

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Performance Enhancement of Systems

using Emerging Memory Technologies

새로운메모리기술을사용하는시스템의성능향상

BY

Dongwoo Lee

February 2018

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Performance Enhancement of Systems

using Emerging Memory Technologies

새로운메모리기술을사용하는시스템의성능향상

BY

Dongwoo Lee

February 2018

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Performance Enhancement of Systems
using Emerging Memory Technologies

새로운메모리기술을사용하는시스템의성능향상

지도교수최기영

이논문을공학박사학위논문으로제출함

2017년 12월

서울대학교대학원

전기컴퓨터공학부

이동우

이동우의공학박사학위논문을인준함

2017년 12월

위 원 장 유승주 (인)

부위원장 최기영 (인)

위 원 김장우 (인)

위 원 이재욱 (인)

위 원 김윤진 (인)

Abstract

Emerging memory technologies such as 3D-stacked memory or STT-RAM have higher

density than traditional SRAM technology. As a result, these new memory technolo-

gies have recently been integrated with processors on the same chip or in the same

package. These integrated emerging memory technologies provide more capacity to

the processors than traditional SRAMs. Therefore, in order to improve the performance

of the chip or the package, it is also important to effectively manage the memories as

well as improve the performance of the processors themselves.

This dissertation researches two approaches to improve the performance of sys-

tems in which processors and emerging memories are integrated on a single chip or

in a single package. The first part of this dissertation focuses on improving the per-

formance of a system in which 3D-stacked memory is integrated with the processor

in a package, assuming that the processor is generic and the memory access pattern

is not predefined. A DRAM cache technique is proposed, which combines the previ-

ous approaches in a synergistic way by devising a module called dirty-block tracker

to maintain dirtiness of each block in a dirty-region. The approach avoids unnecessary

tag checking for a write operation if the corresponding block in the cache is not dirty.

i

Simulation results show that the proposed technique achieves significant performance

improvement on average over the state-of-the-art DRAM cache technique.

The second part of this dissertation focuses on improving the performance of a sys-

tem in which an accelerator and STT-RAM are integrated on a single chip, assuming

that certain algorithms, called deep neural networks, are processed on this system. A

high-performance, energy-efficient accelerator is designed considering the character-

istics of the neural network. While negative inputs for ReLU are useless, it consumes

a lot of computing power to calculate them for deep neural networks. A computation

pruning technique is proposed that detects at an early stage that the result of a sum

of products will be negative by adopting an inverted two’s complement expression

for weights and a bit-serial sum of products. Therefore, it can skip a large amount

of computations for negative results and simply set the ReLU outputs to zero. More-

over, a DNN accelerator architecture is devised that can efficiently apply the proposed

technique. The evaluation shows that the accelerator using the computation pruning

through early negative detection technique significantly improves the energy efficiency

and the performance.

keywords: DRAM Cache, 3D-stacked Memory, Dirty-block Tracker, Deep Neural

Network Accelerator, Early Negative Detection, STT-RAM

student number: 2012-20827

ii

Contents

Abstract i

Contents iii

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 A DRAM Cache using 3D-stacked Memory 1

1.2 A Deep Neural Network Accelerator with STT-RAM 5

2 A DRAM Cache using 3D-stacked Memory 7

2.1 Background . 7

2.1.1 Loh-Hill DRAM Cache . 8

2.1.2 Alloy Cache . 9

2.1.3 Mostly-Clean DRAM Cache 10

2.2 Direct-mapped DRAM Cache with Self-balancing Dispatch 12

2.2.1 A Naı̈ve Approach . 13

iii

2.2.2 Dirty-Block Tracker (DiBT) 20

2.2.3 Sampling Hit-Miss Predictor 31

2.3 Evaluation Methodology . 32

2.3.1 Experimental Setup . 32

2.3.2 Workloads . 33

2.4 Results . 36

2.4.1 Performance . 36

2.4.2 Analysis . 38

2.4.3 Prediction Accuracy . 42

2.4.4 Sensitivity to Sampling Hit-miss Predictor to VUPPER 43

2.4.5 Sensitivity to Dirty-Block Table Size 45

2.4.6 Scalability . 46

2.4.7 Implementation Cost . 46

2.5 Related Work . 49

2.6 Summary . 50

3 A Deep Neural Network Accelerator with STT-RAM 52

3.1 Background . 52

3.1.1 Computations in CNNs . 52

3.1.2 Sign Distribution of Inputs to ReLU 53

3.1.3 Two’s Complement Representation 54

3.2 Early Negative Detection . 55

3.2.1 Bit-serial Sum of Products 55

3.2.2 Inverted Two’s Complement Representation 58

iv

3.2.3 Early Negative Detection 58

3.3 Accelerator . 60

3.3.1 Overall Architecture . 61

3.3.2 Data block . 62

3.3.3 Processing Unit . 62

3.3.4 Buffers . 65

3.3.5 Memory Controller . 65

3.3.6 Providing Network . 66

3.3.7 Pipelined Bit-serial Sum of Products 67

3.3.8 Global Controller . 68

3.4 Evaluation . 71

3.4.1 Methodology . 72

3.4.2 Workloads . 74

3.4.3 Normalized Runtime . 77

3.4.4 Normalized Energy Consumption 80

3.4.5 Power Consumption . 83

3.4.6 Normalized EDP and ED2P 85

3.4.7 Area . 87

3.5 Related work . 87

3.6 Summary . 89

4 Conclusion 91

Abstract (In korean) 100

v

List of Tables

2.1 System Configuration for Simulation 34

2.2 L2 Miss per 1000 Instruction (MPKI) 35

2.3 Prediction Accuracy for Different Techniques 43

2.4 Prediction Accuracy for Different VUPPER 44

2.5 Implementation Cost . 47

3.1 Configuration . 73

3.2 Layers of VGG-16 network . 75

3.3 Capacity of layers of VGG-16 network 76

3.4 Area of the ComPEND architecture 86

vi

List of Figures

2.1 DRAM cache organization in a DRAM row. (a) Set-associative cache

and (b) direct-mapped cache. 8

2.2 A dirty-region tracker used in mostly-clean cache. 11

2.3 A flow chart for a read request in a naı̈ve approach. 14

2.4 A flow chart for a write request in a naı̈ve approach. 15

2.5 Performance overhead of the dirty-region tracker in alloy caches un-

der different address mapping of the DRAM cache. The results are

normalized to those of the alloy cache with Row Interleaving (Row

Interleaving: 28 consecutive sets are stored in an on-package DRAM

row, Block Interleaving: consecutive sets are interleaved into different

on-package DRAM rows). 17

2.6 Breakdown of read operations to the DRAM cache in the naı̈ve ap-

proach. 19

2.7 The structure of FA-DiBT. 20

vii

2.8 An operation flow for a write request in the technique using FA-DiBT.

(a) write-back if the request is made to a dirty region but it is clean. (b)

write-through if the request is made to a non-dirty region. 22

2.9 An operation flow for an eviction of a victim dirty-region in a dirty-

block tracker (DiBT). 24

2.10 An example of data mapping to a direct-mapped cache. 26

2.11 The structure of NA-DiBT. 27

2.12 An operation flow of NA-DiBT for a write request to a clean block. (a)

write-back if the request is made to a dirty region but it is clean. (b)

write-through if the request is made to a non-dirty region. 29

2.13 A flow chart for a read request in NA-DiBT. 30

2.14 Speedup over the reference for the naı̈ve approach, FA-DiBT, NA-

DiBT, and NA-DiBT with a sampling hit-miss predictor (SP) (left to

right). 36

2.15 Breakdown of read operations to the DRAM cache by the cause in the

naı̈ve approach, FA-DiBT, NA-DiBT, and NA-DiBT with SP (left to

right). 39

2.16 Breakdown of read requests from L2 cache by decisions of three com-

ponents, dirty-region tracker, hit-miss predictor, and self-balancing dis-

patcher in the naı̈ve approach, FA-DiBT, NA-DiBT, and NA-DiBT

with SP (left to right). 40

viii

2.17 Breakdown of write requests from L2 cache by a decision of a dirty-

region tracker in the naı̈ve approach, the cache with FA-DiBT, the

cache with NA-DiBT, and the cache using NA-DiBT with the sam-

pling hit-miss predictor (left to right). 42

2.18 Performance sensitivity of NA-DiBTs with SP to different dirty-block

table sizes. 45

3.1 A simplified view of a convolution layer. 53

3.2 Distribution of signs for outputs from convolution or FC MAC units in

the layers of VGG-16. 54

3.3 Approaches to calculating sum of products. (a) Conventional approach.

(b) Bit-serial approach. 56

3.4 Trends of bit-serial sum of products as the computation steps proceed

(a) with two’s complement weights and (b) with inverted two’s com-

plement weights. 57

3.5 Normalized total number of steps in sum of products to calculate out-

put activation maps of convolution layers in VGG-16 with the Com-

PEND scheme over without it. 59

3.6 Overall ComPEND architecture. 60

3.7 Internal structure of a processing unit. 63

3.8 Examples of provider network connections by moving a sliding win-

dow in a 2D convolution layer. 66

3.9 A decision unit in the global controller. 69

ix

3.10 Runtimes of the accelerator with the ComPEND scheme (right bars)

normalized to that without the scheme (left bars) for VGG-16 layers. . 78

3.11 Normalized energy consumptions of the accelerator with the Com-

PEND scheme (right bars) over that without the scheme (left bars)

for VGG-16 layers. 81

3.12 Power consumptions of the accelerators with the ComPEND scheme

(right bars) and that without the scheme (left bars) for VGG-16 layers. 84

3.13 Normalized Energy-Delay Product (EDP) and Energy-Delay2 Product

(ED2P) of the accelerator with the ComPEND scheme over that of it

without the scheme for VGG-16 layers. 86

x

Chapter 1

Introduction

1.1 A DRAM Cache using 3D-stacked Memory

A 3D stacked DRAM is an emerging technology that has a higher bandwidth com-

pared to a conventional DRAM memory. Several standards of 3D stacked memory

have already been proposed in the industry, such as High Bandwidth Memory (HBM)

[1] , Wide-I/O [2], and Hybrid Memory Cube (HMC) [3]. The 3D stacked DRAM can

be integrated in a package with a processor to provide a higher memory bandwidth to

the processor. However, the area of package restricts the capacity of the memory, and

thus it has much smaller capacity than an off-package memory [4].

Many researches have been carried out to utilize the characteristics of 3D stacked

DRAM. One such approach uses 3D stacked DRAM as a cache of an off-package

memory to exploit a high bandwidth of the 3D stacked DRAM [4, 5, 6]. The main

obstacle of this approach is a large size of tags for a DRAM cache. If the size of

a DRAM cache with 64-byte blocks is 1 GB, then its tag size is 96MB, which is

1

impractical to be stored in an on-package SRAM. To solve this problem, LH cache is

proposed [4], where the tags and the data of a DRAM cache are stored in a stacked

DRAM. In this technique, the DRAM cache is organized as a set-associative cache

and the tags and the data of a set are placed in the same row of the stacked DRAM.

Because its miss penalty is huge, LH cache uses a miss map structure to reduce the

overhead of cache miss.

Qureshi and Loh address that a direct-mapped cache organization is more effi-

cient for DRAM cache than a set-associative one and propose a technique called alloy

cache [5]. Alloy cache is organized as a direct-mapped cache and it combines tag and

data (TAD) of a cache block as a single unit to read or write. The technique requires

only one read operation to retrieve TAD of a requested cache block from the stacked

DRAM, which shortens the access latency of the DRAM cache. Moreover, alloy cache

adopts an instruction-based hit-miss predictor to eliminate the latency overhead of a

miss map used in LH cache

Meanwhile, there is an approach to utilizing underused bandwidth of an off-package

memory, which is named as mostly-clean cache [6]. The technique, called self-balancing

dispatch, can dispatch a read request to either an on-package 3D stacked DRAM or

an off-package memory for clean data to balance the bandwidth utilization of both

memories. To discriminate dirty data, the technique uses a dirty-region tracker that

maintains the write-intensive address regions in page granularity and also adopts a

region-based hit-miss predictor to remove the overhead of miss map in LH cache. The

idea is effective but there is still a room for further improvement since it is based on a

set-associative cache which is shown to be less effective than a direct-mapped cache.

2

In this part, we propose a DRAM cache technique that adopts the concept of self-

balancing dispatch and that of direct-mapped cache at the same time to further improve

the performance of a system [7]. Based on an observation that directly combining the

two techniques is inefficient due to the overhead of dirty-region tracking in a direct-

mapped DARM cache, we devise a dirty-block tracker (DiBT) that maintains bit vec-

tors to indicate dirtiness of blocks in a dirty-region. It enables filtering out unnecessary

read operations for clean data on eviction of a victim from the tracker. It also enables

eviction of any dirty-region that has no dirty blocks. The DiBT can be used for both

a set-associative and a direct-mapped DRAM cache using the self-balancing dispatch

technique. To better exploit a direct-mapped cache organization, we design a DiBT

that identifies a dirty region as a group of consecutive blocks in a row or in multiple

rows of the on-package DRAM cache (near memory or NM) instead of the off-package

DRAM (far memory or FM). The former is called DiBT based on NM address (NA-

DiBT) and the latter is called DiBT based on FM address (FA-DiBT). The modification

in NA-DiBT looks subtle but results in a big difference. It removes a read operation

prior to a write operation (write request or block fill to the DRAM cache), which is

necessary in FA-DiBT to check the dirtiness of the block to be evicted even if it is

actually clean.

However, the optimization using NA-DiBT can cause a side effect on the accuracy

of a hit-miss predictor (explained in Section 3.3) used in the technique because it does

not read the DRAM cache if the block is clean when a cache miss is predicted, which

can provide a wrong feedback to the predictor. To solve this problem, we devise a

sampling hit-miss predictor that periodically issues a read operation to DRAM cache

3

when a cache miss is predicted, which effectively remedies the problem.

Following are our contributions in this work.

• We address an approach that combines self-balancing dispatch with direct-mapped

DRAM cache, which has a potential of improving the performance of a system.

We show that a naı̈ve method of directly applying the self-balancing dispatch to

a direct-mapped DRAM cache is inefficient due to the overhead of a dirty-region

tracker.

• We propose FM-DiBT that maintains dirty information of blocks in a dirty-

region. The technique can remove some unnecessary read operations of DRAM

cache for an eviction of a dirty-region entry from the tracker at an overflow.

Moreover, it can silently evict a dirty-region that has no dirty blocks. FM-DiBT

can be used for both direct-mapped and set-associative DRAM cache.

• We propose NA-DiBT that tracks a dirty-region as a group of blocks in a row

or in multiple rows of the DRAM cache rather than the off-package DRAM. It

removes unnecessary reads for dirty checking and thus saves a lot of bandwidth

of a DRAM cache. NA-DiBT can be used only for direct-mapped DRAM cache.

• We devise a sampling hit-miss predictor, which effectively remedies the problem

of biased prediction of NA-DiBT.

We evaluate our technique with 1GB DRAM cache. The architecture that im-

plements the proposed technique consists of a direct-mapped DRAM cache, self-

balancing dispatcher, and a dirty-block tracker (DiBT). FA-DiBT and NA-DiBT show

4

average performance improvement of 6.0% and 10.3%, respectively, over the state-of-

the-art direct-mapped DRAM cache technique.

1.2 A Deep Neural Network Accelerator with STT-RAM

Recently deep neural networks (DNNs) have been applied to various fields, such as im-

age classification [8], object detection [9], and speech recognition [10]. Typical DNNs

require a lot of computing power and energy, and to alleviate the problem, various ac-

celerators such as [11, 12, 13, 14, 15, 16, 17] have been developed to execute DNNs

more efficiently. However, there is another chance of optimizing DNN executions,

which has been missed by previous studies.

