

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Optimizing File Systems for

High-Performance Storage Devices

고성능 저장장치를 위한 파일시스템 최적화

FEBRUARY 2018

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Yongseok Son

Ph.D. DISSERTATION

Optimizing File Systems for

High-Performance Storage Devices

고성능 저장장치를 위한 파일시스템 최적화

FEBRUARY 2018

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Yongseok Son

Optimizing File Systems for High-Performance

Storage Devices

고성능 저장장치를 위한 파일시스템 최적화

지도교수 염헌영

이 논문을 공학박사 학위논문으로 제출함

2017 년 12 월

서울대학교 대학원

전기·컴퓨터 공학부

손용석

손용석의 공학박사 학위논문을 인준함

2017 년 12 월

위 원 장 엄현상 (인)

부위원장 염헌영 (인)

위 원 유승주 (인)

위 원 이재욱 (인)

위 원 한 혁 (인)

Abstract

High-performance storage technologies such as solid-state drives (SSDs) pro-

vide low-latency, high throughput, and high I/O parallelism to legacy storage

systems. SSDs access data without mechanical overhead, and they often leads

to order-of-magnitude improvements in performance over legacy storage devices

such as hard disk drives (HDDs). However, replacing HDDs with SSDs while

keeping the software I/O stack or not exploiting SSD features does not lead to

maximum performance.

In this dissertation, we optimize file systems to fully exploit the SSD features

(e.g., low-latency and high I/O parallelism). First, we analyze and explore I/O

strategies in the existing file systems on low-latency SSDs. The file systems

issue and complete several I/O requests when blocks are not contiguous, which

does not take advantage of the low-latency of SSDs. To address this problem, we

propose efficient I/O strategies, which transfer requests from discontiguous host

memory buffers in the file systems to discontiguous storage segments in a single

I/O request. Thus, they enable file systems to fully exploit the performance of

low-latency SSDs.

Second, we investigate the locking and I/O parallelism in the existing file

systems on highly parallel SSDs. In the file systems, the coarse-grained locking

to access shared data structures is used and I/O operations are serialized by a

single thread. For these reasons, the file systems often face the problem of lock

contention and underutilization of I/O bandwidth on multi-cores with highly

parallel SSDs. To address these issues, we enable concurrent updates on data

structures and parallelize I/O operations.

i

We implement our techniques in EXT4/JBD2 and evaluate them on low-

latency and highly parallel SSDs. The experimental results show that our op-

timized file system improves the performance compared to the existing EXT4

file system.

Keywords: File system, Operating System, High-Performance Storage Device,

Solid-State Drive

Student Number: 2013-30241

ii

Contents

Abstract i

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Approach and Contributions . 3

1.3 Dissertation Structure . 4

Chapter 2 Background 6

2.1 High-performance Storage Devices 6

2.2 Crash Consistency in File Systems 7

2.3 Read and Write Operations in the Existing File Systems 9

2.4 Journal I/O in the Journaling File Systems 10

2.5 Recovery in the Journaling File Systems 13

2.6 Existing Locking and I/O Parallelism in Journaling File Systems 14

Chapter 3 Design and Implementation 24

3.1 Optimizing File Systems for Low-latency Storage Devices 24

3.1.1 Design . 24

3.1.2 Implementation . 30

iii

3.2 Optimizing File Systems for Highly Parallel Storage Devices . . . 33

3.2.1 Design . 34

3.2.2 Implementation . 39

Chapter 4 Evaluation 50

4.1 Evaluating the Optimized File System for Low-latency Storage . 50

4.1.1 Run-time Performance . 52

4.1.2 Recovery Performance . 57

4.1.3 Experimental Analysis . 59

4.2 Evaluating the Optimized File System for Highly Parallel Storage 61

4.2.1 Run-time Performance . 63

4.2.2 Recovery Performance . 66

4.2.3 Experimental Analysis . 67

Chapter 5 Related Work 69

5.1 Analysis and Evaluation of High-Performance storage 69

5.2 Study of Journaling File Systems 70

5.3 File and I/O System Optimizations for Low-latency Storage . . . 72

5.4 Study of Scalability in Operating Systems 75

5.5 File and I/O System Optimizations for Highly Parallel Storage . 75

Chapter 6 Conculsion 78

6.1 Summary . 78

6.2 Future work . 79

요약 93

iv

List of Figures

Figure 1.1 Latency Breakdown on low-latency storage (the detailed

experimental environment is described in Section 4.1) . . 2

Figure 1.2 Scalability evaluation on highly parallel storage (the num-

ber of threads is the same as that of the cores and the

detailed experimental environment is described in Sec-

tion 4.2) . 3

Figure 2.1 Read-ahead and write-back of existing file system 11

Figure 2.2 Journal metadata/data and checkpoint of existing file

system . 13

Figure 2.3 Existing recovery I/O operations 15

Figure 2.4 Examples of existing locking and I/O operations (T:

thread, TxID: transaction ID, jh: journal head, S: spin

lock (j list lock)), M: mutex lock (j checkpoint mutex)

. 16

Figure 3.1 Read-ahead and write-back of the optimized file system . 26

Figure 3.2 Journal metadata/data and checkpoint of the optimized

file system . 29

v

Figure 3.3 Optimized recovery procedure 30

Figure 3.4 Concurrent updates on data structures 35

Figure 3.5 Parallel I/O in a cooperative manner (T: thread) 38

Figure 4.1 The DRAM-based SSD used in this study 51

Figure 4.2 FIO benchmark results (ordered mode) 51

Figure 4.3 TPC-C results (ordered mode) 54

Figure 4.4 FIO benchmark results (data journaling) 55

Figure 4.5 Fileserver results (data journaling) 57

Figure 4.6 Recovery performance 58

Figure 4.7 Ordered mode . 62

Figure 4.8 Data journaling mode . 64

Figure 4.9 Comparison with SpanFS 66

vi

List of Tables

Table 4.1 Experimental parameters for InnoDB 54

Table 4.2 Experimental parameters for fileserver 57

Table 4.3 The average page counts in a single request in the ordered

mode (SR: Sequential Read, SW: Sequential Write, RR:

Random Read, RW: Random Write, JO: Journal oper-

ation, CP: Checkpoint, the numbers in parentheses are

standard deviations) . 59

Table 4.4 The average page counts in a single request in the data

journaling mode (JO: Journal operation, CP: Checkpoint,

SW: Sequential Write, RW: Random Write, the numbers

in parentheses are standard deviations) 59

Table 4.5 The average page counts in a single request during recov-

ery (the numbers in parentheses are standard deviations) 60

Table 4.6 Experimental parameters 62

Table 4.7 Recovery performance . 67

Table 4.8 Device-level bandwidth and total execution time of main

locks and write operations 68

vii

Chapter 1

Introduction

1.1 Motivation

Over the last few decades, enhancing the performance of storage devices has

been an important challenge for computer systems in research and industry.

Many data-intensive applications have demanded high throughput and low-

latency. For many years, hard disk drives (HDDs) [1–4] have been used as

the most common primary storage device. However, the performance of HDDs

lags far behind that of the processor and the main memory due to mechanical

overhead (i.e., rotational and seek time), and this HDD performance bottleneck

has worsened in modern computer systems.

Semiconductor technology has introduced non-volatile memory (NVM) such

as MRAM [5], PCM [6], and NAND flash [7,8] to computer system communities,

and it opened up research challenges. NVM accesses data in low-latency and

highly parallel way, and this often leads to orders-of-magnitude improvements in

performance over HDDs. Such recent developments in NVM technologies have

1

0 10 20 30 40 50

4K

8K

16K

32K

64K

Latency (us)

R
eq

ue
st

 S
iz

e
(b

yt
es

)

PCIe Transfer Time DRAM Access Time Control Overhead

Figure 1.1: Latency Breakdown on low-latency storage (the detailed experimen-
tal environment is described in Section 4.1)

closed the performance gap between main memory and storage. Accordingly,

NVM has improved I/O performance in various environments such as cloud

platforms, social network services, large websites, etc. However, replacing HDD

with NVM while keeping the software I/O stack does not lead to maximum

performance as it is optimized for HDDs. To exploit the performance of NVM,

researchers [9–15] have reconstructed the traditional software I/O stack and

performed several optimizations.

Figure 1.1 shows a latency breakdown in our low-latency storage [16] with

varying request sizes. As shown in the figure, the PCIe transfer time accounts

for the major portion of the total PCIe communication time. The total time for

one 64 KiB request is 42% less than that for sixteen 4 KiB requests owing to the

benefit of the PCIe communication. This shows that a single request in larger

granularity is more efficient than multiple small requests. Therefore, processing

a large request is a better method for PCIe-based fast storage device. As our

observations, existing I/O strategies prevent file systems from taking advantage

of fast storage’s full performance even if the block I/O subsystem is optimized.

They process I/O requests by issuing and completing the request one by one

when the storage segments of the requests are discontinuous.

2

0

100

200

300

400

500

600

1 2 4 8 18
B

a
n

d
w

id
th

(M
B

/s
)

The number of cores

EXT4 P-EXT4 O-EXT4

0

200

400

600

800

1 2 4 8 18 36 54 72B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

Tokubench Varmail

(a) Ordered mode

36 54 72

0

200

400

600

800

1 2 4 8 18 36 54 72B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

Sysbench Fileserver

(b) Data journaling mode

Figure 1.2: Scalability evaluation on highly parallel storage (the number of
threads is the same as that of the cores and the detailed experimental environ-
ment is described in Section 4.2)

Figure 1.2 shows a scalability and I/O performance using metadata and

data-intensive workloads in the ordered and data journaling modes, respectively,

in our highly parallel storage [17]. As shown in the figure, the performance does

not scale well or decreases as the number of cores grows. Based on our analysis

and other studies [15,18], it is due to the contention on shared data structures

and serialization of I/O operations.

1.2 Approach and Contributions

To achieve lower latency and higher parallelism, we propose two main opti-

mizations for the file system. First, we propose I/O strategies of file systems

in terms of latency. The key idea is to transfer data from discontiguous host

memory buffers of file systems to discontiguous storage segments in a single I/O

request, which existing block-based file systems cannot provide. We note that

current storage protocols such as SATA and NVMe [19] support data transfer

only from discontiguous host memory segments to contiguous storage segments

in a single I/O request.

3

Second, we propose schemes to achieve high I/O parallelism as follows: (1)

We use lock-free data structures and operations to reduce the lock contention.

This scheme allows multiple threads to access the data structures (e.g., linked

lists) concurrently. (2) We propose a parallel I/O scheme that performs I/O op-

erations by multiple threads in a parallel and cooperative manner. This scheme

allows multiple threads to cooperate in I/O processing and issue/complete the

I/Os in parallel while not sacrificing the consistency of the file system.

We apply and implement the two optimizations on EXT4/JBD2. Our tech-

niques provide higher performance while preserving all features and the same

consistency level of the existing file system. We evaluate our optimized file sys-

tems for low-latency and parallelism using a DRAM-based SSD and Intel P3700

NVMe SSD, respectively. The experimental results show that the optimized file

systems improve the performance compared to the existing file system.

The contributions of this dissertation can be summarized as follows:

• We analyze the main obstacles that increase the latency and reduce the

parallelism of high-performance storage.

• We propose several optimization techniques for journaling file systems

and implement them on EXT4/JBD2.

• Experimental results show that the optimized file system could achieve

significant performance improvements, compared to the existing file sys-

tem, while providing the same level of consistency.

1.3 Dissertation Structure

This dissertation is organized as follows:

Chapter 2 analyzes I/O path and strategy in the file system in terms of I/O

latency and parallelism.

4

Chapter 3 designs and implements our schemes.

Chapter 4 evaluates our optimized file systems in terms of I/O low-latency

and parallelism using varying workloads.

Chapter 5 summarizes related works and compares them with our works.

Chapter 6 summarizes our optimizations and contributions.

5

Chapter 2

Background

2.1 High-performance Storage Devices

High-performance storage provides low-latency and highly parallel accessing

to data. Non-volatile memory (NVM) technologies, including PCM [20], spin-

transfer torque memory [21], MRAM [5], and NAND flash [7,8] are anticipated

to be faster than existing storage technologies (e.g., hard disk drives (HDDs)).

The most significant features of NVM [5,20,21] are low latency, high throughput,

and high parallelism without mechanical overheads. Previous studies [21, 22]

suggest that NVM will have bandwidth and latency similar to DRAM and

mention that the devices will be 50,000x faster than HDDs.

Modern PCIe-attached NVM-based SSDs [6, 22, 23] have emerged in many

studies, and the arrival of the NVMe interface [19, 24] implies that PCIe-

attached SSDs will be one of the target designs for fast NVM. Also, they

employ significant amount of parallelism by having multiple channels, where

each channel has multiple memory chips. Such a highly parallelized structure

6

provides rich opportunities for parallelism.

2.2 Crash Consistency in File Systems

Modern file systems provide crash consistency to applications. They employ

journaling or copy-on-write (COW) mechanisms for transaction processing.

Journaling file systems such as EXT4 [25], XFS [26], JFS [27], and ReiserFS [28]

use a variant of write-ahead logging (WAL) [29], which first writes the meta-

data and/or data to journal area before in-place updates to metadata or/and

data in storage for atomicity and durability. COW file systems [30], such as

BTRFS [31], ZFS [32], and log-structured file system [33], use out-of-place up-

dates to support crash consistency. They copy and modify the data for atomic

update and then free the previous data through garbage collection.

This dissertation focuses on the EXT4 journaling mechanism since EXT4

is the most widely used file system in Linux and general to other file sys-

tems [15,34]. The EXT4 uses a fork of the journaling block device (JBD) called

JBD2. The JBD is a file system-independent interface that can also be attached

to other file systems such as EXT3 and OCFS2. It performs journal updates,

commits, and checkpoint operations. EXT4 offers three journaling modes, such

as write-back, ordered, and data journaling [15,35–37]. Write-back is the weak-

est crash consistency mode among the three journaling modes. This mode writes

the metadata into the journal area, but the user data may be written into the

original area in the file system after its metadata has been committed to the

journal. In this mode, the ordering between the data and metadata is not pre-

served. The ordered mode provides stronger crash consistency than the write-

back mode by keeping order between the metadata and data. Similar to the

write-back mode, this mode writes the metadata into the journal while the

7

data is directly to the original area in the file system before the metadata is

written into the journal.

The data journaling mode supports the highest crash consistency with data

integrity. Both metadata and data are written into the journal area prior to

being written into the original area in the file system to ensure they are updated

atomically to persistent storage; they are either committed or aborted together

in a transaction. However, the overhead of the data journaling mode is the

largest among the journaling modes since the data is written to storage twice.

When an application updates blocks, a new transaction starts or the modi-

fication is compounded to the already running transaction activated by another

application, which is a compound transaction scheme; EXT4 has only one run-

ning transaction and one committing transaction at any time [15, 38]. When

the commit occurs at an interval of journal commit (5 seconds) or fsync call,

the updated blocks are written into the journal area.

The transaction finishes the commit work after writing the commit block1

into the end of the written blocks in the journal area. This commit block de-

cides whether the transaction is committed or uncommitted. In a system fail

or sudden power outage, the file system is remounted, and the file system scans

the blocks in the journal area. Then, the file system replays the metadata/data

blocks with a commit block and discards the blocks without a commit block.

Checkpointing is triggered periodically and activated when the amount of the

free space in the journal area drops below a certain threshold. The checkpoint

operation writes the metadata/data in the committed transactions into the

original area. The journal area is reclaimed via checkpoint so that the transac-

tion can be continuously processed by writing the metadata/data into the free

1A commit block generates a flush command to preserve the ordering between journal
metadata/data and the commit block

8

space in the journal area.

2.3 Read and Write Operations in the Existing File
Systems

In this section, we describe current I/O strategies such as read-ahead and write-

back. These strategies are applied to most Linux file systems in the same man-

ner, and they are used by default when applications open files. When a buffered

read is used, the file system performs the read-ahead technique to take advan-

tage of spatial locality. To do this, the file system selects the user requested

page(s) as well as additional adjacent pages. This technique is especially use-

ful for sequential read patterns, as the next accessed pages are more likely to

already be in the page cache, resulting in a higher page cache hit rate.

Figure 2.1a shows an example of a read-ahead operation in the existing file

system. There are five pages (Page 0-4). Page 0 is the page requested by the

user, and the other pages (Page1-4) are contiguous pages that the file system

wants to read ahead. Each page is mapped to LBA 30, 31, 32, 33, and 34,

respectively.

The file system performs read-ahead operations only for non up-to-date

pages. It checks whether the LBAs for pages are contiguous with each other to

ensure that each request has only contiguous pages. For example, in the case of

Figure 2.1a, since Page 2 is already up-to-date, it incurs a hole in LBA. Thus, the

file system first merges Page 0 (LBA: 30) and Page 1 (LBA: 31) into a request

and issues the request (Request #1) since the LBAs of Page1 and Page3 are

not contiguous. After I/O completion (polling) of the request, the file system

rechecks the contiguity between the LBAs of Page 3 and Page 4. The file system

merges these pages into a single request and issues the request (Request #2).

In the read-ahead operation, the contiguity of the LBA is dependent on the

9

state of the page.

When a buffered write is used, the file system performs write-back opera-

tions for dirty pages if the dirty rate of the pages in the page cache is higher

than the threshold. The file system chooses the dirty pages from the page cache

and obtains the LBAs for the pages. The file system then checks the contiguity

among pages. We note that the file system selects dirty pages without consid-

ering whether the pages are contiguous or not, unlike the prefetched pages.

Figure 2.1b describes an example of a write-back operation. There are five

dirty pages (Page 0-4). The pages are mapped to each LBA: 1, 2, 20, 89, and 45,

respectively. The file system merges the two contiguous pages (Page 0 (LBA:

1) and Page 1 (LBA: 2)) into a single request and issues the request (Request

#1). After I/O completion of the request, the file system rechecks the LBA

of the next page (Page 2) against the following page (Page 3). Since they are

discontinuous with each other, the file system first issues the request (Request

#2) for Page 2 and completes the I/O. Likewise, in order, the remaining pages

(Page 3, Page 4) are issued and completed as separate requests (Request #3

and Request #4). In this example, since the LBAs (20, 89, and 45) are all

discontinuous, the file system performs four operations.

In write-back operations, the LBA’s contiguity is dependent on the sequence

of the dirty pages. Consequently, current read-ahead and write-back operations

can reduce the bandwidth by incurring several requests instead of one large

request among discontinuous pages.

2.4 Journal I/O in the Journaling File Systems

We describe journal I/O operations, such as journal metadata/data, commit,

and checkpoint, based on the data journaling mode. Figure 2.2a shows the

journal metadata/data and commit operations in a transaction for the existing

10

Page1

(LBA:31)

Page0

(LBA:30)

Page2

(LBA:32)

Page3

(LBA:33)

Page4

(LBA:34)
Host memory

30 31 32 33 34

User request

Storage address

space

......

Request #1

Up to date

page

Read-ahead

Request #2

(a) Existing read-ahead

Page1

(LBA:2)

Page0

(LBA:1)

Page2

(LBA:20)

Page3

(LBA:89)

Page4

(LBA:45)
Host memory

1 2 20 8945
Storage address

space

......

Request #1 Request #2

...
Request #4 Request #3

(b) Existing write-back

Figure 2.1: Read-ahead and write-back of existing file system

file system. There are five pages (Page 0-4) for journal blocks and one page (Page

5) for a commit block to be written into the journal area. They are mapped to

each LBA: 10, 11, 12, 13, 14, and 15 respectively. The file system gets a journal

block from the journal buffer, issues the I/O and completes the I/O repeatedly

until the I/O for the journal blocks in the transaction are finished. After the five

pages (Page 0-4) for the journal blocks completely are written into the journal

area, the page (Page 5) for a commit block is written into the journal area

resulting in the transaction being committed. As a result, the journal I/Os for

each LBA make several requests (Request #1-#6).

11

We note that the I/O pattern for the journal metadata/data written to the

journal area is sequential. In a conventional block I/O subsystem, the sequen-

tial writes in the journal I/O can be merged by using functions supported by

an I/O scheduler. For example, the JBD2 module uses two functions such as

blk start plug() and blk finish plug(). The I/O scheduler merges sequen-

tial write requests between blk start plug() and blk finish plug() call into

a single large request. This mechanism is a disk-friendly feature. However, in

the case of high-performance storage devices, an I/O request bypasses the I/O

scheduler due to the well-known performance issue [14]. Thus, the JBD2 mod-

ule cannot explicitly use the features mentioned above due to the absence of

the I/O scheduler, and this leads to individual write requests for the journal

I/O. In our work, we use an optimized block I/O subsystem without the I/O

scheduler since it shows the best performance among all configurations. The

sequential writes in the journal I/O are performed as individual requests one

by one in the optimized block I/O subsystem.

Figure 2.2b shows the checkpoint operations in the existing file system.

There are five pages (Page 0-4) for checkpoint updates in the checkpoint buffer,

and they are mapped to each LBA: 23, 50, 70, 101, and 80, respectively. Since

the checkpoint operation writes the metadata/data blocks in the committed

transaction to the original area, their LBAs can be discontiguous to each other.

The file system gets a block (page) from the checkpoint buffer and then is-

sues and completes the block iteratively. As shown in this figure, there are five

separate requests (Request #1-#5). In conclusion, journaling and checkpoint

operations are issued and completed by each request per page. This current

I/O operation can reduce the bandwidth by incurring several requests instead

of one large request among pages.

12

Page1

(LBA:11)

Page0

(LBA:10)

Page2

(LBA:12)

Page3

(LBA:13)

Page4

(LBA:14)

Journal buffer

(Host memory)

10 11 12 13 14

Journal area

(storage address

space)

......

Request #1

Request #2

Journal metadata/data

Request #3

Request #4 Request #5

Page5

(LBA:15)

15

Commit block

Request #6

Transaction

(a) Existing journal metadata/data

Page1

(LBA:23)

Page0

(LBA:50)

Page2

(LBA:70)

Page3

(LBA:101)

Page4

(LBA:80)

Checkpoint buffer

(Host memory)

50 1017023 80

Original area

(storage address

space)

...

Request #1

Request #2

Checkpoint metadata/data

Request #3

Request #4

Request #5

...

(b) Existing checkpoint

Figure 2.2: Journal metadata/data and checkpoint of existing file system

2.5 Recovery in the Journaling File Systems

In this section, we describe the recovery procedure in the existing journaling

file system. After a system crash or power outage, the mount process reads

the journal blocks from the journal area and replays the changes until the file

system is consistent again. The changes are atomic in that they are either

replayed completely during recovery or are not replayed at all if they had not

yet been completely written to the journal area before the crash occurred.

We analyze the recovery I/O path in the JBD2 module. The module per-

13

forms read operations for getting all the journal blocks in the journal area. The

module then performs the checksum operation for the scanned blocks and then

selects blocks in the committed transactions. After all blocks to be replayed are

selected, the blocks are written to their original area by a sync operation, which

writes the blocks one by one. The journal area is initialized after the blocks in

the journal area are completely written to the original area.

Figure 2.3 shows an example of a recovery procedure in terms of I/O oper-

ations. The mount process reads the blocks (Page 0-4) mapped to each LAB:

1, 2, 3, and 4, in the journal area through four requests (Request #1-#4). The

JBD2 module goes through the block device layer directly for the read opera-

tion, and therefore, no read-ahead is performed. Similar to the case of journal

metadata/data I/O, in the Linux I/O scheduler-based system, adjacent blocks

can be merged. However, the I/O stack without the I/O scheduler performs the

I/Os as individual requests.

During the recovery procedure, the mount process identifies the journal

blocks and a commit block. If the commit block exists, as shown in the figure,

the journal blocks can be recovered and are written into the original area with

LBA: 33, 56, 78, through three requests (Request #4-#6). Consequently, as our

observation, the existing mount process performs inefficient I/O operations by

issuing several requests to storage.

2.6 Existing Locking and I/O Parallelism in Journal-
ing File Systems

In this section, we investigate the locking and I/O parallelism in EXT4/JBD2.

As shown in Figure 2.4a and 2.4b, a spin lock (j list lock) is used to en-

sure the correct list operations for journal heads (jhs)2 in the journaling lists

2Journal head (jh) is a structure that associates the buffer (buffer head (bh)) with
the respective transaction [39]. The operations on the bh are protected by a spin lock

14

Page1

(LBA:2)

Page0

(LBA:1)

Page2

(LBA:3)

Page3

(LBA:13)

Page4

(LBA:14)

Host memory

1 2 3 56 78

Mount process

(scan blocks)

storage address

space

......

Request #1

Request #2

Journal area

Request #3

Request #5

Request #6

33
...

Original area

Page1

(LBA:56)

Page0

(LBA:33)

Page2

(LBA:78)

Mount process

(replay blocks)

Request #7

Page1

(LBA:2)

Page0

(LBA:1)

Page2

(LBA:3)
Host memory

1 2 3 56 78

Mount process

(scan blocks)

storage address

space

......

Journal area

33
...

Original area

Page1

(LBA:56)

Page0

(LBA:33)

Page2

(LBA:78)

Mount process

(replay blocks)

Request #2

Page3

(LBA:4)

4

Request #1

Commit

block

Page3

(LBA:4)

Commit

block

4

Request #4

...

...

Figure 2.3: Existing recovery I/O operations

(transaction buffer and checkpoint lists) [15], which are circular doubly linked

lists. However, in multi-cores, this locking can incur a contention on the shared

data structures and limit the scalability. In addition, only a single thread

performs the journal and checkpoint I/Os. For example, as shown in Fig-

ure 2.4b, T3 performs I/O operations for checkpointing by acquiring a mutex

lock (j checkpoint mutex). Such serialized I/O operations can limit the I/O

parallelism on high-performance storage. We will explain the transaction pro-

cessing in terms of locking and I/O operations with the following simplified

procedures.

Running transaction. When application threads perform some file oper-

ations (e.g., create()), they start a transaction to handle the modifications

(Procedure 1, lines 3 and 31-39). To process the transaction, the threads first

check if a running transaction is available or not. If a running transaction is

available, the threads join the running transaction by increasing the number

of updates (t updates) in the transaction under the state lock (j state lock)

which is a read-write lock; the t updates variable indicates the number of cur-

rent threads that join the transaction. Otherwise, a new transaction is created,

(jbd lock bh state) per bh.

15

while(!list_empty(cp_wait_list)){

 bh = list_entry(cp_wait_list.next, struct buffer_head, b_assoc_buffers);

 if (buffer_locked(bh))

 wait_on_buffer(bh);

 list_del_init(&bh->b_assoc_buffers);

}

jh1 jh2

next

prev

CAS

T1

issue I/O

jh1 jh4

add T1's list

CAS

T3

jh3

CAS

T2

next

prev
jh4

CAS

next

prev

shared

linked list head tail

issue I/Oissue I/O

jh2 jh3

issue I/O

add T2's list add T3's list

local

linked list

add T1's list

next

prev

I/O issue //Initialize a cp_wait_list

restart:

while(jh = atomic_read(checkpoint_list)){

if(compared_and_swap(checkpoint_list, jh, jh->next) != jh)

goto restart;

bh = jh2bh(jh);

write_dirty_buffer(bh);

list_add_tail(bh->list, cp_wait_list);

}

jh1 jh4

wait I/O

jh2 jh3
local

linked list

wait I/O

next

prev

T1 T1 T2 T3

I/O completion

1

2

3

1

2

3

wait I/O wait I/O

transaction

 transaction (journaled buffer)

journal daemon

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

 transaction (journaled buffer)

Journal daemon

buffer buffer

client threads

(commit) (checkpoint)

journal area original area

buffer buffer

Existing Checkpoint Proposed Checkpoint

Time

T1

jh1

CAS

T1

issue I/O

T2

CAS

shared

linked list

head

tail

issue I/Oissue I/O issue I/O

1

2

Time

T1

jh2 jh3 jh4

T3 T2 T1

issue I/O issue I/Oissue I/O issue I/O

T3

jh1 jh2

next

prev

Atomic

CAS

C1

issue I/O

bh1

add bh1 to

T1's list

jh3

next

prev
jh4

next

prev
shared

linked list

head tail

issue I/Oissue I/O

bh2 bh4

issue I/O

add bh2 to

T2's list
add bh4 to

T4's list

local

linked list

(wait list)

add T1's list

/* Initialize a local wait list */

restart:

while((jh = atomic_read(&checkpoint_list)) != NULL){

 if(atomic_compare_and_swap(&checkpoint_list, jh, jh->next) != jh)

 goto restart;

 bh = jh2bh(jh);

 submit_bh(bh);

 list_add(&wait_list, bh);

}

Time

CAS

T2

CAS

T3

CAS

T4

bh3

add bh3 to

T3's list

while(!list_empty(&wait_list)){

 bh = list_entry(wait_lIst.next, ...);

 wait_on_buffer(bh);

 list_del(bh);

}

bh1 bh2

wait I/O

bh3 bh4
local

linked list

wait I/O

T1 T2 T3 T4

wait I/O wait I/O

Running Transaction

Committing Transaction

Checkpointing Tranasaction

 transaction (journaled buffer)

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

Journal daemon

& Client threads

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

 atomic_set(&list->head, jh);

 }

 else{

 atomic_set(&jh->prev->next, jh);

 }

 atomic_sync();

jh1 jh2 jh3 jh4

next

T1 (insert)

list

head

prev
tail

/* initialize a local wait list */

while(1){

local_index = atomic_add(&repaly_index, 1);

if(local_index >= max)

break;

bh = replay_array[local_index];

submit_bh(bh);

list_add(&wait_list, bh);

}

bh50 bh60 bh70

T1

host

memory
...

bh50 bh60 bh70
... ... storage

T2

T3

/* initialize a local wait list */

while(1){

local_index = atomic_add(&scan_index, 1);

if(local_index >= max)

break;

jbd2_journal_bmap(journal, local_index, &blocknr);

bh = __getblk(dev, blocknr, j_blocksize);

submit_bh(bh);

list_add(&wait_list, bh);

}

bh10 bh11 bh12

host

memory
...

bh10 bh11 bh12 storage

T1

T2
T3

next

prev

 while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

list_del(bh);

}

while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

mark_buffer_dirty(bh);

local_index = atomic_add(&insert_index, 1);

repaly_array[local_index] = bh;

list_del(bh);

}

prev

next

(checkpoint list)

I/O issue

I/O completion

I/O issue

I/O completion

atomic_add(&nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

list->head = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh3 jhx

next

T1

list

head

prev

tail

next

prevprev

next

I/O completion

...

...

Transaction buffer list

(BJ_Metadata)

jh1 jh2 jh3prev
next

prev
next

Locking for list replacement

jh4prev
next

BJ_Shadow list

2

Checkpoint transaction

Lock-free insert

jh1 jh2

1

Running transaction Committing transaction

INSERT

List replacement without locking2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction

Recovery Transaction

crash crash

crash

commit

checkpoint

parallel checkpoint I/O

issue/completion

Locking for a single batched I/O3

jh1 jh2

Lock-free iteration4

t_checkpoint_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A parallel I/O for scan and repaly5

BJ_Metadata list

No locking

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated

Not yet updated

A single operation

Locking for insert

jh1 jh2

1

Running transaction

Committing transaction

INSERT

jh1

DELETE

INSERT

Locking for list replacement2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction Recovery Transaction

crash crash

crash

commit

checkpoint

checkpoint I/O

Locking for a single batched I/O3

S
S

S

M

jh1 jh2
S

Locking for list iteration

and list replacement
4

jh1S

DELETE

INSERT

t_checkpoint_list

t_checkpoint_io_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A single I/O for scan and repaly5

BJ_Metadata list

S Mspin lock (j_list_lock) mutex lock (j_checkpoint_mutex)

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated Not yet updated

A single operation

s
c

a
n

n
in

g

re
p

la
y

in
g

jh1 jh2

3 A parallel checkpoint I/O

P1 P2 P3

jh1 jh2

Committing transaction

jh1

DELETE

INSERT

S

S

BJ_Shadow list

BJ_Metadata list

jh1 jh3

transaction buffer list

P1 P2 P3

C1

P1

M

jh1SINSERT

t_checkpoint_io_list

T2

Checkpointing transaction

INTERATION

jh1 jh2
SDELETE

t_checkpoint_list

C1

jh1 jh2BATCHED I/O

C1

P1

Locking for list replacement2

Locking for a single batched I/O3

Locking for list iteration

and list replacement
4

Recovery transaction

A single I/O for scan and repaly5

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Running and committing transaction

S
jh1 jh2

Checkpoint list

P1 P2 P3

C3

Checkpointing

jh2

C1

C2

bh1 bh2 bh3

checkpoint buffer

C3

A parallel I/O without locking

C1

C1 C2

jh1 jh2 jh3

A Parallel I/O

C3C2

tailhead

Running and committing transaction

list jh1

head

prev

next

jh2
prev

next

jh3
prev

next

jh4

tail

jh1 jh3jh2

tailhead

c
h

ec
k

p
o

in
t list

C3

A parallel I/O without locking

(Checkpointing)

C1 C2

bh1 bh2 bh3

jh1 jh3jh2

tailhead

c
h

ec
k

p
o

in
t list

running

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

C2 C1 C3

Recovery

T1

bh1

bh1

bh2

bh2

T1

journal area

bh1

bh1

bh2

bh2

T1

original area

T1

host memoryhost memory

scanning replaying

T1

bh1

bh1

bh2

bh2

T2

journal area

bh1

bh1

bh2

bh2

T1

original area

T2

host memoryhost memory

scanning replaying

P1

S
jh4 jh5

1

jh4 jh5

12

C1

committing2

S

S spin lock (j_list_lock)

committed

c
h

e
c
k
p

o
in

ti
n

g

P1

1

committed

2

checkpointing

1

2

(1) (2) (3) (4)

Running and committing transaction

Checkpointing

Recovery

bh1 bh2 bh3

A single-threaded

mount process

(1) T1(2) T1(3)

bh1 bh2 bh3

bh1 bh2 bh3

T1T2 T3

bh1 bh2 bh3

C2

C2

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

running

jh4 jh5

committing

S

C1

bh1 bh2 bh3

T2

bh1 bh2 bh3

T1

1 2 3

T3

A multiple-threaded

mount process

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

S

S

M

C3C1

C2

checkpointing

T3

bh1 bh2 bh3

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

c
h

ec
k

p
o

in
t listC1 C3 C5 C4

P1

committed

C2 C5C4

bh1 bh2 bh3

checkpoint buffer

checkpoint list

P1

committed

transaction

(TxID: 1)
C2

C2

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1 P2

S

P3

P4 P5

running

P6

Running (TID: 2)

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

P1 P2

S

P3

running transaction

P3

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

C1

S

committing transaction

C1

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

committing (TID: 2)

running (TID: 3)

Phase 1 Phase 2 Phase 3
ru

n
n

in
g

c
o

m
m

tt
in

g

S

C0 P0

TB list CP list

TB list

S

S

S

C0 P0

TB list CP list

S

time

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1
jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1

P2

S

P3

running transaction

committing transaction

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

committing transaction

P3

committing

Transaction

(TxID: 1)

C1

running

Transaction

(TxID: 2)
transaction buffer list

transaction buffer list

checkpointing transaction (TxID: 1)

P1

P2

running

transaction

jh1 jh2

head

P3 (INSERT)

running

transaction

(TxID: 1)

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

P3

jh1 jh3jh2

tailhead

jh4 jh5

P3

running

transaction

(TxID: 1)transaction buffer list

jh6 jh8jh7

tailhead

jh9 jh10

jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

committing

transaction

(TxID: 1)
transaction buffer list

transaction buffer list

bh1 bh2 bh3

c
h
e

c
k
p
o
in

t lis
t

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

C2C1 C3

checkpointing transaction (TxID: 1)

I/O

P2P1

P3P2P1

C5C4

C1C2 C3 C5 C4

C1C2 C3 C5 C4

I/O I/O I/O I/O

bh1 bh2 bh3

checkpoint buffer

checkpoint list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

checkpoint io list

jh1 jh3jh2

tailhead

jh4 jh5

C3

 atomic_add(&running_tx->t_nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&running_tx->t_buffers_tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

running_tx->t_buffers = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

jh1 jh2 jh3 jhx

next
list

head

prev

next

prevprev

next

removed

tail

set remove

C3C2C1

Running list(TxID:1)

Running state

Committing list (TxID:1)

Committing state

Checkpoint list (TxID:1)

Checkpointing state

Locked

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/O I/O

Application thread

Changing state

jh

jh (removed)

Lock-free

Lock-free
insert/delete

Lock-free
insert/delete/iteration

Lock-free
insert/delete/iteration

S

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

S
S

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

/* unlinking the bh from the jh */

/* Inserting the removed jh into a GClist */

INSERT

DELETE

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

running transaction
list (TxID:1)

journal daemon

Time

application thread jh jh (removed) at running

UL

UL

L

jh (removed) at checkpointing

Running

SR

R

create or join a
transaction
(TxID: 1)

R

changing a running
into a commtting

transaction
(TxID: 1)

committing
transaction list

(TxID:1)

S

Checkpointing
transaction list

S

M

R
read/write lock
(j_state_lock) S

spinlock
(j_list_lock) M

mutexlock
(j_checkpoint_mutex)

/* join a running transaction*/

repeat:

read_lock(journal->j_state_lock);

if(!journal->j_running_transaction)

{

read_unlock(journal->j_state_lock);

write_lock(journal->j_state_lock);

/* allocating a new transaction */

transaction = kmem_cache_zalloc();

journal->j_running_transaction = transaction;

transaction->t_state = T_RUNNING;

...

write_unlock(journal->j_state_lock);

goto repeat;

}

transaction = journal->j_running_transaction;

read_unlock(journal->j_state_lock);

/* insert a running transaction list */

spin_lock(journal->j_list_lock);

transaction->nr_buffers++;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

/* insert running transaction list*/

spin_lock(journal->j_list_lock);

transaction->nr_buffers--;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

C1

C4

C2

committing_tx->t_shadow_list = committing_tx->t_buffers;

committing_tx->t_shadow_tail = committing_tx->t_buffers_tail;

restart:

while((jh = atomic_read(&committing_tx->t_buffers)) != NULL){

if(atomic_compare_and_swap(&committing_tx->t_buffers, jh, jh->next) != jh);

/* making shadow buffers */

set_buffer_shadow(jh);

/* flushing buffers to journal area */

...

}

C1

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

jh->gc_prev = atomic_set(&running_tx->gc_list_tail, jh);

atomic_sync();

If(jh->gc_prev == NULL){

running_tx->gc_list = jh;

}

else{

jh->gc_prev->gc_next = jh;

}

/* unlinking the bh from the jh */ DELETE

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

C4

t_checkpoint_io_list

jh1 jh3jh2

tailhead

jh4 jh5

C3

j_checkpoint_transaction

transaction buffer list

buffer
next

P1

head tail
prev

P2

removed

P1

buffer

C2

(delete)

P1

(insert)

C1

(delete)
P2

(insert)

C4 (skip I/O)

C4 (I/O)

(2) I/O phase

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

jh1 jh2 jh3 jh4

next

C2head

(t_buffers)

prev

tail

(t_buffers_tail)

next

prevprev

next

P1

removed

C1

jh5

P2

next

prev
removed

T(P1) < T(P2), T(C1) < T(C2), T(Pjh2) < T(Cjh2)

C5 (I/O)

1

C3 (I/O) C6 (skip I/O)

buffer
next

head

tail
prev

buffer

P1

(insert)

C1

(delete)
P2

(insert)

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

1

C3

I/O

 I/O phase2

C4

skip I/O

C5

I/O

C6

skip I/O

1 23

bh10 bh11 bh12

host memory

bh1 (10) bh2 bh12

storage

T1

T2
T3

journal area

bh50 bh60 bh70

host memory

bh50 bh60 bh70

storage

original area

P2 P3 C1 C2 C3

jh1 jh2

next

prev

CAS

C1

issue I/O

bh1

add bh1 to

C1's wait list

jh3

next

prev
jh4

next

prev
head tail

issue I/Obypass I/O issue I/O

Local list

(wait list)

1

2

3

CAS

C2

CAS

C3

CAS

C2

Shared list

(I/O list)

bh1 bh2

wait I/O

bh3 bh4

wait I/O

C1 C2 C3 C4

wait I/O wait I/O

Local list

(wait list)

bh3

add bh3 to

C3's wait list

bh4

add bh4 to

C4's wait list

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)
transaction buffer list

next

prev

jh3

next

prev

jh4

next

prev

next

prev

S

jh1 jh2 jh3 jh4 jh5

committing

transactionhead jh1 jh2 jh3 jh4 jh5

checkpointing

transactionhead jh1 jh2 jh3 jh4 jh5

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

C1
jh1 jh3jh2head jh4 jh5

P1

P2

S

P3 jh6 jh8jh7head jh9 jh10

committing

transaction

(TxID: n)

C1

running

transaction

(TxID: n+1)

atomic

set
atomic

set

atomic

set

jh1 jh2

next

prev

atomic

CAS

T1

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

local

linked list

(wait list)

atomic

CAS

T2

atomic

CAS

T3

atomic

CAS

T4

bh3

insert bh3 to

C3's wait list

removed

P1

bh1 bh2 bh3

checkpoint buffer

checkpoint_list

M

jh1 jh3jh2

head

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: n)

C3

C3

C3

C3

I/O

C4

jh3

next

prev

T1

host memory

bh1 (10)

storage

journal area

T2 T3

bh2 (20) bh3 (30)

bh1 (10) bh2 (20) bh3 (30)

T1

host memory

bh1 (50)

storage

original area

T2 T3

bh2 (60) bh3 (70)

bh1 (50) bh2 (60) bh3 (70)

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

T5

C2

T1
jh6 jh8jh7head jh9 jh10

T3

T4

S

T5 jh11 jh13jh12head jh14 jh15

committing

transaction

(TxID: n-1)

T1

running

transaction

(TxID: n)

T2 jh1 jh3jh2 jh4 jh5

S

C2C1 C3 checkpointing

transaction

(TxID: n-2)

C3

C3

C3

I/O

C4

M

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

head

jh1 jh3jh2 jh4 jh5

ST2

T1

T3
checkpointing

transaction

(TxID: n-2)

T3

T3

I/O

T4

M

head

T3

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2GC head

GC tail atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1
1 23

atomic set

(insert)

atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2

GC

head

atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

shared

linked list

shared

linked listjhx

next

prev
jhx

prev

jh1 jh2 jh4 jh5

next

T1

head

prev

tail

next

prevprev

next

T2

set removed

T3 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

safe point

free

insert GC list

(logically remove)

physically removed (at safe points)

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12 jh10

next

prev
jh11

C1
atomic CAS

(remove)
GC

head

free free

C2

GC

tail

next

prev
jh12

safe point

P3
atomic set

(insert)

free

C3

atomic CAS

(remove)

atomic CAS

(remove)

logical remove physical remove

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12

safe point

P3
atomic set

(insert)

logical remove

Running list(TxID:1) Committing list (TxID:1) Checkpoint list (TxID:1)

Journal daemon

INS DEL INS

Time

GC list

INS

GC list

FREE

Application thread

Changing state

jh

jh (removed)

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove" "physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list
INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer

list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove"
"physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Txbuffer list

I/O

bypass

I/O
INS RM INS

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Txbuffer
list

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

running transaction
(TxID:1)

Txbuffer list

I/O
RM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

Txbuffer
list

I/O

< safe point >

jh1 jh2

next

prev

atomic

CAS

jh3 jh4

current head

(jh1)

T1

jh5

next

prev

next

prev

next

prev

1

current head

(jh2)

T22 atomic

CAS

current head

(jh3)

current head

(jh4)

current head

(jh5)

T33 atomic

CAS
T44 atomic

CAS

next

T55 atomic

CAS

current head

(NULL)

jh1 jh2

next

prev

atomic

CAS

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

local

linked list

(wait list)

atomic

CAS

atomic

CAS
atomic

CAS

bh3

insert bh3 to

C3's wait list

removed

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

jh1 jh2

next

prev

atomic

CAS

jh3

T1

1

T2

2

atomic

CAS
T3

3

atomic

CAS
T44 atomic

CAS
T55 atomic

CAS

next

prev

...

jh1 jh2

next

prev
jh3

next

prev

fetch
jh1

head

compare jh1

head
swap

fetch compare and swap

Time

jh4

next

prev
jh5

next

prev

running transaction
(TxID:1)

Txbuffer list

I/ORM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

INS

I/O I/O

< safe point >

jh1 jh2

next
jh3

next
jh4

next

prev
jh5

next

prev

running transaction
(TxID:1)

Txbuffer list

I/ORM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

INS

I/O I/O

< safe point >

Txbuffer
list

checkpoint list

transaction buffer list

transaction buffer list

(a) running and committing transaction

while(!list_empty(cp_wait_list)){

 bh = list_entry(cp_wait_list.next, struct buffer_head, b_assoc_buffers);

 if (buffer_locked(bh))

 wait_on_buffer(bh);

 list_del_init(&bh->b_assoc_buffers);

}

jh1 jh2

next

prev

CAS

T1

issue I/O

jh1 jh4

add T1's list

CAS

T3

jh3

CAS

T2

next

prev
jh4

CAS

next

prev

shared

linked list head tail

issue I/Oissue I/O

jh2 jh3

issue I/O

add T2's list add T3's list

local

linked list

add T1's list

next

prev

I/O issue //Initialize a cp_wait_list

restart:

while(jh = atomic_read(checkpoint_list)){

if(compared_and_swap(checkpoint_list, jh, jh->next) != jh)

goto restart;

bh = jh2bh(jh);

write_dirty_buffer(bh);

list_add_tail(bh->list, cp_wait_list);

}

jh1 jh4

wait I/O

jh2 jh3
local

linked list

wait I/O

next

prev

T1 T1 T2 T3

I/O completion

1

2

3

1

2

3

wait I/O wait I/O

transaction

 transaction (journaled buffer)

journal daemon

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

 transaction (journaled buffer)

Journal daemon

buffer buffer

client threads

(commit) (checkpoint)

journal area original area

buffer buffer

Existing Checkpoint Proposed Checkpoint

Time

T1

jh1

CAS

T1

issue I/O

T2

CAS

shared

linked list

head

tail

issue I/Oissue I/O issue I/O

1

2

Time

T1

jh2 jh3 jh4

T3 T2 T1

issue I/O issue I/Oissue I/O issue I/O

T3

jh1 jh2

next

prev

Atomic

CAS

C1

issue I/O

bh1

add bh1 to

T1's list

jh3

next

prev
jh4

next

prev
shared

linked list

head tail

issue I/Oissue I/O

bh2 bh4

issue I/O

add bh2 to

T2's list
add bh4 to

T4's list

local

linked list

(wait list)

add T1's list

/* Initialize a local wait list */

restart:

while((jh = atomic_read(&checkpoint_list)) != NULL){

 if(atomic_compare_and_swap(&checkpoint_list, jh, jh->next) != jh)

 goto restart;

 bh = jh2bh(jh);

 submit_bh(bh);

 list_add(&wait_list, bh);

}

Time

CAS

T2

CAS

T3

CAS

T4

bh3

add bh3 to

T3's list

while(!list_empty(&wait_list)){

 bh = list_entry(wait_lIst.next, ...);

 wait_on_buffer(bh);

 list_del(bh);

}

bh1 bh2

wait I/O

bh3 bh4
local

linked list

wait I/O

T1 T2 T3 T4

wait I/O wait I/O

Running Transaction

Committing Transaction

Checkpointing Tranasaction

 transaction (journaled buffer)

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

Journal daemon

& Client threads

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

 atomic_set(&list->head, jh);

 }

 else{

 atomic_set(&jh->prev->next, jh);

 }

 atomic_sync();

jh1 jh2 jh3 jh4

next

T1 (insert)

list

head

prev
tail

/* initialize a local wait list */

while(1){

local_index = atomic_add(&repaly_index, 1);

if(local_index >= max)

break;

bh = replay_array[local_index];

submit_bh(bh);

list_add(&wait_list, bh);

}

bh50 bh60 bh70

T1

host

memory
...

bh50 bh60 bh70
... ... storage

T2

T3

/* initialize a local wait list */

while(1){

local_index = atomic_add(&scan_index, 1);

if(local_index >= max)

break;

jbd2_journal_bmap(journal, local_index, &blocknr);

bh = __getblk(dev, blocknr, j_blocksize);

submit_bh(bh);

list_add(&wait_list, bh);

}

bh10 bh11 bh12

host

memory
...

bh10 bh11 bh12 storage

T1

T2
T3

next

prev

 while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

list_del(bh);

}

while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

mark_buffer_dirty(bh);

local_index = atomic_add(&insert_index, 1);

repaly_array[local_index] = bh;

list_del(bh);

}

prev

next

(checkpoint list)

I/O issue

I/O completion

I/O issue

I/O completion

atomic_add(&nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

list->head = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh3 jhx

next

T1

list

head

prev

tail

next

prevprev

next

I/O completion

...

...

Transaction buffer list

(BJ_Metadata)

jh1 jh2 jh3prev
next

prev
next

Locking for list replacement

jh4prev
next

BJ_Shadow list

2

Checkpoint transaction

Lock-free insert

jh1 jh2

1

Running transaction Committing transaction

INSERT

List replacement without locking2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction

Recovery Transaction

crash crash

crash

commit

checkpoint

parallel checkpoint I/O

issue/completion

Locking for a single batched I/O3

jh1 jh2

Lock-free iteration4

t_checkpoint_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A parallel I/O for scan and repaly5

BJ_Metadata list

No locking

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated

Not yet updated

A single operation

Locking for insert

jh1 jh2

1

Running transaction

Committing transaction

INSERT

jh1

DELETE

INSERT

Locking for list replacement2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction Recovery Transaction

crash crash

crash

commit

checkpoint

checkpoint I/O

Locking for a single batched I/O3

S
S

S

M

jh1 jh2
S

Locking for list iteration

and list replacement
4

jh1S

DELETE

INSERT

t_checkpoint_list

t_checkpoint_io_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A single I/O for scan and repaly5

BJ_Metadata list

S Mspin lock (j_list_lock) mutex lock (j_checkpoint_mutex)

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated Not yet updated

A single operation

s
c

a
n

n
in

g

re
p

la
y

in
g

jh1 jh2

3 A parallel checkpoint I/O

P1 P2 P3

jh1 jh2

Committing transaction

jh1

DELETE

INSERT

S

S

BJ_Shadow list

BJ_Metadata list

jh1 jh3

transaction buffer list

P1 P2 P3

C1

P1

M

jh1SINSERT

t_checkpoint_io_list

T2

Checkpointing transaction

INTERATION

jh1 jh2
SDELETE

t_checkpoint_list

C1

jh1 jh2BATCHED I/O

C1

P1

Locking for list replacement2

Locking for a single batched I/O3

Locking for list iteration

and list replacement
4

Recovery transaction

A single I/O for scan and repaly5

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Running and committing transaction

S
jh1 jh2

Checkpoint list

P1 P2 P3

C3

Checkpointing

jh2

C1

C2

bh1 bh2 bh3

checkpoint buffer

C3

A parallel I/O without locking

C1

C1 C2

jh1 jh2 jh3

A Parallel I/O

C3C2

tailhead

Running and committing transaction

list jh1

head

prev

next

jh2
prev

next

jh3
prev

next

jh4

tail

jh1 jh3jh2

tailhead

c
h

ec
k

p
o

in
t list

C3

A parallel I/O without locking

(Checkpointing)

C1 C2

bh1 bh2 bh3

jh1 jh3jh2

tailhead

c
h

ec
k
p

o
in

t list

running

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

C2 C1 C3

Recovery

T1

bh1

bh1

bh2

bh2

T1

journal area

bh1

bh1

bh2

bh2

T1

original area

T1

host memoryhost memory

scanning replaying

T1

bh1

bh1

bh2

bh2

T2

journal area

bh1

bh1

bh2

bh2

T1

original area

T2

host memoryhost memory

scanning replaying

P1

S
jh4 jh5

1

jh4 jh5

12

C1

committing2

S

S spin lock (j_list_lock)

committed

c
h

e
c
k
p

o
in

ti
n

g

P1

1

committed

2

checkpointing

1

2

(1) (2) (3) (4)

Running and committing transaction

Checkpointing

Recovery

bh1 bh2 bh3

A single-threaded

mount process

(1) T1(2) T1(3)

bh1 bh2 bh3

bh1 bh2 bh3

T1T2 T3

bh1 bh2 bh3

C2

C2

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

running

jh4 jh5

committing

S

C1

bh1 bh2 bh3

T2

bh1 bh2 bh3

T1

1 2 3

T3

A multiple-threaded

mount process

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

S

S

M

C3C1

C2

checkpointing

T3

bh1 bh2 bh3

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

c
h
ec

k
p

o
in

t listC1 C3 C5 C4

P1

committed

C2 C5C4

bh1 bh2 bh3

checkpoint buffer

checkpoint list

P1

committed

transaction

(TxID: 1)
C2

C2

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1 P2

S

P3

P4 P5

running

P6

Running (TID: 2)

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

P1 P2

S

P3

running transaction

P3

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

C1

S

committing transaction

C1

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

committing (TID: 2)

running (TID: 3)

Phase 1 Phase 2 Phase 3
ru

n
n

in
g

c
o

m
m

tt
in

g

S

C0 P0

TB list CP list

TB list

S

S

S

C0 P0

TB list CP list

S

time

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1
jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1

P2

S

P3

running transaction

committing transaction

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

committing transaction

P3

committing

Transaction

(TxID: 1)

C1

running

Transaction

(TxID: 2)
transaction buffer list

transaction buffer list

checkpointing transaction (TxID: 1)

P1

P2

running

transaction

jh1 jh2

head

P3 (INSERT)

running

transaction

(TxID: 1)

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

P3

jh1 jh3jh2

tailhead

jh4 jh5

P3

running

transaction

(TxID: 1)transaction buffer list

jh6 jh8jh7

tailhead

jh9 jh10

jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

committing

transaction

(TxID: 1)
transaction buffer list

transaction buffer list

bh1 bh2 bh3

c
h
e

c
k
p
o
in

t lis
t

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

C2C1 C3

checkpointing transaction (TxID: 1)

I/O

P2P1

P3P2P1

C5C4

C1C2 C3 C5 C4

C1C2 C3 C5 C4

I/O I/O I/O I/O

bh1 bh2 bh3

checkpoint buffer

checkpoint list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

checkpoint io list

jh1 jh3jh2

tailhead

jh4 jh5

C3

 atomic_add(&running_tx->t_nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&running_tx->t_buffers_tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

running_tx->t_buffers = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

jh1 jh2 jh3 jhx

next
list

head

prev

next

prevprev

next

removed

tail

set remove

C3C2C1

Running list(TxID:1)

Running state

Committing list (TxID:1)

Committing state

Checkpoint list (TxID:1)

Checkpointing state

Locked

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/O I/O

Application thread

Changing state

jh

jh (removed)

Lock-free

Lock-free
insert/delete

Lock-free
insert/delete/iteration

Lock-free
insert/delete/iteration

S

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

S
S

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

/* unlinking the bh from the jh */

/* Inserting the removed jh into a GClist */

INSERT

DELETE

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

running transaction
list (TxID:1)

journal daemon

Time

application thread jh jh (removed) at running

UL

UL

L

jh (removed) at checkpointing

Running

SR

R

create or join a
transaction
(TxID: 1)

R

changing a running
into a commtting

transaction
(TxID: 1)

committing
transaction list

(TxID:1)

S

Checkpointing
transaction list

S

M

R
read/write lock
(j_state_lock) S

spinlock
(j_list_lock) M

mutexlock
(j_checkpoint_mutex)

/* join a running transaction*/

repeat:

read_lock(journal->j_state_lock);

if(!journal->j_running_transaction)

{

read_unlock(journal->j_state_lock);

write_lock(journal->j_state_lock);

/* allocating a new transaction */

transaction = kmem_cache_zalloc();

journal->j_running_transaction = transaction;

transaction->t_state = T_RUNNING;

...

write_unlock(journal->j_state_lock);

goto repeat;

}

transaction = journal->j_running_transaction;

read_unlock(journal->j_state_lock);

/* insert a running transaction list */

spin_lock(journal->j_list_lock);

transaction->nr_buffers++;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

/* insert running transaction list*/

spin_lock(journal->j_list_lock);

transaction->nr_buffers--;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

C1

C4

C2

committing_tx->t_shadow_list = committing_tx->t_buffers;

committing_tx->t_shadow_tail = committing_tx->t_buffers_tail;

restart:

while((jh = atomic_read(&committing_tx->t_buffers)) != NULL){

if(atomic_compare_and_swap(&committing_tx->t_buffers, jh, jh->next) != jh);

/* making shadow buffers */

set_buffer_shadow(jh);

/* flushing buffers to journal area */

...

}

C1

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

jh->gc_prev = atomic_set(&running_tx->gc_list_tail, jh);

atomic_sync();

If(jh->gc_prev == NULL){

running_tx->gc_list = jh;

}

else{

jh->gc_prev->gc_next = jh;

}

/* unlinking the bh from the jh */ DELETE

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

C4

t_checkpoint_io_list

jh1 jh3jh2

tailhead

jh4 jh5

C3

j_checkpoint_transaction

transaction buffer list

buffer
next

P1

head tail
prev

P2

removed

P1

buffer

C2

(delete)

P1

(insert)

C1

(delete)
P2

(insert)

C4 (skip I/O)

C4 (I/O)

(2) I/O phase

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

jh1 jh2 jh3 jh4

next

C2head

(t_buffers)

prev

tail

(t_buffers_tail)

next

prevprev

next

P1

removed

C1

jh5

P2

next

prev
removed

T(P1) < T(P2), T(C1) < T(C2), T(Pjh2) < T(Cjh2)

C5 (I/O)

1

C3 (I/O) C6 (skip I/O)

buffer
next

head

tail
prev

buffer

P1

(insert)

C1

(delete)
P2

(insert)

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

1

C3

I/O

 I/O phase2

C4

skip I/O

C5

I/O

C6

skip I/O

1 23

bh10 bh11 bh12

host memory

bh1 (10) bh2 bh12

storage

T1

T2
T3

journal area

bh50 bh60 bh70

host memory

bh50 bh60 bh70

storage

original area

P2 P3 C1 C2 C3

jh1 jh2

next

prev

CAS

C1

issue I/O

bh1

add bh1 to

C1's wait list

jh3

next

prev
jh4

next

prev
head tail

issue I/Obypass I/O issue I/O

Local list

(wait list)

1

2

3

CAS

C2

CAS

C3

CAS

C2

Shared list

(I/O list)

bh1 bh2

wait I/O

bh3 bh4

wait I/O

C1 C2 C3 C4

wait I/O wait I/O

Local list

(wait list)

bh3

add bh3 to

C3's wait list

bh4

add bh4 to

C4's wait list

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)
transaction buffer list

next

prev

jh3

next

prev

jh4

next

prev

next

prev

S

jh1 jh2 jh3 jh4 jh5

committing

transactionhead jh1 jh2 jh3 jh4 jh5

checkpointing

transactionhead jh1 jh2 jh3 jh4 jh5

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

C1
jh1 jh3jh2head jh4 jh5

P1

P2

S

P3 jh6 jh8jh7head jh9 jh10

committing

transaction

(TxID: n)

C1

running

transaction

(TxID: n+1)

atomic

set
atomic

set

atomic

set

jh1 jh2

next

prev

atomic

CAS

T1

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

local

linked list

(wait list)

atomic

CAS

T2

atomic

CAS

T3

atomic

CAS

T4

bh3

insert bh3 to

C3's wait list

removed

P1

bh1 bh2 bh3

checkpoint buffer

checkpoint_list

M

jh1 jh3jh2

head

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: n)

C3

C3

C3

C3

I/O

C4

jh3

next

prev

T1

host memory

bh1 (10)

storage

journal area

T2 T3

bh2 (20) bh3 (30)

bh1 (10) bh2 (20) bh3 (30)

T1

host memory

bh1 (50)

storage

original area

T2 T3

bh2 (60) bh3 (70)

bh1 (50) bh2 (60) bh3 (70)

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

T5

C2

T1
jh6 jh8jh7head jh9 jh10

T3

T4

S

T5 jh11 jh13jh12head jh14 jh15

committing

transaction

(TxID: n-1)

T1

running

transaction

(TxID: n)

T2 jh1 jh3jh2 jh4 jh5

S

C2C1 C3 checkpointing

transaction

(TxID: n-2)

C3

C3

C3

I/O

C4

M

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

head

jh1 jh3jh2 jh4 jh5

ST2

T1

T3
checkpointing

transaction

(TxID: n-2)

T3

T3

I/O

T4

M

head

T3

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2GC head

GC tail atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1
1 23

atomic set

(insert)

atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2

GC

head

atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

shared

linked list

shared

linked listjhx

next

prev
jhx

prev

jh1 jh2 jh4 jh5

next

T1

head

prev

tail

next

prevprev

next

T2

set removed

T3 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

safe point

free

insert GC list

(logically remove)

physically removed (at safe points)

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12 jh10

next

prev
jh11

C1
atomic CAS

(remove)
GC

head

free free

C2

GC

tail

next

prev
jh12

safe point

P3
atomic set

(insert)

free

C3

atomic CAS

(remove)

atomic CAS

(remove)

logical remove physical remove

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12

safe point

P3
atomic set

(insert)

logical remove

Running list(TxID:1) Committing list (TxID:1) Checkpoint list (TxID:1)

Journal daemon

INS DEL INS

Time

GC list

INS

GC list

FREE

Application thread

Changing state

jh

jh (removed)

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove" "physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list
INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer

list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove"
"physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Txbuffer list

I/O

bypass

I/O
INS RM INS

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Txbuffer
list

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

running transaction
(TxID:1)

Txbuffer list

I/O
RM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

Txbuffer
list

I/O

< safe point >

jh1 jh2

next

prev

atomic

CAS

jh3 jh4

current head

(jh1)

T1

jh5

next

prev

next

prev

next

prev

1

current head

(jh2)

T22 atomic

CAS

current head

(jh3)

current head

(jh4)

current head

(jh5)

T33 atomic

CAS
T44 atomic

CAS

next

T55 atomic

CAS

current head

(NULL)

jh1 jh2

next

prev

atomic

CAS

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

local

linked list

(wait list)

atomic

CAS

atomic

CAS
atomic

CAS

bh3

insert bh3 to

C3's wait list

removed

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

jh1 jh2

next

prev

atomic

CAS

jh3

T1

1

T2

2

atomic

CAS
T3

3

atomic

CAS
T44 atomic

CAS
T55 atomic

CAS

next

prev

...

jh1 jh2

next

prev
jh3

next

prev

fetch
jh1

head

compare jh1

head
swap

fetch compare and swap

Time

jh4

next

prev
jh5

next

prev

running transaction
(TxID:1)

Txbuffer list

I/ORM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

INS

I/O I/O

< safe point >

jh1 jh2

next
jh3

next
jh4

next

prev
jh5

next

prev

running transaction
(TxID:1)

Txbuffer list

I/ORM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

INS

I/O I/O

< safe point >

Txbuffer
list

checkpoint list

transaction buffer list

transaction buffer list

(b) checkpointing transaction

Figure 2.4: Examples of existing locking and I/O operations (T: thread, TxID:
transaction ID, jh: journal head, S: spin lock (j list lock)), M: mutex lock
(j checkpoint mutex)

or the threads are scheduled3 if the transaction cannot be newly created.

After getting the running transaction (line 4), the threads modify their own

buffer and then try to insert it into a transaction buffer list by using the jh of the

buffer (bh). To insert the jh, the threads try to acquire a list lock (j list lock)

which is a spin lock (lines 5-6). A thread, which acquires the list lock, associates

the jh to the running transaction (line 45) and inserts the jh into the tail of

the list (line 46). Then, the thread releases the list lock and finishes the insert

operation (line 7). Finally, the thread completes its own transaction processing

3When a running transaction needs to be committed while a previous transaction is com-
mitting, the threads which try to get a running transaction are scheduled until the running
transaction is available. It is because there are only one running transaction and one commit-
ting transaction at any time in the compound transaction scheme [15,36].

16

PROCEDURE 1 C-like pseudo-code of running transaction in EXT4/JBD2

1: create(dir, ...){
2: /* create a new file */
3: handle = jbd2 journal start(journal, ...);
4: transaction = handle->transaction;
5: spin lock(journal->j list lock);
6: add buffer(bh->jh, transaction, transaction->t buffers);
7: spin unlock(journal->j list lock);
8: jbd2 journal stop(handle);
9: }

10: truncate(dentry, ...){
11: /* truncate a file */
12: journal unmap buffer(journal, bh);
13: }

14: journal unmap buffer(journal, bh){
15: /* invalidate a buffer */
16: write lock(journal->j state lock);
17: spin lock(journal->j list lock);
18: transaction = bh->jh->transaction;
19: if(!bh->jh->cp transaction){
20: head = jh->cp transaction->t checkpoint list;
21: del buffer(bh->jh, bh->jh->cp transaction, head);
22: }else if(transaction == journal->j committing transaction){
23: set buffer free(bh);
24: }else if(transaction == journal->j running transaction){
25: head = journal->j running transaction->t buffers;
26: del buffer(bh->jh, transaction, head);
27: }
28: spin unlock(journal->j list lock);
29: write unlock(journal->j state lock);
30: }

by decreasing the number of updates (lines 8 and 40-43).

When application threads perform some file operations, such as truncate(),

the threads can invalidate buffers that are already associated with a transaction

17

31: jbd2 journal start(journal, ...){
32: if(j running transaction is not available)
33: <create a new transaction or call schedule()>
34: read lock(journal->j state lock);
35: handle->transaction = journal->j running transaction;
36: atomic add(transaction->t updates, 1);
37: read unlock(journal->j state lock);
38: return handle;
39: }

40: jbd2 journal stop(handle){
41: /* complete a transaction */
42: atomic sub(handle->transaction->t updates, 1);
43: }

44: add buffer(jh, transaction, head) a {
45: jh->transaction = transaction;
46: tail = head->prev;
47: if(!head){
48: jh->next = jh->prev = head = jh;
49: } else{
50: jh->prev = tail; jh->next = head; tail->next = head->prev = jh;
51: }
52: }

53: del buffer(jh, transaction, head) a{
54: if(head == jh){
55: head = jh->next;
56: if(head == jh)
57: head = NULL;
58: }
59: jh->prev->next = jh->next; jh->next->prev = jh->prev;
60: jh->transaction = NULL;
61: }

a The jh is inserted into/removed from a transaction buffer list or checkpoint list by using
the prev/next/transaction or cpprev/cpnext/cp transaction fields of the jh, respectively.

18

(lines 10-13, 14-30, and 48-51). In this case, by acquiring the state lock and the

list lock (lines 16-17), a thread removes the jh from the transaction buffer or

checkpoint lists (line 49) and disassociates the jh with the running or check-

point transactions (line 50) if it is associated with the running or checkpoint

transactions, respectively. If the jh is associated with a committing transac-

tion, the thread sets the jh as freed ; both the jh and its buffer will be freed

later during the commit procedure. As discussed above, EXT4/JBD2 ensures

correct updates on the transaction state and the transaction buffer list by the

state lock and the list lock, respectively.

