On the other hand, OCM utilizes oxygen as well as methane so that it can 

mitigate the deactivation of catalyst arising from coking. Hence, many OCM 

catalysts such as Li/MgO, Mn-Na2WO4/SiO2, and Ag catalysts have been 

commonly studied so far [68-71]. However, high temperature above at least 700 °C 

is required for these catalysts to demonstrate significant activity because methane 

is hardly activated due to its stable C-H bond [72-75]. In other words, it is a 



difficult target to achieve only with catalyst from the practical point of view 

because the reaction requires high temperature which causes deactivation of the 

catalyst [76]. The performance of past catalysts and their activation temperature are 

summarized in Figure 3-1 [77, 78]. An alternative way to activate methane at lower 

temperature would be to use plasma [28, 79]. There are various plasma sources 

such as dielectric barrier discharge (DBD), corona, microwave, arc, spark, and 

radio frequency [16, 17], which can be divided into thermal plasma and non-

thermal plasma [80, 81]. In case of thermal plasma condition, the gas temperature 

increases significantly to above 1000 °C since electron and bulk gas are in thermal 

equilibrium state [19]. Thus, such plasma is not desirable for catalytic reaction 

because the catalyst deactivation such as sintering can occur more severely under 

the reaction condition. On the other hand, the non-thermal plasma condition 

provides non-equilibrium condition in which temperatures of bulk gas and electron 

are different [82]. High-energy electrons (1–20 eV) which can initiate the 

formation of various reactive radicals are produced [21]. Since electron mass is 

very light, non-thermal plasma causes the gas temperature to increase by only a 

few degrees [20]. Therefore, partially ionized gas can be created in a simple reactor 

configuration with relatively inexpensive power source, while reaction condition 

would be maintained almost isothermally. Among various non-thermal plasma 

sources, dielectric barrier discharge (DBD) plasma has been commonly utilized by 

the researchers so far since it is easier to set up than other non-thermal plasma 

sources [61, 83-86]. Therefore, DBD plasma was used in this work as a plasma 

source.

In this chapter, OCM has been carried out to produce C2 or C3 hydrocarbons 

directly from methane using plasma-catalyst hybrid system with various catalysts. 



Since catalyst only reaction required high temperature above 700 °C, dielectric 

barrier discharge (DBD) plasma, one of non-thermal plasma, was applied to lower 

the reaction temperature. We aimed at finding the optimum OCM catalyst to have 

the highest C2+ hydrocarbon yield at low temperature (< 400 °C) in the plasma-

catalyst hybrid system, which was found to be Ag/SiO2. In addition, the time-on-

stream (TOS) activity of Ag/SiO2 under the plasma-catalyst hybrid system was 

investigated. The plasma regeneration and the thermal regeneration in oxygen-rich 

condition were introduced to the deactivated catalyst in order to provide the 

appropriate regeneration strategy in the OCM reaction in plasma-catalyst hybrid 

system.



Figure 3-1. OCM performance of past catalysts and their activation temperature.



3.2. Experimental

3.2.1. Reaction system

A schematic view of plasma-catalyst hybrid system is presented in Figure 3-2. It 

consisted of a 1000:1 high voltage probe (Tektronics P6015A), a current probe 

(Pearson electronics 6585), and a capacitor (2000 pF) for measuring voltage (V), 

current (A), and transferred electric charge (Q), respectively. All output signals 

were transmitted to a 100 MHz digital oscilloscope (Tektronics DPO 2014) which 

was utilized to calculate discharge power by the V-Q Lissajous figure method. The 

system is described well in the previous paper [50].

The catalysts in bead form (30–40 mesh) were located on the quartz wool in the 

middle of reactor inside the plasma discharge zone. The height of catalyst bed 

varied from 5.0 mm to 15.0 mm because of the difference in the density of catalyst 

where weight of the catalyst was fixed to 0.5 g except for the case of BaTiO3. In 

order to fill the discharge gap where the plasma was generated, the weight of 

BaTiO3 which had high density increased to 1.0 g. The catalyst bed temperature 

was measured and recorded using K type thermocouple which was protected by

another quartz tube just below the quartz wool in the reactor. Another 

thermocouple in the furnace was used to control the setting temperature.

Configuration of the plasma-catalyst hybrid reactor is shown in Figure 3-3. The 

DBD reactor was made of α-Al2O3 tube with an inner diameter of 12.0 mm, a 

thickness of 2.0 mm and a length of 300.0 mm. The quartz wool was located at the 

middle of reactor and its thickness was about 5.0 mm. In this reactor, catalyst zone 

and plasma zone were overlapped at the same position. Electrical discharge source 

of the reactor was DBD. The reactor consisted of a stainless steel rod of which 

thickness was 4.0 mm. The rod was located at the center of α-Al2O3 tube reactor. 



The outer surface of the reactor was surrounded by stainless steel plate with a 

length of 20.0 mm and a thickness of 0.2 mm. Therefore, the length of discharge 

zone was 20.0 mm, and the discharge gap was 4.0 mm, resulting in a reaction 

volume of about 2.0 cm3 in plasma only condition. However, in plasma-catalyst 

hybrid reaction, this reaction volume varied depending on the packing material 

since plasma could not be generated at the space occupied by the packing material. 

To create the discharge, an AC high voltage was generated with a maximum of 7.5 

kVP-P by an arbitrary function generator (GW INSTEK AFG-2012) and amplified 

by a high voltage amplifier (TREK 20/20C-HS) with a maximum peak voltage of 

20 kVP-P and a variable frequency of up to 20 kHz. All experiments were carried 

out under the identical conditions of sinusoidal waveform with the driving 

frequency of 4 kHz.
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Figure 3-2. Schematic view of plasma-catalyst hybrid system.



Figure 3-3. Shape of plasma-catalyst hybrid reactor.



3.2.2. Preparation of catalysts

Commercial supports such as BaTiO3 (Sigma Aldrich), TiO2 (Millennium 

Inorganic Chemicals), γ-Al2O3 (Sasol), fumed SiO2 (Sigma Aldrich), and glass 

bead (Sigma Aldrich, 30–40 mesh) were utilized to investigate the effect of support 

under DBD plasma condition. Then, various metals were loaded on SiO2 by using 

wet impregnation method. Pd(NO3)2·2H2O (Sigma Aldrich), Pt(NH3)4(NO3)2 (Alfa 

Aesar), AgNO3 (Sigma Aldrich), Co(NO3)2·6H2O (Sigma Aldrich), Ni(NO3)2·6H2O 

(Alfa Aesar), Cu(NO3)2·3H2O (Sigma Aldrich), Pb(NO3)2 (Sigma Aldrich), 

RuCl3·xH2O (Sigma Aldrich), RhCl3·xH2O (Sigma Aldrich), IrCl4·xH2O (Sigma 

Aldrich), and NaCl (SAMCHUN PURE CHEMICAL) were used as metal 

precursor. The loading amount of each metal was fixed to 2 wt% of the catalyst. 

The catalysts were dried and subsequently calcined in static air at 500 °C for 2 h. 

Then, the catalysts were sieved to the particle size of 30–40 mesh. Solid-state 

phases were identified by using X-Ray Diffraction (RIGAKU SMARTLAB) 

operated at 40 kV and 50 mA. Surface area of the catalysts was also obtained by 

using the N2 adsorption/desorption method in an ASAP 2010 instrument 

(Micromeritics Co.).

3.2.3. Activity measurement

All of the reaction results including catalyst only reaction, plasma only reaction, 

and plasma-catalyst hybrid reaction were measured at atmospheric pressure in the 

same α-Al2O3 reactor. The reactants were 24% CH4, 6% O2, balanced in Ar. The 

total gas flow rate was 100 ml/min. Each gas was controlled by using mass flow 

controllers (SIERRA). Effluent gases passing through the discharge region went 

through the water trap and were analyzed by a gas chromatography (AGILENT GC 



6890N) equipped with a thermal conductivity detector (TCD) and CP-7429 

capillary column. The column was composed of two parallel columns (CP-

Molsieve 5Å and PoraBOND Q) which allowed us to detect H2, O2, CO, CH4, CO2, 

C2H2, C2H4, C2H6, C3H6, and C3H8. Among the reaction products, C2+ hydrocarbon 

includes C2H2, C2H4, C2H6, C3H6, and C3H8 in this experiment. Methane 

consumption except the amount used for hydrocarbon production was regarded as 

being consumed for coke formation. The activity of the hybrid system was 

measured at 20 min after the OCM reaction started except the case of time-on-

stream reaction. Methane conversion and C2+ hydrocarbon yield were obtained 

while temperature was varied from room temperature to about 700 ºC in the 

presence and in the absence of catalyst.  Conversion of methane, and selectivity 

and yield of CO, CO2, and hydrocarbons are obtained in the following:

Conversion(���) =
���(��������	���)

���(����������	���)
× 100[%]																		(6)

Selectivity(CO) =
���(������	��)

���(���������	���)
× 100[%]																					(7)

Selectivity(���) =
���(������	���)

���(���������	���)
× 100[%]																				(8)

Selectivity(HC) =
���(������	��) × ��(������	��)

���(���������	���)
× 100[%]						(9)

Yield(HC) =
����������(���) × �����������(��)

100
[%]																(10)

Where CN and HC stands for carbon number and C2+ hydrocarbon, respectively.

In addition to the gas chromatography, quadrupole mass spectrometer (QMS, 

Pfeiffer Vacuum, PrismaTM QMS 200) was utilized to detect the product in real 

time. Especially, QMS was applied for the O2 temperature-programmed desorption 

(O2 TPD) and the detection of coke oxidation to CO and CO2. Before O2 TPD, 



oxygen plasma treatment was applied at the same condition as OCM reaction 

except the gas ratio (30% O2, balanced in Ar) for 30 min.

3.2.4. Regeneration procedure

Long term activity test was conducted at 385 ºC for 180 min in plasma-catalyst 

hybrid system. After the reaction for 180 min, two regeneration processes were 

carried out: plasma regeneration and thermal regeneration. The plasma 

regeneration proceeded in the condition of 30% O2 balanced in Ar at 378 ºC for 30 

min in order not to alter the total flow rate and the proportion of Ar, discharge gas. 

Thermal regeneration was applied at 600 ºC for 30 min after ramping from room 

temperature to 600 ºC at 5 ºC/min.