Rectified linear unit (ReLU) is widely used as an activation function for DNN

algorithms due to its practicality (low implementation cost and high performance). Its

output value is the same as the input value if the value is positive, but the output value

becomes zero if the input value is negative. Inputs of a ReLU are usually outputs from

a convolution unit or a fully connected (FC) MAC (multiply-accumulate) unit, whose

main operations are arithmetic sum of products. It requires a lot of computations to

perform the operations in those units but many of the outcomes are actually negative

that will be zeroed out by the ReLU.

In this part, we propose a computation pruning through early negative detection

(ComPEND) for ReLU in a deep neural network. The ComPEND scheme uses inverted

two’s complement encoding for weights and bit-serial multiplication. At an early stage

of the bit-serial multiplication, the scheme can detect that the final results of the sum

5

of products will be negative. Therefore, it can skip a large amount of unnecessary

computations for negative results and simply set the ReLU outputs to zero.

Moreover, we propose a DNN accelerator architecture that can efficiently run DNN

layers with ReLU by applying the ComPEND scheme. The proposed accelerator con-

sists of multiple processing units (PUs) connected as a pipelined tree organization.

It calculates a sum of products in bit-serial manner taking multiple clock cycles, but

renders a high throughput due to the pipelining. It fills the pipeline with different re-

quests for sum of products to maximize the throughput of the PUs and dynamically

determines next pipeline inputs according to the ComPEND scheme. If it detects that

the result of a current sum of products will be negative, then it produces zero as the

final result and skips the remaining steps for that sum of products and starts processing

another request for sum of products as a new input of pipeline. The architecture con-

tains buffers to minimize off-chip memory bandwidth and reuses data in the internal

buffers or in registers in the PUs. As a result, the proposed architecture achieves high

performance and energy efficiency.

Experimental results show that our proposed accelerator with the ComPEND scheme

improves performance by 16.67% and energy efficiency by 25.79% on average com-

pared to that without the CompEND scheme.

The remainder of this part is organized as follows. Section 2 explains the basic

concept of computation in convolution layers. Section 3 describes the details of early

negative detection scheme. Section 4 presents the architecture of the proposed accel-

erator and the details of the components. Section 5 shows evaluation results. Section 6

discusses related work and Section 7 concludes this part.

6

Chapter 2

A DRAM Cache using 3D-stacked Memory

2.1 Background

Recently, die-stacked DRAM technology has emerged as a realistic solution to the

“memory wall” problem [18]. Several industrial standards have already been announced

such as High Bandwidth Memory (HBM) [1], Hybrid Memory Cube (HMC) [3], and

Wide I/O [2]. A die-stacked DRAM consists of multiple DRAM layers and numerous

through-silicon vias (TSVs) that connect these layers. These new types of memory

can be integrated with a processor in a package of 3D or 2.5D form factor. The full

3D integration puts a die-stacked memory on top of a processor and the stacked layers

communicate directly with each other using the TSV technology. The 2.5D integra-

tion utilizes a silicon interposer technology and places a processor and a die-stacked

memory side by side in a package. This on-package memory can provide much high

bandwidth to a processor compared to the conventional off-package memory. How-

ever, its size is restricted by the area of a package, so its capacity is much smaller than

7

··· ···

···

29 Data block

29 Tags stored in 3 blocks

28 Tag + DATA (TAD)

Tag + Data (72 Byte)
64 Byte

2K Byte DRAM row 2K Byte DRAM row

(a) (b)

Figure 2.1: DRAM cache organization in a DRAM row. (a) Set-associative cache and

(b) direct-mapped cache.

that of an off-package memory. Many researchers have proposed ideas for an efficient

utilization of an on-package DRAM and one of main approaches is using it as a cache

of an off-package memory, which is software-transparent [4, 5, 6].

2.1.1 Loh-Hill DRAM Cache

The main problem of using an on-package DRAM as a cache of an off-package mem-

ory is the large size of cache tags. If the size of a DRAM cache with 64-byte blocks

is 1 GB, then its tag size is 96MB, which is impractical to be stored in an on-package

SRAM. Loh and Hill solves this problem by storing tags to an on-package DRAM with

data of the cache [4]. Loh-Hill (LH) DRAM cache is a set-associative cache where tags

and data of a set are placed on the same row of the on-package DRAM as shown in

Figure 2.1 (a). The miscellaneous information of a block such as validness, dirtiness,

and LRU is stored with its tag in the same DRAM row.

Loh-Hill DRAM cache uses an SRAM miss map structure to check whether re-

quested data exist in the cache or not, so that it can identify cache hit/miss before

accessing a DRAM cache. However, in the case of cache hit, a read operation for tags

of blocks in a set is necessary to determine the position of data in a DRAM row before

8

processing the request. In the case of cache miss, a memory read request is dispatched

to the off-package memory, and then returned data are passed to the requester and also

used to fill the cache. Before this cache block-fill, a read of the DRAM cache is re-

quired to determine a victim block and to identify whether the victim block is dirty or

not. If it is dirty, it should be written back to the off-package memory. This kind of a

read operation for a victim block is also essential for a memory write request.

2.1.2 Alloy Cache

Loh-Hill DRAM cache needs an additional read operation to a DRAM cache even in

the cache-hit case, which is inefficient. Alloy cache addresses this problem and solves

it by combining tag and data (TAD) of a cache block as a single unit to read and write

[5]. Alloy cache is organized as a direct-mapped cache as shown in Figure 2.1 (b).

It requires only one read operation to retrieve the tag and the data of a request cache

block from the stacked DRAM. On cache hit of a read request, this saves one read

operation compared to LH cache.

Alloy cache adopts an instruction-based hit-miss predictor to eliminate the latency

overhead of the miss map in LH cache. In the case of memory read request, if the

prediction is cache hit, the request is dispatched only to an on-package DRAM cache.

On the other hand, if the prediction is cache miss, the request is dispatched to both

on- and off-package memory concurrently to reduce the access latency incurred by

wrong prediction. It looks inefficient to dispatch the request to the on-package DRAM

cache on a predicted miss but actually is not. One read of the cache is required on miss

anyway for write-back of the victim from cache block-fill. In the case of memory write

9

request, alloy cache also requires one read of the on-package DRAM cache to see if

write-back of a victim block is needed, which is similar to Loh-Hill cache.

Because alloy cache is a direct-mapped cache, its cache-hit rate is lower than that

of a set-associative cache such as LH cache. However, since its hit latency is much

smaller, the overall performance of alloy cache is better than that of LH cache.

2.1.3 Mostly-Clean DRAM Cache

Although the bandwidth of an off-package memory is narrower than that of an on-

package DRAM, it is in general not fully utilized when the on-package DRAM is used

as a cache, since the cache generates traffic to the off-package memory only when

there is a cache miss. Mostly-clean DRAM cache addresses this issue of utilizing the

underused bandwidth of the off-package memory [6]. The cache, which is based on

a set-associative cache, dispatches a read request to an off-package memory (instead

of an on-package DRAM cache) if the requested data are clean and the off-package

memory bandwidth is underutilized. In addition, the cache uses a region-based hit-miss

predictor to remove the overhead of miss map in LH cache.

The self-balancing dispatch should be restricted to clean data for data consistency.

For this reason, mostly-clean DRAM cache utilizes a dirty-region tracker to track a

write-intensive dirty-region as shown in Figure 2.2. The cache consists of two parts.

One is a dirty list in a set-associative structure, which maintains dirty regions. If the

dirty list contains a tag of a page, then the page is treated as a dirty-region. The other

part is a dirty-region detector consisting of a set of counting bloom filter tables, which

is indexed by different hash functions and the address of a page. If there is a write

10

Memory

request

Set A

NRU Page Tag

Install in

DirtyList

DirtyList

Set B

NRU Page Tag

Counting Bloom

filter tables

Figure 2.2: A dirty-region tracker used in mostly-clean cache.

operation, the indexed counters increase their values, and if all the counters exceed a

predefined threshold, then the detector classifies the page as a write-intensive region.

If the classified write-intensive page does not exist in the dirty list, a victim page is

selected and replaced with the new dirty page and the values of the counters are halved.

The blocks in the victim page are read out from the DRAM cache and written back to

the off-package memory if they are in the cache and are dirty.

Overall, mostly-clean cache works as follows. In the case of a memory read re-

quest, the mostly-clean cache first checks the dirty-region tracker to see if the requested

data are included in a dirty region. If the data are in a dirty-region, then the request is

dispatched to the on-package DRAM cache. If it is identified as clean data, a region-

based predictor predicts a hit/miss of the request and dispatches the request to an off-

11

package memory if the prediction is cache miss. The data from the off-package DRAM

is used to fill the DRAM cache. If it predicts cache hit, the balancing dispatch scheme

determines where to dispatch the memory request, on-package DRAM or off-package

memory, by considering current bandwidth utilization of both memories.

In the case of a memory write request, the mostly-clean cache dispatches the write

request only to the DRAM cache if the requested data exist in a dirty region (write-

back cache) and dispatches the request to both memories if the requested data are not

in a dirty region (write-through cache). Before processing the write to the cache, one

read of the on-package DRAM cache is required to identify hit or miss and, in the

case of miss, to identify the dirtiness of the victim block. If it is miss and the victim

is dirty, then the block should be written back to the off-package memory. Note that

the dirtiness information is stored in the DRAM cache with tags in the mostly-clean

cache.

2.2 Direct-mapped DRAM Cache with Self-balancing Dis-

patch

The previous approaches have strengths and weaknesses. Alloy cache shows that a

direct-mapped organization is more suitable to a DRAM cache whose tags are stored

in the DRAM. However, it has underutilized bandwidth of the off-package memory.

On the other hand, mostly-clean DRAM cache better exploits the bandwidth of the

off-package memory but it is based on a set-associative DRAM cache, which is inef-

ficient compared to a direct-mapped cache. In this part, we devise new DRAM cache

12

techniques that implement the self-balancing dispatch technique on a direct-mapped

DRAM cache to improve the performance of a system. First, we introduce a naı̈ve

approach that directly applies the self-balancing dispatch scheme to a direct-mapped

cache and show the problems of this approach.

2.2.1 A Naı̈ve Approach

A naı̈ve approach to combining the previous two techniques is directly adopting the

self-balancing dispatch technique used in a mostly-clean cache to an alloy cache. It

is based on a direct-mapped alloy DRAM cache, and thus the basic unit to read and

write is an alloy of tag and data (TAD) of a block. Blocks are placed in the DRAM

cache such that the blocks in a row have consecutive cache indices to improve the row

buffer hit rate. It also uses the instruction-based hit-miss predictor (i.e., MAP-I [5])

used in the baseline alloy cache. A dirty-region tracker used in a mostly-clean cache is

attached to the baseline without a modification

The operation of the naı̈ve cache is similar to that of a mostly clean cache. Figure

2.3 shows a flow chart for a read request in the naı̈ve approach. The shaded part comes

from an alloy cache and the other part comes from a mostly-clean cache. In the case of

a read request, the naı̈ve cache first searches the dirty-region tracker to see if the request

is in a dirty region. If it is, the naı̈ve cache dispatches the request to an on-package

DRAM cache like a mostly-clean cache. If it is in a clean region, the instruction-based

hit-miss predictor used in an alloy cache makes a prediction. If the prediction is cache

miss, the cache dispatches the request to both an on-package DRAM cache and an

off-package memory like an alloy cache, which reduces latency when the prediction is

13

Dirty Region?

Predicted hit?

On-package DRAM

yes

no

E (DRAM$)
< E (DRAM)

yes

no

On-package DRAM

& Off-package DRAM

yes

Start

no

Off-package DRAM
On-package DRAM

Figure 2.3: A flow chart for a read request in a naı̈ve approach.

14

Dirty Region?

yes

On-package DRAM

no

On-package DRAM

& Off-package DRAM

New Dirty Region?

yes

Start

Evict Victim Region

On-package DRAM

Figure 2.4: A flow chart for a write request in a naı̈ve approach.

wrong. The data from the off-package DRAM are used to fill the DRAM cache. If the

prediction is cache hit, then the self-balancing dispatch technique probes the number

of requests in bank queues in the on-/off-package memories and estimates the latency

for the request to be processed. If the estimated latency of the DRAM cache is shorter

than that of the off-package memory, the approach sends the request to the cache.

Otherwise, it sends the request to the off-package memory. This function of balancing

dispatch is exactly the same as the original mostly-clean cache.

Processing a write request in the naı̈ve approach is also similar to the mostly-clean

cache. Figure 2.4 shows a flow chart for a write request in the naı̈ve approach. The

naı̈ve cache uses the write-back policy for a request to a dirty-region and the write-

through policy for a request to a clean-region. Before processing a write to the cache,

15

one read of the on-package DRAM cache is always required to check for hit/miss and

dirtiness of the victim block in case of miss.

Problems of the Naı̈ve Approach

The dirty-region tracker proposed in the mostly-clean cache maintains a dirty-region

as a page granularity. Therefore, in the case of a dirty-region eviction, the tracker

should write back all dirty blocks that are included in the evicted dirty-region from the

DRAM cache to the off-package memory. To check for the dirtiness of these blocks,

the tracker should read the dirty bits of all cache blocks in the dirty-region incurring a

lot of overhead. For example, assuming a 4KB page with block size of 64B, checking

for dirtiness requires 64 reads for one eviction of a dirty-region.

Such an overhead can be mitigated in a set-associative DRAM cache such as

mostly-clean cache. This is because the blocks in a page are placed in different cache

sets and these sets are interleaved in multiple DRAM rows in different channels, ranks,

and banks in a set-associative DRAM cache, and as a result, the reads for a dirty page

eviction are distributed over multiple DRAM banks [6]. On the other hand, the sit-

uation is different in a direct-mapped DRAM cache in row interleaving, where con-

secutive cache blocks are placed in a same DRAM row. As a result, the reads for a

dirty-region eviction are concentrated to a few DRAM banks, and thus, they interfere

with demand requests to these banks, resulting in a performance degradation of the

system, even though these reads mostly hit in the row buffer.

In order to provide a quantitative evidence to our argument, Figure 2.5 shows the

average performance overhead of the dirty-region tracker in alloy caches under dif-

16

-6.1%

-4.9%

0.5

0.6

0.7

0.8

0.9

1

1.1

Row Interleaving Block Interleaving

S
p

ee
d

u
p

Alloy with Dirty-Region Tracker Alloy

Figure 2.5: Performance overhead of the dirty-region tracker in alloy caches under dif-

ferent address mapping of the DRAM cache. The results are normalized to those of the

alloy cache with Row Interleaving (Row Interleaving: 28 consecutive sets are stored in

an on-package DRAM row, Block Interleaving: consecutive sets are interleaved into

different on-package DRAM rows).

17

ferent address mapping of the DRAM cache over 11 benchmarks (refer to Section

4.2). The difference between ‘Alloy’ and ‘Alloy with Dirty-Region Tracker’ in each

bar (i.e., -6.1% and -4.9%) indicates the performance overhead of the dirty-region

tracker.1 In this experiment, ‘Row Interleaving’ maps 28 consecutive DRAM cache

sets to a single on-package DRAM row (which represents the original alloy cache),

while ‘Block Interleaving’ interleaves consecutive DRAM cache sets into different on-

package DRAM rows in different channels, ranks, or banks (which mimics the address

mapping of set-associative DRAM caches).

From the results, we can draw two conclusions. First, row interleaving performs

much better than block interleaving in the alloy cache. This is expected because row

interleaving optimizes the row buffer locality of sequential access. Second, the per-

formance overhead of introducing the dirty-region tracker is actually higher in row

interleaving than in block interleaving (i.e., 6.1% in row interleaving vs. 4.9% in block

interleaving). This is because of concentrated read traffic caused by dirty-region evic-

tions, as explained previously. This motivates the need for a new mechanism that tracks

dirty pages in direct-mapped DRAM caches.

Figure 2.6 shows a breakdown of read operations to the DRAM cache in the naı̈ve

approach. There are four types of read operations sent to the DRAM cache:

• Type 1: read request from a processor (i.e., DRAM read caused by a cache miss

in an on-chip cache).

• Type 2: read operation prior to a write request for hit/miss/dirtiness check.