Committing transaction. To commit a transaction, a journal thread

wakes up and processes a commit procedure (Procedure 2). First, the thread

changes the running transaction to a committing transaction and its state to

committing. Then, the thread initializes the running transaction by acquiring

the state lock (lines 2-5). And then, the journal thread waits for other threads

to complete their transaction processing by checking the t updates variable

(line 6). Therefore, if the jh is already associated with a running transaction,

the jh must be moved to a committing transaction. Meanwhile, the committing

transaction does not accept any new modifications, and the next modification

triggers the creation of a new running transaction. With the committing trans-

action, the journal thread prepares for journal I/Os by creating a wait list,

which is used to wait the I/Os (line 8). Then, the thread fetches the jh from

the head (t buffers) of the transaction buffer list and creates a copy of its

buffer called frozen buffer (frozen bh) to preserve the contents of the buffer

(lines 9-11). And then, the thread removes the jh from the list by updating the

head of the list to the next of the head, and inserts the jh into the shadow list4

4The shadow list (t shadow) includes the frozen buffers which preserves the contents of
the buffers.

19

under the list lock (lines 12-15).

To perform a batched journal I/O, the journal thread aggregates the frozen

buffer by inserting it into a write buffer (wbuf) and the wait list (lines 16-17). If

the number of inserted buffers (bufs) is higher than the pre-defined threshold,

the thread issues I/Os to the journal area by calling submit bh() and prepares

for the next I/Os (lines 18-22). After issuing all the I/O requests for journaling,

the thread waits for the I/Os and then removes the jh from the shadow list and

inserts it into the forget list5 under the list lock (lines 24-32). After all the I/Os

are completed, the journal thread writes the commit block for the transaction

atomicity (line 33); if a crash occurs, the file system can replay or discard the

transaction according to the existence of the commit block of the transaction.

Then, the thread makes a checkpoint list with the buffers that are not freed

and still dirty in the forget list under the list lock (lines 34-42). Finally, the

committed transaction is inserted into the tail of a checkpoint transaction list

for checkpointing by acquiring the state and list locks (lines 43-48).

Checkpointing transaction. When a transaction needs to be checkpointed,

application threads try to acquire a checkpoint mutex lock (j checkpoint mutex)

and perform a batched I/O operation (Procedure 3, line 2). A thread, which ac-

quires the mutex lock, performs the checkpoint I/O operations while others are

blocked by the lock until the I/O operations are completed. Then, the thread

tries to acquire the list lock to get the transaction and access its checkpoint list

(lines 3-9). The list lock is used since other threads can access the checkpoint

list to remove the jhs when they free the buffers of the jhs, which do not need

to be checkpointed.

5The forget list (t forget) includes both the frozen buffers from the shadow list and buffers
to be freed. In some cases, when an application thread frees a buffer which is associated with a
transaction but not needed to be checkpointed, the thread inserts the jh of the buffer into the
forget list. By doing so, the jh is not inserted into the checkpoint list at the commit procedure.

20

PROCEDURE 2 C-like pseudo-code of committing transaction in
EXT4/JBD2

1: jbd2 journal commit transaction(journal){
2: transaction = journal->j running transaction;
3: write lock(journal->j state lock);
4: journal->j committing transaction = transaction;
5: journal->j running transaction = NULL;
6: while(atomic read(transaction->t updates)){...}
7: write unlock(journal->j state lock);
8: create wait list(local wait list); // create a local wait list
9: while(transaction->t buffers){

10: jh = transaction->t buffers;
11: <making a frozen buffer (frozen bh)>
12: spin lock(journal->j list lock);
13: del buffer(jh, transaction, transaction->t buffers);
14: add buffer(jh, transaction, transaction->t shadow);
15: spin unlock(journal->j list lock);
16: wbuf[bufs++] = jh->frozen bh;
17: add wait list(local wait list, jh->frozen bh);
18: if(bufs == journal->j wbufsize){ /*j wbufsize: 341*/
19: for(i=0 ; i<bufs ; i++)
20: submit bh(WRITE, wbuf[i]);
21: bufs=0;
22: }
23: }
24: while(!list empty(local wait list)){
25: frozen bh = list entry(local wait list.prev, ...);
26: wait on buffer(frozen bh);
27: jh = transaction->t shadow->prev;
28: spin lock(journal->j list lock);
29: del buffer(jh, transaction, transaction->t shadow);
30: add buffer(jh, transaction, transaction->t forget);
31: spin unlock(journal->j list lock);
32: }
33: <issue and complete a commit block>

Under the mutex and list locks, the thread aggregates the buffers by fetch-

ing the jhs from the checkpoint list and inserting the fetched buffers into a

21

34: spin lock(journal->j list lock);
35: while(transaction->t forget){
36: jh = transaction->t forget;
37: jh->transaction = NULL;
38: if(!buffer freed(jh->bh) && jbddirty(jh->bh))
39: add buffer(jh, transaction, transaction->t checkpoint list);
40: del buffer(jh, transaction, trasnaction->t forget);
41: }
42: spin unlock(journal->j list lock);
43: write lock(journal->j state lock);
44: spin lock(journal->j list lock);
45: <insert the committed transaction into a checkpoint transaction list
46: (journal->j checkpoint transactions)>
47: spin unlock(journal->j list lock);
48: write unlock(journal->j state lock);
49: }

checkpoint buffer (j chkpt bhs) to issue the I/Os in a batched manner (lines

9-21). Similar to the commit procedure, the jh is removed and re-inserted into

a checkpoint io list, which is used for I/O completion. If the number of ag-

gregated buffers (batch count) is higher than the pre-defined threshold, the

thread releases the list lock and issues the I/Os. Then, the thread prepares for

the next I/Os by acquiring the list lock. After issuing all the I/Os, the thread

completes them in a batched manner by using the checkpoint io list under the

list lock (lines 22-34). After then, the thread sets the next transaction to be

checkpointed in the checkpoint transaction list. Finally, the checkpointed trans-

action is freed, which denotes the end of a life cycle of the transaction, and the

list lock and the mutex lock are released (lines 32 and 35-36).

22

PROCEDURE 3 C-like pseudo-code of checkpointing transaction in
EXT4/JBD2

1: jbd2 log wait for space(journal){
2: mutex lock(journal->j checkpoint mutex);
3: spin lock(journal->j list lock);
4: if((transaction = journal->j checkpoint transactions) == NULL){
5: spin unlock(journal->j list lock);
6: mutex unlock(journal->j checkpoint mutex);
7: return;
8: }
9: while(transaction->t checkpoint list){

10: jh = transaction->t checkpoint list;
11: journal->j chkpt bhs[batch count++] = jh->bh;
12: del buffer(jh, transaction, transaction->t checkpoint list);
13: add buffer(jh, transaction, transaction->t checkpoint io list);
14: if((batch count == JBD3 NR BATCH)){/*JBD3 NR BATCH:64*/
15: spin unlock(journal->j list lock);
16: for(i=0;i<batch count;i++)
17: submit bh(WRITE, journal->j chkpt bhs[i]);
18: batch count = 0;
19: spin lock(journal->j list lock);
20: }
21: }
22: while(transaction->t checkpoint io list){
23: jh = transaction->t checkpoint io list;
24: spin unlock(journal->j list lock);
25: wait on buffer(jh->bh);
26: spin lock(journal->j list lock);
27: del buffer(jh, transaction, transaction->t checkpoint io list);
28: if(transaction->t checkpoint list == NULL &&
29: transaction->t checkpoint io list == NULL){
30: <set the next transaction to be checkpointed
31: in the checkpoint transaction list>
32: free(transaction);
33: }
34: }
35: spin unlock(journal->j list lock);
36: mutex unlock(journal->j checkpoint mutex);
37: }

23

Chapter 3

Design and Implementation

3.1 Optimizing File Systems for Low-latency Storage
Devices

In this section, we describe the design of our optimization techniques to in-

crease the bandwidth per thread for read and write operations. The key idea

is to combine multiple and individual pages into a single large request and

issue/complete it irrespective of the LBAs for each page.

3.1.1 Design

Read and write operations in the optimized file system

In the case of the read operation, we observe the read-ahead dilemma of whether

to use prefetching or not. Enabling the read-ahead technique is not beneficial

to the random access workload since the prefetched data is not normally ex-

pected under the workload. Thus, disabling the technique is advantageous to

the random access workload while it degrades the sequential read throughput

significantly as a side effect; performance is decreased by about 50% without

24

prefetching. To resolve this dilemma, the baseline system disables the context

lookup feature [14]. It reduces the number of prefetch pages under a random

read workload while still providing a sufficient number of prefetched pages for

the sequential read workload. As a result, the random read performance is im-

proved without degrading the sequential read performance.

Figure 3.1a outlines the read-ahead of the optimized file system. There are

five pages (Page 0-4) where Page 0 is the demanded page and the other pages

(Page 1-4) are contiguous pages which the file system wants to read ahead. The

pages are mapped to each LBA, and the state of Page 2 is already up-to-date so

that the pages to be read are Page 0, 1, 3, and 4. In this situation, the existing

file system issues two requests such as a request for Page 0-1 and another request

for Page 3-4. Unlike the existing file system, our optimized file system gathers

the pages (Page 0, 1, 3, and 4) and issues/completes a single large request (Re-

quest #1) with gathered pages. This scheme demonstrates that the file system

increases the number of I/Os per request and reduces the number of operations

for issue and completion irrespective of the LBA’s contiguity according to the

state of the pages.

Figure 3.1b describes write-back of the optimized file system. There are five

dirty pages (Page 0-4) from the page cache, and they are mapped to each LBA.

The optimized file system merges the dirty pages from the page cache into a

single request (Request #1). This scheme shows that the sequence of the dirty

pages negatively affects the bandwidth per thread. It also demonstrates that the

performance of the read operations can be improved by reducing the flushing

time whenever the write-back operation occurs. Finally, our scheme does not

sacrifice the consistency of the current file systems by preserving the metadata

and journaling mechanism.

25

Page1

(LBA:31)

Page0

(LBA:30)

Page2

(LBA:32)

Page3

(LBA:33)

Page4

(LBA:34)
Host memory

30 31 32 33 34

User request

Storage address

space

......

Read-ahead

Request #1

(a) Optimized read-ahead

Page1

(LBA:2)

Page0

(LBA:1)

Page2

(LBA:20)

Page3

(LBA:89)

Page4

(LBA:45)
Host memory

1 2 20 8945
Storage address

space

......

Request #1

...

(b) Optimized write-back

Figure 3.1: Read-ahead and write-back of the optimized file system

Journal I/O in the optimized file system

In this section, we describe the optimization techniques in the journal I/O oper-

ations based on the data journaling mode. This optimization provides efficient

journaling/checkpoint operations and reduces the time for I/O operations. Our

journal I/O scheme still guarantees the same consistency as that of the existing

file system.

To increase the bandwidth per journal I/O operation, similar to optimiza-

tion for the read and write operations, the optimized file system combines

26

multiple and individual journal pages (blocks) into a large request and is-

sues/completes the request. When a transaction starts to commit, the existing

file system makes a temporary I/O buffer in which the journal blocks are in-

cluded, which was updated by the transaction. Then, the existing file system

performs I/O for the block from an I/O buffer one by one. In contrast, the

optimized file system makes blocks in the I/O buffer into a large request and

issues the request to the device driver.

Figure 3.2a shows the journal metadata/data and commit operations in a

transaction for the optimized file system. There are five pages (Page 0-4) for

the journal blocks and one page (Page 5) for a commit block. In this example,

the pages (Page 0-5) are mapped to LBA 10, 11, 12, 13, 14, and 15. In contrast

to the existing file system, the optimized file system merges the journal blocks

into a single request (Request #1) and issues the request. After the transfer of

the journal blocks is finished, the I/Os are completed at once. To provide the

crash consistency at the same level as that of the existing file system, after the

I/Os for journal blocks are completely finished, we issue and complete the I/O

for the commit block in a request (Request #2). Consequently, our scheme still

supports the same consistency with that of the existing file system since our

scheme preserves the write ordering between the journal block and the commit

block.

When a new transaction is started, the file system checks whether there is

enough space left in the journal area to write all potential buffers requested.

If there is enough space, the transaction is continuously progressed. Otherwise,

the upcoming I/O needs to stall pending a checkpoint to free up some more

journal space. Therefore, fast checkpoint operation is required to increase the

I/O performance by reducing the stall time. Figure 3.2b describes the opti-

mized checkpoint operations. The checkpoint buffer includes the metadata and

27

data to be rewritten into the original area. There are five pages (Page 0-5).

In this example, the pages are mapped to LBA 50, 23, 70, 101, and 80. When

the checkpoint is activated, the optimized file system makes the blocks in the

checkpoint buffer into a single request (Request #1) and issues/completes the

request at once, irrespective of the LBA’s contiguity.

Our scheme allows the file system to increase the number of I/Os per re-

quest and reduces the number of operations for issue and completion in jour-

nal/checkpoint operations. Consequently, our scheme reduces the transfer time

for journal I/O and supports shorter journal work by providing efficient I/O

operations.

Recovery in the optimized file system

In this section, we present an efficient recovery mechanism in the journaling

file system. We provide the optimizations for both scan and replay operations.

Our scheme is to make several pages to be scanned and replayed into large

requests. In the ordered mode, only the metadata in the committed transaction

is replayed to the original metadata area while both the metadata and data

in the committed transaction are replayed to their original area in the data

journaling mode. Similar to the existing file system, the optimized file system

initializes the journal area after the recovery procedure is completely finished.

Figure 3.3 shows an example of the optimized recovery procedure in the op-

timized file system. There are four pages (Page 0-3) mapped to LBA 1, 2, 3, and

4 in the journal area. When the system is restarted after a system crash or power

outage, the optimized file system reads the pages in the journal area. Unlike

the existing recovery procedure, the optimized file system reads the pages in a

request (Request #1). This optimization allows the mount process to the scan-

ning and selecting the pages to be replayed faster. After scanning, the selected

28

Page1

(LBA:11)

Page0

(LBA:10)

Page2

(LBA:12)

Page3

(LBA:13)

Page4

(LBA:14)

Journal buffer

(Host memory)

10 11 12 13 14
Journal area

(storage address

space)

......

Journal metadata/data

Page5

(LBA:15)

15

Commit block

Request #2

Transaction

Request #1

(a) Optimized journal metadata/data

Page1

(LBA:23)

Page0

(LBA:50)

Page2

(LBA:70)

Page3

(LBA:101)

Page4

(LBA:80)

Checkpoint buffer

(Host memory)

50 1017023 80

Original area

(storage address

space)

...

Checkpoint metadata/data

...

Request #1

(b) Optimized checkpoint

Figure 3.2: Journal metadata/data and checkpoint of the optimized file system

pages (Page 0-2) mapped to LBA 33, 56, and 78 are written into the original

area. In contrast to the existing file system, the optimized file system makes

the pages into a request (Request #2). In this example, our scheme issues and

completes the two requests for each scan and replay operation. Consequently,

the optimized file system decreases the recovery time and allows the mount

process to perform more efficient recovery I/O operations.

29

Page1

(LBA:2)

Page0

(LBA:1)

Page2

(LBA:3)

Page3

(LBA:13)

Page4

(LBA:14)

Host memory

1 2 3 56 78

Mount process

(scan blocks)

storage address

space

......

Request #1

Request #2

Journal area

Request #3

Request #5

Request #6

33
...

Original area

Page1

(LBA:56)

Page0

(LBA:33)

Page2

(LBA:78)

Mount process

(replay blocks)

Request #7

Page1

(LBA:2)

Page0

(LBA:1)

Page2

(LBA:3)
Host memory

1 2 3 56 78

Mount process

(scan blocks)

storage address

space

......

Journal area

33
...

Original area

Page1

(LBA:56)

Page0

(LBA:33)

Page2

(LBA:78)

Mount process

(replay blocks)

Request #2

Page3

(LBA:4)

4

Request #1

Commit

block

Page3

(LBA:4)

Commit

block

4

Request #4

...

...

Figure 3.3: Optimized recovery procedure

3.1.2 Implementation

Our optimization requires a DMA engine of the storage device to support the

capability of transferring data between discontiguous host memory pages of the

file system and discontiguous storage address spaces. To support the capability,

the DMA engine of the DRAM-SSD is customized by using a set of descriptors

for an I/O request. A descriptor is defined, which includes a mapping of host

memory segment, storage segment, and data size. A data structure is defined

called Block Control Table (BCT) to contain the descriptors. BCT can contain

1,024 descriptors maximally. Therefore, the 1,024 segments in a single request

can be dispatched at once.

Our optimizations can be applied on other types of fast storage devices,

which support an ultra-low latency (e.g., a few microseconds) and the capa-

bility of transferring data between discontiguous host memory segments and

discontiguous storage address spaces. For example, the devices with fast stor-

age medium (a type of memory such as PCM, STT-MRAM, and so on) has

an ultra-low latency. RAMCloud also provides low latency access by storing all

data in DRAM at all times. The file systems on the fast storage devices or fast

30

storage systems with fast remote memory access can be optimized if the devices

or systems can support the transfer capability. In terms of standard interfaces,

the SATA and NVMe do not support the data transfer between discontiguous

host memory segments and discontiguous storage address spaces. Therefore,

our optimizations are hard to be applied on current flash-based SSDs with the

SATA and NVMe interfaces.

Our scheme requires modification of file system and device driver. In read

and write operations, the existing file system builds the BIO structure to for-

ward requests to the block layer; the structure is the basic container for block

I/O. The existing file system upon the existing block layer identifies only pages

with contiguous LBAs and adds the pages to the BIO structure; the BIO struc-

ture has the starting LBA in the bi sector field of the structure. To implement

our scheme, we define a new data structure called PIO (Proposed I/O) for the

page transfers between the file system and the device driver. The PIO structure

consists of page vectors, the total request size, and the number of pages. Each

page vector contains the page, length, offset, and sector addresses (LBA) to rep-

resent the mapping between a single page of the file system and a specific LBA.

This enables the file system to transfer multiple LBAs to the device driver.

To this end, we implemented new functions between the file system and

the device driver. When a PIO instance for I/O operation arrives from the

file system, the device driver allocates as many request descriptors as the to-

tal number of pages (nr pages in the PIO structure). Then, the device driver

prepares a DMA operation; the device driver calculates the appropriate DMA

address for each page in the dma map sg() function and completes the allocated

request descriptors with the DMA address (host memory address), storage ad-

dress (LBA), and length. Finally, the device driver issues the request descriptors

to the storage device.

31

The file system adds pages for read-ahead operations to a page pool list. The

file system then finds the LBAs of the pages from the list one by one. The opti-

mized file system moves pages from the page pool list to the page vec structure

of the PIO with information for each page by not checking the contiguity among

the pages. The file system then transfers the PIO via a customized read inter-

face exported by the device driver. We modified the ext4 readpages() that is

almost identical to other file systems except the block retrieval mechanism.

When write-back occurs, the optimized file system finds dirty pages from

the page cache via pagevec lookup tag() to get the LBAs of the dirty pages.

The file system does not check the contiguity of the pages and merges them into

page vec in PIO. In the write-back operation, we modified ext4 writepages().

Similar to the optimized read operation, the file system issues the request with

PIO via a customized write interface exposed by the device driver. We expect

that applying these optimization techniques to other file systems would be

relatively easy since the modifications are included in common functions of the

Linux file system.

For journaling and recovery optimization, we changed the JBD2 module.

We modified jbd2 journal commit transaction() for journal metadata/data

optimization; this function is the primary function for the commit procedure.

When the transaction commit occurs, the journal thread wakes up and performs

the journal commit procedure. In this situation, the optimized file system gets

the journal metadata/data buffer to be transferred and sends the buffer to

the device driver using a customized function that is similar to those used in

read/write operations. The journal thread issues and completes the I/O for the

journal blocks at once and subsequently the I/O for the commit block.

For optimization of the checkpoint, we modified flush batch(), which per-

forms the checkpoint I/O operation in the JBD2 module. The optimized file

32

system gets the checkpoint buffer and transfers it to the device driver via the

customized function. The file system issues and completes the I/O for the check-

point at once. In short, we add two functions as the interfaces between JBD2 and

the device driver. By using the interfaces, when our file system issues the jour-

nal metadata/data or checkpoint buffer, our device driver prepares the DMA

operation for a single large request similar to read and write operations.

To provide faster recovery, we modified jbd2 journal recover() that is

the primary function for recovery when mounting a device. To support a large

read request for journal blocks, the optimized file system aggregates the blocks

to be read and then issues/completes the aggregated blocks by a request via

the customized function. In the replay operation, the mount process writes the

selected blocks to the original area via the customized function to write the

dirty blocks to be replayed at once without their contiguity. Consequently, in

the recovery procedure, we modify the read and re-write operations for jour-

nal blocks, which then makes the procedure more efficient and decreases the

recovery and remount time.

3.2 Optimizing File Systems for Highly Parallel Stor-
age Devices

To achieve higher I/O performance on multi-cores with high-performance stor-

age, we aim to reduce the lock contention and maximize I/O parallelism in

transaction processing. To do this, we propose a transaction processing with

two main schemes that enable concurrent updates on shared data structures

and cooperatively parallelize I/O operations. We apply these schemes to the

transaction processing in EXT4/JBD2.

We maintain the compound transaction scheme of EXT4/JBD2 to exploit its

advantages [36]. For example, it provides a better performance when the same

33

metadata or data is frequently updated within a short period of time. With this

advantage, we implement our schemes in the compound transaction. We also

preserve the existing ordering of write operations and transactions, such as the

ordering of journal blocks and a commit block, committing and checkpointing,

and checkpoints. Therefore, our implementation does not require modifications

to the existing recovery procedure while not sacrificing the consistency of the

file system.

Furthermore, we do not optimize all locking operations in transaction pro-

cessing but focus on the list lock for management of journal heads and the

checkpoint mutex lock for serialized I/O operations. Compared to the list lock

and the mutex lock, other locks, such as state lock do not incur a significant

overhead according to our evaluation as well as other works [15]. However, such

locks can be a performance bottleneck in a massive number of cores, which is

beyond this dissertation; therefore, we leave the latent performance issue as a

future work.

3.2.1 Design

Concurrent updates on data structures

We manage the linked lists for transaction processing in a lock-free manner as

shown in Figure 3.4. To this end, instead of the existing circular doubly linked

lists, we use non-circular doubly linked lists and add the tail to the lists to

enable lock-free operations1.

INSERT. We provide a concurrent insert operation to add an item to a

list. In the existing transaction processing, the items are inserted into the tail

1 In the circular doubly linked list, when an item is inserted into the list, the multiple
pointers that link the item, head, and tail are updated, which makes the atomic insert op-
eration difficult. Instead, we add the tail and set the tail’s next item as a constant NULL
variable [40], which allows us to identify the last element of the list and insert the item into
the tail atomically.

34

while(!list_empty(cp_wait_list)){

 bh = list_entry(cp_wait_list.next, struct buffer_head, b_assoc_buffers);

 if (buffer_locked(bh))

 wait_on_buffer(bh);

 list_del_init(&bh->b_assoc_buffers);

}

jh1 jh2

next

prev

CAS

T1

issue I/O

jh1 jh4

add T1's list

CAS

T3

jh3

CAS

T2

next

prev
jh4

CAS

next

prev

shared

linked list head tail

issue I/Oissue I/O

jh2 jh3

issue I/O

add T2's list add T3's list

local

linked list

add T1's list

next

prev

I/O issue //Initialize a cp_wait_list

restart:

while(jh = atomic_read(checkpoint_list)){

if(compared_and_swap(checkpoint_list, jh, jh->next) != jh)

goto restart;

bh = jh2bh(jh);

write_dirty_buffer(bh);

list_add_tail(bh->list, cp_wait_list);

}

jh1 jh4

wait I/O

jh2 jh3
local

linked list

wait I/O

next

prev

T1 T1 T2 T3

I/O completion

1

2

3

1

2

3

wait I/O wait I/O

transaction

 transaction (journaled buffer)

journal daemon

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

 transaction (journaled buffer)

Journal daemon

buffer buffer

client threads

(commit) (checkpoint)

journal area original area

buffer buffer

Existing Checkpoint Proposed Checkpoint

Time

T1

jh1

CAS

T1

issue I/O

T2

CAS

shared

linked list

head

tail

issue I/Oissue I/O issue I/O

1

2

Time

T1

jh2 jh3 jh4

T3 T2 T1

issue I/O issue I/Oissue I/O issue I/O

T3

jh1 jh2

next

prev

Atomic

CAS

C1

issue I/O

bh1

add bh1 to

T1's list

jh3

next

prev
jh4

next

prev
shared

linked list

head tail

issue I/Oissue I/O

bh2 bh4

issue I/O

add bh2 to

T2's list
add bh4 to

T4's list

local

linked list

(wait list)

add T1's list

/* Initialize a local wait list */

restart:

while((jh = atomic_read(&checkpoint_list)) != NULL){

 if(atomic_compare_and_swap(&checkpoint_list, jh, jh->next) != jh)

 goto restart;

 bh = jh2bh(jh);

 submit_bh(bh);

 list_add(&wait_list, bh);

}

Time

CAS

T2

CAS

T3

CAS

T4

bh3

add bh3 to

T3's list

while(!list_empty(&wait_list)){

 bh = list_entry(wait_lIst.next, ...);

 wait_on_buffer(bh);

 list_del(bh);

}

bh1 bh2

wait I/O

bh3 bh4
local

linked list

wait I/O

T1 T2 T3 T4

wait I/O wait I/O

Running Transaction

Committing Transaction

Checkpointing Tranasaction

 transaction (journaled buffer)

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

Journal daemon

& Client threads

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

 atomic_set(&list->head, jh);

 }

 else{

 atomic_set(&jh->prev->next, jh);

 }

 atomic_sync();

jh1 jh2 jh3 jh4

next

T1 (insert)

list

head

prev
tail

/* initialize a local wait list */

while(1){

local_index = atomic_add(&repaly_index, 1);

if(local_index >= max)

break;

bh = replay_array[local_index];

submit_bh(bh);

list_add(&wait_list, bh);

}

bh50 bh60 bh70

T1

host

memory
...

bh50 bh60 bh70
... ... storage

T2

T3

/* initialize a local wait list */

while(1){

local_index = atomic_add(&scan_index, 1);

if(local_index >= max)

break;

jbd2_journal_bmap(journal, local_index, &blocknr);

bh = __getblk(dev, blocknr, j_blocksize);

submit_bh(bh);

list_add(&wait_list, bh);

}

bh10 bh11 bh12

host

memory
...

bh10 bh11 bh12 storage

T1

T2
T3

next

prev

 while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

list_del(bh);

}

while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

mark_buffer_dirty(bh);

local_index = atomic_add(&insert_index, 1);

repaly_array[local_index] = bh;

list_del(bh);

}

prev

next

(checkpoint list)

I/O issue

I/O completion

I/O issue

I/O completion

atomic_add(&nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

list->head = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh3 jhx

next

T1

list

head

prev

tail

next

prevprev

next

I/O completion

...

...

Transaction buffer list

(BJ_Metadata)

jh1 jh2 jh3prev
next

prev
next

Locking for list replacement

jh4prev
next

BJ_Shadow list

2

Checkpoint transaction

Lock-free insert

jh1 jh2

1

Running transaction Committing transaction

INSERT

List replacement without locking2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction

Recovery Transaction

crash crash

crash

commit

checkpoint

parallel checkpoint I/O

issue/completion

Locking for a single batched I/O3

jh1 jh2

Lock-free iteration4

t_checkpoint_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A parallel I/O for scan and repaly5

BJ_Metadata list

No locking

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated

Not yet updated

A single operation

Locking for insert

jh1 jh2

1

Running transaction

Committing transaction

INSERT

jh1

DELETE

INSERT

Locking for list replacement2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction Recovery Transaction

crash crash

crash

commit

checkpoint

checkpoint I/O

Locking for a single batched I/O3

S
S

S

M

jh1 jh2
S

Locking for list iteration

and list replacement
4

jh1S

DELETE

INSERT

t_checkpoint_list

t_checkpoint_io_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A single I/O for scan and repaly5

BJ_Metadata list

S Mspin lock (j_list_lock) mutex lock (j_checkpoint_mutex)

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated Not yet updated

A single operation

s
c

a
n

n
in

g

re
p

la
y

in
g

jh1 jh2

3 A parallel checkpoint I/O

P1 P2 P3

jh1 jh2

Committing transaction

jh1

DELETE

INSERT

S

S

BJ_Shadow list

BJ_Metadata list

jh1 jh3

transaction buffer list

P1 P2 P3

C1

P1

M

jh1SINSERT

t_checkpoint_io_list

T2

Checkpointing transaction

INTERATION

jh1 jh2
SDELETE

t_checkpoint_list

C1

jh1 jh2BATCHED I/O

C1

P1

Locking for list replacement2

Locking for a single batched I/O3

Locking for list iteration

and list replacement
4

Recovery transaction

A single I/O for scan and repaly5

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Running and committing transaction

S
jh1 jh2

Checkpoint list

P1 P2 P3

C3

Checkpointing

jh2

C1

C2

bh1 bh2 bh3

checkpoint buffer

C3

A parallel I/O without locking

C1

C1 C2

jh1 jh2 jh3

A Parallel I/O

C3C2

tailhead

Running and committing transaction

list jh1

head

prev

next

jh2
prev

next

jh3
prev

next

jh4

tail

jh1 jh3jh2

tailhead

c
h
e
c
k
p
o
in

t list

C3

A parallel I/O without locking

(Checkpointing)

C1 C2

bh1 bh2 bh3

jh1 jh3jh2

tailhead

c
h
e
c
k
p
o
in

t list

running

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

C2 C1 C3

Recovery

T1

bh1

bh1

bh2

bh2

T1

journal area

bh1

bh1

bh2

bh2

T1

original area

T1

host memoryhost memory

scanning replaying

T1

bh1

bh1

bh2

bh2

T2

journal area

bh1

bh1

bh2

bh2

T1

original area

T2

host memoryhost memory

scanning replaying

P1

S
jh4 jh5

1

jh4 jh5

12

C1

committing2

S

S spin lock (j_list_lock)

committed

c
h

e
c
k
p

o
in

ti
n

g

P1

1

committed

2

checkpointing

1

2

(1) (2) (3) (4)

Running and committing transaction

Checkpointing

Recovery

bh1 bh2 bh3

A single-threaded

mount process

(1) T1(2) T1(3)

bh1 bh2 bh3

bh1 bh2 bh3

T1T2 T3

bh1 bh2 bh3

C2

C2

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

running

jh4 jh5

committing

S

C1

bh1 bh2 bh3

T2

bh1 bh2 bh3

T1

1 2 3

T3

A multiple-threaded

mount process

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

S

S

M

C3C1

C2

checkpointing

T3

bh1 bh2 bh3

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

c
h
e
c
k
p
o
in

t listC1 C3 C5 C4

P1

committed

C2 C5C4

bh1 bh2 bh3

checkpoint buffer

checkpoint list

P1

committed

transaction

(TxID: 1)
C2

C2

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1 P2

S

P3

P4 P5

running

P6

Running (TID: 2)

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

P1 P2

S

P3

running transaction

P3

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

C1

S

committing transaction

C1

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

committing (TID: 2)

running (TID: 3)

Phase 1 Phase 2 Phase 3
ru

n
n

in
g

c
o

m
m

tt
in

g

S

C0 P0

TB list CP list

TB list

S

S

S

C0 P0

TB list CP list

S

time

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1
jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1

P2

S

P3

running transaction

committing transaction

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

committing transaction

P3

committing

Transaction

(TxID: 1)

C1

running

Transaction

(TxID: 2)
transaction buffer list

transaction buffer list

checkpointing transaction (TxID: 1)

P1

P2

running

transaction

jh1 jh2

head

P3 (INSERT)

running

transaction

(TxID: 1)

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

P3

jh1 jh3jh2

tailhead

jh4 jh5

P3

running

transaction

(TxID: 1)transaction buffer list

jh6 jh8jh7

tailhead

jh9 jh10

jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

committing

transaction

(TxID: 1)
transaction buffer list

transaction buffer list

bh1 bh2 bh3

c
h
e

c
k
p
o
in

t lis
t

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

C2C1 C3

checkpointing transaction (TxID: 1)

I/O

P2P1

P3P2P1

C5C4

C1C2 C3 C5 C4

C1C2 C3 C5 C4

I/O I/O I/O I/O

bh1 bh2 bh3

checkpoint buffer

checkpoint list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

checkpoint io list

jh1 jh3jh2

tailhead

jh4 jh5

C3

 atomic_add(&running_tx->t_nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&running_tx->t_buffers_tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

running_tx->t_buffers = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

jh1 jh2 jh3 jhx

next
list

head

prev

next

prevprev

next

removed

tail

set remove

C3C2C1

Running list(TxID:1)

Running state

Committing list (TxID:1)

Committing state

Checkpoint list (TxID:1)

Checkpointing state

Locked

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/O I/O

Application thread

Changing state

jh

jh (removed)

Lock-free

Lock-free
insert/delete

Lock-free
insert/delete/iteration

Lock-free
insert/delete/iteration

S

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

S
S

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

/* unlinking the bh from the jh */

/* Inserting the removed jh into a GClist */

INSERT

DELETE

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

running transaction
list (TxID:1)

journal daemon

Time

application thread jh jh (removed) at running

UL

UL

L

jh (removed) at checkpointing

Running

SR

R

create or join a
transaction
(TxID: 1)

R

changing a running
into a commtting

transaction
(TxID: 1)

committing
transaction list

(TxID:1)

S

Checkpointing
transaction list

S

M

R
read/write lock
(j_state_lock) S

spinlock
(j_list_lock) M

mutexlock
(j_checkpoint_mutex)

/* join a running transaction*/

repeat:

read_lock(journal->j_state_lock);

if(!journal->j_running_transaction)

{

read_unlock(journal->j_state_lock);

write_lock(journal->j_state_lock);

/* allocating a new transaction */

transaction = kmem_cache_zalloc();

journal->j_running_transaction = transaction;

transaction->t_state = T_RUNNING;

...

write_unlock(journal->j_state_lock);

goto repeat;

}

transaction = journal->j_running_transaction;

read_unlock(journal->j_state_lock);

/* insert a running transaction list */

spin_lock(journal->j_list_lock);

transaction->nr_buffers++;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

/* insert running transaction list*/

spin_lock(journal->j_list_lock);

transaction->nr_buffers--;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

C1

C4

C2

committing_tx->t_shadow_list = committing_tx->t_buffers;

committing_tx->t_shadow_tail = committing_tx->t_buffers_tail;

restart:

while((jh = atomic_read(&committing_tx->t_buffers)) != NULL){

if(atomic_compare_and_swap(&committing_tx->t_buffers, jh, jh->next) != jh);

/* making shadow buffers */

set_buffer_shadow(jh);

/* flushing buffers to journal area */

...

}

C1

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

jh->gc_prev = atomic_set(&running_tx->gc_list_tail, jh);

atomic_sync();

If(jh->gc_prev == NULL){

running_tx->gc_list = jh;

}

else{

jh->gc_prev->gc_next = jh;

}

/* unlinking the bh from the jh */ DELETE

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

C4

t_checkpoint_io_list

jh1 jh3jh2

tailhead

jh4 jh5

C3

j_checkpoint_transaction

transaction buffer list

buffer
next

P1

head tail
prev

P2

removed

P1

buffer

C2

(delete)

P1

(insert)

C1

(delete)
P2

(insert)

C4 (skip I/O)

C4 (I/O)

(2) I/O phase

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

jh1 jh2 jh3 jh4

next

C2head

(t_buffers)

prev

tail

(t_buffers_tail)

next

prevprev

next

P1

removed

C1

jh5

P2

next

prev
removed

T(P1) < T(P2), T(C1) < T(C2), T(Pjh2) < T(Cjh2)

C5 (I/O)

1

C3 (I/O) C6 (skip I/O)

buffer
next

head

tail
prev

buffer

P1

(insert)

C1

(delete)
P2

(insert)

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

1

C3

I/O

 I/O phase2

C4

skip I/O

C5

I/O

C6

skip I/O

1 23

bh10 bh11 bh12

host memory

bh1 (10) bh2 bh12

storage

T1

T2
T3

journal area

bh50 bh60 bh70

host memory

bh50 bh60 bh70

storage

original area

P2 P3 C1 C2 C3

jh1 jh2

next

prev

CAS

C1

issue I/O

bh1

add bh1 to

C1's wait list

jh3

next

prev
jh4

next

prev
head tail

issue I/Obypass I/O issue I/O

Local list

(wait list)

1

2

3

CAS

C2

CAS

C3

CAS

C2

Shared list

(I/O list)

bh1 bh2

wait I/O

bh3 bh4

wait I/O

C1 C2 C3 C4

wait I/O wait I/O

Local list

(wait list)

bh3

add bh3 to

C3's wait list

bh4

add bh4 to

C4's wait list

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)
transaction buffer list

next

prev

jh3

next

prev

jh4

next

prev

next

prev

S

jh1 jh2 jh3 jh4 jh5

committing

transactionhead jh1 jh2 jh3 jh4 jh5

checkpointing

transactionhead jh1 jh2 jh3 jh4 jh5

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

C1
jh1 jh3jh2head jh4 jh5

P1

P2

S

P3 jh6 jh8jh7head jh9 jh10

committing

transaction

(TxID: n)

C1

running

transaction

(TxID: n+1)

atomic

set
atomic

set

atomic

set

jh1 jh2

next

prev

atomic

CAS

T1

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

local

linked list

(wait list)

atomic

CAS

T2

atomic

CAS

T3

atomic

CAS

T4

bh3

insert bh3 to

C3's wait list

removed

P1

bh1 bh2 bh3

checkpoint buffer

checkpoint_list

M

jh1 jh3jh2

head

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: n)

C3

C3

C3

C3

I/O

C4

jh3

next

prev

T1

host memory

bh1 (10)

storage

journal area

T2 T3

bh2 (20) bh3 (30)

bh1 (10) bh2 (20) bh3 (30)

T1

host memory

bh1 (50)

storage

original area

T2 T3

bh2 (60) bh3 (70)

bh1 (50) bh2 (60) bh3 (70)

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

T5

C2

T1
jh6 jh8jh7head jh9 jh10

T3

T4

S

T5 jh11 jh13jh12head jh14 jh15

committing

transaction

(TxID: n-1)

T1

running

transaction

(TxID: n)

T2 jh1 jh3jh2 jh4 jh5

S

C2C1 C3 checkpointing

transaction

(TxID: n-2)

C3

C3

C3

I/O

C4

M

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

head

jh1 jh3jh2 jh4 jh5

ST2

T1

T3
checkpointing

transaction

(TxID: n-2)

T3

T3

I/O

T4

M

head

T3

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2GC head

GC tail atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1
1 23

atomic set

(insert)

atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2

GC

head

atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

shared

linked list

shared

linked listjhx

next

prev
jhx

prev

jh1 jh2 jh4 jh5

next

T1

head

prev

next

prevprev

next

T2

set removed

T3 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

safe point

free

insert GC list

(logically remove)

physically removed (at safe points)

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12 jh10

next

prev
jh11

C1
atomic CAS

(remove)
GC

head

free free

C2

GC

tail

next

prev
jh12

safe point

P3
atomic set

(insert)

free

C3

atomic CAS

(remove)

atomic CAS

(remove)

logical remove physical remove

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12

safe point

P3
atomic set

(insert)

logical remove

Running list(TxID:1) Committing list (TxID:1) Checkpoint list (TxID:1)

Journal daemon

INS DEL INS

Time

GC list

INS

GC list

FREE

Application thread

Changing state

jh

jh (removed)

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove" "physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list
INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer

list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove"
"physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Txbuffer list

I/O

bypass

I/O
INS RM INS

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Txbuffer
list

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

running transaction
(TxID:1)

Txbuffer list

I/O
RM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

Txbuffer
list

I/O

< safe point >

jh1 jh2

next

prev

atomic

CAS

jh3 jh4

current head

(jh1)

T1

jh5

next

prev

next

prev

next

prev

1

current head

(jh2)

T22 atomic

CAS

current head

(jh3)

current head

(jh4)

current head

(jh5)

T33 atomic

CAS
T44 atomic

CAS

next

T55 atomic

CAS

current head

(NULL)

jh1 jh2

next

prev

atomic

CAS

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

local

linked list

(wait list)

atomic

CAS

atomic

CAS
atomic

CAS

bh3

insert bh3 to

C3's wait list

removed

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

jh1 jh2

next

prev

atomic

CAS

jh3

T1

1

T2

2

atomic

CAS
T3

3

atomic

CAS
T44 atomic

CAS
T55 atomic

CAS

next

prev

...

jh1 jh2

next

prev
jh3

next

prev

fetch
jh1

head

compare jh1

head
swap

fetch compare and swap

Time

jh4

next

prev
jh5

next

prev

running transaction
(TxID:1)

Txbuffer list

I/ORM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

INS

I/O I/O

< safe point >

jh1 jh2

next
jh3

next
jh4

next

prev
jh5

next

prev

running transaction
(TxID:1)

Txbuffer list

I/ORM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

INS

I/O I/O

< safe point >

Txbuffer
list

checkpoint list

transaction buffer list

transaction buffer list

tail

(a) Insert and remove operations in a lock-free manner (T: thread)

while(!list_empty(cp_wait_list)){

 bh = list_entry(cp_wait_list.next, struct buffer_head, b_assoc_buffers);

 if (buffer_locked(bh))

 wait_on_buffer(bh);

 list_del_init(&bh->b_assoc_buffers);

}

jh1 jh2

next

prev

CAS

T1

issue I/O

jh1 jh4

add T1's list

CAS

T3

jh3

CAS

T2

next

prev
jh4

CAS

next

prev

shared

linked list head tail

issue I/Oissue I/O

jh2 jh3

issue I/O

add T2's list add T3's list

local

linked list

add T1's list

next

prev

I/O issue //Initialize a cp_wait_list

restart:

while(jh = atomic_read(checkpoint_list)){

if(compared_and_swap(checkpoint_list, jh, jh->next) != jh)

goto restart;

bh = jh2bh(jh);

write_dirty_buffer(bh);

list_add_tail(bh->list, cp_wait_list);

}

jh1 jh4

wait I/O

jh2 jh3
local

linked list

wait I/O

next

prev

T1 T1 T2 T3

I/O completion

1

2

3

1

2

3

wait I/O wait I/O

transaction

 transaction (journaled buffer)

journal daemon

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

 transaction (journaled buffer)

Journal daemon

buffer buffer

client threads

(commit) (checkpoint)

journal area original area

buffer buffer

Existing Checkpoint Proposed Checkpoint

Time

T1

jh1

CAS

T1

issue I/O

T2

CAS

shared

linked list

head

tail

issue I/Oissue I/O issue I/O

1

2

Time

T1

jh2 jh3 jh4

T3 T2 T1

issue I/O issue I/Oissue I/O issue I/O

T3

jh1 jh2

next

prev

Atomic

CAS

C1

issue I/O

bh1

add bh1 to

T1's list

jh3

next

prev
jh4

next

prev
shared

linked list

head tail

issue I/Oissue I/O

bh2 bh4

issue I/O

add bh2 to

T2's list
add bh4 to

T4's list

local

linked list

(wait list)

add T1's list

/* Initialize a local wait list */

restart:

while((jh = atomic_read(&checkpoint_list)) != NULL){

 if(atomic_compare_and_swap(&checkpoint_list, jh, jh->next) != jh)

 goto restart;

 bh = jh2bh(jh);

 submit_bh(bh);

 list_add(&wait_list, bh);

}

Time

CAS

T2

CAS

T3

CAS

T4

bh3

add bh3 to

T3's list

while(!list_empty(&wait_list)){

 bh = list_entry(wait_lIst.next, ...);

 wait_on_buffer(bh);

 list_del(bh);

}

bh1 bh2

wait I/O

bh3 bh4
local

linked list

wait I/O

T1 T2 T3 T4

wait I/O wait I/O

Running Transaction

Committing Transaction

Checkpointing Tranasaction

 transaction (journaled buffer)

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

Journal daemon

& Client threads

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

 atomic_set(&list->head, jh);

 }

 else{

 atomic_set(&jh->prev->next, jh);

 }

 atomic_sync();

jh1 jh2 jh3 jh4

next

T1 (insert)

list

head

prev
tail

/* initialize a local wait list */

while(1){

local_index = atomic_add(&repaly_index, 1);

if(local_index >= max)

break;

bh = replay_array[local_index];

submit_bh(bh);

list_add(&wait_list, bh);

}

bh50 bh60 bh70

T1

host

memory
...

bh50 bh60 bh70
... ... storage

T2

T3

/* initialize a local wait list */

while(1){

local_index = atomic_add(&scan_index, 1);

if(local_index >= max)

break;

jbd2_journal_bmap(journal, local_index, &blocknr);

bh = __getblk(dev, blocknr, j_blocksize);

submit_bh(bh);

list_add(&wait_list, bh);

}

bh10 bh11 bh12

host

memory
...

bh10 bh11 bh12 storage

T1

T2
T3

next

prev

 while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

list_del(bh);

}

while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

mark_buffer_dirty(bh);

local_index = atomic_add(&insert_index, 1);

repaly_array[local_index] = bh;

list_del(bh);

}

prev

next

(checkpoint list)

I/O issue

I/O completion

I/O issue

I/O completion

atomic_add(&nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

list->head = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh3 jhx

next

T1

list

head

prev

tail

next

prevprev

next

I/O completion

...

...

Transaction buffer list

(BJ_Metadata)

jh1 jh2 jh3prev
next

prev
next

Locking for list replacement

jh4prev
next

BJ_Shadow list

2

Checkpoint transaction

Lock-free insert

jh1 jh2

1

Running transaction Committing transaction

INSERT

List replacement without locking2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction

Recovery Transaction

crash crash

crash

commit

checkpoint

parallel checkpoint I/O

issue/completion

Locking for a single batched I/O3

jh1 jh2

Lock-free iteration4

t_checkpoint_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A parallel I/O for scan and repaly5

BJ_Metadata list

No locking

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated

Not yet updated

A single operation

Locking for insert

jh1 jh2

1

Running transaction

Committing transaction

INSERT

jh1

DELETE

INSERT

Locking for list replacement2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction Recovery Transaction

crash crash

crash

commit

checkpoint

checkpoint I/O

Locking for a single batched I/O3

S
S

S

M

jh1 jh2
S

Locking for list iteration

and list replacement
4

jh1S

DELETE

INSERT

t_checkpoint_list

t_checkpoint_io_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A single I/O for scan and repaly5

BJ_Metadata list

S Mspin lock (j_list_lock) mutex lock (j_checkpoint_mutex)

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated Not yet updated

A single operation

s
c

a
n

n
in

g

re
p

la
y

in
g

jh1 jh2

3 A parallel checkpoint I/O

P1 P2 P3

jh1 jh2

Committing transaction

jh1

DELETE

INSERT

S

S

BJ_Shadow list

BJ_Metadata list

jh1 jh3

transaction buffer list

P1 P2 P3

C1

P1

M

jh1SINSERT

t_checkpoint_io_list

T2

Checkpointing transaction

INTERATION

jh1 jh2
SDELETE

t_checkpoint_list

C1

jh1 jh2BATCHED I/O

C1

P1

Locking for list replacement2

Locking for a single batched I/O3

Locking for list iteration

and list replacement
4

Recovery transaction

A single I/O for scan and repaly5

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Running and committing transaction

S
jh1 jh2

Checkpoint list

P1 P2 P3

C3

Checkpointing

jh2

C1

C2

bh1 bh2 bh3

checkpoint buffer

C3

A parallel I/O without locking

C1

C1 C2

jh1 jh2 jh3

A Parallel I/O

C3C2

tailhead

Running and committing transaction

list jh1

head

prev

next

jh2
prev

next

jh3
prev

next

jh4

tail

jh1 jh3jh2

tailhead

ch
eck

p
o
in

t list

C3

A parallel I/O without locking

(Checkpointing)

C1 C2

bh1 bh2 bh3

jh1 jh3jh2

tailhead

ch
eck

p
o
in

t list

running

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

C2 C1 C3

Recovery

T1

bh1

bh1

bh2

bh2

T1

journal area

bh1

bh1

bh2

bh2

T1

original area

T1

host memoryhost memory

scanning replaying

T1

bh1

bh1

bh2

bh2

T2

journal area

bh1

bh1

bh2

bh2

T1

original area

T2

host memoryhost memory

scanning replaying

P1

S
jh4 jh5

1

jh4 jh5

12

C1

committing2

S

S spin lock (j_list_lock)

committed

c
h

e
c
k
p

o
in

ti
n

g

P1

1

committed

2

checkpointing

1

2

(1) (2) (3) (4)

Running and committing transaction

Checkpointing

Recovery

bh1 bh2 bh3

A single-threaded

mount process

(1) T1(2) T1(3)

bh1 bh2 bh3

bh1 bh2 bh3

T1T2 T3

bh1 bh2 bh3

C2

C2

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

running

jh4 jh5

committing

S

C1

bh1 bh2 bh3

T2

bh1 bh2 bh3

T1

1 2 3

T3

A multiple-threaded

mount process

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

S

S

M

C3C1

C2

checkpointing

T3

bh1 bh2 bh3

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

ch
eck

p
o
in

t listC1 C3 C5 C4

P1

committed

C2 C5C4

bh1 bh2 bh3

checkpoint buffer

checkpoint list

P1

committed

transaction

(TxID: 1)
C2

C2

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1 P2

S

P3

P4 P5

running

P6

Running (TID: 2)

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

P1 P2

S

P3

running transaction

P3

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

C1

S

committing transaction

C1

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

committing (TID: 2)

running (TID: 3)

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g

S

C0 P0

TB list CP list

TB list

S

S

S

C0 P0

TB list CP list

S

time

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1
jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1

P2

S

P3

running transaction

committing transaction

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

committing transaction

P3

committing

Transaction

(TxID: 1)

C1

running

Transaction

(TxID: 2)
transaction buffer list

transaction buffer list

checkpointing transaction (TxID: 1)

P1

P2

running

transaction

jh1 jh2

head

P3 (INSERT)

running

transaction

(TxID: 1)

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

P3

jh1 jh3jh2

tailhead

jh4 jh5

P3

running

transaction

(TxID: 1)transaction buffer list

jh6 jh8jh7

tailhead

jh9 jh10

jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

committing

transaction

(TxID: 1)
transaction buffer list

transaction buffer list

bh1 bh2 bh3

c
h
e

c
k
p
o
in

t lis
t

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

C2C1 C3

checkpointing transaction (TxID: 1)

I/O

P2P1

P3P2P1

C5C4

C1C2 C3 C5 C4

C1C2 C3 C5 C4

I/O I/O I/O I/O

bh1 bh2 bh3

checkpoint buffer

checkpoint list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

checkpoint io list

jh1 jh3jh2

tailhead

jh4 jh5

C3

 atomic_add(&running_tx->t_nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&running_tx->t_buffers_tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

running_tx->t_buffers = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

jh1 jh2 jh3 jhx

next
list

head

prev

next

prevprev

next

removed

tail

set remove

C3C2C1

Running list(TxID:1)

Running state

Committing list (TxID:1)

Committing state

Checkpoint list (TxID:1)

Checkpointing state

Locked

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/O I/O

Application thread

Changing state

jh

jh (removed)

Lock-free

Lock-free
insert/delete

Lock-free
insert/delete/iteration

Lock-free
insert/delete/iteration

S

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

S
S

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

/* unlinking the bh from the jh */

/* Inserting the removed jh into a GClist */

INSERT

DELETE

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

running transaction
list (TxID:1)

journal daemon

Time

application thread jh jh (removed) at running

UL

UL

L

jh (removed) at checkpointing

Running

SR

R

create or join a
transaction
(TxID: 1)

R

changing a running
into a commtting

transaction
(TxID: 1)

committing
transaction list

(TxID:1)

S

Checkpointing
transaction list

S

M

R
read/write lock
(j_state_lock) S

spinlock
(j_list_lock) M

mutexlock
(j_checkpoint_mutex)

/* join a running transaction*/

repeat:

read_lock(journal->j_state_lock);

if(!journal->j_running_transaction)

{

read_unlock(journal->j_state_lock);

write_lock(journal->j_state_lock);

/* allocating a new transaction */

transaction = kmem_cache_zalloc();

journal->j_running_transaction = transaction;

transaction->t_state = T_RUNNING;

...

write_unlock(journal->j_state_lock);

goto repeat;

}

transaction = journal->j_running_transaction;

read_unlock(journal->j_state_lock);

/* insert a running transaction list */

spin_lock(journal->j_list_lock);

transaction->nr_buffers++;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

/* insert running transaction list*/

spin_lock(journal->j_list_lock);

transaction->nr_buffers--;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

C1

C4

C2

committing_tx->t_shadow_list = committing_tx->t_buffers;

committing_tx->t_shadow_tail = committing_tx->t_buffers_tail;

restart:

while((jh = atomic_read(&committing_tx->t_buffers)) != NULL){

if(atomic_compare_and_swap(&committing_tx->t_buffers, jh, jh->next) != jh);

/* making shadow buffers */

set_buffer_shadow(jh);

/* flushing buffers to journal area */

...

}

C1

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

jh->gc_prev = atomic_set(&running_tx->gc_list_tail, jh);

atomic_sync();

If(jh->gc_prev == NULL){

running_tx->gc_list = jh;

}

else{

jh->gc_prev->gc_next = jh;

}

/* unlinking the bh from the jh */ DELETE

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

C4

t_checkpoint_io_list

jh1 jh3jh2

tailhead

jh4 jh5

C3

j_checkpoint_transaction

transaction buffer list

buffer
next

P1

head tail
prev

P2

removed

P1

buffer

C2

(delete)

P1

(insert)

C1

(delete)
P2

(insert)

C4 (skip I/O)

C4 (I/O)

(2) I/O phase

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

jh1 jh2 jh3 jh4

next

C2head

(t_buffers)

prev

tail

(t_buffers_tail)

next

prevprev

next

P1

removed

C1

jh5

P2

next

prev
removed

T(P1) < T(P2), T(C1) < T(C2), T(Pjh2) < T(Cjh2)

C5 (I/O)

1

C3 (I/O) C6 (skip I/O)

buffer
next

head

tail
prev

buffer

P1

(insert)

C1

(delete)
P2

(insert)

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

1

C3

I/O

 I/O phase2

C4

skip I/O

C5

I/O

C6

skip I/O

1 23

bh10 bh11 bh12

host memory

bh1 (10) bh2 bh12

storage

T1

T2
T3

journal area

bh50 bh60 bh70

host memory

bh50 bh60 bh70

storage

original area

P2 P3 C1 C2 C3

jh1 jh2

next

prev

CAS

C1

issue I/O

bh1

add bh1 to

C1's wait list

jh3

next

prev
jh4

next

prev
head tail

issue I/Obypass I/O issue I/O

Local list

(wait list)

1

2

3

CAS

C2

CAS

C3

CAS

C2

Shared list

(I/O list)

bh1 bh2

wait I/O

bh3 bh4

wait I/O

C1 C2 C3 C4

wait I/O wait I/O

Local list

(wait list)

bh3

add bh3 to

C3's wait list

bh4

add bh4 to

C4's wait list

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)
transaction buffer list

next

prev

jh3

next

prev

jh4

next

prev

next

prev

S

jh1 jh2 jh3 jh4 jh5

committing

transactionhead jh1 jh2 jh3 jh4 jh5

checkpointing

transactionhead jh1 jh2 jh3 jh4 jh5

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

C1
jh1 jh3jh2head jh4 jh5

P1

P2

S

P3 jh6 jh8jh7head jh9 jh10

committing

transaction

(TxID: n)

C1

running

transaction

(TxID: n+1)

atomic

set
atomic

set

atomic

set

jh1 jh2

next

prev

atomic

CAS

T1

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

per-thread

linked list

(wait list)

atomic

CAS

T2

atomic

CAS

T3

atomic

CAS

T4

bh3

insert bh3 to

C3's wait list

removed

P1

bh1 bh2 bh3

checkpoint buffer

checkpoint_list

M

jh1 jh3jh2

head

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: n)

C3

C3

C3

C3

I/O

C4

jh3

next

prev

T1

host memory

bh1 (10)

storage

journal area

T2 T3

bh2 (20) bh3 (30)

bh1 (10) bh2 (20) bh3 (30)

T1

host memory

bh1 (50)

storage

original area

T2 T3

bh2 (60) bh3 (70)

bh1 (50) bh2 (60) bh3 (70)

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

T5

C2

T1
jh6 jh8jh7head jh9 jh10

T3

T4

S

T5 jh11 jh13jh12head jh14 jh15

committing

transaction

(TxID: n-1)

T1

running

transaction

(TxID: n)

T2 jh1 jh3jh2 jh4 jh5

S

C2C1 C3 checkpointing

transaction

(TxID: n-2)

C3

C3

C3

I/O

C4

M

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

head

jh1 jh3jh2 jh4 jh5

ST2

T1

T3
checkpointing

transaction

(TxID: n-2)

T3

T3

I/O

T4

M

head

T3

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2GC head

GC tail atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1
1 23

atomic set

(insert)

atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2

GC

head

atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

shared

linked list

shared

linked listjhx

next

prev
jhx

prev

jh1 jh2 jh4 jh5

next

T1

head

prev

next

prevprev

next

T2

set removed

T3 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

safe point

free

insert GC list

(logically remove)

physically removed (at safe points)

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12 jh10

next

prev
jh11

C1
atomic CAS

(remove)
GC

head

free free

C2

GC

tail

next

prev
jh12

safe point

P3
atomic set

(insert)

free

C3

atomic CAS

(remove)

atomic CAS

(remove)

logical remove physical remove

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12

safe point

P3
atomic set

(insert)

logical remove

Running list(TxID:1) Committing list (TxID:1) Checkpoint list (TxID:1)

Journal daemon

INS DEL INS

Time

GC list

INS

GC list

FREE

Application thread

Changing state

jh

jh (removed)

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove" "physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list
INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer

list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove"
"physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Txbuffer list

I/O

bypass

I/O
INS RM INS

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Txbuffer
list

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

running transaction
(TxID:1)

Txbuffer list

I/O
RM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

Txbuffer
list

I/O

< safe point >

jh1 jh2

next

prev

atomic

CAS

jh3 jh4

current head

(jh1)

T1

jh5

next

prev

next

prev

next

prev

1

current head

(jh2)

T22 atomic

CAS

current head

(jh3)

current head

(jh4)

current head

(jh5)

T33 atomic

CAS
T44 atomic

CAS

next

T55 atomic

CAS

current head

(NULL)

jh1 jh2

next

prev

atomic

CAS

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

local

linked list

(wait list)

atomic

CAS

atomic

CAS
atomic

CAS

bh3

insert bh3 to

C3's wait list

removed

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

jh1 jh2

next

prev

atomic

CAS

jh3

T1

1

T2

2

atomic

CAS
T3

3

atomic

CAS
T44 atomic

CAS
T55 atomic

CAS

next

prev

...

jh1 jh2

next

prev
jh3

next

prev

fetch
jh1

head

compare jh1

head
swap

fetch atomic compare and swap

Time

jh4

next

prev
jh5

next

prev

running transaction
(TxID:1)

Txbuffer list

I/ORM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

INS

I/O I/O

< safe point >

jh1 jh2

next
jh3

next
jh4

next

prev
jh5

next

prev

logical

remove

I/O

RM INS

time

GC list

jh removed jh

INS

C

I/O

I/O

processing

I/O
GC list

free

C commit block

"logically remove" "physically remove"

insert
I/O

I/O

<safe point>

list

checkpoint list

transaction buffer list

transaction buffer list

tail

prevprev

physical

remove

journaling listjournaling list

Jlist

(b) Two-phase removal (GC: garbage collection)

while(!list_empty(cp_wait_list)){

 bh = list_entry(cp_wait_list.next, struct buffer_head, b_assoc_buffers);

 if (buffer_locked(bh))

 wait_on_buffer(bh);

 list_del_init(&bh->b_assoc_buffers);

}

jh1 jh2

next

prev

CAS

T1

issue I/O

jh1 jh4

add T1's list

CAS

T3

jh3

CAS

T2

next

prev
jh4

CAS

next

prev

shared

linked list head tail

issue I/Oissue I/O

jh2 jh3

issue I/O

add T2's list add T3's list

local

linked list

add T1's list

next

prev

I/O issue //Initialize a cp_wait_list

restart:

while(jh = atomic_read(checkpoint_list)){

if(compared_and_swap(checkpoint_list, jh, jh->next) != jh)

goto restart;

bh = jh2bh(jh);

write_dirty_buffer(bh);

list_add_tail(bh->list, cp_wait_list);

}

jh1 jh4

wait I/O

jh2 jh3
local

linked list

wait I/O

next

prev

T1 T1 T2 T3

I/O completion

1

2

3

1

2

3

wait I/O wait I/O

transaction

 transaction (journaled buffer)

journal daemon

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

 transaction (journaled buffer)

Journal daemon

buffer buffer

client threads

(commit) (checkpoint)

journal area original area

buffer buffer

Existing Checkpoint Proposed Checkpoint

Time

T1

jh1

CAS

T1

issue I/O

T2

CAS

shared

linked list

head

tail

issue I/Oissue I/O issue I/O

1

2

Time

T1

jh2 jh3 jh4

T3 T2 T1

issue I/O issue I/Oissue I/O issue I/O

T3

jh1 jh2

next

prev

Atomic

CAS

C1

issue I/O

bh1

add bh1 to

T1's list

jh3

next

prev
jh4

next

prev
shared

linked list

head tail

issue I/Oissue I/O

bh2 bh4

issue I/O

add bh2 to

T2's list
add bh4 to

T4's list

local

linked list

(wait list)

add T1's list

/* Initialize a local wait list */

restart:

while((jh = atomic_read(&checkpoint_list)) != NULL){

 if(atomic_compare_and_swap(&checkpoint_list, jh, jh->next) != jh)

 goto restart;

 bh = jh2bh(jh);

 submit_bh(bh);

 list_add(&wait_list, bh);

}

Time

CAS

T2

CAS

T3

CAS

T4

bh3

add bh3 to

T3's list

while(!list_empty(&wait_list)){

 bh = list_entry(wait_lIst.next, ...);

 wait_on_buffer(bh);

 list_del(bh);

}

bh1 bh2

wait I/O

bh3 bh4
local

linked list

wait I/O

T1 T2 T3 T4

wait I/O wait I/O

Running Transaction

Committing Transaction

Checkpointing Tranasaction

 transaction (journaled buffer)

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

Journal daemon

& Client threads

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

 atomic_set(&list->head, jh);

 }

 else{

 atomic_set(&jh->prev->next, jh);

 }

 atomic_sync();

jh1 jh2 jh3 jh4

next

T1 (insert)

list

head

prev
tail

/* initialize a local wait list */

while(1){

local_index = atomic_add(&repaly_index, 1);

if(local_index >= max)

break;

bh = replay_array[local_index];

submit_bh(bh);

list_add(&wait_list, bh);

}

bh50 bh60 bh70

T1

host

memory
...

bh50 bh60 bh70
... ... storage

T2

T3

/* initialize a local wait list */

while(1){

local_index = atomic_add(&scan_index, 1);

if(local_index >= max)

break;

jbd2_journal_bmap(journal, local_index, &blocknr);

bh = __getblk(dev, blocknr, j_blocksize);

submit_bh(bh);

list_add(&wait_list, bh);

}

bh10 bh11 bh12

host

memory
...

bh10 bh11 bh12 storage

T1

T2
T3

next

prev

 while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

list_del(bh);

}

while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

mark_buffer_dirty(bh);

local_index = atomic_add(&insert_index, 1);

repaly_array[local_index] = bh;

list_del(bh);

}

prev

next

(checkpoint list)

I/O issue

I/O completion

I/O issue

I/O completion

atomic_add(&nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

list->head = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh3 jhx

next

T1

list

head

prev

tail

next

prevprev

next

I/O completion

...

...

Transaction buffer list

(BJ_Metadata)

jh1 jh2 jh3prev
next

prev
next

Locking for list replacement

jh4prev
next

BJ_Shadow list

2

Checkpoint transaction

Lock-free insert

jh1 jh2

1

Running transaction Committing transaction

INSERT

List replacement without locking2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction

Recovery Transaction

crash crash

crash

commit

checkpoint

parallel checkpoint I/O

issue/completion

Locking for a single batched I/O3

jh1 jh2

Lock-free iteration4

t_checkpoint_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A parallel I/O for scan and repaly5

BJ_Metadata list

No locking

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated

Not yet updated

A single operation

Locking for insert

jh1 jh2

1

Running transaction

Committing transaction

INSERT

jh1

DELETE

INSERT

Locking for list replacement2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction Recovery Transaction

crash crash

crash

commit

checkpoint

checkpoint I/O

Locking for a single batched I/O3

S
S

S

M

jh1 jh2
S

Locking for list iteration

and list replacement
4

jh1S

DELETE

INSERT

t_checkpoint_list

t_checkpoint_io_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A single I/O for scan and repaly5

BJ_Metadata list

S Mspin lock (j_list_lock) mutex lock (j_checkpoint_mutex)

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated Not yet updated

A single operation

s
c

a
n

n
in

g

re
p

la
y

in
g

jh1 jh2

3 A parallel checkpoint I/O

P1 P2 P3

jh1 jh2

Committing transaction

jh1

DELETE

INSERT

S

S

BJ_Shadow list

BJ_Metadata list

jh1 jh3

transaction buffer list

P1 P2 P3

C1

P1

M

jh1SINSERT

t_checkpoint_io_list

T2

Checkpointing transaction

INTERATION

jh1 jh2
SDELETE

t_checkpoint_list

C1

jh1 jh2BATCHED I/O

C1

P1

Locking for list replacement2

Locking for a single batched I/O3

Locking for list iteration

and list replacement
4

Recovery transaction

A single I/O for scan and repaly5

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Running and committing transaction

S
jh1 jh2

Checkpoint list

P1 P2 P3

C3

Checkpointing

jh2

C1

C2

bh1 bh2 bh3

checkpoint buffer

C3

A parallel I/O without locking

C1

C1 C2

jh1 jh2 jh3

A Parallel I/O

C3C2

tailhead

Running and committing transaction

list jh1

head

prev

next

jh2
prev

next

jh3
prev

next

jh4

tail

jh1 jh3jh2

tailhead

c
h

e
c
k

p
o

in
t lis

t

C3

A parallel I/O without locking

(Checkpointing)

C1 C2

bh1 bh2 bh3

jh1 jh3jh2

tailhead

c
h

e
c
k

p
o

in
t lis

t

running

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

C2 C1 C3

Recovery

T1

bh1

bh1

bh2

bh2

T1

journal area

bh1

bh1

bh2

bh2

T1

original area

T1

host memoryhost memory

scanning replaying

T1

bh1

bh1

bh2

bh2

T2

journal area

bh1

bh1

bh2

bh2

T1

original area

T2

host memoryhost memory

scanning replaying

P1

S
jh4 jh5

1

jh4 jh5

12

C1

committing2

S

S spin lock (j_list_lock)

committed

c
h

e
c
k
p

o
in

ti
n

g

P1

1

committed

2

checkpointing

1

2

(1) (2) (3) (4)

Running and committing transaction

Checkpointing

Recovery

bh1 bh2 bh3

A single-threaded

mount process

(1) T1(2) T1(3)

bh1 bh2 bh3

bh1 bh2 bh3

T1T2 T3

bh1 bh2 bh3

C2

C2

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

running

jh4 jh5

committing

S

C1

bh1 bh2 bh3

T2

bh1 bh2 bh3

T1

1 2 3

T3

A multiple-threaded

mount process

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

S

S

M

C3C1

C2

checkpointing

T3

bh1 bh2 bh3

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

c
h

e
c
k

p
o

in
t lis

tC1 C3 C5 C4

P1

committed

C2 C5C4

bh1 bh2 bh3

checkpoint buffer

checkpoint list

P1

committed

transaction

(TxID: 1)
C2

C2

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1 P2

S

P3

P4 P5

running

P6

Running (TID: 2)

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2
ta

il

h
e

a
d

P1 P2

S

P3

running transaction

P3

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

C1

S

committing transaction

C1

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

committing (TID: 2)

running (TID: 3)

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g

S

C0 P0

TB list CP list

TB list

S

S

S

C0 P0

TB list CP list

S

time

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1
jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1

P2

S

P3

running transaction

committing transaction

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

committing transaction

P3

committing

Transaction

(TxID: 1)

C1

running

Transaction

(TxID: 2)
transaction buffer list

transaction buffer list

checkpointing transaction (TxID: 1)

P1

P2

running

transaction

jh1 jh2

head

P3 (INSERT)

running

transaction

(TxID: 1)

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

P3

jh1 jh3jh2

tailhead

jh4 jh5

P3

running

transaction

(TxID: 1)transaction buffer list

jh6 jh8jh7

tailhead

jh9 jh10

jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

committing

transaction

(TxID: 1)
transaction buffer list

transaction buffer list

bh1 bh2 bh3

c
h
e

c
k
p
o
in

t lis
t

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

C2C1 C3

checkpointing transaction (TxID: 1)

I/O

P2P1

P3P2P1

C5C4

C1C2 C3 C5 C4

C1C2 C3 C5 C4

I/O I/O I/O I/O

bh1 bh2 bh3

checkpoint buffer

checkpoint list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

checkpoint io list

jh1 jh3jh2

tailhead

jh4 jh5

C3

 atomic_add(&running_tx->t_nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&running_tx->t_buffers_tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

running_tx->t_buffers = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

jh1 jh2 jh3 jhx

next
list

head

prev

next

prevprev

next

removed

tail

set remove

C3C2C1

Running list(TxID:1)

Running state

Committing list (TxID:1)

Committing state

Checkpoint list (TxID:1)

Checkpointing state

Locked

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/O I/O

Application thread

Changing state

jh

jh (removed)

Lock-free

Lock-free
insert/delete

Lock-free
insert/delete/iteration

Lock-free
insert/delete/iteration

S

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

S
S

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

/* unlinking the bh from the jh */

/* Inserting the removed jh into a GClist */

INSERT

DELETE

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

running transaction
list (TxID:1)

journal daemon

Time

application thread jh jh (removed) at running

UL

UL

L

jh (removed) at checkpointing

Running

SR

R

create or join a
transaction
(TxID: 1)

R

changing a running
into a commtting

transaction
(TxID: 1)

committing
transaction list

(TxID:1)

S

Checkpointing
transaction list

S

M

R
read/write lock
(j_state_lock) S

spinlock
(j_list_lock) M

mutexlock
(j_checkpoint_mutex)

/* join a running transaction*/

repeat:

read_lock(journal->j_state_lock);

if(!journal->j_running_transaction)

{

read_unlock(journal->j_state_lock);

write_lock(journal->j_state_lock);

/* allocating a new transaction */

transaction = kmem_cache_zalloc();

journal->j_running_transaction = transaction;

transaction->t_state = T_RUNNING;

...

write_unlock(journal->j_state_lock);

goto repeat;

}

transaction = journal->j_running_transaction;

read_unlock(journal->j_state_lock);

/* insert a running transaction list */

spin_lock(journal->j_list_lock);

transaction->nr_buffers++;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

/* insert running transaction list*/

spin_lock(journal->j_list_lock);

transaction->nr_buffers--;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

C1

C4

C2

committing_tx->t_shadow_list = committing_tx->t_buffers;

committing_tx->t_shadow_tail = committing_tx->t_buffers_tail;

restart:

while((jh = atomic_read(&committing_tx->t_buffers)) != NULL){

if(atomic_compare_and_swap(&committing_tx->t_buffers, jh, jh->next) != jh);

/* making shadow buffers */

set_buffer_shadow(jh);

/* flushing buffers to journal area */

...