3.3. Results and discussion

3.3.1. Oxidative coupling of methane under plasma only condition

The first set of experiment was conducted under plasma only condition in order 

to establish a reference for plasma-catalyst hybrid reaction. In case of plasma only 

reaction, methane conversion and C2+ hydrocarbon selectivity were measured from 

room temperature to 397 °C at 7.5 kVP-P. The results are summarized in Figure 3-4

and Table 3-1. At about 400 °C, plasma only reaction reached the methane 

conversion of 21.3% and the C2+ hydrocarbon yield of 4.7%. Depending on the 

temperature, DBD showed the plasma power from 5.0 W to 8.6 W. As described in 

Figure 3-4, the growth in C2+ hydrocarbon yield with increasing temperature could 

be ascribed to the fact that more reactive species like electrons were generated 

because of the higher plasma power. Methane conversion and C2+ hydrocarbon 

selectivity in DBD increased as the reaction temperature went up as described in 

Table 3-1. Figure 3-5 demonstrates that the majority of the product was CO (60.4%) 

and most abundant hydrocarbon product was C2H6 (17.0%), which corresponded 

well with previous reports about the coupling of methane under plasma condition 

[87-89]. Such product distribution was attributed to the fact that the OCM reaction 

at relatively low plasma power started commonly from the dissociation of methane 

molecules to produce methyl radicals which were readily combined to form C2H6. 

As the temperature went up, both methane conversion and C2+ hydrocarbon 

selectivity increased as shown in Table 3-1 at the same input voltage and frequency 

under DBD plasma condition. In Figure 3-6, Lissajous plots of DBD plasma are 

demonstrated in addition to the plasma power calculated from the plots at each 

temperature. The plasma discharge power can be calculated by the multiplication 

of capacitor value, plasma frequency, and area of Lissajous figure [50]. The lines 



(A-B) and (C-D) in Figure 3-6 indicate the discharge transitions, and their slope is 

equal to dielectric capacitance. Line (B-C) and (D-A) are capacitive transitions of 

which slope are equal to total capacitance [30]. According to Figure 3-6, it was 

identified that the dielectric capacitance increased as the reaction temperature went 

up, resulting in the increased plasma power.
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Figure 3-4. Methane conversion and C2+ hydrocarbons yield of plasma only 

reaction.



Table 3-1. Methane conversion, oxygen conversion, and C2+ hydrocarbon 

selectivity under plasma only condition.

Plasma only
Temp.
(ºC)

Conversion (%) C2+ hydrocarbon selectivity 
(%)CH4 O2

104 13.2 57.3 8.9
141 14.7 62.0 9.6
216 17.7 71.0 12.4
303 20.1 75.0 17.3
397 21.5 81.4 21.7
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3.3.2. Oxidative coupling of methane with various supports under plasma 

condition at low temperature

OCM reaction over the conventional catalysts under the catalytic system requires 

high reaction temperature as mentioned above. Thus, a new approach of low 

reaction temperature using plasma-catalyst hybrid system was devised in this 

research. At first, various supports such as γ-Al2O3, TiO2, and BaTiO3 as well as 

SiO2 were applied under DBD plasma condition to investigate which support was 

appropriate for OCM under the plasma condition at low temperature (< 400 °C). As 

displayed in Figure 3-7, OCM under DBD plasma condition with various supports 

was carried out from ambient temperature to about 400 °C. Among the support 

materials, SiO2 showed higher C2+ hydrocarbon yield than plasma only reaction in 

a plasma-catalyst hybrid system. According to Table 3-2 showing dielectric 

constant and surface area of the supports, hydrocarbon yield of the supports under 

plasma condition was inversely proportional to the dielectric constant of the 

supports. There are some controversial opinions about the relationship between 

dielectric constant and plasma-catalytic performance [57, 90-92]. However, 

according to Wang et al. [93], the net electric field decreases due to the 

accumulation of electrons on the solid surface, especially for the supports with 

large dielectric constant, resulting in the decreased activity. Besides the dielectric 

constant, large surface area of the support could have a beneficial effect on the 

charge accumulation over the surface, which can lead to the formation of enhanced 

discharge. For this reason, the hydrocarbon yield might be proportional to the 

surface area of the supports. Hence, glass bead, which has same dielectric constant 

with SiO2 but much smaller surface area, was tested to examine the effect of 

surface area on the activity compared with SiO2. As shown in Figure 3-7, the 



activity result confirmed that glass bead showed similar synergistic effect to SiO2. 

Therefore, dielectric constant seemed to play a crucial role in the OCM 

performance when using various support materials with plasma.
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Table 3-2. Specific surface area and dielectric constant of the supports.

Support Specific surface area(m2/g)
Dielectric constant of 

support(ε) [94-97]
BaTiO3 2 1200–10000

TiO2 84 80
γ-Al2O3 257 9

SiO2 367 3.9
Glass bead <1 3.9



3.3.3. Ag/SiO2 catalyst under plasma-catalyst hybrid system

3.3.3.1.Oxidative coupling of methane over various SiO2-supported catalysts

It was proposed that the performance of catalysts was proportional to that of 

supports in plasma-catalyst hybrid system [93]. Because SiO2 showed the best 

performance among the supports under DBD plasma condition, various metals 

were loaded on SiO2. The amount of metal was fixed to 2 wt%. XRD patterns of 

the catalysts (not shown) demonstrated that only the peaks assigned to the 

amorphous SiO2 existed without any metal-related peaks, indicating that the metal 

species were highly dispersed over SiO2 surface. Among various metals (Pb, Pt, Pd, 

Ni, Ag, Ru, Na, Rh, Ir, Cu, and Co), Ag revealed the highest hydrocarbon yield at 

385 °C as shown in Figure 3-8. The Ag on SiO2 catalyst showed the hydrocarbon 

yield of 9.7% at the reaction temperature of 385 °C. In order to evaluate the 

synergistic effect of the reaction, the synergistic effect factor was introduced. The 

synergistic effect factor was defined as the yield of C2+ hydrocarbon in plasma-

catalyst hybrid reaction, divided by the sum of C2+ hydrocarbon yield in plasma 

only and catalyst only reaction. The synergistic effect factor was calculated by 

using Eq. (11):

Synergistic	effect	factor =
���(���)

���(�) + ���(�)
× 100	[%]															(11)

Where YHC(P-C), YHC(P), and YHC(C) indicates the C2+ hydrocarbon yield under 

plasma-catalyst hybrid system, the C2+ hydrocarbon yield with plasma only, and the 

C2+ hydrocarbon yield with catalyst only, respectively.

Surface area and synergistic effect factor of the catalysts are presented in Table 3-3. 

All values of synergistic effect factor in Table 3-3 were calculated based on the 

activity result at close to 400 °C. In addition, the catalyst only reaction did not 



present any C2+ hydrocarbon yield at reaction temperature below 400 °C and thus 

YHC(P) + YHC(C) was equal to YHC(P). The synergistic effect factor shows the 

correlation among plasma-catalyst hybrid reaction, plasma only reaction, and 

catalyst only reaction. If the yield of hybrid reaction is equal to the sum of plasma 

only and catalyst only reaction yields, the synergistic effect will be 100%. 

Therefore, the value of synergistic effect factor above 100% indicates that a 

synergistic effect existed on OCM under plasma-catalyst hybrid system. Table 3-3

indicates that Ag/SiO2 demonstrates high value of synergistic effect factor (209%) 

in the plasma-catalyst hybrid reaction at about 400 °C. In addition, the maximum 

plasma power in this study was about 8.4 W (5.1 kJ/L, Figure 3-9), which was 

much lower than that of previous works (17.7 kJ/L–45.0 kJ/L) [79, 98-100]. 

Therefore, it can be mentioned that the synergistic effect between plasma and 

Ag/SiO2 is remarkable. Since the addition of Ag/SiO2 catalyst did not lead to 

change of plasma power in spite of the increased total capacitance, it can be 

claimed that the synergistic effect did not arise from plasma configuration but from 

interaction between plasma and catalyst. According to Bao et al. [101], Ag catalysts 

were verified to be active for OCM when it was applied under oxygen-limited 

condition at atmospheric pressure, which is consistent with our result.
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Figure 3-8. Oxidative coupling of methane performance under plasma condition 

using various metals on SiO2.



Table 3-3. Specific surface area and synergistic effect factor of the catalysts

Catalyst
Specific surface area 

(m2/g)
Synergistic effect factor

Pb/SiO2 323 136%
Pt/SiO2 341 109%
Pd/SiO2 331 158%
Ni/SiO2 324 89%
Ag/SiO2 308 209%
Ru/SiO2 350 70%
Na/SiO2 351 83%
Rh/SiO2 312 48%
Ir/SiO2 345 185%
Cu/SiO2 365 158%
Co/SiO2 322 164%
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3.3.3.2.Role of oxygen in oxidative coupling of methane under plasma-catalyst 

hybrid system

Methane conversion, C2+ hydrocarbon yield, and carbon product selectivity 

under the reaction condition of OCM at about 400 °C are displayed in Figure 3-10. 

As shown in Figure 3-10, 2 wt% Ag/SiO2 demonstrated synergistic effect in the 

presence of oxygen (from 4.7% to 9.7% with regard to C2+ hydrocarbon yield). 

Furthermore, OCM reaction in plasma-catalyst hybrid system with Ag/SiO2

showed carbon balance above 95% in 20 min of reaction, which meant that little 

amount of coke was formed. In addition, compared with OCM reaction under 

plasma only condition, selectivity of olefin products such as C2H4 and C3H6

increased in the plasma-catalyst hybrid system, representing that methane was 

dissociated more abundantly over Ag/SiO2 in the presence of oxygen. This led to 

the result that Ag/SiO2 could alter the reaction pathway of OCM. According to 

Rocha et al. [102], different oxygen species could be created on and in the Ag 

catalyst. Among the oxygen species, Oγ were assigned to strongly bound, 

intercalated oxygen which diffused via interstitialcy diffusion into the uppermost 

layers of the reconstructed Ag surface, where it might react with gaseous reactants 

[103]. Such subsurface oxygen (Oγ) was suggested to react with methane to give 

the dehydrogenation of methane to methyl radical [104]. Ag metal played a role as 

the active catalyst for oxi-dehydrogenation while Oγ worked for pure 

dehydrogenation. In the plasma condition, Oγ might be generated at relatively low 

temperature since the specific input energy by plasma (273.7 kJ/mol at 1 atm, 

385 °C, assuming ideal gas) was sufficiently higher than the activation energy of 

oxygen diffusion in Ag (140.0 kJ/mol) which was regarded as the rate determining 

step of the reaction [105]. Hence, the generation of Oγ led to H abstraction from 



methane molecule, which resulted in the coupling of methane. In order to identify 

the existence of Oγ, O2 temperature-programmed desorption (O2 TPD) was 

conducted by using QMS after the oxygen plasma treatment for 30 min. As shown 

in Figure 3-11, the oxygen peak originated from Oγ after the oxygen plasma 

treatment was observed at about 800 °C, consistent with the result of Nagy et al. 