1Note that, to show a pure overhead of the dirty-region tracker, we do not apply self-balancing dispatch

in these evaluations.

18

0%

20%

40%

60%

80%

100%

Type 1 Type 2 Type 3 Type 4

Figure 2.6: Breakdown of read operations to the DRAM cache in the naı̈ve approach.

• Type 3: read for a dirty-region eviction when the block is actually dirty.

• Type 4: read for a dirty-region eviction when the block is miss or clean.

The last case (Type 4) is redundant and consumes the bandwidth meaninglessly.

Some applications like GemsFDTD and omnetpp in Figure 2.6 have a relatively large

portion of this type of read. Such read operations can be avoided if the dirtiness of a

block in a DRAM cache can be identified without reading the tag of the block. Other

types of read also have a chance to be avoided. For example, in the case of Type 1, if

the read request is predicted as cache miss, the request is dispatched to the off-package

memory. The read request is also sent to the on-package DRAM cache to see if it is

really a miss. If it is, then the victim block is written back to the off-package memory

if it is dirty. Thus the read is redundant if the block is clean. In the case of Type 2, the

read operation is also redundant if the block existing in the cache is clean.

19

Memory

request Install in

Dirty Table

Dirty Table

Set A

NRU Page Tag

···
···
···
···

Dirty bits for blocks

Counting Bloom

filter tables

Set B

NRU Page Tag

···
···
···
···

Dirty bits for blocks

Figure 2.7: The structure of FA-DiBT.

2.2.2 Dirty-Block Tracker (DiBT)

This section explains solutions to the problems explained in the previous subsection.

First, we present a dirty-block tracker (DiBT) based on far-memory address, called FA-

DiBT, to relieve the overhead of the dirty-region tracker used in the naı̈ve approach.

Then we present an improved version of DiBT based on near-memory address, called

NA-DiBT, to better exploit the direct-mapped organization of the DRAM cache, which

eliminates redundant reads of the DRAM cache. NA-DiBT has a biased-miss predic-

tion problem, and as a solution, we present a sampling hit-miss predictor.

Dirty-Block Tracker based on Far-Memory Address (FA-DiBT)

A dirty-region tracker proposed in mostly-clean cache maintains a dirty region as a

page granularity and if there is a new write-intensive dirty region, it may evict a victim

20

dirty page. The eviction of a victim region requires reads of a cache as many as the

number of blocks in the page to be evicted. To reduce the number of read operations,

we propose a dirty-block tracker (DiBT), which detects a dirty region as a page gran-

ularity but it additionally maintains dirtiness of each block in the page. Therefore, the

approach using DiBT does not need to maintain dirty bits inside the DRAM cache. The

structure of DiBT is shown in Figure 2.7. The cache consists of two parts: dirty-region

detector and dirty-block table. The dirty-region detector consists of a set of counting

bloom filter tables, which are indexed by different hash functions of a page address.

The dirty-block table, having a structure similar to a set-associative cache, maintains

dirty-regions as well as the dirtiness of the blocks in those regions. Each dirty-region

has a set of blocks in a consecutive address space in the off-package memory and that

is why the proposed DiBT is called DiBT based on far-memory address (FA-DiBT).

The baseline is similar to the dirty-region tracker used in a mostly-clean cache. The

difference is in the rows of dirty bits attached next to page tags in the dirty-block table.

The dirty bits represent dirtiness of each block in the dirty page. The size of a row is

the same as the number of blocks in a page.

In the naı̈ve approach, the dirtiness of a region can be identified with the dirty-

region tracker, but the dirtiness of a cache block in the region can be identified only by

the dirty bit stored in the DRAM cache. However, in the FA-DiBT, the dirtiness of a

cache block can be identified by looking up the dirty-block table at the bit position of

the block.

Figure 2.8 shows the operation of FA-DiBT for a write request. After receiving

a write request 1©, the dirty-block tracker searches the dirty-block table to see if the

21

Write (Req)

Memory request

Install in

Dirty Table

Dirty Table

Set A

NRU Page Tag

···

···

···

···

Dirty bits for blocks

Counting Bloom filter tables

Set B

NRU Page Tag

···

···

···

···

Dirty bits for blocks

On-package

DRAM Cache
Off-package DRAM

Write Req Dirty Region? (Req)

Write back

(Victim)

Read Tag

Dirty?

(Victim)

Dirty region but

clean bit

(a) Write-back

Hit or miss

miss

dirty

Memory request

Install in

Dirty Table

Dirty Table

Set A

NRU Page Tag

···

···

···

···

Dirty bits for blocks

Counting Bloom filter tables

Set B

NRU Page Tag

···

···

···

···

Dirty bits for blocks

On-package

DRAM Cache
Off-package DRAM

Write Req Dirty Region? (Req) No dirty region

-2 Write (Req)

(b) Write-through

-1 Write-back (req)

as shown in (a)

Figure 2.8: An operation flow for a write request in the technique using FA-DiBT. (a)

write-back if the request is made to a dirty region but it is clean. (b) write-through if

the request is made to a non-dirty region.

22

request is to a dirty-region and if the block is marked as dirty in the dirty-block tracker

2©.

If it is to a dirty-region (i.e., the page address is in the table) and the target block

is marked as dirty in the dirty-block tracker, then the tracker simply sends the request

directly to the on-package memory because the request is guaranteed to hit in the

cache.

On the other hand, if the request is to a dirty-region but the target block is not

dirty, then the tracker takes the write-back policy as shown in Figure 2.8 (a). It first

reads the tag of the block in the cache to check for hit or miss 3©. In case of hit, the

tracker writes the block and sets the dirty bit 4©. In case of miss (the existing block is a

victim), the tag is used to look up the dirty-block table to see if the victim is dirty (it is

in the dirty-region and the dirty bit is set) 5©.2 If it is dirty, the tracker writes the victim

block to the off-package memory 6© and then writes the new block into the cache 4©.

Otherwise (the victim is clean), it just writes the new block into the cache.

If the request is not to a dirty-region, the technique takes the write-through policy

by sending the request to both memories 3©-1, 3©-2 as shown in Figure 2.8 (b). The

write request sent to the on-package DRAM cache 3©-1 go through same process of

write-back policy as shown in Figure 2.8 (a).

If the region of a request is not listed in the tracker but is identified as a new write

intensive region, then the tracker finds a victim region and replaces it with the new one.

2Even though the tag is already read from the DRAM cache, we still have to look up the dirty-block

table because the dirtiness information of DRAM cache blocks is stored only in the dirty-block table and

DRAM cache tags do not contain such information (see the beginning of Section 3.2.1).

23

Memory request

Install in

Dirty Table

Dirty Table

Set A

NRU Page Tag

···

···

···

···

Dirty bits for blocks

Counting Bloom filter tables

Set B

NRU Page Tag

···

···

···

···

Dirty bits for blocks

On-package

DRAM Cache
Off-package DRAM

New Dirty

Region
Find Victim

Read Dirty Blocks Write Dirty Blocks

Figure 2.9: An operation flow for an eviction of a victim dirty-region in a dirty-block

tracker (DiBT).

Figure 2.9 shows how a victim region is evicted. Once a region is newly identified as

write-intensive by the counting bloom filter tables 1©, the tracker finds a victim among

the dirty regions in the dirty-block table 2©, clear all blocks in the victim, and replace it

with the new write-intensive region. To clear the victim, read operations of the DRAM

cache are necessary to evict real dirty blocks in the DRAM cache 3©. Because the dirty-

block tracker maintains dirtiness of the blocks in the victim, it is possible to send a read

operation only to real dirty blocks in the cache, which eliminates unnecessary reads of

clean blocks. Note that we do not need to access the DRAM cache just for modifying

a dirty bit because the dirty information is maintained only in the dirty-block tracker.

The technique of FA-DiBT allows a silent eviction of an empty dirty region, which

improves the efficiency in maintaining the dirty-block table in the tracker. For example,

24

if there is cache miss during a read operation, a victim block is written back to an off-

package memory if it is dirty, resulting in a decrease of dirty blocks in a region. Such

an eviction of dirty blocks from a dirty region can make the region empty of dirty

blocks. In that case, the dirty region can be evicted silently from the dirty-block table.

It makes an empty space in the table, making it easy to add a new dirty region.

Dirty-Block Tracker based on Near-Memory Address (NA-DiBT)

In this section, we present another dirty-block tracker called dirty-block tracker based

on near-memory address (NA-DiBT), where each dirty-region consists of a set of con-

secutive blocks in the on-package memory (DRAM cache). It still inherits features of

DiBT, but more efficiently utilizes the direct-mapped cache organization.

The dirty-block tracker presented in the previous subsection tracks a dirty region

as a page granularity based on the assumption that write operations are concentrated

to a consecutive address space or a page (dirty region). A direct-mapped cache can

track such a dirty region as a group of consecutive cache blocks (block group) placed

closely in a few DRAM cache rows because it caches data in a page to consecutive

blocks.3 Thus, a dirty region can also be well represented by a block group in the

on-package DRAM cache, instead of a consecutive address space (page) in the off-

package memory.

Figure 2.10 shows an example of data mapping to a direct-mapped cache. For the

purpose of explanation, let’s assume that decimal address is used and the size of a page

3This is not true for set associative cache, where neighboring blocks in a set are in general from

different pages.

25

Page 11

Cache Memory

Block Group 1

Page 21

Blocks

10

A1’11

12

B9’19

Num Data

110

A1111

112

A9119

Addr

210

B1211

212

B9219

Ex)
Size of a page : 10
Size of a block group: 10

0

1

0

1

Dirty

Figure 2.10: An example of data mapping to a direct-mapped cache.

26

Memory

request

Install in

Dirty Table

Dirty Table

Set A

NRU BlockGroupTag

···
···
···
···

Counting Bloom

filter tables

Indexing by

BlockGroup address

Set B

NRU BlockGroupTag

···
···
···
···

Dirty bits for NM blocks

Dirty bits for NM blocks

Figure 2.11: The structure of NA-DiBT.

is ten. A block group can have an arbitrary size, although it is set to ten in our example.

Data blocks of address 111 and 219 in the off-package DRAM are cached to location

11 and 19 in the DRAM cache, but their values are modified in the cache. In the case

of FA-DiBT, if the tracker detects page 11 as a dirty region, it stores page number 11

as a page tag and sets only the dirty bit corresponding to the data block of address 111.

On the other hand, NA-DiBT detects a dirty region as a block group, and thus it detects

block group 1 as a dirty region. In this case, the tracker sets dirty bits corresponding to

cache location 11 and 19.

Figure 2.11 shows the structure of NA-DiBT. The changes from FA-DiBT are as

follows. First, the counting Bloom filter tables for detecting a write-intensive region

are indexed by a block group address instead of a page address. Second, the dirty-

block table in the tracker uses the address of a block group for tag checking and stores

dirtiness of blocks in a block group instead of a page. These modifications are subtle

27

but enable the technique to remove unnecessary read operations for dirty checking

prior to write operations.

Figure 2.12 shows an operation flow of NA-DiBT for a write request to a clean

block. If there is a write request 1©, the tracker search the dirty-block table to see if it

is to a dirty-region 2©. It takes write-back for a request to a dirty-region and a clean

block as shown in Figure 2.12 (a) and write-through for a request to a clean region as

shown in Figure 2.12 (b), which is the same as FA-DiBT. However, unlike FA-DiBT,

which always requires a read operation prior to a write request (the read operation is

to check the tag to see if it is hit or miss; if it is miss, the tag is used as an index to the

dirty-block table for checking dirtiness of the block existing in the cache), NA-DiBT

can eliminate the read operation if the region or block is clean. This is possible since

it can identify dirtiness of a block by looking up the dirty-block table with the block

address. It does not recognize whether it is cache hit or not, but it does not matter since

a clean block can be overwritten without writing it back to the off-package memory

regardless of hit or miss.

A block-fill operation in a cache read miss is similar to a write request. In FA-

DiBT, a read of the cache prior to the block fill is required to check dirtiness of the

existing block in the cache. For example, FA-DiBT issues parallel reads to both on-

and off-package memory if the prediction of a read request is cache miss, and the read

to an on-package DRAM is used for dirty checking of the existing block in the cache.

However, NA-DiBT does not issue a read to the cache when the prediction is cache

read miss as shown in Figure 2.13. Instead, it checks dirtiness of a block by looking up

the dirty-block table. If it is found to be clean, the data retrieved from an off-package

28

Memory request Install in

Dirty Table

Dirty Table

Set A

NRU Block Group Tag

···

···

···

···

Dirty bits for NM blocks

Counting Bloom filter tables

Set B

NRU Block Group Tag

···

···

···

···

Dirty bits for NM blocks

Write (Req)

On-package

DRAM Cache
Off-package DRAM

Dirty Region?

Dirty block? (Req)
Write Req

(a) Write-back

Dirty region but

clean bit

Memory request Install in

Dirty Table

Dirty Table

Set A

NRU Block Group Tag

···

···

···

···

Dirty bits for NM blocks

Counting Bloom filter tables

Set B

NRU Block Group Tag

···

···

···

···

Dirty bits for NM blocks

-1 Write (Req)

On-package

DRAM Cache
Off-package DRAM

Dirty Region?

Dirty block? (Req)

-2 Write (Req)

Write Req

(a) Write-through

No dirty region

Figure 2.12: An operation flow of NA-DiBT for a write request to a clean block. (a)

write-back if the request is made to a dirty region but it is clean. (b) write-through if

the request is made to a non-dirty region.

29

Dirty NM Block?

Predicted hit?

On-package DRAM

yes

no

E (DRAM$)
< E (DRAM)

yes

no

Off-package DRAM

yes

Start

no

Off-package DRAM
On-package DRAM

Figure 2.13: A flow chart for a read request in NA-DiBT.

30

memory can be used to fill the on-package DRAM cache safely. This optimization can

reduce the bandwidth usage of the on-package DRAM cache as much as the number

of predicted cache misses when compared to FA-DiBT.

2.2.3 Sampling Hit-Miss Predictor

The optimization using NA-DiBT can have an undesirable effect on the accuracy of

the hit-miss predictor when the predictor predicts a cache miss. Most of the previously

proposed hit-miss predictors are based on a feedback mechanism; there is a positive

feedback for a correct prediction and a negative feedback for a wrong prediction. The

correctness of the prediction is checked when the cache is actually read. FA-DiBT has

no problem in implementing such a predictor because it issues parallel reads to both

on- and off-package DRAM on a predicted cache miss. However, NA-DiBT issues

a read operation only to the off-package memory on a predicted miss case (i.e., the

cache is not read and there is no chance to correct wrong miss predictions), resulting

in a biased prediction. To solve this problem, we devise a sampling hit-miss predictor

that periodically issues a cache read when the prediction is cache miss.

The sampling hit-miss predictor has the same hardware structure as the MAP-

I predictor [6] used in the naı̈ve approach. It consists of multiple bounded counter

tables, one table for each processor core. The table is indexed by the address of each

instruction that causes a memory request. In each indexed entry of the table, a bounded

counter is used for a hit-miss prediction.

The key difference between MAP-I and our SP is on its counter update mechanism.

Given a request, if the value of a counter is less than a predefined threshold value VTH ,

31

then the predictor predicts cache hit and the request is sent to the cache. If it is a real

cache hit, the counter decreases its value, and if there is a cache miss, the counter

increases its value (in this mode, the counter is used for hit-miss prediction).

On the other hand, if the value of a counter is greater than or equal to VTH , then

the predictor predicts cache miss. In this case, the request is sent to the off-package

memory and the counter increases its value (in this mode, the counter is used to im-

plement the sampling period). If the value of the counter hits the preset upper bound

VUPPER, then the predictor issues a read to the on-package DRAM cache to check

the correctness of the prediction. If it is actually cache hit, then the counter sets its

value to VTH - 1, so that the next prediction for the same index can be cache hit. If it

is indeed a cache miss, then the counter sets its value to VTH , so that the predictor can

continuously predict cache miss for the same index. The proposed hit-miss predictor

effectively remedies the biased prediction.