}

C1

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

jh->gc_prev = atomic_set(&running_tx->gc_list_tail, jh);

atomic_sync();

If(jh->gc_prev == NULL){

running_tx->gc_list = jh;

}

else{

jh->gc_prev->gc_next = jh;

}

/* unlinking the bh from the jh */ DELETE

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

C4

t_checkpoint_io_list

jh1 jh3jh2

tailhead

jh4 jh5

C3

j_checkpoint_transaction

transaction buffer list

buffer
next

P1

head tail
prev

P2

removed

P1

buffer

C2

(delete)

P1

(insert)

C1

(delete)
P2

(insert)

C4 (skip I/O)

C4 (I/O)

(2) I/O phase

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

jh1 jh2 jh3 jh4

next

C2head

(t_buffers)

prev

tail

(t_buffers_tail)

next

prevprev

next

P1

removed

C1

jh5

P2

next

prev
removed

T(P1) < T(P2), T(C1) < T(C2), T(Pjh2) < T(Cjh2)

C5 (I/O)

1

C3 (I/O) C6 (skip I/O)

buffer
next

head

tail
prev

buffer

P1

(insert)

C1

(delete)
P2

(insert)

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

1

C3

I/O

 I/O phase2

C4

skip I/O

C5

I/O

C6

skip I/O

1 23

bh10 bh11 bh12

host memory

bh1 (10) bh2 bh12

storage

T1

T2
T3

journal area

bh50 bh60 bh70

host memory

bh50 bh60 bh70

storage

original area

P2 P3 C1 C2 C3

jh1 jh2

next

prev

CAS

C1

issue I/O

bh1

add bh1 to

C1's wait list

jh3

next

prev
jh4

next

prev
head tail

issue I/Obypass I/O issue I/O

Local list

(wait list)

1

2

3

CAS

C2

CAS

C3

CAS

C2

Shared list

(I/O list)

bh1 bh2

wait I/O

bh3 bh4

wait I/O

C1 C2 C3 C4

wait I/O wait I/O

Local list

(wait list)

bh3

add bh3 to

C3's wait list

bh4

add bh4 to

C4's wait list

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)
transaction buffer list

next

prev

jh3

next

prev

jh4

next

prev

next

prev

S

jh1 jh2 jh3 jh4 jh5

committing

transactionhead jh1 jh2 jh3 jh4 jh5

checkpointing

transactionhead jh1 jh2 jh3 jh4 jh5

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

C1
jh1 jh3jh2head jh4 jh5

P1

P2

S

P3 jh6 jh8jh7head jh9 jh10

committing

transaction

(TxID: n)

C1

running

transaction

(TxID: n+1)

atomic

set
atomic

set

atomic

set

jh1 jh2

next

prev

atomic

CAS

T1

issue I/O

bh1

insert bh1 to

T1's wait list

jh3 jh4

shared

linked list

(journaling list) h
e

a
d ta

il

issue I/O

bh4

issue I/O

insert bh4 to

T4's wait list

per-thread

linked list

(wait list)

atomic

CAS

T2

atomic

CAS

T3

atomic

CAS

T4

bh3

insert bh3 to

T3's wait list

removed

P1

bh1 bh2 bh3

checkpoint buffer

checkpoint_list

M

jh1 jh3jh2

head

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: n)

C3

C3

C3

C3

I/O

C4

jh3

next

prev

T1

host memory

bh1 (10)

storage

journal area

T2 T3

bh2 (20) bh3 (30)

bh1 (10) bh2 (20) bh3 (30)

T1

host memory

bh1 (50)

storage

original area

T2 T3

bh2 (60) bh3 (70)

bh1 (50) bh2 (60) bh3 (70)

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

T5's wait list

atomic

CAS

T5

C2

T1
jh6 jh8jh7head jh9 jh10

T3

T4

S

T5 jh11 jh13jh12head jh14 jh15

committing

transaction

(TxID: n-1)

T1

running

transaction

(TxID: n)

T2 jh1 jh3jh2 jh4 jh5

S

C2C1 C3 checkpointing

transaction

(TxID: n-2)

C3

C3

C3

I/O

C4

M

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

head

jh1 jh3jh2 jh4 jh5

ST2

T1

T3
checkpointing

transaction

(TxID: n-2)

T3

T3

I/O

T4

M

head

T3

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2GC head

GC tail atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1
1 23

atomic set

(insert)

atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2

GC

head

atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

shared

linked list

shared

linked listjhx

next

prev
jhx

prev

jh1 jh2 jh4 jh5

next

T1

head

prev

next

prevprev

next

T2

set removed

T3 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

safe point

free

insert GC list

(logically remove)

physically removed (at safe points)

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12 jh10

next

prev
jh11

C1
atomic CAS

(remove)
GC

head

free free

C2

GC

tail

next

prev
jh12

safe point

P3
atomic set

(insert)

free

C3

atomic CAS

(remove)

atomic CAS

(remove)

logical remove physical remove

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12

safe point

P3
atomic set

(insert)

logical remove

Running list(TxID:1) Committing list (TxID:1) Checkpoint list (TxID:1)

Journal daemon

INS DEL INS

Time

GC list

INS

GC list

FREE

Application thread

Changing state

jh

jh (removed)

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove" "physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list
INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer

list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove"
"physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Txbuffer list

I/O

bypass

I/O
INS RM INS

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Txbuffer
list

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

running transaction
(TxID:1)

Txbuffer list

I/O
RM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

Txbuffer
list

I/O

< safe point >

jh1 jh2

next

prev

atomic

CAS

jh3 jh4

current head

(jh1)

T1

jh5

next

prev

next

prev

next

prev

1

current head

(jh2)

T22 atomic

CAS

current head

(jh3)

current head

(jh4)

current head

(jh5)

T33 atomic

CAS
T44 atomic

CAS

next

T55 atomic

CAS

current head

(NULL)

jh1 jh2

next

prev

atomic

CAS

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

local

linked list

(wait list)

atomic

CAS

atomic

CAS
atomic

CAS

bh3

insert bh3 to

C3's wait list

removed

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

jh1 jh2

next

prev

atomic

CAS

jh3

T1

1

T2

2

atomic

CAS
T3

3

atomic

CAS
T44 atomic

CAS
T55 atomic

CAS

next

prev

...

jh1 jh2

next

prev
jh3

next

prev

fetch
jh1

head

compare jh1

head
swap

fetch atomic compare and swap

Time

jh4

next

prev
jh5

next

prev

running transaction
(TxID:1)

Txbuffer list

I/ORM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

INS

I/O I/O

< safe point >

jh1 jh2

next
jh3

next
jh4

next

prev
jh5

next

prev

logical

remove

I/O

RM INS

time

GC list

jh removed jh

INS

C

I/O

I/O

processing

I/O
GC list

free

C commit block

"logically remove" "physically remove"

insert
I/O

I/O

<safe point>

list

checkpoint list

transaction buffer list

transaction buffer list

tail

prevprev

physical

remove

journaling listjournaling list

Jlist

T1 T2 T3 T4 T5JBD2 T6

blocked blockedI/O I/O I/O I/O

I/O processing period

I/O start

I/O

end

timeI/O

T1

Application threads

JBD2

I/O end

T0

cooperative I/O threads

(c) Fetch operations in a lock-free manner

Figure 3.4: Concurrent updates on data structures

of the list in the incoming order. Similar to the existing scheme but without

locking, we concurrently update the tail by the incoming items using an atomic

35

set instruction. In an example shown in Figure 3.4a, before jh5 is inserted into

a journaling list (e.g., transaction buffer list or checkpoint list), the journaling

list consists of four jhs, and the tail points jh4 which is inserted by T1. When

T2 inserts jh5, the thread atomically updates the tail and the jh5’s previous

item by jh5 and jh4, respectively, by executing the atomic set operation. By

updating the previous item (jh4) of jh5 atomically, the next item of jh4 is

decided as jh5. This insert operation allows multiple threads to add their item

concurrently by updating the tail and linking atomically.

REMOVE. We provide a concurrent remove operation to delete an item

from a list. When items are removed from the list concurrently without locking,

the invalid reference problem [41] can occur. To address this issue, we propose a

two-phase remove operation that marks an item as “removed” (logical remove)

and then frees the item (physical remove) at a safe point when no other threads

hold any references to the transaction and logically removed items. This scheme

ensures safe access to the items of the list and so threads can perform appropri-

ate operations for the items. For safe garbage collection (GC) for the logically

removed items, we additionally maintain a GC list per transaction.

For example, as shown in Figure 3.4a, when a thread (T3) tries to remove

the jh (jh2), the thread marks the jh as removed atomically by executing the

atomic set instruction. Then, the thread inserts the jh into the GC list using

our concurrent insert operation as shown in Figure 3.4b. And then, threads

perform I/O for the valid jh or bypass the I/O for the logically removed jh

while traversing the list safely. When the transaction arrives at the safe point, all

items in the GC list are reclaimed. The safe point is the point when a transaction

is checkpointed. At this point, no other threads reference the logically removed

jhs in the transaction nor insert any logically removed jhs into the GC list of

the transaction since all the transaction processing is over. Therefore, we can

36

free all the logically “removed” jhs at the safe point.

FETCH. Finally, we provide a concurrent fetch operation to get an item

while traversing a list. In the existing transaction processing, the list traversal

occurs when no threads insert any items into the list (e.g., journal and check-

point I/O processing). This ensures that all threads see a consistent view of

the list, including valid next pointers of all items. Under this condition, we

can simply enable the concurrent fetch operation by using an atomic compare

and swap (CAS) instruction. In the example shown in Figure 3.4c, a thread

first fetches the current head (jh1). Then, the thread compares the fetched jh1

with the current head, and changes the head to jh1’s next item by using the

CAS operation. If the thread fails the CAS operation, it repeats the procedure

above. This fetch operation allows multiple threads to extract individual items

concurrently by updating the head atomically. Consequently, through our con-

current update scheme, multiple threads can insert/remove/fetch their items in

the lists concurrently and safely without the existing list lock.

Parallel I/O in a cooperative manner

We provide a parallel I/O in a cooperative manner to maximize the I/O paral-

lelism. In the existing transaction processing, application threads can be sched-

uled out while the serialized I/O operations (e.g., journal and checkpoint I/O)

are performed. On the other hand, in our scheme, we allow the application

threads to perform the I/O operations by not scheduling but joining them to

the I/O operations. For example, in the case of journal I/O, we allow the threads

that cannot get a running transaction to join the I/Os by not scheduling them.

In the case of checkpoint I/O, we allow the threads to join the I/Os by elimi-

nating the mutex lock. By joining the multiple threads to the I/O processing,

they fetch buffers from the shared linked lists (e.g., journaling lists), issue the

37

while(!list_empty(cp_wait_list)){

 bh = list_entry(cp_wait_list.next, struct buffer_head, b_assoc_buffers);

 if (buffer_locked(bh))

 wait_on_buffer(bh);

 list_del_init(&bh->b_assoc_buffers);

}

jh1 jh2

next

prev

CAS

T1

issue I/O

jh1 jh4

add T1's list

CAS

T3

jh3

CAS

T2

next

prev
jh4

CAS

next

prev

shared

linked list head tail

issue I/Oissue I/O

jh2 jh3

issue I/O

add T2's list add T3's list

local

linked list

add T1's list

next

prev

I/O issue //Initialize a cp_wait_list

restart:

while(jh = atomic_read(checkpoint_list)){

if(compared_and_swap(checkpoint_list, jh, jh->next) != jh)

goto restart;

bh = jh2bh(jh);

write_dirty_buffer(bh);

list_add_tail(bh->list, cp_wait_list);

}

jh1 jh4

wait I/O

jh2 jh3
local

linked list

wait I/O

next

prev

T1 T1 T2 T3

I/O completion

1

2

3

1

2

3

wait I/O wait I/O

transaction

 transaction (journaled buffer)

journal daemon

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

 transaction (journaled buffer)

Journal daemon

buffer buffer

client threads

(commit) (checkpoint)

journal area original area

buffer buffer

Existing Checkpoint Proposed Checkpoint

Time

T1

jh1

CAS

T1

issue I/O

T2

CAS

shared

linked list

head

tail

issue I/Oissue I/O issue I/O

1

2

Time

T1

jh2 jh3 jh4

T3 T2 T1

issue I/O issue I/Oissue I/O issue I/O

T3

jh1 jh2

next

prev

Atomic

CAS

C1

issue I/O

bh1

add bh1 to

T1's list

jh3

next

prev
jh4

next

prev
shared

linked list

head tail

issue I/Oissue I/O

bh2 bh4

issue I/O

add bh2 to

T2's list
add bh4 to

T4's list

local

linked list

(wait list)

add T1's list

/* Initialize a local wait list */

restart:

while((jh = atomic_read(&checkpoint_list)) != NULL){

 if(atomic_compare_and_swap(&checkpoint_list, jh, jh->next) != jh)

 goto restart;

 bh = jh2bh(jh);

 submit_bh(bh);

 list_add(&wait_list, bh);

}

Time

CAS

T2

CAS

T3

CAS

T4

bh3

add bh3 to

T3's list

while(!list_empty(&wait_list)){

 bh = list_entry(wait_lIst.next, ...);

 wait_on_buffer(bh);

 list_del(bh);

}

bh1 bh2

wait I/O

bh3 bh4
local

linked list

wait I/O

T1 T2 T3 T4

wait I/O wait I/O

Running Transaction

Committing Transaction

Checkpointing Tranasaction

 transaction (journaled buffer)

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

Journal daemon

& Client threads

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

 atomic_set(&list->head, jh);

 }

 else{

 atomic_set(&jh->prev->next, jh);

 }

 atomic_sync();

jh1 jh2 jh3 jh4

next

T1 (insert)

list

head

prev
tail

/* initialize a local wait list */

while(1){

local_index = atomic_add(&repaly_index, 1);

if(local_index >= max)

break;

bh = replay_array[local_index];

submit_bh(bh);

list_add(&wait_list, bh);

}

bh50 bh60 bh70

T1

host

memory
...

bh50 bh60 bh70
... ... storage

T2

T3

/* initialize a local wait list */

while(1){

local_index = atomic_add(&scan_index, 1);

if(local_index >= max)

break;

jbd2_journal_bmap(journal, local_index, &blocknr);

bh = __getblk(dev, blocknr, j_blocksize);

submit_bh(bh);

list_add(&wait_list, bh);

}

bh10 bh11 bh12

host

memory
...

bh10 bh11 bh12 storage

T1

T2
T3

next

prev

 while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

list_del(bh);

}

while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

mark_buffer_dirty(bh);

local_index = atomic_add(&insert_index, 1);

repaly_array[local_index] = bh;

list_del(bh);

}

prev

next

(checkpoint list)

I/O issue

I/O completion

I/O issue

I/O completion

atomic_add(&nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

list->head = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh3 jhx

next

T1

list

head

prev

tail

next

prevprev

next

I/O completion

...

...

Transaction buffer list

(BJ_Metadata)

jh1 jh2 jh3prev
next

prev
next

Locking for list replacement

jh4prev
next

BJ_Shadow list

2

Checkpoint transaction

Lock-free insert

jh1 jh2

1

Running transaction Committing transaction

INSERT

List replacement without locking2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction

Recovery Transaction

crash crash

crash

commit

checkpoint

parallel checkpoint I/O

issue/completion

Locking for a single batched I/O3

jh1 jh2

Lock-free iteration4

t_checkpoint_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A parallel I/O for scan and repaly5

BJ_Metadata list

No locking

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated

Not yet updated

A single operation

Locking for insert

jh1 jh2

1

Running transaction

Committing transaction

INSERT

jh1

DELETE

INSERT

Locking for list replacement2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction Recovery Transaction

crash crash

crash

commit

checkpoint

checkpoint I/O

Locking for a single batched I/O3

S
S

S

M

jh1 jh2
S

Locking for list iteration

and list replacement
4

jh1S

DELETE

INSERT

t_checkpoint_list

t_checkpoint_io_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A single I/O for scan and repaly5

BJ_Metadata list

S Mspin lock (j_list_lock) mutex lock (j_checkpoint_mutex)

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated Not yet updated

A single operation

s
c

a
n

n
in

g

re
p

la
y

in
g

jh1 jh2

3 A parallel checkpoint I/O

P1 P2 P3

jh1 jh2

Committing transaction

jh1

DELETE

INSERT

S

S

BJ_Shadow list

BJ_Metadata list

jh1 jh3

transaction buffer list

P1 P2 P3

C1

P1

M

jh1SINSERT

t_checkpoint_io_list

T2

Checkpointing transaction

INTERATION

jh1 jh2
SDELETE

t_checkpoint_list

C1

jh1 jh2BATCHED I/O

C1

P1

Locking for list replacement2

Locking for a single batched I/O3

Locking for list iteration

and list replacement
4

Recovery transaction

A single I/O for scan and repaly5

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Running and committing transaction

S
jh1 jh2

Checkpoint list

P1 P2 P3

C3

Checkpointing

jh2

C1

C2

bh1 bh2 bh3

checkpoint buffer

C3

A parallel I/O without locking

C1

C1 C2

jh1 jh2 jh3

A Parallel I/O

C3C2

tailhead

Running and committing transaction

list jh1

head

prev

next

jh2
prev

next

jh3
prev

next

jh4

tail

jh1 jh3jh2

tailhead

ch
eck

p
o

in
t list

C3

A parallel I/O without locking

(Checkpointing)

C1 C2

bh1 bh2 bh3

jh1 jh3jh2

tailhead

ch
eck

p
o

in
t list

running

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

C2 C1 C3

Recovery

T1

bh1

bh1

bh2

bh2

T1

journal area

bh1

bh1

bh2

bh2

T1

original area

T1

host memoryhost memory

scanning replaying

T1

bh1

bh1

bh2

bh2

T2

journal area

bh1

bh1

bh2

bh2

T1

original area

T2

host memoryhost memory

scanning replaying

P1

S
jh4 jh5

1

jh4 jh5

12

C1

committing2

S

S spin lock (j_list_lock)

committed

c
h

e
c
k
p

o
in

ti
n

g

P1

1

committed

2

checkpointing

1

2

(1) (2) (3) (4)

Running and committing transaction

Checkpointing

Recovery

bh1 bh2 bh3

A single-threaded

mount process

(1) T1(2) T1(3)

bh1 bh2 bh3

bh1 bh2 bh3

T1T2 T3

bh1 bh2 bh3

C2

C2

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

running

jh4 jh5

committing

S

C1

bh1 bh2 bh3

T2

bh1 bh2 bh3

T1

1 2 3

T3

A multiple-threaded

mount process

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

S

S

M

C3C1

C2

checkpointing

T3

bh1 bh2 bh3

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

ch
eck

p
o

in
t listC1 C3 C5 C4

P1

committed

C2 C5C4

bh1 bh2 bh3

checkpoint buffer

checkpoint list

P1

committed

transaction

(TxID: 1)
C2

C2

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1 P2

S

P3

P4 P5

running

P6

Running (TID: 2)

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

P1 P2

S

P3

running transaction

P3

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

C1

S

committing transaction

C1

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

committing (TID: 2)

running (TID: 3)

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g

S

C0 P0

TB list CP list

TB list

S

S

S

C0 P0

TB list CP list

S

time

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1
jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1

P2

S

P3

running transaction

committing transaction

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

committing transaction

P3

committing

Transaction

(TxID: 1)

C1

running

Transaction

(TxID: 2)
transaction buffer list

transaction buffer list

checkpointing transaction (TxID: 1)

P1

P2

running

transaction

jh1 jh2

head

P3 (INSERT)

running

transaction

(TxID: 1)

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

P3

jh1 jh3jh2

tailhead

jh4 jh5

P3

running

transaction

(TxID: 1)transaction buffer list

jh6 jh8jh7

tailhead

jh9 jh10

jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

committing

transaction

(TxID: 1)
transaction buffer list

transaction buffer list

bh1 bh2 bh3

c
h
e

c
k
p
o
in

t lis
t

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

C2C1 C3

checkpointing transaction (TxID: 1)

I/O

P2P1

P3P2P1

C5C4

C1C2 C3 C5 C4

C1C2 C3 C5 C4

I/O I/O I/O I/O

bh1 bh2 bh3

checkpoint buffer

checkpoint list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

checkpoint io list

jh1 jh3jh2

tailhead

jh4 jh5

C3

 atomic_add(&running_tx->t_nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&running_tx->t_buffers_tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

running_tx->t_buffers = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

jh1 jh2 jh3 jhx

next
list

head

prev

next

prevprev

next

removed

tail

set remove

C3C2C1

Running list(TxID:1)

Running state

Committing list (TxID:1)

Committing state

Checkpoint list (TxID:1)

Checkpointing state

Locked

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/O I/O

Application thread

Changing state

jh

jh (removed)

Lock-free

Lock-free
insert/delete

Lock-free
insert/delete/iteration

Lock-free
insert/delete/iteration

S

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

S
S

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

/* unlinking the bh from the jh */

/* Inserting the removed jh into a GClist */

INSERT

DELETE

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

running transaction
list (TxID:1)

journal daemon

Time

application thread jh jh (removed) at running

UL

UL

L

jh (removed) at checkpointing

Running

SR

R

create or join a
transaction
(TxID: 1)

R

changing a running
into a commtting

transaction
(TxID: 1)

committing
transaction list

(TxID:1)

S

Checkpointing
transaction list

S

M

R
read/write lock
(j_state_lock) S

spinlock
(j_list_lock) M

mutexlock
(j_checkpoint_mutex)

/* join a running transaction*/

repeat:

read_lock(journal->j_state_lock);

if(!journal->j_running_transaction)

{

read_unlock(journal->j_state_lock);

write_lock(journal->j_state_lock);

/* allocating a new transaction */

transaction = kmem_cache_zalloc();

journal->j_running_transaction = transaction;

transaction->t_state = T_RUNNING;

...

write_unlock(journal->j_state_lock);

goto repeat;

}

transaction = journal->j_running_transaction;

read_unlock(journal->j_state_lock);

/* insert a running transaction list */

spin_lock(journal->j_list_lock);

transaction->nr_buffers++;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

/* insert running transaction list*/

spin_lock(journal->j_list_lock);

transaction->nr_buffers--;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

C1

C4

C2

committing_tx->t_shadow_list = committing_tx->t_buffers;

committing_tx->t_shadow_tail = committing_tx->t_buffers_tail;

restart:

while((jh = atomic_read(&committing_tx->t_buffers)) != NULL){

if(atomic_compare_and_swap(&committing_tx->t_buffers, jh, jh->next) != jh);

/* making shadow buffers */

set_buffer_shadow(jh);

/* flushing buffers to journal area */

...

}

C1

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

jh->gc_prev = atomic_set(&running_tx->gc_list_tail, jh);

atomic_sync();

If(jh->gc_prev == NULL){

running_tx->gc_list = jh;

}

else{

jh->gc_prev->gc_next = jh;

}

/* unlinking the bh from the jh */ DELETE

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

C4

t_checkpoint_io_list

jh1 jh3jh2

tailhead

jh4 jh5

C3

j_checkpoint_transaction

transaction buffer list

buffer
next

P1

head tail
prev

P2

removed

P1

buffer

C2

(delete)

P1

(insert)

C1

(delete)
P2

(insert)

C4 (skip I/O)

C4 (I/O)

(2) I/O phase

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

jh1 jh2 jh3 jh4

next

C2head

(t_buffers)

prev

tail

(t_buffers_tail)

next

prevprev

next

P1

removed

C1

jh5

P2

next

prev
removed

T(P1) < T(P2), T(C1) < T(C2), T(Pjh2) < T(Cjh2)

C5 (I/O)

1

C3 (I/O) C6 (skip I/O)

buffer
next

head

tail
prev

buffer

P1

(insert)

C1

(delete)
P2

(insert)

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

1

C3

I/O

 I/O phase2

C4

skip I/O

C5

I/O

C6

skip I/O

1 23

bh10 bh11 bh12

host memory

bh1 (10) bh2 bh12

storage

T1

T2
T3

journal area

bh50 bh60 bh70

host memory

bh50 bh60 bh70

storage

original area

P2 P3 C1 C2 C3

jh1 jh2

next

prev

CAS

C1

issue I/O

bh1

add bh1 to

C1's wait list

jh3

next

prev
jh4

next

prev
head tail

issue I/Obypass I/O issue I/O

Local list

(wait list)

1

2

3

CAS

C2

CAS

C3

CAS

C2

Shared list

(I/O list)

bh1 bh2

wait I/O

bh3 bh4

wait I/O

C1 C2 C3 C4

wait I/O wait I/O

Local list

(wait list)

bh3

add bh3 to

C3's wait list

bh4

add bh4 to

C4's wait list

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)
transaction buffer list

next

prev

jh3

next

prev

jh4

next

prev

next

prev

S

jh1 jh2 jh3 jh4 jh5

committing

transactionhead jh1 jh2 jh3 jh4 jh5

checkpointing

transactionhead jh1 jh2 jh3 jh4 jh5

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

C1
jh1 jh3jh2head jh4 jh5

P1

P2

S

P3 jh6 jh8jh7head jh9 jh10

committing

transaction

(TxID: n)

C1

running

transaction

(TxID: n+1)

atomic

set
atomic

set

atomic

set

jh1 jh2

next

prev

atomic

CAS

T1

issue I/O

bh1

insert bh1 to

T1's wait list

jh3 jh4

shared

linked list

(journaling list) h
e

a
d ta

il

issue I/O

bh4

issue I/O

insert bh4 to

T4's wait list

per-thread

linked list

(wait list)

atomic

CAS

T2

atomic

CAS

T3

atomic

CAS

T4

bh3

insert bh3 to

T3's wait list

removed

P1

bh1 bh2 bh3

checkpoint buffer

checkpoint_list

M

jh1 jh3jh2

head

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: n)

C3

C3

C3

C3

I/O

C4

jh3

next

prev

T1

host memory

bh1 (10)

storage

journal area

T2 T3

bh2 (20) bh3 (30)

bh1 (10) bh2 (20) bh3 (30)

T1

host memory

bh1 (50)

storage

original area

T2 T3

bh2 (60) bh3 (70)

bh1 (50) bh2 (60) bh3 (70)

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

T5's wait list

atomic

CAS

T5

C2

T1
jh6 jh8jh7head jh9 jh10

T3

T4

S

T5 jh11 jh13jh12head jh14 jh15

committing

transaction

(TxID: n-1)

T1

running

transaction

(TxID: n)

T2 jh1 jh3jh2 jh4 jh5

S

C2C1 C3 checkpointing

transaction

(TxID: n-2)

C3

C3

C3

I/O

C4

M

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

head

jh1 jh3jh2 jh4 jh5

ST2

T1

T3
checkpointing

transaction

(TxID: n-2)

T3

T3

I/O

T4

M

head

T3

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2GC head

GC tail atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1
1 23

atomic set

(insert)

atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2

GC

head

atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

shared

linked list

shared

linked listjhx

next

prev
jhx

prev

jh1 jh2 jh4 jh5

next

T1

head

prev

next

prevprev

next

T2

set removed

T3 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

safe point

free

insert GC list

(logically remove)

physically removed (at safe points)

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12 jh10

next

prev
jh11

C1
atomic CAS

(remove)
GC

head

free free

C2

GC

tail

next

prev
jh12

safe point

P3
atomic set

(insert)

free

C3

atomic CAS

(remove)

atomic CAS

(remove)

logical remove physical remove

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12

safe point

P3
atomic set

(insert)

logical remove

Running list(TxID:1) Committing list (TxID:1) Checkpoint list (TxID:1)

Journal daemon

INS DEL INS

Time

GC list

INS

GC list

FREE

Application thread

Changing state

jh

jh (removed)

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove" "physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list
INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer

list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove"
"physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Txbuffer list

I/O

bypass

I/O
INS RM INS

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Txbuffer
list

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

running transaction
(TxID:1)

Txbuffer list

I/O
RM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

Txbuffer
list

I/O

< safe point >

jh1 jh2

next

prev

atomic

CAS

jh3 jh4

current head

(jh1)

T1

jh5

next

prev

next

prev

next

prev

1

current head

(jh2)

T22 atomic

CAS

current head

(jh3)

current head

(jh4)

current head

(jh5)

T33 atomic

CAS
T44 atomic

CAS

next

T55 atomic

CAS

current head

(NULL)

jh1 jh2

next

prev

atomic

CAS

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

local

linked list

(wait list)

atomic

CAS

atomic

CAS
atomic

CAS

bh3

insert bh3 to

C3's wait list

removed

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

jh1 jh2

next

prev

atomic

CAS

jh3

T1

1

T2

2

atomic

CAS
T3

3

atomic

CAS
T44 atomic

CAS
T55 atomic

CAS

next

prev

...

jh1 jh2

next

prev
jh3

next

prev

fetch
jh1

head

compare jh1

head
swap

fetch atomic compare and swap

Time

jh4

next

prev
jh5

next

prev

running transaction
(TxID:1)

Txbuffer list

I/ORM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

INS

I/O I/O

< safe point >

jh1 jh2

next
jh3

next
jh4

next

prev
jh5

next

prev

logical

remove

I/O

RM INS

time

GC list

jh removed jh

INS

C

I/O

I/O

processing

I/O
GC list

free

C commit block

"logically remove" "physically remove"

insert
I/O

I/O

<safe point>

list

checkpoint list

transaction buffer list

transaction buffer list

tail

prevprev

physical

remove

journaling listjournaling list

Jlist

T1 T2 T3 T4 T5JBD2 T6

blocked blockedI/O I/O I/O I/O

I/O processing period

I/O start

I/O

end

timeI/O

T1

Application threads

JBD2

I/O end

T0

cooperative I/O threads

Figure 3.5: Parallel I/O in a cooperative manner (T: thread)

I/Os of the buffers, and complete them in parallel. For better parallelism, we

use our concurrent fetch operation and per-thread wait list, which is a linked

list used to wait the I/O operations in parallel.

As shown in Figure 3.5, each thread fetches the jh concurrently by executing

the atomic CAS instruction. Then, each thread issues the I/O of the buffer (i.e.,

bh) associated with the jh and inserts the buffer into its own wait list. After

all the I/Os are issued, each thread completes its own I/O using its own wait

list. Meanwhile, if the fetched jh was removed logically, the thread (T2) does

not perform the I/O for the jh but fetches the next jh.

Using this scheme, multiple threads can cooperate in I/O processing by

issuing/completing I/Os in parallel. This can make a commit and checkpoint

procedure faster by increasing the I/O parallelism and minimizing the blocking

time. We note that our parallel I/O operations can change the I/O ordering

between buffers inside a transaction. However, such a change does not sacri-

fice the atomicity since we write the commit block after all journal blocks are

written, which will be described in Section 3.2.2.

The optimized file system with our two schemes preserves the consistency

38

of the file system by satisfying the following properties: (1) Every block associ-

ated with a transaction is written to the journal area at a commit procedure.

(2) A transaction is committed or uncommitted (atomicity) according to the

commit block. (3) Committed transaction N-1 is checkpointed prior to com-

mitted transaction N. We will explain how to apply our schemes to transaction

processing and how to satisfy the properties in detail.

3.2.2 Implementation

Running transaction

This section presents our running transaction. We enable multiple application

threads to insert/remove the journal heads into/from the transaction buffer

list concurrently. Similar to the existing procedure, when the threads start a

transaction, they get a running transaction and increase the number of updates

in the transaction (Procedure 4, lines 3-4 and 31-39). Meanwhile, in our running

procedure, we allow the application threads to cooperate in I/O processing

for journal I/Os by calling journal io start() (lines 32-33), which will be

described in Section 3.2.2.

After getting the running transaction, we insert the jh into the transaction

buffer list by using our concurrent insert operation (lines 5-6 and 44-51). First,

the threads associate their jh to the running transaction. Then, they update

the tail (t buffers tail) by their jh and the jh’s previous item by the old

tail by executing the atomic set instruction2. This instruction updates the tail

and returns the old tail atomically. Then, the threads check whether the old tail

exists or not. If it does not exist, the head (t buffers) of the list is updated

by the inserted jh, which becomes the first item in the list. Otherwise, the next

item of the old tail is updated by the inserted jh.

2 sync lock test and set(type *ptr, type value): This built-in function performs an atomic
exchange operation. It writes the value into *ptr, and returns the previous contents of *ptr [42].

39

PROCEDURE 4 C-like pseudo-code of our running transaction

1: create(dir, ...){
2: /* create a new file */
3: handle = jbd2 journal start(journal, ...);
4: transaction = handle->transaction;
5: add buffer(bh->jh, transaction,
6: transaction->t buffers, transaction->t buffers tail);
7: jbd2 journal stop(handle);
8: }

9: truncate(dentry, ...){
10: /* truncate a file */
11: journal unmap buffer(journal, bh);
12: }

13: journal unmap buffer(journal, bh){
14: /* invalidate a buffer */
15: write lock(journal->j state lock);
16: transaction = bh->jh->transaction;
17: if(!bh->jh->cp transaction){
18: head = jh->cp transaction->gc head;
19: tail = jh->cp transaction->gc tail;
20: del buffer(jh, transaction, head, tail);
21: }else if(transaction == journal->j committing transaction){
22: set buffer free(bh);
23: atomic set(jh->removed, removed);
24: }else if(transaction == journal->j running transaction){
25: head = journal->j running transaction->gc head;
26: tail = journal->j running transaction->gc tail;
27: del buffer(jh, transaction, head, tail);
28: }
29: write unlock(journal->j state lock);
30: }

For remove operations, we use our two-phase remove operation. When the

threads remove their jh, they get the GC list of the transaction if the jh is

40

31: jbd2 journal start(journal, ...){
32: if(j running transaction is not available)
33: /*create a new transaction or call journal io start(journal)*/
34: read lock(journal->j state lock);
35: handle->transaction = journal->j running transaction;
36: atomic add(transaction->t updates, 1);
37: read unlock(journal->j state lock);
38: return handle;
39: }

40: jbd2 journal stop(handle){
41: /* complete a transaction */
42: atomic sub(handle->transaction->t updates, 1);
43: }

44: add buffer(jh, transaction, head, tail) {
45: jh->transaction = transaction;
46: jh->prev = atomic set(tail, jh);
47: if(jh->prev == NULL)
48: head = jh;
49: else
50: jh->prev->next = jh;
51: }

52: del buffer(jh, transaction, head, tail) {
53: atomic set(jh->removed, removed);
54: jh->gc prev = atomic set(tail, jh);
55: if(jh->gc prev == NULL)
56: head = jh;
57: else
58: jh->gc prev->gc next = jh;
59: bh->jh = jh->bh = NULL; /* unlink the bh from the jh */
60: jh->transaction = NULL;
61: }

associated with running or checkpoint transactions (lines 17-20 and 24-27). For

the logical remove operation (lines 52-61), the thread marks the jh as removed

41

by executing the atomic set instruction and inserts the jh into the GC list

atomically by using gc prev/next fields of the jh. Then, the bh is unlinked from

the removed jh (line 59), and the jh’s transaction or cp transaction field is

set to NULL in the case of running or checkpointing transaction, respectively (line

60). This means that the jh is not associated with the bh and the transaction

any longer. Thus, the jh becomes an obsolete structure, and the bh gets freed

at this point. This operation on the bh is performed safely since the operation

is protected by a spin lock (jbd lock bh state) per bh as same as the existing

scheme. Meanwhile, in the case of committing transaction, the thread only

marks the jh as removed (line 23), and both bh and jh will be freed during the

commit procedure.

Committing transaction

In this section, we present our committing transaction. During the existing

commit procedure, the journal thread updates the lists under the list lock and

performs journal I/O operations by a single thread. On the other hand, in

our commit procedure, we update the lists by using our concurrent update

operations and parallelize the I/O operations in a cooperative manner.

To commit a transaction, the journal thread gets a committing transaction

similar to the existing procedure (Procedure 5, lines 3-9). Then, the journal

thread starts the parallel I/O by setting the journal io variable (line 10). This

informs application threads that the I/O processing is initiated. Note that in the

existing procedure, application threads are blocked when a running transaction

is not available and cannot be newly created. Instead of blocking the threads,

we enable the threads to perform the I/O processing along with the journal

thread by calling journal io start() (Procedure 4, line 33, Procedure 5, line

11, and Procedure 6, line 2). Thus, the threads can join the I/O processing if

42

it is initiated by the journal thread (Procedure 6, lines 5-6).

To handle the joined threads, we record the number of threads by executing

atomic add/sub instructions3 (Procedure 6, lines 7 and 20) and create the per-

thread wait list for the parallel I/O completion (line 8). Then, we allow each

thread to fetch the jh from the transaction buffer list by using our concurrent

fetch operation, which executes the atomic cas instruction4 (lines 9-17). If the

fetched jh was logically removed, the thread bypasses and retries to fetch the

next jh. Otherwise, each thread creates a frozen buffer, submits the I/O of the

buffer to the journal area, and inserts the buffer into its own wait list in parallel.

After all the I/Os are issued, we stop new upcoming threads from joining

the I/O processing by unsetting the journal io variable (line 18). Then, the

joined threads complete the I/O by using their own wait list (lines 19 and 22-

32). Through the procedure above, the parallel I/O is completed by writing all

the buffers to the journal area. This procedure satisfies the following property.

Property 1. Every block associated with a transaction is written to the journal
area at a commit procedure.

Every application thread increases t update before inserting its jh (Proce-
dure 4, line 36) and decreases t update after inserting its jh (Procedure 4,
line 42). Before the journal thread starts the parallel I/O processing by setting
journal io (Procedure 5, line 10), the thread waits until t update becomes 0
(Procedure 5, line 7). This prevents application threads from starting and fin-
ishing the I/O processing before all the jhs are inserted into the transaction
buffer list. Thus, it ensures that all the buffers associated with the transaction
are written to the journal area even if the parallel I/O is enabled.

While completing the I/Os (Procedure 6, lines 22-32), the threads insert the

3 sync add/sub and fetch(type *ptr, type val): These built-in functions atomically
add/subtract the value of val to/from the variable that *ptr points to. The functions return
the new value of the variable that *ptr points to [42].

4 sync val compare and swap(type *ptr, type oldval, type newval): This built-in function
performs an atomic compare and swap operation. If the current value of *ptr is oldval, then
write newval into *ptr. Otherwise, no operation is performed. The function returns the contents
of *ptr before the operation [42].

43

PROCEDURE 5 C-like pseudo-code of our committing transaction (1)

1: /*the journal thread commits a transaction*/
2: jbd2 journal commit transaction(journal){
3: commit transaction = journal->j running transaction;
4: write lock(journal->j state lock);
5: journal->j committing transaction = commit transaction;
6: journal->j running transaction = NULL;
7: while(atomic read(transaction->t updates)){...}
8: write unlock(journal->j state lock);
9: transaction = journal->j committing transaction;

10: atomic set(transaction->journal io, start);
11: journal io start(journal);
12: while(atomic read(transaction->num io threads) != 0);
13: <issue and complete a commit block>
14: write lock(journal->j state lock);
15: <insert the committed transaction into a checkpoint transaction list
16: (journal->j checkpoint transactions) using our concurrent insert>
17: write unlock(journal->j state lock);
18: atomic set(transaction->cp io, start);
19: }

jhs into a checkpoint list if the jhs are not removed logically and their buffers

are still dirty. In this processing, for simplicity and efficiency, we make the

checkpoint list while completing the I/Os before the commit block is written.

However, the list is not used for checkpointing until the commit procedure is

finished to preserve the ordering of committing and checkpointing.

In addition, we use the wait lists instead of the shadow list and include all

the frozen buffers in the wait lists. Instead of the forget list, we use the GC list

and insert the jhs which are associated with buffers to be freed to the GC list.

After completing all the I/Os, the journal thread waits until all the journal I/Os

are finished by using the number of joined threads before writing the commit

block (Procedure 5, lines 12-13). This procedure satisfies the following property.

Property 2. A transaction is committed or uncommitted (atomicity) according

44

PROCEDURE 6 C-like pseudo-code of our committing transaction (2)

1: /*the journal thread performs journal I/Os with application threads*/
2: journal io start(journal){
3: if((transaction = journal->j committing transaction) == NULL)
4: return;
5: if(atomic read(transaction->journal io) == stop)
6: return;
7: atomic add(transaction->num io threads, 1);
8: create wait list(local wait list); // create a local wait list per thread
9: while((jh = transaction->t buffers) != NULL){

10: if(atomic cas(transaction->t buffers, jh, jh->next) != jh)
11: continue;
12: if(atomic read(jh->removed) == removed)
13: continue;
14: <make a frozen buffer (frozen bh)>
15: submit bh(WRITE, jh->frozen bh);
16: add wait list(local wait list, jh->frozen bh);
17: }
18: atomic set(transaction->journal io, stop);
19: wait journal io(wait list);
20: atomic sub(transaction->num io threads, 1);
21: }

22: wait journal io(local wait list){
23: while(!wait list empty(local wait list){
24: frozen bh = list entry(local wait list.next, ...);
25: wait on buffer(frozen bh);
26: jh = frozen bh->bh->jh;
27: jh->transaction = NULL;
28: if(atomic read(jh->removed) != removed && jbddirty(jh->bh))
29: add buffer(jh, transaction, transaction->t checkpoint list,
30: transaction->t checkpoint list tail);
31: }
32: }

to the commit block.

Every application thread that joins the I/O processing increases num io threads

before issuing I/O (Procedure 6, line 7) and decreases num io threads after

45

completing I/O (Procedure 6, line 20). The journal thread waits until num io threads

becomes 0 before the journal thread writes the commit block (Procedure 5, line
12). This means that all the journal blocks are written before the commit block
is written to the journal area. Thus, it ensures the atomicity of the transaction
by preserving the ordering between the journal blocks and the commit block.

Finally, the journal thread inserts the committed transaction into the check-

point transaction list by using the state lock (j state lock) and our concurrent

insert operation, and sets the cp io variable to start the checkpoint I/O (lines

14-18).

Checkpointing transaction

This section presents our checkpointing transaction. In the existing procedure,

when a transaction needs to be checkpointed, an application thread performs

checkpoint I/O operations by acquiring a checkpoint mutex lock (j checkpoint mutex).

Meanwhile, other application threads, which fail to acquire the lock, are blocked

until the checkpoint is finished, which can underutilize the I/O parallelism.

To enable a parallel checkpoint I/O, we allow the threads to join the I/O

processing instead of using the mutex lock and the checkpoint buffer. How-

ever, even with the parallel I/O, the I/O issue/complete operations are still

inefficient since the list lock is used to fetch/insert the jhs from/into the check-

point/checkpoint io lists. Thus, we fetch the jhs by using our concurrent fetch

operation, issue the I/Os, and complete the I/Os by using the per-thread wait

list in parallel instead of the global checkpoint io list.

When a checkpoint is triggered, application threads get a transaction to

be checkpointed if the transaction is available (Procedure 7, lines 2-3). Then,

the threads check whether the transaction can be checkpointed or not by using

the cp io variable (lines 4-5). Similar to our commit procedure, we record the

number of joined threads, and each thread creates its own wait list (lines 6-7).

46

For the concurrent and parallel I/O issue, each thread concurrently fetches the

jh from the checkpoint list, submits the I/O of the buffer associated with the

jh to the original area, and inserts the buffer into the wait list of each thread in

parallel (lines 8-15). If the fetched jh was removed logically, the thread retries

to fetch the next jh. After issuing all the I/Os, we stop new upcoming threads

from joining the I/O processing by unsetting the cp io variable (line 16). Then,

the joined threads disassociate the jhs with the transaction while completing

the I/Os (lines 17 and 28-34).

After completing all the I/Os, we find the last remaining thread by de-

creasing the number of joined threads (line 18). The last thread sets the next

transaction to be checkpointed by updating the head of the checkpoint transac-

tion list to the next of the head using the atomic CAS operation (lines 19-20).

This procedure satisfies the following property.

Property 3. Committed transaction N-1 is checkpointed prior to committed
transaction N.

A committed transaction is inserted into tail of the checkpoint transaction list
in committed order (Procedure 5, 15-16). The last thread sets the next trans-
action to be checkpointed in the checkpoint transaction list in committed order
(Procedure 7, 19-20). This means that if transaction N-1 is committed prior to
transaction N, the transaction N is not checkpointed prior to transaction N-1.
Thus, it ensures that all the buffers in the transaction are written to the original
area in the committed order. Consequently, our optimized file system preserves
the consistency of the file system by satisfying Properties 1, 2, and 3.

And then, the last thread physically removes all the obsolete jhs in the GC

list of the transaction (lines 21-24). At this point, we can reclaim the jhs safely.

It is because all the transaction processing is ended: (1) No other threads ref-

erence the logically removed jhs in the transaction since all the I/O processing

is ended. (2) No other threads insert any logically removed jhs into the GC

list of the transaction since all the jhs in the transaction are disassociated with

47

PROCEDURE 7 C-like pseudo-code of our checkpointing transaction

1: jbd2 log wait for space(journal){
2: if((transaction = journal->j checkpoint transactions) == NULL)
3: return;
4: if(atomic read(transaction->cp io) == stop)
5: return;
6: atomic add(transaction->cp num io threads, 1);
7: create wait list(local wait list); // create a local wait list per thread
8: while((jh = transaction->t checkpoint list) != NULL){
9: if(atomic cas(transaction->t checkpoint list, jh, jh->next) != jh))

10: continue;
11: if(atomic read(jh->removed) == removed)
12: continue;
13: submit bh(WRITE, jh->bh);
14: add wait list(local wait list, jh->bh);
15: }
16: atomic set(transaction->cp io, stop);
17: wait cp io(local wait list);
18: if(atomic sub(transaction->cp num io threads, 1) == 0){
19: <set the next transaction to be checkpointed
20: in the checkpoint transaction list using atomic cas>
21: while((jh = transaction->gc head) != NULL){
22: transaction->gc head = jh->gc next;
23: free(jh);
24: }
25: free(transaction);
26: }
27: }

28: wait cp io(local wait list){
29: while(!wait list empty(local wait list){
30: bh = list entry(local wait list.next, ...);
31: wait on buffer(bh);
32: bh->jh->cp transaction = NULL;
33: }
34: }

48

the transaction. Finally, the last thread frees the checkpointed transaction (line

25).

49

Chapter 4

Evaluation

4.1 Evaluating the Optimized File System for Low-
latency Storage

Our machine has an Intel Xeon E5630 2.53GHz quad core processor (total 8

cores with hyper-threading), 8 GiB memory, and runs Linux 3.14.3. As shown

in Figure 4.1, we used a battery-backed DRAM-SSD [16] as a fast storage device

in the system [14,43–45]. It has 512 GiB capacity in total (i.e., 64 GiB capacity

per module * 8 DDR3 modules) and a PCIe interface. To increase capacity, a

PCIe expansion card can be used to increase the number of PCIe slots, increas-

ing the number of SSDs in a machine. The peak throughput is about 1.6 GiB/s

for read and 1.4 GiB/s for write. The latency is 5 us and 7 us for reading and

writing 4 KiB, respectively. To show the performance benefit from each opti-

mization technique under different journaling modes, we evaluated the ordered

(default) and data journaling modes of the EXT4 file system. We used the FIO

benchmark [46] to measure the performance in terms of bandwidth for the two

modes. To evaluate the optimized file system in realistic workloads, we used

50

Figure 4.1: The DRAM-based SSD used in this study

10

0.5 1

0.4

0.4

O-EXT4 SR 0.74833 63.6

O-EXT4 SW 0.4899

0.89443

0.30067

SR 1.0198

SR 1.0198

0.12649

0.74833

1.0198

0.74833

0.5004

0
200
400
600
800

1000
1200
1400
1600
1800

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 O-EXT4 E-JFS P-JFS

Request size (bytes)

0
200
400
600
800

1000
1200
1400
1600
1800

4 KiB 16 KiB

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 O-EXT4 E-JFS P-JFS

Request size

0
200
400
600
800

1000
1200
1400
1600
1800

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4

Request size

0
200
400
600
800

1000
1200
1400
1600
1800

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4

Request size

(a) Bandwidth - Sequential Read

0
200
400
600
800

1000
1200
1400
1600
1800

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (

M
B

/s
)

#REF! O-EXT4 (journal-off) E-JFS P-JFS

Request size (bytes)

0

500

1000

1500

4 KiB 16 KiB

B
an

dw
id

th
 (

M
B

/s
)

#REF!

Request size

0
200
400
600
800

1000
1200
1400
1600

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (

M
iB

/s
)

E-EXT4 (journal off) E-EXT4 (ordered) O-EXT4 (journal-off) O-EXT4 (ordered)

Request size

0
200
400
600
800

1000
1200
1400
1600

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (

M
iB

/s
)

E-EXT4 (journal-off) E-EXT4 (ordered) O-EXT4 (journal-off) O-EXT4 (ordered)

Request size

(b) Bandwidth - Sequential Write

0
200
400
600
800

1000
1200
1400
1600
1800

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 O-EXT4 E-JFS P-JFS

Request size (bytes)

0

500

1000

1500

4 KiB 16 KiB

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 O-EXT4 E-JFS P-JFS

Request size (bytes)

0
200
400
600
800

1000
1200
1400
1600
1800

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4

Request size

0
200
400
600
800

1000
1200
1400
1600
1800

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4

Request size

(c) Bandwidth - Random Read

0

500

1000

1500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (

M
B

/s
)

E-EXT4 (journal-off) O-EXT4(journal-off)

Request size (bytes)

0

500

1000

1500

4 KiB 16 KiB

B
an

dw
id

th
 (

M
B

/s
)

E-EXT4 (journal-off)

Request size (bytes)

0
200
400
600
800

1000
1200
1400
1600

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

d
w

id
th

 (
M

iB
/s

)

E-EXT4 (journal-off) E-EXT4 (ordered) O-EXT4 (journal-off) O-EXT4 (ordered)

Request size

0
200
400
600
800

1000
1200
1400
1600

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

d
w

id
th

 (
M

iB
/s

)

E-EXT4 (journal-off) E-EXT4 (ordered) O-EXT4 (journal-off) O-EXT4 (ordered)

Request size

0
200
400
600
800

1000
1200
1400
1600

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

d
w

id
th

 (
M

iB
/s

)

E-EXT4 (journal-off) E-EXT4 (ordered) O-EXT4 (journal-off) O-EXT4 (ordered)

Request size

(d) Bandwidth - Random Write

Figure 4.2: FIO benchmark results (ordered mode)

TPC-C benchmark for the ordered mode and filebench for the data journaling

mode. We run each test five times and report the average and standard devi-

ation. The standard deviations are always under 1% of the mean; graphs omit

error bars.

51

4.1.1 Run-time Performance

Ordered mode

FIO benchmark results. We ran the FIO benchmark with diverse patterns,

multiple request sizes, and buffered I/O under 8 threads (each thread creates a

3 GiB file) in terms of bandwidth, as shown in Figure 4.2. Overall, the perfor-

mance is improved 35% on average compared to the existing I/O file system.

In the case of sequential read, Figure 4.2a shows that the optimized file

system improves performance by 14% on average compared to the existing file

systems. The performance gap is lower than those of other workloads, since

the page cache hit rate is higher due to the read-ahead technique. In sizes

that are less than 4 KiB, the performance of sequential read is highest among

the I/O patterns since the prefetched pages increase the hit rate for sequential

small block requests. However, existing file systems cannot fully utilize the I/O

bandwidth, whereas the optimized file system reaches peak throughput (1.6

GiB/s).

In the case of write performance on the ordered mode, we note that the

optimizations for journal I/O has little improvement on performance. Our op-

timization of journal I/O improves only about 1% on average compared to

existing journal I/O since data-intensive workload such as the FIO benchmark

generates small journal I/O for metadata. As shown in Figure 4.2b and 4.2d, the

performance of the journal-off mode is almost the same as that of the ordered

mode.

For sequential write as shown in Figure 4.2b, the optimized write-back

achieves 38% better performance on average. In the case of small request sizes

(i.e., 512 B and 1 KiB), the file systems perform read-modify-write operations

since the request size does not match the page (block) size (i.e., 4 KiB). As the

52

read-modify-write generates unrequested I/Os, it wastes the bandwidth and

largely decreases the I/O performance. The overall performance gains are in-

creased compared to the case of sequential read. In this case, in addition to the

hit rate of sequential write is lower than that of sequential read, the file system

selects more scattered pages by choosing dirty pages all over the page cache;

it increases the number of separate requests to storage. Eventually, since the

optimized file system merges the requested pages irrespective of contiguity, it

provides 1.4 GiB/s while the bandwidth of the existing file systems is saturated

to 1 GiB/s when the request size is larger than 4 KiB.

For random read and write, Figure 4.2c and 4.2d show that the optimized

file system improves the performance by average 39% and 40%, and up to 48%

and 54%, respectively, compared to the existing file system. When the request

size is less than 4 KiB during random read and write, the hit rate of small blocks

is rapidly decreased compared to sequential read and write, which decreases the

I/O performance. In the case of random write, more frequent read-modify-write

operations are performed compared to sequential write and the performance of

random write at small size is the lowest among the I/O patterns.

The performance gains of random workloads are higher than those of se-

quential workloads because the random workloads generate more multiple and

separate requests. Although the performance is low in the cases of small random

patterns (less than 4 KiB) compared to sequential patterns, the optimized file

system shows full performance when the request size is larger than 4 KiB.

TPC-C results. To evaluate performance of the optimized file system in

realistic workloads, we conducted TPC-C benchmark [47] with InnoDB [48].

We configured the experimental parameters as shown in Table 4.1 with other

parameter sets as the default. In the default configuration, InnoDB provides

atomicity of database page with redundant writes called double write buffer [49].

53

Parameters Values

Page size (KiB) 4

DB buffer size (GiB) 6

Warehouse 500

Number of clients 8

Ramp-up time (seconds) 180

Measured time (seconds) 600

Table 4.1: Experimental parameters for InnoDB

16KB
8client TpmC

180s/120s E-EXT4 12732 1.63422872

WH:500 P-EXT4 20807
E-JFS 13065 1.59931114

P-JFS 20895

E-EXT4 15722 1.32343213

O-EXT4 20807
E-JFS 15465 1.35111542

O-JFS 20895

150

12732

20807

13065

20895

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000

E-EXT4 P-EXT4 E-JFS P-JFS

Tp
m

C

15722

20807

15465

20895

0

4000

8000

12000

16000

20000

24000

E-EXT4 O-EXT4 E-JFS O-JFS

Tp
m

C

0

4000

8000

12000

16000

20000

24000

E-EXT4 O-EXT4

tp
m

C

0

4000

8000

12000

16000

20000

24000

E-EXT4 O-EXT4

tp
m

C

0

4000

8000

12000

16000

20000

24000

E-EXT4 O-EXT4

tp
m

C

Figure 4.3: TPC-C results (ordered mode)

Therefore, the ordered mode is sufficient (i.e., metadata journaling) to provide

crash consistency in the case of InnoDB. In [49], the authors showed that a

smaller page size (4 KiB) leads to better transaction throughput instead of the

default page size (16 KiB). Thus, we configured the page size as 4 KiB. In the

TPC-C workload [50], the read:write ratio is kept at 1.9:1, and the pattern is

random access.

Figure 4.3 shows the Transaction Per Minute type C (tpmC) for the exist-

ing and optimized file systems. As shown in figure, the optimized file system

improves the performance by 32.3% compared to the existing file system. The

optimized file system achieves up to 20807 tpmC. This result demonstrates that

the existing file systems lag behind the optimized file system in the database

54

DataJournal Buffered SIZE seqwrite

512 B 1 KiB 4 KiB 16 KiB 64 KiB Sequential WRITE
1GB 16thread

1GB 8thread

3GB 8thread Deafult 168.8 186 234.8 235.1 235.5

JM 194.2 217.7 281.2 291.4 293.2

JD

CP 219.4 227 286.9 287.8 289.6

JM+CP 257 299.8 441.5 463 461.3

JM+CP+J 257.6 302.6 442 463.2 462

DataJournal Buffered SIZE randwrite

512B 1KB 4KB 16KB 64KB

1GB 16thread

1GB 8thread

3GB 8thread Deafult 21 41.7 230 231.6 234.1

JM 27.3 53.2 267.4 285.1 290

JD

CP 26.5 52.2 281.8 286.8 287.6

JM+CP 36.7 71.9 424.5 440.5 456.7

JM+CP+JD 36.7 72.2 432.5 455.9 460.8

Sequential WRITE Random Write

JM CP JM CP

existing

proposed 338.0825968 31.6954 337.9385876 48.3659

48.594

6311664/18669 5841138/184290

Random WRITE

JM_IO: 6311717, JM_IO_count: 18724, CP_IO: 5956854, CP_IO_count: 156968, JD_IO: 334620, JD_IO_count: 39197

168.8
186

234.8 235.1 235.5

194.2

217.7

281.2
291.4 293.2

219.4 227

286.9 287.8 289.6

257

299.8

441.5

463 461.3

257.6

302.6

442

463.2 462

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 P-EXT4(JM) P-EXT4(CP) P-EXT4(JM+CP) P-EXT4(JM+CP+JD)

Request size (bytes)

21
41.7

230 231.6 234.1

27.3
53.2

267.4
285.1 290

26.5
52.2

281.8 286.8 287.6

36.7
71.9

424.5
440.5

456.7

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 P-EXT4(JM) P-EXT4(CP) P-EXT4(JM+CP) P-EXT4(JM+CP+JD)

Request size (bytes)

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

Request size

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

Request size

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

Request size

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

Request size

(a) Bandwidth - Sequential Write

DataJournal Buffered SIZE seqwrite

512 B 1 KiB 4 KiB 16 KiB 64 KiB Sequential WRITE
1GB 16thread

1GB 8thread

3GB 8thread Deafult 168.8 186 234.8 235.1 235.5

JM 194.2 217.7 281.2 291.4 293.2

JD

CP 219.4 227 286.9 287.8 289.6

JM+CP 257 299.8 441.5 463 461.3

JM+CP+J 257.6 302.6 442 463.2 462

DataJournal Buffered SIZE randwrite

512B 1KB 4KB 16KB 64KB

1GB 16thread

1GB 8thread

3GB 8thread Deafult 21 41.7 230 231.6 234.1

JM 27.3 53.2 267.4 285.1 290

JD

CP 26.5 52.2 281.8 286.8 287.6

JM+CP 36.7 71.9 424.5 440.5 456.7

JM+CP+JD 36.7 72.2 432.5 455.9 460.8

Sequential WRITE Random Write

JM CP JM CP

existing

proposed 338.0825968 31.6954 337.9385876 48.3659

48.594

6311664/18669 5841138/184290

Random WRITE

JM_IO: 6311717, JM_IO_count: 18724, CP_IO: 5956854, CP_IO_count: 156968, JD_IO: 334620, JD_IO_count: 39197

168.8
186

234.8 235.1 235.5

194.2

217.7

281.2
291.4 293.2

219.4 227

286.9 287.8 289.6

257

299.8

441.5

463 461.3

257.6

302.6

442

463.2 462

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 P-EXT4(JM) P-EXT4(CP) P-EXT4(JM+CP) P-EXT4(JM+CP+JD)

Request size (bytes)

21
41.7

230 231.6 234.1

27.3
53.2

267.4
285.1 290

26.5
52.2

281.8 286.8 287.6

36.7
71.9

424.5
440.5

456.7

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 P-EXT4(JM) P-EXT4(CP) P-EXT4(JM+CP) P-EXT4(JM+CP+JD)

Request size (bytes)

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

Request size

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

Request size

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

Request size

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

Request size

(b) Bandwidth - Random Write

Figure 4.4: FIO benchmark results (data journaling)

workload. Similar to the FIO test in the ordered mode, our optimization of jour-

nal I/O little improves the performance (about 1%) since the TPC-C generates

small metadata journal I/O compared to data I/O.

Data journaling mode

FIO benchmark results. To evaluate the performance for data journaling

in the optimized file system, we conducted the FIO benchmark as shown in

Figure 4.4 in the case of sequential and random write. We denote that JO and

CP are journaling and checkpoint operations, respectively. The sequential and

random read performance of the FIO benchmark is almost the same as those of

the ordered mode. Since the read-only workload does not start the transaction,

it does not generate any journal I/O. The performance of the existing data

journaling mode is decreased by about 4x compared to that of the ordered

mode in the case of 4 KiB due to the journaling operations with redundant

data writes.

For the sequential write, in the existing file system, the performance is im-

proved by 10%/26.2% from 512B/1KiB to 1KiB/4KiB respectively. However,

the performance is saturated at about 235 MiB/s when the request size is larger

than 4 KiB. The journal operation (JO), checkpoint (CP), and JO+CP in the

55

optimized file system I/O improve the performance by 15%/17%, 29.9%/48.9%,

and 52.2%/61.1% in the case of 512B/1KiB respectively. In more than 4 KiB,

the JO/CP/JO+CP in the optimized file system improves the performance by

19.7%/22.1%/88%, 23.9%/22.4%/96.9%, and 24.5%/22.9%/95.8% in the case

of 4 KiB, 16 KiB, and 64 KiB respectively. The small size affects the band-

width in the existing and optimized file systems since a request size of less

than 4 KiB incurs read-modify-write operations. Accordingly, the performance

improvement in the request sizes less than 4 KiB is less than that in the re-

quest sizes larger than 4 KiB. In terms of the performance improvement when

larger than 4 KiB, JO and CP each show a relatively small improvement, but

the optimized JO+CP noticeably improves the performance of the existing file

system. As a result, it demonstrates that the optimization is necessary for both

JO and CP.

The performance results for random write are almost the same as those of

the sequential write workloads. However, in the case of less than 4 KiB, the

performance improvement gap is much smaller. It is because the small random

blocks are more read-modify-write operations than small sequential blocks. In

the random workloads, optimized JO+CP operations improve the performance

by 95% in the case of 64 KiB compared to the existing operations.

Filebench results. We evaluated the performance of the data journaling

mode in existing and optimized file systems by using filebench [51]. In filebench,

we used the fileserver workload that is write-intensive. In this workload, to pro-

vide crash consistency with data integrity, the data journaling mode is required

because the file server does not provide atomic updates for data.

As shown in Table 4.2, we configured the I/O size as 16 KiB, the number

of files as 5,000, the mean file size as 6 MiB, the number of clients as 64, and

measured time as 600 s with other parameters sets as default. As shown in

56

Parameters Values

I/O size (KiB) 16

The number of files 5,000

Meanfile size (MiB) 6

The number of clients 64

Measured time (seconds) 600

Table 4.2: Experimental parameters for fileserver

Fileserver

/mnt/jsm4

nthreads=64

meanfilesize=6291456(6MB)

nfiles=50

iosize:1MB

Fileserver R/W (1:2)
BW (MB/s) latency (ms)

E-EXT4 316 560.5

O-EXT4(JM) 420.7 414.4 1.331329114

O-EXT4(CP) 403.3 448.5 1.276265823

O-EXT4(JM+CP) 607 283.9 1.920886076

Varmail R/W (1:1)
BW (MB/s) latency (ms)

E-EXT4 795

O-EXT4(JM)

O-EXT4(CP) 789.9 2.9

O-EXT4(JM+CP)

iosize: 4KB

Fileserver R/W (1:2) 4.5
BW (MB/s) latency (ms) 6.5

E-EXT4 …? 5

O-EXT4(JM) 10

O-EXT4(CP)

O-EXT4(JM+CP)

2016-04-18

Fileserver

/mnt/jsm4

nthreads=64

meanfilesize=6291456(6MB)

nfiles=5000

iosize:1MB
Fileserver R/W (1:2)

BW (MB/s) latency (ms)

E-EXT4 326 579.7

O-EXT4(JM)

O-EXT4(CP)

O-EXT4(JM+CP)

iosize:4KB
BW (MB/s) latency (ms)

E-EXT4 322.3 512.5

O-EXT4(JM)

O-EXT4(CP)

O-EXT4(JM+CP)

iosize:16KB
BW (MB/s) latency (ms)

E-EXT4 336.4 549.4

O-EXT4(JM) 430.7 409.2

O-EXT4(CP) 433.9 404.7

O-EXT4(JM+CP) 598.6 283.9
P-EXT4(JM+CP+JD)

Experimental Analysis JM CP JM+CP

average pages count / I/O count 332.6423963 61.260707

각각 각각 합쳐서

1.438363267 1.7195566

JM_IO: 10782083, JM_IO_count: 32427, CP_IO: 10613343, CP_IO_count: 175812, JD_IO: 94868, JD_IO_count: 6886

0

100

200

300

400

500

600

700

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 P-EXT4(JM) P-EXT4(CP) P-EXT4(JM+CP)

326

430.7 433.9

598.6

0

100

200

300

400

500

600

700

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 P-EXT4(JM) P-EXT4(CP) P-EXT4(JM+CP)

326

430.7 433.9

598.6

0

100

200

300

400

500

600

700

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 P-EXT4(JM) P-EXT4(CP) P-EXT4(JM+CP)

0

100

200

300

400

500

600

700

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

0

100

200

300

400

500

600

700

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

Figure 4.5: Fileserver results (data journaling)

Figure 4.5, the optimized JO, CP, and JO+CP operations in the optimized file

system improve the performance by 32.1%, 33%, and 83.6% compared to those

in the existing file system, respectively. We achieve high performance by up to

about 600 MiB/s. The optimized file system provides higher performance than

the existing file system while providing strong consistency.