[104]. Note that 0.5 g of 2 wt% Ag/SiO2 (i.e. Ag 0.01 g) was applied in this study 

whereas 1.0 g of Ag was used in the reference. Therefore, the peak size was far 

smaller than the reference one. Nevertheless, it can be said that Oγ which is active 

for the dehydrogenation of methane was generated by the plasma treatment at 

much lower temperature (380 °C) compared to catalyst only reaction that requires 

high temperature above 600 °C. This is in good agreement with the conclusion of 

Xu et al. [106] who mentioned that subsurface oxygen increased the reactivity of 

the Ag surface and enhanced the kinetics of H2 dissociation substantially based on 

density functional theory calculations. Furthermore, the selectivity of C2H4 and 

C3H6 that were formed by H abstraction from C2H6 and C3H8, respectively, 

increased in the presence of oxygen. This confirmed that the role of oxygen (Oγ) 

was important for the dehydrogenation of saturated hydrocarbons as well as 

methane, which resulted in the production of unsaturated hydrocarbons.
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Figure 3-10. Methane conversion, hydrocarbon yield and product selectivity in the 

condition of oxidative coupling of methane at about 400 ºC after reaction for 20 

min; Hybrid=2 wt% Ag/SiO2 + Plasma.
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3.3.4. Long term activity of plasma-catalyst hybrid system for oxidative 

coupling of methane

Long term activity of the catalyst was explored in order to utilize in practical 

application. Figure 3-12 shows the methane conversion, C2+ hydrocarbon 

selectivity, and C2+ hydrocarbon yield of Ag/SiO2 in the plasma-catalyst hybrid 

system with time-on-stream (TOS). As shown in Figure 3-12, both methane 

conversion and C2+ hydrocarbon selectivity decreased as the reaction proceeded. At 

first, fresh Ag/SiO2 revealed 9.7% of C2+ hydrocarbon yield. However, after 180-

min TOS in the plasma-catalyst hybrid system, the yield dropped to 5.9%. At the 

same time, the color of the catalyst turned to dark brown in addition to the 

deposition of black carbon on the surface of high voltage electrode and reactor wall. 

Such carbon deposition is expected to have the detrimental effect on both catalyst 

and plasma.

Therefore, the regeneration process was applied in order to recover the reactivity 

of plasma-catalyst hybrid system by eliminating the carbon deposition. Two 

regeneration methods were designed: plasma regeneration and thermal regeneration. 

The plasma regeneration was carried out for 30 min at 378 °C. The specific input 

energy in the plasma regeneration was calculated to 290.1 kJ/mol (Figure 3-13, at 1 

atm, 378 °C, assuming ideal gas). The evolution of CO and CO2 during plasma 

regeneration on aged Ag/SiO2 measured by QMS is demonstrated in Figure 3-14(a). 

As shown in Figure 3-14(a), oxidation of the carbon deposition to CO and CO2

(mostly to CO2) started immediately as plasma was turned on. This was attributed 

to the formation of reactive oxygen species, which could easily interact with the 

carbon deposition to produce CO and CO2. To ensure the effect of oxygen plasma 

regeneration, thermal regeneration was applied to the post-reaction catalyst at same 



gas ratio with the plasma regeneration. Figure 3-14(b) demonstrates the evolution 

of CO and CO2 during thermal regeneration on aged Ag/SiO2 observed by QMS. In 

case of thermal regeneration, most of the coke did not react until temperature 

reached about 500 °C while the plasma regeneration started instantly at 378 °C. 

This can be attributed to the deficiency of reactive bulk oxygen species that 

promotes the oxidation of carbon deposition in the case of thermal regeneration. 

When the temperature reached about 500 °C, the MS signals of CO and CO2 began 

to increase. The thermal regeneration reaction was carried out until MS signals of 

CO and CO2 became stabilized and flattened. After each regeneration processes, 

OCM reaction over the regenerated catalysts proceeded in the plasma-catalyst 

hybrid system. The OCM reaction result of two regenerated catalysts compared 

with fresh one in the plasma-catalyst hybrid system is displayed in Figure 3-15. 

Plasma regenerated Ag/SiO2 catalyst showed completely recovered activity, while 

the thermally regenerated one partially did (7.3% of C2+ hydrocarbon yield). In 

addition, as OCM reaction went on over the latter sample, the deactivation got 

much worse. In order to identify the influence of plasma regeneration and thermal 

regeneration on catalyst, X-Ray Diffraction (XRD) was taken. As displayed in 

Figure 3-16, XRD pattern of the fresh Ag/SiO2 shows that only the peaks assigned 

to the amorphous SiO2 existed without any metal-related peaks, indicating that the 

Ag was highly dispersed over the SiO2 surface. Crystalline phase of Ag is hardly 

seen after plasma regeneration although the catalyst exhibited highly crystalline Ag 

(JCPDS 65-2871) phase after the thermal regeneration. Therefore, it can be claimed 

that sintering of Ag took place significantly during the thermal regeneration. Since 

the catalyst was initially calcined at 500 °C, thermal regeneration above 500 °C can 

give rise to Ag sintering, which resulted in the deactivation of the catalyst. 



Furthermore, aged catalyst after the plasma regeneration even showed the better 

C2+ hydrocarbon yield (10.5%) than fresh catalyst at the beginning of the reaction. 

This can be explained by the fact that additional Oγ formed during plasma 

regeneration improved the dehydrogenation of methane without sintering of Ag.

Besides, additional regeneration by plasma at about 378 °C was conducted on 

the thermally regenerated Ag/SiO2 to verify whether the imperfect thermal 

regeneration was caused by sintering of the catalyst. CO and CO2 peaks were 

detected again by QMS during plasma regeneration, which implies that residual 

carbon deposition still existed after thermal regeneration (Figure 3-17). 

Furthermore, it was confirmed that after the additional regeneration by plasma, the 

reactivity of plasma-catalyst hybrid system was restored to 9.0%. However, the 

reactivity was not fully recovered even after the additional regeneration by plasma 

because of Ag sintering. From the results, it was confirmed that both sintering of 

the catalyst and residual carbon deposition on the catalyst contributed to the partial 

recovery after thermal regeneration.
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Figure 3-12. Methane conversion, C2+ hydrocarbon selectivity, and C2+

hydrocarbon yield of plasma-catalyst hybrid system with time-on-stream.
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7.5kVP-P, 30% O2, balanced in Ar.



Figure 3-14. The evolution of CO and CO2 during plasma regeneration (a) and 

thermal regeneration (b) measured by quadrupole mass spectrometry (QMS).



0 20 40 60 80 100 120 140 160 180 200

5

6

7

8

9

10

11

C
2

+
 h

y
d
ro

c
a
rb

o
n

 y
ie

ld
(%

)

Time(min)

 Fresh
 After plasma regeneration
 After thermal regeneration

Figure 3-15. Oxidative coupling of methane (OCM) reaction results of fresh 
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Figure 3-16. X-Ray Diffraction (XRD) patterns of fresh Ag/SiO2, aged Ag/SiO2

after plasma regeneration, and aged Ag/SiO2 after thermal regeneration.



0 10 20 30 40

4.00E-011

6.00E-011

8.00E-011

Io
n
 c

u
rr

e
n
t(

A
)

Time(min)

 CO (m/z=28)
 CO

2
 (m/z=44)

Figure 3-17. The result of additional plasma regeneration for 30 min following 

thermal regeneration. (O2 30 sccm Ar 70 sccm, aged for 180 min in a plasma-

catalyst hybrid system)



Chapter 4. Direct conversion of methane to 
methanol over metal oxide-coated glass bead in 
plasma-catalyst hybrid system

4.1. Introduction

Methane is a main component of natural gas, the large reserves of which is 

spread all over the world [107]. Therefore, methane conversion to value-added 

products has drawn much attention because of scientific and industrial significance. 

Currently, the production of methanol from natural gas should go through the 

formation of synthesis gas, which is considered to be inefficient. Thus, direct 

methanol synthesis from methane has been steadily investigated by many 

researchers [108-110]. However, direct methanol synthesis by catalytic reaction has 

limitations, since large amount of thermal energy is required to selectively activate 

C-H bond. Unfortunately, the applied thermal energy causes the oxidation of 

methane to CO or CO2. To prevent this circumstance, batch reaction using liquid 

phase reactants under high pressure has been utilized [64, 111-113]. Though it 

could enhance the methanol selectivity, it showed still low methanol yield and it 

should have separation and regeneration processes.

In this chapter, the plasma was introduced to overcome the difficulties. Plasma 

can activate methane to produce methyl radical at lower temperature [28]. The non-

thermal plasma was applied in this study since it can provide non-equilibrium 

condition in which temperatures of bulk gas and electron are different [82]. Among 

various non-thermal plasma sources, dielectric barrier discharge (DBD) plasma has 

been commonly utilized by the researchers so far since it is easier to set up than 

other non-thermal plasma sources [61, 83, 84]. Therefore, DBD plasma was used in 



this work as a plasma source. It was designed that plasma acted for methane 

activation and catalyst played a role in enhancing methanol selectivity in the 

continuous packed bed reactor.



4.2. Experimental

4.2.1. Reaction system

An overall view of plasma-catalyst hybrid system is presented in Figure 4-1. It 

consisted of a 1000:1 high voltage probe (Tektronics P6015A), a current probe 

(Pearson electronics 6585), and a capacitor (2000 pF) for measuring voltage (V), 

current (A), and transferred electric charge (Q), respectively. All output signals 

were transmitted to a 100 MHz digital oscilloscope (Tektronics DPO 2014) which 

was utilized to calculate discharge power by the V-Q Lissajous figure method. The 

system is described well in the previous paper [50].

The catalysts in bead form (2.0 mm) were located on the quartz wool in the 

middle of reactor inside the plasma discharge zone. The height of catalyst bed 

exceeded 20.0 mm in order to fill the discharge gap where the plasma was 

generated. The catalyst bed temperature was measured and recorded using K type 

thermocouple which was protected by another quartz tube just below the quartz 

wool in the reactor.

Configuration of the plasma-catalyst hybrid reactor is shown in Figure 4-2. In 

this reactor, catalyst zone and plasma zone were overlapped at the same position. 

Electrical discharge source of the reactor was DBD. The reactor consisted of a 

stainless steel rod of which thickness was 4.0 mm. The outer surface of the reactor 

was surrounded by stainless steel plate with a length of 20.0 mm and a thickness of 

0.2 mm. Therefore, the length of discharge zone was 20.0 mm, and the discharge 

gap was 4.0 mm, resulting in a reaction volume of about 2.0 cm3 in plasma only 

condition. However, in plasma-catalyst hybrid reaction, this reaction volume 

decreased due to the packing materials since plasma could not be generated at the 

space occupied by them. To create the discharge, an AC high voltage was generated 



with a maximum of 8.5 kVP-P by an arbitrary function generator (GW INSTEK 

AFG-2012) and high voltage amplifier (TREK 20/20C-HS). All experiments were 

carried out under the identical conditions of sinusoidal waveform with the driving 

frequency of 4 kHz.
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Figure 4-1. Schematic view of overall reaction system.