2.3 Evaluation Methodology

2.3.1 Experimental Setup

We evaluate the performance of the proposed technique using McSimA+ simulator

[19]. The details of the architectural configuration are summarized in Table 2.1. The

system has a 3GHz out-of-order 8-core processor, private 32KB 4-way L1 instruction

and data caches per core, and a shared 8MB 16-way L2 cache. The timing parameters

of caches are calculated by using CACTI 6.5 [20]. The cache block size of all caches,

including the DRAM cache, is 64 bytes. A 3D-stacked 1GB DRAM is integrated with

32

the processor in a package. The DRAM is used as a cache of a 16GB off-package

DRAM. The timing parameters of the on- and off-package DRAMs are adopted from

the work in [21], where a modified version of CACTI-3DD [22] is used. The 16GB

off-package DRAM consists of two channels, two ranks per channel, and eight banks

per rank. Two memory controllers and an 800MHz 64-bit wide bus are used for the

off-package DRAM. The 1GB on-package DRAM consists of four channels, one rank

per channel, and eight banks per rank. Four memory controllers and a 1.6GHz 128-bit

wide bus are used for the on-package DRAM. Each on/off-package memory controller

has a 32-entry request queue. The memory controllers use parallelism-aware batch

scheduling (PAR-BS) [23] as a scheduling algorithm and prioritize demand requests

over the reads for dirty-region evictions within each PAR-BS batch. The on-package

DRAM has 2x more memory controllers and a 2x faster, 2x wider bus compared to the

off-package DRAM, so that it can provide 8x larger bandwidth.

2.3.2 Workloads

We use SPEC CPU 2006 benchmarks with reference input for the evaluation [24].

We filter out benchmarks that have low access to memory by considering L2 MPKI

and use 11 benchmarks as shown in Table 2.2. We find a region of interest for each

benchmark by using a SimPoint [25] and get a trace of 400 million instructions of each

benchmark. We evaluate our technique by running eight copies of each benchmark on

an 8-core processor in rate mode. Thus, the total number of instructions used is 3.2

billion, which is large enough to evaluate unified DRAM cache without a separate

warm-up process.

33

Table 2.1: System Configuration for Simulation

Processor

Core Out-of-order, 8 cores, 3GHz, 4-issue, 256 ROB

L1 I/D caches 4-way, 32KB I/D cache per core, 2-cycle

L2 cache 16-way, 8MB shared cache, 4-bank, 20-cycle

Off-package DRAM (16GB)

Bus frequency 800MHz (DDR 1.6GHz)

Memory controller (MC) 2 MCs, 32-entry request queue per MC

Channel, rank and bank 1 channel per MC, 2 ranks per channel,

8 banks per rank

Row buffer size 8KB

Bus width 64 bits per channel

tCAS-tRCD-tRP-tRAS-tFAW 14ns-14ns-14ns-35ns-30ns [21]

Memory scheduling PAR-BS [23]

On-package DRAM (1GB)

Bus frequency 1.6GHz (DDR 3.2GHz)

Memory controller (MC) 4 MCs, 32-entry request queue per MC

Channel, rank and bank 1 channel per MC, 1 rank per channel,

8 banks per rank

Row buffer size 2KB

Bus width 128 bits per channel

tCAS-tRCD-tRP-tRAS-tFAW 14ns-14ns-14ns-35ns-30ns [21]

Memory scheduling PAR-BS [23]

34

Table 2.2: L2 Miss per 1000 Instruction (MPKI)

Benchmark L2 MPKI

mcf 59.61

soplex 36.28

libquantum 33.23

lbm 32.22

GemsFDTD 28.83

leslie3d 27.45

bwaves 22.86

omnetpp 20.82

milc 20.11

sphinx3 11.90

cactusADM 8.47

35

0.8

0.9

1

1.1

1.2

1.3

1.4
S

p
ee

d
u

p

Naïve with FA-DiBT with NA-DiBT with NA-DiBT+SP

Figure 2.14: Speedup over the reference for the naı̈ve approach, FA-DiBT, NA-DiBT,

and NA-DiBT with a sampling hit-miss predictor (SP) (left to right).

2.4 Results

We evaluate four techniques: the naı̈ve approach that directly combines alloy cache

and mostly-clean cache, FA-DiBT, NA-DiBT, NA-DiBT with a sampling hit-miss pre-

dictor (SP). We set alloy cache as a reference technique [5] and use an instruction per

cycle (IPC) as a performance metric for the evaluation.

2.4.1 Performance

Figure 2.14 shows IPC values normalized to that of alloy cache. The naı̈ve approach,

FA-DiBT, NA-DiBT, and NA-DiBT with SP respectively show 2.4%, 6.0%, 7.2% and,

10.3% performance improvement on average over the reference technique. In sum-

mary, each legend item represents the following optimizations:

• Naı̈ve represents the alloy cache with self-balancing dispatch. The performance

36

difference of “Naı̈ve” over the baseline shows the impact of using self-balancing

dispatch with the alloy cache.

• with FA-DiBT represents “Naı̈ve” with FA-DiBT. The performance improve-

ment of “with FA-DiBT” over “Naı̈ve” shows the benefit from eliminating un-

necessary read operations on dirty-region evictions by adding per-block dirty

bits for each entry.

• with NA-DiBT represents “Naı̈ve” with NA-DiBT. Since NA-DiBT provides

most of the benefits of FA-DiBT, comparing “with NA-DiBT” against “with

FA-DiBT” shows the performance improvement achieved by removing a read

operation prior to a write operation (which was necessary in “with FA-DiBT” to

see if the victim cache block is dirty).

• with NA-DiBT+SP represents “with NA-DiBT” combined with a sampling hit-

miss predictor. This intuitively represents the performance benefit of using a

sampling hit-miss predictor with NA-DiBT.

In the case of the naı̈ve approach, some benchmarks such as sphnix3 and leslie3d

show a significant performance improvement over the reference technique due to the

self-balancing dispatch technique but some benchmarks such as GemsFDTD and lbm

show a performance degradation over the reference technique. As a result, the overall

performance improvement of the naı̈ve approach over the reference technique is not

that significant. In the case of FA-DiBT, some benchmarks such as omnetpp and mcf

show a drastic performance improvement and the other benchmarks show a modest

performance improvement over the naı̈ve approach. When comparing NA-DiBT with

37

FA-DiBT, some benchmarks such as lbm and bwaves show a distinct performance im-

provement but some benchmarks such as omnetpp and sphinx3 show a performance

degradation. As a result, the overall performance improvement of NA-DiBT over FA-

DiBT is insignificant. The performance degradation of NA-DiBT due to the predictor

problem for some benchmarks such as libquantum and sphinx3 disappears in NA-

DiBT with SP. As a result, NA-DiBT with SP shows a significant performance im-

provement over the reference technique. When comparing NA-DiBT with and without

SP, two benchmarks—cactusADM and lbm—show minor performance degradation

with SP. For these applications, hit-miss prediction without sampling is already very

accurate, so the sampling read itself only results in performance degradation.

2.4.2 Analysis

Figure 2.15 shows a breakdown of read operations to the DRAM cache by the cause in

the four approaches: naı̈ve approach, FA-DiBT, NA-DiBT, and NA-DiBT with SP. The

number of read operations is normalized to that of the naı̈ve approach. As mentioned

in 3.1.1, there are four types of read operations to the DRAM cache:

• Type 1: read request from a processor.

• Type 2: read operation prior to a write request for hit/miss/dirtiness check.

• Type 3: read for a dirty-region eviction when the block is actually dirty.

• Type 4: read for a dirty-region eviction when the block is miss or clean.

For some benchmarks such as omnetpp, the naı̈ve approach has a large portion of

Type 4 reads. However, the read operations of Type 4 are removed in FA-DiBT. This

38

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

Type 1 Type 2 Type 3 Type 4

Figure 2.15: Breakdown of read operations to the DRAM cache by the cause in the

naı̈ve approach, FA-DiBT, NA-DiBT, and NA-DiBT with SP (left to right).

removal shows the effect of using DiBT, which generates reads only to dirty blocks

in the cache for a dirty-region eviction. Comparing NA-DiBT with FA-DiBT, most

benchmarks show reductions of Type 1 and Type 2 reads. The reason for the reduc-

tion of Type 1 is the elimination of a read operation of the cache in the case of a

predicted miss. The reason for the reduction of Type 2 is the elimination of a read

operation prior to a write request to a clean block in the cache. This result shows the

effect of optimizations using NA-DiBT, but it also includes the side effect of biased

prediction. Comparing NA-DiBT with and without SP, benchmarks such as leslie3d

and libquantum show a growth of Type 1 reads. This result shows the effect of the

sampling hit-miss predictor that effectively remedies the problem of biased prediction,

increasing the number of hit predictions and thus increasing the number of read op-

erations to the cache. It also includes the overhead of periodic sampling reads of the

cache.

39

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Dirty region
(to Cache)

Predicted miss
(to Both or to DRAM)

SBD
(to Cache)

SBD
(to DRAM)

Figure 2.16: Breakdown of read requests from L2 cache by decisions of three com-

ponents, dirty-region tracker, hit-miss predictor, and self-balancing dispatcher in the

naı̈ve approach, FA-DiBT, NA-DiBT, and NA-DiBT with SP (left to right).

Figure 2.16 shows a breakdown of read requests from L2 cache in the four different

approaches by decisions of three components: dirty-region tracker, hit-miss predictor,

and self-balancing dispatcher. There are four cases for these read requests from L2

cache by the decisions. The dirty-region tracker first checks to see whether the request

is to a dirty-region or not. If it is to a dirty-region (naı̈ve approach) or the requested

block is dirty (other approaches), the request is guided to the on-package DRAM cache

(Case 1,“Dirty region” in the figure). Otherwise, the hit-miss predictor makes a deci-

sion on hit or miss. If the prediction is cache miss (Case 2, “Predicted miss” in the

figure), then the request is sent to both on- and off-package DRAM in the naı̈ve ap-

proach and FA-DiBT. It is sent only to the off-package DRAM in NA-DiBT. If the

request is predicted as a cache hit, then the self-balancing dispatcher decides the direc-

40

tion of the request, to the DRAM cache (Case 3, “SBD (to Cache)” in the figure) or to

the off-package DRAM (Case 4, “SBD (to DRAM)” in the figure).

Compared to the naı̈ve approach, FA-DiBT shows a reduced portion of Case 1

read for most benchmarks, because the decision of FA-DiBT is made at the cache

block granularity. Actually, the reduced portion is shifted to the hit-miss predictor.

Comparing NA-DiBT to FA-DiBT, some benchmarks such as cactusADM and lbm

show an increase of Case 1 read. This is because NA-DiBT maintains dirtiness of

a cache location instead of an actual data block. If a dirty block, which is not the

requested one but mapped to the same cache location, exists in the cache, then a Case

1 read request will be sent to the DRAM cache since the dirty-block tracker does not

know that it will be a miss.

Some benchmarks such as libquantum and omnetpp shows an increasing portion

of Case 2, because of the problem of the biased prediction. It shrinks the portion for the

self-balancing dispatch to determine (Case 3 and Case 4). NA-DiBT with SP reduces

the portion of Case 2 read showing that the predictor effectively remedies the biased

prediction problem.

Figure 2.17 shows a breakdown of write requests from L2 cache (i.e., write-back

from L2 to DRAM) by a decision of the dirty-region tracker in the four different ap-

proaches. There are three cases for these write requests. If the dirty-region tracker finds

a write request going to a dirty-region that is maintained in the dirty-block table in the

tracker, the request is guided to the DRAM cache (Case 1, “Dirty region” in the figure).

If the tracker detects that the request is to a write-intensive region and thus identifies

it as a dirty-region, then the request is guided to a DRAM cache (Case 2, “New dirty

41

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Dirty region
(To Cache)

New dirty region
(To Cache)

Write-through
(To Both)

Figure 2.17: Breakdown of write requests from L2 cache by a decision of a dirty-region

tracker in the naı̈ve approach, the cache with FA-DiBT, the cache with NA-DiBT, and

the cache using NA-DiBT with the sampling hit-miss predictor (left to right).

region” in the figure). If the tracker finds that the request does not go to a dirty-region,

then the write request is guided to both on- and off-package DRAMs to guarantee a

clean block in the cache (Case 3, “Write-through” in the figure).

In the comparison of NA-DiBT and FA-DiBT, the breakdown for the two are simi-

lar to each other. It indicates that NA-DiBT tracking a dirty-region as a group of cache

blocks identifies write-intensive regions as well as FA-DiBT tracking a dirty-region as

a page.

2.4.3 Prediction Accuracy

Table 2.3 shows cache hit/miss prediction accuracy for the four different approaches.

There are four cases: true hit, false hit, true miss, and false miss. For example, if the

42

Table 2.3: Prediction Accuracy for Different Techniques

Prediction Cache Hit Cache Miss Overall

Correct Wrong Correct Wrong Accuracy

Naı̈ve approach 40.1% 3.5% 52.4% 3.9% 92.5%

Cache with FA-DiBT 40.0% 4.2% 51.8% 4.0% 91.8%

Cache with NA-DiBT 30.6% 8.8% 44.7% 16.0% 75.3%

Cache with NA-DiBT 40.7% 3.7% 49.8% 5.8% 90.5%

+ SPa

aSP: sampling hit-miss predictor

prediction is cache hit and it is correct, then it is a true hit.

The overall accuracy of FA-DiBT is similar to that of the naı̈ve approach. However,

the overall accuracy of NA-DiBT noticeably decreases because of the biased prediction

problem. It is shown that the prediction is biased toward miss. NA-DiBT with SP

recovers accuracy showing that the proposed sampling hit-miss predictor effectively

remedies the biased prediction problem.

2.4.4 Sensitivity to Sampling Hit-miss Predictor to VUPPER

Table 2.4 shows prediction accuracy of the sampling hit-miss prediction with different

VUPPER values, 127, 63, 31, 15, and 7. VTH is fixed to 4, which is around half of

smallest VUPPER, 7 (3-bit counters are used for the naı̈ve approach and FA-DiBT).

The value of VUPPER determines the cycle of sampling the DRAM cache. The pre-

dictor issues a sampling read operation to the DRAM cache for correcting wrong miss

43

Table 2.4: Prediction Accuracy for Different VUPPER

Prediction Cache Hit Cache Miss Overall

Correct Wrong Correct Wrong Accuracy

VUPPER = 127 39.5% 3.0% 50.8% 6.7% 90.3%

VUPPER = 63 40.7% 3.7% 49.8% 5.8% 90.5%

VUPPER = 31 41.6% 4.7% 48.8% 5.0% 90.4%

VUPPER = 15 42.0% 6.0% 47.7% 4.3% 89.7%

VUPPER = 7 43.0% 8.7% 44.7% 3.6% 87.7%

prediction more frequently with smaller VUPPER value.

In Table 2.4, the predictor forecasts more cache hit with smaller VUPPER. The

rate of correct hit prediction increases along with smaller VUPPER value. However,

the rate of wrong hit prediction increases more sharply. The reason is as follows. If a

sampling read of DRAM cache is cache hit, then the corresponding counter is set to

VTH - 1 and thus the following prediction becomes cache hit. Such a hit prediction is

not as accurate as the conventional hit-miss prediction that considers history of cache

hit/miss and still predicts cache miss after one cache hit if there have been a lot of

cache misses.

Since the overall accuracy of the predictor with VUPPER of 63 is the highest, we

use it for the evaluation of our technique in this part.

44

1.05

1.06

1.07

1.08

1.09

1.1

1.11

1024 sets 2048 sets 4096 sets 8192 sets

S
p

ee
d

u
p

Figure 2.18: Performance sensitivity of NA-DiBTs with SP to different dirty-block

table sizes.