4.1.2 Recovery Performance

To measure the recovery time in the existing and optimized file systems, we

cut the power randomly while running the random write workload of the FIO

benchmark in the ordered and data journaling modes. We conducted this eval-

uation more than 20 times, and the existing and optimized file systems were

remounted correctly by scanning and replaying the blocks in the journal area.

57

Recovery Time Default Proposed Proposed Profiling Proposed Profiling Proposed Profiling

FIO 480ms 457ms READ IO 24680 Recovery Time 276 Recovery Time 182

FIO 617ms 278ms READ IO count 797 Do pass time (Read) 180 Do pass time (Read) 125

avg 30.9661 sync time 95 1024 sync time 57

Fileserver 444ms replayed blocks 24150 replayed blocks 16108

Proposed Profiling

READ IO 16186 Proposed Profiling

READ IO count 523 Recovery Time 275

350ms avg 30.9484 Do pass time (Read) 124

replayed 16105 sync time 151

recovery time 278ms replayed blocks 16134

Proposed Profiling

Proposed Profiling Recovery Time 182

READ IO 16263 Do pass time (Read) 122

Existing READ IO count 525 sync time 60

scanned blocks replayed blocks avg 30.9771 replayed blocks 16103

1 1.1189 replayed 16182

recovery time 298

read time 130 Proposed Profiling

sync time 168 Recovery Time 183

FIO Do pass time (Read) 121

Existing recovery 50% sync time 61

replayed 16266 192 Proposed Profiling replayed blocks 16127

171 Recovery Time 193

recovery time 363 Do pass time (Read 121 Proposed Profiling

FIO FIO sync time 72 Recovery Time 268

Existing recovery 10% Proposed without JM+CP 10% Do pass time (Read) 180

28896 321 26420 199 sync time 87

247 87 Proposed Profiling replayed blocks 24194

other 74 recovery time 287 Recovery Time 276

recovery time 568 Do pass time (Read 180

74 proposed 10% sync time 95 1024

16225 125 replayed blocks 24150

58

FIO recovery 183

Existing recovery 10%

16248 181 proposed 10%

16.7 16229 124

152 657

recovery Time 333.6 181

Proposed 10%

28079 216 32개

Existing recovery 10% 36 2048개

26233 295 252 에러남

27.2

sync dev 246.9 Proposed 10%

recovery Time 542.5 16227 130 32

59 1024

Existing recovery 10% 190

23615 268

24.2 Proposed 10%

sync dev 248 24172 194 32

recovery Time 517 83 1024

558 277

Proposed 10%

24277 181 32

81 1024

263

Proposed

16111 do one 126

scan 12.6

replay 58

total 185

Proposed

16291 do one 127

scan 13.2

replay 65

total 192.5

Proposed

24164 do one 181

scan 15.3

replay 80

total 262

Proposed

16301 do one 125

scan 13.8

jread 13.6

replay 64.6

total 190

E-EXT4 O-EXT4

268 181

248 80

1 1

517 262

ORDERED MODE

ordered mode 단위:us

existing file system Proposed file system

replyaed 33 replayed 25

scan 1093 scan 461

sync blockdev 42 sync blockdev 22

recovery time 1150 recovery time 500.9

other time 15 other time 17.9

RECV READ IO: 67

RECV READ COUNT: 3

existing file system Proposed file system

replyaed 29 replayed 25

scan time 753 scan 485

sync blockdev time 37 sync blockdev 23

recovery time 813 recovery time 525

RECV READ IO 64 RECV READ IO 64

RECV READ COUNT 1 RECV READ COUNT 2

RECV WRITE IO 7 RECV WRITE IO 3

RECV WRITE COUNT 7 RECV WRITE COUNT 1

11 0.7071 Proposed file system

10 replayed 29 선정된 block이 29인데, 실제 쓰여지는건 3blocks

scan time 494 1145

sync blockdev time 22 500.9

recovery time 533 2.28589

RECV READ IO 64

RECV READ COUNT 2

RECV WRITE IO 3

RECV WRITE COUNT 1

Proposed file system

replayed ….?

scan time

sync blockdev time avg

recovery time Scan Replay Other 1086.333333 SD

RECV READ IO E-EXT4 1093 37 15 3259 4.98888

RECV READ COUNT 1081 32 14 2.62467

RECV WRITE IO 1085 31 13 0.8165

RECV WRITE COUNT

Scan Replay Other

O-EXT4 461 22 17.9

452 23 18

444 20 16.7

29 32 0.6

0

100

200

300

400

500

600

700

Re
co

ve
ry

 T
im

e
(m

s)

E-EXT4 P-EXT4(JM+CP)

0

100

200

300

400

500

600

E-EXT4 O-EXT4

Re
co

ve
ry

 T
im

e
(m

s)

Scan Replay Other

0

100

200

300

400

500

600

1 2

0

100

200

300

400

500

600

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(m

s)

Scan Replay Other

0

200

400

600

800

1000

1200

1400

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(u

s)

Scan Replay Other

0

200

400

600

800

1000

1200

1400

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(u

s)

Scan Replay Other

0

100

200

300

400

500

600

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(m

s)

Scan Replay Other

0

200

400

600

800

1000

1200

1400

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(u

s)

Scan Replay Other

0

100

200

300

400

500

600

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(m

s)

Scan Replay Other

(a) Ordered mode

Recovery Time Default Proposed Proposed Profiling Proposed Profiling Proposed Profiling

FIO 480ms 457ms READ IO 24680 Recovery Time 276 Recovery Time 182

FIO 617ms 278ms READ IO count 797 Do pass time (Read) 180 Do pass time (Read) 125

avg 30.9661 sync time 95 1024 sync time 57

Fileserver 444ms replayed blocks 24150 replayed blocks 16108

Proposed Profiling

READ IO 16186 Proposed Profiling

READ IO count 523 Recovery Time 275

350ms avg 30.9484 Do pass time (Read) 124

replayed 16105 sync time 151

recovery time 278ms replayed blocks 16134

Proposed Profiling

Proposed Profiling Recovery Time 182

READ IO 16263 Do pass time (Read) 122

Existing READ IO count 525 sync time 60

scanned blocks replayed blocks avg 30.9771 replayed blocks 16103

1 1.1189 replayed 16182

recovery time 298

read time 130 Proposed Profiling

sync time 168 Recovery Time 183

FIO Do pass time (Read) 121

Existing recovery 50% sync time 61

replayed 16266 192 Proposed Profiling replayed blocks 16127

171 Recovery Time 193

recovery time 363 Do pass time (Read 121 Proposed Profiling

FIO FIO sync time 72 Recovery Time 268

Existing recovery 10% Proposed without JM+CP 10% Do pass time (Read) 180

28896 321 26420 199 sync time 87

247 87 Proposed Profiling replayed blocks 24194

other 74 recovery time 287 Recovery Time 276

recovery time 568 Do pass time (Read 180

74 proposed 10% sync time 95 1024

16225 125 replayed blocks 24150

58

FIO recovery 183

Existing recovery 10%

16248 181 proposed 10%

16.7 16229 124

152 657

recovery Time 333.6 181

Proposed 10%

28079 216 32개

Existing recovery 10% 36 2048개

26233 295 252 에러남

27.2

sync dev 246.9 Proposed 10%

recovery Time 542.5 16227 130 32

59 1024

Existing recovery 10% 190

23615 268

24.2 Proposed 10%

sync dev 248 24172 194 32

recovery Time 517 83 1024

558 277

Proposed 10%

24277 181 32

81 1024

263

Proposed

16111 do one 126

scan 12.6

replay 58

total 185

Proposed

16291 do one 127

scan 13.2

replay 65

total 192.5

Proposed

24164 do one 181

scan 15.3

replay 80

total 262

Proposed

16301 do one 125

scan 13.8

jread 13.6

replay 64.6

total 190

E-EXT4 O-EXT4

268 181

248 80

1 1

517 262

ORDERED MODE

ordered mode 단위:us

existing file system Proposed file system

replyaed 33 replayed 25

scan 1093 scan 461

sync blockdev 42 sync blockdev 22

recovery time 1150 recovery time 500.9

other time 15 other time 17.9

RECV READ IO: 67

RECV READ COUNT: 3

existing file system Proposed file system

replyaed 29 replayed 25

scan time 753 scan 485

sync blockdev time 37 sync blockdev 23

recovery time 813 recovery time 525

RECV READ IO 64 RECV READ IO 64

RECV READ COUNT 1 RECV READ COUNT 2

RECV WRITE IO 7 RECV WRITE IO 3

RECV WRITE COUNT 7 RECV WRITE COUNT 1

11 0.7071 Proposed file system

10 replayed 29 선정된 block이 29인데, 실제 쓰여지는건 3blocks

scan time 494 1145

sync blockdev time 22 500.9

recovery time 533 2.28589

RECV READ IO 64

RECV READ COUNT 2

RECV WRITE IO 3

RECV WRITE COUNT 1

Proposed file system

replayed ….?

scan time

sync blockdev time avg

recovery time Scan Replay Other 1086.333333 SD

RECV READ IO E-EXT4 1093 37 15 3259 4.98888

RECV READ COUNT 1081 32 14 2.62467

RECV WRITE IO 1085 31 13 0.8165

RECV WRITE COUNT

Scan Replay Other

O-EXT4 461 22 17.9

452 23 18

444 20 16.7

29 32 0.6

0

100

200

300

400

500

600

700

Re
co

ve
ry

 T
im

e
(m

s)

E-EXT4 P-EXT4(JM+CP)

0

100

200

300

400

500

600

E-EXT4 O-EXT4

Re
co

ve
ry

 T
im

e
(m

s)

Scan Replay Other

0

100

200

300

400

500

600

1 2

0

100

200

300

400

500

600

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(m

s)

Scan Replay Other

0

200

400

600

800

1000

1200

1400

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(u

s)

Scan Replay Other

0

200

400

600

800

1000

1200

1400

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(u

s)

Scan Replay Other

0

100

200

300

400

500

600

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(m

s)

Scan Replay Other

0

200

400

600

800

1000

1200

1400

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(u

s)

Scan Replay Other

0

100

200

300

400

500

600

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(m

s)

Scan Replay Other

(b) Data journaling mode

Figure 4.6: Recovery performance

We compared the recovery performance when the number of replayed blocks

was almost the same in the existing and optimized file systems. The recovery

time occupied more than 92% of the total remount time while the scan and re-

play operations occupied a great part of the total recovery time in the existing

and optimized file systems.

As shown in Figure 4.6, the optimized file system improves the recovery

performance by about 2.28x/1.97x compared to the existing file system in the

case of the ordered and data journaling modes, respectively. In this evaluation,

the total replayed blocks in the existing/optimized file system are 3/3 and

23615/24164 in the ordered and data journaling mode, respectively.

In the case of the ordered mode as shown in Figure 4.6a, the scan and

replay operations of existing/optimized file systems take about 1093us/461us

and 37us/22us, respectively. In the case of data journaling mode as shown

in Figure 4.6b, the scan and replay operations of the existing/optimized file

systems take about 268ms/181ms and 248ms/80ms, respectively. According to

this result, the optimized file system improves the scan and replay operations

by making the blocks into a single request. Consequently, our scheme can also

58

Benchmark FIO
I/O types SR SW RR RW JO CP

Existing file system 15 (0.6) 14 (0.6) 2.5 (0.2) 1.5 (0.2) 1 (0) 0 (0)
Optimized file system 63 (0.6) 128 (0.04) 8 (0.14) 128 (0.04) 3.1 (0.1) 0 (0)

(a) FIO

Benchmark TPC-C
I/O types Read Write JO CP

Existing file system 1 (0.04) 2 (0.06) 1 (0) 1 (0)
Optimized file system 5 (0.2) 43 (0.6) 2 (0.1) 2.7 (0.4)

(b) TPC-C

Table 4.3: The average page counts in a single request in the ordered mode
(SR: Sequential Read, SW: Sequential Write, RR: Random Read, RW: Random
Write, JO: Journal operation, CP: Checkpoint, the numbers in parentheses are
standard deviations)

Benchmarks FIO Fileserver

I/O types
SW RW Random I/O

JO CP JO CP JO CP
Existing file system 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

Optimized file system 338 (0.7) 31.6 (0.6) 337.9 (0.1) 48.3 (0.5) 332.6 (0.9) 61.2 (0.4)

Table 4.4: The average page counts in a single request in the data journaling
mode (JO: Journal operation, CP: Checkpoint, SW: Sequential Write, RW:
Random Write, the numbers in parentheses are standard deviations)

be applied to the recovery procedure to provide faster remount time.

4.1.3 Experimental Analysis

We analyzed the main factor of the performance improvement in the optimized

file system. We measured the page counts per request with I/O operations. Ta-

ble 4.3 shows the average page counts in a single request of the existing and

optimized file systems. The unit of request size was 4 KiB for the EXT4 file

system, and the counts were measured at the device driver level. Our technique

increases the average page counts in a single request by 4.2x, 9.14x, 3.2x, and

85.3x in the case of SR, SW, RR, and RW under FIO, respectively. The results

show that the number of write operations is higher than that of the read op-

59

Modes Ordered Data journaling
Operations Scan Replay Scan Replay

Existing file system 1 (0) 1 (0) 1 (0) 1 (0)
Optimized file system 32 (0.08) 3 (0.4) 32 (0.08) 1024 (0.04)

Table 4.5: The average page counts in a single request during recovery (the
numbers in parentheses are standard deviations)

erations. The reason is that write-back operations occur when the dirty rate is

higher than the threshold, which accumulates the dirty pages.

Although the average page counts of the sequential read are higher than

those of the random read, the performance gap of sequential read is lower than

that of the random read operations. The reason is that the sequential read

patterns provide a very high hit rate. In the case of TPC-C, the existing file

systems cannot merge the pages into a large request since the patterns are

almost random. Meanwhile, the optimized file system increases the average

page counts by 5x and 21.5x for read and write, respectively.

We note that the optimized journal I/O in the ordered mode does not affect

the performance of our fast storage device and data-intensive workload. The

performance of journal-off is almost the same as that of the ordered mode.

As shown in Table 4.3, in the ordered mode, only small journal blocks are

infrequently written to the journal area.

In contrast, our optimization in the data journaling mode improves the per-

formance since both data and metadata generate journaling and checkpoint. As

shown in Table 4.4, in the case of the FIO benchmark with the data journaling

mode, JO/CP in the optimized file system merges the 338/337.9 and 31.6/48.3

requests at once for the sequential and random write workloads, respectively.

Thus, the average page counts are larger by 338x/337.9x and 31.6x/48.3x than

those of existing file system. In the case of the fileserver workload, the average

60

counts are larger by 332.6x and 61.2x compared to those of the existing file

system for JO and CP, respectively. In the FIO and fileserver workloads, the

optimized file system significantly increases the page counts in a single request

since each page is processed by only one request in the existing file system.

As shown in Table 4.5, in the analysis of the recovery performance, the

existing file system processes the requests for scan and replay operations as

several requests one by one. In contrast, the optimized file system makes 32/32

and 3/1024 blocks in the case of ordered/data journaling modes for scan and

replay operations into a single request, respectively. This result shows that the

optimized file system increases the average number of pages in a single request

by 32x/32x and 3x/1024x in case of the ordered/data journaling modes for scan

and replay operations compared to the existing file system, respectively. Con-

sequently, the I/O performance is improved, and the recovery time is reduced

by a large request.

4.2 Evaluating the Optimized File System for Highly
Parallel Storage

We perform all of the experiments on a 72-core machine with four Intel Xeon

E7-8870 processors (without hyperthreading), 16 GiB DRAM, and PCI 3.0

interface. For storage, the machine has an 800 GiB Intel P3700 NVMe SSD [17],

which has 18 channels. The machine runs Ubuntu 16.04.1 LTS distribution with

a Linux kernel 4.9.1. We evaluate the existing EXT4 and fully optimized EXT4

(O-EXT4) file systems in the ordered (default) and data journaling modes. To

present a performance breakdown, we also evaluate an optimized EXT4 with

our parallel I/O (P-EXT4), which performs our parallel I/O for journaling and

checkpointing without j checkpoint mutex but updates the data structures

using j list lock. We run metadata and data-intensive workloads, such as

61

Benchmarks Descriptions Parameters

Tokubench Metadata-intensive (file creation) Files: 30,000,000, I/O sizes: 4KiB
Sysbench Data-intensive (random write) Files: 72, Each file size: 1GiB, I/O sizes: 4KiB
Varmail Metadata-intensive Files: 300,000, Directory width: 10,000

Fileserver Data-intensive Files: 1,000,000, Directory width: 10,000

Table 4.6: Experimental parameters

Ordered tokubench

Ordered sysbench

0

100

200

300

400

500

600

1 2 4 8 18

B
a
n

d
w

id
th

 (
M

B
/s

)

The number of cores

EXT4 P-EXT4 O-EXT4

0

200

400

600

800

1 2 4 8 18 36 54 72B
a

n
d

w
id

th
 (

M
B

/s
)

The number of cores

Sysbench Fileserver

0

200

400

600

800

1 2 4 8 18 36 54 72B
a

n
d

w
id

th
 (

M
B

/s
)

The number of cores

Tokubench Varmail

Ordered tokubench

Ordered sysbench

0

50

100

150

200

250

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

0

500

1000

1500

2000

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

(a) Tokubench

Ordered tokubench

Ordered sysbench

0

50

100

150

200

250

1 2 4 8 18 36 54 72

B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

0

500

1000

1500

2000

1 2 4 8 18 36 54 72

B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

(b) Sysbench

Ordered Varmail

Ordered fileserver

0

200

400

600

800

1000

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

0

400

800

1200

1600

2000

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

(c) Varmail

Ordered Varmail

Ordered fileserver

0

200

400

600

800

1000

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

0

400

800

1200

1600

2000

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

(d) Fileserver

Figure 4.7: Ordered mode

tokubench [52], sysbench [53] and filebench [51] with the parameters shown in

Table 4.6. We vary the number of cores from 1 to 72, and the number of threads

is equal to that of the cores. We run each test ten times and report the average.

62

4.2.1 Run-time Performance

Ordered mode

We present the performance results in the ordered mode as shown in Figure 4.7.

In the case of tokubench as shown in Figure 4.7a, the performance growth of

EXT4 is not noticeable as the number of cores increases. P-EXT4 improves the

performance by 1.9x compared to EXT4. However, compared to full optimiza-

tion, this result shows the limitation of our parallel I/O scheme, which does not

handle the lock contention. Through full optimization, O-EXT4 improves the

performance by 2.2x at 72 cores compared to EXT4. Meanwhile, the perfor-

mance of O-EXT4 is almost the same beyond 18 cores since the bandwidth is

saturated due to the limited write bandwidth and the channels of the SSD. In

the case of sysbench as shown in Figure 4.7b, P-EXT4 and O-EXT4 improve the

performance by 13.8% and 16.3%, respectively, compared to EXT4 at 72 cores.

The performance improvement is lower than that of tokubench since sysbench

as a data-intensive workload generates far fewer journal I/Os for metadata.

Under the varmail workload as shown in Figure 4.7c, P-EXT4 and O-EXT4

scale well compared to the case of tokubench and outperform EXT4 by 1.92x

and 2.03x at 72 cores, respectively. O-EXT4 achieves up to 914.3 MiB/s. Since

the workload generates a mixture of read/write operations unlike tokubench,

the available bandwidth increases, and therefore, the performance gradually

scales at all cores. Meanwhile, the performance of EXT4 decreases beyond 54

cores due to the lock contention. Under the fileserver workload as shown in

Figure 4.7d, P-EXT4 and O-EXT4 outperform EXT4 by 4.3% and 9.6% at 72

cores, respectively. All the file systems scale in a similar trend at each core,

and the performance gap is not noticeable. The reason is that, similar to the

case of sysbench, the fileserver workload is data-intensive, which generates a low

63

Ordered tokubench

Ordered sysbench

0

100

200

300

400

500

600

1 2 4 8 18

B
a
n

d
w

id
th

 (
M

B
/s

)

The number of cores

EXT4 P-EXT4 O-EXT4

0

200

400

600

800

1 2 4 8 18 36 54 72B
a

n
d

w
id

th
 (

M
B

/s
)

The number of cores

Sysbench Fileserver

0

200

400

600

800

1 2 4 8 18 36 54 72B
a

n
d

w
id

th
 (

M
B

/s
)

The number of cores

Tokubench Varmail

DJ tokubench affinity

DJ sysbench affinity

0

50

100

150

200

250

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

0

100

200

300

400

500

600

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

(a) Tokubench

DJ tokubench affinity

DJ sysbench affinity

0

50

100

150

200

250

1 2 4 8 18 36 54 72

B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

0

100

200

300

400

500

600

1 2 4 8 18 36 54 72

B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

(b) Sysbench
DJ Varmail

DJ fileserver

0
100
200
300
400
500
600
700

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

0

200

400

600

800

1000

1200

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

(c) Varmail

DJ Varmail

DJ fileserver

0
100
200
300
400
500
600
700

1 2 4 8 18 36 54 72

B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

0

200

400

600

800

1000

1200

1 2 4 8 18 36 54 72

B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

(d) Fileserver

Figure 4.8: Data journaling mode

number of metadata I/Os. Consequently, our optimized file system improves the

performance in the ordered mode by reducing the lock contention and parallelize

the I/O operations especially for metadata-intensive workloads.

Data journaling mode

We present the performance results in the data journaling mode as shown in

Figure 4.8. In the case of tokubench as shown in Figure 4.8a, P-EXT4 and

O-EXT4 outperform EXT4 by 73% and 88.2% at 72 cores, respectively. The

results show that the overall aspect of the performance is similar to that in

the ordered mode. In the case of sysbench as shown in Figure 4.8b, P-EXT4

and O-EXT4 show 1.17x and 2.1x faster performance than EXT4 at 72 cores,

respectively. The performance improvement is higher than that in the ordered

64

mode since the workload generates many journal I/Os for data. Also, the results

show that the improvement by our parallel I/O scheme is low due to the list

lock contention.

Under the varmail workload as shown in Figure 4.8c, P-EXT4 and O-EXT4

outperform EXT4 by 31.3% and 39.3% at 72 cores, respectively. Unlike the

case of the ordered mode, the performance is saturated and sustained beyond

18 cores since writing both the metadata and the data makes the performance

reach the full bandwidth faster. Meanwhile, the performance of EXT4 decreases

due to the lock contention. In the case of fileserver as shown in Figure 4.8d,

P-EXT4 and O-EXT4 outperform EXT4 by 1.45x and 2.01x at 72 cores, re-

spectively. O-EXT4 achieves up to 1064.6 MiB/s. The performance of P-EXT4

and E-EXT4 decreases beyond 36 cores, which demonstrates the need for both

concurrent updates on data structures and parallel I/O. Meanwhile, O-EXT4

scales well to 18 cores and increases the performance until 72 cores. Beyond 36

cores, the rate of bandwidth growth is reduced due to the bandwidth limit of

the SSD. Consequently, our optimized file system achieves higher performance

in the data journaling mode, and the benefit becomes larger in data-intensive

workloads.

Comparison with a scalable file system

We compare our optimized file system with SpanFS [15], a scalable file system.

We use the varmail and fileserver workloads in the ordered and data journal-

ing modes, respectively. We set the number of domains in SpanFS as same as

that of the cores. As shown in Figure 4.9, both file systems scale well until

the performance is saturated in both workloads. Meanwhile, O-EXT4 generally

shows better performance and improves performance by up to 1.45x and 1.51x

in the varmail and fileserver workloads, respectively, compared to SpanFS. Es-

65

0

200

400

600

800

1000

1200

1 2 4 8 18 36 54 72

B
a

n
d

w
id

th
(M

B
/s

)

The number of cores

Fileserver / Data Journaling

SpanFS O-EXT4

36 54 72

0

200

400

600

800

1000

1 2 4 8 18 36 54 72B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

Fileserver / Data Journaling

SpanFS O-EXT4

(a) Varmail

0

200

400

600

800

1000

1200

1 2 4 8 18 36 54 72

B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

Fileserver / Data Journaling

SpanFS O-EXT4

(b) Fileserver

Figure 4.9: Comparison with SpanFS

pecially, in the case of the varmail workload, the performance of O-EXT4 is

similar or slower than that of SpanFS at small number of cores while O-EXT4

shows better performance than SpanFS as the number of cores increases. The

results show that our scheme can deliver better performance than the scheme

that distributes file services.

4.2.2 Recovery Performance

In EXT4/JBD2, a single-threaded process (i.e., mount process) performs recov-

ery operations which can underutilize both multi-cores and I/O parallelism. To

increase the parallelism, similar to our journal and checkpoint I/O schemes, we

perform scan and replay I/O operations in parallel by creating multiple threads

without any additional locking. To evaluate the performance and test the cor-

rectness of recovery, we used tokubench and fileserver workloads in the ordered

and data journaling modes, respectively. While running the benchmarks, we

randomly cut the power of the machine, and both existing and optimized file

systems are recovered to a consistent state after more than 30 crashes.

Table 4.7 shows the recovery performance of the ordered and data journaling

modes in the file systems. The scan and replay operations occupy the main part

66

Modes Ordered Data journaling
Operations scan replay other scan replay other

EXT4 331 ms 62 ms 7 ms 311 ms 81 ms 5 ms
O-EXT4 125 ms 34 ms 9 ms 117 ms 37 ms 4 ms

Table 4.7: Recovery performance

of the total recovery time in all cases. Through parallelizing scan and replay

I/O operations, O-EXT4 improves the recovery performance by 2.38x and 2.51x

compared to EXT4 in the ordered and data journaling modes, respectively.

This result demonstrates that our schemes can also be applied to the recovery

procedure to provide faster recovery time.

4.2.3 Experimental Analysis

Table 4.8 shows the total execution time for main locks and device-level band-

width at 72 cores in the case of the sysbench workload in the data journaling

mode. For this experiment, we measured the execution time by using a time

function (getrawmonotonic()) for lower overhead and more correctness. As

shown in the table, in EXT4, the execution time of the checkpoint mutex and

list locks take a large portion of the total write time. In P-EXT4, the bandwidth

increases by 16.3%, and the write time decreases by 15.7% compared to EXT4,

respectively. As the total write time decreases, the time of the list and state

locks decreases while the list lock still takes up 10.8% of the total write time.

This demonstrates that the list lock contention can be a performance bottle-

neck in our parallel I/O scheme. In O-EXT4, the bandwidth increases by 2.06x,

and the write time decreases by 2.08x compared to EXT4. This is achieved by

removing the list lock contention via our concurrent update scheme. Meanwhile,

the contention on the state lock increases due to the removal of the list lock but

the portion is still small. Consequently, this result demonstrates that O-EXT4

67

File systems EXT4 P-EXT4 O-EXT4

Device-level bandwidth 692 MiB/s 805 MiB/s 1426 MiB/s
Write time 52220 s (100%) 45124 s (100%) 25078 s (100%)

j checkpoint mutex 17946 s (34.4%) 0 0
j list lock 6132 s (11.7%) 4890 s (10.8%) 0
j state lock 102 s (0.2%) 87 s (0.2%) 182 s (0.7%)

Others 28040 s (53.7%) 40147 s (89%) 24896 s (99.3%)

Table 4.8: Device-level bandwidth and total execution time of main locks and
write operations

achieves high-performance transaction processing by enabling both concurrent

updates and parallel I/O.

68

Chapter 5

Related Work

5.1 Analysis and Evaluation of High-Performance stor-
age

eNVy [54] presents a non-volatile main memory storage system built with flash

memory. It uses a special controller equipped with a battery-backed SRAM

buffer to hide the block-addressable nature of flash. The Rio file cache [55] uses

a battery-backed main memory to make writes persistent. It can survive OS

crashes and be as safe and permanent as disk. It achieves the performance of

main memory with the reliability of disk by eliminating all reliability-induced

writes to disk.

Kim et al. [6] explore the opportunities for PCM technology within enter-

prise storage systems. They present the results of a performance study of an

all-PCM SSD prototype. They compare the PCM SSD prototype to an eMLC

flash SSD to understand the performance characteristics of the PCM SSD as

another storage tier. They state that the IOPS/$ of a tiered storage system can

be improved by adding PCM. Vucinic et al. [23] explore the limits of communi-

69

cation latency with a PCM-based storage device over PCI express. They devise

dubbed DC Express, which is a communication protocol. This protocol elim-

inates unnecessary packet exchanges and avoids context and mode switching.

Our study is in line with such studies [54,55] in terms of using a battery-backed

memory and such studies [6,23] in terms of exploring PCIe based SSDs. Mean-

while, we focus on the OS-level I/O stack including file systems.

Researchers have recently performed empirical studies of file systems and ap-

plication performance on NVM [56–58] and concentrated efforts to improve the

performance of fast storage devices. Sehgal et al. [56] evaluate the performance

of various traditional Linux file systems under various real-world workloads on

NVM simulated using ramdisk and compare it against an NVM optimized file

system like PMFS [10]. They demonstrate that the traditional file systems can

be tuned to perform better than their default settings on NVM with a per-

formance comparable to that PMFS. Zhang et al. [57] provide an analysis of

storage application performance with NVM. Their evaluation results show that

NVM improves the storage application performance significantly compared to

flash-based SSDs and HDDs. They present that even if NVM has somewhat

higher latency and lower bandwidth than DRAM, this difference has a mod-

est impact on application performance. Lee et al. [58] explore the use of NVM

storage from the operating system (OS) perspective. They investigate the ef-

fectiveness of current I/O mechanisms and the efficient use of NVM storage.

5.2 Study of Journaling File Systems

There are some studies on the journaling file systems. Lu et al. [59] conduct a

comprehensive study of Linux file system code evolution. They mention that

open-source local file systems (e.g., EXT4) are a critical component of modern

storage since many recent distributed file systems (e.g., Google GFS, Hadoop

70

DFS, etc) replicate data objects across local file systems. They analyze eight

years of Linux file system changes and derive numerous new insights into the file

system development process. Prabhakaran et al. [37] provide a detailed analysis

of journaling file systems by using semantic block analysis (SBA) and semantic

trace playback (STP). SBA enables users to understand the internal behavior

and policies of the file system, and STP allows users to quantify how changing

the file system will impact the performance of real workloads.

DualFS [60] is a new high-performance journaling file system, which pro-

vides the same consistency guarantees as existing file systems but with better

performance. Different from our approach, DualFS places data and metadata

in different devices and manages them in different ways. For example, DualFS

organizes the metadata device as a log-structured file system and the data de-

vice as a group respectively. Kang et al. [15] propose a scalable file system on

fast storage devices. In contrast to our goal, they focus on the lock contention

as a bottleneck in the journaling file system. To reduce lock contention, they

distribute files and directories among the domains, which consist of a collection

of micro-file system services, and provide a global file system view on top of the

domains, and maintain consistency in case of system crashes.

Lee et al. [61] present a novel buffer cache architecture that subsumes the

functionality of caching and journaling. They reduce the I/O traffic of jour-

naling using non-volatile memory. In contrast, we focus on PCIe-based storage

as primary storage and provide more efficient I/O operations between the file

system and the lower layer. OptFS [30] proposes decoupled ordering and dura-

bility primitives such as osync() and dsync() in HDD-based storage to reduce

the frequent flush commands from the journaling file system. They trade fresh-

ness for performance while maintaining crash consistency. Unlike our scheme,

their target is HDD-based storage that includes a volatile cache.

71

5.3 File and I/O System Optimizations for Low-latency
Storage

There are a number of file system designs and suggested optimizations [9,10,12,

62] for SCM. SCMFS [12] is a new file system designed for storage class memory.

This system utilizes the existing memory management module in the operating

system to achieve high performance by keeping contiguous space for each file in

the logical address space. BPFS [9] is optimized for small random writes by fine-

grained updates instead of transferring data in bulk, which leads to unnecessary

traffic over the memory bus for NVRAM. PMFS [10] is a persistent memory

(PM) load/store accessible file system similar to SCMFS and BPFS. PMFS

exploits byte-addressability of persistent memory in order to avoid the over-

head of block-oriented storage and to enable direct PM access by applications.

NOVA [62] is a log-structured file system (LFS) designed for hybrid memory

systems. By extending LFS ideas to leverage NVM, NOVA proposes fast and

efficient garbage collection, quick recovery, and strong consistency guarantees

compared to conventional file operations and mmap-based load/store accesses.

These schemes [9, 10, 12, 62] are optimized for persistent memory attached to

the processor’s memory bus. However, they are not appropriate for PCIe-based

SSDs.

NV-Heaps [63] provides user-level transactional updates to persistent data

and proposes a programming model to simplify PM programming. NV-Heaps

forces the programmer to employ a specific object framework and requires mod-

ifications to the processor. Mnemosyne [64] also proposes a transaction mecha-

nism to update data in NVM. It supports direct access and reduces latency by

bypassing many software layers. These studies [63,64] provide fast mechanisms

for object persistency, but they do not replace files or file systems.

In addition, various studies on optimizing I/O stack for PCIe-based SSDs

72

have been conducted. Seppanen et al. [11] state that an I/O scheduler in a

traditional block I/O subsystem serializes and merges requests. It is efficient

for HDDs since HDDs have seek overhead and lack parallelism. When storage

devices such as flash-based SSDs are used, the system with the conventional

block I/O subsystem cannot fully exploit the parallelism in the SSDs since the

I/O scheduler processes the requests in a serialized and batched manner. Thus,

the authors propose a new Linux block I/O subsystem without SCSI/ATA

layers and an I/O scheduler to reduce latency and exploit parallelism of storage

devices. However, the proposed block I/O subsystem still processes requests

asynchronously; interrupts are used to communicate with storage devices.

Yang et al. [13] show that a synchronous I/O (polling) between the host and

the storage device delivers better performance than an asynchronous I/O (in-

terrupt) when the device has ultra-low latency. Since the system with interrupt-

based I/O completes all I/Os asynchronously and it causes the interrupt hand-

ing overheads, the polling mechanism is more appropriated for storage devices

with ultra-low latency. Yu et al. [14] improve the I/O bandwidth by combin-

ing multiple block requests among multiple threads into one I/O request and

dispatching the request to storage. These studies [11,13,14] improve the perfor-

mance by focusing on the optimization of the block I/O subsystem. Meanwhile,

our study focuses on the I/O operations in the file system on top of the opti-

mized block I/O subsystem including these techniques [11,13,14].

Moneta [65] is an architecture for a PCIe-attached storage array built from

emulated PCM storage. This architecture uses a series of hardware/software

(device driver) optimizations that improve its performance for next-generation

NVM such as PCM. Moneta-D [66] is an extended version of Moneta that re-

moves software overhead by using a user-level driver, which bypasses the kernel

and file systems. Due to the user-level driver, Moneta-D requires additional

73

hardware functionalities for security and authority. In contrast to these stud-

ies [65, 66], we focus on optimization of the software stack and file systems.

Our scheme is implemented at the kernel level and does not require additional

support to avoid security concerns.

pVM [67] is a system software abstraction that provides applications with

automatic OS-level memory capacity scaling, flexible memory placement poli-

cies across NVM, and fast object storage. It extends the OS virtual memory and

abstracts NVM as a NUMA node with support for NVM-based memory place-

ment mechanisms. This article is similar to pVM in terms of exploring NVM in

the OS. Meanwhile, we focus on the existing I/O stack and file systems instead

of the virtual memory system.

Several works have researched how to optimize software stacks for fast net-

work access. IX [68] proposes a dataplane operating system by using hardware

virtualization to separate the management and scheduling functions of the ker-

nel from network processing. IX optimizes both bandwidth and latency by pro-

cessing batches of packets to completion and eliminating synchronization on

multi-core servers. Arrakis [69] presents an operating system that splits the

traditional role of the kernel. Applications have direct access to virtualized I/O

devices by allowing most I/O operations to skip the kernel, while the kernel is

re-engineered to provide network and disk protection without kernel mediation

of every operation. Similar to IX, Arrakis uses hardware virtualization to sep-

arate the I/O dataplane from the control plane. Both IX [68] and Arrakis [69]

provide optimized networking stack by reducing the overhead of the operating

systems. This article is in line with these schemes [68, 69] in terms of reducing

the software overhead. Unlike these schemes, we focus on the storage stack for

fast storage devices.

74

5.4 Study of Scalability in Operating Systems

Hive [70] is an operating system designed for large scale shared-memory mul-

tiprocessors. It is structured as an internal distributed system of independent

kernels called cells to improve reliability and scalability. Cerberus [71] mitigates

contention on many shared data structures within OS kernels by clustering mul-

tiple commodity operating systems atop a virtual machine monitor. Baumann

et al. [72] investigate a new OS structure, the multikernel. To solve scalability

problems for OSs, they structure the OS as a distributed system of cores that

communicate using messages and share no memory. Corey [73] is an exokernel

based operating system that follows a principle, which allows applications to

control the sharing of kernel resources. Its abstractions ensure that each kernel

data structure is used by only one core by default, while giving applications the

ability to specify when sharing of kernel data is necessary.

Boyd-Wickizer et al. [74] analyze the scalability of seven system applications

running on Linux. They find that all applications trigger scalability bottlenecks

inside a Linux kernel. RadixVM [75] presents a scalable virtual memory address

space for non-overlapping operations. It avoids cache line contention using three

techniques, which are radix trees, Refcache, and targeted TLB shootdowns.

Our study is inspired by these works [70–75] and in line with them in terms of

investigating the scalability of OS kernels on multi-cores. In contrast, we focus

on the transaction processing in file systems on high-performance storage.

5.5 File and I/O System Optimizations for Highly Par-
allel Storage

Zheng et al. [76] present a storage system for arrays of commodity SSDs. They

create dedicated I/O threads for each SSD and deploy a set-associative parallel

page cache, which divides the global page cache into small and independent sets

75

to reduce lock contention. MultiLanes [18] is a virtualized storage system for

OS-level virtualization on many cores. It builds an isolated I/O stack on top

of a virtualized storage device to eliminate contention on shared kernel data

structures and locks. Bjørling et al. [77] propose a new design for I/O manage-

ment in the block layer. They address the scalability of the Linux block layer

and propose a new Linux block layer, which maintains a per-core request queue.

They design multiple I/O submission/completion queues to minimize cache co-

herence across CPU cores. Jericho [78] is a new I/O stack that improves affinity

between threads, and buffers in the storage I/O path for NUMA multicore

systems. Jericho consists of a NUMA aware file system and a DRAM cache

organized in slices mapped to NUMA nodes. Our study is in line with these

works [18, 76–78] in terms of mitigating the contention on shared resources. In

contrast, we focus on updating the data structures concurrently in a lock-free

manner in journaling file systems.

ScaleFS [79] extends a scalable in-memory file system to support consistency

on an on-disk file system by using per core operation logs. IceFS [80] partitions

the on-disk resources among a new container abstraction called cubes to provide

isolated I/O stacks for localized reaction to faults, fast recovery, and concurrent

file system updates. Thus, data and I/O within each cube are disentangled from

the data and I/O outside of it. SpanFS [15] is a scalable file system that consists

of a collection of micro file system services called domains. It distributes the files

and directories among the domains and provides a global file system view on top

of the domains to maintain consistency. Each domain performs its file system

service, such as data allocation and journaling, independently. Curtis-Maury

et al. [81] present a data partitioning mode to parallelize the majority of file

system operations. They also provide a fine-grained lock-based multiprocessor

model for incremental advances in parallelism.

76

Min et al. [82] analyze the many-core scalability of five file systems by

using their open source benchmark suite (i.e., FxMark). They observe that file

systems are hidden scalability bottlenecks in many I/O-intensive applications.

iJournaling [36] improves the performance of an fsync() call. It journals only

the corresponding file-level transaction to the ijournal area for an fsync call

while exploiting the advantage of the compound transaction scheme. iJournaling

also handles multiple fsync calls simultaneously by allowing each core to have

its own ijournal area to improve the scalability. Our study is in line with these

approaches [15,36,79–82] in terms of investigating the scalability and parallelism

of the file systems. In contrast, we enable concurrent updates on data structures

in a lock-free manner and parallelize I/O operations cooperatively in transaction

processing by focusing its internal operations.

77

Chapter 6

Conculsion

6.1 Summary

High-performance storage devices such as solid-state drives (SSDs) are becom-

ing one of attractive storage solutions for various computer systems. According

to development of the storage devices, optimizing the file systems is essential

in order to fully exploit their features. As our observations, the existing I/O

operations and locking in file systems can be performance bottlenecks on high-

performance SSDs.

This dissertation proposes two key optimizations, 1) efficient I/O strategies

for low-latency SSDs, which transfers requests from discontiguous host mem-

ory buffers to discontiguous storage segments in a single I/O request, and 2)

concurrent updates on data structures and parallel I/O operations for highly

parallel SSDs. Experiments show that our optimized file system achieves higher

performance than the existing file system.

78

6.2 Future work

In the future work, we will extend our techniques and the scope of I/O opti-

mizations for high-performance storage devices.

Extending I/O optimizations for low-latency storage devices. Our

techniques for low-latency storage devices are limited to our customized DRAM-

SSD. However, our techniques can be applied to other storage protocols or de-

vices as well as other file systems. For example, current NVMe protocol transfers

data only from discontiguous host memory buffers to contiguous storage seg-

ments in one I/O request. We can add the feature, which transfers data from

discontiguous host memory buffers to discontiguous storage segments in one

I/O request, to the NVMe protocol. By doing so, we standardize our technique

by adding the new feature to the NVMe protocol and also our optimized file

system can be used for low-latency storage devices with the NVMe protocol.

Also, we will perform a holistic end-to-end I/O stack or cross-layer opti-

mizations for the low-latency storage devices. For example, we can broaden

the scope of our optimizations to cover the whole local file system layers (e.g.,

VFS, block layer, and device driver), distributed file systems, user applications

(e.g., database systems), and network layers. In the existing storage system,

there are many layers, which can generate a performance bottleneck in the low-

latency storage devices. Thus, we first find out the performance bottleneck by

measuring the latency for each layer. And then, we will merge the redundant

operations between layers and minimize the whole I/O path to maximize the

performance.

Extending I/O optimizations for highly parallel storage devices.

In this paper, our techniques for highly parallel storage devices are limited

to the locking for transaction processing in EXT4/JBD2. We can extend the

79

techniques to the locks for other shared resources in the file systems such as file,

page cache, etc. For example, EXT4 uses a coarse-grained lock (mutex) per file.

This locking ensures correct updates on the file, and thus the file consistency is

preserved. A previous study [82] shows the overhead from the file locking such as

an inode mutex. When applications are accessing a shared file, such file locking

become the bottleneck. Thus, we will extend our optimization techniques to the

file locking mechanism to update the file updates concurrently.

For another example, the Linux kernel adopts a page cache organized as

an address space radix tree to cache recently accessed blocks for better I/O

performance. The OS uses a read-copy-update (RCU) lock to protect correct

updates of the radix tree [15,76,83]. Previous studies [76,83] show the page cache

locking overhead and reduce the overhead by using a set-associative parallel

page cache which divides the global page cache into small and independent sets

to reduce lock contention. SpanFS [15] leverages the Linux OS block device

architecture to provide a dedicated buffer cache address space for each domain

to avoid lock contention. For more efficiency, we will extend our technique using

a lock-free data structure to the page cache.

For different storage configuration, we will consider the performance in mul-

tiple storage devices on RAID. In RAID, the I/O operations are performed for

each device in parallel. However, we may rethink the RAID performance on

many cores with a number of highly parallel storage devices considering the

scalability and parallelism. Finally, after we solve the performance bottleneck

in the local file and storage systems, we will extend the optimizations to other

systems such as distributed file systems and database systems. Consequently,

we will consider the whole layers in a small or large system to maximize the

performance from high-performance hardware.

80

Bibliography

[1] E. Grochowski and R. F. Hoyt, “Future trends in hard disk drives,” IEEE

Transactions on Magnetics, vol. 32, no. 3, pp. 1850–1854, 1996.

[2] A. Al Mamun, G. Guo, and C. Bi, Hard disk drive: mechatronics and

control, vol. 23. CRC press, 2006.

[3] B. L. Worthington, G. R. Ganger, and Y. N. Patt, “Scheduling algorithms

for modern disk drives,” ACM SIGMETRICS Performance Evaluation Re-

view, vol. 22, 1994.

[4] Y. J. Yu, D. I. Shin, H. Eom, and H. Y. Yeom, “Ncq vs. i/o scheduler: Pre-

venting unexpected misbehaviors,” ACM Transactions on Storage (TOS),

vol. 6, no. 1, p. 2, 2010.

[5] R. R. Katti, H. L. Stadler, and J.-C. Wu, “Non-volatile magnetic random

access memory,” 1994. US Patent 5,289,410.

[6] H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu, “Evaluating phase change

memory for enterprise storage systems: A study of caching and tiering

approaches,” in Proceedings of the 12th USENIX Conference on File and

Storage Technologies (FAST 14), pp. 33–45, 2014.

81

[7] J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of floating-gate interfer-

ence on nand flash memory cell operation,” IEEE Electron Device Letters,

vol. 23, no. 5, pp. 264–266, 2002.

[8] L. M. Grupp, J. D. Davis, and S. Swanson, “The bleak future of nand

flash memory,” in Proceedings of the 10th USENIX conference on File and

Storage Technologies, pp. 2–2, USENIX Association, 2012.

[9] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and

D. Coetzee, “Better i/o through byte-addressable, persistent memory,” in

Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems

Principles, SOSP ’09, 2009.

[10] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,

R. Sankaran, and J. Jackson, “System software for persistent memory,”

in Proceedings of the Ninth European Conference on Computer Systems,

EuroSys ’14, 2014.

[11] E. Seppanen, M. O’Keefe, and D. Lilja, “High performance solid state

storage under linux,” in Mass Storage Systems and Technologies (MSST),

2010 IEEE 26th Symposium on, 2010.

[12] X. Wu and A. L. N. Reddy, “Scmfs: A file system for storage class mem-

ory,” in Proceedings of 2011 International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, SC ’11, 2011.

[13] J. Yang, D. B. Minturn, and F. Hady, “When poll is better than inter-

rupt,” in Proceedings of the 10th USENIX Conference on File and Storage

Technologies, FAST’12, 2012.

82

[14] Y. J. Yu, D. I. Shin, W. Shin, N. Y. Song, J. W. Choi, H. S. Kim, H. Eom,

and H. Y. Yeom, “Optimizing the block i/o subsystem for fast storage

devices,” ACM Trans. Comput. Syst., vol. 32, no. 2, pp. 6:1–6:48, 2014.

[15] J. Kang, B. Zhang, T. Wo, W. Yu, L. Du, S. Ma, and J. Huai, “Spanfs:

A scalable file system on fast storage devices,” in 2015 USENIX Annual

Technical Conference (USENIX ATC 15), (Santa Clara, CA), pp. 249–261,

USENIX Association, July 2015.

[16] TAILWINDSTORAGE, “Extreme s3804.” http://www.taejin.co.kr,

2014.

[17] Intel Solid State Drive DC P3700 Series. http://www.

intel.com/content/dam/www/public/us/en/documents/

product-specifications/ssd-dc-p3700-spec.pdf, 2015.

[18] J. Kang, C. Hu, T. Wo, Y. Zhai, B. Zhang, and J. Huai, “Multilanes: Pro-

viding virtualized storage for os-level virtualization on manycores,” Trans.

Storage, vol. 12, pp. 12:1–12:31, June 2016.

[19] NVM express. http://www.nvmexpress.org, 2012.

[20] S. Raoux, G. Burr, M. Breitwisch, C. Rettner, Y. Chen, R. Shelby,

M. Salinga, D. Krebs, S.-H. Chen, H. L. Lung, and C. Lam, “Phase-change

random access memory: A scalable technology,” IBM Journal of Research

and Development, vol. 52, no. 4.5, 2008.

[21] B. Dieny, R. Sousa, G. Prenat, and U. Ebels, “Spin-dependent phenomena

and their implementation in spintronic devices,” in VLSI Technology, Sys-

tems and Applications, 2008. VLSI-TSA 2008. International Symposium

on, 2008.

83

http://www.taejin.co.kr
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-dc-p3700-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-dc-p3700-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-dc-p3700-spec.pdf
http://www.nvmexpress.org

[22] J. Coburn, T. Bunker, M. Schwarz, R. Gupta, and S. Swanson, “From aries

to mars: Transaction support for next-generation, solid-state drives,” in

Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles, SOSP ’13, 2013.

[23] D. Vučinić, Q. Wang, C. Guyot, R. Mateescu, F. Blagojević, L. Franca-

Neto, D. Le Moal, T. Bunker, J. Xu, S. Swanson, et al., “DC express:

shortest latency protocol for reading phase change memory over PCI ex-

press,” in Proceedings of the 12th USENIX Conference on File and Storage

Technologies (FAST 14), pp. 309–315, 2014.

[24] Y. Son, H. Kang, H. Han, and H. Y. Yeom, “An empirical evaluation

and analysis of the performance of nvm express solid state drive,” Cluster

Computing, pp. 1–13, 2016.

[25] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, L. Vivier,

and B. S. A. S, “A and viver, l. the new ext4 filesystem: cur-

rent status and future plans,” in In Ottawa Linux Symposium.

http://ols.108.redhat.com/2007/ Reprints/mathur-Reprint.pdf, 2007.

[26] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck,

“Scalability in the xfs file system.,” in USENIX Annual Technical Confer-

ence, vol. 15, 1996.

[27] JFS for Linux. http://oss.software/ibm.com/jfs, 2002.

[28] H. Reiser, “Reiserfs,” 2004.

[29] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1st ed., 1992.

84

http://oss.software/ibm.com/jfs

[30] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau, “Optimistic crash consistency,” in Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems Principles, pp. 228–243,

ACM, 2013.

[31] O. Rodeh, J. Bacik, and C. Mason, “Btrfs: The linux b-tree filesystem,”

ACM Transactions on Storage (TOS), vol. 9, no. 3, p. 9, 2013.

[32] J. Bonwick and B. Moore, “ZFS: The last word in file systems,” 2007.

[33] M. Rosenblum and J. K. Ousterhout, “The design and implementation

of a log-structured file system,” ACM Transactions on Computer Systems

(TOCS), vol. 10, no. 1, pp. 26–52, 1992.

[34] D. Kim, J. Park, K.-g. Lee, and S. Lee, Forensic Analysis of Android Phone

Using Ext4 File System Journal Log, pp. 435–446. Dordrecht: Springer

Netherlands, 2012.

[35] A. C. Arpaci-Dusseau, “Model-based failure analysis of journaling file sys-

tems,” in Proceedings of the 2005 International Conference on Dependable

Systems and Networks, DSN ’05, (Washington, DC, USA), pp. 802–811,

IEEE Computer Society, 2005.

[36] D. Park and D. Shin, “ijournaling: Fine-grained journaling for improv-

ing the latency of fsync system call,” in 2017 USENIX Annual Technical

Conference (USENIX ATC 17), (Santa Clara, CA), pp. 787–798, USENIX

Association, 2017.

[37] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Anal-

ysis and evolution of journaling file systems,” in Proceedings of the Annual

85

Conference on USENIX Annual Technical Conference, ATEC ’05, (Berke-

ley, CA, USA), pp. 8–8, USENIX Association, 2005.

[38] S. C. Tweedie, “Journaling the linux ext2fs filesystem,” in The Fourth

Annual Linux Expo, 1998.

[39] A. Hatzieleftheriou and S. V. Anastasiadis, “Improving bandwidth effi-

ciency for consistent multistream storage,” Trans. Storage, vol. 9, pp. 2:1–

2:27, Mar. 2013.

[40] K. Apt, F. S. De Boer, and E.-R. Olderog, Verification of sequential and

concurrent programs. Springer Science & Business Media, 2010.

[41] J. Östlund and T. Wrigstad, “Multiple aggregate entry points for own-

ership types,” ECOOP 2012–Object-Oriented Programming, pp. 156–180,

2012.

[42] R. M. Stallman and G. DeveloperCommunity, Using The Gnu Compiler

Collection: A Gnu Manual For Gcc Version 4.3.3. Paramount, CA: Cre-

ateSpace, 2009.

[43] N. Y. Song, Y. Son, H. Han, and H. Y. Yeom, “Efficient memory-mapped

i/o on fast storage device,” Trans. Storage, vol. 12, pp. 19:1–19:27, May

2016.

[44] Y. Son, N. Song, H. Han, H. Eom, and H. Yeom, “Design and evaluation

of a user-level file system for fast storage devices,” Cluster Computing,

vol. 18, no. 3, pp. 1075–1086, 2015.

[45] Y. Son, J. W. Choi, H. Eom, and H. Y. Yeom, “Optimizing the file system

with variable-length i/o for fast storage devices,” in Proceedings of the 4th

86

Asia-Pacific Workshop on Systems, APSys ’13, (New York, NY, USA),

pp. 14:1–14:6, ACM, 2013.

[46] J.Axboe, “Fiobenchmark.” http://freecode.com/projects/fio, 1998.

[47] tpcc-mysql. https://github.com/Percona-Lab/tpcc-mysql.

[48] P. Fruhwirt, P. Kieseberg, S. Schrittwieser, M. Huber, and E. Weippl, “Inn-

odb database forensics: Reconstructing data manipulation queries from

redo logs,” in Availability, Reliability and Security (ARES), 2012 Seventh

International Conference on, 2012.

[49] W.-H. Kang, S.-W. Lee, B. Moon, Y.-S. Kee, and M. Oh, “Durable write

cache in flash memory ssd for relational and nosql databases,” in Proceed-

ings of the 2014 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’14, 2014.

[50] S. Chen, A. Ailamaki, M. Athanassoulis, P. B. Gibbons, R. Johnson, I. Pan-

dis, and R. Stoica, “Tpc-e vs. tpc-c: Characterizing the new tpc-e bench-

mark via an i/o comparison study,” SIGMOD Rec., vol. 39, no. 3, pp. 5–10,

2011.

[51] A. Wilson, “The new and improved filebench,” in Proceedings of 6th

USENIX Conference on File and Storage Technologies, 2008.

[52] J. Esmet, M. A. Bender, M. Farach-Colton, and B. C. Kuszmaul, “The

tokufs streaming file system,” in Proceedings of the 4th USENIX Confer-

ence on Hot Topics in Storage and File Systems, HotStorage’12, (Berkeley,

CA, USA), pp. 14–14, USENIX Association, 2012.

[53] A. Kopytov, “Sysbench: a system performance benchmark,” URL:

http://sysbench. sourceforge. net, 2004.

87

http://freecode.com/projects/fio
https://github.com/Percona-Lab/tpcc-mysql

[54] M. Wu and W. Zwaenepoel, “eNVy: a non-volatile, main memory storage

system,” ACM SIGOPS Operating Systems Review, vol. 28, no. 5, pp. 86–

97, 1994.

[55] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani, and D. Low-

ell, “The Rio File Cache: Surviving Operating System Crashes,” in Pro-

ceedings of the Seventh International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS VII, (New

York, NY, USA), pp. 74–83, ACM, 1996.

[56] P. Sehgal, S. Basu, K. Srinivasan, and K. Voruganti, “An empirical study of

file systems on nvm,” in Mass Storage Systems and Technologies (MSST),

2015 31st Symposium on, pp. 1–14, May 2015.

[57] Y. Zhang and S. Swanson, “A study of application performance with

non-volatile main memory,” in Mass Storage Systems and Technologies

(MSST), 2015 31st Symposium on, pp. 1–10, May 2015.

[58] E. Lee, H. Bahn, S. Yoo, and S. H. Noh, “Empirical study of nvm storage:

An operating system’s perspective and implications,” in Proceedings of

the 2014 IEEE 22Nd International Symposium on Modelling, Analysis &

Simulation of Computer and Telecommunication Systems, MASCOTS ’14,

(Washington, DC, USA), pp. 405–410, IEEE Computer Society, 2014.

[59] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu, “A study

of linux file system evolution,” Trans. Storage, vol. 10, pp. 3:1–3:32, Jan.

2014.

[60] J. Piernas, T. Cortes, and J. M. Garcia, “The design of new journaling

file systems: The dualfs case,” IEEE Transactions on Computers, vol. 56,

pp. 267–281, Feb 2007.

88

[61] E. Lee, H. Bahn, and S. H. Noh, “Unioning of the buffer cache and jour-

naling layers with non-volatile memory,” in Presented as part of the 11th

USENIX Conference on File and Storage Technologies (FAST 13), pp. 73–

80, 2013.

[62] J. Xu and S. Swanson, “Nova: A log-structured file system for hybrid

volatile/non-volatile main memories,” in 14th USENIX Conference on File

and Storage Technologies (FAST 16), (Santa Clara, CA), pp. 323–338,

USENIX Association, Feb. 2016.

[63] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,

and S. Swanson, “Nv-heaps: Making persistent objects fast and safe with

next-generation, non-volatile memories,” in Proceedings of the Sixteenth

International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS XVI, 2011.

[64] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight persis-

tent memory,” in Proceedings of the Sixteenth International Conference on

Architectural Support for Programming Languages and Operating Systems,

ASPLOS XVI, 2011.

[65] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and S. Swan-

son, “Moneta: A high-performance storage array architecture for next-

generation, non-volatile memories,” in Proceedings of the 2010 43rd Annual

IEEE/ACM International Symposium on Microarchitecture, 2010.

[66] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn, and S. Swan-

son, “Providing safe, user space access to fast, solid state disks,” in Proceed-

ings of the Seventeenth International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS XVII, 2012.

89

[67] S. Kannan, A. Gavrilovska, and K. Schwan, “pVM: Persistent Virtual

Memory for Efficient Capacity Scaling and Object Storage,” in Proceed-

ings of the Eleventh European Conference on Computer Systems, EuroSys

’16, (New York, NY, USA), pp. 13:1–13:16, ACM, 2016.

[68] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and

E. Bugnion, “IX: A protected dataplane operating system for high through-

put and low latency,” in 11th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 14), pp. 49–65, 2014.

[69] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishnamurthy, T. An-

derson, and T. Roscoe, “Arrakis: The operating system is the control

plane,” in Proceedings of the 11th Symposium on Operating System De-

sign and Implementation (OSDI 14), 2014.

[70] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and A. Gupta,

“Hive: Fault containment for shared-memory multiprocessors,” in Proceed-

ings of the Fifteenth ACM Symposium on Operating Systems Principles,

SOSP ’95, (New York, NY, USA), pp. 12–25, ACM, 1995.

[71] X. Song, H. Chen, R. Chen, Y. Wang, and B. Zang, “A case for scaling

applications to many-core with os clustering,” in Proceedings of the Sixth

Conference on Computer Systems, EuroSys’11, (New York, NY, USA),

pp. 61–76, ACM, 2011.

[72] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,

T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: A new os

architecture for scalable multicore systems,” in Proceedings of the ACM

SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09,

(New York, NY, USA), pp. 29–44, ACM, 2009.

90

[73] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F. Kaashoek, R. Morris,

A. Pesterev, L. Stein, M. Wu, Y.-h. Dai, et al., “Corey: An operating

system for many cores.,” in OSDI, vol. 8, pp. 43–57, 2008.

[74] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,

R. Morris, N. Zeldovich, et al., “An analysis of linux scalability to many

cores.,” in OSDI, vol. 10, pp. 86–93, 2010.

[75] A. T. Clements, M. F. Kaashoek, and N. Zeldovich, “Radixvm: Scalable ad-

dress spaces for multithreaded applications,” in Proceedings of the 8th ACM

European Conference on Computer Systems, pp. 211–224, ACM, 2013.

[76] D. Zheng, R. Burns, and A. S. Szalay, “Toward millions of file system

iops on low-cost, commodity hardware,” in Proceedings of the Interna-

tional Conference on High Performance Computing, Networking, Storage

and Analysis, SC ’13, (New York, NY, USA), pp. 69:1–69:12, ACM, 2013.

[77] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet, “Linux block io: In-

troducing multi-queue ssd access on multi-core systems,” in Proceedings of

the 6th International Systems and Storage Conference, SYSTOR ’13, (New

York, NY, USA), pp. 22:1–22:10, ACM, 2013.

[78] S. Mavridis, Y. Sfakianakis, A. Papagiannis, M. Marazakis, and A. Bilas,

“Jericho: Achieving scalability through optimal data placement on multi-

core systems,” in Mass Storage Systems and Technologies (MSST), 2014

30th Symposium on, pp. 1–10, IEEE, 2014.

[79] R. Eqbal, ScaleFS: A multicore-scalable file system. PhD thesis, Mas-

sachusetts Institute of Technology, 2014.

91

[80] L. Lu, Y. Zhang, T. Do, S. Al-Kiswany, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau, “Physical disentanglement in a container-based file sys-

tem.,” in OSDI, pp. 81–96, 2014.

[81] M. Curtis-Maury, V. Devadas, V. Fang, and A. Kulkarni, “To waffinity

and beyond: A scalable architecture for incremental parallelization of file

system code,” in 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 16), (GA), pp. 419–434, USENIX Association,

2016.

[82] C. Min, S. Kashyap, S. Maass, and T. Kim, “Understanding manycore

scalability of file systems,” in 2016 USENIX Annual Technical Conference

(USENIX ATC 16), (Denver, CO), pp. 71–85, USENIX Association, 2016.

[83] “A parallel page cache: Iops and caching for multicore systems,” in Pre-

sented as part of the 4th USENIX Workshop on Hot Topics in Storage and

File Systems, (Boston, MA), USENIX, 2012.

92

요약

Solid-State Drive (SSD) 와 같은 고성능 저장장치 기술은 낮은 지연시간, 높은

대역폭, 그리고 높은 입출력 병렬성을 제공한다. SSD는 기계적인 오버헤드없이

데이터에 접근이 가능하도록 해주며, 하드 디스크와 같은 기존 저장장치에 비해

수십배의 성능향상을 가져온다. 그러나, 기존 소프트웨어 입출력 계층을 그대로

사용하거나 SSD의 특징을 활용하지 않으면 최대 성능에 도달하지 못할 수 있다.

본 논문에서는 SSD 특징들 (예: 낮은 지연시간, 높은 병렬성)을 최대한 활용

할 수 있도록 파일 시스템을 최적화한다. 이를 위해 첫째, 지연시간이 낮은 SSD

기반에서 파일시스템의 기존 입출력 방식들을 분석한다. 해당 방식은 블락들이

비연속적일 경우, 여러 개의 입출력 요청으로 나누어서 처리하게 된다. 따라서,

이러한 방식은 해당 SSD의 특징을 최대한 활용하지 못한다. 이러한 문제를 해결

하기 위해서, 본 논문은 효율적인 입출력 방식을 제안한다. 제안하는 방식에서는

하나의 입출력 요청으로 파일 시스템의 비연속 호스트 메모리 버퍼들을 비연속

저장소 세그먼트들로 전송한다. 따라서 이는 파일시스템이 지연시간이 낮은 SSD

의 성능을 최대한 활용할 수 있게 해준다.

둘째, 높은 병렬성을 지닌 SSD 기반에서 파일시스템의 기존 락킹과 입출력

병렬성을 분석한다. 파일시스템에서는 공유 자료구조에 접근하기 위해 락킹이 사

용되며, 입출력은 단일 스레드에 의해 직렬화된다. 이러한 이유로 파일시스템은

종종 높은 병렬성을 지닌 SSD와 멀티코어 환경에서 락 경쟁을 발생시키고 입출

력 대역폭을 최대로 활용하지 못하는 문제에 직면한다. 이러한 문제를 해결하기

위해서 자료구조에 대한 동시적인 업데이트와 입출력 동작을 병렬화시킨다.

본 논문은 제안하는 방식들을 EXT4/JBD2에 구현하고 이들을 낮은 지연시간

과 높은 병렬성을 가진 SSD기반에서 평가한다. 실험결과를 통해 최적화된 파일시

스템이 기존 파일시스템에 비해 성능이 향상되었음을 확인할 수 있었다.

93

주요어: 파일시스템, 운영체제, 고성능 저장장치, Solid-State Drive

학번: 2013-30241

94

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Optimizing File Systems for

High-Performance Storage Devices

고성능 저장장치를 위한 파일시스템 최적화

FEBRUARY 2018

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Yongseok Son

Ph.D. DISSERTATION

Optimizing File Systems for

High-Performance Storage Devices

고성능 저장장치를 위한 파일시스템 최적화

FEBRUARY 2018

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Yongseok Son

Optimizing File Systems for High-Performance

Storage Devices

고성능 저장장치를 위한 파일시스템 최적화

지도교수 염헌영

이 논문을 공학박사 학위논문으로 제출함

2017 년 12 월

서울대학교 대학원

전기·컴퓨터 공학부

손용석

손용석의 공학박사 학위논문을 인준함

2017 년 12 월

위 원 장 엄현상 (인)

부위원장 염헌영 (인)

위 원 유승주 (인)

위 원 이재욱 (인)

위 원 한 혁 (인)

Abstract

High-performance storage technologies such as solid-state drives (SSDs) pro-

vide low-latency, high throughput, and high I/O parallelism to legacy storage

systems. SSDs access data without mechanical overhead, and they often leads

to order-of-magnitude improvements in performance over legacy storage devices

such as hard disk drives (HDDs). However, replacing HDDs with SSDs while

keeping the software I/O stack or not exploiting SSD features does not lead to

maximum performance.

In this dissertation, we optimize file systems to fully exploit the SSD features

(e.g., low-latency and high I/O parallelism). First, we analyze and explore I/O

strategies in the existing file systems on low-latency SSDs. The file systems

issue and complete several I/O requests when blocks are not contiguous, which

does not take advantage of the low-latency of SSDs. To address this problem, we

propose efficient I/O strategies, which transfer requests from discontiguous host

memory buffers in the file systems to discontiguous storage segments in a single

I/O request. Thus, they enable file systems to fully exploit the performance of

low-latency SSDs.

Second, we investigate the locking and I/O parallelism in the existing file

systems on highly parallel SSDs. In the file systems, the coarse-grained locking

to access shared data structures is used and I/O operations are serialized by a

single thread. For these reasons, the file systems often face the problem of lock

contention and underutilization of I/O bandwidth on multi-cores with highly

parallel SSDs. To address these issues, we enable concurrent updates on data

structures and parallelize I/O operations.

i

We implement our techniques in EXT4/JBD2 and evaluate them on low-

latency and highly parallel SSDs. The experimental results show that our op-

timized file system improves the performance compared to the existing EXT4

file system.