Figure 4-2. Configuration of the plasma-catalyst hybrid reactor.



4.2.2. Preparation of catalyst

Commercial borosilicate glass bead (Sigma Aldrich) was utilized as a support 

under DBD plasma condition. Then, various metal oxides were loaded on the 

spherical glass bead. The catalyst was prepared by following procedure [114]. The 

glass beads were etched with 5 M NaOH solution at 100 °C followed by immersing 

it in a suspension of metal oxide. Next, the mixture was dried at 120 °C for 1 h and 

washed with distilled water. The operation was repeated several times until the 

glass beads were no longer transparent with desired content of metal oxide. MnO 

(Sigma Aldrich), Mn2O3 (Sigma Aldrich), MnO2 (Sigma Aldrich), Fe2O3 (Sigma 

Aldrich), NiO (Sigma Aldrich), and Co3O4 (Sigma Aldrich) were used as metal 

oxides. Specific surface area of catalysts was also obtained by using the N2

adsorption/desorption method in an ASAP 2010 instrument (Micromeritics Co.).

4.2.3. Activity measurement

All of the reaction results including plasma only reaction and plasma-catalyst 

hybrid reaction were measured at atmospheric pressure in the same α-Al2O3 reactor. 

The reactants were 20% CH4, 10% O2, balanced in Ar. The total gas flow was 

maintained at 100 ml/min. Each gas was controlled by using mass flow controllers 

(SIERRA). Effluent gases passing through the discharge region were analyzed by a 

gas chromatography (AGILENT GC 6890N) equipped with a thermal conductivity 

detector (TCD) and a flame ionization detector (TCD). The line from the latter part 

of the reactor to the gas chromatography was heated up to 120 ºC, so all products 

were vaporized. The columns inside the GC were CP-7429 capillary column for 

TCD, and DB-5 capillary column for FID. CP-7429 column was composed of two 

parallel columns (CP-Molsieve 5Å and PoraBOND Q) which allowed us to detect 



H2, O2, CO, CH4, CO2, C2H2, C2H4, C2H6, C3H6, and C3H8. By DB-5 column, 

CH3OH and HCHO were identified. Methane conversion and methanol yield were 

obtained at ambient temperature. However, the reaction temperature was varied 

from room temperature to about 100 ºC depending on the plasma condition. 

Methane conversion, and selectivity and yield of CO, CO2, and CH3OH are 

obtained in the following:

Conversion(���) =
���(��������	���)

���(����������	���)
× 100[%]																	(12)

Selectivity(CO) =
���(��������	��)

���(���������	���)
× 100[%]																				(13)

Selectivity(���) =
���(��������	���)

���(���������	���)
× 100[%]																			(14)

Selectivity(�����) =
���(��������	�����)

���(���������	���)
× 100[%]													(15)

Yield(Product) =
����������(���) × �����������(�������)

100
[%]							(16)

4.2.4. HO* analysis system

The OH radical was analyzed by HPLC (Agilent) equipped with a column of 

Shodex KC-811 maintained at 60 ºC. Phosphoric acid (5 mm) was used as a mobile 

phase at a flow rate of 1 ml/min. Variable wavelength (VW) detector was used in 

the HPLC system to confirm the quantification of water-soluble organic 

compounds such as salicylic acid, 2,5-dihydroxybenzoic acid (2,5-DHBA), 2,3-

dihydroxybenzoic acid (2,3-DHBA) at 316 nm.

In order to collect HO* radical produced during the plasma reaction, a solution 

which was made by 0.02 g salicylic acid dissolving in 5 ml anhydrous ethanol was 

dripped equably onto the surface of the catalyst. After that, the catalyst was dried at 



105 ºC. When salicylic acid reacts with OH radical, oxygenated products including 

2,3-DHBA and 2,5-DHBA are produced. Since OH radical is more reactive than 

other chemicals, the products mainly comes from OH radical [115]. When the 

sampling time was too short, the conversion could not be calculated by HPLC due 

to small amount of the reacted salicylic acid. In addition, long sampling time could 

make the salicylic acid exhausted under plasma condition [116]. Therefore, the 

sampling time was maintained to 10 min. After the reaction, the catalyst was 

dipped in distilled water (10 ml) and dissolution of the products was carried out. 

The salicylic acid conversion was calculated by the following equations:

Conversion(SA) =
���(��������	��)

���(����������	��)
× 100[%]																			(17)

Where SA represents salicylic acid.



4.3. Results and discussion

4.3.1. Direct methanol synthesis from methane under plasma only condition

Firstly, our experiment was conducted under plasma only condition in order to 

compare with the plasma-catalyst hybrid reaction. In plasma only reaction, 

methane conversion and methanol selectivity were measured in the range of plasma 

power from 6.5 kVP-P to 8.5 kVP-P at ambient temperature. Because of the plasma 

property, methane was able to activate and oxidize without the addition of any 

thermal energy. Oxygenated products except CO, CO2, and methanol were hardly 

detected. Among the products, CO was the most abundant product during the 

reaction. The plasma power calculated from V-Q Lissajous figure changed from 2.3 

W to 7.2 W (from 1.4 kJ/L to 4.3 kJ/L) depending on the input voltage which led to 

vary the reaction temperature from 61 ºC to 108 ºC. As the input voltage increased, 

methanol selectivity decreased in this period since the selectivity of more 

oxygenated products such as CO and CO2 was enhanced. However, methane 

conversion also went up due to the increase of plasma power. Consequently, the 

overall methanol yield increased from 5.1% to 8.7% while input voltage varied 

from 6.5 kVP-P to 8.5 kVP-P. It was confirmed that methanol yield steadily increased 

although methanol selectivity got lower as the input voltage went up in this 

reaction condition. Under the plasma condition, oxygen radical, methyl radical, and 

hydrogen radical can be produced. According to Wang et al. [117], the possible 

reaction pathways for the formation of methanol under plasma condition are 

proposed as shown in Scheme 4-1.



Scheme 4-1. Possible reaction pathways for the direct methanol synthesis from 

methane under plasma condition.



4.3.2. Glass bead effect on direct methanol synthesis under plasma condition

In order to improve the productivity of methanol, glass bead was loaded to the 

reactor as a packing material. Before the loading, the glass bead was etched by 5 M 

NaOH solution in order to enhance the adhesion of metal oxide. After the insertion 

of glass bead, the plasma configuration became much more stabilized as shown in 

Figure 4-3 due to the spherical shape and low dielectric constant of the glass bead.

At all plasma conditions from 6.5 kVP-P to 8.5 kVP-P at ambient temperature, the 

reaction of glass bead with plasma showed higher methanol yield than plasma only 

reaction. The methanol yield increased from 6.3% to 9.6% in the presence of the 

glass bead. However, the methanol selectivity decreased as the input voltage got 

higher. It was confirmed that methanol yield did hardly increase above 7.5 kVP-P. 

Furthermore, the increase rate, which is the division of methanol yield in the 

presence of glass bead by that of plasma only, decreased from 124.4% to 110.8%. 

The plasma power varied from 2.2 W to 7.6 W (from 1.3 kJ/L to 4.5 kJ/L) 

according to the input voltage, which was similar to plasma only reaction. 

Considering the reactivity and specific input energy, 7.5 kVP-P was selected as the 

optimum plasma condition.
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Figure 4-3. Lissajous figure of plasma only condition (top) and glass bead under 

plasma condition (bottom).



4.3.3. Metal oxide-coated glass bead for methanol synthesis with plasma

Glass bead showed synergistic effect with plasma for partial oxidation of 

methane to methanol. Therefore, the glass bead was selected as packing material. 

On the glass bead, some transition metal oxides such as MnO, Mn2O3, MnO2, 

Fe2O3, NiO, and Co3O4 were coated to enhance the activity for methanol synthesis. 

The surface area of all catalysts were below 1 m2/g. As displayed in Table 4-1, 

MnO, Mn2O3, and Fe2O3 showed the higher activity than glass bead with plasma.

The catalysts displayed similar plasma configuration and power to that of glass 

bead. Hence, it can be inferred that this synergistic effect did not come from 

plasma alteration but from catalytic reaction. On the other hand, MnO2, NiO, and 

Co3O4 demonstrated poor activity, which was even lower than plasma only 

condition. In case of MnO2, NiO, and Co3O4, the plasma configuration became 

conductive according to the Lissajous figure (Figure 4-4). Due to the increased 

conductivity, the plasma power dropped significantly and plasma was nearly 

extinguished, which gave rise to the sharp decrease of methane conversion. Among 

them, MnO2 showed high methanol selectivity though it indicated low methane 

conversion since the plasma was hardly formed. After the reaction, all the catalysts 

did not seem to undergo severe alteration.

Long term activity of the catalyst was explored in order to confirm the durability 

of the catalyst and apply for practical application. Figure 4-5 shows the methane 

conversion, methanol selectivity, and methanol yield of Mn2O3/glass bead which 

showed the highest methanol yield in the plasma-catalyst hybrid system with time-

on-stream (TOS). As shown in Figure 4-5, during the first one hour reaction, 

methane conversion increased and methanol selectivity decreased, which resulted 

in the slight increment of methanol yield. After the reaction for 10 h, the methanol 



yield was stabilized at about 12%. This led to the fact that plasma-catalyst hybrid 

system is active and stable for direct methanol synthesis from methane.

It is known that the formation of OH radical is crucial for methanol synthesis 

from methane [118, 119]. According to Guo et al. [115], OH radical can be 

adsorbed well to MnOx catalyst. Therefore, the amount of OH radical adsorbed on 

the catalyst was measured by HPLC. The analysis was conducted to the catalysts 

such as MnO, Mn2O3, and Fe2O3 which showed stable plasma configuration under 

the plasma condition. In order to estimate the amount of OH radical produced 

during the plasma reaction, a solution which was made by 0.02 g salicylic acid 

dissolving in 5 ml anhydrous ethanol was dripped equably onto the surface of the 

catalyst. After that, the catalyst was dried at 105 ºC. When salicylic acid reacts with 

OH radical on the surface of catalyst, 2,3-dihydroxybenzoic acid (2,3-DHBA), 2,5-

dihydroxybenzoic acid (2,5-DHBA), and more oxygenated products such as CO 

and CO2 are produced. Since OH radical is more reactive than other chemicals, the 

conversion of salicylic acid mainly comes from OH radical [115]. When the 

sampling time was too short, the conversion could not be calculated by HPLC due 

to small amount of the reacted salicylic acid. In addition, long sampling time could 

make the salicylic acid exhausted under plasma condition [116]. Therefore, the 

sampling time was maintained to 10 min. After the reaction, the catalyst was 

dipped in distilled water (10 ml) and dissolution of the products was carried out. As 

a result, Mn2O3 and MnO which showed high methanol yield exhibited low 

conversion of salicylic acid unlike what we expected.