2.4.5 Sensitivity to Dirty-Block Table Size

Figure 2.18 shows the performance sensitivity of NA-DiBTs with SP to different dirty-

block table sizes. The results are normalized to that of the alloy cache. In our config-

urations, 1024- to 8192-set dirty-block tables cover 16MB to 128MB of dirty regions

in the DRAM cache at maximum. Thus, as can be seen in the figure, using too small

dirty-block tables degrade the performance since smaller dirty-block tables can track

fewer dirty blocks resulting in too many dirty-region evictions. Among these configu-

rations, we chose the 4096-set dirty-block table in our evaluations as it shows nearly

identical performance compared to the configuration with a 2x larger dirty-block ta-

ble. This dirty-block table configuration can track at most 64MB of dirty regions in the

DRAM cache. Although this may seem small compared to the DRAM cache capacity,

45

many workloads have limited amount of dirty data in general (which agrees with the

observation in [6], where at most 16MB of dirty data are tracked for a 128MB DRAM

cache).

2.4.6 Scalability

Our approach provides scalable latency and area overheads in terms of both off-package

and on-package DRAM capacity. First, the off-package memory capacity does not af-

fect the scalability of our schemes because FA/NA-DiBT tracks dirty blocks in the

on-package DRAM cache, and thus, the size of FA/NA-DiBT is determined only by

the capacity of on-package DRAM. Thus, our approach can easily support systems

with hundreds of GBs of off-package DRAM with the same level of overhead.

Second, when our approach is implemented for larger DRAM caches, its over-

head scales linearly with the DRAM cache capacity (e.g., 3.4MB of DiBT for a 16GB

DRAM cache). Since NA-DiBT can be decomposed into multiple small instances,

each of which covers part of the DRAM cache address space, its access latency is scal-

able to the DRAM cache capacity. Also, the area overhead of DiBT is smaller than that

of the previous work on DRAM caches (e.g., 2MB MissMap for a 1GB DRAM cache

[4], 3.12MB tag storage for a 512MB cache [26], etc.). If such overhead is undesirable,

we can reduce the size of DiBT at the cost of slightly increased writeback ratio.

2.4.7 Implementation Cost

Table 2.5 shows the implementation cost for three approaches: naı̈ve approach, FA-

DiBT, and NA-DiBT with SP. In the naı̈ve approach, the hit-miss predictor consists of

46

Table 2.5: Implementation Cost

Naı̈ve approach

Hit-miss predictor 8 * 512 entries * 3-bit counter = 1.5KB

Counting Bloom filters 3 * 4K entries * 5-bit counter = 7.5KB

Dirty list (DL) 4K sets * 4-way * (1-bit NRU + 36-bit tag) = 74KB

Total 83KB

Latency of DL 1ns (3 cycles at 3GHz)

FA-DiBT

Hit-miss predictor 8 * 512 entries * 3-bit counter = 1.5KB

Counting Bloom filters 3 * 4K entries * 5-bit counter = 7.5KB

Dirty-block table (DBT) 4K sets * 4-way *

(1-bit NRU + 36-bit tag + 64 dirty bits) = 202KB

Total 211KB

Latency of DBT 1.16ns (4 cycles at 3GHz)

NA-DiBT and sampling hit-miss predictor

Hit-miss predictor 8 * 512 entries * 6-bit counter = 3KB

Counting Bloom filters 3 * 4K entries * 5-bit counter = 7.5KB

Dirty-block table (DBT) 4K sets * 4-way *

(1-bit NRU + 36-bit tag + 64 dirty bits) = 202KB

Total 212.5KB

Latency of DBT 1.16ns (4 cycles at 3GHz)

47

eight counter tables for each core, where each table has 512 entries of 3-bit counter.

The dirty-region tracker consists of counting bloom filters and a dirty list for dirty

regions and it tracks dirty regions at 4KB granularity.4 The counting bloom filters

consist of three counter tables, each of which has 4k entries of 5-bit counter. The dirty

list is a set-associative structure of 4k 4-way sets and each set consists of 1 bit for NRU

and 36 bits for tag. In summary, the total implementation cost of the naı̈ve approach is

83KB.

FA-DiBT is similar to the naı̈ve approach. One difference is that 64-bit dirty bits

(= 4096-byte page / 64-byte cache blocks) are added to each entry of the dirty list

to make a dirty-block table, which costs 128KB. Therefore, the total implementation

cost of FA-DiBT is 211KB. We coordinate NA-DiBT to have a size similar to FA-

DiBT for a fair comparison. The sampling hit-miss predictor has eight 512 entries of

6-bit counter, so that the total cost of NA-DiBT with SP is 212.5KB. This value is

negligible considering the size of a DRAM cache.

We used CACTI 6.5 with 32nm technology and ITRS-LOP cells to model the

latency of a dirty list (in the naı̈ve approach) and dirty-block tables (in FA/NA-DiBT).

We included this latency overhead of accessing the dirty list or the dirty-block tables,

if any, in our simulation.

4The rationale behind this is that a typical OS page size is 4KB, and thus, cache blocks inside a 4KB

region are expected to share similar access characteristics.

48

2.5 Related Work

We have already explained the three most closely related block-granularity DRAM

cache techniques in Section 2 [4, 5, 6]. In addition, BEAR [27] aims to reduce band-

width consumptions of DRAM cache by miss fill, writeback probes, and miss detec-

tion, but it does not consider redundant read prior to write for checking dirtiness of

a block in the DRAM cache. In ATCache [28], a small SRAM tag cache is adopted

to avoid the high area overhead of maintaining tags of DRAM cache on SRAM. It

shows a performance similar to a very fast tags-in-SRAM design. It is different from

our technique based on a tags-in-DRAM design.

There are several page-granularity DRAM caches [29, 26, 30]. In those approaches,

the tag overhead is lower than that of a block-granularity DRAM cache. In a die-

stacked DRAM architecture proposed by Woo et al [29], the technique prefetches an

entire page while providing a cache access in a cache block size. The footprint DRAM

cache [26] allocates a page in a DRAM cache but fetches only blocks that will be ac-

cessed during the residency of the page in the cache, which can reduce the traffic of an

off-package memory. The unison DRAM cache [30] adopts a tag-in-DRAM concept

similar to alloy cache [5] to the footprint cache [26] to improve the scalability and

the performance of a system. The bi-modal DRAM cache [31] organizes the data at

two granularities, big blocks for data that have high spatial locality and small blocks

for the rest. The technique can efficiently utilize the capacity of the DRAM cache by

adaptively selecting a right granularity for individual blocks at run-time. The tagless

DRAM cache [32] uses cache-map TLB that stores virtual-to-cache address mappings

49

to remove tags of a DRAM cache. CAMEO [33] uses an on-package stacked DRAM

as a part of memory with hardware management and it can dynamically change the

physical location of a cache line to retain recently accessed data in a DRAM cache.

The dirty-block index (DBI) technique [34] decouples the dirty bits from the tag

store and groups the dirty information of blocks in the same DRAM row in the same

DBI entry. It applies several optimizations to a cache by using decoupled dirty bits,

such as aggressive DRAM-aware write-back, bypassing cache lookups, and heteroge-

neous ECC for clean/dirty blocks. The structure of DBI is similar to the dirty-block

table in our FA-DiBT because the row tags of DBI entries are based on off-package

memory addresses, but it is different from NA-DiBT, which is based on on-package

DRAM addresses. Therefore, DBI cannot eliminate a tag checking prior to write oper-

ation when victim is not dirty. Actually, the work on DBI does not apply the technique

to DRAM cache but only to on-chip last-level cache (if it is applied to DRAM cache,

then the result will be similar to FA-DiBT).

2.6 Summary

We propose a DRAM cache technique that combines self-balancing dispatch with a

direct-mapped cache organization. Based on the observation that a direct combination

of them is inefficient due to the overhead of dirty-region eviction from the dirty-region

tracker, we devise a dirty-block tracker (DiBT) that maintains dirtiness of blocks in

a dirty-region. We also propose an improved version of DiBT called NA-DiBT that

detects a dirty-region as a group of cache blocks instead of a page. It inherits good

50

features of DiBT and also exploits the characteristics of a direct-mapped cache orga-

nization. NA-DiBT can remove read operations for checking dirtiness of blocks in the

cache prior to write operations if the blocks are not dirty. This optimization can save

bandwidth usage of the DRAM cache significantly. To mitigate the biased prediction

problem caused by the proposed approach, we also devise a sampling hit-miss pre-

dictor. The simulation results show that our DRAM cache technique using NA-DiBT

with the sampling hit-miss predictor improves the performance of a multi-core system

by more than 10% on average compared to the state-of-the-art direct-mapped DRAM

cache technique.

51

Chapter 3

A Deep Neural Network Accelerator with STT-RAM

3.1 Background

In this part, we focus on convolutional neural networks (CNNs) consisting of convo-

lution layers and FC layers. This section explains basic concepts of computations in

those layers and the distribution of their output values to motivate our research. It also

examines commonly used twos complement representation of binary numbers, which

we will modify slightly.

3.1.1 Computations in CNNs

Figure 3.1 shows a simplified two-dimensional convolution layer. Input activation map

is a 3D structure of Ix × Iy × Iz and each output is a sum of element-wise multiplica-

tions of weights and input activations. The weights form a filter of Fx × Fy × Iz that

operates on the input activation map as a sliding window. Thus the filter is reused mul-

tiple times by moving the sliding window in x and y directions of the input activation

52

Figure 3.1: A simplified view of a convolution layer.

map, results in a 2D output activation map whose size is Ox×Oy. Assuming that there

are Oz number of filters, the size of the 3D output activation map is Ox ×Oy ×Oz .

In a fully connected layer, the size of a filter is equal to that of the input activation

map, and therefore, if the number of filters is Oz , then the size of the output activation

map is 1× 1×Oz .

The output values of the layers go through a non-linear activation function (ReLU).

In addition, CNNs perform other computations such as pooling and batch normaliza-

tion, which we do not focus on in this part.

3.1.2 Sign Distribution of Inputs to ReLU

Figure 3.2 shows the distribution of the signs for the outputs from convolution units

and FC MAC units (i.e., inputs to ReLU) in the VGG-16 network [35] over 1000

53

Figure 3.2: Distribution of signs for outputs from convolution or FC MAC units in the

layers of VGG-16.

images from ImageNet [36]. The results show that 66% of the outputs is negative on

average, which will be zero after the processing of ReLU activation function, and up to

94% of the outputs in layer C13 is negative. Note that for each output, the convolution

unit (or FC MAC unit) needs to calculate the sum of products of all filter weights and

input activations in a sliding window. Therefore, reducing this kind of computations

can save a lot of computing power.

3.1.3 Two’s Complement Representation

Two’s complement is a commonly used binary number representation system that can

encode both positive and negative values. In the two’s complement representation, a

binary number (wi,B−1wi,B−2 · · ·wi,k · · ·wi,1wi,0) of B bit-width has a value given by

54

wi = −wi,B−1 × 2
B−1

+

B−2∑

k=0

wi,k × 2
k (3.1)

where the most significant bit (MSB; sign bit) has a negative weight and all others

have positive weights.

Consider adding a number in two’s complement in a bit-serial manner starting

from the MSB. We first add the first bit with the negative weight decreasing the result

towards the negative direction. Then we add the remaining bits with positive weights

one by one, monotonically increasing the result.

3.2 Early Negative Detection

By combining bit-serial addition and (inverted) two’s complement, we can detect neg-

ative sum of products before the completion of the computation. In this section, we

describe the details of early negative detection, which consists of bit-serial sum of

products and inverted two’s complement encoding for weights.

3.2.1 Bit-serial Sum of Products

Figure 3.3 shows two different structures for computing the sum of products for N

B-bit fixed-point weights and input activations. Figure 3.3-(a) shows a typical version

of it, which calculates multiplications first and then perform sum operations using an

adder tree. Figure 3.3-(b) shows a bit-serial sum of products with serialized weight

bits using an adder tree and a shifter, which is similar to the approach used in Stripes

[13] where input activations are serialized. The bit-serial approach with weight bit

55

+

...

wN-1

aN-1

×

1

1

0

0

1

0

w0

a0

×

0

1

1

1

0

1

MSB

LSB
+

w0

a0

0

0

1

1

11

MSBLSB

...

wN-1

aN-1

1

0

1

1

10

S S

<<

+

(a) (b)

Figure 3.3: Approaches to calculating sum of products. (a) Conventional approach. (b)

Bit-serial approach.

serialization progresses in multiple steps to calculate the sum of products from MSB

of weights to least significant bits (LSB) of them.

In the bit-serial approach, it takes B steps for B-bit weights to get the result of sum

of products. It may seem like that it is inefficient because it takes multiple steps while

the conventional approach takes a single step. However, the area of a bit-serial unit is

much smaller than that of the conventional approach that uses binary multipliers, and

therefore, it can compensate its low performance with a larger number of units as was

done in Stripes [13].

Let’s assume that weights are encoded in the two’s complement representation and

input activations are results of ReLU in the previous layer, so their value are posi-

tive or zero. In this case, the first intermediate result of the sum of products is most

56

(a)

Positive sum

Negative sum

(b)

steps steps

value value

Figure 3.4: Trends of bit-serial sum of products as the computation steps proceed (a)

with two’s complement weights and (b) with inverted two’s complement weights.

likely negative in the bit-serial approach because MSB has a negative weight 1 in two’s

complement (when there is a negative filter weight). After that, the intermediate result

increases its value because the remaining bit positions of weights are all positive in

two’s complement encoding.

Figure 3.4-(a) shows trends of intermediate results of a sum of products in the

bit-serial approach as the computation makes progress. If its final value is positive,

the intermediate result changes its sign from negative to positive at some point during

the computation like the solid line in the figure; on the other hand, if its final value

is negative, the intermediate result is always negative throughout the computation like

the dotted line in the figure. Therefore, in the two’s complement representation, once

the intermediate result becomes positive, then we know in advance that the final result

1Note that the weights of bit positions in the two’s complement representation should not be confused

with the filter weights in CNNs.

57

will also be positive. However, a negative result cannot be identified without finish-

ing its calculation. For this reason, we propose to use an inverted two’s complement

representation for weights.

3.2.2 Inverted Two’s Complement Representation

The concept of an inverted two’s complement encoding is simple as shown in the

following equation.

wi = wi,B−1 × 2
B−1 −

B−2∑

k=0

wi,k × 2
k (3.2)

The sign of weight in every bit position is inverted such that the MSB has a pos-

itive weight and all others have negative weights. The range of numbers encoded in

B-bit inverted two’s complement is the same as the original two’s complement en-

coding except that −2B−1 cannot be represented. Instead, the value of +2B−1 can be

represented in the new encoding.

3.2.3 Early Negative Detection

The proposing early negative detection (ComPEND) scheme uses a bit-serial sum of

products and the inverted two’s complement representation for weights. Inputs and

outputs of the convolution or FC MAC units are still encoded in the original two’s

complement form in the scheme. Figure 3.4-(b) shows the trends of intermediate re-

sults of a sum of products in the ComPEND scheme. If its final value is positive, the

intermediate results are always positive during computation steps like the solid line in

the figure. On the other hand, if its final value is negative, it changes its sign from pos-

58

Figure 3.5: Normalized total number of steps in sum of products to calculate output

activation maps of convolution layers in VGG-16 with the ComPEND scheme over

without it.

itive to negative at some point during the computation steps like the dotted line in the

figure. Therefore, unlike the case using the original two’s complement representation

of weights, the ComPEND scheme can detect the final negative result before finishing

its calculation by checking the sign inversion in the intermediate results and set its

value to zero and skip the remaining steps, thus saving the computing power.

Figure 3.5 shows the number of additions in bit-serial sums of products to calculate

output activations of VGG-16 layers with the ComPEND scheme normalized to that

without the scheme. The result of Layer C1 is omitted because its inputs are raw data,

and thus there is no guarantee that they are all positive or zero. Note that the Com-

PEND scheme works correctly only when its input activations are positive or zero. On

59

Figure 3.6: Overall ComPEND architecture.

average, 30.2% (up to 45.9% in layer C13) of computation is reduced. These results

prove the effectiveness of the ComPEND scheme.