Keywords: File system, Operating System, High-Performance Storage Device,

Solid-State Drive

Student Number: 2013-30241

ii

Contents

Abstract i

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Approach and Contributions . 3

1.3 Dissertation Structure . 4

Chapter 2 Background 6

2.1 High-performance Storage Devices 6

2.2 Crash Consistency in File Systems 7

2.3 Read and Write Operations in the Existing File Systems 9

2.4 Journal I/O in the Journaling File Systems 10

2.5 Recovery in the Journaling File Systems 13

2.6 Existing Locking and I/O Parallelism in Journaling File Systems 14

Chapter 3 Design and Implementation 24

3.1 Optimizing File Systems for Low-latency Storage Devices 24

3.1.1 Design . 24

3.1.2 Implementation . 30

iii

3.2 Optimizing File Systems for Highly Parallel Storage Devices . . . 33

3.2.1 Design . 34

3.2.2 Implementation . 39

Chapter 4 Evaluation 50

4.1 Evaluating the Optimized File System for Low-latency Storage . 50

4.1.1 Run-time Performance . 52

4.1.2 Recovery Performance . 57

4.1.3 Experimental Analysis . 59

4.2 Evaluating the Optimized File System for Highly Parallel Storage 61

4.2.1 Run-time Performance . 63

4.2.2 Recovery Performance . 66

4.2.3 Experimental Analysis . 67

Chapter 5 Related Work 69

5.1 Analysis and Evaluation of High-Performance storage 69

5.2 Study of Journaling File Systems 70

5.3 File and I/O System Optimizations for Low-latency Storage . . . 72

5.4 Study of Scalability in Operating Systems 75

5.5 File and I/O System Optimizations for Highly Parallel Storage . 75

Chapter 6 Conculsion 78

6.1 Summary . 78

6.2 Future work . 79

요약 93

iv

List of Figures

Figure 1.1 Latency Breakdown on low-latency storage (the detailed

experimental environment is described in Section 4.1) . . 2

Figure 1.2 Scalability evaluation on highly parallel storage (the num-

ber of threads is the same as that of the cores and the

detailed experimental environment is described in Sec-

tion 4.2) . 3

Figure 2.1 Read-ahead and write-back of existing file system 11

Figure 2.2 Journal metadata/data and checkpoint of existing file

system . 13

Figure 2.3 Existing recovery I/O operations 15

Figure 2.4 Examples of existing locking and I/O operations (T:

thread, TxID: transaction ID, jh: journal head, S: spin

lock (j list lock)), M: mutex lock (j checkpoint mutex)

. 16

Figure 3.1 Read-ahead and write-back of the optimized file system . 26

Figure 3.2 Journal metadata/data and checkpoint of the optimized

file system . 29

v

Figure 3.3 Optimized recovery procedure 30

Figure 3.4 Concurrent updates on data structures 35

Figure 3.5 Parallel I/O in a cooperative manner (T: thread) 38

Figure 4.1 The DRAM-based SSD used in this study 51

Figure 4.2 FIO benchmark results (ordered mode) 51

Figure 4.3 TPC-C results (ordered mode) 54

Figure 4.4 FIO benchmark results (data journaling) 55

Figure 4.5 Fileserver results (data journaling) 57

Figure 4.6 Recovery performance 58

Figure 4.7 Ordered mode . 62

Figure 4.8 Data journaling mode . 64

Figure 4.9 Comparison with SpanFS 66

vi

List of Tables

Table 4.1 Experimental parameters for InnoDB 54

Table 4.2 Experimental parameters for fileserver 57

Table 4.3 The average page counts in a single request in the ordered

mode (SR: Sequential Read, SW: Sequential Write, RR:

Random Read, RW: Random Write, JO: Journal oper-

ation, CP: Checkpoint, the numbers in parentheses are

standard deviations) . 59

Table 4.4 The average page counts in a single request in the data

journaling mode (JO: Journal operation, CP: Checkpoint,

SW: Sequential Write, RW: Random Write, the numbers

in parentheses are standard deviations) 59

Table 4.5 The average page counts in a single request during recov-

ery (the numbers in parentheses are standard deviations) 60

Table 4.6 Experimental parameters 62

Table 4.7 Recovery performance . 67

Table 4.8 Device-level bandwidth and total execution time of main

locks and write operations 68

vii

Chapter 1

Introduction

1.1 Motivation

Over the last few decades, enhancing the performance of storage devices has

been an important challenge for computer systems in research and industry.

Many data-intensive applications have demanded high throughput and low-

latency. For many years, hard disk drives (HDDs) [1–4] have been used as

the most common primary storage device. However, the performance of HDDs

lags far behind that of the processor and the main memory due to mechanical

overhead (i.e., rotational and seek time), and this HDD performance bottleneck

has worsened in modern computer systems.

Semiconductor technology has introduced non-volatile memory (NVM) such

as MRAM [5], PCM [6], and NAND flash [7,8] to computer system communities,

and it opened up research challenges. NVM accesses data in low-latency and

highly parallel way, and this often leads to orders-of-magnitude improvements in

performance over HDDs. Such recent developments in NVM technologies have

1

0 10 20 30 40 50

4K

8K

16K

32K

64K

Latency (us)

R
eq

ue
st

 S
iz

e
(b

yt
es

)

PCIe Transfer Time DRAM Access Time Control Overhead

Figure 1.1: Latency Breakdown on low-latency storage (the detailed experimen-
tal environment is described in Section 4.1)

closed the performance gap between main memory and storage. Accordingly,

NVM has improved I/O performance in various environments such as cloud

platforms, social network services, large websites, etc. However, replacing HDD

with NVM while keeping the software I/O stack does not lead to maximum

performance as it is optimized for HDDs. To exploit the performance of NVM,

researchers [9–15] have reconstructed the traditional software I/O stack and

performed several optimizations.

Figure 1.1 shows a latency breakdown in our low-latency storage [16] with

varying request sizes. As shown in the figure, the PCIe transfer time accounts

for the major portion of the total PCIe communication time. The total time for

one 64 KiB request is 42% less than that for sixteen 4 KiB requests owing to the

benefit of the PCIe communication. This shows that a single request in larger

granularity is more efficient than multiple small requests. Therefore, processing

a large request is a better method for PCIe-based fast storage device. As our

observations, existing I/O strategies prevent file systems from taking advantage

of fast storage’s full performance even if the block I/O subsystem is optimized.

They process I/O requests by issuing and completing the request one by one

when the storage segments of the requests are discontinuous.

2

0

100

200

300

400

500

600

1 2 4 8 18
B

a
n

d
w

id
th

(M
B

/s
)

The number of cores

EXT4 P-EXT4 O-EXT4

0

200

400

600

800

1 2 4 8 18 36 54 72B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

Tokubench Varmail

(a) Ordered mode

36 54 72

0

200

400

600

800

1 2 4 8 18 36 54 72B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

Sysbench Fileserver

(b) Data journaling mode

Figure 1.2: Scalability evaluation on highly parallel storage (the number of
threads is the same as that of the cores and the detailed experimental environ-
ment is described in Section 4.2)

Figure 1.2 shows a scalability and I/O performance using metadata and

data-intensive workloads in the ordered and data journaling modes, respectively,

in our highly parallel storage [17]. As shown in the figure, the performance does

not scale well or decreases as the number of cores grows. Based on our analysis

and other studies [15,18], it is due to the contention on shared data structures

and serialization of I/O operations.

1.2 Approach and Contributions

To achieve lower latency and higher parallelism, we propose two main opti-

mizations for the file system. First, we propose I/O strategies of file systems

in terms of latency. The key idea is to transfer data from discontiguous host

memory buffers of file systems to discontiguous storage segments in a single I/O

request, which existing block-based file systems cannot provide. We note that

current storage protocols such as SATA and NVMe [19] support data transfer

only from discontiguous host memory segments to contiguous storage segments

in a single I/O request.

3

Second, we propose schemes to achieve high I/O parallelism as follows: (1)

We use lock-free data structures and operations to reduce the lock contention.

This scheme allows multiple threads to access the data structures (e.g., linked

lists) concurrently. (2) We propose a parallel I/O scheme that performs I/O op-

erations by multiple threads in a parallel and cooperative manner. This scheme

allows multiple threads to cooperate in I/O processing and issue/complete the

I/Os in parallel while not sacrificing the consistency of the file system.

We apply and implement the two optimizations on EXT4/JBD2. Our tech-

niques provide higher performance while preserving all features and the same

consistency level of the existing file system. We evaluate our optimized file sys-

tems for low-latency and parallelism using a DRAM-based SSD and Intel P3700

NVMe SSD, respectively. The experimental results show that the optimized file

systems improve the performance compared to the existing file system.

The contributions of this dissertation can be summarized as follows:

• We analyze the main obstacles that increase the latency and reduce the

parallelism of high-performance storage.

• We propose several optimization techniques for journaling file systems

and implement them on EXT4/JBD2.

• Experimental results show that the optimized file system could achieve

significant performance improvements, compared to the existing file sys-

tem, while providing the same level of consistency.

1.3 Dissertation Structure

This dissertation is organized as follows:

Chapter 2 analyzes I/O path and strategy in the file system in terms of I/O

latency and parallelism.

4

Chapter 3 designs and implements our schemes.

Chapter 4 evaluates our optimized file systems in terms of I/O low-latency

and parallelism using varying workloads.

Chapter 5 summarizes related works and compares them with our works.

Chapter 6 summarizes our optimizations and contributions.

5

Chapter 2

Background

2.1 High-performance Storage Devices

High-performance storage provides low-latency and highly parallel accessing

to data. Non-volatile memory (NVM) technologies, including PCM [20], spin-

transfer torque memory [21], MRAM [5], and NAND flash [7,8] are anticipated

to be faster than existing storage technologies (e.g., hard disk drives (HDDs)).

The most significant features of NVM [5,20,21] are low latency, high throughput,

and high parallelism without mechanical overheads. Previous studies [21, 22]

suggest that NVM will have bandwidth and latency similar to DRAM and

mention that the devices will be 50,000x faster than HDDs.

Modern PCIe-attached NVM-based SSDs [6, 22, 23] have emerged in many

studies, and the arrival of the NVMe interface [19, 24] implies that PCIe-

attached SSDs will be one of the target designs for fast NVM. Also, they

employ significant amount of parallelism by having multiple channels, where

each channel has multiple memory chips. Such a highly parallelized structure

6

provides rich opportunities for parallelism.

2.2 Crash Consistency in File Systems

Modern file systems provide crash consistency to applications. They employ

journaling or copy-on-write (COW) mechanisms for transaction processing.

Journaling file systems such as EXT4 [25], XFS [26], JFS [27], and ReiserFS [28]

use a variant of write-ahead logging (WAL) [29], which first writes the meta-

data and/or data to journal area before in-place updates to metadata or/and

data in storage for atomicity and durability. COW file systems [30], such as

BTRFS [31], ZFS [32], and log-structured file system [33], use out-of-place up-

dates to support crash consistency. They copy and modify the data for atomic

update and then free the previous data through garbage collection.

This dissertation focuses on the EXT4 journaling mechanism since EXT4

is the most widely used file system in Linux and general to other file sys-

tems [15,34]. The EXT4 uses a fork of the journaling block device (JBD) called

JBD2. The JBD is a file system-independent interface that can also be attached

to other file systems such as EXT3 and OCFS2. It performs journal updates,

commits, and checkpoint operations. EXT4 offers three journaling modes, such

as write-back, ordered, and data journaling [15,35–37]. Write-back is the weak-

est crash consistency mode among the three journaling modes. This mode writes

the metadata into the journal area, but the user data may be written into the

original area in the file system after its metadata has been committed to the

journal. In this mode, the ordering between the data and metadata is not pre-

served. The ordered mode provides stronger crash consistency than the write-

back mode by keeping order between the metadata and data. Similar to the

write-back mode, this mode writes the metadata into the journal while the

7

data is directly to the original area in the file system before the metadata is

written into the journal.

The data journaling mode supports the highest crash consistency with data

integrity. Both metadata and data are written into the journal area prior to

being written into the original area in the file system to ensure they are updated

atomically to persistent storage; they are either committed or aborted together

in a transaction. However, the overhead of the data journaling mode is the

largest among the journaling modes since the data is written to storage twice.

When an application updates blocks, a new transaction starts or the modi-

fication is compounded to the already running transaction activated by another

application, which is a compound transaction scheme; EXT4 has only one run-

ning transaction and one committing transaction at any time [15, 38]. When

the commit occurs at an interval of journal commit (5 seconds) or fsync call,

the updated blocks are written into the journal area.

The transaction finishes the commit work after writing the commit block1

into the end of the written blocks in the journal area. This commit block de-

cides whether the transaction is committed or uncommitted. In a system fail

or sudden power outage, the file system is remounted, and the file system scans

the blocks in the journal area. Then, the file system replays the metadata/data

blocks with a commit block and discards the blocks without a commit block.

Checkpointing is triggered periodically and activated when the amount of the

free space in the journal area drops below a certain threshold. The checkpoint

operation writes the metadata/data in the committed transactions into the

original area. The journal area is reclaimed via checkpoint so that the transac-

tion can be continuously processed by writing the metadata/data into the free

1A commit block generates a flush command to preserve the ordering between journal
metadata/data and the commit block

8

space in the journal area.

2.3 Read and Write Operations in the Existing File
Systems

In this section, we describe current I/O strategies such as read-ahead and write-

back. These strategies are applied to most Linux file systems in the same man-

ner, and they are used by default when applications open files. When a buffered

read is used, the file system performs the read-ahead technique to take advan-

tage of spatial locality. To do this, the file system selects the user requested

page(s) as well as additional adjacent pages. This technique is especially use-

ful for sequential read patterns, as the next accessed pages are more likely to

already be in the page cache, resulting in a higher page cache hit rate.

Figure 2.1a shows an example of a read-ahead operation in the existing file

system. There are five pages (Page 0-4). Page 0 is the page requested by the

user, and the other pages (Page1-4) are contiguous pages that the file system

wants to read ahead. Each page is mapped to LBA 30, 31, 32, 33, and 34,

respectively.

The file system performs read-ahead operations only for non up-to-date

pages. It checks whether the LBAs for pages are contiguous with each other to

ensure that each request has only contiguous pages. For example, in the case of

Figure 2.1a, since Page 2 is already up-to-date, it incurs a hole in LBA. Thus, the

file system first merges Page 0 (LBA: 30) and Page 1 (LBA: 31) into a request

and issues the request (Request #1) since the LBAs of Page1 and Page3 are

not contiguous. After I/O completion (polling) of the request, the file system

rechecks the contiguity between the LBAs of Page 3 and Page 4. The file system

merges these pages into a single request and issues the request (Request #2).

In the read-ahead operation, the contiguity of the LBA is dependent on the

9

state of the page.

When a buffered write is used, the file system performs write-back opera-

tions for dirty pages if the dirty rate of the pages in the page cache is higher

than the threshold. The file system chooses the dirty pages from the page cache

and obtains the LBAs for the pages. The file system then checks the contiguity

among pages. We note that the file system selects dirty pages without consid-

ering whether the pages are contiguous or not, unlike the prefetched pages.

Figure 2.1b describes an example of a write-back operation. There are five

dirty pages (Page 0-4). The pages are mapped to each LBA: 1, 2, 20, 89, and 45,

respectively. The file system merges the two contiguous pages (Page 0 (LBA:

1) and Page 1 (LBA: 2)) into a single request and issues the request (Request

#1). After I/O completion of the request, the file system rechecks the LBA

of the next page (Page 2) against the following page (Page 3). Since they are

discontinuous with each other, the file system first issues the request (Request

#2) for Page 2 and completes the I/O. Likewise, in order, the remaining pages

(Page 3, Page 4) are issued and completed as separate requests (Request #3

and Request #4). In this example, since the LBAs (20, 89, and 45) are all

discontinuous, the file system performs four operations.

In write-back operations, the LBA’s contiguity is dependent on the sequence

of the dirty pages. Consequently, current read-ahead and write-back operations

can reduce the bandwidth by incurring several requests instead of one large

request among discontinuous pages.

2.4 Journal I/O in the Journaling File Systems

We describe journal I/O operations, such as journal metadata/data, commit,

and checkpoint, based on the data journaling mode. Figure 2.2a shows the

journal metadata/data and commit operations in a transaction for the existing

10

Page1

(LBA:31)

Page0

(LBA:30)

Page2

(LBA:32)

Page3

(LBA:33)

Page4

(LBA:34)
Host memory

30 31 32 33 34

User request

Storage address

space

......

Request #1

Up to date

page

Read-ahead

Request #2

(a) Existing read-ahead

Page1

(LBA:2)

Page0

(LBA:1)

Page2

(LBA:20)

Page3

(LBA:89)

Page4

(LBA:45)
Host memory

1 2 20 8945
Storage address

space

......

Request #1 Request #2

...
Request #4 Request #3

(b) Existing write-back

Figure 2.1: Read-ahead and write-back of existing file system

file system. There are five pages (Page 0-4) for journal blocks and one page (Page

5) for a commit block to be written into the journal area. They are mapped to

each LBA: 10, 11, 12, 13, 14, and 15 respectively. The file system gets a journal

block from the journal buffer, issues the I/O and completes the I/O repeatedly

until the I/O for the journal blocks in the transaction are finished. After the five

pages (Page 0-4) for the journal blocks completely are written into the journal

area, the page (Page 5) for a commit block is written into the journal area

resulting in the transaction being committed. As a result, the journal I/Os for

each LBA make several requests (Request #1-#6).

11

We note that the I/O pattern for the journal metadata/data written to the

journal area is sequential. In a conventional block I/O subsystem, the sequen-

tial writes in the journal I/O can be merged by using functions supported by

an I/O scheduler. For example, the JBD2 module uses two functions such as

blk start plug() and blk finish plug(). The I/O scheduler merges sequen-

tial write requests between blk start plug() and blk finish plug() call into

a single large request. This mechanism is a disk-friendly feature. However, in

the case of high-performance storage devices, an I/O request bypasses the I/O

scheduler due to the well-known performance issue [14]. Thus, the JBD2 mod-

ule cannot explicitly use the features mentioned above due to the absence of

the I/O scheduler, and this leads to individual write requests for the journal

I/O. In our work, we use an optimized block I/O subsystem without the I/O

scheduler since it shows the best performance among all configurations. The

sequential writes in the journal I/O are performed as individual requests one

by one in the optimized block I/O subsystem.

Figure 2.2b shows the checkpoint operations in the existing file system.

There are five pages (Page 0-4) for checkpoint updates in the checkpoint buffer,

and they are mapped to each LBA: 23, 50, 70, 101, and 80, respectively. Since

the checkpoint operation writes the metadata/data blocks in the committed

transaction to the original area, their LBAs can be discontiguous to each other.

The file system gets a block (page) from the checkpoint buffer and then is-

sues and completes the block iteratively. As shown in this figure, there are five

separate requests (Request #1-#5). In conclusion, journaling and checkpoint

operations are issued and completed by each request per page. This current

I/O operation can reduce the bandwidth by incurring several requests instead

of one large request among pages.

12

Page1

(LBA:11)

Page0

(LBA:10)

Page2

(LBA:12)

Page3

(LBA:13)

Page4

(LBA:14)

Journal buffer

(Host memory)

10 11 12 13 14

Journal area

(storage address

space)

......

Request #1

Request #2

Journal metadata/data

Request #3

Request #4 Request #5

Page5

(LBA:15)

15

Commit block

Request #6

Transaction

(a) Existing journal metadata/data

Page1

(LBA:23)

Page0

(LBA:50)

Page2

(LBA:70)

Page3

(LBA:101)

Page4

(LBA:80)

Checkpoint buffer

(Host memory)

50 1017023 80

Original area

(storage address

space)

...

Request #1

Request #2

Checkpoint metadata/data

Request #3

Request #4

Request #5

...

(b) Existing checkpoint

Figure 2.2: Journal metadata/data and checkpoint of existing file system

2.5 Recovery in the Journaling File Systems

In this section, we describe the recovery procedure in the existing journaling

file system. After a system crash or power outage, the mount process reads

the journal blocks from the journal area and replays the changes until the file

system is consistent again. The changes are atomic in that they are either

replayed completely during recovery or are not replayed at all if they had not

yet been completely written to the journal area before the crash occurred.

We analyze the recovery I/O path in the JBD2 module. The module per-

13

forms read operations for getting all the journal blocks in the journal area. The

module then performs the checksum operation for the scanned blocks and then

selects blocks in the committed transactions. After all blocks to be replayed are

selected, the blocks are written to their original area by a sync operation, which

writes the blocks one by one. The journal area is initialized after the blocks in

the journal area are completely written to the original area.

Figure 2.3 shows an example of a recovery procedure in terms of I/O oper-

ations. The mount process reads the blocks (Page 0-4) mapped to each LAB:

1, 2, 3, and 4, in the journal area through four requests (Request #1-#4). The

JBD2 module goes through the block device layer directly for the read opera-

tion, and therefore, no read-ahead is performed. Similar to the case of journal

metadata/data I/O, in the Linux I/O scheduler-based system, adjacent blocks

can be merged. However, the I/O stack without the I/O scheduler performs the

I/Os as individual requests.

During the recovery procedure, the mount process identifies the journal

blocks and a commit block. If the commit block exists, as shown in the figure,

the journal blocks can be recovered and are written into the original area with

LBA: 33, 56, 78, through three requests (Request #4-#6). Consequently, as our

observation, the existing mount process performs inefficient I/O operations by

issuing several requests to storage.

2.6 Existing Locking and I/O Parallelism in Journal-
ing File Systems

In this section, we investigate the locking and I/O parallelism in EXT4/JBD2.

As shown in Figure 2.4a and 2.4b, a spin lock (j list lock) is used to en-

sure the correct list operations for journal heads (jhs)2 in the journaling lists

2Journal head (jh) is a structure that associates the buffer (buffer head (bh)) with
the respective transaction [39]. The operations on the bh are protected by a spin lock

14

Page1

(LBA:2)

Page0

(LBA:1)

Page2

(LBA:3)

Page3

(LBA:13)

Page4

(LBA:14)

Host memory

1 2 3 56 78

Mount process

(scan blocks)

storage address

space

......

Request #1

Request #2

Journal area

Request #3

Request #5

Request #6

33
...

Original area

Page1

(LBA:56)

Page0

(LBA:33)

Page2

(LBA:78)

Mount process

(replay blocks)

Request #7

Page1

(LBA:2)

Page0

(LBA:1)

Page2

(LBA:3)
Host memory

1 2 3 56 78

Mount process

(scan blocks)

storage address

space

......

Journal area

33
...

Original area

Page1

(LBA:56)

Page0

(LBA:33)

Page2

(LBA:78)

Mount process

(replay blocks)

Request #2

Page3

(LBA:4)

4

Request #1

Commit

block

Page3

(LBA:4)

Commit

block

4

Request #4

...

...

Figure 2.3: Existing recovery I/O operations

(transaction buffer and checkpoint lists) [15], which are circular doubly linked

lists. However, in multi-cores, this locking can incur a contention on the shared

data structures and limit the scalability. In addition, only a single thread

performs the journal and checkpoint I/Os. For example, as shown in Fig-

ure 2.4b, T3 performs I/O operations for checkpointing by acquiring a mutex

lock (j checkpoint mutex). Such serialized I/O operations can limit the I/O

parallelism on high-performance storage. We will explain the transaction pro-

cessing in terms of locking and I/O operations with the following simplified

procedures.

Running transaction. When application threads perform some file oper-

ations (e.g., create()), they start a transaction to handle the modifications

(Procedure 1, lines 3 and 31-39). To process the transaction, the threads first

check if a running transaction is available or not. If a running transaction is

available, the threads join the running transaction by increasing the number

of updates (t updates) in the transaction under the state lock (j state lock)

which is a read-write lock; the t updates variable indicates the number of cur-

rent threads that join the transaction. Otherwise, a new transaction is created,

(jbd lock bh state) per bh.

15

while(!list_empty(cp_wait_list)){

 bh = list_entry(cp_wait_list.next, struct buffer_head, b_assoc_buffers);

 if (buffer_locked(bh))

 wait_on_buffer(bh);

 list_del_init(&bh->b_assoc_buffers);

}

jh1 jh2

next

prev

CAS

T1

issue I/O

jh1 jh4

add T1's list

CAS

T3

jh3

CAS

T2

next

prev
jh4

CAS

next

prev

shared

linked list head tail

issue I/Oissue I/O

jh2 jh3

issue I/O

add T2's list add T3's list

local

linked list

add T1's list

next

prev

I/O issue //Initialize a cp_wait_list

restart:

while(jh = atomic_read(checkpoint_list)){

if(compared_and_swap(checkpoint_list, jh, jh->next) != jh)

goto restart;

bh = jh2bh(jh);

write_dirty_buffer(bh);

list_add_tail(bh->list, cp_wait_list);

}

jh1 jh4

wait I/O

jh2 jh3
local

linked list

wait I/O

next

prev

T1 T1 T2 T3

I/O completion

1

2

3

1

2

3

wait I/O wait I/O

transaction

 transaction (journaled buffer)

journal daemon

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

 transaction (journaled buffer)

Journal daemon

buffer buffer

client threads

(commit) (checkpoint)

journal area original area

buffer buffer

Existing Checkpoint Proposed Checkpoint

Time

T1

jh1

CAS

T1

issue I/O

T2

CAS

shared

linked list

head

tail

issue I/Oissue I/O issue I/O

1

2

Time

T1

jh2 jh3 jh4

T3 T2 T1

issue I/O issue I/Oissue I/O issue I/O

T3

jh1 jh2

next

prev

Atomic

CAS

C1

issue I/O

bh1

add bh1 to

T1's list

jh3

next

prev
jh4

next

prev
shared

linked list

head tail

issue I/Oissue I/O

bh2 bh4

issue I/O

add bh2 to

T2's list
add bh4 to

T4's list

local

linked list

(wait list)

add T1's list

/* Initialize a local wait list */

restart:

while((jh = atomic_read(&checkpoint_list)) != NULL){

 if(atomic_compare_and_swap(&checkpoint_list, jh, jh->next) != jh)

 goto restart;

 bh = jh2bh(jh);

 submit_bh(bh);

 list_add(&wait_list, bh);

}

Time

CAS

T2

CAS

T3

CAS

T4

bh3

add bh3 to

T3's list

while(!list_empty(&wait_list)){

 bh = list_entry(wait_lIst.next, ...);

 wait_on_buffer(bh);

 list_del(bh);

}

bh1 bh2

wait I/O

bh3 bh4
local

linked list

wait I/O

T1 T2 T3 T4

wait I/O wait I/O

Running Transaction

Committing Transaction

Checkpointing Tranasaction

 transaction (journaled buffer)

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

Journal daemon

& Client threads

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

 atomic_set(&list->head, jh);

 }

 else{

 atomic_set(&jh->prev->next, jh);

 }

 atomic_sync();

jh1 jh2 jh3 jh4

next

T1 (insert)

list

head

prev
tail

/* initialize a local wait list */

while(1){

local_index = atomic_add(&repaly_index, 1);

if(local_index >= max)

break;

bh = replay_array[local_index];

submit_bh(bh);

list_add(&wait_list, bh);

}

bh50 bh60 bh70

T1

host

memory
...

bh50 bh60 bh70
... ... storage

T2

T3

/* initialize a local wait list */

while(1){

local_index = atomic_add(&scan_index, 1);

if(local_index >= max)

break;

jbd2_journal_bmap(journal, local_index, &blocknr);

bh = __getblk(dev, blocknr, j_blocksize);

submit_bh(bh);

list_add(&wait_list, bh);

}

bh10 bh11 bh12

host

memory
...

bh10 bh11 bh12 storage

T1

T2
T3

next

prev

 while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

list_del(bh);

}

while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

mark_buffer_dirty(bh);

local_index = atomic_add(&insert_index, 1);

repaly_array[local_index] = bh;

list_del(bh);

}

prev

next

(checkpoint list)

I/O issue

I/O completion

I/O issue

I/O completion

atomic_add(&nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

list->head = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh3 jhx

next

T1

list

head

prev

tail

next

prevprev

next

I/O completion

...

...

Transaction buffer list

(BJ_Metadata)

jh1 jh2 jh3prev
next

prev
next

Locking for list replacement

jh4prev
next

BJ_Shadow list

2

Checkpoint transaction

Lock-free insert

jh1 jh2

1

Running transaction Committing transaction

INSERT

List replacement without locking2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction

Recovery Transaction

crash crash

crash

commit

checkpoint

parallel checkpoint I/O

issue/completion

Locking for a single batched I/O3

jh1 jh2

Lock-free iteration4

t_checkpoint_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A parallel I/O for scan and repaly5

BJ_Metadata list

No locking

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated

Not yet updated

A single operation

Locking for insert

jh1 jh2

1

Running transaction

Committing transaction

INSERT

jh1

DELETE

INSERT

Locking for list replacement2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction Recovery Transaction

crash crash

crash

commit

checkpoint

checkpoint I/O

Locking for a single batched I/O3

S
S

S

M

jh1 jh2
S

Locking for list iteration

and list replacement
4

jh1S

DELETE

INSERT

t_checkpoint_list

t_checkpoint_io_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A single I/O for scan and repaly5

BJ_Metadata list

S Mspin lock (j_list_lock) mutex lock (j_checkpoint_mutex)

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated Not yet updated

A single operation

s
c

a
n

n
in

g

re
p

la
y

in
g

jh1 jh2

3 A parallel checkpoint I/O

P1 P2 P3

jh1 jh2

Committing transaction

jh1

DELETE

INSERT

S

S

BJ_Shadow list

BJ_Metadata list

jh1 jh3

transaction buffer list

P1 P2 P3

C1

P1

M

jh1SINSERT

t_checkpoint_io_list

T2

Checkpointing transaction

INTERATION

jh1 jh2
SDELETE

t_checkpoint_list

C1

jh1 jh2BATCHED I/O

C1

P1

Locking for list replacement2

Locking for a single batched I/O3

Locking for list iteration

and list replacement
4

Recovery transaction

A single I/O for scan and repaly5

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Running and committing transaction

S
jh1 jh2

Checkpoint list

P1 P2 P3

C3

Checkpointing

jh2

C1

C2

bh1 bh2 bh3

checkpoint buffer

C3

A parallel I/O without locking

C1

C1 C2

jh1 jh2 jh3

A Parallel I/O

C3C2

tailhead

Running and committing transaction

list jh1

head

prev

next

jh2
prev

next

jh3
prev

next

jh4

tail

jh1 jh3jh2

tailhead

c
h

ec
k

p
o

in
t list

C3

A parallel I/O without locking

(Checkpointing)

C1 C2

bh1 bh2 bh3

jh1 jh3jh2

tailhead

c
h

ec
k

p
o

in
t list

running

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

C2 C1 C3

Recovery

T1

bh1

bh1

bh2

bh2

T1

journal area

bh1

bh1

bh2

bh2

T1

original area

T1

host memoryhost memory

scanning replaying

T1

bh1

bh1

bh2

bh2

T2

journal area

bh1

bh1

bh2

bh2

T1

original area

T2

host memoryhost memory

scanning replaying

P1

S
jh4 jh5

1

jh4 jh5

12

C1

committing2

S

S spin lock (j_list_lock)

committed

c
h

e
c
k
p

o
in

ti
n

g

P1

1

committed

2

checkpointing

1

2

(1) (2) (3) (4)

Running and committing transaction

Checkpointing

Recovery

bh1 bh2 bh3

A single-threaded

mount process

(1) T1(2) T1(3)

bh1 bh2 bh3

bh1 bh2 bh3

T1T2 T3

bh1 bh2 bh3

C2

C2

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

running

jh4 jh5

committing

S

C1

bh1 bh2 bh3

T2

bh1 bh2 bh3

T1

1 2 3

T3

A multiple-threaded

mount process

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

S

S

M

C3C1

C2

checkpointing

T3

bh1 bh2 bh3

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

c
h

ec
k

p
o

in
t listC1 C3 C5 C4

P1

committed

C2 C5C4

bh1 bh2 bh3

checkpoint buffer

checkpoint list

P1

committed

transaction

(TxID: 1)
C2

C2

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1 P2

S

P3

P4 P5

running

P6

Running (TID: 2)

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

P1 P2

S

P3

running transaction

P3

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

C1

S

committing transaction

C1

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

committing (TID: 2)

running (TID: 3)

Phase 1 Phase 2 Phase 3
ru

n
n

in
g

c
o

m
m

tt
in

g

S

C0 P0

TB list CP list

TB list

S

S

S

C0 P0

TB list CP list

S

time

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1
jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1

P2

S

P3

running transaction

committing transaction

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

committing transaction

P3

committing

Transaction

(TxID: 1)

C1

running

Transaction

(TxID: 2)
transaction buffer list

transaction buffer list

checkpointing transaction (TxID: 1)

P1

P2

running

transaction

jh1 jh2

head

P3 (INSERT)

running

transaction

(TxID: 1)

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

P3

jh1 jh3jh2

tailhead

jh4 jh5

P3

running

transaction

(TxID: 1)transaction buffer list

jh6 jh8jh7

tailhead

jh9 jh10

jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

committing

transaction

(TxID: 1)
transaction buffer list

transaction buffer list

bh1 bh2 bh3

c
h
e

c
k
p
o
in

t lis
t

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

C2C1 C3

checkpointing transaction (TxID: 1)

I/O

P2P1

P3P2P1

C5C4

C1C2 C3 C5 C4

C1C2 C3 C5 C4

I/O I/O I/O I/O

bh1 bh2 bh3

checkpoint buffer

checkpoint list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

checkpoint io list

jh1 jh3jh2

tailhead

jh4 jh5

C3

 atomic_add(&running_tx->t_nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&running_tx->t_buffers_tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

running_tx->t_buffers = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

jh1 jh2 jh3 jhx

next
list

head

prev

next

prevprev

next

removed

tail

set remove

C3C2C1

Running list(TxID:1)

Running state

Committing list (TxID:1)

Committing state

Checkpoint list (TxID:1)

Checkpointing state

Locked

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/O I/O

Application thread

Changing state

jh

jh (removed)

Lock-free

Lock-free
insert/delete

Lock-free
insert/delete/iteration

Lock-free
insert/delete/iteration

S

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

S
S

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

/* unlinking the bh from the jh */

/* Inserting the removed jh into a GClist */

INSERT

DELETE

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

running transaction
list (TxID:1)

journal daemon

Time

application thread jh jh (removed) at running

UL

UL

L

jh (removed) at checkpointing

Running

SR

R

create or join a
transaction
(TxID: 1)

R

changing a running
into a commtting

transaction
(TxID: 1)

committing
transaction list

(TxID:1)

S

Checkpointing
transaction list

S

M

R
read/write lock
(j_state_lock) S

spinlock
(j_list_lock) M

mutexlock
(j_checkpoint_mutex)

/* join a running transaction*/

repeat:

read_lock(journal->j_state_lock);

if(!journal->j_running_transaction)

{

read_unlock(journal->j_state_lock);

write_lock(journal->j_state_lock);

/* allocating a new transaction */

transaction = kmem_cache_zalloc();

journal->j_running_transaction = transaction;

transaction->t_state = T_RUNNING;

...

write_unlock(journal->j_state_lock);

goto repeat;

}

transaction = journal->j_running_transaction;

read_unlock(journal->j_state_lock);

/* insert a running transaction list */

spin_lock(journal->j_list_lock);

transaction->nr_buffers++;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

/* insert running transaction list*/

spin_lock(journal->j_list_lock);

transaction->nr_buffers--;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

C1

C4

C2

committing_tx->t_shadow_list = committing_tx->t_buffers;

committing_tx->t_shadow_tail = committing_tx->t_buffers_tail;

restart:

while((jh = atomic_read(&committing_tx->t_buffers)) != NULL){

if(atomic_compare_and_swap(&committing_tx->t_buffers, jh, jh->next) != jh);

/* making shadow buffers */

set_buffer_shadow(jh);

/* flushing buffers to journal area */

...

}

C1

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

jh->gc_prev = atomic_set(&running_tx->gc_list_tail, jh);

atomic_sync();

If(jh->gc_prev == NULL){

running_tx->gc_list = jh;

}

else{

jh->gc_prev->gc_next = jh;

}

/* unlinking the bh from the jh */ DELETE

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

C4

t_checkpoint_io_list

jh1 jh3jh2

tailhead

jh4 jh5

C3

j_checkpoint_transaction

transaction buffer list

buffer
next

P1

head tail
prev

P2

removed

P1

buffer

C2

(delete)

P1

(insert)

C1

(delete)
P2

(insert)

C4 (skip I/O)

C4 (I/O)

(2) I/O phase

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

jh1 jh2 jh3 jh4

next

C2head

(t_buffers)

prev

tail

(t_buffers_tail)

next

prevprev

next

P1

removed

C1

jh5

P2

next

prev
removed

T(P1) < T(P2), T(C1) < T(C2), T(Pjh2) < T(Cjh2)

C5 (I/O)

1

C3 (I/O) C6 (skip I/O)

buffer
next

head

tail
prev

buffer

P1

(insert)

C1

(delete)
P2

(insert)

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

1

C3

I/O

 I/O phase2

C4

skip I/O

C5

I/O

C6

skip I/O

1 23

bh10 bh11 bh12

host memory

bh1 (10) bh2 bh12

storage

T1

T2
T3

journal area

bh50 bh60 bh70

host memory

bh50 bh60 bh70

storage

original area

P2 P3 C1 C2 C3

jh1 jh2

next

prev

CAS

C1

issue I/O

bh1

add bh1 to

C1's wait list

jh3

next

prev
jh4

next

prev
head tail

issue I/Obypass I/O issue I/O

Local list

(wait list)

1

2

3

CAS

C2

CAS

C3

CAS

C2

Shared list

(I/O list)

bh1 bh2

wait I/O

bh3 bh4

wait I/O

C1 C2 C3 C4

wait I/O wait I/O

Local list

(wait list)

bh3

add bh3 to

C3's wait list

bh4

add bh4 to

C4's wait list

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)
transaction buffer list

next

prev

jh3

next

prev

jh4

next

prev

next

prev

S

jh1 jh2 jh3 jh4 jh5

committing

transactionhead jh1 jh2 jh3 jh4 jh5

checkpointing

transactionhead jh1 jh2 jh3 jh4 jh5

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

C1
jh1 jh3jh2head jh4 jh5

P1

P2

S

P3 jh6 jh8jh7head jh9 jh10

committing

transaction

(TxID: n)

C1

running

transaction

(TxID: n+1)

atomic

set
atomic

set

atomic

set

jh1 jh2

next

prev

atomic

CAS

T1

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

local

linked list

(wait list)

atomic

CAS

T2

atomic

CAS

T3

atomic

CAS

T4

bh3

insert bh3 to

C3's wait list

removed

P1

bh1 bh2 bh3

checkpoint buffer

checkpoint_list

M

jh1 jh3jh2

head

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: n)

C3

C3

C3

C3

I/O

C4

jh3

next

prev

T1

host memory

bh1 (10)

storage

journal area

T2 T3

bh2 (20) bh3 (30)

bh1 (10) bh2 (20) bh3 (30)

T1

host memory

bh1 (50)

storage

original area

T2 T3

bh2 (60) bh3 (70)

bh1 (50) bh2 (60) bh3 (70)

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

T5

C2

T1
jh6 jh8jh7head jh9 jh10

T3

T4

S

T5 jh11 jh13jh12head jh14 jh15

committing

transaction

(TxID: n-1)

T1

running

transaction

(TxID: n)

T2 jh1 jh3jh2 jh4 jh5

S

C2C1 C3 checkpointing

transaction

(TxID: n-2)

C3

C3

C3

I/O

C4

M

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

head

jh1 jh3jh2 jh4 jh5

ST2

T1

T3
checkpointing

transaction

(TxID: n-2)

T3

T3

I/O

T4

M

head

T3

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2GC head

GC tail atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1
1 23

atomic set

(insert)

atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2

GC

head

atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

shared

linked list

shared

linked listjhx

next

prev
jhx

prev

jh1 jh2 jh4 jh5

next

T1

head

prev

tail

next

prevprev

next

T2

set removed

T3 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

safe point

free

insert GC list

(logically remove)

physically removed (at safe points)

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12 jh10

next

prev
jh11

C1
atomic CAS

(remove)
GC

head

free free

C2

GC

tail

next

prev
jh12

safe point

P3
atomic set

(insert)

free

C3

atomic CAS

(remove)

atomic CAS

(remove)

logical remove physical remove

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12

safe point

P3
atomic set

(insert)

logical remove

Running list(TxID:1) Committing list (TxID:1) Checkpoint list (TxID:1)

Journal daemon

INS DEL INS

Time

GC list

INS

GC list

FREE

Application thread

Changing state

jh

jh (removed)

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove" "physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list
INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer

list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove"
"physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Txbuffer list

I/O

bypass

I/O
INS RM INS

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Txbuffer
list

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

running transaction
(TxID:1)

Txbuffer list

I/O
RM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

Txbuffer
list

I/O

< safe point >

jh1 jh2

next

prev

atomic

CAS

jh3 jh4

current head

(jh1)

T1

jh5

next

prev

next

prev

next

prev

1

current head

(jh2)

T22 atomic

CAS

current head

(jh3)

current head

(jh4)

current head

(jh5)

T33 atomic

CAS
T44 atomic

CAS

next

T55 atomic

CAS

current head

(NULL)

jh1 jh2

next

prev

atomic

CAS

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

local

linked list

(wait list)

atomic

CAS

atomic

CAS
atomic

CAS

bh3

insert bh3 to

C3's wait list

removed

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

jh1 jh2

next

prev

atomic

CAS

jh3

T1

1

T2

2

atomic

CAS
T3

3

atomic

CAS
T44 atomic

CAS
T55 atomic

CAS

next

prev

...

jh1 jh2

next

prev
jh3

next

prev

fetch
jh1

head

compare jh1

head
swap

fetch compare and swap

Time

jh4

next

prev
jh5

next

prev

running transaction
(TxID:1)

Txbuffer list

I/ORM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

INS

I/O I/O

< safe point >

jh1 jh2

next
jh3

next
jh4

next

prev
jh5

next

prev

running transaction
(TxID:1)

Txbuffer list

I/ORM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

INS

I/O I/O

< safe point >

Txbuffer
list

checkpoint list

transaction buffer list

transaction buffer list

(a) running and committing transaction

while(!list_empty(cp_wait_list)){

 bh = list_entry(cp_wait_list.next, struct buffer_head, b_assoc_buffers);

 if (buffer_locked(bh))

 wait_on_buffer(bh);

 list_del_init(&bh->b_assoc_buffers);

}

jh1 jh2

next

prev

CAS

T1

issue I/O

jh1 jh4

add T1's list

CAS

T3

jh3

CAS

T2

next

prev
jh4

CAS

next

prev

shared

linked list head tail

issue I/Oissue I/O

jh2 jh3

issue I/O

add T2's list add T3's list

local

linked list

add T1's list

next

prev

I/O issue //Initialize a cp_wait_list

restart:

while(jh = atomic_read(checkpoint_list)){

if(compared_and_swap(checkpoint_list, jh, jh->next) != jh)

goto restart;

bh = jh2bh(jh);

write_dirty_buffer(bh);

list_add_tail(bh->list, cp_wait_list);

}

jh1 jh4

wait I/O

jh2 jh3
local

linked list

wait I/O

next

prev

T1 T1 T2 T3

I/O completion

1

2

3

1

2

3

wait I/O wait I/O

transaction

 transaction (journaled buffer)

journal daemon

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

 transaction (journaled buffer)

Journal daemon

buffer buffer

client threads

(commit) (checkpoint)

journal area original area

buffer buffer

Existing Checkpoint Proposed Checkpoint

Time

T1

jh1

CAS

T1

issue I/O

T2

CAS

shared

linked list

head

tail

issue I/Oissue I/O issue I/O

1

2

Time

T1

jh2 jh3 jh4

T3 T2 T1

issue I/O issue I/Oissue I/O issue I/O

T3

jh1 jh2

next

prev

Atomic

CAS

C1

issue I/O

bh1

add bh1 to

T1's list

jh3

next

prev
jh4

next

prev
shared

linked list

head tail

issue I/Oissue I/O

bh2 bh4

issue I/O

add bh2 to

T2's list
add bh4 to

T4's list

local

linked list

(wait list)

add T1's list

/* Initialize a local wait list */

restart:

while((jh = atomic_read(&checkpoint_list)) != NULL){

 if(atomic_compare_and_swap(&checkpoint_list, jh, jh->next) != jh)

 goto restart;

 bh = jh2bh(jh);

 submit_bh(bh);

 list_add(&wait_list, bh);

}

Time

CAS

T2

CAS

T3

CAS

T4

bh3

add bh3 to

T3's list

while(!list_empty(&wait_list)){

 bh = list_entry(wait_lIst.next, ...);

 wait_on_buffer(bh);

 list_del(bh);

}

bh1 bh2

wait I/O

bh3 bh4
local

linked list

wait I/O

T1 T2 T3 T4

wait I/O wait I/O

Running Transaction

Committing Transaction

Checkpointing Tranasaction

 transaction (journaled buffer)

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

Journal daemon

& Client threads

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

 atomic_set(&list->head, jh);

 }

 else{

 atomic_set(&jh->prev->next, jh);

 }

 atomic_sync();

jh1 jh2 jh3 jh4

next

T1 (insert)

list

head

prev
tail

/* initialize a local wait list */

while(1){

local_index = atomic_add(&repaly_index, 1);

if(local_index >= max)

break;

bh = replay_array[local_index];

submit_bh(bh);

list_add(&wait_list, bh);

}

bh50 bh60 bh70

T1

host

memory
...

bh50 bh60 bh70
... ... storage

T2

T3

/* initialize a local wait list */

while(1){

local_index = atomic_add(&scan_index, 1);

if(local_index >= max)

break;

jbd2_journal_bmap(journal, local_index, &blocknr);

bh = __getblk(dev, blocknr, j_blocksize);

submit_bh(bh);

list_add(&wait_list, bh);

}

bh10 bh11 bh12

host

memory
...

bh10 bh11 bh12 storage

T1

T2
T3

next

prev

 while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

list_del(bh);

}

while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

mark_buffer_dirty(bh);

local_index = atomic_add(&insert_index, 1);

repaly_array[local_index] = bh;

list_del(bh);

}

prev

next

(checkpoint list)

I/O issue

I/O completion

I/O issue

I/O completion

atomic_add(&nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

list->head = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh3 jhx

next

T1

list

head

prev

tail

next

prevprev

next

I/O completion

...

...

Transaction buffer list

(BJ_Metadata)

jh1 jh2 jh3prev
next

prev
next

Locking for list replacement

jh4prev
next

BJ_Shadow list

2

Checkpoint transaction

Lock-free insert

jh1 jh2

1

Running transaction Committing transaction

INSERT

List replacement without locking2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction

Recovery Transaction

crash crash

crash

commit

checkpoint

parallel checkpoint I/O

issue/completion

Locking for a single batched I/O3

jh1 jh2

Lock-free iteration4

t_checkpoint_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A parallel I/O for scan and repaly5

BJ_Metadata list

No locking

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated

Not yet updated

A single operation

Locking for insert

jh1 jh2

1

Running transaction

Committing transaction

INSERT

jh1

DELETE

INSERT

Locking for list replacement2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction Recovery Transaction

crash crash

crash

commit

checkpoint

checkpoint I/O

Locking for a single batched I/O3

S
S

S

M

jh1 jh2
S

Locking for list iteration

and list replacement
4

jh1S

DELETE

INSERT

t_checkpoint_list

t_checkpoint_io_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A single I/O for scan and repaly5

BJ_Metadata list

S Mspin lock (j_list_lock) mutex lock (j_checkpoint_mutex)

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated Not yet updated

A single operation

s
c

a
n

n
in

g

re
p

la
y

in
g

jh1 jh2

3 A parallel checkpoint I/O

P1 P2 P3

jh1 jh2

Committing transaction

jh1

DELETE

INSERT

S

S

BJ_Shadow list

BJ_Metadata list

jh1 jh3

transaction buffer list

P1 P2 P3

C1

P1

M

jh1SINSERT

t_checkpoint_io_list

T2

Checkpointing transaction

INTERATION

jh1 jh2
SDELETE

t_checkpoint_list

C1

jh1 jh2BATCHED I/O

C1

P1

Locking for list replacement2

Locking for a single batched I/O3

Locking for list iteration

and list replacement
4

Recovery transaction

A single I/O for scan and repaly5

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Running and committing transaction

S
jh1 jh2

Checkpoint list

P1 P2 P3

C3

Checkpointing

jh2

C1

C2

bh1 bh2 bh3

checkpoint buffer

C3

A parallel I/O without locking

C1

C1 C2

jh1 jh2 jh3

A Parallel I/O

C3C2

tailhead

Running and committing transaction

list jh1

head

prev

next

jh2
prev

next

jh3
prev

next

jh4

tail

jh1 jh3jh2

tailhead

c
h

ec
k

p
o

in
t list

C3

A parallel I/O without locking

(Checkpointing)

C1 C2

bh1 bh2 bh3

jh1 jh3jh2

tailhead

c
h

ec
k
p

o
in

t list

running

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

C2 C1 C3

Recovery

T1

bh1

bh1

bh2

bh2

T1

journal area

bh1

bh1

bh2

bh2

T1

original area

T1

host memoryhost memory

scanning replaying

T1

bh1

bh1

bh2

bh2

T2

journal area

bh1

bh1

bh2

bh2

T1

original area

T2

host memoryhost memory

scanning replaying

P1

S
jh4 jh5

1

jh4 jh5

12

C1

committing2

S

S spin lock (j_list_lock)

committed

c
h

e
c
k
p

o
in

ti
n

g

P1

1

committed

2

checkpointing

1

2

(1) (2) (3) (4)

Running and committing transaction

Checkpointing

Recovery

bh1 bh2 bh3

A single-threaded

mount process

(1) T1(2) T1(3)

bh1 bh2 bh3

bh1 bh2 bh3

T1T2 T3

bh1 bh2 bh3

C2

C2

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

running

jh4 jh5

committing

S

C1

bh1 bh2 bh3

T2

bh1 bh2 bh3

T1

1 2 3

T3

A multiple-threaded

mount process

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

S

S

M

C3C1

C2

checkpointing

T3

bh1 bh2 bh3

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

c
h
ec

k
p

o
in

t listC1 C3 C5 C4

P1

committed

C2 C5C4

bh1 bh2 bh3

checkpoint buffer

checkpoint list

P1

committed

transaction

(TxID: 1)
C2

C2

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1 P2

S

P3

P4 P5

running

P6

Running (TID: 2)

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

P1 P2

S

P3

running transaction

P3

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

C1

S

committing transaction

C1

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

committing (TID: 2)

running (TID: 3)

Phase 1 Phase 2 Phase 3
ru

n
n

in
g

c
o

m
m

tt
in

g

S

C0 P0

TB list CP list

TB list

S

S

S

C0 P0

TB list CP list

S

time

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1
jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1

P2

S

P3

running transaction

committing transaction

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

committing transaction

P3

committing

Transaction

(TxID: 1)

C1

running

Transaction

(TxID: 2)
transaction buffer list

transaction buffer list

checkpointing transaction (TxID: 1)

P1

P2

running

transaction

jh1 jh2

head

P3 (INSERT)

running

transaction

(TxID: 1)

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

P3

jh1 jh3jh2

tailhead

jh4 jh5

P3

running

transaction

(TxID: 1)transaction buffer list

jh6 jh8jh7

tailhead

jh9 jh10

jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

committing

transaction

(TxID: 1)
transaction buffer list

transaction buffer list

bh1 bh2 bh3

c
h
e

c
k
p
o
in

t lis
t

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

C2C1 C3

checkpointing transaction (TxID: 1)

I/O

P2P1

P3P2P1

C5C4

C1C2 C3 C5 C4

C1C2 C3 C5 C4

I/O I/O I/O I/O

bh1 bh2 bh3

checkpoint buffer

checkpoint list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

checkpoint io list

jh1 jh3jh2

tailhead

jh4 jh5

C3

 atomic_add(&running_tx->t_nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&running_tx->t_buffers_tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

running_tx->t_buffers = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

jh1 jh2 jh3 jhx

next
list

head

prev

next

prevprev

next

removed

tail

set remove

C3C2C1

Running list(TxID:1)

Running state

Committing list (TxID:1)

Committing state

Checkpoint list (TxID:1)

Checkpointing state

Locked

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/O I/O

Application thread

Changing state

jh

jh (removed)

Lock-free

Lock-free
insert/delete

Lock-free
insert/delete/iteration

Lock-free
insert/delete/iteration

S

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

S
S

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

/* unlinking the bh from the jh */

/* Inserting the removed jh into a GClist */

INSERT

DELETE

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

running transaction
list (TxID:1)

journal daemon

Time

application thread jh jh (removed) at running

UL

UL

L

jh (removed) at checkpointing

Running

SR

R

create or join a
transaction
(TxID: 1)

R

changing a running
into a commtting

transaction
(TxID: 1)

committing
transaction list

(TxID:1)

S

Checkpointing
transaction list

S

M

R
read/write lock
(j_state_lock) S

spinlock
(j_list_lock) M

mutexlock
(j_checkpoint_mutex)

/* join a running transaction*/

repeat:

read_lock(journal->j_state_lock);

if(!journal->j_running_transaction)

{

read_unlock(journal->j_state_lock);

write_lock(journal->j_state_lock);

/* allocating a new transaction */

transaction = kmem_cache_zalloc();

journal->j_running_transaction = transaction;

transaction->t_state = T_RUNNING;

...

write_unlock(journal->j_state_lock);

goto repeat;

}

transaction = journal->j_running_transaction;

read_unlock(journal->j_state_lock);

/* insert a running transaction list */

spin_lock(journal->j_list_lock);

transaction->nr_buffers++;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

/* insert running transaction list*/

spin_lock(journal->j_list_lock);

transaction->nr_buffers--;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

C1

C4

C2

committing_tx->t_shadow_list = committing_tx->t_buffers;

committing_tx->t_shadow_tail = committing_tx->t_buffers_tail;

restart:

while((jh = atomic_read(&committing_tx->t_buffers)) != NULL){

if(atomic_compare_and_swap(&committing_tx->t_buffers, jh, jh->next) != jh);

/* making shadow buffers */

set_buffer_shadow(jh);

/* flushing buffers to journal area */

...

}

C1

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

jh->gc_prev = atomic_set(&running_tx->gc_list_tail, jh);

atomic_sync();

If(jh->gc_prev == NULL){

running_tx->gc_list = jh;

}

else{

jh->gc_prev->gc_next = jh;

}

/* unlinking the bh from the jh */ DELETE

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

C4

t_checkpoint_io_list

jh1 jh3jh2

tailhead

jh4 jh5

C3

j_checkpoint_transaction

transaction buffer list

buffer
next

P1

head tail
prev

P2

removed

P1

buffer

C2

(delete)

P1

(insert)

C1

(delete)
P2

(insert)

C4 (skip I/O)

C4 (I/O)

(2) I/O phase

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

jh1 jh2 jh3 jh4

next

C2head

(t_buffers)

prev

tail

(t_buffers_tail)

next

prevprev

next

P1

removed

C1

jh5

P2

next

prev
removed

T(P1) < T(P2), T(C1) < T(C2), T(Pjh2) < T(Cjh2)

C5 (I/O)

1

C3 (I/O) C6 (skip I/O)

buffer
next

head

tail
prev

buffer

P1

(insert)

C1

(delete)
P2

(insert)

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

1

C3

I/O

 I/O phase2

C4

skip I/O

C5

I/O

C6

skip I/O

1 23

bh10 bh11 bh12

host memory

bh1 (10) bh2 bh12

storage

T1

T2
T3

journal area

bh50 bh60 bh70

host memory

bh50 bh60 bh70

storage

original area

P2 P3 C1 C2 C3

jh1 jh2

next

prev

CAS

C1

issue I/O

bh1

add bh1 to

C1's wait list

jh3

next

prev
jh4

next

prev
head tail

issue I/Obypass I/O issue I/O

Local list

(wait list)

1

2

3

CAS

C2

CAS

C3

CAS

C2

Shared list

(I/O list)

bh1 bh2

wait I/O

bh3 bh4

wait I/O

C1 C2 C3 C4

wait I/O wait I/O

Local list

(wait list)

bh3

add bh3 to

C3's wait list

bh4

add bh4 to

C4's wait list

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)
transaction buffer list

next

prev

jh3

next

prev

jh4

next

prev

next

prev

S

jh1 jh2 jh3 jh4 jh5

committing

transactionhead jh1 jh2 jh3 jh4 jh5

checkpointing

transactionhead jh1 jh2 jh3 jh4 jh5

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

C1
jh1 jh3jh2head jh4 jh5

P1

P2

S

P3 jh6 jh8jh7head jh9 jh10

committing

transaction

(TxID: n)

C1

running

transaction

(TxID: n+1)

atomic

set
atomic

set

atomic

set

jh1 jh2

next

prev

atomic

CAS

T1

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

local

linked list

(wait list)

atomic

CAS

T2

atomic

CAS

T3

atomic

CAS

T4

bh3

insert bh3 to

C3's wait list

removed

P1

bh1 bh2 bh3

checkpoint buffer

checkpoint_list

M

jh1 jh3jh2

head

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: n)

C3

C3

C3

C3

I/O

C4

jh3

next

prev

T1

host memory

bh1 (10)

storage

journal area

T2 T3

bh2 (20) bh3 (30)

bh1 (10) bh2 (20) bh3 (30)

T1

host memory

bh1 (50)

storage

original area

T2 T3

bh2 (60) bh3 (70)

bh1 (50) bh2 (60) bh3 (70)

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

T5

C2

T1
jh6 jh8jh7head jh9 jh10

T3

T4

S

T5 jh11 jh13jh12head jh14 jh15

committing

transaction

(TxID: n-1)

T1

running

transaction

(TxID: n)

T2 jh1 jh3jh2 jh4 jh5

S

C2C1 C3 checkpointing

transaction

(TxID: n-2)

C3

C3

C3

I/O

C4

M

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

head

jh1 jh3jh2 jh4 jh5

ST2

T1

T3
checkpointing

transaction

(TxID: n-2)

T3

T3

I/O

T4

M

head

T3

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2GC head

GC tail atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1
1 23

atomic set

(insert)

atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2

GC

head

atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

shared

linked list

shared

linked listjhx

next

prev
jhx

prev

jh1 jh2 jh4 jh5

next

T1

head

prev

tail

next

prevprev

next

T2

set removed

T3 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

safe point

free

insert GC list

(logically remove)

physically removed (at safe points)

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12 jh10

next

prev
jh11

C1
atomic CAS

(remove)
GC

head

free free

C2

GC

tail

next

prev
jh12

safe point

P3
atomic set

(insert)

free

C3

atomic CAS

(remove)

atomic CAS

(remove)

logical remove physical remove

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12

safe point

P3
atomic set

(insert)

logical remove

Running list(TxID:1) Committing list (TxID:1) Checkpoint list (TxID:1)

Journal daemon

INS DEL INS

Time

GC list

INS

GC list

FREE

Application thread

Changing state

jh

jh (removed)

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove" "physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list
INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer

list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove"
"physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Txbuffer list

I/O

bypass

I/O
INS RM INS

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Txbuffer
list

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

running transaction
(TxID:1)

Txbuffer list

I/O
RM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

Txbuffer
list

I/O

< safe point >

jh1 jh2

next

prev

atomic

CAS

jh3 jh4

current head

(jh1)

T1

jh5

next

prev

next

prev

next

prev

1

current head

(jh2)

T22 atomic

CAS

current head

(jh3)

current head

(jh4)

current head

(jh5)

T33 atomic

CAS
T44 atomic

CAS

next

T55 atomic

CAS

current head

(NULL)

jh1 jh2

next

prev

atomic

CAS

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

local

linked list

(wait list)

atomic

CAS

atomic

CAS
atomic

CAS

bh3

insert bh3 to

C3's wait list

removed

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

jh1 jh2

next

prev

atomic

CAS

jh3

T1

1

T2

2

atomic

CAS
T3

3

atomic

CAS
T44 atomic

CAS
T55 atomic

CAS

next

prev

...

jh1 jh2

next

prev
jh3

next

prev

fetch
jh1

head

compare jh1

head
swap

fetch compare and swap

Time

jh4

next

prev
jh5

next

prev

running transaction
(TxID:1)

Txbuffer list

I/ORM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

INS

I/O I/O

< safe point >

jh1 jh2

next
jh3

next
jh4

next

prev
jh5

next

prev

running transaction
(TxID:1)

Txbuffer list

I/ORM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

INS

I/O I/O

< safe point >

Txbuffer
list

checkpoint list

transaction buffer list

transaction buffer list

(b) checkpointing transaction

Figure 2.4: Examples of existing locking and I/O operations (T: thread, TxID:
transaction ID, jh: journal head, S: spin lock (j list lock)), M: mutex lock
(j checkpoint mutex)

or the threads are scheduled3 if the transaction cannot be newly created.

After getting the running transaction (line 4), the threads modify their own

buffer and then try to insert it into a transaction buffer list by using the jh of the

buffer (bh). To insert the jh, the threads try to acquire a list lock (j list lock)

which is a spin lock (lines 5-6). A thread, which acquires the list lock, associates

the jh to the running transaction (line 45) and inserts the jh into the tail of

the list (line 46). Then, the thread releases the list lock and finishes the insert

operation (line 7). Finally, the thread completes its own transaction processing

3When a running transaction needs to be committed while a previous transaction is com-
mitting, the threads which try to get a running transaction are scheduled until the running
transaction is available. It is because there are only one running transaction and one commit-
ting transaction at any time in the compound transaction scheme [15,36].

16

PROCEDURE 1 C-like pseudo-code of running transaction in EXT4/JBD2

1: create(dir, ...){
2: /* create a new file */
3: handle = jbd2 journal start(journal, ...);
4: transaction = handle->transaction;
5: spin lock(journal->j list lock);
6: add buffer(bh->jh, transaction, transaction->t buffers);
7: spin unlock(journal->j list lock);
8: jbd2 journal stop(handle);
9: }

10: truncate(dentry, ...){
11: /* truncate a file */
12: journal unmap buffer(journal, bh);
13: }

14: journal unmap buffer(journal, bh){
15: /* invalidate a buffer */
16: write lock(journal->j state lock);
17: spin lock(journal->j list lock);
18: transaction = bh->jh->transaction;
19: if(!bh->jh->cp transaction){
20: head = jh->cp transaction->t checkpoint list;
21: del buffer(bh->jh, bh->jh->cp transaction, head);
22: }else if(transaction == journal->j committing transaction){
23: set buffer free(bh);
24: }else if(transaction == journal->j running transaction){
25: head = journal->j running transaction->t buffers;
26: del buffer(bh->jh, transaction, head);
27: }
28: spin unlock(journal->j list lock);
29: write unlock(journal->j state lock);
30: }

by decreasing the number of updates (lines 8 and 40-43).

When application threads perform some file operations, such as truncate(),

the threads can invalidate buffers that are already associated with a transaction

17

31: jbd2 journal start(journal, ...){
32: if(j running transaction is not available)
33: <create a new transaction or call schedule()>
34: read lock(journal->j state lock);
35: handle->transaction = journal->j running transaction;
36: atomic add(transaction->t updates, 1);
37: read unlock(journal->j state lock);
38: return handle;
39: }

40: jbd2 journal stop(handle){
41: /* complete a transaction */
42: atomic sub(handle->transaction->t updates, 1);
43: }

44: add buffer(jh, transaction, head) a {
45: jh->transaction = transaction;
46: tail = head->prev;
47: if(!head){
48: jh->next = jh->prev = head = jh;
49: } else{
50: jh->prev = tail; jh->next = head; tail->next = head->prev = jh;
51: }
52: }

53: del buffer(jh, transaction, head) a{
54: if(head == jh){
55: head = jh->next;
56: if(head == jh)
57: head = NULL;
58: }
59: jh->prev->next = jh->next; jh->next->prev = jh->prev;
60: jh->transaction = NULL;
61: }

a The jh is inserted into/removed from a transaction buffer list or checkpoint list by using
the prev/next/transaction or cpprev/cpnext/cp transaction fields of the jh, respectively.

18

(lines 10-13, 14-30, and 48-51). In this case, by acquiring the state lock and the

list lock (lines 16-17), a thread removes the jh from the transaction buffer or

checkpoint lists (line 49) and disassociates the jh with the running or check-

point transactions (line 50) if it is associated with the running or checkpoint

transactions, respectively. If the jh is associated with a committing transac-

tion, the thread sets the jh as freed ; both the jh and its buffer will be freed

later during the commit procedure. As discussed above, EXT4/JBD2 ensures

correct updates on the transaction state and the transaction buffer list by the

state lock and the list lock, respectively.

Committing transaction. To commit a transaction, a journal thread

wakes up and processes a commit procedure (Procedure 2). First, the thread

changes the running transaction to a committing transaction and its state to

committing. Then, the thread initializes the running transaction by acquiring

the state lock (lines 2-5). And then, the journal thread waits for other threads

to complete their transaction processing by checking the t updates variable

(line 6). Therefore, if the jh is already associated with a running transaction,

the jh must be moved to a committing transaction. Meanwhile, the committing

transaction does not accept any new modifications, and the next modification

triggers the creation of a new running transaction. With the committing trans-

action, the journal thread prepares for journal I/Os by creating a wait list,

which is used to wait the I/Os (line 8). Then, the thread fetches the jh from

the head (t buffers) of the transaction buffer list and creates a copy of its

buffer called frozen buffer (frozen bh) to preserve the contents of the buffer

(lines 9-11). And then, the thread removes the jh from the list by updating the

head of the list to the next of the head, and inserts the jh into the shadow list4

4The shadow list (t shadow) includes the frozen buffers which preserves the contents of
the buffers.

19

under the list lock (lines 12-15).

To perform a batched journal I/O, the journal thread aggregates the frozen

buffer by inserting it into a write buffer (wbuf) and the wait list (lines 16-17). If

the number of inserted buffers (bufs) is higher than the pre-defined threshold,

the thread issues I/Os to the journal area by calling submit bh() and prepares

for the next I/Os (lines 18-22). After issuing all the I/O requests for journaling,

the thread waits for the I/Os and then removes the jh from the shadow list and

inserts it into the forget list5 under the list lock (lines 24-32). After all the I/Os

are completed, the journal thread writes the commit block for the transaction

atomicity (line 33); if a crash occurs, the file system can replay or discard the

transaction according to the existence of the commit block of the transaction.

Then, the thread makes a checkpoint list with the buffers that are not freed

and still dirty in the forget list under the list lock (lines 34-42). Finally, the

committed transaction is inserted into the tail of a checkpoint transaction list

for checkpointing by acquiring the state and list locks (lines 43-48).

Checkpointing transaction. When a transaction needs to be checkpointed,

application threads try to acquire a checkpoint mutex lock (j checkpoint mutex)

and perform a batched I/O operation (Procedure 3, line 2). A thread, which ac-

quires the mutex lock, performs the checkpoint I/O operations while others are

blocked by the lock until the I/O operations are completed. Then, the thread

tries to acquire the list lock to get the transaction and access its checkpoint list

(lines 3-9). The list lock is used since other threads can access the checkpoint

list to remove the jhs when they free the buffers of the jhs, which do not need

to be checkpointed.

5The forget list (t forget) includes both the frozen buffers from the shadow list and buffers
to be freed. In some cases, when an application thread frees a buffer which is associated with a
transaction but not needed to be checkpointed, the thread inserts the jh of the buffer into the
forget list. By doing so, the jh is not inserted into the checkpoint list at the commit procedure.