The measured conversion of salicylic acid on MnO, Mn2O3, Fe2O3, and glass 

bead were 38.7%, 22.8%, 62.5%, and 65.5% respectively. Salicylic acid can be 

converted only when the OH radical reacts with salicylic acid. However, OH



radical can react with methane as well as salicylic acid to produce methanol in our 

study. Hence, it can be said that the amount of reacted salicylic acid does not have 

to be proportional to the adsorption quantity of OH radical.

The reaction of salicylic acid and OH radical can be a competitive reaction to 

methanol synthesis by methane and OH radical. Therefore, it can be inferred that 

less amount of salicylic acid is converted as the reaction selectivity of methane and 

OH radical is higher. Figure 4-6 indicates the correlation between the conversion of 

salicylic acid and the methanol yield, which leads to the result that the amount of 

converted salicylic acid is inversely proportional to the methanol yield. The OH 

radical reaction selectivity between salicylic acid and methane can be deduced 

from Table 4-2. According to Table 4-2, Mn2O3 shows the lowest ratio of salicylic 

acid conversion to methanol yield, which presents high OH radical reactivity to 

methane between salicylic acid and methane. Indeed, contrary to the Mn2O3-coated 

glass bead and MnO-coated glass bead, methanol yield decreased from 8.9% to 7.1% 

when the only glass bead with salicylic acid was loaded. This led to the fact that 

OH radical which was supposed to react with methane to generate methanol 

actually reacted with salicylic acid. From this result, it was confirmed that the 

manganese oxide could increase the reaction selectivity of methane and OH radical. 



Table 4-1. Methane conversion and products selectivity of metal oxide-coated 

glass bead under plasma condition (7.5kVP-P, 4kHz).

Samples[a]
Methane 
conversion
(%)

Selectivity (%) Methanol 
yield
(%)

CO CO2 Methanol

P 23.3 49.6 15.0 32.6 7.6
GB+P 26.6 48.3 13.9 34.9 9.3
MnO/GB+P 33.1 48.4 13.7 34.4 11.4
Mn2O3/GB+P 30.5 43.8 13.6 40.2 12.3
MnO2/GB+P 10.4 29.8 12.3 53.7 5.6
Fe2O3/GB+P 33.2 51.7 14.2 29.3 9.7
Co3O4/GB+P 13.1 34.4 24.3 31.5 4.1
NiO/GB+P 17.7 47.1 11.6 36.9 6.5
P[120][b] 41.0 41.5 19.5 19.5 8.0
Fe-HZSM-5[121][c] 31.5 - 72.1 10.8 3.4

[a] P and GB represent plasma and glass bead, respectively. [b] The specific 

input energy (SEI) is 30 kJ/L without catalyst at 50 ºC. [c] Temperature: 630 ºC, 

contact time: 2.5 s, oxygen: 15.5 vol%, Si/Fe ratio: 22, without plasma.
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Table 4-2. Salicylic acid conversion, methanol yield, and their ratio of metal oxide-

coated glass bead under plasma condition (7.5 kVP-P, 4 kHz).

Salicylic acid 
conversion[a](%)

Methanol 
yield[a](%)

���������	����	����������

��������	�����
GB+P 65.5 7.1 9.2
MnO/GB+P 38.7 10.8 3.6
Mn2O3/GB+P 22.8 11.7 2.0
Fe2O3/GB+P 62.5 8.6 7.2

[a] The salicylic acid conversion and methanol yield was measured after the 10 min 

reaction.



Chapter 5. Summary and Conclusions

In this work, plasma and non-PGM catalyst were combined to apply for methane 

complete oxidation. According to the previous literature, the hybridization of 

plasma and palladium-based catalyst was verified to be effective way to lower the 

light-off temperature of methane complete oxidation. In terms of methane 

conversion, non-PGM catalysts such as CoCr2O4 and Co1Ni1Ox catalysts did not 

show much synergistic effect. However, CO selectivity dropped and CO2

selectivity increased sharply while Co1Ni1Ox was loaded in plasma-catalyst hybrid 

system. Also, the methane oxidation ability did not affect the CO selectivity at 

hybrid condition since the CoCr2O4 which had the highest methane conversion 

showed the highest CO selectivity. At low temperature, insulating properties of 

material were more important than methane oxidation ability in the case of hybrid 

condition. Thus, catalysts mainly oxidized CO to CO2 until the light-off 

temperature of each catalyst. Among the catalysts, Co1Ni1Ox(500) presented the 

best performance under plasma-catalyst hybrid reaction. It was concluded that non-

PGM catalysts with DBD plasma could have higher methane conversion than 

catalyst only condition and much lower CO selectivity than plasma only condition.

Combined reaction system of plasma and catalyst was applied to OCM reaction 

in order to lower the reaction temperature of OCM. Under plasma only condition, 

methane started to be activated and some hydrocarbons were produced at low 

temperature. Also, as temperature went up, methane conversion and C2+

hydrocarbon selectivity increased since more reactive species were generated due 

to the increase in plasma power. SiO2 showed the best hydrocarbon yield among 

the various supports like BaTiO3, TiO2, γ-Al2O3, and SiO2. Hence, diverse metals 

were loaded on SiO2. Among various metals impregnated on SiO2, Ag/SiO2 catalyst 



presented suitable performance with DBD plasma (9.7%) at 385 °C where common 

OCM reaction using catalytic process did not take place. Also, non-OCM reaction 

was conducted to investigate the effect of oxygen on the reactivity of OCM. 

Consequently, Ag/SiO2 did not reveal much synergistic effect in the absence of 

oxygen, which meant oxygen played a key role with the catalyst.

The OCM reaction was carried out for 180 min to investigate the stability of 

plasma-catalyst hybrid system. As a result, the continuous deactivation was 

observed due to the formation of carbon deposition. Therefore, plasma and thermal 

regeneration were applied to regenerate the aged catalyst for OCM reaction. The 

plasma regeneration could recover the activity of the plasma-catalyst hybrid system 

at low temperature whereas the thermal regeneration could not. In addition, thermal 

regeneration influenced the textural property of the catalyst, which resulted in the 

decrease of the catalyst reactivity even after the regeneration process.

Plasma-catalyst hybrid system was applied to direct methanol synthesis from 

methane. Under plasma only condition, methane started to be activated to produce 

methanol below 100 ºC. By loading glass bead, plasma configuration became 

stabilized, which led to the increase of methanol yield. Some transition metal oxide 

such as MnOx, Fe2O3, Co3O4, NiO were coated on the glass bead in order to 

enhance the activity. Among the catalysts, Mn2O3, MnO showed synergistic effect 

with plasma below 100 ºC, at ambient pressure in a continuous packed bed reactor. 

The amount of OH radical which was adsorbed on the catalyst was estimated from

HPLC result. In this process, it was confirmed that the MnOx catalyst could 

augment the reaction selectivity of methane and OH radical, which resulted in the 

formation of methanol. Furthermore, the stability of the catalyst was maintained for 

10 h, presenting that the plasma-catalyst hybrid system could be an efficient 



process for direct methanol synthesis from methane.



Bibliography

[1] N. Krichene, World crude oil and natural gas: a demand and supply model, 

Energy economics 2002;24:557-576.

[2] J.H. Lunsford, The Catalytic Oxidative Coupling of Methane, Angew. Chem. 

Int. Ed. 1995;34:970-980.

[3] Z. Li, G.B. Hoflund, A review on complete oxidation of methane at low 

temperatures, Journal of Natural Gas Chemistry 2003;12:153-160.

[4] J.-q. Zhang, Y.-j. Yang, J.-s. Zhang, Q. Liu, K.-r. Tan, Non-oxidative coupling 

of methane to C2 hydrocarbons under above-atmospheric pressure using pulsed 

microwave plasma, Energy Fuels 2002;16:687-693.

[5] P. Cao, S. Adegbite, H. Zhao, E. Lester, T. Wu, Tuning dry reforming of 

methane for FT syntheses: A thermodynamic approach, Appl. Energy 2017;

[6] J.H. Park, D.W. Lee, S.W. Im, Y.H. Lee, D.J. Suh, K.W. Jun, K.Y. Lee, 

Oxidative coupling of methane using non-stoichiometric lead hydroxyapatite 

catalyst mixtures, Fuel 2012;94:433-439.

[7] F. Raouf, M. Taghizadeh, M. Yousefi, Activity enhancement of Li/MgO 

catalysts by lithium chloride as a lithium precursor for the oxidative coupling of 

methane, React. Kinet. Mech. Cat. 2013;110:373-385.

[8] L.B. Pierella, L. Wang, O.A. Anunziata, Methane direct conversion to aromatic 

hydrocarbons at low reaction temperature, React. Kinet. Catal. Lett. 1997;60:101-

106.

[9] X. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, 

Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen, 

Science 2014;344:616-619.

[10] S. Morejudo, R. Zanón, S. Escolástico, I. Yuste-Tirados, H. Malerød-Fjeld, P. 



Vestre, W. Coors, A. Martínez, T. Norby, J. Serra, Direct conversion of methane to 

aromatics in a catalytic co-ionic membrane reactor, Science 2016;353:563-566.

[11] P. Tang, Q. Zhu, Z. Wu, D. Ma, Methane activation: the past and future, 

Energy & Environmental Science 2014;7:2580-2591.

[12] T. Baldwin, R. Burch, Catalytic combustion of methane over supported 

palladium catalysts: I. Alumina supported catalysts, Applied catalysis 1990;66:337-

358.

[13] J.P. Van Hook, Methane-steam reforming, Catalysis Reviews—Science and 

Engineering 1980;21:1-51.

[14] V. Degirmenci, D. Uner, A. Yilmaz, Methane to higher hydrocarbons via 

halogenation, Catal. Today 2005;106:252-255.

[15] G. Suits, H. Salzberg, The collected works of Irving Langmuir, J. Electrochem. 

Soc. 1963;110:239C-240C.

[16] H. Conrads, M. Schmidt, Plasma generation and plasma sources, Plasma 

Sources Sci. Technol. 2000;9:441-454.

[17] T. Nozaki, K. Okazaki, Non-thermal plasma catalysis of methane: Principles, 

energy efficiency, and applications, Catal. Today 2013;211:29-38.

[18] D.H. Lee, Y.-H. Song, K.-T. Kim, J.-O. Lee, Comparative study of methane 

activation process by different plasma sources, Plasma Chem. Plasma Process. 