3.3 Accelerator

This section presents a DNN (or CNN) accelerator architecture that can efficiently

apply the ComPEND scheme and minimize accesses to an off-chip memory by con-

sidering data access patterns.

60

3.3.1 Overall Architecture

Figure 3.6 shows an overall ComPEND architecture. It consists of multiple processing

units, buffers, data networks, and a global controller. The organization of processing

units in the accelerator is logically similar to a big pipelined adder tree with many

input registers used to store input activations.

The top of the tree (or top of sub trees) is connected to a decision unit in the

global controller, which generates an intermediate result of a sum of products by using

a shifter and an accumulator. According to this result, the decision unit dynamically

determines the result of the sum of products and the inputs to the adder tree for the

next pipeline operation.

In the accelerator, weight buffers (WBs) store weights of multiple filters and acti-

vation buffers (ABs) store a part of an input activation map generated by the previous

layer. The provider network connects weight buffers and rows of PUs, which can re-

configure its connection considering computation patterns of the current layer. There

are two memories connected to the accelerator: an on-chip memory to store weights of

all filters used in the current layer and an off-chip memory that contains all raw data

including input activation maps and filter weights.

We use a spin-transfer torque memory (STT-RAM) [37] as the on-chip memory.

The STT-RAM is a non-volatile memory, which is compatible with standard CMOS

technology [38]. It has higher density than SRAM and shows fast read latency similar

to SRAM, for these reasons, it has been researched as an on-chip last-level cache

[39]. The STT-RAM has drawbacks in write operations such as slower latency and

higher energy consumption compared to SRAM [37], but in our architecture, once

61

filter weights are stored in the on-chip memory, the remaining accesses to it are only

for read operations. Therefore, STT-RAM is well suited for the on-chip memory of the

architecture.

3.3.2 Data block

Input activations and weights are stored in the off-chip memory in block granularity.

An input activation block is a collection of activations adjacent in the z dimension of

a 3D input activation map and having the same x, y position. For example, a 64 bytes

block containing activations of 2 bytes each has a pack of 32 adjacent activations in

the z dimension of the input activation map.

A weight block is a collection of bits in the same bit position of weights that are

adjacent in the z dimension of a 3D filter and having the same x, y position. If the size

of the z dimension of the filter is not large enough to fill up the weight block, weights

in multiple filters are used to make a weight block. For example, if the size of a weight

block is 64 bytes (512 bits) and a weight has 2 bytes, then a weight block of MSB bit

position is a collection of MSB bits of 512 weights that are adjacent in the z dimension.

If the size of the z dimension of a filter is smaller than 512, then 512 weights of the

same x and y positions in multiple filters are used to make a weight block. Since each

weight has 16 bits, the 512 weights make 16 weight blocks, one for each bit position.

3.3.3 Processing Unit

A processing unit (PU) contains an adder tree, several input activation registers, and

a weight register (Figure 3.7). The input activation registers store activations in an

62

+
...

...

...

In
pu

t
ac

ti
va

ti
on

s

Weight bits

Figure 3.7: Internal structure of a processing unit.

63

input activation block. The weight register stores a part of a weight block. One bit in

the weight register indicates whether or not the activation in the corresponding input

register will be used as an input of the adder tree; the size of the weight register is

determined by the number of inputs of the adder tree in a PU.

PUs in the ComPEND accelerator are organized as a 2D array. The PUs in a row

share a wide bus to transfer an input activation block from an activation buffer (i.e., the

bus width is the same as the size of an activation block). Thus, it takes one cycle to load

an input activation block onto the registers in a PU, and the number of cycles required

to load all the PUs in a row with activation blocks is the same as the number of PUs

in the row. After loading the activation blocks onto the PUs, weight blocks flows from

weight buffers to the weight registers in PUs. One weight block is transferred to a row

of PUs and divided into designated weight registers in the PUs in the row. So it takes

one cycle to fill the weight registers of the PUs in a row.

Multiple PUs in a column are connected to a parent PU, composing a tree of PUs,

which is called a column tree. Multiple column trees can be grouped with a root PU as

one global adder tree or as multiple sub adder trees. In the latter case, the root PU can

be utilized as multiple root PUs, one for each sub adder tree with smaller number of

inputs.

In the case of a convolution layer with a filter whose z dimension length is large

enough to build one weight block, the PUs in the accelerator can be utilized as one

big adder tree. In another case of a convolution layer with a filter whose z dimension

length is not large enough to build one weight block, multiple filters can collaborate

to build a weight block and in this case, PUs in the accelerator can be configured into

64

multiple sub adder trees. By loading these multiple sub adder trees with the same input

activation blocks and transferring a block of weights from multiple filters to a row of

PUs, we can let the sub adder trees to generate multiple output activations concurrently.

3.3.4 Buffers

Weight buffers store weight blocks to be used by PUs and are read every cycle because

PUs use different weight blocks in each cycle. One weight buffer can support a row of

PUs, so the number of weight buffers is equal to the number of rows of PUs.

Activation buffers store input activation blocks in a part of an input activation

map. The blocks are usually loaded into registers in the PUs and reused there. Thus,

the activation buffers are read only when activations stored in the registers should be

changed.

3.3.5 Memory Controller

Memory controller manages all kinds of memory-involved data transfers. They include

the following data transfers:

• Moving weight blocks of filters from an off-chip memory to an STT-RAM.

• Moving weight blocks from the STT-RAM to a weight buffer.

• Moving weight blocks from the weight buffers to weight registers in PUs (can

mover nine weight blocks from the nine weight buffers at a time).

• Moving activation blocks from the off-chip memory to the activation buffers or

registers in PUs (in the case of FC layer, activation blocks are moved directly

65

...

(a) (b)

...

Figure 3.8: Examples of provider network connections by moving a sliding window in

a 2D convolution layer.

from the off-chip memory to the registers).

• Moving activation blocks from the activation buffers to registers in PUs.

• Moving output activation blocks from a global controller to the off-chip memory.

3.3.6 Providing Network

Provider network connects weight buffers and rows of PUs by one-to-one correspon-

dence mapping; thus, one weight buffer is paired with exactly one row of PUs, and

66

each row of PUs is paired with exactly one weight buffer. The mapping function of the

provider network can be configured to a pre-defined function considering the patterns

of arithmetic operations of a neural network layer.

Figure 3.8 shows examples illustrating how to reconfigure the provider network

connections to move a sliding window over an input activation map of a 2D convolu-

tion layer. Upper images represent different positions of the sliding window and lower

images show the corresponding connections of the provider network.

Consider that each row of PUs has input activation blocks of the same x and y

positions as explained in 4.2. Similarly, weight blocks in the same x and y positions in

filters are stored in a weight buffer. As shown in Figure 3.8-(a), the provider network

connects weight buffers and rows of PUs to be matched according to the sliding win-

dow shown in the upper image. After finishing computations for sums of products, the

sliding window moves as shown in Figure 3.8-(b). To reuse activation blocks already

existing in the activation registers in the PUs, only newly required activation blocks

are loaded from the activation buffers and overwritten to registers in PUs that con-

tain activation blocks no longer used for the moved sliding window. Then the provider

network reconfigures its connection to be matched with the moved sliding window.

3.3.7 Pipelined Bit-serial Sum of Products

A bit-serial sum of products consists of multiple steps of adder tree operations with

many inputs. Because it takes time to get a result of an adder tree, the proposed archi-

tecture organizes its components in a pipelined manner to increase its throughput in the

following order: weight buffers, provider network, adder trees, and global controller.

67

The components themselves can be pipelined internally.

The pipeline stages are filled with steps for different sums of products (i.e., dif-

ferent filters) sharing the same input activations. This is because, if different steps for

the same sum of products exist in the pipeline at the same time and a negative result is

detected early at a step, then it will turn out that the other steps for that sum of products

will uselessly occupy the pipeline stages. However, by way of exception, even though

its previous step is already in the pipeline, a step of a sum of products can be entered to

the pipeline to maximize the accelerator’s throughput if there is no remaining step for

other sum of products to fill the pipeline. This is implemented by selecting a step (or

the corresponding weight block) according to the priority set as explained in Section

4.8.

After finishing the calculations of all output activations sharing the same input

activations in the PUs, newly required input activation blocks are loaded into the PUs

and the pipelined bit-serial sum of products operation is restarted.

3.3.8 Global Controller

The global controller has multiple decision units, one for a tree of all PUs and the

rest for sub trees. The goal of the decision unit is to generate the output of a sum of

products and to select next weight block to be entered into the pipeline by considering

the result.

The decision unit reads the result of a step of bit-serial sum from the PU tree and

accumulates it to the corresponding DATA in the entry board to make an intermediate

result. It checks the intermediate result to see if it is negative. If the intermediate result

68

Figure 3.9: A decision unit in the global controller.

69

is negative, the decision unit sets the output to zero. Otherwise, it checks the step

position. If the position is LSB, then all steps of the sum of products are calculated and

the intermediate sum is the final output. If the position is not LSB, it just updates the

intermediate result and does not generate the output.

It selects next weight blocks for the pipeline by the following priorities. Weight

blocks for the next step (next bit in bit-serial computation) of a sum of products will

get the highest priority if the current step has been finished. Weight blocks for a sum

of products that has not yet been entered into the pipeline will get the next priority.

Weight blocks for the next step of a sum of products whose prior step is still in the

pipeline will get the lowest priority.

Figure 3.9 shows the structure of a decision unit. As shown in the figure, a decision

unit has a pipeline list, an entry board, a shifter, and an accumulator. Each entry of the

pipeline list (list entry in short) indicates which operation is being performed in the

corresponding pipeline stage; so the number of list entries is the same as the number

of pipeline stages.

Each list entry has two fields: id and position. The id field indicates filter id of

operation in the designated pipeline stage and the position field represents a step (a bit

position in the bit-serial computation) of the sum of products for that filter. The header

pointer indicates the list entry for the current output of the PU tree that is connected to

the decision unit; the list entry pointed by the header is called an output list entry. The

header pointer points to the entry in the final stage in the pipeline. As the data in the

pipeline are processed, we move the header pointer, and thus we do not need to move

the entries in the pipeline list. The filter id of the output list entry is used to search

70

the entry board and the position field of the output entry is used to check to see if the

partial sum read from the PU tree is for the last step of the sum of products.

The pipeline list can have multiple entries for the same filter id with different

positions because different steps of the same filter can be processed at the same time in

different stages of the pipeline (this is for the exception case explained in Section 4.7).

On the other hand, the entry board can have only one entry (called a board entry) for

multiple list entries of the same filter id. Thus, the maximum number of board entries

in the entry board is the same as the size of the pipeline list.

A board entry has three fields: filter id, last position, and DATA. The filter id field

is used to index the entry board, it is compared with the filter id of the output list

entry indicated by the header pointer. The last position field stores the last position

among the steps in the pipeline for the corresponding filter. It is used to identify the

next weight block to be entered into the pipeline. The DATA filed is used to store the

intermediate result for the sum of products; it is shifted by one bit and accumulated

with the next result from the PU tree connected to the decision unit.

3.4 Evaluation

To show the effectiveness of our proposed accelerator architecture, we have modeled

and evaluated it through simulation. This section describes the detailed evaluation

methodology and shows the results.

71

3.4.1 Methodology

We evaluate the potential of the computation pruning through early negative detection

for ReLU activation function by using Matlab and MatConvNet toolbox [40] with pre-

trained weights of VGG-16 network [35] and 1000 images from ImageNet ILSVRC-

2012 [36].

We encode the pre-trained weights in the proposed inverted two’s complement

form and calculate the number of steps of bit-serial sum of products required for

each output activation to determine its final value considering the early negative detec-

tion scheme. By using this information and the network topology, we deduce the total

amount of computation saving using the proposed scheme, which is shown in Figure

3.5.

We also build an in-house cycle-accurate timing simulator by using C++ to eval-

uate the proposed accelerator. DRAMSim2 [41] is attached to simulate the off-chip

memory. The simulator uses the abovementioned step information calculated using

Matlab and network topology information as its input. We use CACTI 6.5 [20] to

model SRAM buffers and NVSim[42] for on-chip STT-RAM memories. Since the op-

eration of the decision unit in the global controller is similar to that of tag checking in a

set-associative cache, its parameters are modeled using CACTI 6.5. We design the PU

and the provider network in the Verilog language and synthesized the corresponding

hardware by using Synopsys Design Compiler with TSMC 45nm technology library

with 0.9V to get their parameters of timing/power/area.

Table 3.1 summarizes the configuration used for the evaluation. The accelerator

72

Table 3.1: Configuration

Frequency 1 GHz

Processing unit Total 161 PUs (9 x 16 + 16 + 1), 2 bytes 32-input PU,

1 cycle for a PU, 3 pipeline stages for a PU array

Peak throughput Total 4.608 TOPS or 288 GMACS

Weight buffer Total 288 Kbytes, 9 x 32 Kbytes SRAM, 64 bytes,

1 cycle for a 32 Kbytes WB

Activation buffer Total 128 Kbytes, 4 x 32 Kbytes SRAM, 64 bytes,

1 cycle for a 32 Kbytes AB

Provider network 9 x 64 bytes input, 9 x 64 bytes output,

1 cycle for a stage, 2 pipeline stages

Global controller 16 decision units, 1 cycle for each unit

STT-RAM Total 4.5 Mbytes, 9 x 512 Kbytes STT-RAM, 64 bytes,

2 cycles for read, 11 cycles for write of

a 512 Kbytes STT-RAM

DRAM 16 Gbytes, 8 Banks, 1333 MHz

(DDR3 micron 32M 8B x8 sg15)

73

operates at 1 GHz clock frequency. It has sixteen PUs in a row and nine rows2 ; so it

has total 161 PUs including leaf PUs, parent PUs, and a root PU. The tree of PUs is

pipelined in three stages. A PU processes 32 input additions in a cycle, and therefore,

the ideal peak throughput of the accelerator is 4.6 tera operations (additions) per sec-

ond or 288 giga multiplications and additions per second because it takes 16 steps to

get a sum of products for a weight of 2 bytes.

A weight buffer is a 32 Kbytes SRAM scratchpad memory and it takes 1 cycle to

read or write. There are nine weight buffers in the accelerator, so the total capacity of

them is 288 Kbytes. An activation buffer is a 32 Kbytes SRAM, and there are four

activation buffers, and so the total capacity of them is 128 Kbytes.

The 2-stage pipelined provider network has nine 64 bytes inputs and outputs and

it takes 1 cycle for each stage. The global controller has nine decision units and the

latency of each unit is 1 cycle. The on-chip memory consists of nine 512 Kbytes STT-

RAM, whose read and write latencies are 2 and 11 cycles, respectively. The off-chip

memory is a 16 GB DDR3 DRAM.

3.4.2 Workloads

The VGG-16 network is a kind of deep convolutional neural network, which has 13

convolution layers and 3 FC layers. Table 3.2 shows the size of input activation maps,

the size of filters, the number of filters, and the size of output activation maps of VGG-

2The architecture with nine rows is designed considering 3×3 filters, but any number of rows can

be designed considering arbitrary sized filters. However, the overhead of the provider network must be

considered to increase the number of rows.