20

PROCEDURE 2 C-like pseudo-code of committing transaction in
EXT4/JBD2

1: jbd2 journal commit transaction(journal){
2: transaction = journal->j running transaction;
3: write lock(journal->j state lock);
4: journal->j committing transaction = transaction;
5: journal->j running transaction = NULL;
6: while(atomic read(transaction->t updates)){...}
7: write unlock(journal->j state lock);
8: create wait list(local wait list); // create a local wait list
9: while(transaction->t buffers){

10: jh = transaction->t buffers;
11: <making a frozen buffer (frozen bh)>
12: spin lock(journal->j list lock);
13: del buffer(jh, transaction, transaction->t buffers);
14: add buffer(jh, transaction, transaction->t shadow);
15: spin unlock(journal->j list lock);
16: wbuf[bufs++] = jh->frozen bh;
17: add wait list(local wait list, jh->frozen bh);
18: if(bufs == journal->j wbufsize){ /*j wbufsize: 341*/
19: for(i=0 ; i<bufs ; i++)
20: submit bh(WRITE, wbuf[i]);
21: bufs=0;
22: }
23: }
24: while(!list empty(local wait list)){
25: frozen bh = list entry(local wait list.prev, ...);
26: wait on buffer(frozen bh);
27: jh = transaction->t shadow->prev;
28: spin lock(journal->j list lock);
29: del buffer(jh, transaction, transaction->t shadow);
30: add buffer(jh, transaction, transaction->t forget);
31: spin unlock(journal->j list lock);
32: }
33: <issue and complete a commit block>

Under the mutex and list locks, the thread aggregates the buffers by fetch-

ing the jhs from the checkpoint list and inserting the fetched buffers into a

21

34: spin lock(journal->j list lock);
35: while(transaction->t forget){
36: jh = transaction->t forget;
37: jh->transaction = NULL;
38: if(!buffer freed(jh->bh) && jbddirty(jh->bh))
39: add buffer(jh, transaction, transaction->t checkpoint list);
40: del buffer(jh, transaction, trasnaction->t forget);
41: }
42: spin unlock(journal->j list lock);
43: write lock(journal->j state lock);
44: spin lock(journal->j list lock);
45: <insert the committed transaction into a checkpoint transaction list
46: (journal->j checkpoint transactions)>
47: spin unlock(journal->j list lock);
48: write unlock(journal->j state lock);
49: }

checkpoint buffer (j chkpt bhs) to issue the I/Os in a batched manner (lines

9-21). Similar to the commit procedure, the jh is removed and re-inserted into

a checkpoint io list, which is used for I/O completion. If the number of ag-

gregated buffers (batch count) is higher than the pre-defined threshold, the

thread releases the list lock and issues the I/Os. Then, the thread prepares for

the next I/Os by acquiring the list lock. After issuing all the I/Os, the thread

completes them in a batched manner by using the checkpoint io list under the

list lock (lines 22-34). After then, the thread sets the next transaction to be

checkpointed in the checkpoint transaction list. Finally, the checkpointed trans-

action is freed, which denotes the end of a life cycle of the transaction, and the

list lock and the mutex lock are released (lines 32 and 35-36).

22

PROCEDURE 3 C-like pseudo-code of checkpointing transaction in
EXT4/JBD2

1: jbd2 log wait for space(journal){
2: mutex lock(journal->j checkpoint mutex);
3: spin lock(journal->j list lock);
4: if((transaction = journal->j checkpoint transactions) == NULL){
5: spin unlock(journal->j list lock);
6: mutex unlock(journal->j checkpoint mutex);
7: return;
8: }
9: while(transaction->t checkpoint list){

10: jh = transaction->t checkpoint list;
11: journal->j chkpt bhs[batch count++] = jh->bh;
12: del buffer(jh, transaction, transaction->t checkpoint list);
13: add buffer(jh, transaction, transaction->t checkpoint io list);
14: if((batch count == JBD3 NR BATCH)){/*JBD3 NR BATCH:64*/
15: spin unlock(journal->j list lock);
16: for(i=0;i<batch count;i++)
17: submit bh(WRITE, journal->j chkpt bhs[i]);
18: batch count = 0;
19: spin lock(journal->j list lock);
20: }
21: }
22: while(transaction->t checkpoint io list){
23: jh = transaction->t checkpoint io list;
24: spin unlock(journal->j list lock);
25: wait on buffer(jh->bh);
26: spin lock(journal->j list lock);
27: del buffer(jh, transaction, transaction->t checkpoint io list);
28: if(transaction->t checkpoint list == NULL &&
29: transaction->t checkpoint io list == NULL){
30: <set the next transaction to be checkpointed
31: in the checkpoint transaction list>
32: free(transaction);
33: }
34: }
35: spin unlock(journal->j list lock);
36: mutex unlock(journal->j checkpoint mutex);
37: }

23

Chapter 3

Design and Implementation

3.1 Optimizing File Systems for Low-latency Storage
Devices

In this section, we describe the design of our optimization techniques to in-

crease the bandwidth per thread for read and write operations. The key idea

is to combine multiple and individual pages into a single large request and

issue/complete it irrespective of the LBAs for each page.

3.1.1 Design

Read and write operations in the optimized file system

In the case of the read operation, we observe the read-ahead dilemma of whether

to use prefetching or not. Enabling the read-ahead technique is not beneficial

to the random access workload since the prefetched data is not normally ex-

pected under the workload. Thus, disabling the technique is advantageous to

the random access workload while it degrades the sequential read throughput

significantly as a side effect; performance is decreased by about 50% without

24

prefetching. To resolve this dilemma, the baseline system disables the context

lookup feature [14]. It reduces the number of prefetch pages under a random

read workload while still providing a sufficient number of prefetched pages for

the sequential read workload. As a result, the random read performance is im-

proved without degrading the sequential read performance.

Figure 3.1a outlines the read-ahead of the optimized file system. There are

five pages (Page 0-4) where Page 0 is the demanded page and the other pages

(Page 1-4) are contiguous pages which the file system wants to read ahead. The

pages are mapped to each LBA, and the state of Page 2 is already up-to-date so

that the pages to be read are Page 0, 1, 3, and 4. In this situation, the existing

file system issues two requests such as a request for Page 0-1 and another request

for Page 3-4. Unlike the existing file system, our optimized file system gathers

the pages (Page 0, 1, 3, and 4) and issues/completes a single large request (Re-

quest #1) with gathered pages. This scheme demonstrates that the file system

increases the number of I/Os per request and reduces the number of operations

for issue and completion irrespective of the LBA’s contiguity according to the

state of the pages.

Figure 3.1b describes write-back of the optimized file system. There are five

dirty pages (Page 0-4) from the page cache, and they are mapped to each LBA.

The optimized file system merges the dirty pages from the page cache into a

single request (Request #1). This scheme shows that the sequence of the dirty

pages negatively affects the bandwidth per thread. It also demonstrates that the

performance of the read operations can be improved by reducing the flushing

time whenever the write-back operation occurs. Finally, our scheme does not

sacrifice the consistency of the current file systems by preserving the metadata

and journaling mechanism.

25

Page1

(LBA:31)

Page0

(LBA:30)

Page2

(LBA:32)

Page3

(LBA:33)

Page4

(LBA:34)
Host memory

30 31 32 33 34

User request

Storage address

space

......

Read-ahead

Request #1

(a) Optimized read-ahead

Page1

(LBA:2)

Page0

(LBA:1)

Page2

(LBA:20)

Page3

(LBA:89)

Page4

(LBA:45)
Host memory

1 2 20 8945
Storage address

space

......

Request #1

...

(b) Optimized write-back

Figure 3.1: Read-ahead and write-back of the optimized file system

Journal I/O in the optimized file system

In this section, we describe the optimization techniques in the journal I/O oper-

ations based on the data journaling mode. This optimization provides efficient

journaling/checkpoint operations and reduces the time for I/O operations. Our

journal I/O scheme still guarantees the same consistency as that of the existing

file system.

To increase the bandwidth per journal I/O operation, similar to optimiza-

tion for the read and write operations, the optimized file system combines

26

multiple and individual journal pages (blocks) into a large request and is-

sues/completes the request. When a transaction starts to commit, the existing

file system makes a temporary I/O buffer in which the journal blocks are in-

cluded, which was updated by the transaction. Then, the existing file system

performs I/O for the block from an I/O buffer one by one. In contrast, the

optimized file system makes blocks in the I/O buffer into a large request and

issues the request to the device driver.

Figure 3.2a shows the journal metadata/data and commit operations in a

transaction for the optimized file system. There are five pages (Page 0-4) for

the journal blocks and one page (Page 5) for a commit block. In this example,

the pages (Page 0-5) are mapped to LBA 10, 11, 12, 13, 14, and 15. In contrast

to the existing file system, the optimized file system merges the journal blocks

into a single request (Request #1) and issues the request. After the transfer of

the journal blocks is finished, the I/Os are completed at once. To provide the

crash consistency at the same level as that of the existing file system, after the

I/Os for journal blocks are completely finished, we issue and complete the I/O

for the commit block in a request (Request #2). Consequently, our scheme still

supports the same consistency with that of the existing file system since our

scheme preserves the write ordering between the journal block and the commit

block.

When a new transaction is started, the file system checks whether there is

enough space left in the journal area to write all potential buffers requested.

If there is enough space, the transaction is continuously progressed. Otherwise,

the upcoming I/O needs to stall pending a checkpoint to free up some more

journal space. Therefore, fast checkpoint operation is required to increase the

I/O performance by reducing the stall time. Figure 3.2b describes the opti-

mized checkpoint operations. The checkpoint buffer includes the metadata and

27

data to be rewritten into the original area. There are five pages (Page 0-5).

In this example, the pages are mapped to LBA 50, 23, 70, 101, and 80. When

the checkpoint is activated, the optimized file system makes the blocks in the

checkpoint buffer into a single request (Request #1) and issues/completes the

request at once, irrespective of the LBA’s contiguity.

Our scheme allows the file system to increase the number of I/Os per re-

quest and reduces the number of operations for issue and completion in jour-

nal/checkpoint operations. Consequently, our scheme reduces the transfer time

for journal I/O and supports shorter journal work by providing efficient I/O

operations.

Recovery in the optimized file system

In this section, we present an efficient recovery mechanism in the journaling

file system. We provide the optimizations for both scan and replay operations.

Our scheme is to make several pages to be scanned and replayed into large

requests. In the ordered mode, only the metadata in the committed transaction

is replayed to the original metadata area while both the metadata and data

in the committed transaction are replayed to their original area in the data

journaling mode. Similar to the existing file system, the optimized file system

initializes the journal area after the recovery procedure is completely finished.

Figure 3.3 shows an example of the optimized recovery procedure in the op-

timized file system. There are four pages (Page 0-3) mapped to LBA 1, 2, 3, and

4 in the journal area. When the system is restarted after a system crash or power

outage, the optimized file system reads the pages in the journal area. Unlike

the existing recovery procedure, the optimized file system reads the pages in a

request (Request #1). This optimization allows the mount process to the scan-

ning and selecting the pages to be replayed faster. After scanning, the selected

28

Page1

(LBA:11)

Page0

(LBA:10)

Page2

(LBA:12)

Page3

(LBA:13)

Page4

(LBA:14)

Journal buffer

(Host memory)

10 11 12 13 14
Journal area

(storage address

space)

......

Journal metadata/data

Page5

(LBA:15)

15

Commit block

Request #2

Transaction

Request #1

(a) Optimized journal metadata/data

Page1

(LBA:23)

Page0

(LBA:50)

Page2

(LBA:70)

Page3

(LBA:101)

Page4

(LBA:80)

Checkpoint buffer

(Host memory)

50 1017023 80

Original area

(storage address

space)

...

Checkpoint metadata/data

...

Request #1

(b) Optimized checkpoint

Figure 3.2: Journal metadata/data and checkpoint of the optimized file system

pages (Page 0-2) mapped to LBA 33, 56, and 78 are written into the original

area. In contrast to the existing file system, the optimized file system makes

the pages into a request (Request #2). In this example, our scheme issues and

completes the two requests for each scan and replay operation. Consequently,

the optimized file system decreases the recovery time and allows the mount

process to perform more efficient recovery I/O operations.

29

Page1

(LBA:2)

Page0

(LBA:1)

Page2

(LBA:3)

Page3

(LBA:13)

Page4

(LBA:14)

Host memory

1 2 3 56 78

Mount process

(scan blocks)

storage address

space

......

Request #1

Request #2

Journal area

Request #3

Request #5

Request #6

33
...

Original area

Page1

(LBA:56)

Page0

(LBA:33)

Page2

(LBA:78)

Mount process

(replay blocks)

Request #7

Page1

(LBA:2)

Page0

(LBA:1)

Page2

(LBA:3)
Host memory

1 2 3 56 78

Mount process

(scan blocks)

storage address

space

......

Journal area

33
...

Original area

Page1

(LBA:56)

Page0

(LBA:33)

Page2

(LBA:78)

Mount process

(replay blocks)

Request #2

Page3

(LBA:4)

4

Request #1

Commit

block

Page3

(LBA:4)

Commit

block

4

Request #4

...

...

Figure 3.3: Optimized recovery procedure

3.1.2 Implementation

Our optimization requires a DMA engine of the storage device to support the

capability of transferring data between discontiguous host memory pages of the

file system and discontiguous storage address spaces. To support the capability,

the DMA engine of the DRAM-SSD is customized by using a set of descriptors

for an I/O request. A descriptor is defined, which includes a mapping of host

memory segment, storage segment, and data size. A data structure is defined

called Block Control Table (BCT) to contain the descriptors. BCT can contain

1,024 descriptors maximally. Therefore, the 1,024 segments in a single request

can be dispatched at once.

Our optimizations can be applied on other types of fast storage devices,

which support an ultra-low latency (e.g., a few microseconds) and the capa-

bility of transferring data between discontiguous host memory segments and

discontiguous storage address spaces. For example, the devices with fast stor-

age medium (a type of memory such as PCM, STT-MRAM, and so on) has

an ultra-low latency. RAMCloud also provides low latency access by storing all

data in DRAM at all times. The file systems on the fast storage devices or fast

30

storage systems with fast remote memory access can be optimized if the devices

or systems can support the transfer capability. In terms of standard interfaces,

the SATA and NVMe do not support the data transfer between discontiguous

host memory segments and discontiguous storage address spaces. Therefore,

our optimizations are hard to be applied on current flash-based SSDs with the

SATA and NVMe interfaces.

Our scheme requires modification of file system and device driver. In read

and write operations, the existing file system builds the BIO structure to for-

ward requests to the block layer; the structure is the basic container for block

I/O. The existing file system upon the existing block layer identifies only pages

with contiguous LBAs and adds the pages to the BIO structure; the BIO struc-

ture has the starting LBA in the bi sector field of the structure. To implement

our scheme, we define a new data structure called PIO (Proposed I/O) for the

page transfers between the file system and the device driver. The PIO structure

consists of page vectors, the total request size, and the number of pages. Each

page vector contains the page, length, offset, and sector addresses (LBA) to rep-

resent the mapping between a single page of the file system and a specific LBA.

This enables the file system to transfer multiple LBAs to the device driver.

To this end, we implemented new functions between the file system and

the device driver. When a PIO instance for I/O operation arrives from the

file system, the device driver allocates as many request descriptors as the to-

tal number of pages (nr pages in the PIO structure). Then, the device driver

prepares a DMA operation; the device driver calculates the appropriate DMA

address for each page in the dma map sg() function and completes the allocated

request descriptors with the DMA address (host memory address), storage ad-

dress (LBA), and length. Finally, the device driver issues the request descriptors

to the storage device.

31

The file system adds pages for read-ahead operations to a page pool list. The

file system then finds the LBAs of the pages from the list one by one. The opti-

mized file system moves pages from the page pool list to the page vec structure

of the PIO with information for each page by not checking the contiguity among

the pages. The file system then transfers the PIO via a customized read inter-

face exported by the device driver. We modified the ext4 readpages() that is

almost identical to other file systems except the block retrieval mechanism.

When write-back occurs, the optimized file system finds dirty pages from

the page cache via pagevec lookup tag() to get the LBAs of the dirty pages.

The file system does not check the contiguity of the pages and merges them into

page vec in PIO. In the write-back operation, we modified ext4 writepages().

Similar to the optimized read operation, the file system issues the request with

PIO via a customized write interface exposed by the device driver. We expect

that applying these optimization techniques to other file systems would be

relatively easy since the modifications are included in common functions of the

Linux file system.

For journaling and recovery optimization, we changed the JBD2 module.

We modified jbd2 journal commit transaction() for journal metadata/data

optimization; this function is the primary function for the commit procedure.

When the transaction commit occurs, the journal thread wakes up and performs

the journal commit procedure. In this situation, the optimized file system gets

the journal metadata/data buffer to be transferred and sends the buffer to

the device driver using a customized function that is similar to those used in

read/write operations. The journal thread issues and completes the I/O for the

journal blocks at once and subsequently the I/O for the commit block.

For optimization of the checkpoint, we modified flush batch(), which per-

forms the checkpoint I/O operation in the JBD2 module. The optimized file

32

system gets the checkpoint buffer and transfers it to the device driver via the

customized function. The file system issues and completes the I/O for the check-

point at once. In short, we add two functions as the interfaces between JBD2 and

the device driver. By using the interfaces, when our file system issues the jour-

nal metadata/data or checkpoint buffer, our device driver prepares the DMA

operation for a single large request similar to read and write operations.

To provide faster recovery, we modified jbd2 journal recover() that is

the primary function for recovery when mounting a device. To support a large

read request for journal blocks, the optimized file system aggregates the blocks

to be read and then issues/completes the aggregated blocks by a request via

the customized function. In the replay operation, the mount process writes the

selected blocks to the original area via the customized function to write the

dirty blocks to be replayed at once without their contiguity. Consequently, in

the recovery procedure, we modify the read and re-write operations for jour-

nal blocks, which then makes the procedure more efficient and decreases the

recovery and remount time.

3.2 Optimizing File Systems for Highly Parallel Stor-
age Devices

To achieve higher I/O performance on multi-cores with high-performance stor-

age, we aim to reduce the lock contention and maximize I/O parallelism in

transaction processing. To do this, we propose a transaction processing with

two main schemes that enable concurrent updates on shared data structures

and cooperatively parallelize I/O operations. We apply these schemes to the

transaction processing in EXT4/JBD2.

We maintain the compound transaction scheme of EXT4/JBD2 to exploit its

advantages [36]. For example, it provides a better performance when the same

33

metadata or data is frequently updated within a short period of time. With this

advantage, we implement our schemes in the compound transaction. We also

preserve the existing ordering of write operations and transactions, such as the

ordering of journal blocks and a commit block, committing and checkpointing,

and checkpoints. Therefore, our implementation does not require modifications

to the existing recovery procedure while not sacrificing the consistency of the

file system.

Furthermore, we do not optimize all locking operations in transaction pro-

cessing but focus on the list lock for management of journal heads and the

checkpoint mutex lock for serialized I/O operations. Compared to the list lock

and the mutex lock, other locks, such as state lock do not incur a significant

overhead according to our evaluation as well as other works [15]. However, such

locks can be a performance bottleneck in a massive number of cores, which is

beyond this dissertation; therefore, we leave the latent performance issue as a

future work.

3.2.1 Design

Concurrent updates on data structures

We manage the linked lists for transaction processing in a lock-free manner as

shown in Figure 3.4. To this end, instead of the existing circular doubly linked

lists, we use non-circular doubly linked lists and add the tail to the lists to

enable lock-free operations1.

INSERT. We provide a concurrent insert operation to add an item to a

list. In the existing transaction processing, the items are inserted into the tail

1 In the circular doubly linked list, when an item is inserted into the list, the multiple
pointers that link the item, head, and tail are updated, which makes the atomic insert op-
eration difficult. Instead, we add the tail and set the tail’s next item as a constant NULL
variable [40], which allows us to identify the last element of the list and insert the item into
the tail atomically.

34

while(!list_empty(cp_wait_list)){

 bh = list_entry(cp_wait_list.next, struct buffer_head, b_assoc_buffers);

 if (buffer_locked(bh))

 wait_on_buffer(bh);

 list_del_init(&bh->b_assoc_buffers);

}

jh1 jh2

next

prev

CAS

T1

issue I/O

jh1 jh4

add T1's list

CAS

T3

jh3

CAS

T2

next

prev
jh4

CAS

next

prev

shared

linked list head tail

issue I/Oissue I/O

jh2 jh3

issue I/O

add T2's list add T3's list

local

linked list

add T1's list

next

prev

I/O issue //Initialize a cp_wait_list

restart:

while(jh = atomic_read(checkpoint_list)){

if(compared_and_swap(checkpoint_list, jh, jh->next) != jh)

goto restart;

bh = jh2bh(jh);

write_dirty_buffer(bh);

list_add_tail(bh->list, cp_wait_list);

}

jh1 jh4

wait I/O

jh2 jh3
local

linked list

wait I/O

next

prev

T1 T1 T2 T3

I/O completion

1

2

3

1

2

3

wait I/O wait I/O

transaction

 transaction (journaled buffer)

journal daemon

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

 transaction (journaled buffer)

Journal daemon

buffer buffer

client threads

(commit) (checkpoint)

journal area original area

buffer buffer

Existing Checkpoint Proposed Checkpoint

Time

T1

jh1

CAS

T1

issue I/O

T2

CAS

shared

linked list

head

tail

issue I/Oissue I/O issue I/O

1

2

Time

T1

jh2 jh3 jh4

T3 T2 T1

issue I/O issue I/Oissue I/O issue I/O

T3

jh1 jh2

next

prev

Atomic

CAS

C1

issue I/O

bh1

add bh1 to

T1's list

jh3

next

prev
jh4

next

prev
shared

linked list

head tail

issue I/Oissue I/O

bh2 bh4

issue I/O

add bh2 to

T2's list
add bh4 to

T4's list

local

linked list

(wait list)

add T1's list

/* Initialize a local wait list */

restart:

while((jh = atomic_read(&checkpoint_list)) != NULL){

 if(atomic_compare_and_swap(&checkpoint_list, jh, jh->next) != jh)

 goto restart;

 bh = jh2bh(jh);

 submit_bh(bh);

 list_add(&wait_list, bh);

}

Time

CAS

T2

CAS

T3

CAS

T4

bh3

add bh3 to

T3's list

while(!list_empty(&wait_list)){

 bh = list_entry(wait_lIst.next, ...);

 wait_on_buffer(bh);

 list_del(bh);

}

bh1 bh2

wait I/O

bh3 bh4
local

linked list

wait I/O

T1 T2 T3 T4

wait I/O wait I/O

Running Transaction

Committing Transaction

Checkpointing Tranasaction

 transaction (journaled buffer)

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

Journal daemon

& Client threads

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

 atomic_set(&list->head, jh);

 }

 else{

 atomic_set(&jh->prev->next, jh);

 }

 atomic_sync();

jh1 jh2 jh3 jh4

next

T1 (insert)

list

head

prev
tail

/* initialize a local wait list */

while(1){

local_index = atomic_add(&repaly_index, 1);

if(local_index >= max)

break;

bh = replay_array[local_index];

submit_bh(bh);

list_add(&wait_list, bh);

}

bh50 bh60 bh70

T1

host

memory
...

bh50 bh60 bh70
... ... storage

T2

T3

/* initialize a local wait list */

while(1){

local_index = atomic_add(&scan_index, 1);

if(local_index >= max)

break;

jbd2_journal_bmap(journal, local_index, &blocknr);

bh = __getblk(dev, blocknr, j_blocksize);

submit_bh(bh);

list_add(&wait_list, bh);

}

bh10 bh11 bh12

host

memory
...

bh10 bh11 bh12 storage

T1

T2
T3

next

prev

 while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

list_del(bh);

}

while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

mark_buffer_dirty(bh);

local_index = atomic_add(&insert_index, 1);

repaly_array[local_index] = bh;

list_del(bh);

}

prev

next

(checkpoint list)

I/O issue

I/O completion

I/O issue

I/O completion

atomic_add(&nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

list->head = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh3 jhx

next

T1

list

head

prev

tail

next

prevprev

next

I/O completion

...

...

Transaction buffer list

(BJ_Metadata)

jh1 jh2 jh3prev
next

prev
next

Locking for list replacement

jh4prev
next

BJ_Shadow list

2

Checkpoint transaction

Lock-free insert

jh1 jh2

1

Running transaction Committing transaction

INSERT

List replacement without locking2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction

Recovery Transaction

crash crash

crash

commit

checkpoint

parallel checkpoint I/O

issue/completion

Locking for a single batched I/O3

jh1 jh2

Lock-free iteration4

t_checkpoint_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A parallel I/O for scan and repaly5

BJ_Metadata list

No locking

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated

Not yet updated

A single operation

Locking for insert

jh1 jh2

1

Running transaction

Committing transaction

INSERT

jh1

DELETE

INSERT

Locking for list replacement2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction Recovery Transaction

crash crash

crash

commit

checkpoint

checkpoint I/O

Locking for a single batched I/O3

S
S

S

M

jh1 jh2
S

Locking for list iteration

and list replacement
4

jh1S

DELETE

INSERT

t_checkpoint_list

t_checkpoint_io_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A single I/O for scan and repaly5

BJ_Metadata list

S Mspin lock (j_list_lock) mutex lock (j_checkpoint_mutex)

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated Not yet updated

A single operation

s
c

a
n

n
in

g

re
p

la
y

in
g

jh1 jh2

3 A parallel checkpoint I/O

P1 P2 P3

jh1 jh2

Committing transaction

jh1

DELETE

INSERT

S

S

BJ_Shadow list

BJ_Metadata list

jh1 jh3

transaction buffer list

P1 P2 P3

C1

P1

M

jh1SINSERT

t_checkpoint_io_list

T2

Checkpointing transaction

INTERATION

jh1 jh2
SDELETE

t_checkpoint_list

C1

jh1 jh2BATCHED I/O

C1

P1

Locking for list replacement2

Locking for a single batched I/O3

Locking for list iteration

and list replacement
4

Recovery transaction

A single I/O for scan and repaly5

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Running and committing transaction

S
jh1 jh2

Checkpoint list

P1 P2 P3

C3

Checkpointing

jh2

C1

C2

bh1 bh2 bh3

checkpoint buffer

C3

A parallel I/O without locking

C1

C1 C2

jh1 jh2 jh3

A Parallel I/O

C3C2

tailhead

Running and committing transaction

list jh1

head

prev

next

jh2
prev

next

jh3
prev

next

jh4

tail

jh1 jh3jh2

tailhead

c
h
e
c
k
p
o
in

t list

C3

A parallel I/O without locking

(Checkpointing)

C1 C2

bh1 bh2 bh3

jh1 jh3jh2

tailhead

c
h
e
c
k
p
o
in

t list

running

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

C2 C1 C3

Recovery

T1

bh1

bh1

bh2

bh2

T1

journal area

bh1

bh1

bh2

bh2

T1

original area

T1

host memoryhost memory

scanning replaying

T1

bh1

bh1

bh2

bh2

T2

journal area

bh1

bh1

bh2

bh2

T1

original area

T2

host memoryhost memory

scanning replaying

P1

S
jh4 jh5

1

jh4 jh5

12

C1

committing2

S

S spin lock (j_list_lock)

committed

c
h

e
c
k
p

o
in

ti
n

g

P1

1

committed

2

checkpointing

1

2

(1) (2) (3) (4)

Running and committing transaction

Checkpointing

Recovery

bh1 bh2 bh3

A single-threaded

mount process

(1) T1(2) T1(3)

bh1 bh2 bh3

bh1 bh2 bh3

T1T2 T3

bh1 bh2 bh3

C2

C2

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

running

jh4 jh5

committing

S

C1

bh1 bh2 bh3

T2

bh1 bh2 bh3

T1

1 2 3

T3

A multiple-threaded

mount process

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

S

S

M

C3C1

C2

checkpointing

T3

bh1 bh2 bh3

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

c
h
e
c
k
p
o
in

t listC1 C3 C5 C4

P1

committed

C2 C5C4

bh1 bh2 bh3

checkpoint buffer

checkpoint list

P1

committed

transaction

(TxID: 1)
C2

C2

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1 P2

S

P3

P4 P5

running

P6

Running (TID: 2)

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

P1 P2

S

P3

running transaction

P3

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

C1

S

committing transaction

C1

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

committing (TID: 2)

running (TID: 3)

Phase 1 Phase 2 Phase 3
ru

n
n

in
g

c
o

m
m

tt
in

g

S

C0 P0

TB list CP list

TB list

S

S

S

C0 P0

TB list CP list

S

time

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1
jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1

P2

S

P3

running transaction

committing transaction

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

committing transaction

P3

committing

Transaction

(TxID: 1)

C1

running

Transaction

(TxID: 2)
transaction buffer list

transaction buffer list

checkpointing transaction (TxID: 1)

P1

P2

running

transaction

jh1 jh2

head

P3 (INSERT)

running

transaction

(TxID: 1)

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

P3

jh1 jh3jh2

tailhead

jh4 jh5

P3

running

transaction

(TxID: 1)transaction buffer list

jh6 jh8jh7

tailhead

jh9 jh10

jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

committing

transaction

(TxID: 1)
transaction buffer list

transaction buffer list

bh1 bh2 bh3

c
h
e

c
k
p
o
in

t lis
t

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

C2C1 C3

checkpointing transaction (TxID: 1)

I/O

P2P1

P3P2P1

C5C4

C1C2 C3 C5 C4

C1C2 C3 C5 C4

I/O I/O I/O I/O

bh1 bh2 bh3

checkpoint buffer

checkpoint list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

checkpoint io list

jh1 jh3jh2

tailhead

jh4 jh5

C3

 atomic_add(&running_tx->t_nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&running_tx->t_buffers_tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

running_tx->t_buffers = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

jh1 jh2 jh3 jhx

next
list

head

prev

next

prevprev

next

removed

tail

set remove

C3C2C1

Running list(TxID:1)

Running state

Committing list (TxID:1)

Committing state

Checkpoint list (TxID:1)

Checkpointing state

Locked

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/O I/O

Application thread

Changing state

jh

jh (removed)

Lock-free

Lock-free
insert/delete

Lock-free
insert/delete/iteration

Lock-free
insert/delete/iteration

S

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

S
S

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

/* unlinking the bh from the jh */

/* Inserting the removed jh into a GClist */

INSERT

DELETE

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

running transaction
list (TxID:1)

journal daemon

Time

application thread jh jh (removed) at running

UL

UL

L

jh (removed) at checkpointing

Running

SR

R

create or join a
transaction
(TxID: 1)

R

changing a running
into a commtting

transaction
(TxID: 1)

committing
transaction list

(TxID:1)

S

Checkpointing
transaction list

S

M

R
read/write lock
(j_state_lock) S

spinlock
(j_list_lock) M

mutexlock
(j_checkpoint_mutex)

/* join a running transaction*/

repeat:

read_lock(journal->j_state_lock);

if(!journal->j_running_transaction)

{

read_unlock(journal->j_state_lock);

write_lock(journal->j_state_lock);

/* allocating a new transaction */

transaction = kmem_cache_zalloc();

journal->j_running_transaction = transaction;

transaction->t_state = T_RUNNING;

...

write_unlock(journal->j_state_lock);

goto repeat;

}

transaction = journal->j_running_transaction;

read_unlock(journal->j_state_lock);

/* insert a running transaction list */

spin_lock(journal->j_list_lock);

transaction->nr_buffers++;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

/* insert running transaction list*/

spin_lock(journal->j_list_lock);

transaction->nr_buffers--;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

C1

C4

C2

committing_tx->t_shadow_list = committing_tx->t_buffers;

committing_tx->t_shadow_tail = committing_tx->t_buffers_tail;

restart:

while((jh = atomic_read(&committing_tx->t_buffers)) != NULL){

if(atomic_compare_and_swap(&committing_tx->t_buffers, jh, jh->next) != jh);

/* making shadow buffers */

set_buffer_shadow(jh);

/* flushing buffers to journal area */

...

}

C1

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

jh->gc_prev = atomic_set(&running_tx->gc_list_tail, jh);

atomic_sync();

If(jh->gc_prev == NULL){

running_tx->gc_list = jh;

}

else{

jh->gc_prev->gc_next = jh;

}

/* unlinking the bh from the jh */ DELETE

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

C4

t_checkpoint_io_list

jh1 jh3jh2

tailhead

jh4 jh5

C3

j_checkpoint_transaction

transaction buffer list

buffer
next

P1

head tail
prev

P2

removed

P1

buffer

C2

(delete)

P1

(insert)

C1

(delete)
P2

(insert)

C4 (skip I/O)

C4 (I/O)

(2) I/O phase

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

jh1 jh2 jh3 jh4

next

C2head

(t_buffers)

prev

tail

(t_buffers_tail)

next

prevprev

next

P1

removed

C1

jh5

P2

next

prev
removed

T(P1) < T(P2), T(C1) < T(C2), T(Pjh2) < T(Cjh2)

C5 (I/O)

1

C3 (I/O) C6 (skip I/O)

buffer
next

head

tail
prev

buffer

P1

(insert)

C1

(delete)
P2

(insert)

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

1

C3

I/O

 I/O phase2

C4

skip I/O

C5

I/O

C6

skip I/O

1 23

bh10 bh11 bh12

host memory

bh1 (10) bh2 bh12

storage

T1

T2
T3

journal area

bh50 bh60 bh70

host memory

bh50 bh60 bh70

storage

original area

P2 P3 C1 C2 C3

jh1 jh2

next

prev

CAS

C1

issue I/O

bh1

add bh1 to

C1's wait list

jh3

next

prev
jh4

next

prev
head tail

issue I/Obypass I/O issue I/O

Local list

(wait list)

1

2

3

CAS

C2

CAS

C3

CAS

C2

Shared list

(I/O list)

bh1 bh2

wait I/O

bh3 bh4

wait I/O

C1 C2 C3 C4

wait I/O wait I/O

Local list

(wait list)

bh3

add bh3 to

C3's wait list

bh4

add bh4 to

C4's wait list

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)
transaction buffer list

next

prev

jh3

next

prev

jh4

next

prev

next

prev

S

jh1 jh2 jh3 jh4 jh5

committing

transactionhead jh1 jh2 jh3 jh4 jh5

checkpointing

transactionhead jh1 jh2 jh3 jh4 jh5

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

C1
jh1 jh3jh2head jh4 jh5

P1

P2

S

P3 jh6 jh8jh7head jh9 jh10

committing

transaction

(TxID: n)

C1

running

transaction

(TxID: n+1)

atomic

set
atomic

set

atomic

set

jh1 jh2

next

prev

atomic

CAS

T1

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

local

linked list

(wait list)

atomic

CAS

T2

atomic

CAS

T3

atomic

CAS

T4

bh3

insert bh3 to

C3's wait list

removed

P1

bh1 bh2 bh3

checkpoint buffer

checkpoint_list

M

jh1 jh3jh2

head

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: n)

C3

C3

C3

C3

I/O

C4

jh3

next

prev

T1

host memory

bh1 (10)

storage

journal area

T2 T3

bh2 (20) bh3 (30)

bh1 (10) bh2 (20) bh3 (30)

T1

host memory

bh1 (50)

storage

original area

T2 T3

bh2 (60) bh3 (70)

bh1 (50) bh2 (60) bh3 (70)

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

T5

C2

T1
jh6 jh8jh7head jh9 jh10

T3

T4

S

T5 jh11 jh13jh12head jh14 jh15

committing

transaction

(TxID: n-1)

T1

running

transaction

(TxID: n)

T2 jh1 jh3jh2 jh4 jh5

S

C2C1 C3 checkpointing

transaction

(TxID: n-2)

C3

C3

C3

I/O

C4

M

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

head

jh1 jh3jh2 jh4 jh5

ST2

T1

T3
checkpointing

transaction

(TxID: n-2)

T3

T3

I/O

T4

M

head

T3

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2GC head

GC tail atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1
1 23

atomic set

(insert)

atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2

GC

head

atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

shared

linked list

shared

linked listjhx

next

prev
jhx

prev

jh1 jh2 jh4 jh5

next

T1

head

prev

next

prevprev

next

T2

set removed

T3 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

safe point

free

insert GC list

(logically remove)

physically removed (at safe points)

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12 jh10

next

prev
jh11

C1
atomic CAS

(remove)
GC

head

free free

C2

GC

tail

next

prev
jh12

safe point

P3
atomic set

(insert)

free

C3

atomic CAS

(remove)

atomic CAS

(remove)

logical remove physical remove

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12

safe point

P3
atomic set

(insert)

logical remove

Running list(TxID:1) Committing list (TxID:1) Checkpoint list (TxID:1)

Journal daemon

INS DEL INS

Time

GC list

INS

GC list

FREE

Application thread

Changing state

jh

jh (removed)

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove" "physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list
INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer

list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove"
"physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Txbuffer list

I/O

bypass

I/O
INS RM INS

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Txbuffer
list

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

running transaction
(TxID:1)

Txbuffer list

I/O
RM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

Txbuffer
list

I/O

< safe point >

jh1 jh2

next

prev

atomic

CAS

jh3 jh4

current head

(jh1)

T1

jh5

next

prev

next

prev

next

prev

1

current head

(jh2)

T22 atomic

CAS

current head

(jh3)

current head

(jh4)

current head

(jh5)

T33 atomic

CAS
T44 atomic

CAS

next

T55 atomic

CAS

current head

(NULL)

jh1 jh2

next

prev

atomic

CAS

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

local

linked list

(wait list)

atomic

CAS

atomic

CAS
atomic

CAS

bh3

insert bh3 to

C3's wait list

removed

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

jh1 jh2

next

prev

atomic

CAS

jh3

T1

1

T2

2

atomic

CAS
T3

3

atomic

CAS
T44 atomic

CAS
T55 atomic

CAS

next

prev

...

jh1 jh2

next

prev
jh3

next

prev

fetch
jh1

head

compare jh1

head
swap

fetch compare and swap

Time

jh4

next

prev
jh5

next

prev

running transaction
(TxID:1)

Txbuffer list

I/ORM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

INS

I/O I/O

< safe point >

jh1 jh2

next
jh3

next
jh4

next

prev
jh5

next

prev

running transaction
(TxID:1)

Txbuffer list

I/ORM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

INS

I/O I/O

< safe point >

Txbuffer
list

checkpoint list

transaction buffer list

transaction buffer list

tail

(a) Insert and remove operations in a lock-free manner (T: thread)

while(!list_empty(cp_wait_list)){

 bh = list_entry(cp_wait_list.next, struct buffer_head, b_assoc_buffers);

 if (buffer_locked(bh))

 wait_on_buffer(bh);

 list_del_init(&bh->b_assoc_buffers);

}

jh1 jh2

next

prev

CAS

T1

issue I/O

jh1 jh4

add T1's list

CAS

T3

jh3

CAS

T2

next

prev
jh4

CAS

next

prev

shared

linked list head tail

issue I/Oissue I/O

jh2 jh3

issue I/O

add T2's list add T3's list

local

linked list

add T1's list

next

prev

I/O issue //Initialize a cp_wait_list

restart:

while(jh = atomic_read(checkpoint_list)){

if(compared_and_swap(checkpoint_list, jh, jh->next) != jh)

goto restart;

bh = jh2bh(jh);

write_dirty_buffer(bh);

list_add_tail(bh->list, cp_wait_list);

}

jh1 jh4

wait I/O

jh2 jh3
local

linked list

wait I/O

next

prev

T1 T1 T2 T3

I/O completion

1

2

3

1

2

3

wait I/O wait I/O

transaction

 transaction (journaled buffer)

journal daemon

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

 transaction (journaled buffer)

Journal daemon

buffer buffer

client threads

(commit) (checkpoint)

journal area original area

buffer buffer

Existing Checkpoint Proposed Checkpoint

Time

T1

jh1

CAS

T1

issue I/O

T2

CAS

shared

linked list

head

tail

issue I/Oissue I/O issue I/O

1

2

Time

T1

jh2 jh3 jh4

T3 T2 T1

issue I/O issue I/Oissue I/O issue I/O

T3

jh1 jh2

next

prev

Atomic

CAS

C1

issue I/O

bh1

add bh1 to

T1's list

jh3

next

prev
jh4

next

prev
shared

linked list

head tail

issue I/Oissue I/O

bh2 bh4

issue I/O

add bh2 to

T2's list
add bh4 to

T4's list

local

linked list

(wait list)

add T1's list

/* Initialize a local wait list */

restart:

while((jh = atomic_read(&checkpoint_list)) != NULL){

 if(atomic_compare_and_swap(&checkpoint_list, jh, jh->next) != jh)

 goto restart;

 bh = jh2bh(jh);

 submit_bh(bh);

 list_add(&wait_list, bh);

}

Time

CAS

T2

CAS

T3

CAS

T4

bh3

add bh3 to

T3's list

while(!list_empty(&wait_list)){

 bh = list_entry(wait_lIst.next, ...);

 wait_on_buffer(bh);

 list_del(bh);

}

bh1 bh2

wait I/O

bh3 bh4
local

linked list

wait I/O

T1 T2 T3 T4

wait I/O wait I/O

Running Transaction

Committing Transaction

Checkpointing Tranasaction

 transaction (journaled buffer)

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

Journal daemon

& Client threads

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

 atomic_set(&list->head, jh);

 }

 else{

 atomic_set(&jh->prev->next, jh);

 }

 atomic_sync();

jh1 jh2 jh3 jh4

next

T1 (insert)

list

head

prev
tail

/* initialize a local wait list */

while(1){

local_index = atomic_add(&repaly_index, 1);

if(local_index >= max)

break;

bh = replay_array[local_index];

submit_bh(bh);

list_add(&wait_list, bh);

}

bh50 bh60 bh70

T1

host

memory
...

bh50 bh60 bh70
... ... storage

T2

T3

/* initialize a local wait list */

while(1){

local_index = atomic_add(&scan_index, 1);

if(local_index >= max)

break;

jbd2_journal_bmap(journal, local_index, &blocknr);

bh = __getblk(dev, blocknr, j_blocksize);

submit_bh(bh);

list_add(&wait_list, bh);

}

bh10 bh11 bh12

host

memory
...

bh10 bh11 bh12 storage

T1

T2
T3

next

prev

 while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

list_del(bh);

}

while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

mark_buffer_dirty(bh);

local_index = atomic_add(&insert_index, 1);

repaly_array[local_index] = bh;

list_del(bh);

}

prev

next

(checkpoint list)

I/O issue

I/O completion

I/O issue

I/O completion

atomic_add(&nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

list->head = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh3 jhx

next

T1

list

head

prev

tail

next

prevprev

next

I/O completion

...

...

Transaction buffer list

(BJ_Metadata)

jh1 jh2 jh3prev
next

prev
next

Locking for list replacement

jh4prev
next

BJ_Shadow list

2

Checkpoint transaction

Lock-free insert

jh1 jh2

1

Running transaction Committing transaction

INSERT

List replacement without locking2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction

Recovery Transaction

crash crash

crash

commit

checkpoint

parallel checkpoint I/O

issue/completion

Locking for a single batched I/O3

jh1 jh2

Lock-free iteration4

t_checkpoint_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A parallel I/O for scan and repaly5

BJ_Metadata list

No locking

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated

Not yet updated

A single operation

Locking for insert

jh1 jh2

1

Running transaction

Committing transaction

INSERT

jh1

DELETE

INSERT

Locking for list replacement2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction Recovery Transaction

crash crash

crash

commit

checkpoint

checkpoint I/O

Locking for a single batched I/O3

S
S

S

M

jh1 jh2
S

Locking for list iteration

and list replacement
4

jh1S

DELETE

INSERT

t_checkpoint_list

t_checkpoint_io_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A single I/O for scan and repaly5

BJ_Metadata list

S Mspin lock (j_list_lock) mutex lock (j_checkpoint_mutex)

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated Not yet updated

A single operation

s
c

a
n

n
in

g

re
p

la
y

in
g

jh1 jh2

3 A parallel checkpoint I/O

P1 P2 P3

jh1 jh2

Committing transaction

jh1

DELETE

INSERT

S

S

BJ_Shadow list

BJ_Metadata list

jh1 jh3

transaction buffer list

P1 P2 P3

C1

P1

M

jh1SINSERT

t_checkpoint_io_list

T2

Checkpointing transaction

INTERATION

jh1 jh2
SDELETE

t_checkpoint_list

C1

jh1 jh2BATCHED I/O

C1

P1

Locking for list replacement2

Locking for a single batched I/O3

Locking for list iteration

and list replacement
4

Recovery transaction

A single I/O for scan and repaly5

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Running and committing transaction

S
jh1 jh2

Checkpoint list

P1 P2 P3

C3

Checkpointing

jh2

C1

C2

bh1 bh2 bh3

checkpoint buffer

C3

A parallel I/O without locking

C1

C1 C2

jh1 jh2 jh3

A Parallel I/O

C3C2

tailhead

Running and committing transaction

list jh1

head

prev

next

jh2
prev

next

jh3
prev

next

jh4

tail

jh1 jh3jh2

tailhead

ch
eck

p
o
in

t list

C3

A parallel I/O without locking

(Checkpointing)

C1 C2

bh1 bh2 bh3

jh1 jh3jh2

tailhead

ch
eck

p
o
in

t list

running

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

C2 C1 C3

Recovery

T1

bh1

bh1

bh2

bh2

T1

journal area

bh1

bh1

bh2

bh2

T1

original area

T1

host memoryhost memory

scanning replaying

T1

bh1

bh1

bh2

bh2

T2

journal area

bh1

bh1

bh2

bh2

T1

original area

T2

host memoryhost memory

scanning replaying

P1

S
jh4 jh5

1

jh4 jh5

12

C1

committing2

S

S spin lock (j_list_lock)

committed

c
h

e
c
k
p

o
in

ti
n

g

P1

1

committed

2

checkpointing

1

2

(1) (2) (3) (4)

Running and committing transaction

Checkpointing

Recovery

bh1 bh2 bh3

A single-threaded

mount process

(1) T1(2) T1(3)

bh1 bh2 bh3

bh1 bh2 bh3

T1T2 T3

bh1 bh2 bh3

C2

C2

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

running

jh4 jh5

committing

S

C1

bh1 bh2 bh3

T2

bh1 bh2 bh3

T1

1 2 3

T3

A multiple-threaded

mount process

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

S

S

M

C3C1

C2

checkpointing

T3

bh1 bh2 bh3

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

ch
eck

p
o
in

t listC1 C3 C5 C4

P1

committed

C2 C5C4

bh1 bh2 bh3

checkpoint buffer

checkpoint list

P1

committed

transaction

(TxID: 1)
C2

C2

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1 P2

S

P3

P4 P5

running

P6

Running (TID: 2)

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

P1 P2

S

P3

running transaction

P3

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

C1

S

committing transaction

C1

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

committing (TID: 2)

running (TID: 3)

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g

S

C0 P0

TB list CP list

TB list

S

S

S

C0 P0

TB list CP list

S

time

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1
jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1

P2

S

P3

running transaction

committing transaction

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

committing transaction

P3

committing

Transaction

(TxID: 1)

C1

running

Transaction

(TxID: 2)
transaction buffer list

transaction buffer list

checkpointing transaction (TxID: 1)

P1

P2

running

transaction

jh1 jh2

head

P3 (INSERT)

running

transaction

(TxID: 1)

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

P3

jh1 jh3jh2

tailhead

jh4 jh5

P3

running

transaction

(TxID: 1)transaction buffer list

jh6 jh8jh7

tailhead

jh9 jh10

jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

committing

transaction

(TxID: 1)
transaction buffer list

transaction buffer list

bh1 bh2 bh3

c
h
e

c
k
p
o
in

t lis
t

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

C2C1 C3

checkpointing transaction (TxID: 1)

I/O

P2P1

P3P2P1

C5C4

C1C2 C3 C5 C4

C1C2 C3 C5 C4

I/O I/O I/O I/O

bh1 bh2 bh3

checkpoint buffer

checkpoint list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

checkpoint io list

jh1 jh3jh2

tailhead

jh4 jh5

C3

 atomic_add(&running_tx->t_nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&running_tx->t_buffers_tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

running_tx->t_buffers = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

jh1 jh2 jh3 jhx

next
list

head

prev

next

prevprev

next

removed

tail

set remove

C3C2C1

Running list(TxID:1)

Running state

Committing list (TxID:1)

Committing state

Checkpoint list (TxID:1)

Checkpointing state

Locked

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/O I/O

Application thread

Changing state

jh

jh (removed)

Lock-free

Lock-free
insert/delete

Lock-free
insert/delete/iteration

Lock-free
insert/delete/iteration

S

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

S
S

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

/* unlinking the bh from the jh */

/* Inserting the removed jh into a GClist */

INSERT

DELETE

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

running transaction
list (TxID:1)

journal daemon

Time

application thread jh jh (removed) at running

UL

UL

L

jh (removed) at checkpointing

Running

SR

R

create or join a
transaction
(TxID: 1)

R

changing a running
into a commtting

transaction
(TxID: 1)

committing
transaction list

(TxID:1)

S

Checkpointing
transaction list

S

M

R
read/write lock
(j_state_lock) S

spinlock
(j_list_lock) M

mutexlock
(j_checkpoint_mutex)

/* join a running transaction*/

repeat:

read_lock(journal->j_state_lock);

if(!journal->j_running_transaction)

{

read_unlock(journal->j_state_lock);

write_lock(journal->j_state_lock);

/* allocating a new transaction */

transaction = kmem_cache_zalloc();

journal->j_running_transaction = transaction;

transaction->t_state = T_RUNNING;

...

write_unlock(journal->j_state_lock);

goto repeat;

}

transaction = journal->j_running_transaction;

read_unlock(journal->j_state_lock);

/* insert a running transaction list */

spin_lock(journal->j_list_lock);

transaction->nr_buffers++;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

/* insert running transaction list*/

spin_lock(journal->j_list_lock);

transaction->nr_buffers--;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

C1

C4

C2

committing_tx->t_shadow_list = committing_tx->t_buffers;

committing_tx->t_shadow_tail = committing_tx->t_buffers_tail;

restart:

while((jh = atomic_read(&committing_tx->t_buffers)) != NULL){

if(atomic_compare_and_swap(&committing_tx->t_buffers, jh, jh->next) != jh);

/* making shadow buffers */

set_buffer_shadow(jh);

/* flushing buffers to journal area */

...

}

C1

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

jh->gc_prev = atomic_set(&running_tx->gc_list_tail, jh);

atomic_sync();

If(jh->gc_prev == NULL){

running_tx->gc_list = jh;

}

else{

jh->gc_prev->gc_next = jh;

}

/* unlinking the bh from the jh */ DELETE

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

C4

t_checkpoint_io_list

jh1 jh3jh2

tailhead

jh4 jh5

C3

j_checkpoint_transaction

transaction buffer list

buffer
next

P1

head tail
prev

P2

removed

P1

buffer

C2

(delete)

P1

(insert)

C1

(delete)
P2

(insert)

C4 (skip I/O)

C4 (I/O)

(2) I/O phase

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

jh1 jh2 jh3 jh4

next

C2head

(t_buffers)

prev

tail

(t_buffers_tail)

next

prevprev

next

P1

removed

C1

jh5

P2

next

prev
removed

T(P1) < T(P2), T(C1) < T(C2), T(Pjh2) < T(Cjh2)

C5 (I/O)

1

C3 (I/O) C6 (skip I/O)

buffer
next

head

tail
prev

buffer

P1

(insert)

C1

(delete)
P2

(insert)

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

1

C3

I/O

 I/O phase2

C4

skip I/O

C5

I/O

C6

skip I/O

1 23

bh10 bh11 bh12

host memory

bh1 (10) bh2 bh12

storage

T1

T2
T3

journal area

bh50 bh60 bh70

host memory

bh50 bh60 bh70

storage

original area

P2 P3 C1 C2 C3

jh1 jh2

next

prev

CAS

C1

issue I/O

bh1

add bh1 to

C1's wait list

jh3

next

prev
jh4

next

prev
head tail

issue I/Obypass I/O issue I/O

Local list

(wait list)

1

2

3

CAS

C2

CAS

C3

CAS

C2

Shared list

(I/O list)

bh1 bh2

wait I/O

bh3 bh4

wait I/O

C1 C2 C3 C4

wait I/O wait I/O

Local list

(wait list)

bh3

add bh3 to

C3's wait list

bh4

add bh4 to

C4's wait list

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)
transaction buffer list

next

prev

jh3

next

prev

jh4

next

prev

next

prev

S

jh1 jh2 jh3 jh4 jh5

committing

transactionhead jh1 jh2 jh3 jh4 jh5

checkpointing

transactionhead jh1 jh2 jh3 jh4 jh5

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

C1
jh1 jh3jh2head jh4 jh5

P1

P2

S

P3 jh6 jh8jh7head jh9 jh10

committing

transaction

(TxID: n)

C1

running

transaction

(TxID: n+1)

atomic

set
atomic

set

atomic

set

jh1 jh2

next

prev

atomic

CAS

T1

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

per-thread

linked list

(wait list)

atomic

CAS

T2

atomic

CAS

T3

atomic

CAS

T4

bh3

insert bh3 to

C3's wait list

removed

P1

bh1 bh2 bh3

checkpoint buffer

checkpoint_list

M

jh1 jh3jh2

head

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: n)

C3

C3

C3

C3

I/O

C4

jh3

next

prev

T1

host memory

bh1 (10)

storage

journal area

T2 T3

bh2 (20) bh3 (30)

bh1 (10) bh2 (20) bh3 (30)

T1

host memory

bh1 (50)

storage

original area

T2 T3

bh2 (60) bh3 (70)

bh1 (50) bh2 (60) bh3 (70)

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

T5

C2

T1
jh6 jh8jh7head jh9 jh10

T3

T4

S

T5 jh11 jh13jh12head jh14 jh15

committing

transaction

(TxID: n-1)

T1

running

transaction

(TxID: n)

T2 jh1 jh3jh2 jh4 jh5

S

C2C1 C3 checkpointing

transaction

(TxID: n-2)

C3

C3

C3

I/O

C4

M

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

head

jh1 jh3jh2 jh4 jh5

ST2

T1

T3
checkpointing

transaction

(TxID: n-2)

T3

T3

I/O

T4

M

head

T3

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2GC head

GC tail atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1
1 23

atomic set

(insert)

atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2

GC

head

atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

shared

linked list

shared

linked listjhx

next

prev
jhx

prev

jh1 jh2 jh4 jh5

next

T1

head

prev

next

prevprev

next

T2

set removed

T3 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

safe point

free

insert GC list

(logically remove)

physically removed (at safe points)

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12 jh10

next

prev
jh11

C1
atomic CAS

(remove)
GC

head

free free

C2

GC

tail

next

prev
jh12

safe point

P3
atomic set

(insert)

free

C3

atomic CAS

(remove)

atomic CAS

(remove)

logical remove physical remove

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12

safe point

P3
atomic set

(insert)

logical remove

Running list(TxID:1) Committing list (TxID:1) Checkpoint list (TxID:1)

Journal daemon

INS DEL INS

Time

GC list

INS

GC list

FREE

Application thread

Changing state

jh

jh (removed)

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove" "physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list
INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer

list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove"
"physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Txbuffer list

I/O

bypass

I/O
INS RM INS

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Txbuffer
list

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

running transaction
(TxID:1)

Txbuffer list

I/O
RM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

Txbuffer
list

I/O

< safe point >

jh1 jh2

next

prev

atomic

CAS

jh3 jh4

current head

(jh1)

T1

jh5

next

prev

next

prev

next

prev

1

current head

(jh2)

T22 atomic

CAS

current head

(jh3)

current head

(jh4)

current head

(jh5)

T33 atomic

CAS
T44 atomic

CAS

next

T55 atomic

CAS

current head

(NULL)

jh1 jh2

next

prev

atomic

CAS

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

local

linked list

(wait list)

atomic

CAS

atomic

CAS
atomic

CAS

bh3

insert bh3 to

C3's wait list

removed

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

jh1 jh2

next

prev

atomic

CAS

jh3

T1

1

T2

2

atomic

CAS
T3

3

atomic

CAS
T44 atomic

CAS
T55 atomic

CAS

next

prev

...

jh1 jh2

next

prev
jh3

next

prev

fetch
jh1

head

compare jh1

head
swap

fetch atomic compare and swap

Time

jh4

next

prev
jh5

next

prev

running transaction
(TxID:1)

Txbuffer list

I/ORM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

INS

I/O I/O

< safe point >

jh1 jh2

next
jh3

next
jh4

next

prev
jh5

next

prev

logical

remove

I/O

RM INS

time

GC list

jh removed jh

INS

C

I/O

I/O

processing

I/O
GC list

free

C commit block

"logically remove" "physically remove"

insert
I/O

I/O

<safe point>

list

checkpoint list

transaction buffer list

transaction buffer list

tail

prevprev

physical

remove

journaling listjournaling list

Jlist

(b) Two-phase removal (GC: garbage collection)

while(!list_empty(cp_wait_list)){

 bh = list_entry(cp_wait_list.next, struct buffer_head, b_assoc_buffers);

 if (buffer_locked(bh))

 wait_on_buffer(bh);

 list_del_init(&bh->b_assoc_buffers);

}

jh1 jh2

next

prev

CAS

T1

issue I/O

jh1 jh4

add T1's list

CAS

T3

jh3

CAS

T2

next

prev
jh4

CAS

next

prev

shared

linked list head tail

issue I/Oissue I/O

jh2 jh3

issue I/O

add T2's list add T3's list

local

linked list

add T1's list

next

prev

I/O issue //Initialize a cp_wait_list

restart:

while(jh = atomic_read(checkpoint_list)){

if(compared_and_swap(checkpoint_list, jh, jh->next) != jh)

goto restart;

bh = jh2bh(jh);

write_dirty_buffer(bh);

list_add_tail(bh->list, cp_wait_list);

}

jh1 jh4

wait I/O

jh2 jh3
local

linked list

wait I/O

next

prev

T1 T1 T2 T3

I/O completion

1

2

3

1

2

3

wait I/O wait I/O

transaction

 transaction (journaled buffer)

journal daemon

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

 transaction (journaled buffer)

Journal daemon

buffer buffer

client threads

(commit) (checkpoint)

journal area original area

buffer buffer

Existing Checkpoint Proposed Checkpoint

Time

T1

jh1

CAS

T1

issue I/O

T2

CAS

shared

linked list

head

tail

issue I/Oissue I/O issue I/O

1

2

Time

T1

jh2 jh3 jh4

T3 T2 T1

issue I/O issue I/Oissue I/O issue I/O

T3

jh1 jh2

next

prev

Atomic

CAS

C1

issue I/O

bh1

add bh1 to

T1's list

jh3

next

prev
jh4

next

prev
shared

linked list

head tail

issue I/Oissue I/O

bh2 bh4

issue I/O

add bh2 to

T2's list
add bh4 to

T4's list

local

linked list

(wait list)

add T1's list

/* Initialize a local wait list */

restart:

while((jh = atomic_read(&checkpoint_list)) != NULL){

 if(atomic_compare_and_swap(&checkpoint_list, jh, jh->next) != jh)

 goto restart;

 bh = jh2bh(jh);

 submit_bh(bh);

 list_add(&wait_list, bh);

}

Time

CAS

T2

CAS

T3

CAS

T4

bh3

add bh3 to

T3's list

while(!list_empty(&wait_list)){

 bh = list_entry(wait_lIst.next, ...);

 wait_on_buffer(bh);

 list_del(bh);

}

bh1 bh2

wait I/O

bh3 bh4
local

linked list

wait I/O

T1 T2 T3 T4

wait I/O wait I/O

Running Transaction

Committing Transaction

Checkpointing Tranasaction

 transaction (journaled buffer)

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

Journal daemon

& Client threads

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

 atomic_set(&list->head, jh);

 }

 else{

 atomic_set(&jh->prev->next, jh);

 }

 atomic_sync();

jh1 jh2 jh3 jh4

next

T1 (insert)

list

head

prev
tail

/* initialize a local wait list */

while(1){

local_index = atomic_add(&repaly_index, 1);

if(local_index >= max)

break;

bh = replay_array[local_index];

submit_bh(bh);

list_add(&wait_list, bh);

}

bh50 bh60 bh70

T1

host

memory
...

bh50 bh60 bh70
... ... storage

T2

T3

/* initialize a local wait list */

while(1){

local_index = atomic_add(&scan_index, 1);

if(local_index >= max)

break;

jbd2_journal_bmap(journal, local_index, &blocknr);

bh = __getblk(dev, blocknr, j_blocksize);

submit_bh(bh);

list_add(&wait_list, bh);

}

bh10 bh11 bh12

host

memory
...

bh10 bh11 bh12 storage

T1

T2
T3

next

prev

 while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

list_del(bh);

}

while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

mark_buffer_dirty(bh);

local_index = atomic_add(&insert_index, 1);

repaly_array[local_index] = bh;

list_del(bh);

}

prev

next

(checkpoint list)

I/O issue

I/O completion

I/O issue

I/O completion

atomic_add(&nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

list->head = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh3 jhx

next

T1

list

head

prev

tail

next

prevprev

next

I/O completion

...

...

Transaction buffer list

(BJ_Metadata)

jh1 jh2 jh3prev
next

prev
next

Locking for list replacement

jh4prev
next

BJ_Shadow list

2

Checkpoint transaction

Lock-free insert

jh1 jh2

1

Running transaction Committing transaction

INSERT

List replacement without locking2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction

Recovery Transaction

crash crash

crash

commit

checkpoint

parallel checkpoint I/O

issue/completion

Locking for a single batched I/O3

jh1 jh2

Lock-free iteration4

t_checkpoint_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A parallel I/O for scan and repaly5

BJ_Metadata list

No locking

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated

Not yet updated

A single operation

Locking for insert

jh1 jh2

1

Running transaction

Committing transaction

INSERT

jh1

DELETE

INSERT

Locking for list replacement2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction Recovery Transaction

crash crash

crash

commit

checkpoint

checkpoint I/O

Locking for a single batched I/O3

S
S

S

M

jh1 jh2
S

Locking for list iteration

and list replacement
4

jh1S

DELETE

INSERT

t_checkpoint_list

t_checkpoint_io_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A single I/O for scan and repaly5

BJ_Metadata list

S Mspin lock (j_list_lock) mutex lock (j_checkpoint_mutex)

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated Not yet updated

A single operation

s
c

a
n

n
in

g

re
p

la
y

in
g

jh1 jh2

3 A parallel checkpoint I/O

P1 P2 P3

jh1 jh2

Committing transaction

jh1

DELETE

INSERT

S

S

BJ_Shadow list

BJ_Metadata list

jh1 jh3

transaction buffer list

P1 P2 P3

C1

P1

M

jh1SINSERT

t_checkpoint_io_list

T2

Checkpointing transaction

INTERATION

jh1 jh2
SDELETE

t_checkpoint_list

C1

jh1 jh2BATCHED I/O

C1

P1

Locking for list replacement2

Locking for a single batched I/O3

Locking for list iteration

and list replacement
4

Recovery transaction

A single I/O for scan and repaly5

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Running and committing transaction

S
jh1 jh2

Checkpoint list

P1 P2 P3

C3

Checkpointing

jh2

C1

C2

bh1 bh2 bh3

checkpoint buffer

C3

A parallel I/O without locking

C1

C1 C2

jh1 jh2 jh3

A Parallel I/O

C3C2

tailhead

Running and committing transaction

list jh1

head

prev

next

jh2
prev

next

jh3
prev

next

jh4

tail

jh1 jh3jh2

tailhead

c
h

e
c
k

p
o

in
t lis

t

C3

A parallel I/O without locking

(Checkpointing)

C1 C2

bh1 bh2 bh3

jh1 jh3jh2

tailhead

c
h

e
c
k

p
o

in
t lis

t

running

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

C2 C1 C3

Recovery

T1

bh1

bh1

bh2

bh2

T1

journal area

bh1

bh1

bh2

bh2

T1

original area

T1

host memoryhost memory

scanning replaying

T1

bh1

bh1

bh2

bh2

T2

journal area

bh1

bh1

bh2

bh2

T1

original area

T2

host memoryhost memory

scanning replaying

P1

S
jh4 jh5

1

jh4 jh5

12

C1

committing2

S

S spin lock (j_list_lock)

committed

c
h

e
c
k
p

o
in

ti
n

g

P1

1

committed

2

checkpointing

1

2

(1) (2) (3) (4)

Running and committing transaction

Checkpointing

Recovery

bh1 bh2 bh3

A single-threaded

mount process

(1) T1(2) T1(3)

bh1 bh2 bh3

bh1 bh2 bh3

T1T2 T3

bh1 bh2 bh3

C2

C2

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

running

jh4 jh5

committing

S

C1

bh1 bh2 bh3

T2

bh1 bh2 bh3

T1

1 2 3

T3

A multiple-threaded

mount process

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

S

S

M

C3C1

C2

checkpointing

T3

bh1 bh2 bh3

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

c
h

e
c
k

p
o

in
t lis

tC1 C3 C5 C4

P1

committed

C2 C5C4

bh1 bh2 bh3

checkpoint buffer

checkpoint list

P1

committed

transaction

(TxID: 1)
C2

C2

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1 P2

S

P3

P4 P5

running

P6

Running (TID: 2)

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2
ta

il

h
e

a
d

P1 P2

S

P3

running transaction

P3

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

C1

S

committing transaction

C1

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

committing (TID: 2)

running (TID: 3)

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g

S

C0 P0

TB list CP list

TB list

S

S

S

C0 P0

TB list CP list

S

time

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1
jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1

P2

S

P3

running transaction

committing transaction

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

committing transaction

P3

committing

Transaction

(TxID: 1)

C1

running

Transaction

(TxID: 2)
transaction buffer list

transaction buffer list

checkpointing transaction (TxID: 1)

P1

P2

running

transaction

jh1 jh2

head

P3 (INSERT)

running

transaction

(TxID: 1)

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

P3

jh1 jh3jh2

tailhead

jh4 jh5

P3

running

transaction

(TxID: 1)transaction buffer list

jh6 jh8jh7

tailhead

jh9 jh10

jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

committing

transaction

(TxID: 1)
transaction buffer list

transaction buffer list

bh1 bh2 bh3

c
h
e

c
k
p
o
in

t lis
t

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

C2C1 C3

checkpointing transaction (TxID: 1)

I/O

P2P1

P3P2P1

C5C4

C1C2 C3 C5 C4

C1C2 C3 C5 C4

I/O I/O I/O I/O

bh1 bh2 bh3

checkpoint buffer

checkpoint list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

checkpoint io list

jh1 jh3jh2

tailhead

jh4 jh5

C3

 atomic_add(&running_tx->t_nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&running_tx->t_buffers_tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

running_tx->t_buffers = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

jh1 jh2 jh3 jhx

next
list

head

prev

next

prevprev

next

removed

tail

set remove

C3C2C1

Running list(TxID:1)

Running state

Committing list (TxID:1)

Committing state

Checkpoint list (TxID:1)

Checkpointing state

Locked

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/O I/O

Application thread

Changing state

jh

jh (removed)

Lock-free

Lock-free
insert/delete

Lock-free
insert/delete/iteration

Lock-free
insert/delete/iteration

S

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

S
S

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

/* unlinking the bh from the jh */

/* Inserting the removed jh into a GClist */

INSERT

DELETE

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

running transaction
list (TxID:1)

journal daemon

Time

application thread jh jh (removed) at running

UL

UL

L

jh (removed) at checkpointing

Running

SR

R

create or join a
transaction
(TxID: 1)

R

changing a running
into a commtting

transaction
(TxID: 1)

committing
transaction list

(TxID:1)

S

Checkpointing
transaction list

S

M

R
read/write lock
(j_state_lock) S

spinlock
(j_list_lock) M

mutexlock
(j_checkpoint_mutex)

/* join a running transaction*/

repeat:

read_lock(journal->j_state_lock);

if(!journal->j_running_transaction)

{

read_unlock(journal->j_state_lock);

write_lock(journal->j_state_lock);

/* allocating a new transaction */

transaction = kmem_cache_zalloc();

journal->j_running_transaction = transaction;

transaction->t_state = T_RUNNING;

...

write_unlock(journal->j_state_lock);

goto repeat;

}

transaction = journal->j_running_transaction;

read_unlock(journal->j_state_lock);

/* insert a running transaction list */

spin_lock(journal->j_list_lock);

transaction->nr_buffers++;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

/* insert running transaction list*/

spin_lock(journal->j_list_lock);

transaction->nr_buffers--;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

C1

C4

C2

committing_tx->t_shadow_list = committing_tx->t_buffers;

committing_tx->t_shadow_tail = committing_tx->t_buffers_tail;

restart:

while((jh = atomic_read(&committing_tx->t_buffers)) != NULL){

if(atomic_compare_and_swap(&committing_tx->t_buffers, jh, jh->next) != jh);

/* making shadow buffers */

set_buffer_shadow(jh);

/* flushing buffers to journal area */

...