2013;33:647-661.

[19] E. Gomez, D.A. Rani, C.R. Cheeseman, D. Deegan, M. Wise, A.R. Boccaccini, 

Thermal plasma technology for the treatment of wastes: a critical review, J. Hazard. 

Mater. 2009;161:614-626.

[20] T. Oda, Non-thermal plasma processing for environmental protection: 

decomposition of dilute VOCs in air, J. Electrostat. 2003;57:293-311.



[21] H.H. Kim, Nonthermal plasma processing for air pollution control: a ‐

historical review, current issues, and future prospects, Plasma Process. Polym. 

2004;1:91-110.

[22] U. Kogelschatz, Dielectric-barrier discharges: their history, discharge physics, 

and industrial applications, Plasma Chem. Plasma Process. 2003;23:1-46.

[23] W.S. Kang, D.H. Lee, J.-O. Lee, M. Hur, Y.-H. Song, Combination of plasma 

with a honeycomb-structured catalyst for automobile exhaust treatment, Environ. 

Sci. Technol. 2013;47:11358-11362.

[24] R. Marques, S. Da Costa, P. Da Costa, Plasma-assisted catalytic oxidation of 

methane: On the influence of plasma energy deposition and feed composition, 

Applied Catalysis B: Environmental 2008;82:50-57.

[25] T. Nozaki, N. Muto, S. Kado, K. Okazaki, Dissociation of vibrationally 

excited methane on Ni catalyst: Part 1. Application to methane steam reforming, 

Catal. Today 2004;89:57-65.

[26] S. Jo, T. Kim, D.H. Lee, W.S. Kang, Y.-H. Song, Effect of the electric 

conductivity of a catalyst on methane activation in a dielectric barrier discharge 

reactor, Plasma Chem. Plasma Process. 2014;34:175-186.

[27] J. Amouroux, S. Cavadias, A. Doubla, Carbon Dioxide reduction by non-

equilibrium electrocatalysis plasma reactor,  IOP Conference Series: Materials 

Science and Engineering, IOP Publishing, 2011, pp. 012005.

[28] T. Kim, S. Jo, Y.-H. Song, D.H. Lee, Synergetic mechanism of methanol–

steam reforming reaction in a catalytic reactor with electric discharges, Appl. 

Energy 2014;113:1692-1699.

[29] J. Van Durme, J. Dewulf, C. Leys, H. Van Langenhove, Combining non-

thermal plasma with heterogeneous catalysis in waste gas treatment: a review, 



Applied Catalysis B: Environmental 2008;78:324-333.

[30] X.J. Wang, Q. Yang, C.G. Yao, X.X. Zhang, C.X. Sun, Dielectric Barrier 

Discharge Characteristics of Multineedle-to-Cylinder Configuration, Energies 

2011;4:2133-2150.

[31] K. Takaki, Y. Hatanaka, K. Arima, S. Mukaigawa, T. Fujiwara, Influence of 

electrode configuration on ozone synthesis and microdischarge property in 

dielectric barrier discharge reactor, Vacuum 2008;83:128-132.

[32] P. Gélin, M. Primet, Complete oxidation of methane at low temperature over 

noble metal based catalysts: a review, Applied Catalysis B: Environmental 

2002;39:1-37.

[33] O. Boucher, P. Friedlingstein, B. Collins, K.P. Shine, The indirect global 

warming potential and global temperature change potential due to methane 

oxidation, Environmental Research Letters 2009;4:044007.

[34] K.P. Shine, J.S. Fuglestvedt, K. Hailemariam, N. Stuber, Alternatives to the 

global warming potential for comparing climate impacts of emissions of 

greenhouse gases, Clim. Change 2005;68:281-302.

[35] P. Artizzu-Duart, Y. Brulle, F. Gaillard, E. Garbowski, N. Guilhaume, M. 

Primet, Catalytic combustion of methane over copper-and manganese-substituted 

barium hexaaluminates, Catal. Today 1999;54:181-190.

[36] L. Marchetti, L. Forni, Catalytic combustion of methane over perovskites, 

Applied Catalysis B: Environmental 1998;15:179-187.

[37] L. Lisi, G. Bagnasco, P. Ciambelli, S. De Rossi, P. Porta, G. Russo, M. Turco, 

Perovskite-type oxides: II. Redox properties of LaMn1−xCuxO3 and LaCo1−xCuxO3

and methane catalytic combustion, J. Solid State Chem. 1999;146:176-183.

[38] S. Nguyen, V. Szabo, D.T. On, S. Kaliaguine, Mesoporous silica supported 



LaCoO3 perovskites as catalysts for methane oxidation, Microporous Mesoporous 

Mater. 2002;54:51-61.

[39] S. Pengpanich, V. Meeyoo, T. Rirksomboon, K. Bunyakiat, Catalytic oxidation 

of methane over CeO2-ZrO2 mixed oxide solid solution catalysts prepared via urea 

hydrolysis, Applied Catalysis A: General 2002;234:221-233.

[40] V. Kharton, V. Sobyanin, V. Belyaev, G. Semin, S. Veniaminov, E. Tsipis, A. 

Yaremchenko, A. Valente, I. Marozau, J. Frade, Methane oxidation on the surface 

of mixed-conducting La0.3Sr0.7Co0.8Ga0.2O3-δ, Catal. Commun. 2004;5:311-316.

[41] L.-h. Xiao, K.-p. Sun, X.-l. Xu, X.-n. Li, Low-temperature catalytic 

combustion of methane over Pd/CeO2 prepared by deposition–precipitation method, 

Catal. Commun. 2005;6:796-801.

[42] D.O. Simone, T. Kennelly, R.J. Farrauto, Reversible poisoning of palladium 

catalysts for methane oxidation, Applied catalysis 1991;70:87-100.

[43] C. Méthivier, J. Massardier, J. Bertolini, Pd/Si3N4 catalysts: preparation, 

characterization and catalytic activity for the methane oxidation, Applied Catalysis 

A: General 1999;182:337-344.

[44] K. Sekizawa, H. Widjaja, S. Maeda, Y. Ozawa, K. Eguchi, Low temperature 

oxidation of methane over Pd catalyst supported on metal oxides, Catal. Today 

2000;59:69-74.

[45] K.-i. Muto, N. Katada, M. Niwa, Complete oxidation of methane on supported 

palladium catalyst: Support effect, Applied Catalysis A: General 1996;134:203-215.

[46] H.-H. Kim, Y. Teramoto, T. Sano, N. Negishi, A. Ogata, Effects of Si/Al ratio 

on the interaction of nonthermal plasma and Ag/HY catalysts, Applied Catalysis B: 

Environmental 2015;166:9-17.

[47] P. Bruggeman, N. Sadeghi, D. Schram, V. Linss, Gas temperature 



determination from rotational lines in non-equilibrium plasmas: a review, Plasma 

Sources Sci. Technol. 2014;23:023001.

[48] G. Petitpas, J.-D. Rollier, A. Darmon, J. Gonzalez-Aguilar, R. Metkemeijer, L. 

Fulcheri, A comparative study of non-thermal plasma assisted reforming 

technologies, Int. J. Hydrogen Energy 2007;32:2848-2867.

[49] Y. Lee, J. Chung, Y. Choi, J. Chung, M. Cho, W. Namkung, NOx removal 

characteristics in plasma plus catalyst hybrid process, Plasma Chem. Plasma 

Process. 2004;24:137-154.

[50] H. Lee, D.-H. Lee, Y.-H. Song, W.C. Choi, Y.-K. Park, D.H. Kim, Synergistic 

effect of non-thermal plasma–catalysis hybrid system on methane complete 

oxidation over Pd-based catalysts, Chem. Eng. J. 2015;259:761-770.

[51] J. Kriegseis, B. Möller, S. Grundmann, C. Tropea, Capacitance and power 

consumption quantification of dielectric barrier discharge (DBD) plasma actuators, 

J. Electrostat. 2011;69:302-312.

[52] J. Chen, X. Zhang, H. Arandiyan, Y. Peng, H. Chang, J. Li, Low temperature 

complete combustion of methane over cobalt chromium oxides catalysts, Catal. 

Today 2013;201:12-18.

[53] J. Chen, W. Shi, J. Li, Catalytic combustion of methane over cerium-doped 

cobalt chromite catalysts, Catal. Today 2011;175:216-222.

[54] S. Tanasoi, G. Mitran, N. Tanchoux, T. Cacciaguerra, F. Fajula, I. Săndulescu, 

D. Tichit, I.-C. Marcu, Transition metal-containing mixed oxides catalysts derived 

from LDH precursors for short-chain hydrocarbons oxidation, Applied Catalysis A: 

General 2011;395:78-86.

[55] Y.-F. Han, K. Ramesh, L. Chen, E. Widjaja, S. Chilukoti, F. Chen, Observation 

of the reversible phase-transformation of α-Mn2O3 nanocrystals during the catalytic 



combustion of methane by in situ Raman spectroscopy, The Journal of Physical 

Chemistry C 2007;111:2830-2833.

[56] Y. Zhang, Z. Qin, G. Wang, H. Zhu, M. Dong, S. Li, Z. Wu, Z. Li, Z. Wu, J. 

Zhang, Catalytic performance of MnOx–NiO composite oxide in lean methane 

combustion at low temperature, Applied Catalysis B: Environmental 

2013;129:172-181.

[57] H. Kim, K. Takashima, S. Katsura, A. Mizuno, Low-temperature NOx

reduction processes using combined systems of pulsed corona discharge and 

catalysts, J. Phys. D: Appl. Phys. 2001;34:604.

[58] A.M. Harling, D.J. Glover, J.C. Whitehead, K. Zhang, The role of ozone in the 

plasma-catalytic destruction of environmental pollutants, Applied Catalysis B: 

Environmental 2009;90:157-161.

[59] M. Młotek, J. Sentek, K. Krawczyk, K. Schmidt-Szałowski, The hybrid 

plasma–catalytic process for non-oxidative methane coupling to ethylene and 

ethane, Applied Catalysis A: General 2009;366:232-241.

[60] A. Ogata, K. Yamanouchi, K. Mizuno, S. Kushiyama, T. Yamamoto, 

Decomposition of benzene using alumina-hybrid and catalyst-hybrid plasma 

reactors, IEEE Transactions on Industry Applications 1999;35:1289-1295.

[61] X. Tu, J.C. Whitehead, Plasma-catalytic dry reforming of methane in an 

atmospheric dielectric barrier discharge: Understanding the synergistic effect at 

low temperature, Appl. Catal. B: Environ. 2012;125:439-448.

[62] Z. Yu, X. Yang, J.H. Lunsford, M.P. Rosynek, Oxidative coupling of methane 

over Na2WO4/CeO2 and related catalysts, J. Catal. 1995;154:163-173.