74

Table 3.2: Layers of VGG-16 network

Layer Imap filter # of filter Omap

C1 224x224x3 3x3x3 64 224x224x64

C2 224x224x64 3x3x64 64 224x224x64

C3 112x112x64 3x3x64 128 112x112x128

C4 112x112x128 3x3x128 128 112x112x128

C5 56x56x128 3x3x128 256 56x56x256

C6 56x56x256 3x3x256 256 56x56x256

C7 56x56x256 3x3x256 256 56x56x256

C8 28x28x256 3x3x256 512 28x28x512

C9 28x28x512 3x3x512 512 28x28x512

C10 28x28x512 3x3x512 512 28x28x512

C11 14x14x512 3x3x512 512 14x14x512

C12 14x14x512 3x3x512 512 14x14x512

C13 14x14x512 3x3x512 512 14x14x512

F1 7x7x512 7x7x512 4096 1x1x4096

F2 1x1x4096 1x1x4096 4096 1x1x4096

F3 1x1x4096 1x1x4096 1000 1x1x1000

75

Table 3.3: Capacity of layers of VGG-16 network

Layer Imap A filter Total filter Omap

kB kB kB MB kB

C1 294 0.052734 3.375 0.003296 6272

C2 6272 1.125 72 0.070313 6272

C3 1568 1.125 144 0.140625 3136

C4 3136 2.25 288 0.28125 3136

C5 784 2.25 576 0.5625 1568

C6 1568 4.5 1152 1.125 1568

C7 1568 4.5 1152 1.125 1568

C8 392 4.5 2304 2.25 784

C9 784 9 4608 4.5 784

C10 784 9 4608 4.5 784

C11 196 9 4608 4.5 196

C12 196 9 4608 4.5 196

C13 196 9 4608 4.5 196

F1 49 49 200704 196 8

F2 8 8 32768 32 8

F3 8 8 8000 7.8125 1.9531

76

16 layers and Table 3.3 shows the capacity of the layers. .

We use fourteen layers in the VGG-16 network as workloads, excluding layer C1

and F1. Layer C1 is excluded since the input activations of the layer are raw data

that can be negative (note that input activations should be non-negative to apply the

proposed technique). Also, the technique is applied only when all input activations

to calculate one output activation can be loaded onto the registers in the PUs in the

accelerator to maximize the reuse of data in the registers, but the total size of input

activations for one output activation in layer F1 is larger than the total size of registers

in the PUs. Thus, we also exclude the layer. For these two layers, the accelerator can

be utilized as a tree of multipliers and adders without applying the technique.

Pre-trained weights in MatConvNet are used for the evaluation. We encode activa-

tions as 2 bytes two’s complement and weighs for the filters as 2 bytes inverted two’s

complement.

3.4.3 Normalized Runtime

Figure 3.10 shows runtimes of the accelerator with the ComPEND scheme normal-

ized to that without the scheme for the fourteen layers mentioned above. Left bars are

runtimes without the scheme and right bars are runtimes with the scheme. Each bar is

broken down into runtimes of the following six operations:

• MEM STT: reading weight blocks from the off-chip memory and writing them

to the STT-RAM.

• STT WB: reading weight blocks from the STT-RAM and writing them to the

77

Figure 3.10: Runtimes of the accelerator with the ComPEND scheme (right bars) nor-

malized to that without the scheme (left bars) for VGG-16 layers.

78

weight buffers.

• MEM WB: reading weight blocks from the off-chip memory and writing them

to the weight buffers.

• MEM AB: reading input activation blocks from the off-chip memory and writ-

ing them to the activation buffers.

• AB PU: reading input activation blocks from the activation buffers and writing

them to registers in PUs.

• RUN PU: running pipelined bit-serial sums of products for filters in weight

buffers and input activations in PUs.

The accelerator with the ComPEND scheme reduces runtime by 16.67% on aver-

age compared to that without the scheme for the fourteen layers and by 19.35% for

all twelve convolution layers. Layer C13 shows largest runtime reduction by 29.24%.

The main source of runtime reduction is the RUN PU due to computation reduction.

The runtimes for MEM STT, STT WB, MEM WB, MEM AB, and AB PU are not

reduced because the amount of data transferring between the off-chip memory and the

accelerator does not change.

In the cases of layers from C2 to C8, PUs in the accelerator are utilized as multiple

sub adder trees–eight sub trees for C2, C3, four for C4, C5, and two for C6, C7, C8–in

which duplicated input activations are stored. A weight block is made of weights from

multiple filters for these layers. Because sub adder trees share a weight block even

though they use different part of it, a sub adder tree finished earlier should wait for

79

the others to be finished before moving to the next step of bit-serial computation. For

this reason, layers from C2 to C8 shows smaller runtime reductions compared to the

computation reductions shown in Figure 3.5.

In the case of layers from C9 to C13, PUs in the accelerator are utilized as one

big adder tree, therefore, the ComPEND scheme can be applied without a slowdown

caused by using multiple sub adder trees. However, for these layers, the portion of data

transfer time is relatively large, so that the total runtime reductions of these layers are

smaller than the pure computation reductions shown in Figure 3.5.

In the case of layers from F2 to F3, which are FC layers, all input activations are

small enough to be stored in registers in PUs in the accelerator and there is no weight

data reusing (inherent characteristics of an FC layer). Therefore, there is no need to

store the filter weights in the accelerator to minimize data accesses to the off-chip

memory. Thus, weight blocks are directly transferred from the off-chip memory to the

weight buffers without stopping at the STT-RAM.

About 98% of the normalized runtime of the layers F2 and F3 is data transfer time

from the off-chip memory to the weight buffers, so the effect of the ComPEND on

runtime is negligible.

3.4.4 Normalized Energy Consumption

Figure 3.11 shows energy consumptions of the accelerator with the ComPEND scheme

normalized to that without the scheme. Left bars are energy consumptions without the

scheme and right bars are consumptions with the scheme. The figure shows dynamic

and static energy consumptions of six components: global controller, provider net-

80

Figure 3.11: Normalized energy consumptions of the accelerator with the ComPEND

scheme (right bars) over that without the scheme (left bars) for VGG-16 layers.

81

work, STT-RAM, activation buffers, weight buffers, and processing units. The legends

are as follows.

• D/S CTRL: dynamic/static energy consumption of the global controller.

• D/S NET: dynamic/static energy consumption of the provider network.

• D/S STT: dynamic/static energy consumption of the STT-RAM.

• D/S AB: dynamic/static energy consumption of the activation buffers.

• D/S WB: dynamic/static energy consumption of the weight buffers.

• D/S PU: dynamic/static energy consumption of the processing units.

The accelerator with the ComPEND scheme reduces energy consumption by 25.79%

on average for all fourteen layers (26.38% on average for twelve convolution layers and

22.05% on average for two FC layers) compared to that without the scheme. Layer C13

shows the largest reduction (by 41.09%) of energy consumption.

In the average of twelve convolution layers without the scheme, 95.66% of an

energy consumption is dynamic energy consumption and only 4.33% of it is static

energy consumption. Three components including D NET, D WB, and D PU are main

sources of dynamic energy consumptions, amounting to 12.30%, 15.89%, and 61.08%

on average, respectively.

The energy consumption for D STT is about 3.5% on average for the layers from

C9 to C13, which is relatively large compared to that of previous layers due to larger

space occupied by the filters.

82

In the average of two FC layers without the scheme, 69.48% of the energy con-

sumption is dynamic energy consumption and 30.5% of it is static energy consumption.

Thus, the portion of static energy consumption is much larger than that of convolution

layers. Three components including D NET, D WB, and D PU are main sources of

dynamic energy consumptions amounting to 8.82%, 19.60%, and 40.75% on aver-

age respectively, and three components including S AB, S WB, and S PU are main

sources of static energy consumptions amounting to 4.30%, 9.69%, and 16.51% on

average, respectively.

In the average of twelve convolution layers with the scheme, the main sources

of energy consumption reduction compared to that without the scheme are D NET,

D WB, and D PU amounting to 3.33%, 3.90%, and 18.00% on average, respectively.

In the average of two FC layers with the scheme, the three components including

D NET, D WB, and D PU are also main sources of energy consumption reduction.

Static energy consumption shows negligible difference because runtimes of the accel-

erator with and without the scheme for FC layers are similar to each other.

3.4.5 Power Consumption

Figure 3.12 shows power consumptions of the accelerator. Left bars are for power con-

sumptions without the ComPEND scheme and right bars are for power consumptions

with the scheme. In the average of fourteen layers, the accelerators without and with

the scheme consume 1.153 watt and 1.054 watt, respectively. The accelerator with the

scheme consumes lower power than that without the scheme because energy reduc-

tions are larger than runtime reductions.

83

Figure 3.12: Power consumptions of the accelerators with the ComPEND scheme

(right bars) and that without the scheme (left bars) for VGG-16 layers.

84

In the average of twelve convolution layers, the accelerators without and with the

scheme consume 1.337 watt and 1.223 watt, respectively. The power consumption

of the accelerator is related to the utilization of the accelerator and the duration of

using the accelerator over the entire runtime. When the data transfer time occupies a

significant portion of the runtime, the power consumption of the accelerator is low.

For example, layers from C11 to C13 show lower power consumptions compared to

the previous layers because it takes longer time to transfer the filter data.

In the average of two FC layers, the accelerators without and with the scheme

consume 0.047 watt and 0.037 watt, respectively. They consume much lower power

when running FC layers than running convolution layers because most of the execution

time of FC layers is the data transfer time.

3.4.6 Normalized EDP and ED2P

Figure 3.13 reports the Energy-Delay Product (EDP) and Energy-Delay2 Product (ED2P)

of the accelerator with the ComPEND scheme normalized to that without the scheme

for VGG-16 layers.

The accelerator with the ComPEND scheme reduces EDP and ED2P by 37.5%

and 46.77% on average for the fourteen layers, by 40.00% and by 50.74% on average

for the twelve convolution layers, and by 22.52% and by 22.98% on average for the

two FC layers. The EDP and ED2P of FC layers are almost the same due to their small

runtime reductions.

85

Figure 3.13: Normalized Energy-Delay Product (EDP) and Energy-Delay2 Product

(ED2P) of the accelerator with the ComPEND scheme over that of it without the

scheme for VGG-16 layers.

Table 3.4: Area of the ComPEND architecture

Area (mm2) %

PUs 0.75 13%

Provider 0.09 2%

WBs 1.27 23%

ABs 0.56 10%

STT-RAM 2.93 52%

Total 5.62 100%

86

3.4.7 Area

Table 3.4 lists area of components in the accelerator. The total area of the accelerator

is 5.62 mm2. Processing units, a provider network, weight buffers, activation buffers,

and STT-RAMs respectively occupy 13%, 2%, 23%, 10%, and 52% of the total area.

3.5 Related work

For accelerating the neural network algorithms such as CNN or DNN, many kinds of

specialized accelerators have been proposed [11, 12, 13, 15, 14, 16, 17]. However, all

these accelerators miss the opportunity of computation pruning through early negative

detection for ReLU.

The DianNao [11] have been devised to accelerate the inference execution of large

CNNs and DNNs considering the impact of memory on performance and energy. It

consists of storages such as input/output neuron buffers and synaptic buffers, and com-

putation blocks called neural functional unit (NFU). The NFU is pipelined and con-

tains multipliers, adder trees, and a sigmoid function. The architecture achieves high

performance and energy efficiency but these are limited to the small size of the on-chip

buffers.

The DaDianNao [12] have been introduced as a scaled version of the DianNao.

It consists of sixteen tiles, two central eDRAM banks, and a fat tree interconnect.

One tile has an NFU and four eDRAM banks, There are total 36MB eDRAMs in the

architecture. The accelerator can execute much larger size of a neural network whose

input/output activation data and synapse data can be stored in the eDRAM banks.

87

The NFUs and eDRAMs operate synchronously, so the architecture should operate at

a much lower frequency than the maximum operating frequency of the NFU. In the

case of our ComPEND architecture, input/output activations are stored in the off-chip

memory and only weights should be loaded to the on-chip STT-RAM to calculate a

convolution layer.

The Stripes [13] has been proposed to use a bit-serial compute unit that calculates

a sum of products in multiple cycles in a bit-serial manner of input activations. The

bit-serial unit consists of small sized shifters and adders, which replaces large multi-

pliers and adder trees in the NPU. The architecture compensates throughput by using

multiple bit-serial units. It can reduce the amount of computations by reducing per-

layer activation precision up to the point obtained through profiling, where it does not

affect the accuracy. This enables tradeoffs between accuracy and performance/energy.

Our ComPEND architecture uses bit-serial compute units for weight values and can

reduce the amount of computations without profiling.

The bit-pragmatic [14] have been proposed to exploit the bit information content of

the activation values. The architecture is based on bit-serial computation of activation

values where an offset encoding for one is used. It skips ineffectual computations for

zero bits of activation values, resulting in performance and energy improvement. Its

optimization target is different from that of our ComPEND architecture in that ours

skips unnecessary computations for ReLU. It can be a future research direction to

combine both techniques in a synergistic manner.

The Cnvlutin [15] have been designed to eliminate unnecessary multiplications

where the input is zero, resulting in the performance/energy improvement. It contains

88

hierarchical data-parallel computing units and dispatchers that dynamically arrange

input neurons to keep the units busy. Note that unlike the case of Cnvlutin, our tech-

nique can eliminate multiplications where both inputs are not zero provided that the

sign of the output activation is detected to be negative. It can be another future re-

search direction to apply the scheme of skipping multiplications for a zero input to the

ComPEND.

The Eyeriss [16] have been proposed to use a processing data flow, called row sta-

tionary (RS) to minimize data movement to compute CNNs. In the RS, output features

are calculated by accumulating the partial sums. The accelerator is based on a 2D ar-

ray of small MAC units. It achieves high energy efficiency and throughput and can

accelerate inferences for any shape of convolution layers of CNN.

The TETRIS [17] have been introduced to utilize a high bandwidth of a 3D mem-

ory. In the architecture, an Eyeriss-style accelerator is placed at the bottom logic layer

of the 3D memory. It reduces the internal SRAM buffer size and increases comput-

ing units to take advantage of the high bandwidth of the 3D memory. This research

direction using a 3D memory is also applicable to our architecture where the memory

bandwidth is a bottleneck in FC layer calculations.

3.6 Summary

In this part, a new opportunity is proposed for reducing computations for deep neural

networks using ReLU without sacrificing accuracy. The proposed scheme consists of

a bit-serial sum of products and an inverted two’s complement encoding for weight

89

values, and it can skip a large amount of computations for negative results and simply

set the ReLU outputs to zero. We also design a deep neural network accelerator to

demonstrate the effectiveness of the scheme. The evaluation shows that the accelerator

using the proposed scheme significantly improves the performance and the energy

efficiency.

90

Chapter 4

Conclusion

This dissertation researches two approaches to improve the performance of systems in

which processors and emerging memories are integrated on a single chip or in a single

package.

The first part of this dissertation focuses on improving the performance of a sys-

tem in which 3D-stacked memory is integrated with the processor in a package, as-

suming that the processor is generic and the memory access pattern is not predefined.

A DRAM cache technique is proposed for this system, that combines self-balancing

dispatch with a direct-mapped cache organization in a synergistic way. Based on the

observation that a direct combination of them is inefficient due to the overhead of

dirty-region eviction from the dirty-region tracker, a dirty-block tracker (DiBT) is de-

vised that maintains dirtiness of blocks in a dirty-region. An improved version of DiBT

called NA-DiBT is also proposed that detects a dirty-region as a group of cache blocks

instead of a page. It inherits good features of DiBT and also exploits the characteris-

tics of a direct-mapped cache organization. NA-DiBT can remove read operations for

91

checking dirtiness of blocks in the cache prior to write operations if the blocks are not

dirty. This optimization can save bandwidth usage of the DRAM cache significantly.

To mitigate the biased prediction problem caused by the proposed approach, a sam-

pling hit-miss predictor is devised. The simulation results show that our DRAM cache

technique using NA-DiBT with the sampling hit-miss predictor significantly improves

the performance of a multi-core system compared to the state-of-the-art direct-mapped

DRAM cache technique.

The second part of this dissertation focuses on improving the performance of a

system in which an accelerator and STT-RAM are integrated on a single chip, assum-

ing that certain algorithms, called deep neural networks, are processed on this system.

To achieve the goal, a new opportunity is considered for reducing computations for the

deep neural networks using ReLU without sacrificing accuracy. The proposed scheme

consists of a bit-serial sum of products and an inverted two’s complement encoding

for weight values, and it can skip a large amount of computations for negative results

and simply set the ReLU outputs to zero. We also design a deep neural network accel-

erator to demonstrate the effectiveness of the scheme. The evaluation shows that the

accelerator using the proposed scheme significantly improves the performance and the

energy efficiency.