}

C1

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

jh->gc_prev = atomic_set(&running_tx->gc_list_tail, jh);

atomic_sync();

If(jh->gc_prev == NULL){

running_tx->gc_list = jh;

}

else{

jh->gc_prev->gc_next = jh;

}

/* unlinking the bh from the jh */ DELETE

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

C4

t_checkpoint_io_list

jh1 jh3jh2

tailhead

jh4 jh5

C3

j_checkpoint_transaction

transaction buffer list

buffer
next

P1

head tail
prev

P2

removed

P1

buffer

C2

(delete)

P1

(insert)

C1

(delete)
P2

(insert)

C4 (skip I/O)

C4 (I/O)

(2) I/O phase

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

jh1 jh2 jh3 jh4

next

C2head

(t_buffers)

prev

tail

(t_buffers_tail)

next

prevprev

next

P1

removed

C1

jh5

P2

next

prev
removed

T(P1) < T(P2), T(C1) < T(C2), T(Pjh2) < T(Cjh2)

C5 (I/O)

1

C3 (I/O) C6 (skip I/O)

buffer
next

head

tail
prev

buffer

P1

(insert)

C1

(delete)
P2

(insert)

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

1

C3

I/O

 I/O phase2

C4

skip I/O

C5

I/O

C6

skip I/O

1 23

bh10 bh11 bh12

host memory

bh1 (10) bh2 bh12

storage

T1

T2
T3

journal area

bh50 bh60 bh70

host memory

bh50 bh60 bh70

storage

original area

P2 P3 C1 C2 C3

jh1 jh2

next

prev

CAS

C1

issue I/O

bh1

add bh1 to

C1's wait list

jh3

next

prev
jh4

next

prev
head tail

issue I/Obypass I/O issue I/O

Local list

(wait list)

1

2

3

CAS

C2

CAS

C3

CAS

C2

Shared list

(I/O list)

bh1 bh2

wait I/O

bh3 bh4

wait I/O

C1 C2 C3 C4

wait I/O wait I/O

Local list

(wait list)

bh3

add bh3 to

C3's wait list

bh4

add bh4 to

C4's wait list

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)
transaction buffer list

next

prev

jh3

next

prev

jh4

next

prev

next

prev

S

jh1 jh2 jh3 jh4 jh5

committing

transactionhead jh1 jh2 jh3 jh4 jh5

checkpointing

transactionhead jh1 jh2 jh3 jh4 jh5

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

C1
jh1 jh3jh2head jh4 jh5

P1

P2

S

P3 jh6 jh8jh7head jh9 jh10

committing

transaction

(TxID: n)

C1

running

transaction

(TxID: n+1)

atomic

set
atomic

set

atomic

set

jh1 jh2

next

prev

atomic

CAS

T1

issue I/O

bh1

insert bh1 to

T1's wait list

jh3 jh4

shared

linked list

(journaling list) h
e

a
d ta

il

issue I/O

bh4

issue I/O

insert bh4 to

T4's wait list

per-thread

linked list

(wait list)

atomic

CAS

T2

atomic

CAS

T3

atomic

CAS

T4

bh3

insert bh3 to

T3's wait list

removed

P1

bh1 bh2 bh3

checkpoint buffer

checkpoint_list

M

jh1 jh3jh2

head

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: n)

C3

C3

C3

C3

I/O

C4

jh3

next

prev

T1

host memory

bh1 (10)

storage

journal area

T2 T3

bh2 (20) bh3 (30)

bh1 (10) bh2 (20) bh3 (30)

T1

host memory

bh1 (50)

storage

original area

T2 T3

bh2 (60) bh3 (70)

bh1 (50) bh2 (60) bh3 (70)

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

T5's wait list

atomic

CAS

T5

C2

T1
jh6 jh8jh7head jh9 jh10

T3

T4

S

T5 jh11 jh13jh12head jh14 jh15

committing

transaction

(TxID: n-1)

T1

running

transaction

(TxID: n)

T2 jh1 jh3jh2 jh4 jh5

S

C2C1 C3 checkpointing

transaction

(TxID: n-2)

C3

C3

C3

I/O

C4

M

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

head

jh1 jh3jh2 jh4 jh5

ST2

T1

T3
checkpointing

transaction

(TxID: n-2)

T3

T3

I/O

T4

M

head

T3

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2GC head

GC tail atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1
1 23

atomic set

(insert)

atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2

GC

head

atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

shared

linked list

shared

linked listjhx

next

prev
jhx

prev

jh1 jh2 jh4 jh5

next

T1

head

prev

next

prevprev

next

T2

set removed

T3 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

safe point

free

insert GC list

(logically remove)

physically removed (at safe points)

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12 jh10

next

prev
jh11

C1
atomic CAS

(remove)
GC

head

free free

C2

GC

tail

next

prev
jh12

safe point

P3
atomic set

(insert)

free

C3

atomic CAS

(remove)

atomic CAS

(remove)

logical remove physical remove

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12

safe point

P3
atomic set

(insert)

logical remove

Running list(TxID:1) Committing list (TxID:1) Checkpoint list (TxID:1)

Journal daemon

INS DEL INS

Time

GC list

INS

GC list

FREE

Application thread

Changing state

jh

jh (removed)

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove" "physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list
INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer

list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove"
"physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Txbuffer list

I/O

bypass

I/O
INS RM INS

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Txbuffer
list

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

running transaction
(TxID:1)

Txbuffer list

I/O
RM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

Txbuffer
list

I/O

< safe point >

jh1 jh2

next

prev

atomic

CAS

jh3 jh4

current head

(jh1)

T1

jh5

next

prev

next

prev

next

prev

1

current head

(jh2)

T22 atomic

CAS

current head

(jh3)

current head

(jh4)

current head

(jh5)

T33 atomic

CAS
T44 atomic

CAS

next

T55 atomic

CAS

current head

(NULL)

jh1 jh2

next

prev

atomic

CAS

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

local

linked list

(wait list)

atomic

CAS

atomic

CAS
atomic

CAS

bh3

insert bh3 to

C3's wait list

removed

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

jh1 jh2

next

prev

atomic

CAS

jh3

T1

1

T2

2

atomic

CAS
T3

3

atomic

CAS
T44 atomic

CAS
T55 atomic

CAS

next

prev

...

jh1 jh2

next

prev
jh3

next

prev

fetch
jh1

head

compare jh1

head
swap

fetch atomic compare and swap

Time

jh4

next

prev
jh5

next

prev

running transaction
(TxID:1)

Txbuffer list

I/ORM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

INS

I/O I/O

< safe point >

jh1 jh2

next
jh3

next
jh4

next

prev
jh5

next

prev

logical

remove

I/O

RM INS

time

GC list

jh removed jh

INS

C

I/O

I/O

processing

I/O
GC list

free

C commit block

"logically remove" "physically remove"

insert
I/O

I/O

<safe point>

list

checkpoint list

transaction buffer list

transaction buffer list

tail

prevprev

physical

remove

journaling listjournaling list

Jlist

T1 T2 T3 T4 T5JBD2 T6

blocked blockedI/O I/O I/O I/O

I/O processing period

I/O start

I/O

end

timeI/O

T1

Application threads

JBD2

I/O end

T0

cooperative I/O threads

(c) Fetch operations in a lock-free manner

Figure 3.4: Concurrent updates on data structures

of the list in the incoming order. Similar to the existing scheme but without

locking, we concurrently update the tail by the incoming items using an atomic

35

set instruction. In an example shown in Figure 3.4a, before jh5 is inserted into

a journaling list (e.g., transaction buffer list or checkpoint list), the journaling

list consists of four jhs, and the tail points jh4 which is inserted by T1. When

T2 inserts jh5, the thread atomically updates the tail and the jh5’s previous

item by jh5 and jh4, respectively, by executing the atomic set operation. By

updating the previous item (jh4) of jh5 atomically, the next item of jh4 is

decided as jh5. This insert operation allows multiple threads to add their item

concurrently by updating the tail and linking atomically.

REMOVE. We provide a concurrent remove operation to delete an item

from a list. When items are removed from the list concurrently without locking,

the invalid reference problem [41] can occur. To address this issue, we propose a

two-phase remove operation that marks an item as “removed” (logical remove)

and then frees the item (physical remove) at a safe point when no other threads

hold any references to the transaction and logically removed items. This scheme

ensures safe access to the items of the list and so threads can perform appropri-

ate operations for the items. For safe garbage collection (GC) for the logically

removed items, we additionally maintain a GC list per transaction.

For example, as shown in Figure 3.4a, when a thread (T3) tries to remove

the jh (jh2), the thread marks the jh as removed atomically by executing the

atomic set instruction. Then, the thread inserts the jh into the GC list using

our concurrent insert operation as shown in Figure 3.4b. And then, threads

perform I/O for the valid jh or bypass the I/O for the logically removed jh

while traversing the list safely. When the transaction arrives at the safe point, all

items in the GC list are reclaimed. The safe point is the point when a transaction

is checkpointed. At this point, no other threads reference the logically removed

jhs in the transaction nor insert any logically removed jhs into the GC list of

the transaction since all the transaction processing is over. Therefore, we can

36

free all the logically “removed” jhs at the safe point.

FETCH. Finally, we provide a concurrent fetch operation to get an item

while traversing a list. In the existing transaction processing, the list traversal

occurs when no threads insert any items into the list (e.g., journal and check-

point I/O processing). This ensures that all threads see a consistent view of

the list, including valid next pointers of all items. Under this condition, we

can simply enable the concurrent fetch operation by using an atomic compare

and swap (CAS) instruction. In the example shown in Figure 3.4c, a thread

first fetches the current head (jh1). Then, the thread compares the fetched jh1

with the current head, and changes the head to jh1’s next item by using the

CAS operation. If the thread fails the CAS operation, it repeats the procedure

above. This fetch operation allows multiple threads to extract individual items

concurrently by updating the head atomically. Consequently, through our con-

current update scheme, multiple threads can insert/remove/fetch their items in

the lists concurrently and safely without the existing list lock.

Parallel I/O in a cooperative manner

We provide a parallel I/O in a cooperative manner to maximize the I/O paral-

lelism. In the existing transaction processing, application threads can be sched-

uled out while the serialized I/O operations (e.g., journal and checkpoint I/O)

are performed. On the other hand, in our scheme, we allow the application

threads to perform the I/O operations by not scheduling but joining them to

the I/O operations. For example, in the case of journal I/O, we allow the threads

that cannot get a running transaction to join the I/Os by not scheduling them.

In the case of checkpoint I/O, we allow the threads to join the I/Os by elimi-

nating the mutex lock. By joining the multiple threads to the I/O processing,

they fetch buffers from the shared linked lists (e.g., journaling lists), issue the

37

while(!list_empty(cp_wait_list)){

 bh = list_entry(cp_wait_list.next, struct buffer_head, b_assoc_buffers);

 if (buffer_locked(bh))

 wait_on_buffer(bh);

 list_del_init(&bh->b_assoc_buffers);

}

jh1 jh2

next

prev

CAS

T1

issue I/O

jh1 jh4

add T1's list

CAS

T3

jh3

CAS

T2

next

prev
jh4

CAS

next

prev

shared

linked list head tail

issue I/Oissue I/O

jh2 jh3

issue I/O

add T2's list add T3's list

local

linked list

add T1's list

next

prev

I/O issue //Initialize a cp_wait_list

restart:

while(jh = atomic_read(checkpoint_list)){

if(compared_and_swap(checkpoint_list, jh, jh->next) != jh)

goto restart;

bh = jh2bh(jh);

write_dirty_buffer(bh);

list_add_tail(bh->list, cp_wait_list);

}

jh1 jh4

wait I/O

jh2 jh3
local

linked list

wait I/O

next

prev

T1 T1 T2 T3

I/O completion

1

2

3

1

2

3

wait I/O wait I/O

transaction

 transaction (journaled buffer)

journal daemon

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

 transaction (journaled buffer)

Journal daemon

buffer buffer

client threads

(commit) (checkpoint)

journal area original area

buffer buffer

Existing Checkpoint Proposed Checkpoint

Time

T1

jh1

CAS

T1

issue I/O

T2

CAS

shared

linked list

head

tail

issue I/Oissue I/O issue I/O

1

2

Time

T1

jh2 jh3 jh4

T3 T2 T1

issue I/O issue I/Oissue I/O issue I/O

T3

jh1 jh2

next

prev

Atomic

CAS

C1

issue I/O

bh1

add bh1 to

T1's list

jh3

next

prev
jh4

next

prev
shared

linked list

head tail

issue I/Oissue I/O

bh2 bh4

issue I/O

add bh2 to

T2's list
add bh4 to

T4's list

local

linked list

(wait list)

add T1's list

/* Initialize a local wait list */

restart:

while((jh = atomic_read(&checkpoint_list)) != NULL){

 if(atomic_compare_and_swap(&checkpoint_list, jh, jh->next) != jh)

 goto restart;

 bh = jh2bh(jh);

 submit_bh(bh);

 list_add(&wait_list, bh);

}

Time

CAS

T2

CAS

T3

CAS

T4

bh3

add bh3 to

T3's list

while(!list_empty(&wait_list)){

 bh = list_entry(wait_lIst.next, ...);

 wait_on_buffer(bh);

 list_del(bh);

}

bh1 bh2

wait I/O

bh3 bh4
local

linked list

wait I/O

T1 T2 T3 T4

wait I/O wait I/O

Running Transaction

Committing Transaction

Checkpointing Tranasaction

 transaction (journaled buffer)

buffer buffer

client threads

(commit)

(checkpoint)

journal area original area

buffer buffer

Journal daemon

& Client threads

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

 atomic_set(&list->head, jh);

 }

 else{

 atomic_set(&jh->prev->next, jh);

 }

 atomic_sync();

jh1 jh2 jh3 jh4

next

T1 (insert)

list

head

prev
tail

/* initialize a local wait list */

while(1){

local_index = atomic_add(&repaly_index, 1);

if(local_index >= max)

break;

bh = replay_array[local_index];

submit_bh(bh);

list_add(&wait_list, bh);

}

bh50 bh60 bh70

T1

host

memory
...

bh50 bh60 bh70
... ... storage

T2

T3

/* initialize a local wait list */

while(1){

local_index = atomic_add(&scan_index, 1);

if(local_index >= max)

break;

jbd2_journal_bmap(journal, local_index, &blocknr);

bh = __getblk(dev, blocknr, j_blocksize);

submit_bh(bh);

list_add(&wait_list, bh);

}

bh10 bh11 bh12

host

memory
...

bh10 bh11 bh12 storage

T1

T2
T3

next

prev

 while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

list_del(bh);

}

while(!list_empty(&wait_list)){

bh = list_entry(wait_list.next, ...);

wait_on_buffer(bh);

mark_buffer_dirty(bh);

local_index = atomic_add(&insert_index, 1);

repaly_array[local_index] = bh;

list_del(bh);

}

prev

next

(checkpoint list)

I/O issue

I/O completion

I/O issue

I/O completion

atomic_add(&nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&list->tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

list->head = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh3 jhx

next

T1

list

head

prev

tail

next

prevprev

next

I/O completion

...

...

Transaction buffer list

(BJ_Metadata)

jh1 jh2 jh3prev
next

prev
next

Locking for list replacement

jh4prev
next

BJ_Shadow list

2

Checkpoint transaction

Lock-free insert

jh1 jh2

1

Running transaction Committing transaction

INSERT

List replacement without locking2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction

Recovery Transaction

crash crash

crash

commit

checkpoint

parallel checkpoint I/O

issue/completion

Locking for a single batched I/O3

jh1 jh2

Lock-free iteration4

t_checkpoint_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A parallel I/O for scan and repaly5

BJ_Metadata list

No locking

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated

Not yet updated

A single operation

Locking for insert

jh1 jh2

1

Running transaction

Committing transaction

INSERT

jh1

DELETE

INSERT

Locking for list replacement2

Checkpointing transaction

INTERATION

Recovery transaction

Normal Transaction Recovery Transaction

crash crash

crash

commit

checkpoint

checkpoint I/O

Locking for a single batched I/O3

S
S

S

M

jh1 jh2
S

Locking for list iteration

and list replacement
4

jh1S

DELETE

INSERT

t_checkpoint_list

t_checkpoint_io_list

BJ_Shadow list

BJ_Metadata listjh1 jh2

A single I/O for scan and repaly5

BJ_Metadata list

S Mspin lock (j_list_lock) mutex lock (j_checkpoint_mutex)

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Already updated Not yet updated

A single operation

s
c

a
n

n
in

g

re
p

la
y

in
g

jh1 jh2

3 A parallel checkpoint I/O

P1 P2 P3

jh1 jh2

Committing transaction

jh1

DELETE

INSERT

S

S

BJ_Shadow list

BJ_Metadata list

jh1 jh3

transaction buffer list

P1 P2 P3

C1

P1

M

jh1SINSERT

t_checkpoint_io_list

T2

Checkpointing transaction

INTERATION

jh1 jh2
SDELETE

t_checkpoint_list

C1

jh1 jh2BATCHED I/O

C1

P1

Locking for list replacement2

Locking for a single batched I/O3

Locking for list iteration

and list replacement
4

Recovery transaction

A single I/O for scan and repaly5

bh1 bh2 bh1 bh2

Host memory

bh1 bh2 bh1 bh2

Host memory

Storage Storage

s
c

a
n

n
in

g

re
p

la
y

in
g

Running and committing transaction

S
jh1 jh2

Checkpoint list

P1 P2 P3

C3

Checkpointing

jh2

C1

C2

bh1 bh2 bh3

checkpoint buffer

C3

A parallel I/O without locking

C1

C1 C2

jh1 jh2 jh3

A Parallel I/O

C3C2

tailhead

Running and committing transaction

list jh1

head

prev

next

jh2
prev

next

jh3
prev

next

jh4

tail

jh1 jh3jh2

tailhead

ch
eck

p
o

in
t list

C3

A parallel I/O without locking

(Checkpointing)

C1 C2

bh1 bh2 bh3

jh1 jh3jh2

tailhead

ch
eck

p
o

in
t list

running

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

C2 C1 C3

Recovery

T1

bh1

bh1

bh2

bh2

T1

journal area

bh1

bh1

bh2

bh2

T1

original area

T1

host memoryhost memory

scanning replaying

T1

bh1

bh1

bh2

bh2

T2

journal area

bh1

bh1

bh2

bh2

T1

original area

T2

host memoryhost memory

scanning replaying

P1

S
jh4 jh5

1

jh4 jh5

12

C1

committing2

S

S spin lock (j_list_lock)

committed

c
h

e
c
k
p

o
in

ti
n

g

P1

1

committed

2

checkpointing

1

2

(1) (2) (3) (4)

Running and committing transaction

Checkpointing

Recovery

bh1 bh2 bh3

A single-threaded

mount process

(1) T1(2) T1(3)

bh1 bh2 bh3

bh1 bh2 bh3

T1T2 T3

bh1 bh2 bh3

C2

C2

jh1 jh3

transaction buffer list

P1 P2 P3

jh2

tailhead

running

jh4 jh5

committing

S

C1

bh1 bh2 bh3

T2

bh1 bh2 bh3

T1

1 2 3

T3

A multiple-threaded

mount process

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

S

S

M

C3C1

C2

checkpointing

T3

bh1 bh2 bh3

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

ch
eck

p
o

in
t listC1 C3 C5 C4

P1

committed

C2 C5C4

bh1 bh2 bh3

checkpoint buffer

checkpoint list

P1

committed

transaction

(TxID: 1)
C2

C2

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1 P2

S

P3

P4 P5

running

P6

Running (TID: 2)

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

checkpointing (TID: 1)
C1 C2

committing (TID: 2)

running (TID: 3)

C3

C3

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g
c
h

e
c

k
p

o
in

ti
n

g

time

S

C0 P0

TB list CP list

TB list

S

S

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

S

C0 P0

TB list CP list

S

CP list

S

M

CP buffer

C3

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

running transaction

committing transaction

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

P1 P2

S

P3

running transaction

P3

jh1 jh3

transaction buffer list

jh2

ta
il

h
e

a
d

C1

S

committing transaction

C1

P1
P2

running (TID: 1)

P3

committing (TID: 1)

running (TID: 2)

committing (TID: 2)

running (TID: 3)

Phase 1 Phase 2 Phase 3

ru
n

n
in

g
c
o

m
m

tt
in

g

S

C0 P0

TB list CP list

TB list

S

S

S

C0 P0

TB list CP list

S

time

P1
P2 P3

TB list

S

P1
P2 P3

TB list

S

jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

S

C1
jh1 jh3

transaction buffer list

jh2

tailhead

jh4 jh5

P1

P2

S

P3

running transaction

committing transaction

jh6 jh8

transaction buffer list

jh7

tailhead

jh9 jh10

committing transaction

P3

committing

Transaction

(TxID: 1)

C1

running

Transaction

(TxID: 2)
transaction buffer list

transaction buffer list

checkpointing transaction (TxID: 1)

P1

P2

running

transaction

jh1 jh2

head

P3 (INSERT)

running

transaction

(TxID: 1)

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

P3

jh1 jh3jh2

tailhead

jh4 jh5

P3

running

transaction

(TxID: 1)transaction buffer list

jh6 jh8jh7

tailhead

jh9 jh10

jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

committing

transaction

(TxID: 1)
transaction buffer list

transaction buffer list

bh1 bh2 bh3

c
h
e

c
k
p
o
in

t lis
t

jh1 jh3jh2

ta
il

h
e

a
d

jh4 jh5

bh4 bh5

C2C1 C3

checkpointing transaction (TxID: 1)

I/O

P2P1

P3P2P1

C5C4

C1C2 C3 C5 C4

C1C2 C3 C5 C4

I/O I/O I/O I/O

bh1 bh2 bh3

checkpoint buffer

checkpoint list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

checkpoint io list

jh1 jh3jh2

tailhead

jh4 jh5

C3

 atomic_add(&running_tx->t_nr_buffers, 1);

 jh->prev = jh->next = NULL;

 jh->prev = atomic_set(&running_tx->t_buffers_tail, jh);

 atomic_sync();

 if(jh->prev == NULL){

running_tx->t_buffers = jh;

 }

 else{

jh->prev->next = jh;

 }

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

jh1 jh2 jh3 jhx

next
list

head

prev

next

prevprev

next

removed

tail

set remove

C3C2C1

Running list(TxID:1)

Running state

Committing list (TxID:1)

Committing state

Checkpoint list (TxID:1)

Checkpointing state

Locked

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/O I/O

Application thread

Changing state

jh

jh (removed)

Lock-free

Lock-free
insert/delete

Lock-free
insert/delete/iteration

Lock-free
insert/delete/iteration

S

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

S
S

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

/* unlinking the bh from the jh */

/* Inserting the removed jh into a GClist */

INSERT

DELETE

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

Journal daemon

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

Application thread jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

running transaction
list (TxID:1)

journal daemon

Time

application thread jh jh (removed) at running

UL

UL

L

jh (removed) at checkpointing

Running

SR

R

create or join a
transaction
(TxID: 1)

R

changing a running
into a commtting

transaction
(TxID: 1)

committing
transaction list

(TxID:1)

S

Checkpointing
transaction list

S

M

R
read/write lock
(j_state_lock) S

spinlock
(j_list_lock) M

mutexlock
(j_checkpoint_mutex)

/* join a running transaction*/

repeat:

read_lock(journal->j_state_lock);

if(!journal->j_running_transaction)

{

read_unlock(journal->j_state_lock);

write_lock(journal->j_state_lock);

/* allocating a new transaction */

transaction = kmem_cache_zalloc();

journal->j_running_transaction = transaction;

transaction->t_state = T_RUNNING;

...

write_unlock(journal->j_state_lock);

goto repeat;

}

transaction = journal->j_running_transaction;

read_unlock(journal->j_state_lock);

/* insert a running transaction list */

spin_lock(journal->j_list_lock);

transaction->nr_buffers++;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

/* insert running transaction list*/

spin_lock(journal->j_list_lock);

transaction->nr_buffers--;

if(!transaction->head)

{

jh->next = jh->prev = jh;

transaction->head = jh;

}

else{

jh->prev = transaction->head->prev;

jh->next = transaction->head;

transaction->head->prev->next

 = transaction->head->prev = jh;

}

spin_unlock(journal->j_list_lock);

C1

C4

C2

committing_tx->t_shadow_list = committing_tx->t_buffers;

committing_tx->t_shadow_tail = committing_tx->t_buffers_tail;

restart:

while((jh = atomic_read(&committing_tx->t_buffers)) != NULL){

if(atomic_compare_and_swap(&committing_tx->t_buffers, jh, jh->next) != jh);

/* making shadow buffers */

set_buffer_shadow(jh);

/* flushing buffers to journal area */

...

}

C1

atomic_sub(&running_tx->t_nr_buffers, 1);

atomic_add(&jh->removed, 1);

jh->gc_prev = atomic_set(&running_tx->gc_list_tail, jh);

atomic_sync();

If(jh->gc_prev == NULL){

running_tx->gc_list = jh;

}

else{

jh->gc_prev->gc_next = jh;

}

/* unlinking the bh from the jh */ DELETE

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)

j_running_transaction

bh1 bh2 bh3

checkpoint buffer

t_checkpoint_list

M

jh1 jh3jh2

tailhead

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: 1)

C3

C3

C3

C3

I/O

C4

t_checkpoint_io_list

jh1 jh3jh2

tailhead

jh4 jh5

C3

j_checkpoint_transaction

transaction buffer list

buffer
next

P1

head tail
prev

P2

removed

P1

buffer

C2

(delete)

P1

(insert)

C1

(delete)
P2

(insert)

C4 (skip I/O)

C4 (I/O)

(2) I/O phase

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

jh1 jh2 jh3 jh4

next

C2head

(t_buffers)

prev

tail

(t_buffers_tail)

next

prevprev

next

P1

removed

C1

jh5

P2

next

prev
removed

T(P1) < T(P2), T(C1) < T(C2), T(Pjh2) < T(Cjh2)

C5 (I/O)

1

C3 (I/O) C6 (skip I/O)

buffer
next

head

tail
prev

buffer

P1

(insert)

C1

(delete)
P2

(insert)

 insert and delete phase

C2

(delete)

next

prev

buffer
next

prev

buffer

1

C3

I/O

 I/O phase2

C4

skip I/O

C5

I/O

C6

skip I/O

1 23

bh10 bh11 bh12

host memory

bh1 (10) bh2 bh12

storage

T1

T2
T3

journal area

bh50 bh60 bh70

host memory

bh50 bh60 bh70

storage

original area

P2 P3 C1 C2 C3

jh1 jh2

next

prev

CAS

C1

issue I/O

bh1

add bh1 to

C1's wait list

jh3

next

prev
jh4

next

prev
head tail

issue I/Obypass I/O issue I/O

Local list

(wait list)

1

2

3

CAS

C2

CAS

C3

CAS

C2

Shared list

(I/O list)

bh1 bh2

wait I/O

bh3 bh4

wait I/O

C1 C2 C3 C4

wait I/O wait I/O

Local list

(wait list)

bh3

add bh3 to

C3's wait list

bh4

add bh4 to

C4's wait list

C1

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

C1 (DELETE and INSERT)

committing

transaction

(TxID: 1)

j_committing_transaction

jh1 jh3jh2

tailhead

jh4 jh5

transaction buffer list

shadow list

1

2 1 2

jh6 jh8jh7

tailhead

jh9 jh10

running

transaction

(TxID: 2)
transaction buffer list

next

prev

jh3

next

prev

jh4

next

prev

next

prev

S

jh1 jh2 jh3 jh4 jh5

committing

transactionhead jh1 jh2 jh3 jh4 jh5

checkpointing

transactionhead jh1 jh2 jh3 jh4 jh5

C1
jh6 jh8jh7

tailhead

jh9 jh10

P1

P2

S

P3
jh1 jh3jh2

tailhead

jh4 jh5

running

transaction

(TxID: 2)

C1

committing

transaction

(TxID: 1)
j_committing_transaction

j_running_transaction

C1
jh1 jh3jh2head jh4 jh5

P1

P2

S

P3 jh6 jh8jh7head jh9 jh10

committing

transaction

(TxID: n)

C1

running

transaction

(TxID: n+1)

atomic

set
atomic

set

atomic

set

jh1 jh2

next

prev

atomic

CAS

T1

issue I/O

bh1

insert bh1 to

T1's wait list

jh3 jh4

shared

linked list

(journaling list) h
e

a
d ta

il

issue I/O

bh4

issue I/O

insert bh4 to

T4's wait list

per-thread

linked list

(wait list)

atomic

CAS

T2

atomic

CAS

T3

atomic

CAS

T4

bh3

insert bh3 to

T3's wait list

removed

P1

bh1 bh2 bh3

checkpoint buffer

checkpoint_list

M

jh1 jh3jh2

head

jh4 jh5

S

bh4 bh5

C2C1 C3
checkpointing

transaction

(TxID: n)

C3

C3

C3

C3

I/O

C4

jh3

next

prev

T1

host memory

bh1 (10)

storage

journal area

T2 T3

bh2 (20) bh3 (30)

bh1 (10) bh2 (20) bh3 (30)

T1

host memory

bh1 (50)

storage

original area

T2 T3

bh2 (60) bh3 (70)

bh1 (50) bh2 (60) bh3 (70)

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

T5's wait list

atomic

CAS

T5

C2

T1
jh6 jh8jh7head jh9 jh10

T3

T4

S

T5 jh11 jh13jh12head jh14 jh15

committing

transaction

(TxID: n-1)

T1

running

transaction

(TxID: n)

T2 jh1 jh3jh2 jh4 jh5

S

C2C1 C3 checkpointing

transaction

(TxID: n-2)

C3

C3

C3

I/O

C4

M

running list (TxID:1) committing list (TxID:1) checkpoint list (TxID:1)

I/O I/O
Bypass

I/OINS DEL INS

Time

GC list

INS

GC list

FREE

I/OI/O

jh jh (removed) at running

running list(TxID:2)

INS INS INS

ULUL L

DEL
Bypass

I/O

GC list

INS

jh (removed) at checkpointing

FREE

GC list

L ULtransaction locked transaction unlocked

INS

creating

checkpoint list Getting running list

I/O

head

jh1 jh3jh2 jh4 jh5

ST2

T1

T3
checkpointing

transaction

(TxID: n-2)

T3

T3

I/O

T4

M

head

T3

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2GC head

GC tail atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

jh1 jh2 jh4 jh5

next

P1

head

prev

tail

next

prevprev

next

P2

set remove

C1
1 23

atomic set

(insert)

atomic set

(insert)

atomic set

(remove)

jh3

next

prev

jh2

GC

head

atomic set

(insert)

jh2

nextGC

head

GC tail

prev
jhx

safe point

next

prev
jhx

next

prev
jhx

next

prev
jhx

free

jhx

next

prev
jhx

next

prev

shared

linked list

shared

linked listjhx

next

prev
jhx

prev

jh1 jh2 jh4 jh5

next

T1

head

prev

next

prevprev

next

T2

set removed

T3 1 23

atomic set

(insert)
atomic set

(insert)

atomic set

(remove)

jh3

next

prev

safe point

free

insert GC list

(logically remove)

physically removed (at safe points)

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12 jh10

next

prev
jh11

C1
atomic CAS

(remove)
GC

head

free free

C2

GC

tail

next

prev
jh12

safe point

P3
atomic set

(insert)

free

C3

atomic CAS

(remove)

atomic CAS

(remove)

logical remove physical remove

jh10

next

prev
jh11

P1
atomic set

(insert)
GC

head

P2
atomic set

(insert)

GC tail

next

prev
jh12

safe point

P3
atomic set

(insert)

logical remove

Running list(TxID:1) Committing list (TxID:1) Checkpoint list (TxID:1)

Journal daemon

INS DEL INS

Time

GC list

INS

GC list

FREE

Application thread

Changing state

jh

jh (removed)

Running list(TxID:2)

INS INS INS

Unlocked

Unlocked

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove" "physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Tx buffer list

I/O
bypass

I/OINS REVREV

Time

GC list
INS

jh removed jh at running transaction

INS

C

I/O

INS

Tx buffer

list

bypass

I/O

committing transaction
(TxID:1)

I/O

GC list

Free Free

C commit block

"logically remove"
"physically remove"

committed

transaction
(TxID:1)

running transaction
(TxID:1)

Txbuffer list

I/O

bypass

I/O
INS RM INS

Time

GC list

INS

jh removed jh at running transaction

INS

C

I/O

INS

Txbuffer
list

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

running transaction
(TxID:1)

Txbuffer list

I/O
RM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

committed transaction
(TxID:1)

INS

I/O

Txbuffer
list

I/O

< safe point >

jh1 jh2

next

prev

atomic

CAS

jh3 jh4

current head

(jh1)

T1

jh5

next

prev

next

prev

next

prev

1

current head

(jh2)

T22 atomic

CAS

current head

(jh3)

current head

(jh4)

current head

(jh5)

T33 atomic

CAS
T44 atomic

CAS

next

T55 atomic

CAS

current head

(NULL)

jh1 jh2

next

prev

atomic

CAS

issue I/O

bh1

insert bh1 to

C1's wait list

jh3 jh4
shared

linked list
head tail

issue I/O

bh4

issue I/O

insert bh4 to

C4's wait list

local

linked list

(wait list)

atomic

CAS

atomic

CAS
atomic

CAS

bh3

insert bh3 to

C3's wait list

removed

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to

C5's wait list

atomic

CAS

jh1 jh2

next

prev

atomic

CAS

jh3

T1

1

T2

2

atomic

CAS
T3

3

atomic

CAS
T44 atomic

CAS
T55 atomic

CAS

next

prev

...

jh1 jh2

next

prev
jh3

next

prev

fetch
jh1

head

compare jh1

head
swap

fetch atomic compare and swap

Time

jh4

next

prev
jh5

next

prev

running transaction
(TxID:1)

Txbuffer list

I/ORM INS

Time

GC list

jh removed jh

INS

C

I/O

committing transaction
(TxID:1)

I/O

GC list

Free

C commit block

"logically remove" "physically remove"

INS

I/O I/O

< safe point >

jh1 jh2

next
jh3

next
jh4

next

prev
jh5

next

prev

logical

remove

I/O

RM INS

time

GC list

jh removed jh

INS

C

I/O

I/O

processing

I/O
GC list

free

C commit block

"logically remove" "physically remove"

insert
I/O

I/O

<safe point>

list

checkpoint list

transaction buffer list

transaction buffer list

tail

prevprev

physical

remove

journaling listjournaling list

Jlist

T1 T2 T3 T4 T5JBD2 T6

blocked blockedI/O I/O I/O I/O

I/O processing period

I/O start

I/O

end

timeI/O

T1

Application threads

JBD2

I/O end

T0

cooperative I/O threads

Figure 3.5: Parallel I/O in a cooperative manner (T: thread)

I/Os of the buffers, and complete them in parallel. For better parallelism, we

use our concurrent fetch operation and per-thread wait list, which is a linked

list used to wait the I/O operations in parallel.

As shown in Figure 3.5, each thread fetches the jh concurrently by executing

the atomic CAS instruction. Then, each thread issues the I/O of the buffer (i.e.,

bh) associated with the jh and inserts the buffer into its own wait list. After

all the I/Os are issued, each thread completes its own I/O using its own wait

list. Meanwhile, if the fetched jh was removed logically, the thread (T2) does

not perform the I/O for the jh but fetches the next jh.

Using this scheme, multiple threads can cooperate in I/O processing by

issuing/completing I/Os in parallel. This can make a commit and checkpoint

procedure faster by increasing the I/O parallelism and minimizing the blocking

time. We note that our parallel I/O operations can change the I/O ordering

between buffers inside a transaction. However, such a change does not sacri-

fice the atomicity since we write the commit block after all journal blocks are

written, which will be described in Section 3.2.2.

The optimized file system with our two schemes preserves the consistency

38

of the file system by satisfying the following properties: (1) Every block associ-

ated with a transaction is written to the journal area at a commit procedure.

(2) A transaction is committed or uncommitted (atomicity) according to the

commit block. (3) Committed transaction N-1 is checkpointed prior to com-

mitted transaction N. We will explain how to apply our schemes to transaction

processing and how to satisfy the properties in detail.

3.2.2 Implementation

Running transaction

This section presents our running transaction. We enable multiple application

threads to insert/remove the journal heads into/from the transaction buffer

list concurrently. Similar to the existing procedure, when the threads start a

transaction, they get a running transaction and increase the number of updates

in the transaction (Procedure 4, lines 3-4 and 31-39). Meanwhile, in our running

procedure, we allow the application threads to cooperate in I/O processing

for journal I/Os by calling journal io start() (lines 32-33), which will be

described in Section 3.2.2.

After getting the running transaction, we insert the jh into the transaction

buffer list by using our concurrent insert operation (lines 5-6 and 44-51). First,

the threads associate their jh to the running transaction. Then, they update

the tail (t buffers tail) by their jh and the jh’s previous item by the old

tail by executing the atomic set instruction2. This instruction updates the tail

and returns the old tail atomically. Then, the threads check whether the old tail

exists or not. If it does not exist, the head (t buffers) of the list is updated

by the inserted jh, which becomes the first item in the list. Otherwise, the next

item of the old tail is updated by the inserted jh.

2 sync lock test and set(type *ptr, type value): This built-in function performs an atomic
exchange operation. It writes the value into *ptr, and returns the previous contents of *ptr [42].

39

PROCEDURE 4 C-like pseudo-code of our running transaction

1: create(dir, ...){
2: /* create a new file */
3: handle = jbd2 journal start(journal, ...);
4: transaction = handle->transaction;
5: add buffer(bh->jh, transaction,
6: transaction->t buffers, transaction->t buffers tail);
7: jbd2 journal stop(handle);
8: }

9: truncate(dentry, ...){
10: /* truncate a file */
11: journal unmap buffer(journal, bh);
12: }

13: journal unmap buffer(journal, bh){
14: /* invalidate a buffer */
15: write lock(journal->j state lock);
16: transaction = bh->jh->transaction;
17: if(!bh->jh->cp transaction){
18: head = jh->cp transaction->gc head;
19: tail = jh->cp transaction->gc tail;
20: del buffer(jh, transaction, head, tail);
21: }else if(transaction == journal->j committing transaction){
22: set buffer free(bh);
23: atomic set(jh->removed, removed);
24: }else if(transaction == journal->j running transaction){
25: head = journal->j running transaction->gc head;
26: tail = journal->j running transaction->gc tail;
27: del buffer(jh, transaction, head, tail);
28: }
29: write unlock(journal->j state lock);
30: }

For remove operations, we use our two-phase remove operation. When the

threads remove their jh, they get the GC list of the transaction if the jh is

40

31: jbd2 journal start(journal, ...){
32: if(j running transaction is not available)
33: /*create a new transaction or call journal io start(journal)*/
34: read lock(journal->j state lock);
35: handle->transaction = journal->j running transaction;
36: atomic add(transaction->t updates, 1);
37: read unlock(journal->j state lock);
38: return handle;
39: }

40: jbd2 journal stop(handle){
41: /* complete a transaction */
42: atomic sub(handle->transaction->t updates, 1);
43: }

44: add buffer(jh, transaction, head, tail) {
45: jh->transaction = transaction;
46: jh->prev = atomic set(tail, jh);
47: if(jh->prev == NULL)
48: head = jh;
49: else
50: jh->prev->next = jh;
51: }

52: del buffer(jh, transaction, head, tail) {
53: atomic set(jh->removed, removed);
54: jh->gc prev = atomic set(tail, jh);
55: if(jh->gc prev == NULL)
56: head = jh;
57: else
58: jh->gc prev->gc next = jh;
59: bh->jh = jh->bh = NULL; /* unlink the bh from the jh */
60: jh->transaction = NULL;
61: }

associated with running or checkpoint transactions (lines 17-20 and 24-27). For

the logical remove operation (lines 52-61), the thread marks the jh as removed

41

by executing the atomic set instruction and inserts the jh into the GC list

atomically by using gc prev/next fields of the jh. Then, the bh is unlinked from

the removed jh (line 59), and the jh’s transaction or cp transaction field is

set to NULL in the case of running or checkpointing transaction, respectively (line

60). This means that the jh is not associated with the bh and the transaction

any longer. Thus, the jh becomes an obsolete structure, and the bh gets freed

at this point. This operation on the bh is performed safely since the operation

is protected by a spin lock (jbd lock bh state) per bh as same as the existing

scheme. Meanwhile, in the case of committing transaction, the thread only

marks the jh as removed (line 23), and both bh and jh will be freed during the

commit procedure.

Committing transaction

In this section, we present our committing transaction. During the existing

commit procedure, the journal thread updates the lists under the list lock and

performs journal I/O operations by a single thread. On the other hand, in

our commit procedure, we update the lists by using our concurrent update

operations and parallelize the I/O operations in a cooperative manner.

To commit a transaction, the journal thread gets a committing transaction

similar to the existing procedure (Procedure 5, lines 3-9). Then, the journal

thread starts the parallel I/O by setting the journal io variable (line 10). This

informs application threads that the I/O processing is initiated. Note that in the

existing procedure, application threads are blocked when a running transaction

is not available and cannot be newly created. Instead of blocking the threads,

we enable the threads to perform the I/O processing along with the journal

thread by calling journal io start() (Procedure 4, line 33, Procedure 5, line

11, and Procedure 6, line 2). Thus, the threads can join the I/O processing if

42

it is initiated by the journal thread (Procedure 6, lines 5-6).

To handle the joined threads, we record the number of threads by executing

atomic add/sub instructions3 (Procedure 6, lines 7 and 20) and create the per-

thread wait list for the parallel I/O completion (line 8). Then, we allow each

thread to fetch the jh from the transaction buffer list by using our concurrent

fetch operation, which executes the atomic cas instruction4 (lines 9-17). If the

fetched jh was logically removed, the thread bypasses and retries to fetch the

next jh. Otherwise, each thread creates a frozen buffer, submits the I/O of the

buffer to the journal area, and inserts the buffer into its own wait list in parallel.

After all the I/Os are issued, we stop new upcoming threads from joining

the I/O processing by unsetting the journal io variable (line 18). Then, the

joined threads complete the I/O by using their own wait list (lines 19 and 22-

32). Through the procedure above, the parallel I/O is completed by writing all

the buffers to the journal area. This procedure satisfies the following property.

Property 1. Every block associated with a transaction is written to the journal
area at a commit procedure.

Every application thread increases t update before inserting its jh (Proce-
dure 4, line 36) and decreases t update after inserting its jh (Procedure 4,
line 42). Before the journal thread starts the parallel I/O processing by setting
journal io (Procedure 5, line 10), the thread waits until t update becomes 0
(Procedure 5, line 7). This prevents application threads from starting and fin-
ishing the I/O processing before all the jhs are inserted into the transaction
buffer list. Thus, it ensures that all the buffers associated with the transaction
are written to the journal area even if the parallel I/O is enabled.

While completing the I/Os (Procedure 6, lines 22-32), the threads insert the

3 sync add/sub and fetch(type *ptr, type val): These built-in functions atomically
add/subtract the value of val to/from the variable that *ptr points to. The functions return
the new value of the variable that *ptr points to [42].

4 sync val compare and swap(type *ptr, type oldval, type newval): This built-in function
performs an atomic compare and swap operation. If the current value of *ptr is oldval, then
write newval into *ptr. Otherwise, no operation is performed. The function returns the contents
of *ptr before the operation [42].

43

PROCEDURE 5 C-like pseudo-code of our committing transaction (1)

1: /*the journal thread commits a transaction*/
2: jbd2 journal commit transaction(journal){
3: commit transaction = journal->j running transaction;
4: write lock(journal->j state lock);
5: journal->j committing transaction = commit transaction;
6: journal->j running transaction = NULL;
7: while(atomic read(transaction->t updates)){...}
8: write unlock(journal->j state lock);
9: transaction = journal->j committing transaction;

10: atomic set(transaction->journal io, start);
11: journal io start(journal);
12: while(atomic read(transaction->num io threads) != 0);
13: <issue and complete a commit block>
14: write lock(journal->j state lock);
15: <insert the committed transaction into a checkpoint transaction list
16: (journal->j checkpoint transactions) using our concurrent insert>
17: write unlock(journal->j state lock);
18: atomic set(transaction->cp io, start);
19: }

jhs into a checkpoint list if the jhs are not removed logically and their buffers

are still dirty. In this processing, for simplicity and efficiency, we make the

checkpoint list while completing the I/Os before the commit block is written.

However, the list is not used for checkpointing until the commit procedure is

finished to preserve the ordering of committing and checkpointing.

In addition, we use the wait lists instead of the shadow list and include all

the frozen buffers in the wait lists. Instead of the forget list, we use the GC list

and insert the jhs which are associated with buffers to be freed to the GC list.

After completing all the I/Os, the journal thread waits until all the journal I/Os

are finished by using the number of joined threads before writing the commit

block (Procedure 5, lines 12-13). This procedure satisfies the following property.

Property 2. A transaction is committed or uncommitted (atomicity) according

44

PROCEDURE 6 C-like pseudo-code of our committing transaction (2)

1: /*the journal thread performs journal I/Os with application threads*/
2: journal io start(journal){
3: if((transaction = journal->j committing transaction) == NULL)
4: return;
5: if(atomic read(transaction->journal io) == stop)
6: return;
7: atomic add(transaction->num io threads, 1);
8: create wait list(local wait list); // create a local wait list per thread
9: while((jh = transaction->t buffers) != NULL){

10: if(atomic cas(transaction->t buffers, jh, jh->next) != jh)
11: continue;
12: if(atomic read(jh->removed) == removed)
13: continue;
14: <make a frozen buffer (frozen bh)>
15: submit bh(WRITE, jh->frozen bh);
16: add wait list(local wait list, jh->frozen bh);
17: }
18: atomic set(transaction->journal io, stop);
19: wait journal io(wait list);
20: atomic sub(transaction->num io threads, 1);
21: }

22: wait journal io(local wait list){
23: while(!wait list empty(local wait list){
24: frozen bh = list entry(local wait list.next, ...);
25: wait on buffer(frozen bh);
26: jh = frozen bh->bh->jh;
27: jh->transaction = NULL;
28: if(atomic read(jh->removed) != removed && jbddirty(jh->bh))
29: add buffer(jh, transaction, transaction->t checkpoint list,
30: transaction->t checkpoint list tail);
31: }
32: }

to the commit block.

Every application thread that joins the I/O processing increases num io threads

before issuing I/O (Procedure 6, line 7) and decreases num io threads after

45

completing I/O (Procedure 6, line 20). The journal thread waits until num io threads

becomes 0 before the journal thread writes the commit block (Procedure 5, line
12). This means that all the journal blocks are written before the commit block
is written to the journal area. Thus, it ensures the atomicity of the transaction
by preserving the ordering between the journal blocks and the commit block.

Finally, the journal thread inserts the committed transaction into the check-

point transaction list by using the state lock (j state lock) and our concurrent

insert operation, and sets the cp io variable to start the checkpoint I/O (lines

14-18).

Checkpointing transaction

This section presents our checkpointing transaction. In the existing procedure,

when a transaction needs to be checkpointed, an application thread performs

checkpoint I/O operations by acquiring a checkpoint mutex lock (j checkpoint mutex).

Meanwhile, other application threads, which fail to acquire the lock, are blocked

until the checkpoint is finished, which can underutilize the I/O parallelism.

To enable a parallel checkpoint I/O, we allow the threads to join the I/O

processing instead of using the mutex lock and the checkpoint buffer. How-

ever, even with the parallel I/O, the I/O issue/complete operations are still

inefficient since the list lock is used to fetch/insert the jhs from/into the check-

point/checkpoint io lists. Thus, we fetch the jhs by using our concurrent fetch

operation, issue the I/Os, and complete the I/Os by using the per-thread wait

list in parallel instead of the global checkpoint io list.

When a checkpoint is triggered, application threads get a transaction to

be checkpointed if the transaction is available (Procedure 7, lines 2-3). Then,

the threads check whether the transaction can be checkpointed or not by using

the cp io variable (lines 4-5). Similar to our commit procedure, we record the

number of joined threads, and each thread creates its own wait list (lines 6-7).

46

For the concurrent and parallel I/O issue, each thread concurrently fetches the

jh from the checkpoint list, submits the I/O of the buffer associated with the

jh to the original area, and inserts the buffer into the wait list of each thread in

parallel (lines 8-15). If the fetched jh was removed logically, the thread retries

to fetch the next jh. After issuing all the I/Os, we stop new upcoming threads

from joining the I/O processing by unsetting the cp io variable (line 16). Then,

the joined threads disassociate the jhs with the transaction while completing

the I/Os (lines 17 and 28-34).

After completing all the I/Os, we find the last remaining thread by de-

creasing the number of joined threads (line 18). The last thread sets the next

transaction to be checkpointed by updating the head of the checkpoint transac-

tion list to the next of the head using the atomic CAS operation (lines 19-20).

This procedure satisfies the following property.

Property 3. Committed transaction N-1 is checkpointed prior to committed
transaction N.

A committed transaction is inserted into tail of the checkpoint transaction list
in committed order (Procedure 5, 15-16). The last thread sets the next trans-
action to be checkpointed in the checkpoint transaction list in committed order
(Procedure 7, 19-20). This means that if transaction N-1 is committed prior to
transaction N, the transaction N is not checkpointed prior to transaction N-1.
Thus, it ensures that all the buffers in the transaction are written to the original
area in the committed order. Consequently, our optimized file system preserves
the consistency of the file system by satisfying Properties 1, 2, and 3.

And then, the last thread physically removes all the obsolete jhs in the GC

list of the transaction (lines 21-24). At this point, we can reclaim the jhs safely.

It is because all the transaction processing is ended: (1) No other threads ref-

erence the logically removed jhs in the transaction since all the I/O processing

is ended. (2) No other threads insert any logically removed jhs into the GC

list of the transaction since all the jhs in the transaction are disassociated with

47

PROCEDURE 7 C-like pseudo-code of our checkpointing transaction

1: jbd2 log wait for space(journal){
2: if((transaction = journal->j checkpoint transactions) == NULL)
3: return;
4: if(atomic read(transaction->cp io) == stop)
5: return;
6: atomic add(transaction->cp num io threads, 1);
7: create wait list(local wait list); // create a local wait list per thread
8: while((jh = transaction->t checkpoint list) != NULL){
9: if(atomic cas(transaction->t checkpoint list, jh, jh->next) != jh))

10: continue;
11: if(atomic read(jh->removed) == removed)
12: continue;
13: submit bh(WRITE, jh->bh);
14: add wait list(local wait list, jh->bh);
15: }
16: atomic set(transaction->cp io, stop);
17: wait cp io(local wait list);
18: if(atomic sub(transaction->cp num io threads, 1) == 0){
19: <set the next transaction to be checkpointed
20: in the checkpoint transaction list using atomic cas>
21: while((jh = transaction->gc head) != NULL){
22: transaction->gc head = jh->gc next;
23: free(jh);
24: }
25: free(transaction);
26: }
27: }

28: wait cp io(local wait list){
29: while(!wait list empty(local wait list){
30: bh = list entry(local wait list.next, ...);
31: wait on buffer(bh);
32: bh->jh->cp transaction = NULL;
33: }
34: }

48

the transaction. Finally, the last thread frees the checkpointed transaction (line

25).

49

Chapter 4

Evaluation

4.1 Evaluating the Optimized File System for Low-
latency Storage

Our machine has an Intel Xeon E5630 2.53GHz quad core processor (total 8

cores with hyper-threading), 8 GiB memory, and runs Linux 3.14.3. As shown

in Figure 4.1, we used a battery-backed DRAM-SSD [16] as a fast storage device

in the system [14,43–45]. It has 512 GiB capacity in total (i.e., 64 GiB capacity

per module * 8 DDR3 modules) and a PCIe interface. To increase capacity, a

PCIe expansion card can be used to increase the number of PCIe slots, increas-

ing the number of SSDs in a machine. The peak throughput is about 1.6 GiB/s

for read and 1.4 GiB/s for write. The latency is 5 us and 7 us for reading and

writing 4 KiB, respectively. To show the performance benefit from each opti-

mization technique under different journaling modes, we evaluated the ordered

(default) and data journaling modes of the EXT4 file system. We used the FIO

benchmark [46] to measure the performance in terms of bandwidth for the two

modes. To evaluate the optimized file system in realistic workloads, we used

50

Figure 4.1: The DRAM-based SSD used in this study

10

0.5 1

0.4

0.4

O-EXT4 SR 0.74833 63.6

O-EXT4 SW 0.4899

0.89443

0.30067

SR 1.0198

SR 1.0198

0.12649

0.74833

1.0198

0.74833

0.5004

0
200
400
600
800

1000
1200
1400
1600
1800

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 O-EXT4 E-JFS P-JFS

Request size (bytes)

0
200
400
600
800

1000
1200
1400
1600
1800

4 KiB 16 KiB

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 O-EXT4 E-JFS P-JFS

Request size

0
200
400
600
800

1000
1200
1400
1600
1800

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4

Request size

0
200
400
600
800

1000
1200
1400
1600
1800

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4

Request size

(a) Bandwidth - Sequential Read

0
200
400
600
800

1000
1200
1400
1600
1800

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (

M
B

/s
)

#REF! O-EXT4 (journal-off) E-JFS P-JFS

Request size (bytes)

0

500

1000

1500

4 KiB 16 KiB

B
an

dw
id

th
 (

M
B

/s
)

#REF!

Request size

0
200
400
600
800

1000
1200
1400
1600

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (

M
iB

/s
)

E-EXT4 (journal off) E-EXT4 (ordered) O-EXT4 (journal-off) O-EXT4 (ordered)

Request size

0
200
400
600
800

1000
1200
1400
1600

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (

M
iB

/s
)

E-EXT4 (journal-off) E-EXT4 (ordered) O-EXT4 (journal-off) O-EXT4 (ordered)

Request size

(b) Bandwidth - Sequential Write

0
200
400
600
800

1000
1200
1400
1600
1800

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 O-EXT4 E-JFS P-JFS

Request size (bytes)

0

500

1000

1500

4 KiB 16 KiB

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 O-EXT4 E-JFS P-JFS

Request size (bytes)

0
200
400
600
800

1000
1200
1400
1600
1800

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4

Request size

0
200
400
600
800

1000
1200
1400
1600
1800

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4

Request size

(c) Bandwidth - Random Read

0

500

1000

1500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (

M
B

/s
)

E-EXT4 (journal-off) O-EXT4(journal-off)

Request size (bytes)

0

500

1000

1500

4 KiB 16 KiB

B
an

dw
id

th
 (

M
B

/s
)

E-EXT4 (journal-off)

Request size (bytes)

0
200
400
600
800

1000
1200
1400
1600

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

d
w

id
th

 (
M

iB
/s

)

E-EXT4 (journal-off) E-EXT4 (ordered) O-EXT4 (journal-off) O-EXT4 (ordered)

Request size

0
200
400
600
800

1000
1200
1400
1600

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

d
w

id
th

 (
M

iB
/s

)

E-EXT4 (journal-off) E-EXT4 (ordered) O-EXT4 (journal-off) O-EXT4 (ordered)

Request size

0
200
400
600
800

1000
1200
1400
1600

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

d
w

id
th

 (
M

iB
/s

)

E-EXT4 (journal-off) E-EXT4 (ordered) O-EXT4 (journal-off) O-EXT4 (ordered)

Request size

(d) Bandwidth - Random Write

Figure 4.2: FIO benchmark results (ordered mode)

TPC-C benchmark for the ordered mode and filebench for the data journaling

mode. We run each test five times and report the average and standard devi-

ation. The standard deviations are always under 1% of the mean; graphs omit

error bars.

51

4.1.1 Run-time Performance

Ordered mode

FIO benchmark results. We ran the FIO benchmark with diverse patterns,

multiple request sizes, and buffered I/O under 8 threads (each thread creates a

3 GiB file) in terms of bandwidth, as shown in Figure 4.2. Overall, the perfor-

mance is improved 35% on average compared to the existing I/O file system.

In the case of sequential read, Figure 4.2a shows that the optimized file

system improves performance by 14% on average compared to the existing file

systems. The performance gap is lower than those of other workloads, since

the page cache hit rate is higher due to the read-ahead technique. In sizes

that are less than 4 KiB, the performance of sequential read is highest among

the I/O patterns since the prefetched pages increase the hit rate for sequential

small block requests. However, existing file systems cannot fully utilize the I/O

bandwidth, whereas the optimized file system reaches peak throughput (1.6

GiB/s).

In the case of write performance on the ordered mode, we note that the

optimizations for journal I/O has little improvement on performance. Our op-

timization of journal I/O improves only about 1% on average compared to

existing journal I/O since data-intensive workload such as the FIO benchmark

generates small journal I/O for metadata. As shown in Figure 4.2b and 4.2d, the

performance of the journal-off mode is almost the same as that of the ordered

mode.

For sequential write as shown in Figure 4.2b, the optimized write-back

achieves 38% better performance on average. In the case of small request sizes

(i.e., 512 B and 1 KiB), the file systems perform read-modify-write operations

since the request size does not match the page (block) size (i.e., 4 KiB). As the

52

read-modify-write generates unrequested I/Os, it wastes the bandwidth and

largely decreases the I/O performance. The overall performance gains are in-

creased compared to the case of sequential read. In this case, in addition to the

hit rate of sequential write is lower than that of sequential read, the file system

selects more scattered pages by choosing dirty pages all over the page cache;

it increases the number of separate requests to storage. Eventually, since the

optimized file system merges the requested pages irrespective of contiguity, it

provides 1.4 GiB/s while the bandwidth of the existing file systems is saturated

to 1 GiB/s when the request size is larger than 4 KiB.

For random read and write, Figure 4.2c and 4.2d show that the optimized

file system improves the performance by average 39% and 40%, and up to 48%

and 54%, respectively, compared to the existing file system. When the request

size is less than 4 KiB during random read and write, the hit rate of small blocks

is rapidly decreased compared to sequential read and write, which decreases the

I/O performance. In the case of random write, more frequent read-modify-write

operations are performed compared to sequential write and the performance of

random write at small size is the lowest among the I/O patterns.

The performance gains of random workloads are higher than those of se-

quential workloads because the random workloads generate more multiple and

separate requests. Although the performance is low in the cases of small random

patterns (less than 4 KiB) compared to sequential patterns, the optimized file

system shows full performance when the request size is larger than 4 KiB.

TPC-C results. To evaluate performance of the optimized file system in

realistic workloads, we conducted TPC-C benchmark [47] with InnoDB [48].

We configured the experimental parameters as shown in Table 4.1 with other

parameter sets as the default. In the default configuration, InnoDB provides

atomicity of database page with redundant writes called double write buffer [49].

53

Parameters Values

Page size (KiB) 4

DB buffer size (GiB) 6

Warehouse 500

Number of clients 8

Ramp-up time (seconds) 180

Measured time (seconds) 600

Table 4.1: Experimental parameters for InnoDB

16KB
8client TpmC

180s/120s E-EXT4 12732 1.63422872

WH:500 P-EXT4 20807
E-JFS 13065 1.59931114

P-JFS 20895

E-EXT4 15722 1.32343213

O-EXT4 20807
E-JFS 15465 1.35111542

O-JFS 20895

150

12732

20807

13065

20895

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000

E-EXT4 P-EXT4 E-JFS P-JFS

Tp
m

C

15722

20807

15465

20895

0

4000

8000

12000

16000

20000

24000

E-EXT4 O-EXT4 E-JFS O-JFS

Tp
m

C

0

4000

8000

12000

16000

20000

24000

E-EXT4 O-EXT4

tp
m

C

0

4000

8000

12000

16000

20000

24000

E-EXT4 O-EXT4

tp
m

C

0

4000

8000

12000

16000

20000

24000

E-EXT4 O-EXT4

tp
m

C

Figure 4.3: TPC-C results (ordered mode)

Therefore, the ordered mode is sufficient (i.e., metadata journaling) to provide

crash consistency in the case of InnoDB. In [49], the authors showed that a

smaller page size (4 KiB) leads to better transaction throughput instead of the

default page size (16 KiB). Thus, we configured the page size as 4 KiB. In the

TPC-C workload [50], the read:write ratio is kept at 1.9:1, and the pattern is

random access.

Figure 4.3 shows the Transaction Per Minute type C (tpmC) for the exist-

ing and optimized file systems. As shown in figure, the optimized file system

improves the performance by 32.3% compared to the existing file system. The

optimized file system achieves up to 20807 tpmC. This result demonstrates that

the existing file systems lag behind the optimized file system in the database

54

DataJournal Buffered SIZE seqwrite

512 B 1 KiB 4 KiB 16 KiB 64 KiB Sequential WRITE
1GB 16thread

1GB 8thread

3GB 8thread Deafult 168.8 186 234.8 235.1 235.5

JM 194.2 217.7 281.2 291.4 293.2

JD

CP 219.4 227 286.9 287.8 289.6

JM+CP 257 299.8 441.5 463 461.3

JM+CP+J 257.6 302.6 442 463.2 462

DataJournal Buffered SIZE randwrite

512B 1KB 4KB 16KB 64KB

1GB 16thread

1GB 8thread

3GB 8thread Deafult 21 41.7 230 231.6 234.1

JM 27.3 53.2 267.4 285.1 290

JD

CP 26.5 52.2 281.8 286.8 287.6

JM+CP 36.7 71.9 424.5 440.5 456.7

JM+CP+JD 36.7 72.2 432.5 455.9 460.8

Sequential WRITE Random Write

JM CP JM CP

existing

proposed 338.0825968 31.6954 337.9385876 48.3659

48.594

6311664/18669 5841138/184290

Random WRITE

JM_IO: 6311717, JM_IO_count: 18724, CP_IO: 5956854, CP_IO_count: 156968, JD_IO: 334620, JD_IO_count: 39197

168.8
186

234.8 235.1 235.5

194.2

217.7

281.2
291.4 293.2

219.4 227

286.9 287.8 289.6

257

299.8

441.5

463 461.3

257.6

302.6

442

463.2 462

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 P-EXT4(JM) P-EXT4(CP) P-EXT4(JM+CP) P-EXT4(JM+CP+JD)

Request size (bytes)

21
41.7

230 231.6 234.1

27.3
53.2

267.4
285.1 290

26.5
52.2

281.8 286.8 287.6

36.7
71.9

424.5
440.5

456.7

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 P-EXT4(JM) P-EXT4(CP) P-EXT4(JM+CP) P-EXT4(JM+CP+JD)

Request size (bytes)

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

Request size

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

Request size

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

Request size

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

Request size

(a) Bandwidth - Sequential Write

DataJournal Buffered SIZE seqwrite

512 B 1 KiB 4 KiB 16 KiB 64 KiB Sequential WRITE
1GB 16thread

1GB 8thread

3GB 8thread Deafult 168.8 186 234.8 235.1 235.5

JM 194.2 217.7 281.2 291.4 293.2

JD

CP 219.4 227 286.9 287.8 289.6

JM+CP 257 299.8 441.5 463 461.3

JM+CP+J 257.6 302.6 442 463.2 462

DataJournal Buffered SIZE randwrite

512B 1KB 4KB 16KB 64KB

1GB 16thread

1GB 8thread

3GB 8thread Deafult 21 41.7 230 231.6 234.1

JM 27.3 53.2 267.4 285.1 290

JD

CP 26.5 52.2 281.8 286.8 287.6

JM+CP 36.7 71.9 424.5 440.5 456.7

JM+CP+JD 36.7 72.2 432.5 455.9 460.8

Sequential WRITE Random Write

JM CP JM CP

existing

proposed 338.0825968 31.6954 337.9385876 48.3659

48.594

6311664/18669 5841138/184290

Random WRITE

JM_IO: 6311717, JM_IO_count: 18724, CP_IO: 5956854, CP_IO_count: 156968, JD_IO: 334620, JD_IO_count: 39197

168.8
186

234.8 235.1 235.5

194.2

217.7

281.2
291.4 293.2

219.4 227

286.9 287.8 289.6

257

299.8

441.5

463 461.3

257.6

302.6

442

463.2 462

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 P-EXT4(JM) P-EXT4(CP) P-EXT4(JM+CP) P-EXT4(JM+CP+JD)

Request size (bytes)

21
41.7

230 231.6 234.1

27.3
53.2

267.4
285.1 290

26.5
52.2

281.8 286.8 287.6

36.7
71.9

424.5
440.5

456.7

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 P-EXT4(JM) P-EXT4(CP) P-EXT4(JM+CP) P-EXT4(JM+CP+JD)

Request size (bytes)

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

Request size

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

Request size

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

Request size

0
50

100
150
200
250
300
350
400
450
500

512 B 1 KiB 4 KiB 16 KiB 64 KiB

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

Request size

(b) Bandwidth - Random Write

Figure 4.4: FIO benchmark results (data journaling)

workload. Similar to the FIO test in the ordered mode, our optimization of jour-

nal I/O little improves the performance (about 1%) since the TPC-C generates

small metadata journal I/O compared to data I/O.

Data journaling mode

FIO benchmark results. To evaluate the performance for data journaling

in the optimized file system, we conducted the FIO benchmark as shown in

Figure 4.4 in the case of sequential and random write. We denote that JO and

CP are journaling and checkpoint operations, respectively. The sequential and

random read performance of the FIO benchmark is almost the same as those of

the ordered mode. Since the read-only workload does not start the transaction,

it does not generate any journal I/O. The performance of the existing data

journaling mode is decreased by about 4x compared to that of the ordered

mode in the case of 4 KiB due to the journaling operations with redundant

data writes.

For the sequential write, in the existing file system, the performance is im-

proved by 10%/26.2% from 512B/1KiB to 1KiB/4KiB respectively. However,

the performance is saturated at about 235 MiB/s when the request size is larger

than 4 KiB. The journal operation (JO), checkpoint (CP), and JO+CP in the

55

optimized file system I/O improve the performance by 15%/17%, 29.9%/48.9%,

and 52.2%/61.1% in the case of 512B/1KiB respectively. In more than 4 KiB,

the JO/CP/JO+CP in the optimized file system improves the performance by

19.7%/22.1%/88%, 23.9%/22.4%/96.9%, and 24.5%/22.9%/95.8% in the case

of 4 KiB, 16 KiB, and 64 KiB respectively. The small size affects the band-

width in the existing and optimized file systems since a request size of less

than 4 KiB incurs read-modify-write operations. Accordingly, the performance

improvement in the request sizes less than 4 KiB is less than that in the re-

quest sizes larger than 4 KiB. In terms of the performance improvement when

larger than 4 KiB, JO and CP each show a relatively small improvement, but

the optimized JO+CP noticeably improves the performance of the existing file

system. As a result, it demonstrates that the optimization is necessary for both

JO and CP.