[63] B. Zohour, D. Noon, S. Senkan, Spatial Concentration and Temperature 

Profiles in Dual Packed Bed Catalytic Reactors: Oxidative Coupling of Methane, ‐ ‐



ChemCatChem 2014;6:2815-2820.

[64] K. Aoki, M. Ohmae, T. Nanba, K. Takeishi, N. Azuma, A. Ueno, H. Ohfune, H. 

Hayashi, Y. Udagawa, Direct conversion of methane into methanol over 

MoO3/SiO2 catalyst in an excess amount of water vapor, Catal. Today 1998;45:29-

33.

[65] L. Guczi, K.V. Sarma, L. Borko, Non-oxidative methane coupling over Co-

Pt/NaY bimetallic catalysts, Catal. Lett. 1996;39:43-47.

[66] V. Choudhary, V. Rane, Acidity/basicity of rare-earth oxides and their catalytic 

activity in oxidative coupling of methane to C2-hydrocarbons, J. Catal. 

1991;130:411-422.

[67] J.W. Thybaut, J.J. Sun, L. Olivier, A.C. Van Veen, C. Mirodatos, G.B. Marin, 

Catalyst design based on microkinetic models: Oxidative coupling of methane, 

Catal. Today 2011;159:29-36.

[68] N.A.S. Amin, S.E. Pheng, Influence of process variables and optimization of 

ethylene yield in oxidative coupling of methane over Li/MgO catalyst, Chem. Eng. 

J. 2006;116:187-195.

[69] S. Arndt, T. Otremba, U. Simon, M. Yildiz, H. Schubert, R. Schomäcker, Mn–

Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really 

known?, Appl. Catal. A: Gen. 2012;425:53-61.

[70] U. Zavyalova, M. Geske, R. Horn, G. Weinberg, W. Frandsen, M. Schuster, R. 

Schlogl, Morphology and Microstructure of Li/MgO Catalysts for the Oxidative 

Coupling of Methane, Chemcatchem 2011;3:949-959.

[71] V. Salehoun, A. Khodadadi, Y. Mortazavi, A. Talebizadeh, Dynamics of 

Mn/Na2WO4/SiO2 catalyst in oxidative coupling of methane, Chem. Eng. Sci. 

2008;63:4910-4916.



[72] Y. Amenomiya, V.I. Birss, M. Goledzinowski, J. Galuszka, A.R. Sanger, 

Conversion of Methane by Oxidative Coupling, Cat. Rev. - Sci. Eng. 1990;32:163-

227.

[73] B.L. Farrell, S. Linic, Oxidative coupling of methane over mixed oxide 

catalysts designed for solid oxide membrane reactors, Catal. Sci. Technol. 

2016;6:4370-4376.

[74] T.W. Elkins, B.r. Neumann, M. Bäumer, H.E. Hagelin-Weaver, Effects of Li 

Doping on MgO-Supported Sm2O3 and TbOx Catalysts in the Oxidative Coupling 

of Methane, ACS Catal. 2014;4:1972-1990.

[75] S. Sadjadi, S. Jašo, H. Godini, S. Arndt, M. Wollgarten, R. Blume, O. Görke, 

R. Schomäcker, G. Wozny, U. Simon, Feasibility study of the Mn–Na2WO4/SiO2

catalytic system for the oxidative coupling of methane in a fluidized-bed reactor, 

Catal. Sci. Technol. 2015;5:942-952.

[76] K. Oshima, K. Tanaka, T. Yabe, E. Kikuchi, Y. Sekine, Oxidative coupling of 

methane using carbon dioxide in an electric field over La–ZrO2 catalyst at low 

external temperature, Fuel 2013;107:879-881.

[77] J.S. Lee, S. Oyama, Oxidative coupling of methane to higher hydrocarbons, 

Catalysis Reviews Science and Engineering 1988;30:249-280.

[78] E.V. Kondratenko, M. Baerns, Oxidative coupling of methane, 2008.

[79] W. Cho, Y. Baek, S.-K. Moon, Y.C. Kim, Oxidative coupling of methane with 

microwave and RF plasma catalytic reaction over transitional metals loaded on 

ZSM-5, Catal. Today 2002;74:207-223.

[80] C.E. Stere, W. Adress, R. Burch, S. Chansai, A. Goguet, W.G. Graham, F. De 

Rosa, V. Palma, C. Hardacre, Ambient Temperature Hydrocarbon Selective 

Catalytic Reduction of NOx Using Atmospheric Pressure Nonthermal Plasma 



Activation of a Ag/Al2O3 Catalyst, ACS Catal. 2014;4:666-673.

[81] P.G. Rutberg, V.A. Kuznetsov, V.E. Popov, S.D. Popov, A.V. Surov, D.I. 

Subbotin, A.N. Bratsev, Conversion of methane by CO2+H2O+CH4 plasma, Appl. 

Energy 2015;148:159-168.

[82] Q.H. Trinh, Y.S. Mok, Environmental plasma-catalysis for the energy-efficient 

treatment of volatile organic compounds, Korean J. Chem. Eng. 2016;33:735-748.

[83] B. Eliasson, C.J. Liu, U. Kogelschatz, Direct conversion of methane and 

carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges 

with zeolites, Ind. Eng. Chem. Res. 2000;39:1221-1227.

[84] C.J. Liu, B.Z. Xue, B. Eliasson, F. He, Y. Li, G.H. Xu, Methane conversion to 

higher hydrocarbons in the presence of carbon dioxide using dielectric-barrier 

discharge plasmas, Plasma Chem. Plasma Process. 2001;21:301-310.

[85] X. Tu, H.J. Gallon, M.V. Twigg, P.A. Gorry, J.C. Whitehead, Dry reforming of 

methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor, J. 

Phys. D: Appl. Phys. 2011;44:274007.

[86] V. Goujard, J.-M. Tatibouët, C. Batiot-Dupeyrat, Use of a non-thermal plasma 

for the production of synthesis gas from biogas, Appl. Catal. A: Gen. 

2009;353:228-235.

[87] Y. Yang, Direct non-oxidative methane conversion by non-thermal plasma: 

Experimental study, Plasma Chem. Plasma Process. 2003;23:283-296.

[88] A. Marafee, C.J. Liu, G.H. Xu, R. Mallinson, L. Lobban, An experimental 

study on the oxidative coupling of methane in a direct current corona discharge 

reactor over Sr/La2O3 catalyst, Ind. Eng. Chem. Res. 1997;36:632-637.

[89] H.K. Jeong, S.C. Kim, C. Han, H. Lee, H.K. Song, B.K. Na, Conversion of 

methane to higher hydrocarbons in pulsed DC barrier discharge at atmospheric 



pressure, Korean J. Chem. Eng. 2001;18:196-201.

[90] F. Holzer, F.D. Kopinke, U. Roland, Influence of ferroelectric materials and 

catalysts on the performance of non-thermal plasma (NTP) for the removal of air 

pollutants, Plasma Chem. Plasma Process. 2005;25:595-611.

[91] R. Li, Q. Tang, S. Yin, T. Sato, Plasma catalysis for CO2 decomposition by 

using different dielectric materials, Fuel Process. Technol. 2006;87:617-622.

[92] E.C. Neyts, K. Ostrikov, M.K. Sunkara, A. Bogaerts, Plasma Catalysis: 

Synergistic Effects at the Nanoscale, Chem. Rev. 2015;115:13408-13446.

[93] L. Wang, Y. Yi, Y. Zhao, R. Zhang, J. Zhang, H. Guo, NH3 Decomposition for 

H2 Generation: Effects of Cheap Metals and Supports on Plasma–Catalyst Synergy, 

ACS Catal. 2015;5:4167-4174.

[94] J. Robertson, High dielectric constant oxides, Eur. Phys. J. Appl. Phys. 

2004;28:265-291.

[95] J. Robertson, High dielectric constant gate oxides for metal oxide Si 

transistors, Rep. Prog. Phys. 2005;69:327.

[96] M.M. Vijatovic, J.D. Bobic, B.D. Stojanovic, History and Challenges of 

Barium Titanate: Part II, Sci. Sinter. 2008;40:235-244.

[97] D. Mei, X. Zhu, Y.-L. He, J.D. Yan, X. Tu, Plasma-assisted conversion of CO2

in a dielectric barrier discharge reactor: understanding the effect of packing 

materials, Plasma Sources Sci. Technol. 2014;24:015011.

[98] X.L. Zhang, C.S.M. Lee, D.M.P. Mingos, D.O. Hayward, Oxidative coupling 

of methane using microwave dielectric heating, Appl. Catal. A: Gen. 

2003;249:151-164.

[99] S.L. Yao, F. Ouyang, A. Nakayama, E. Suzuki, N. Okumoto, A. Mizuno, 

Oxidative coupling and reforming of methane with carbon dioxide using a high-



frequency pulsed plasma, Energy Fuels 2000;14:910-914.

[100] J.-Q. Zhang, J.-S. Zhang, Y.-J. Yang, Q. Liu, Oxidative coupling and 

reforming of methane with carbon dioxide using a pulsed microwave plasma under 

atmospheric pressure, Energy Fuels 2003;17:54-59.

[101] X. Bao, M. Muhler, R. Schlogl, G. Ertl, Oxidative Coupling of Methane on 

Silver Catalysts, Catal. Lett. 1995;32:185-194.

[102] T.C. Rocha, A. Oestereich, D.V. Demidov, M. Havecker, S. Zafeiratos, G. 

Weinberg, V.I. Bukhtiyarov, A. Knop-Gericke, R. Schlogl, The silver-oxygen 

system in catalysis: new insights by near ambient pressure X-ray photoelectron 

spectroscopy, Phys. Chem. Chem. Phys. 2012;14:4554-4564.

[103] D.S. Su, T. Jacob, T.W. Hansen, D. Wang, R. Schlogl, B. Freitag, S. Kujawa, 

Surface chemistry of Ag particles: identification of oxide species by aberration-

corrected TEM and by DFT calculations, Angew. Chem. Int. Ed. Engl. 

2008;47:5005-5008.

[104] A.J. Nagy, G. Mestl, D. Herein, G. Weinberg, E. Kitzelmann, R. Schlögl, The 

correlation of subsurface oxygen diffusion with variations of silver morphology in 

the silver–oxygen system, J. Catal. 1999;182:417-429.

[105] A.J. Nagy, G. Mestl, R. Schlogl, The role of subsurface oxygen in the silver-

catalyzed, oxidative coupling of methane, J. Catal. 1999;188:58-68.

[106] Y. Xu, J. Greeley, M. Mavrikakis, Effect of subsurface oxygen on the 

reactivity of the Ag(111) surface, J. Am. Chem. Soc. 2005;127:12823-12827.