92

Bibliography

[1] H. B. M. JEDEC, “DRAM (JESD235),” 2013.

[2] J.-S. Kim, C. S. Oh, H. Lee, D. Lee, H. R. Hwang, S. Hwang, B. Na, J. Moon, J.-

G. Kim, H. Park, et al., “A 1.2 V 12.8 GB/s 2 Gb Mobile Wide-I/O DRAM With

4 × 128 I/Os Using TSV Based Stacking,” IEEE Journal of Solid-State Circuits,

vol. 47, no. 1, pp. 107–116, 2012.

[3] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM architecture in-

creases density and performance,” in Proceedings of the Symposium on VLSI

Technology (VLSIT), pp. 87–88, IEEE, 2012.

[4] G. H. Loh and M. D. Hill, “Efficiently enabling conventional block sizes for very

large die-stacked DRAM caches,” in Proceedings of the International Symposium

on Microarchitecture, pp. 454–464, ACM, 2011.

[5] M. K. Qureshi and G. H. Loh, “Fundamental latency trade-off in architecting

dram caches: Outperforming impractical sram-tags with a simple and practical

design,” in Proceedings of the International Symposium on Microarchitecture,

pp. 235–246, IEEE, 2012.

93

[6] J. Sim, G. H. Loh, H. Kim, M. O’Connor, and M. Thottethodi, “A mostly-clean

DRAM cache for effective hit speculation and self-balancing dispatch,” in Pro-

ceedings of the International Symposium on Microarchitecture, pp. 247–257,

IEEE, 2012.

[7] D. Lee, S. Lee, S. Ryu, and K. Choi, “Dirty-block tracking in a direct-mapped

DRAM Cache with self-balancing dispatch,” ACM Transactions on Architecture

and Code Optimization (TACO), vol. 14, no. 2, p. 11, 2017.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing

systems, pp. 1097–1105, 2012.

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for

accurate object detection and semantic segmentation,” in Proceedings of the Con-

ference on Computer Vision and Pattern Recognition, pp. 580–587, IEEE, 2014.

[10] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep neural networks for acous-

tic modeling in speech recognition: The shared views of four research groups,”

IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[11] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “DianNao:

A small-footprint high-throughput accelerator for ubiquitous machine-learning,”

ACM Sigplan Notices, vol. 49, no. 4, pp. 269–284, 2014.

94

[12] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun,

et al., “DaDianNao: A machine-learning supercomputer,” in Proceedings of the

International Symposium on Microarchitecture, pp. 609–622, IEEE, 2014.

[13] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos, “Stripes:

Bit-serial deep neural network computing,” in Proceedings of the International

Symposium on Microarchitecture, pp. 1–12, IEEE, 2016.

[14] J. Albericio, A. Delmás, P. Judd, S. Sharify, G. O’Leary, R. Genov, and

A. Moshovos, “Bit-pragmatic deep neural network computing,” in Proceedings

of the International Symposium on Microarchitecture, pp. 382–394, ACM, 2017.

[15] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos,

“Cnvlutin: ineffectual-neuron-free deep neural network computing,” in Proceed-

ings of the International Symposium on Computer Architecture, pp. 1–13, IEEE,

2016.

[16] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient re-

configurable accelerator for deep convolutional neural networks,” IEEE Journal

of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.

[17] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS: Scalable and

efficient neural network acceleration with 3D memory,” in Proceedings of the

International Conference on Architectural Support for Programming Languages

and Operating Systems, pp. 751–764, ACM, 2017.

95

[18] G. H. Loh, “3D-stacked memory architectures for multi-core processors,” in Pro-

ceedings of the International Symposium on Computer Architecture, pp. 453–

464, IEEE, 2008.

[19] J. H. Ahn, S. Li, O. Seongil, and N. P. Jouppi, “McSimA+: A manycore simulator

with application-level+ simulation and detailed microarchitecture modeling,” in

Proceedings of the International Symposium on Performance Analysis of Systems

and Software, pp. 74–85, IEEE, 2013.

[20] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0: A tool

to model large caches,” HP Laboratories, pp. 22–31, 2009.

[21] Y. H. Son, O. Seongil, H. Yang, D. Jung, J. H. Ahn, J. Kim, J. Kim, and J. W.

Lee, “Microbank: architecting through-silicon interposer-based main memory

systems,” in Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, pp. 1059–1070, IEEE, 2014.

[22] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P. Jouppi,

“CACTI-3DD: Architecture-level modeling for 3D die-stacked DRAM main

memory,” in Proceedings of the Design, Automation & Test in Europe Confer-

ence & Exhibition, pp. 33–38, IEEE, 2012.

[23] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling: Enhancing

both performance and fairness of shared DRAM systems,” ACM SIGARCH Com-

puter Architecture News, vol. 36, no. 3, pp. 63–74, 2008.

96

[24] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM SIGARCH Com-

puter Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[25] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster and more

flexible program phase analysis,” Journal of Instruction Level Parallelism, vol. 7,

no. 4, pp. 1–28, 2005.

[26] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked DRAM caches for servers: hit

ratio, latency, or bandwidth? have it all with footprint cache,” ACM SIGARCH

Computer Architecture News, vol. 41, no. 3, pp. 404–415, 2013.

[27] C. Chou, A. Jaleel, and M. K. Qureshi, “BEAR: Techniques for mitigating band-

width bloat in gigascale DRAM caches,” in Proceedings of the International

Symposium on Computer Architecture, pp. 198–210, IEEE, 2015.

[28] C.-C. Huang and V. Nagarajan, “ATCache: reducing DRAM cache latency via

a small SRAM tag cache,” in Proceedings of the International Conference on

Parallel Architectures and Compilation, pp. 51–60, ACM, 2014.

[29] D. H. Woo, N. H. Seong, D. L. Lewis, and H.-H. S. Lee, “An optimized 3D-

stacked memory architecture by exploiting excessive, high-density TSV band-

width,” in Proceedings of the International Symposium on High Performance

Computer Architecture, pp. 1–12, IEEE, 2010.

[30] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison cache: A scalable and

effective die-stacked DRAM cache,” in Proceedings of the International Sympo-

sium on Microarchitecture, pp. 25–37, IEEE, 2014.

97

[31] N. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan, “Bi-modal dram

cache: Improving hit rate, hit latency and bandwidth,” in Proceedings of the In-

ternational Symposium on Microarchitecture, pp. 38–50, IEEE, 2014.

[32] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee, “A fully as-

sociative, tagless DRAM cache,” ACM SIGARCH Computer Architecture News,

vol. 43, no. 3, pp. 211–222, 2015.

[33] C. Chou, A. Jaleel, and M. K. Qureshi, “Cameo: A two-level memory organiza-

tion with capacity of main memory and flexibility of hardware-managed cache,”

in Proceedings of the International Symposium on Microarchitecture, pp. 1–12,

IEEE, 2014.

[34] V. Seshadri, A. Bhowmick, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.

Mowry, “The dirty-block index,” in Proceedings of the International Symposium

on Computer Architecture, pp. 157–168, IEEE, 2014.

[35] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[36] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recog-

nition challenge,” International Journal of Computer Vision, vol. 115, no. 3,

pp. 211–252, 2015.

[37] D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang, D. Lottis, K. Moon,

X. Luo, E. Chen, A. Ong, et al., “Spin-transfer torque magnetic random access

98

memory (STT-MRAM),” ACM Journal on Emerging Technologies in Computing

Systems (JETC), vol. 9, no. 2, p. 13, 2013.

[38] A. Driskill-Smith, D. Apalkov, V. Nikitin, X. Tang, S. Watts, D. Lottis, K. Moon,

A. Khvalkovskiy, R. Kawakami, X. Luo, et al., “Latest advances and roadmap

for in-plane and perpendicular STT-RAM,” in Proceedings of the International

Memory Workshop, pp. 1–3, IEEE, 2011.

[39] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture of the 3D

stacked MRAM L2 cache for CMPs,” in Proceedings of the International Sym-

posium on High Performance Computer Architecture, pp. 239–249, IEEE, 2009.

[40] A. Vedaldi and K. Lenc, “MatConvnet: Convolutional neural networks for mat-

lab,” in Proceedings of the ACM International Conference on Multimedia,

pp. 689–692, ACM, 2015.

[41] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle accurate

memory system simulator,” IEEE Computer Architecture Letters, vol. 10, no. 1,

pp. 16–19, 2011.

[42] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level performance,

energy, and area model for emerging nonvolatile memory,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 7,

pp. 994–1007, 2012.

99

국문초록

3차원 적층 메모리나 STT-RAM 등의 새로 등장한 메모리는 기존의 SRAM 보

다 더 큰 집적도를 가지고 있다. 그결과, 최근 이러한 메모리들은 프로세서와 같은

칩혹은패키지로통합되고있다.이러한통합된메모리는기존의 SRAM보다프로

세서에더큰용량을제공한다.따라서이러한칩이나패키지의성능을향상시키기

위해서는 프로세서의 성능 자체를 향상시키는 것 뿐만 아니라 통합된 메모리를 효

과적으로관리하는것또한중요하다.

본논문에서는프로세서코어와새로등장한메모리가같은칩이나패키지에통

합된시스템의성능을향상시키는 2가지방법에대해연구한다.본논문의전반부는

프로세서와 3차원적층메모리가한패키지로통합된시스템의성능을향상시키는

데초정을맞춘다.이때시스템의로세서는범용이고통합된메모리에의접근패턴

이 미리 정해져 있지 않는 것을 가정한다. 더티 영역에 속한 블록들의 더티 여부를

유지하는 더티 블록 추적기라는 모듈을 고안하여 개발된 기법들을 시너지 효과가

나는방식으로결합한 DRAM캐시기법을제안한다.제안하는기법은만약 DRAM

캐시에 쓰려고 하는 위치의 블록이 깨끗한 경우, 쓰기 연산을 위한 불필요한 태그

확인을 줄인다. 실험 결과 제안하는 기법이 최신의 기법보다 상당한 성능 향상을

보였다.

본 논문의 후반부는 STT-RAM이 가속기와 한 칩에서 통합된 시스템의 성능을

향상시키는데초점을맞춘다.이때이시스템에서심층신경망이라고불리는특정

한 알고리즘들이 수행되는 것을 가정한다. 심층 신경망 알고리즘의 특성을 고려하

여 고성능이고 에너지 효율적인 가속기를 설계한다. ReLU 활성 함수의 음수 입력

값은사용되지않음에도불구하고계산하는데많은연산능력을필요로한다.빠른

100

단계에 곱의 합 연산의 최종 결과값이 음수인지 판별하여 연산량을 줄이는 기법을

제안한다.이기법은반전된 2의보수표현법과비트순차적곱의합산연산을사용

하며, 최종 값이 음수라고 판별된 경우 많은 연산들을 생략하고 해당하는 ReLU의

결과를 바로 0으로 설정할 수 있다. 또한 논문에서는 해당 기법을 효과적으로 적용

할 수 있는 가속기 구조를 제안한다. 평가 결과, 제안하는 기법을 적용한 가속기는

전체연산양을줄임으로써성능과에너지효율을크게향상시켰다.

주요어: DRAM 캐시, 3차원 적층 메모리, 더티 블록 추적기, 심층 신경망 알고리즘

가속기,빠른음수판별, STT-RAM

학번: 2012-20827

101

	1 Introduction
	1.1 A DRAM Cache using 3D-stacked Memory
	1.2 A Deep Neural Network Accelerator with STT-RAM

	2 A DRAM Cache using 3D-stacked Memory
	2.1 Background
	2.1.1 Loh-Hill DRAM Cache
	2.1.2 Alloy Cache
	2.1.3 Mostly-Clean DRAM Cache

	2.2 Direct-mapped DRAM Cache with Self-balancing Dispatch
	2.2.1 A Naıve Approach
	2.2.2 Dirty-Block Tracker (DiBT)
	2.2.3 Sampling Hit-Miss Predictor

	2.3 Evaluation Methodology
	2.3.1 Experimental Setup
	2.3.2 Workloads

	2.4 Results
	2.4.1 Performance
	2.4.2 Analysis
	2.4.3 Prediction Accuracy
	2.4.4 Sensitivity to Sampling Hit-miss Predictor to VUPPER
	2.4.5 Sensitivity to Dirty-Block Table Size
	2.4.6 Scalability
	2.4.7 Implementation Cost

	2.5 Related Work
	2.6 Summary

	3 A Deep Neural Network Accelerator with STT-RAM
	3.1 Background
	3.1.1 Computations in CNNs
	3.1.2 Sign Distribution of Inputs to ReLU
	3.1.3 Twos Complement Representation

	3.2 Early Negative Detection
	3.2.1 Bit-serial Sum of Products
	3.2.2 Inverted Twos Complement Representation
	3.2.3 Early Negative Detection

	3.3 Accelerator
	3.3.1 Overall Architecture
	3.3.2 Data block
	3.3.3 Processing Unit
	3.3.4 Buffers
	3.3.5 Memory Controller
	3.3.6 Providing Network
	3.3.7 Pipelined Bit-serial Sum of Products
	3.3.8 Global Controller

	3.4 Evaluation
	3.4.1 Methodology
	3.4.2 Workloads
	3.4.3 Normalized Runtime
	3.4.4 Normalized Energy Consumption
	3.4.5 Power Consumption
	3.4.6 Normalized EDP and ED2P
	3.4.7 Area

	3.5 Related work
	3.6 Summary

	4 Conclusion
	Abstract (In korean)

<startpage>15
1 Introduction 1
 1.1 A DRAM Cache using 3D-stacked Memory 1
 1.2 A Deep Neural Network Accelerator with STT-RAM 5
2 A DRAM Cache using 3D-stacked Memory 7
 2.1 Background 7
 2.1.1 Loh-Hill DRAM Cache 8
 2.1.2 Alloy Cache 9
 2.1.3 Mostly-Clean DRAM Cache 10
 2.2 Direct-mapped DRAM Cache with Self-balancing Dispatch 12
 2.2.1 A Naıve Approach 13
 2.2.2 Dirty-Block Tracker (DiBT) 20
 2.2.3 Sampling Hit-Miss Predictor 31
 2.3 Evaluation Methodology 32
 2.3.1 Experimental Setup 32
 2.3.2 Workloads 33
 2.4 Results 36
 2.4.1 Performance 36
 2.4.2 Analysis 38
 2.4.3 Prediction Accuracy 42
 2.4.4 Sensitivity to Sampling Hit-miss Predictor to VUPPER 43
 2.4.5 Sensitivity to Dirty-Block Table Size 45
 2.4.6 Scalability 46
 2.4.7 Implementation Cost 46
 2.5 Related Work 49
 2.6 Summary 50
3 A Deep Neural Network Accelerator with STT-RAM 52
 3.1 Background 52
 3.1.1 Computations in CNNs 52
 3.1.2 Sign Distribution of Inputs to ReLU 53
 3.1.3 Twos Complement Representation 54
 3.2 Early Negative Detection 55
 3.2.1 Bit-serial Sum of Products 55
 3.2.2 Inverted Twos Complement Representation 58
 3.2.3 Early Negative Detection 58
 3.3 Accelerator 60
 3.3.1 Overall Architecture 61
 3.3.2 Data block 62
 3.3.3 Processing Unit 62
 3.3.4 Buffers 65
 3.3.5 Memory Controller 65
 3.3.6 Providing Network 66
 3.3.7 Pipelined Bit-serial Sum of Products 67
 3.3.8 Global Controller 68
 3.4 Evaluation 71
 3.4.1 Methodology 72
 3.4.2 Workloads 74
 3.4.3 Normalized Runtime 77
 3.4.4 Normalized Energy Consumption 80
 3.4.5 Power Consumption 83
 3.4.6 Normalized EDP and ED2P 85
 3.4.7 Area 87
 3.5 Related work 87
 3.6 Summary 89
4 Conclusion 91
Abstract (In korean) 100
</body>