[107] J.H. Lunsford, Catalytic conversion of methane to more useful chemicals and 

fuels: a challenge for the 21st century, Catal. Today 2000;63:165-174.

[108] R. Palkovits, M. Antonietti, P. Kuhn, A. Thomas, F. Schüth, Solid catalysts 

for the selective low temperature oxidation of methane to methanol, Angew. ‐



Chem. Int. Ed. 2009;48:6909-6912.

[109] Y. Wang, K. Otsuka, Catalytic oxidation of methane to methanol with H2-O2

gas mixture at atmospheric pressure, J. Catal. 1995;155:256-267.

[110] X. Gang, H. Birch, Y. Zhu, H.A. Hjuler, N.J. Bjerrum, Direct oxidation of 

methane to methanol by mercuric sulfate catalyst, J. Catal. 2000;196:287-292.

[111] R. Raja, P. Ratnasamy, Direct conversion of methane to methanol, Appl. 

Catal. A: Gen. 1997;158:L7-L15.

[112] C.N. Dixon, M.A. Abraham, Conversion of methane to methanol by catalytic 

supercritical water oxidation, J. Supercrit. Fluids 1992;5:269-273.

[113] M. Muehlhofer, T. Strassner, W.A. Herrmann, New catalyst systems for the 

catalytic conversion of methane into methanol, Angew. Chem. Int. Ed. 

2002;41:1745-1747.

[114] K.-H. Wang, H.-H. Tsai, Y.-H. Hsieh, The kinetics of photocatalytic 

degradation of trichloroethylene in gas phase over TiO2 supported on glass bead, 

Appl. Catal. B: Environ. 1998;17:313-320.

[115] Y. Guo, X. Liao, J. He, W. Ou, D. Ye, Effect of manganese oxide catalyst on 

the dielectric barrier discharge decomposition of toluene, Catal. Today 

2010;153:176-183.

[116] G. Yufang, L. Xiaobin, Y. Daiqi, Detection of hydroxyl radical in plasma 

reaction on toluene removal, J. Environ. Sci. 2008;20:1429-1432.

[117] L. Wang, Y. Yi, C. Wu, H. Guo, X. Tu, One Step Reforming of CO‐ 2 and 

CH4 into High Value Liquid Chemicals and Fuels at Room Temperature by ‐

Plasma Driven Catalysis, Angew. Che‐ m. Int. Ed. 2017;56:13679-13683.

[118] C. Taylor, R. Noceti, New developments in the photocatalytic conversion of 

methane to methanol, Catal. Today 2000;55:259-267.



[119] M. Gondal, A. Hameed, Z. Yamani, A. Arfaj, Photocatalytic transformation 

of methane into methanol under UV laser irradiation over WO3, TiO2 and NiO 

catalysts, Chem. Phys. Lett. 2004;392:372-377.

[120] T. Nozaki, A. Hattori, K. Okazaki, Partial oxidation of methane using a 

microscale non-equilibrium plasma reactor, Catal. Today 2004;98:607-616.

[121] B. Michalkiewicz, Partial oxidation of methane to formaldehyde and 

methanol using molecular oxygen over Fe-ZSM-5, Appl. Catal. A: Gen. 

2004;277:147-153.



국 문 초 록

천연가스는 전세계에 널리 퍼져있는 가장 풍부한 화석연료 중

하나이다. 천연가스는 다른 화석연료들에 비해 청정한 에너지원으로

알려져 있기 때문에 에너지원으로서 주목을 받고 있다. 이러한 장점에도

불구하고, 천연가스의 주요성분인 메탄이 지구온난화에 중요한 부분을

차지하고 있기 때문에 불연소된 천연가스의 배출이 문제가 되고 있다. 

메탄은 이산화탄소에 비해 같은 양 대비 25–34배의 지구온난화 효과를

보이고, 긴 수명을 갖고 있다. 그러므로, 메탄의 완전 산화 반응은 지구

온난화 같은 환경 문제에 대한 걱정을 하지 않고 메탄을 사용하기 위해

반드시 해결해야 할 문제이다. 연료로서의 역할을 제외하고, 메탄의

사용은 대부분 간접적인 방법인. 합성 가스를 통한 액상 탄화수소나

다른 화학제품들의 생산에 국한되어 왔다. 이러한 간접적인 방법은

흡열반응과 발열반응 사이를 왔다갔다하기 때문에 높은 운영비용과 낮은

열역학적 효율이라는 단점들을 가지고 있다. 그러므로, 메탄이 석유에

대안이 될 수 있는 원료로 직접 사용이 될 수 있다면 경제적인 관점에서

굉장히 바람직할 것이다. 따라서, 다양한 촉매를 이용하여 수십년 동안

메탄으로부터 올레핀, 방향족 탄화수소, 알코올과 같은 좀 더 가치가

높은 물질들로의 직접 전환에 대해 많은 노력이 있었다. 그러나 메탄은

안정한 탄소-수소 결합 때문에 활성화되기가 쉽지 않아서 메탄 완전

산화 반응이나 메탄으로부터 고부가가치 물질 생산과 같은 촉매 반응을

시작하기 위해 필요한 높은 온도와 압력과 같은 혹독한 반응 조건이

필요하다. 메탄의 활성화는 이러한 반응들을 시작하는 데에 있어서



굉장히 중요하다. 이러한 어려움을 극복하기 위해 다양한 촉매들을

연구하고 적용하였다. 그럼에도 불구하고, 메탄의 활성화 반응은 혹독한

반응 조건이 촉매를 비활성화시킬 수 있기 때문에 수행하기 어렵다. 

메탄을 저온에서 활성화시킬 수 있는 대안은 플라즈마를 사용하는

것이다. 유전체 장벽 방전, 코로나, 아크, 스파크, 마이크로웨이브, 

글로우 방전, 펄스 방전과 같은 다양한 열 플라즈마와 저온 플라즈마가

존재한다. 저온 플라즈마에서는, 높은 에너지를 갖는 전자들이 생성되고

이러한 전자들에 의해 다른 다양한 라디칼들이 생성될 수 있다. 전자의

무게는 매우 가볍기 때문에, 저온 플라즈마에서 기체 온도는 크게

상승하지 않는다. 본 연구에서는 유전체 장벽 방전 플라즈마가 다른

저온 플라즈마들에 비해 설치하기가 쉽기 때문에 유전체 장벽 방전

플라즈마를 사용하였다.

먼저, 촉매와 플라즈마가 하나의 시스템으로 융합되는 유전체 장벽

방전 플라즈마 쿼츠 튜브 반응기에서 메탄의 완전 산화 반응을

수행하였다. 코발트 니켈 산화물이나 코발트 크롬 산화물과 같은

비귀금속 촉매를 산화 촉매로 사용하였다. 플라즈마-촉매 반응기에

가해지는 인가 전압은 플라즈마-촉매 상호작용에 미치는 플라즈마

파워의 영향을 최소화하기 위해 4 kVP-P로 고정하였다. 플라즈마만의

반응에서, 메탄은 상온에서부터 일산화탄소와 이산화탄소로 산화되기

시작하였고, 메탄 전환율은 온도가 상승함에 따라 활성 라디칼들이 더

많이 생성되면서 증가하였다. 그러나 플라즈마만의 반응에서는 200 ℃

미만의 저온에서는 이산화탄소 이외에 다량의 일산화탄소가 생성되었다. 



한편, 플라즈마-촉매 반응에서는 코발트 니켈 산화물과 같은 비귀금속

촉매 조건에서 메탄은 저온에서부터 대부분 이산화탄소로 산화되었다. 

이를 통해, 촉매의 도움으로 완전 산화 반응이 성공적으로 수행됨을 알

수 있었다. 플라즈마는 메탄을 산화시켜 일산화탄소를 생성하는 역할을

하고, 저온에서 촉매가 이 일산화탄소를 이산화탄소로 완전 산화시키는

역할을 하는 것을 알 수 있었다. 따라서, 메탄 완전 산화 반응이 낮은

일산화탄소 선택성을 유지하면서 귀금속 촉매와 유사하게 기존의

비귀금속 촉매 반응에 비해 매우 낮은 온도에서 진행할 수 있었다.

다음으로, 플라즈마-촉매 융합 시스템을 이용하여 메탄으로 C2, C3

탄화수소를 생성하는 메탄 산화이량화 반응을 진행하였다. 기존의 촉매

반응은 700 ℃ 이상의 고온을 필요로 하기 때문에 반응 온도를 낮추기

위해 유전체 장벽 방전 플라즈마를 적용하였다. 우선, 저온에서

플라즈마-촉매 융합 반응에 적합한 지지체를 찾고자 하였다. 다양한

지지체들 중, 실리카(SiO2)가 유전체 장벽 방전 플라즈마 조건에서 가장

높은 수율을 보였다. 다양한 금속들을 실리카에 담지하였고, 그 결과

Ag/SiO2 촉매가 400 ℃ 미만에서 가장 높은 10% 정도의 C2+ 탄화수소

수율을 보였다. 이 과정에서 산소가, 촉매에서 메탄이 C2+ 탄화수소로

커플링되는 반응에 중요한 역할을 한다는 것을 증명하였다. 하지만

Ag/SiO2 촉매는 플라즈마 조건에서 시간이 지남에 따라 코킹에 의해

비활성화가 진행되었다. 따라서, 메탄 산화이량화 반응 후에 재생

절차를 진행하였다. 그 결과, 부분적인 코킹 제거와 은의 소결로 인해

열 재생은 반응성을 완전히 회복시키지 못하였으나, 378 ℃에서



플라즈마 재생을 통해서 반응성을 완전히 회복할 수 있었다.

마지막으로, 플라즈마-촉매 융합 시스템에서 메탄으로부터의 메탄올

직접 생산을 수행하였다. 촉매만의 반응에서는 높은 압력과 배치

반응기를 필요로 하여, 이러한 어려움을 극복하기 위해 유전체 장벽

방전 플라즈마를 적용하였다. 전이금속 산화물 중에서, Mn2O3가 코팅된

유리 비드가 플라즈마-촉매 융합 시스템에서 약 12.3%로 가장 높은

메탄올 수율을 보였다. 반응 온도는 낮은 플라즈마 파워로 인해 100 ℃

미만을 유지하였다. 또한, 이 촉매의 반응성은 10시간 동안 선택성의

변화없이 유지되었다. 메커니즘 연구를 통해, 플라즈마로 인해 전이

금속 산화물 촉매에 생성된 OH 라디칼이 메탄올 생성을 위해 메탄에

대한 높은 선택성을 갖는다는 것을 확인하였다.

주요어: 메탄 활성화 반응, 플라즈마-촉매 융합 시스템, 유전체 장벽

방전, 저온 반응

학번: 2014-30264
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