The performance results for random write are almost the same as those of

the sequential write workloads. However, in the case of less than 4 KiB, the

performance improvement gap is much smaller. It is because the small random

blocks are more read-modify-write operations than small sequential blocks. In

the random workloads, optimized JO+CP operations improve the performance

by 95% in the case of 64 KiB compared to the existing operations.

Filebench results. We evaluated the performance of the data journaling

mode in existing and optimized file systems by using filebench [51]. In filebench,

we used the fileserver workload that is write-intensive. In this workload, to pro-

vide crash consistency with data integrity, the data journaling mode is required

because the file server does not provide atomic updates for data.

As shown in Table 4.2, we configured the I/O size as 16 KiB, the number

of files as 5,000, the mean file size as 6 MiB, the number of clients as 64, and

measured time as 600 s with other parameters sets as default. As shown in

56

Parameters Values

I/O size (KiB) 16

The number of files 5,000

Meanfile size (MiB) 6

The number of clients 64

Measured time (seconds) 600

Table 4.2: Experimental parameters for fileserver

Fileserver

/mnt/jsm4

nthreads=64

meanfilesize=6291456(6MB)

nfiles=50

iosize:1MB

Fileserver R/W (1:2)
BW (MB/s) latency (ms)

E-EXT4 316 560.5

O-EXT4(JM) 420.7 414.4 1.331329114

O-EXT4(CP) 403.3 448.5 1.276265823

O-EXT4(JM+CP) 607 283.9 1.920886076

Varmail R/W (1:1)
BW (MB/s) latency (ms)

E-EXT4 795

O-EXT4(JM)

O-EXT4(CP) 789.9 2.9

O-EXT4(JM+CP)

iosize: 4KB

Fileserver R/W (1:2) 4.5
BW (MB/s) latency (ms) 6.5

E-EXT4 …? 5

O-EXT4(JM) 10

O-EXT4(CP)

O-EXT4(JM+CP)

2016-04-18

Fileserver

/mnt/jsm4

nthreads=64

meanfilesize=6291456(6MB)

nfiles=5000

iosize:1MB
Fileserver R/W (1:2)

BW (MB/s) latency (ms)

E-EXT4 326 579.7

O-EXT4(JM)

O-EXT4(CP)

O-EXT4(JM+CP)

iosize:4KB
BW (MB/s) latency (ms)

E-EXT4 322.3 512.5

O-EXT4(JM)

O-EXT4(CP)

O-EXT4(JM+CP)

iosize:16KB
BW (MB/s) latency (ms)

E-EXT4 336.4 549.4

O-EXT4(JM) 430.7 409.2

O-EXT4(CP) 433.9 404.7

O-EXT4(JM+CP) 598.6 283.9
P-EXT4(JM+CP+JD)

Experimental Analysis JM CP JM+CP

average pages count / I/O count 332.6423963 61.260707

각각 각각 합쳐서

1.438363267 1.7195566

JM_IO: 10782083, JM_IO_count: 32427, CP_IO: 10613343, CP_IO_count: 175812, JD_IO: 94868, JD_IO_count: 6886

0

100

200

300

400

500

600

700

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 P-EXT4(JM) P-EXT4(CP) P-EXT4(JM+CP)

326

430.7 433.9

598.6

0

100

200

300

400

500

600

700

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 P-EXT4(JM) P-EXT4(CP) P-EXT4(JM+CP)

326

430.7 433.9

598.6

0

100

200

300

400

500

600

700

B
an

dw
id

th
 (M

B
/s

)

E-EXT4 P-EXT4(JM) P-EXT4(CP) P-EXT4(JM+CP)

0

100

200

300

400

500

600

700

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

0

100

200

300

400

500

600

700

B
an

dw
id

th
 (M

iB
/s

)

E-EXT4 O-EXT4 (JO) O-EXT4 (CP) O-EXT4 (JO+CP)

Figure 4.5: Fileserver results (data journaling)

Figure 4.5, the optimized JO, CP, and JO+CP operations in the optimized file

system improve the performance by 32.1%, 33%, and 83.6% compared to those

in the existing file system, respectively. We achieve high performance by up to

about 600 MiB/s. The optimized file system provides higher performance than

the existing file system while providing strong consistency.

4.1.2 Recovery Performance

To measure the recovery time in the existing and optimized file systems, we

cut the power randomly while running the random write workload of the FIO

benchmark in the ordered and data journaling modes. We conducted this eval-

uation more than 20 times, and the existing and optimized file systems were

remounted correctly by scanning and replaying the blocks in the journal area.

57

Recovery Time Default Proposed Proposed Profiling Proposed Profiling Proposed Profiling

FIO 480ms 457ms READ IO 24680 Recovery Time 276 Recovery Time 182

FIO 617ms 278ms READ IO count 797 Do pass time (Read) 180 Do pass time (Read) 125

avg 30.9661 sync time 95 1024 sync time 57

Fileserver 444ms replayed blocks 24150 replayed blocks 16108

Proposed Profiling

READ IO 16186 Proposed Profiling

READ IO count 523 Recovery Time 275

350ms avg 30.9484 Do pass time (Read) 124

replayed 16105 sync time 151

recovery time 278ms replayed blocks 16134

Proposed Profiling

Proposed Profiling Recovery Time 182

READ IO 16263 Do pass time (Read) 122

Existing READ IO count 525 sync time 60

scanned blocks replayed blocks avg 30.9771 replayed blocks 16103

1 1.1189 replayed 16182

recovery time 298

read time 130 Proposed Profiling

sync time 168 Recovery Time 183

FIO Do pass time (Read) 121

Existing recovery 50% sync time 61

replayed 16266 192 Proposed Profiling replayed blocks 16127

171 Recovery Time 193

recovery time 363 Do pass time (Read 121 Proposed Profiling

FIO FIO sync time 72 Recovery Time 268

Existing recovery 10% Proposed without JM+CP 10% Do pass time (Read) 180

28896 321 26420 199 sync time 87

247 87 Proposed Profiling replayed blocks 24194

other 74 recovery time 287 Recovery Time 276

recovery time 568 Do pass time (Read 180

74 proposed 10% sync time 95 1024

16225 125 replayed blocks 24150

58

FIO recovery 183

Existing recovery 10%

16248 181 proposed 10%

16.7 16229 124

152 657

recovery Time 333.6 181

Proposed 10%

28079 216 32개

Existing recovery 10% 36 2048개

26233 295 252 에러남

27.2

sync dev 246.9 Proposed 10%

recovery Time 542.5 16227 130 32

59 1024

Existing recovery 10% 190

23615 268

24.2 Proposed 10%

sync dev 248 24172 194 32

recovery Time 517 83 1024

558 277

Proposed 10%

24277 181 32

81 1024

263

Proposed

16111 do one 126

scan 12.6

replay 58

total 185

Proposed

16291 do one 127

scan 13.2

replay 65

total 192.5

Proposed

24164 do one 181

scan 15.3

replay 80

total 262

Proposed

16301 do one 125

scan 13.8

jread 13.6

replay 64.6

total 190

E-EXT4 O-EXT4

268 181

248 80

1 1

517 262

ORDERED MODE

ordered mode 단위:us

existing file system Proposed file system

replyaed 33 replayed 25

scan 1093 scan 461

sync blockdev 42 sync blockdev 22

recovery time 1150 recovery time 500.9

other time 15 other time 17.9

RECV READ IO: 67

RECV READ COUNT: 3

existing file system Proposed file system

replyaed 29 replayed 25

scan time 753 scan 485

sync blockdev time 37 sync blockdev 23

recovery time 813 recovery time 525

RECV READ IO 64 RECV READ IO 64

RECV READ COUNT 1 RECV READ COUNT 2

RECV WRITE IO 7 RECV WRITE IO 3

RECV WRITE COUNT 7 RECV WRITE COUNT 1

11 0.7071 Proposed file system

10 replayed 29 선정된 block이 29인데, 실제 쓰여지는건 3blocks

scan time 494 1145

sync blockdev time 22 500.9

recovery time 533 2.28589

RECV READ IO 64

RECV READ COUNT 2

RECV WRITE IO 3

RECV WRITE COUNT 1

Proposed file system

replayed ….?

scan time

sync blockdev time avg

recovery time Scan Replay Other 1086.333333 SD

RECV READ IO E-EXT4 1093 37 15 3259 4.98888

RECV READ COUNT 1081 32 14 2.62467

RECV WRITE IO 1085 31 13 0.8165

RECV WRITE COUNT

Scan Replay Other

O-EXT4 461 22 17.9

452 23 18

444 20 16.7

29 32 0.6

0

100

200

300

400

500

600

700

Re
co

ve
ry

 T
im

e
(m

s)

E-EXT4 P-EXT4(JM+CP)

0

100

200

300

400

500

600

E-EXT4 O-EXT4

Re
co

ve
ry

 T
im

e
(m

s)

Scan Replay Other

0

100

200

300

400

500

600

1 2

0

100

200

300

400

500

600

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(m

s)

Scan Replay Other

0

200

400

600

800

1000

1200

1400

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(u

s)

Scan Replay Other

0

200

400

600

800

1000

1200

1400

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(u

s)

Scan Replay Other

0

100

200

300

400

500

600

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(m

s)

Scan Replay Other

0

200

400

600

800

1000

1200

1400

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(u

s)

Scan Replay Other

0

100

200

300

400

500

600

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(m

s)

Scan Replay Other

(a) Ordered mode

Recovery Time Default Proposed Proposed Profiling Proposed Profiling Proposed Profiling

FIO 480ms 457ms READ IO 24680 Recovery Time 276 Recovery Time 182

FIO 617ms 278ms READ IO count 797 Do pass time (Read) 180 Do pass time (Read) 125

avg 30.9661 sync time 95 1024 sync time 57

Fileserver 444ms replayed blocks 24150 replayed blocks 16108

Proposed Profiling

READ IO 16186 Proposed Profiling

READ IO count 523 Recovery Time 275

350ms avg 30.9484 Do pass time (Read) 124

replayed 16105 sync time 151

recovery time 278ms replayed blocks 16134

Proposed Profiling

Proposed Profiling Recovery Time 182

READ IO 16263 Do pass time (Read) 122

Existing READ IO count 525 sync time 60

scanned blocks replayed blocks avg 30.9771 replayed blocks 16103

1 1.1189 replayed 16182

recovery time 298

read time 130 Proposed Profiling

sync time 168 Recovery Time 183

FIO Do pass time (Read) 121

Existing recovery 50% sync time 61

replayed 16266 192 Proposed Profiling replayed blocks 16127

171 Recovery Time 193

recovery time 363 Do pass time (Read 121 Proposed Profiling

FIO FIO sync time 72 Recovery Time 268

Existing recovery 10% Proposed without JM+CP 10% Do pass time (Read) 180

28896 321 26420 199 sync time 87

247 87 Proposed Profiling replayed blocks 24194

other 74 recovery time 287 Recovery Time 276

recovery time 568 Do pass time (Read 180

74 proposed 10% sync time 95 1024

16225 125 replayed blocks 24150

58

FIO recovery 183

Existing recovery 10%

16248 181 proposed 10%

16.7 16229 124

152 657

recovery Time 333.6 181

Proposed 10%

28079 216 32개

Existing recovery 10% 36 2048개

26233 295 252 에러남

27.2

sync dev 246.9 Proposed 10%

recovery Time 542.5 16227 130 32

59 1024

Existing recovery 10% 190

23615 268

24.2 Proposed 10%

sync dev 248 24172 194 32

recovery Time 517 83 1024

558 277

Proposed 10%

24277 181 32

81 1024

263

Proposed

16111 do one 126

scan 12.6

replay 58

total 185

Proposed

16291 do one 127

scan 13.2

replay 65

total 192.5

Proposed

24164 do one 181

scan 15.3

replay 80

total 262

Proposed

16301 do one 125

scan 13.8

jread 13.6

replay 64.6

total 190

E-EXT4 O-EXT4

268 181

248 80

1 1

517 262

ORDERED MODE

ordered mode 단위:us

existing file system Proposed file system

replyaed 33 replayed 25

scan 1093 scan 461

sync blockdev 42 sync blockdev 22

recovery time 1150 recovery time 500.9

other time 15 other time 17.9

RECV READ IO: 67

RECV READ COUNT: 3

existing file system Proposed file system

replyaed 29 replayed 25

scan time 753 scan 485

sync blockdev time 37 sync blockdev 23

recovery time 813 recovery time 525

RECV READ IO 64 RECV READ IO 64

RECV READ COUNT 1 RECV READ COUNT 2

RECV WRITE IO 7 RECV WRITE IO 3

RECV WRITE COUNT 7 RECV WRITE COUNT 1

11 0.7071 Proposed file system

10 replayed 29 선정된 block이 29인데, 실제 쓰여지는건 3blocks

scan time 494 1145

sync blockdev time 22 500.9

recovery time 533 2.28589

RECV READ IO 64

RECV READ COUNT 2

RECV WRITE IO 3

RECV WRITE COUNT 1

Proposed file system

replayed ….?

scan time

sync blockdev time avg

recovery time Scan Replay Other 1086.333333 SD

RECV READ IO E-EXT4 1093 37 15 3259 4.98888

RECV READ COUNT 1081 32 14 2.62467

RECV WRITE IO 1085 31 13 0.8165

RECV WRITE COUNT

Scan Replay Other

O-EXT4 461 22 17.9

452 23 18

444 20 16.7

29 32 0.6

0

100

200

300

400

500

600

700

Re
co

ve
ry

 T
im

e
(m

s)

E-EXT4 P-EXT4(JM+CP)

0

100

200

300

400

500

600

E-EXT4 O-EXT4

Re
co

ve
ry

 T
im

e
(m

s)

Scan Replay Other

0

100

200

300

400

500

600

1 2

0

100

200

300

400

500

600

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(m

s)

Scan Replay Other

0

200

400

600

800

1000

1200

1400

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(u

s)

Scan Replay Other

0

200

400

600

800

1000

1200

1400

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(u

s)

Scan Replay Other

0

100

200

300

400

500

600

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(m

s)

Scan Replay Other

0

200

400

600

800

1000

1200

1400

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(u

s)

Scan Replay Other

0

100

200

300

400

500

600

E-EXT4 O-EXT4

R
ec

ov
er

y
tim

e
(m

s)

Scan Replay Other

(b) Data journaling mode

Figure 4.6: Recovery performance

We compared the recovery performance when the number of replayed blocks

was almost the same in the existing and optimized file systems. The recovery

time occupied more than 92% of the total remount time while the scan and re-

play operations occupied a great part of the total recovery time in the existing

and optimized file systems.

As shown in Figure 4.6, the optimized file system improves the recovery

performance by about 2.28x/1.97x compared to the existing file system in the

case of the ordered and data journaling modes, respectively. In this evaluation,

the total replayed blocks in the existing/optimized file system are 3/3 and

23615/24164 in the ordered and data journaling mode, respectively.

In the case of the ordered mode as shown in Figure 4.6a, the scan and

replay operations of existing/optimized file systems take about 1093us/461us

and 37us/22us, respectively. In the case of data journaling mode as shown

in Figure 4.6b, the scan and replay operations of the existing/optimized file

systems take about 268ms/181ms and 248ms/80ms, respectively. According to

this result, the optimized file system improves the scan and replay operations

by making the blocks into a single request. Consequently, our scheme can also

58

Benchmark FIO
I/O types SR SW RR RW JO CP

Existing file system 15 (0.6) 14 (0.6) 2.5 (0.2) 1.5 (0.2) 1 (0) 0 (0)
Optimized file system 63 (0.6) 128 (0.04) 8 (0.14) 128 (0.04) 3.1 (0.1) 0 (0)

(a) FIO

Benchmark TPC-C
I/O types Read Write JO CP

Existing file system 1 (0.04) 2 (0.06) 1 (0) 1 (0)
Optimized file system 5 (0.2) 43 (0.6) 2 (0.1) 2.7 (0.4)

(b) TPC-C

Table 4.3: The average page counts in a single request in the ordered mode
(SR: Sequential Read, SW: Sequential Write, RR: Random Read, RW: Random
Write, JO: Journal operation, CP: Checkpoint, the numbers in parentheses are
standard deviations)

Benchmarks FIO Fileserver

I/O types
SW RW Random I/O

JO CP JO CP JO CP
Existing file system 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

Optimized file system 338 (0.7) 31.6 (0.6) 337.9 (0.1) 48.3 (0.5) 332.6 (0.9) 61.2 (0.4)

Table 4.4: The average page counts in a single request in the data journaling
mode (JO: Journal operation, CP: Checkpoint, SW: Sequential Write, RW:
Random Write, the numbers in parentheses are standard deviations)

be applied to the recovery procedure to provide faster remount time.

4.1.3 Experimental Analysis

We analyzed the main factor of the performance improvement in the optimized

file system. We measured the page counts per request with I/O operations. Ta-

ble 4.3 shows the average page counts in a single request of the existing and

optimized file systems. The unit of request size was 4 KiB for the EXT4 file

system, and the counts were measured at the device driver level. Our technique

increases the average page counts in a single request by 4.2x, 9.14x, 3.2x, and

85.3x in the case of SR, SW, RR, and RW under FIO, respectively. The results

show that the number of write operations is higher than that of the read op-

59

Modes Ordered Data journaling
Operations Scan Replay Scan Replay

Existing file system 1 (0) 1 (0) 1 (0) 1 (0)
Optimized file system 32 (0.08) 3 (0.4) 32 (0.08) 1024 (0.04)

Table 4.5: The average page counts in a single request during recovery (the
numbers in parentheses are standard deviations)

erations. The reason is that write-back operations occur when the dirty rate is

higher than the threshold, which accumulates the dirty pages.

Although the average page counts of the sequential read are higher than

those of the random read, the performance gap of sequential read is lower than

that of the random read operations. The reason is that the sequential read

patterns provide a very high hit rate. In the case of TPC-C, the existing file

systems cannot merge the pages into a large request since the patterns are

almost random. Meanwhile, the optimized file system increases the average

page counts by 5x and 21.5x for read and write, respectively.

We note that the optimized journal I/O in the ordered mode does not affect

the performance of our fast storage device and data-intensive workload. The

performance of journal-off is almost the same as that of the ordered mode.

As shown in Table 4.3, in the ordered mode, only small journal blocks are

infrequently written to the journal area.

In contrast, our optimization in the data journaling mode improves the per-

formance since both data and metadata generate journaling and checkpoint. As

shown in Table 4.4, in the case of the FIO benchmark with the data journaling

mode, JO/CP in the optimized file system merges the 338/337.9 and 31.6/48.3

requests at once for the sequential and random write workloads, respectively.

Thus, the average page counts are larger by 338x/337.9x and 31.6x/48.3x than

those of existing file system. In the case of the fileserver workload, the average

60

counts are larger by 332.6x and 61.2x compared to those of the existing file

system for JO and CP, respectively. In the FIO and fileserver workloads, the

optimized file system significantly increases the page counts in a single request

since each page is processed by only one request in the existing file system.

As shown in Table 4.5, in the analysis of the recovery performance, the

existing file system processes the requests for scan and replay operations as

several requests one by one. In contrast, the optimized file system makes 32/32

and 3/1024 blocks in the case of ordered/data journaling modes for scan and

replay operations into a single request, respectively. This result shows that the

optimized file system increases the average number of pages in a single request

by 32x/32x and 3x/1024x in case of the ordered/data journaling modes for scan

and replay operations compared to the existing file system, respectively. Con-

sequently, the I/O performance is improved, and the recovery time is reduced

by a large request.

4.2 Evaluating the Optimized File System for Highly
Parallel Storage

We perform all of the experiments on a 72-core machine with four Intel Xeon

E7-8870 processors (without hyperthreading), 16 GiB DRAM, and PCI 3.0

interface. For storage, the machine has an 800 GiB Intel P3700 NVMe SSD [17],

which has 18 channels. The machine runs Ubuntu 16.04.1 LTS distribution with

a Linux kernel 4.9.1. We evaluate the existing EXT4 and fully optimized EXT4

(O-EXT4) file systems in the ordered (default) and data journaling modes. To

present a performance breakdown, we also evaluate an optimized EXT4 with

our parallel I/O (P-EXT4), which performs our parallel I/O for journaling and

checkpointing without j checkpoint mutex but updates the data structures

using j list lock. We run metadata and data-intensive workloads, such as

61

Benchmarks Descriptions Parameters

Tokubench Metadata-intensive (file creation) Files: 30,000,000, I/O sizes: 4KiB
Sysbench Data-intensive (random write) Files: 72, Each file size: 1GiB, I/O sizes: 4KiB
Varmail Metadata-intensive Files: 300,000, Directory width: 10,000

Fileserver Data-intensive Files: 1,000,000, Directory width: 10,000

Table 4.6: Experimental parameters

Ordered tokubench

Ordered sysbench

0

100

200

300

400

500

600

1 2 4 8 18

B
a
n

d
w

id
th

 (
M

B
/s

)

The number of cores

EXT4 P-EXT4 O-EXT4

0

200

400

600

800

1 2 4 8 18 36 54 72B
a

n
d

w
id

th
 (

M
B

/s
)

The number of cores

Sysbench Fileserver

0

200

400

600

800

1 2 4 8 18 36 54 72B
a

n
d

w
id

th
 (

M
B

/s
)

The number of cores

Tokubench Varmail

Ordered tokubench

Ordered sysbench

0

50

100

150

200

250

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

0

500

1000

1500

2000

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

(a) Tokubench

Ordered tokubench

Ordered sysbench

0

50

100

150

200

250

1 2 4 8 18 36 54 72

B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

0

500

1000

1500

2000

1 2 4 8 18 36 54 72

B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

(b) Sysbench

Ordered Varmail

Ordered fileserver

0

200

400

600

800

1000

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

0

400

800

1200

1600

2000

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

(c) Varmail

Ordered Varmail

Ordered fileserver

0

200

400

600

800

1000

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

0

400

800

1200

1600

2000

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

(d) Fileserver

Figure 4.7: Ordered mode

tokubench [52], sysbench [53] and filebench [51] with the parameters shown in

Table 4.6. We vary the number of cores from 1 to 72, and the number of threads

is equal to that of the cores. We run each test ten times and report the average.

62

4.2.1 Run-time Performance

Ordered mode

We present the performance results in the ordered mode as shown in Figure 4.7.

In the case of tokubench as shown in Figure 4.7a, the performance growth of

EXT4 is not noticeable as the number of cores increases. P-EXT4 improves the

performance by 1.9x compared to EXT4. However, compared to full optimiza-

tion, this result shows the limitation of our parallel I/O scheme, which does not

handle the lock contention. Through full optimization, O-EXT4 improves the

performance by 2.2x at 72 cores compared to EXT4. Meanwhile, the perfor-

mance of O-EXT4 is almost the same beyond 18 cores since the bandwidth is

saturated due to the limited write bandwidth and the channels of the SSD. In

the case of sysbench as shown in Figure 4.7b, P-EXT4 and O-EXT4 improve the

performance by 13.8% and 16.3%, respectively, compared to EXT4 at 72 cores.

The performance improvement is lower than that of tokubench since sysbench

as a data-intensive workload generates far fewer journal I/Os for metadata.

Under the varmail workload as shown in Figure 4.7c, P-EXT4 and O-EXT4

scale well compared to the case of tokubench and outperform EXT4 by 1.92x

and 2.03x at 72 cores, respectively. O-EXT4 achieves up to 914.3 MiB/s. Since

the workload generates a mixture of read/write operations unlike tokubench,

the available bandwidth increases, and therefore, the performance gradually

scales at all cores. Meanwhile, the performance of EXT4 decreases beyond 54

cores due to the lock contention. Under the fileserver workload as shown in

Figure 4.7d, P-EXT4 and O-EXT4 outperform EXT4 by 4.3% and 9.6% at 72

cores, respectively. All the file systems scale in a similar trend at each core,

and the performance gap is not noticeable. The reason is that, similar to the

case of sysbench, the fileserver workload is data-intensive, which generates a low

63

Ordered tokubench

Ordered sysbench

0

100

200

300

400

500

600

1 2 4 8 18

B
a
n

d
w

id
th

 (
M

B
/s

)

The number of cores

EXT4 P-EXT4 O-EXT4

0

200

400

600

800

1 2 4 8 18 36 54 72B
a

n
d

w
id

th
 (

M
B

/s
)

The number of cores

Sysbench Fileserver

0

200

400

600

800

1 2 4 8 18 36 54 72B
a

n
d

w
id

th
 (

M
B

/s
)

The number of cores

Tokubench Varmail

DJ tokubench affinity

DJ sysbench affinity

0

50

100

150

200

250

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

0

100

200

300

400

500

600

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

(a) Tokubench

DJ tokubench affinity

DJ sysbench affinity

0

50

100

150

200

250

1 2 4 8 18 36 54 72

B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

0

100

200

300

400

500

600

1 2 4 8 18 36 54 72

B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

(b) Sysbench
DJ Varmail

DJ fileserver

0
100
200
300
400
500
600
700

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

0

200

400

600

800

1000

1200

1 2 4 8 18 36 54 72

B
an

d
w

id
th

(M
iB

/s
)

The number of cores

(c) Varmail

DJ Varmail

DJ fileserver

0
100
200
300
400
500
600
700

1 2 4 8 18 36 54 72

B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

0

200

400

600

800

1000

1200

1 2 4 8 18 36 54 72

B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

(d) Fileserver

Figure 4.8: Data journaling mode

number of metadata I/Os. Consequently, our optimized file system improves the

performance in the ordered mode by reducing the lock contention and parallelize

the I/O operations especially for metadata-intensive workloads.

Data journaling mode

We present the performance results in the data journaling mode as shown in

Figure 4.8. In the case of tokubench as shown in Figure 4.8a, P-EXT4 and

O-EXT4 outperform EXT4 by 73% and 88.2% at 72 cores, respectively. The

results show that the overall aspect of the performance is similar to that in

the ordered mode. In the case of sysbench as shown in Figure 4.8b, P-EXT4

and O-EXT4 show 1.17x and 2.1x faster performance than EXT4 at 72 cores,

respectively. The performance improvement is higher than that in the ordered

64

mode since the workload generates many journal I/Os for data. Also, the results

show that the improvement by our parallel I/O scheme is low due to the list

lock contention.

Under the varmail workload as shown in Figure 4.8c, P-EXT4 and O-EXT4

outperform EXT4 by 31.3% and 39.3% at 72 cores, respectively. Unlike the

case of the ordered mode, the performance is saturated and sustained beyond

18 cores since writing both the metadata and the data makes the performance

reach the full bandwidth faster. Meanwhile, the performance of EXT4 decreases

due to the lock contention. In the case of fileserver as shown in Figure 4.8d,

P-EXT4 and O-EXT4 outperform EXT4 by 1.45x and 2.01x at 72 cores, re-

spectively. O-EXT4 achieves up to 1064.6 MiB/s. The performance of P-EXT4

and E-EXT4 decreases beyond 36 cores, which demonstrates the need for both

concurrent updates on data structures and parallel I/O. Meanwhile, O-EXT4

scales well to 18 cores and increases the performance until 72 cores. Beyond 36

cores, the rate of bandwidth growth is reduced due to the bandwidth limit of

the SSD. Consequently, our optimized file system achieves higher performance

in the data journaling mode, and the benefit becomes larger in data-intensive

workloads.

Comparison with a scalable file system

We compare our optimized file system with SpanFS [15], a scalable file system.

We use the varmail and fileserver workloads in the ordered and data journal-

ing modes, respectively. We set the number of domains in SpanFS as same as

that of the cores. As shown in Figure 4.9, both file systems scale well until

the performance is saturated in both workloads. Meanwhile, O-EXT4 generally

shows better performance and improves performance by up to 1.45x and 1.51x

in the varmail and fileserver workloads, respectively, compared to SpanFS. Es-

65

0

200

400

600

800

1000

1200

1 2 4 8 18 36 54 72

B
a

n
d

w
id

th
(M

B
/s

)

The number of cores

Fileserver / Data Journaling

SpanFS O-EXT4

36 54 72

0

200

400

600

800

1000

1 2 4 8 18 36 54 72B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

Fileserver / Data Journaling

SpanFS O-EXT4

(a) Varmail

0

200

400

600

800

1000

1200

1 2 4 8 18 36 54 72

B
a

n
d

w
id

th
(M

iB
/s

)

The number of cores

Fileserver / Data Journaling

SpanFS O-EXT4

(b) Fileserver

Figure 4.9: Comparison with SpanFS

pecially, in the case of the varmail workload, the performance of O-EXT4 is

similar or slower than that of SpanFS at small number of cores while O-EXT4

shows better performance than SpanFS as the number of cores increases. The

results show that our scheme can deliver better performance than the scheme

that distributes file services.

4.2.2 Recovery Performance

In EXT4/JBD2, a single-threaded process (i.e., mount process) performs recov-

ery operations which can underutilize both multi-cores and I/O parallelism. To

increase the parallelism, similar to our journal and checkpoint I/O schemes, we

perform scan and replay I/O operations in parallel by creating multiple threads

without any additional locking. To evaluate the performance and test the cor-

rectness of recovery, we used tokubench and fileserver workloads in the ordered

and data journaling modes, respectively. While running the benchmarks, we

randomly cut the power of the machine, and both existing and optimized file

systems are recovered to a consistent state after more than 30 crashes.

Table 4.7 shows the recovery performance of the ordered and data journaling

modes in the file systems. The scan and replay operations occupy the main part

66

Modes Ordered Data journaling
Operations scan replay other scan replay other

EXT4 331 ms 62 ms 7 ms 311 ms 81 ms 5 ms
O-EXT4 125 ms 34 ms 9 ms 117 ms 37 ms 4 ms

Table 4.7: Recovery performance

of the total recovery time in all cases. Through parallelizing scan and replay

I/O operations, O-EXT4 improves the recovery performance by 2.38x and 2.51x

compared to EXT4 in the ordered and data journaling modes, respectively.

This result demonstrates that our schemes can also be applied to the recovery

procedure to provide faster recovery time.

4.2.3 Experimental Analysis

Table 4.8 shows the total execution time for main locks and device-level band-

width at 72 cores in the case of the sysbench workload in the data journaling

mode. For this experiment, we measured the execution time by using a time

function (getrawmonotonic()) for lower overhead and more correctness. As

shown in the table, in EXT4, the execution time of the checkpoint mutex and

list locks take a large portion of the total write time. In P-EXT4, the bandwidth

increases by 16.3%, and the write time decreases by 15.7% compared to EXT4,

respectively. As the total write time decreases, the time of the list and state

locks decreases while the list lock still takes up 10.8% of the total write time.

This demonstrates that the list lock contention can be a performance bottle-

neck in our parallel I/O scheme. In O-EXT4, the bandwidth increases by 2.06x,

and the write time decreases by 2.08x compared to EXT4. This is achieved by

removing the list lock contention via our concurrent update scheme. Meanwhile,

the contention on the state lock increases due to the removal of the list lock but

the portion is still small. Consequently, this result demonstrates that O-EXT4

67

File systems EXT4 P-EXT4 O-EXT4

Device-level bandwidth 692 MiB/s 805 MiB/s 1426 MiB/s
Write time 52220 s (100%) 45124 s (100%) 25078 s (100%)

j checkpoint mutex 17946 s (34.4%) 0 0
j list lock 6132 s (11.7%) 4890 s (10.8%) 0
j state lock 102 s (0.2%) 87 s (0.2%) 182 s (0.7%)

Others 28040 s (53.7%) 40147 s (89%) 24896 s (99.3%)

Table 4.8: Device-level bandwidth and total execution time of main locks and
write operations

achieves high-performance transaction processing by enabling both concurrent

updates and parallel I/O.

68

Chapter 5

Related Work

5.1 Analysis and Evaluation of High-Performance stor-
age

eNVy [54] presents a non-volatile main memory storage system built with flash

memory. It uses a special controller equipped with a battery-backed SRAM

buffer to hide the block-addressable nature of flash. The Rio file cache [55] uses

a battery-backed main memory to make writes persistent. It can survive OS

crashes and be as safe and permanent as disk. It achieves the performance of

main memory with the reliability of disk by eliminating all reliability-induced

writes to disk.

Kim et al. [6] explore the opportunities for PCM technology within enter-

prise storage systems. They present the results of a performance study of an

all-PCM SSD prototype. They compare the PCM SSD prototype to an eMLC

flash SSD to understand the performance characteristics of the PCM SSD as

another storage tier. They state that the IOPS/$ of a tiered storage system can

be improved by adding PCM. Vucinic et al. [23] explore the limits of communi-

69

cation latency with a PCM-based storage device over PCI express. They devise

dubbed DC Express, which is a communication protocol. This protocol elim-

inates unnecessary packet exchanges and avoids context and mode switching.

Our study is in line with such studies [54,55] in terms of using a battery-backed

memory and such studies [6,23] in terms of exploring PCIe based SSDs. Mean-

while, we focus on the OS-level I/O stack including file systems.

Researchers have recently performed empirical studies of file systems and ap-

plication performance on NVM [56–58] and concentrated efforts to improve the

performance of fast storage devices. Sehgal et al. [56] evaluate the performance

of various traditional Linux file systems under various real-world workloads on

NVM simulated using ramdisk and compare it against an NVM optimized file

system like PMFS [10]. They demonstrate that the traditional file systems can

be tuned to perform better than their default settings on NVM with a per-

formance comparable to that PMFS. Zhang et al. [57] provide an analysis of

storage application performance with NVM. Their evaluation results show that

NVM improves the storage application performance significantly compared to

flash-based SSDs and HDDs. They present that even if NVM has somewhat

higher latency and lower bandwidth than DRAM, this difference has a mod-

est impact on application performance. Lee et al. [58] explore the use of NVM

storage from the operating system (OS) perspective. They investigate the ef-

fectiveness of current I/O mechanisms and the efficient use of NVM storage.

5.2 Study of Journaling File Systems

There are some studies on the journaling file systems. Lu et al. [59] conduct a

comprehensive study of Linux file system code evolution. They mention that

open-source local file systems (e.g., EXT4) are a critical component of modern

storage since many recent distributed file systems (e.g., Google GFS, Hadoop

70

DFS, etc) replicate data objects across local file systems. They analyze eight

years of Linux file system changes and derive numerous new insights into the file

system development process. Prabhakaran et al. [37] provide a detailed analysis

of journaling file systems by using semantic block analysis (SBA) and semantic

trace playback (STP). SBA enables users to understand the internal behavior

and policies of the file system, and STP allows users to quantify how changing

the file system will impact the performance of real workloads.

DualFS [60] is a new high-performance journaling file system, which pro-

vides the same consistency guarantees as existing file systems but with better

performance. Different from our approach, DualFS places data and metadata

in different devices and manages them in different ways. For example, DualFS

organizes the metadata device as a log-structured file system and the data de-

vice as a group respectively. Kang et al. [15] propose a scalable file system on

fast storage devices. In contrast to our goal, they focus on the lock contention

as a bottleneck in the journaling file system. To reduce lock contention, they

distribute files and directories among the domains, which consist of a collection

of micro-file system services, and provide a global file system view on top of the

domains, and maintain consistency in case of system crashes.

Lee et al. [61] present a novel buffer cache architecture that subsumes the

functionality of caching and journaling. They reduce the I/O traffic of jour-

naling using non-volatile memory. In contrast, we focus on PCIe-based storage

as primary storage and provide more efficient I/O operations between the file

system and the lower layer. OptFS [30] proposes decoupled ordering and dura-

bility primitives such as osync() and dsync() in HDD-based storage to reduce

the frequent flush commands from the journaling file system. They trade fresh-

ness for performance while maintaining crash consistency. Unlike our scheme,

their target is HDD-based storage that includes a volatile cache.

71

5.3 File and I/O System Optimizations for Low-latency
Storage

There are a number of file system designs and suggested optimizations [9,10,12,

62] for SCM. SCMFS [12] is a new file system designed for storage class memory.

This system utilizes the existing memory management module in the operating

system to achieve high performance by keeping contiguous space for each file in

the logical address space. BPFS [9] is optimized for small random writes by fine-

grained updates instead of transferring data in bulk, which leads to unnecessary

traffic over the memory bus for NVRAM. PMFS [10] is a persistent memory

(PM) load/store accessible file system similar to SCMFS and BPFS. PMFS

exploits byte-addressability of persistent memory in order to avoid the over-

head of block-oriented storage and to enable direct PM access by applications.

NOVA [62] is a log-structured file system (LFS) designed for hybrid memory

systems. By extending LFS ideas to leverage NVM, NOVA proposes fast and

efficient garbage collection, quick recovery, and strong consistency guarantees

compared to conventional file operations and mmap-based load/store accesses.

These schemes [9, 10, 12, 62] are optimized for persistent memory attached to

the processor’s memory bus. However, they are not appropriate for PCIe-based

SSDs.

NV-Heaps [63] provides user-level transactional updates to persistent data

and proposes a programming model to simplify PM programming. NV-Heaps

forces the programmer to employ a specific object framework and requires mod-

ifications to the processor. Mnemosyne [64] also proposes a transaction mecha-

nism to update data in NVM. It supports direct access and reduces latency by

bypassing many software layers. These studies [63,64] provide fast mechanisms

for object persistency, but they do not replace files or file systems.

In addition, various studies on optimizing I/O stack for PCIe-based SSDs

72

have been conducted. Seppanen et al. [11] state that an I/O scheduler in a

traditional block I/O subsystem serializes and merges requests. It is efficient

for HDDs since HDDs have seek overhead and lack parallelism. When storage

devices such as flash-based SSDs are used, the system with the conventional

block I/O subsystem cannot fully exploit the parallelism in the SSDs since the

I/O scheduler processes the requests in a serialized and batched manner. Thus,

the authors propose a new Linux block I/O subsystem without SCSI/ATA

layers and an I/O scheduler to reduce latency and exploit parallelism of storage

devices. However, the proposed block I/O subsystem still processes requests

asynchronously; interrupts are used to communicate with storage devices.

Yang et al. [13] show that a synchronous I/O (polling) between the host and

the storage device delivers better performance than an asynchronous I/O (in-

terrupt) when the device has ultra-low latency. Since the system with interrupt-

based I/O completes all I/Os asynchronously and it causes the interrupt hand-

ing overheads, the polling mechanism is more appropriated for storage devices

with ultra-low latency. Yu et al. [14] improve the I/O bandwidth by combin-

ing multiple block requests among multiple threads into one I/O request and

dispatching the request to storage. These studies [11,13,14] improve the perfor-

mance by focusing on the optimization of the block I/O subsystem. Meanwhile,

our study focuses on the I/O operations in the file system on top of the opti-

mized block I/O subsystem including these techniques [11,13,14].

Moneta [65] is an architecture for a PCIe-attached storage array built from

emulated PCM storage. This architecture uses a series of hardware/software

(device driver) optimizations that improve its performance for next-generation

NVM such as PCM. Moneta-D [66] is an extended version of Moneta that re-

moves software overhead by using a user-level driver, which bypasses the kernel

and file systems. Due to the user-level driver, Moneta-D requires additional

73

hardware functionalities for security and authority. In contrast to these stud-

ies [65, 66], we focus on optimization of the software stack and file systems.

Our scheme is implemented at the kernel level and does not require additional

support to avoid security concerns.

pVM [67] is a system software abstraction that provides applications with

automatic OS-level memory capacity scaling, flexible memory placement poli-

cies across NVM, and fast object storage. It extends the OS virtual memory and

abstracts NVM as a NUMA node with support for NVM-based memory place-

ment mechanisms. This article is similar to pVM in terms of exploring NVM in

the OS. Meanwhile, we focus on the existing I/O stack and file systems instead

of the virtual memory system.

Several works have researched how to optimize software stacks for fast net-

work access. IX [68] proposes a dataplane operating system by using hardware

virtualization to separate the management and scheduling functions of the ker-

nel from network processing. IX optimizes both bandwidth and latency by pro-

cessing batches of packets to completion and eliminating synchronization on

multi-core servers. Arrakis [69] presents an operating system that splits the

traditional role of the kernel. Applications have direct access to virtualized I/O

devices by allowing most I/O operations to skip the kernel, while the kernel is

re-engineered to provide network and disk protection without kernel mediation

of every operation. Similar to IX, Arrakis uses hardware virtualization to sep-

arate the I/O dataplane from the control plane. Both IX [68] and Arrakis [69]

provide optimized networking stack by reducing the overhead of the operating

systems. This article is in line with these schemes [68, 69] in terms of reducing

the software overhead. Unlike these schemes, we focus on the storage stack for

fast storage devices.

74

5.4 Study of Scalability in Operating Systems

Hive [70] is an operating system designed for large scale shared-memory mul-

tiprocessors. It is structured as an internal distributed system of independent

kernels called cells to improve reliability and scalability. Cerberus [71] mitigates

contention on many shared data structures within OS kernels by clustering mul-

tiple commodity operating systems atop a virtual machine monitor. Baumann

et al. [72] investigate a new OS structure, the multikernel. To solve scalability

problems for OSs, they structure the OS as a distributed system of cores that

communicate using messages and share no memory. Corey [73] is an exokernel

based operating system that follows a principle, which allows applications to

control the sharing of kernel resources. Its abstractions ensure that each kernel

data structure is used by only one core by default, while giving applications the

ability to specify when sharing of kernel data is necessary.

Boyd-Wickizer et al. [74] analyze the scalability of seven system applications

running on Linux. They find that all applications trigger scalability bottlenecks

inside a Linux kernel. RadixVM [75] presents a scalable virtual memory address

space for non-overlapping operations. It avoids cache line contention using three

techniques, which are radix trees, Refcache, and targeted TLB shootdowns.

Our study is inspired by these works [70–75] and in line with them in terms of

investigating the scalability of OS kernels on multi-cores. In contrast, we focus

on the transaction processing in file systems on high-performance storage.

5.5 File and I/O System Optimizations for Highly Par-
allel Storage

Zheng et al. [76] present a storage system for arrays of commodity SSDs. They

create dedicated I/O threads for each SSD and deploy a set-associative parallel

page cache, which divides the global page cache into small and independent sets

75

to reduce lock contention. MultiLanes [18] is a virtualized storage system for

OS-level virtualization on many cores. It builds an isolated I/O stack on top

of a virtualized storage device to eliminate contention on shared kernel data

structures and locks. Bjørling et al. [77] propose a new design for I/O manage-

ment in the block layer. They address the scalability of the Linux block layer

and propose a new Linux block layer, which maintains a per-core request queue.

They design multiple I/O submission/completion queues to minimize cache co-

herence across CPU cores. Jericho [78] is a new I/O stack that improves affinity

between threads, and buffers in the storage I/O path for NUMA multicore

systems. Jericho consists of a NUMA aware file system and a DRAM cache

organized in slices mapped to NUMA nodes. Our study is in line with these

works [18, 76–78] in terms of mitigating the contention on shared resources. In

contrast, we focus on updating the data structures concurrently in a lock-free

manner in journaling file systems.

ScaleFS [79] extends a scalable in-memory file system to support consistency

on an on-disk file system by using per core operation logs. IceFS [80] partitions

the on-disk resources among a new container abstraction called cubes to provide

isolated I/O stacks for localized reaction to faults, fast recovery, and concurrent

file system updates. Thus, data and I/O within each cube are disentangled from

the data and I/O outside of it. SpanFS [15] is a scalable file system that consists

of a collection of micro file system services called domains. It distributes the files

and directories among the domains and provides a global file system view on top

of the domains to maintain consistency. Each domain performs its file system

service, such as data allocation and journaling, independently. Curtis-Maury

et al. [81] present a data partitioning mode to parallelize the majority of file

system operations. They also provide a fine-grained lock-based multiprocessor

model for incremental advances in parallelism.

76

Min et al. [82] analyze the many-core scalability of five file systems by

using their open source benchmark suite (i.e., FxMark). They observe that file

systems are hidden scalability bottlenecks in many I/O-intensive applications.

iJournaling [36] improves the performance of an fsync() call. It journals only

the corresponding file-level transaction to the ijournal area for an fsync call

while exploiting the advantage of the compound transaction scheme. iJournaling

also handles multiple fsync calls simultaneously by allowing each core to have

its own ijournal area to improve the scalability. Our study is in line with these

approaches [15,36,79–82] in terms of investigating the scalability and parallelism

of the file systems. In contrast, we enable concurrent updates on data structures

in a lock-free manner and parallelize I/O operations cooperatively in transaction

processing by focusing its internal operations.

77

Chapter 6

Conculsion

6.1 Summary

High-performance storage devices such as solid-state drives (SSDs) are becom-

ing one of attractive storage solutions for various computer systems. According

to development of the storage devices, optimizing the file systems is essential

in order to fully exploit their features. As our observations, the existing I/O

operations and locking in file systems can be performance bottlenecks on high-

performance SSDs.

This dissertation proposes two key optimizations, 1) efficient I/O strategies

for low-latency SSDs, which transfers requests from discontiguous host mem-

ory buffers to discontiguous storage segments in a single I/O request, and 2)

concurrent updates on data structures and parallel I/O operations for highly

parallel SSDs. Experiments show that our optimized file system achieves higher

performance than the existing file system.

78

6.2 Future work

In the future work, we will extend our techniques and the scope of I/O opti-

mizations for high-performance storage devices.

Extending I/O optimizations for low-latency storage devices. Our

techniques for low-latency storage devices are limited to our customized DRAM-

SSD. However, our techniques can be applied to other storage protocols or de-

vices as well as other file systems. For example, current NVMe protocol transfers

data only from discontiguous host memory buffers to contiguous storage seg-

ments in one I/O request. We can add the feature, which transfers data from

discontiguous host memory buffers to discontiguous storage segments in one

I/O request, to the NVMe protocol. By doing so, we standardize our technique

by adding the new feature to the NVMe protocol and also our optimized file

system can be used for low-latency storage devices with the NVMe protocol.

Also, we will perform a holistic end-to-end I/O stack or cross-layer opti-

mizations for the low-latency storage devices. For example, we can broaden

the scope of our optimizations to cover the whole local file system layers (e.g.,

VFS, block layer, and device driver), distributed file systems, user applications

(e.g., database systems), and network layers. In the existing storage system,

there are many layers, which can generate a performance bottleneck in the low-

latency storage devices. Thus, we first find out the performance bottleneck by

measuring the latency for each layer. And then, we will merge the redundant

operations between layers and minimize the whole I/O path to maximize the

performance.

Extending I/O optimizations for highly parallel storage devices.

In this paper, our techniques for highly parallel storage devices are limited

to the locking for transaction processing in EXT4/JBD2. We can extend the

79

techniques to the locks for other shared resources in the file systems such as file,

page cache, etc. For example, EXT4 uses a coarse-grained lock (mutex) per file.

This locking ensures correct updates on the file, and thus the file consistency is

preserved. A previous study [82] shows the overhead from the file locking such as

an inode mutex. When applications are accessing a shared file, such file locking

become the bottleneck. Thus, we will extend our optimization techniques to the

file locking mechanism to update the file updates concurrently.

For another example, the Linux kernel adopts a page cache organized as

an address space radix tree to cache recently accessed blocks for better I/O

performance. The OS uses a read-copy-update (RCU) lock to protect correct

updates of the radix tree [15,76,83]. Previous studies [76,83] show the page cache

locking overhead and reduce the overhead by using a set-associative parallel

page cache which divides the global page cache into small and independent sets

to reduce lock contention. SpanFS [15] leverages the Linux OS block device

architecture to provide a dedicated buffer cache address space for each domain

to avoid lock contention. For more efficiency, we will extend our technique using

a lock-free data structure to the page cache.

For different storage configuration, we will consider the performance in mul-

tiple storage devices on RAID. In RAID, the I/O operations are performed for

each device in parallel. However, we may rethink the RAID performance on

many cores with a number of highly parallel storage devices considering the

scalability and parallelism. Finally, after we solve the performance bottleneck

in the local file and storage systems, we will extend the optimizations to other

systems such as distributed file systems and database systems. Consequently,

we will consider the whole layers in a small or large system to maximize the

performance from high-performance hardware.

80

Bibliography

[1] E. Grochowski and R. F. Hoyt, “Future trends in hard disk drives,” IEEE

Transactions on Magnetics, vol. 32, no. 3, pp. 1850–1854, 1996.

[2] A. Al Mamun, G. Guo, and C. Bi, Hard disk drive: mechatronics and

control, vol. 23. CRC press, 2006.

[3] B. L. Worthington, G. R. Ganger, and Y. N. Patt, “Scheduling algorithms

for modern disk drives,” ACM SIGMETRICS Performance Evaluation Re-

view, vol. 22, 1994.

[4] Y. J. Yu, D. I. Shin, H. Eom, and H. Y. Yeom, “Ncq vs. i/o scheduler: Pre-

venting unexpected misbehaviors,” ACM Transactions on Storage (TOS),

vol. 6, no. 1, p. 2, 2010.

[5] R. R. Katti, H. L. Stadler, and J.-C. Wu, “Non-volatile magnetic random

access memory,” 1994. US Patent 5,289,410.

[6] H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu, “Evaluating phase change

memory for enterprise storage systems: A study of caching and tiering

approaches,” in Proceedings of the 12th USENIX Conference on File and

Storage Technologies (FAST 14), pp. 33–45, 2014.

81

[7] J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of floating-gate interfer-

ence on nand flash memory cell operation,” IEEE Electron Device Letters,

vol. 23, no. 5, pp. 264–266, 2002.

[8] L. M. Grupp, J. D. Davis, and S. Swanson, “The bleak future of nand

flash memory,” in Proceedings of the 10th USENIX conference on File and

Storage Technologies, pp. 2–2, USENIX Association, 2012.

[9] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and

D. Coetzee, “Better i/o through byte-addressable, persistent memory,” in

Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems

Principles, SOSP ’09, 2009.

[10] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,

R. Sankaran, and J. Jackson, “System software for persistent memory,”

in Proceedings of the Ninth European Conference on Computer Systems,

EuroSys ’14, 2014.

[11] E. Seppanen, M. O’Keefe, and D. Lilja, “High performance solid state

storage under linux,” in Mass Storage Systems and Technologies (MSST),

2010 IEEE 26th Symposium on, 2010.

[12] X. Wu and A. L. N. Reddy, “Scmfs: A file system for storage class mem-

ory,” in Proceedings of 2011 International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, SC ’11, 2011.

[13] J. Yang, D. B. Minturn, and F. Hady, “When poll is better than inter-

rupt,” in Proceedings of the 10th USENIX Conference on File and Storage

Technologies, FAST’12, 2012.

82

[14] Y. J. Yu, D. I. Shin, W. Shin, N. Y. Song, J. W. Choi, H. S. Kim, H. Eom,

and H. Y. Yeom, “Optimizing the block i/o subsystem for fast storage

devices,” ACM Trans. Comput. Syst., vol. 32, no. 2, pp. 6:1–6:48, 2014.

[15] J. Kang, B. Zhang, T. Wo, W. Yu, L. Du, S. Ma, and J. Huai, “Spanfs:

A scalable file system on fast storage devices,” in 2015 USENIX Annual

Technical Conference (USENIX ATC 15), (Santa Clara, CA), pp. 249–261,

USENIX Association, July 2015.

[16] TAILWINDSTORAGE, “Extreme s3804.” http://www.taejin.co.kr,

2014.

[17] Intel Solid State Drive DC P3700 Series. http://www.

intel.com/content/dam/www/public/us/en/documents/

product-specifications/ssd-dc-p3700-spec.pdf, 2015.

[18] J. Kang, C. Hu, T. Wo, Y. Zhai, B. Zhang, and J. Huai, “Multilanes: Pro-

viding virtualized storage for os-level virtualization on manycores,” Trans.

Storage, vol. 12, pp. 12:1–12:31, June 2016.

[19] NVM express. http://www.nvmexpress.org, 2012.

[20] S. Raoux, G. Burr, M. Breitwisch, C. Rettner, Y. Chen, R. Shelby,

M. Salinga, D. Krebs, S.-H. Chen, H. L. Lung, and C. Lam, “Phase-change

random access memory: A scalable technology,” IBM Journal of Research

and Development, vol. 52, no. 4.5, 2008.

[21] B. Dieny, R. Sousa, G. Prenat, and U. Ebels, “Spin-dependent phenomena

and their implementation in spintronic devices,” in VLSI Technology, Sys-

tems and Applications, 2008. VLSI-TSA 2008. International Symposium

on, 2008.

83

http://www.taejin.co.kr
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-dc-p3700-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-dc-p3700-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-dc-p3700-spec.pdf
http://www.nvmexpress.org

[22] J. Coburn, T. Bunker, M. Schwarz, R. Gupta, and S. Swanson, “From aries

to mars: Transaction support for next-generation, solid-state drives,” in

Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles, SOSP ’13, 2013.

[23] D. Vučinić, Q. Wang, C. Guyot, R. Mateescu, F. Blagojević, L. Franca-

Neto, D. Le Moal, T. Bunker, J. Xu, S. Swanson, et al., “DC express:

shortest latency protocol for reading phase change memory over PCI ex-

press,” in Proceedings of the 12th USENIX Conference on File and Storage

Technologies (FAST 14), pp. 309–315, 2014.

[24] Y. Son, H. Kang, H. Han, and H. Y. Yeom, “An empirical evaluation

and analysis of the performance of nvm express solid state drive,” Cluster

Computing, pp. 1–13, 2016.

[25] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, L. Vivier,

and B. S. A. S, “A and viver, l. the new ext4 filesystem: cur-

rent status and future plans,” in In Ottawa Linux Symposium.

http://ols.108.redhat.com/2007/ Reprints/mathur-Reprint.pdf, 2007.

[26] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck,

“Scalability in the xfs file system.,” in USENIX Annual Technical Confer-

ence, vol. 15, 1996.

[27] JFS for Linux. http://oss.software/ibm.com/jfs, 2002.

[28] H. Reiser, “Reiserfs,” 2004.

[29] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1st ed., 1992.

84

http://oss.software/ibm.com/jfs

[30] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau, “Optimistic crash consistency,” in Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems Principles, pp. 228–243,

ACM, 2013.

[31] O. Rodeh, J. Bacik, and C. Mason, “Btrfs: The linux b-tree filesystem,”

ACM Transactions on Storage (TOS), vol. 9, no. 3, p. 9, 2013.

[32] J. Bonwick and B. Moore, “ZFS: The last word in file systems,” 2007.

[33] M. Rosenblum and J. K. Ousterhout, “The design and implementation

of a log-structured file system,” ACM Transactions on Computer Systems

(TOCS), vol. 10, no. 1, pp. 26–52, 1992.

[34] D. Kim, J. Park, K.-g. Lee, and S. Lee, Forensic Analysis of Android Phone

Using Ext4 File System Journal Log, pp. 435–446. Dordrecht: Springer

Netherlands, 2012.

[35] A. C. Arpaci-Dusseau, “Model-based failure analysis of journaling file sys-

tems,” in Proceedings of the 2005 International Conference on Dependable

Systems and Networks, DSN ’05, (Washington, DC, USA), pp. 802–811,

IEEE Computer Society, 2005.

[36] D. Park and D. Shin, “ijournaling: Fine-grained journaling for improv-

ing the latency of fsync system call,” in 2017 USENIX Annual Technical

Conference (USENIX ATC 17), (Santa Clara, CA), pp. 787–798, USENIX

Association, 2017.

[37] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Anal-

ysis and evolution of journaling file systems,” in Proceedings of the Annual

85

Conference on USENIX Annual Technical Conference, ATEC ’05, (Berke-

ley, CA, USA), pp. 8–8, USENIX Association, 2005.

[38] S. C. Tweedie, “Journaling the linux ext2fs filesystem,” in The Fourth

Annual Linux Expo, 1998.

[39] A. Hatzieleftheriou and S. V. Anastasiadis, “Improving bandwidth effi-

ciency for consistent multistream storage,” Trans. Storage, vol. 9, pp. 2:1–

2:27, Mar. 2013.

[40] K. Apt, F. S. De Boer, and E.-R. Olderog, Verification of sequential and

concurrent programs. Springer Science & Business Media, 2010.

[41] J. Östlund and T. Wrigstad, “Multiple aggregate entry points for own-

ership types,” ECOOP 2012–Object-Oriented Programming, pp. 156–180,

2012.

[42] R. M. Stallman and G. DeveloperCommunity, Using The Gnu Compiler

Collection: A Gnu Manual For Gcc Version 4.3.3. Paramount, CA: Cre-

ateSpace, 2009.

[43] N. Y. Song, Y. Son, H. Han, and H. Y. Yeom, “Efficient memory-mapped

i/o on fast storage device,” Trans. Storage, vol. 12, pp. 19:1–19:27, May

2016.

[44] Y. Son, N. Song, H. Han, H. Eom, and H. Yeom, “Design and evaluation

of a user-level file system for fast storage devices,” Cluster Computing,

vol. 18, no. 3, pp. 1075–1086, 2015.

[45] Y. Son, J. W. Choi, H. Eom, and H. Y. Yeom, “Optimizing the file system

with variable-length i/o for fast storage devices,” in Proceedings of the 4th

86

Asia-Pacific Workshop on Systems, APSys ’13, (New York, NY, USA),

pp. 14:1–14:6, ACM, 2013.

[46] J.Axboe, “Fiobenchmark.” http://freecode.com/projects/fio, 1998.

[47] tpcc-mysql. https://github.com/Percona-Lab/tpcc-mysql.

[48] P. Fruhwirt, P. Kieseberg, S. Schrittwieser, M. Huber, and E. Weippl, “Inn-

odb database forensics: Reconstructing data manipulation queries from

redo logs,” in Availability, Reliability and Security (ARES), 2012 Seventh

International Conference on, 2012.

[49] W.-H. Kang, S.-W. Lee, B. Moon, Y.-S. Kee, and M. Oh, “Durable write

cache in flash memory ssd for relational and nosql databases,” in Proceed-

ings of the 2014 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’14, 2014.

[50] S. Chen, A. Ailamaki, M. Athanassoulis, P. B. Gibbons, R. Johnson, I. Pan-

dis, and R. Stoica, “Tpc-e vs. tpc-c: Characterizing the new tpc-e bench-

mark via an i/o comparison study,” SIGMOD Rec., vol. 39, no. 3, pp. 5–10,

2011.

[51] A. Wilson, “The new and improved filebench,” in Proceedings of 6th

USENIX Conference on File and Storage Technologies, 2008.

[52] J. Esmet, M. A. Bender, M. Farach-Colton, and B. C. Kuszmaul, “The

tokufs streaming file system,” in Proceedings of the 4th USENIX Confer-

ence on Hot Topics in Storage and File Systems, HotStorage’12, (Berkeley,

CA, USA), pp. 14–14, USENIX Association, 2012.

[53] A. Kopytov, “Sysbench: a system performance benchmark,” URL:

http://sysbench. sourceforge. net, 2004.

87

http://freecode.com/projects/fio
https://github.com/Percona-Lab/tpcc-mysql

[54] M. Wu and W. Zwaenepoel, “eNVy: a non-volatile, main memory storage

system,” ACM SIGOPS Operating Systems Review, vol. 28, no. 5, pp. 86–

97, 1994.

[55] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani, and D. Low-

ell, “The Rio File Cache: Surviving Operating System Crashes,” in Pro-

ceedings of the Seventh International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS VII, (New

York, NY, USA), pp. 74–83, ACM, 1996.

[56] P. Sehgal, S. Basu, K. Srinivasan, and K. Voruganti, “An empirical study of

file systems on nvm,” in Mass Storage Systems and Technologies (MSST),

2015 31st Symposium on, pp. 1–14, May 2015.

[57] Y. Zhang and S. Swanson, “A study of application performance with

non-volatile main memory,” in Mass Storage Systems and Technologies

(MSST), 2015 31st Symposium on, pp. 1–10, May 2015.

[58] E. Lee, H. Bahn, S. Yoo, and S. H. Noh, “Empirical study of nvm storage:

An operating system’s perspective and implications,” in Proceedings of

the 2014 IEEE 22Nd International Symposium on Modelling, Analysis &

Simulation of Computer and Telecommunication Systems, MASCOTS ’14,

(Washington, DC, USA), pp. 405–410, IEEE Computer Society, 2014.

[59] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu, “A study

of linux file system evolution,” Trans. Storage, vol. 10, pp. 3:1–3:32, Jan.

2014.

[60] J. Piernas, T. Cortes, and J. M. Garcia, “The design of new journaling

file systems: The dualfs case,” IEEE Transactions on Computers, vol. 56,

pp. 267–281, Feb 2007.

88

[61] E. Lee, H. Bahn, and S. H. Noh, “Unioning of the buffer cache and jour-

naling layers with non-volatile memory,” in Presented as part of the 11th

USENIX Conference on File and Storage Technologies (FAST 13), pp. 73–

80, 2013.

[62] J. Xu and S. Swanson, “Nova: A log-structured file system for hybrid

volatile/non-volatile main memories,” in 14th USENIX Conference on File

and Storage Technologies (FAST 16), (Santa Clara, CA), pp. 323–338,

USENIX Association, Feb. 2016.

[63] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,

and S. Swanson, “Nv-heaps: Making persistent objects fast and safe with

next-generation, non-volatile memories,” in Proceedings of the Sixteenth

International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS XVI, 2011.

[64] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight persis-

tent memory,” in Proceedings of the Sixteenth International Conference on

Architectural Support for Programming Languages and Operating Systems,

ASPLOS XVI, 2011.

[65] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and S. Swan-

son, “Moneta: A high-performance storage array architecture for next-

generation, non-volatile memories,” in Proceedings of the 2010 43rd Annual

IEEE/ACM International Symposium on Microarchitecture, 2010.

[66] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn, and S. Swan-

son, “Providing safe, user space access to fast, solid state disks,” in Proceed-

ings of the Seventeenth International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS XVII, 2012.

89

[67] S. Kannan, A. Gavrilovska, and K. Schwan, “pVM: Persistent Virtual

Memory for Efficient Capacity Scaling and Object Storage,” in Proceed-

ings of the Eleventh European Conference on Computer Systems, EuroSys

’16, (New York, NY, USA), pp. 13:1–13:16, ACM, 2016.

[68] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and

E. Bugnion, “IX: A protected dataplane operating system for high through-

put and low latency,” in 11th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 14), pp. 49–65, 2014.

[69] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishnamurthy, T. An-

derson, and T. Roscoe, “Arrakis: The operating system is the control

plane,” in Proceedings of the 11th Symposium on Operating System De-

sign and Implementation (OSDI 14), 2014.

[70] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and A. Gupta,

“Hive: Fault containment for shared-memory multiprocessors,” in Proceed-

ings of the Fifteenth ACM Symposium on Operating Systems Principles,

SOSP ’95, (New York, NY, USA), pp. 12–25, ACM, 1995.

[71] X. Song, H. Chen, R. Chen, Y. Wang, and B. Zang, “A case for scaling

applications to many-core with os clustering,” in Proceedings of the Sixth

Conference on Computer Systems, EuroSys’11, (New York, NY, USA),

pp. 61–76, ACM, 2011.

[72] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,

T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: A new os

architecture for scalable multicore systems,” in Proceedings of the ACM

SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09,

(New York, NY, USA), pp. 29–44, ACM, 2009.

90

[73] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F. Kaashoek, R. Morris,

A. Pesterev, L. Stein, M. Wu, Y.-h. Dai, et al., “Corey: An operating

system for many cores.,” in OSDI, vol. 8, pp. 43–57, 2008.

[74] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,

R. Morris, N. Zeldovich, et al., “An analysis of linux scalability to many

cores.,” in OSDI, vol. 10, pp. 86–93, 2010.

[75] A. T. Clements, M. F. Kaashoek, and N. Zeldovich, “Radixvm: Scalable ad-

dress spaces for multithreaded applications,” in Proceedings of the 8th ACM

European Conference on Computer Systems, pp. 211–224, ACM, 2013.

[76] D. Zheng, R. Burns, and A. S. Szalay, “Toward millions of file system

iops on low-cost, commodity hardware,” in Proceedings of the Interna-

tional Conference on High Performance Computing, Networking, Storage

and Analysis, SC ’13, (New York, NY, USA), pp. 69:1–69:12, ACM, 2013.

[77] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet, “Linux block io: In-

troducing multi-queue ssd access on multi-core systems,” in Proceedings of

the 6th International Systems and Storage Conference, SYSTOR ’13, (New

York, NY, USA), pp. 22:1–22:10, ACM, 2013.

[78] S. Mavridis, Y. Sfakianakis, A. Papagiannis, M. Marazakis, and A. Bilas,

“Jericho: Achieving scalability through optimal data placement on multi-

core systems,” in Mass Storage Systems and Technologies (MSST), 2014

30th Symposium on, pp. 1–10, IEEE, 2014.

[79] R. Eqbal, ScaleFS: A multicore-scalable file system. PhD thesis, Mas-

sachusetts Institute of Technology, 2014.

91

[80] L. Lu, Y. Zhang, T. Do, S. Al-Kiswany, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau, “Physical disentanglement in a container-based file sys-

tem.,” in OSDI, pp. 81–96, 2014.

[81] M. Curtis-Maury, V. Devadas, V. Fang, and A. Kulkarni, “To waffinity

and beyond: A scalable architecture for incremental parallelization of file

system code,” in 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 16), (GA), pp. 419–434, USENIX Association,

2016.

[82] C. Min, S. Kashyap, S. Maass, and T. Kim, “Understanding manycore

scalability of file systems,” in 2016 USENIX Annual Technical Conference

(USENIX ATC 16), (Denver, CO), pp. 71–85, USENIX Association, 2016.

[83] “A parallel page cache: Iops and caching for multicore systems,” in Pre-

sented as part of the 4th USENIX Workshop on Hot Topics in Storage and

File Systems, (Boston, MA), USENIX, 2012.

92

요약

Solid-State Drive (SSD) 와 같은 고성능 저장장치 기술은 낮은 지연시간, 높은

대역폭, 그리고 높은 입출력 병렬성을 제공한다. SSD는 기계적인 오버헤드없이

데이터에 접근이 가능하도록 해주며, 하드 디스크와 같은 기존 저장장치에 비해

수십배의 성능향상을 가져온다. 그러나, 기존 소프트웨어 입출력 계층을 그대로

사용하거나 SSD의 특징을 활용하지 않으면 최대 성능에 도달하지 못할 수 있다.

본 논문에서는 SSD 특징들 (예: 낮은 지연시간, 높은 병렬성)을 최대한 활용

할 수 있도록 파일 시스템을 최적화한다. 이를 위해 첫째, 지연시간이 낮은 SSD

기반에서 파일시스템의 기존 입출력 방식들을 분석한다. 해당 방식은 블락들이

비연속적일 경우, 여러 개의 입출력 요청으로 나누어서 처리하게 된다. 따라서,

이러한 방식은 해당 SSD의 특징을 최대한 활용하지 못한다. 이러한 문제를 해결

하기 위해서, 본 논문은 효율적인 입출력 방식을 제안한다. 제안하는 방식에서는

하나의 입출력 요청으로 파일 시스템의 비연속 호스트 메모리 버퍼들을 비연속

저장소 세그먼트들로 전송한다. 따라서 이는 파일시스템이 지연시간이 낮은 SSD

의 성능을 최대한 활용할 수 있게 해준다.

둘째, 높은 병렬성을 지닌 SSD 기반에서 파일시스템의 기존 락킹과 입출력

병렬성을 분석한다. 파일시스템에서는 공유 자료구조에 접근하기 위해 락킹이 사

용되며, 입출력은 단일 스레드에 의해 직렬화된다. 이러한 이유로 파일시스템은

종종 높은 병렬성을 지닌 SSD와 멀티코어 환경에서 락 경쟁을 발생시키고 입출

력 대역폭을 최대로 활용하지 못하는 문제에 직면한다. 이러한 문제를 해결하기

위해서 자료구조에 대한 동시적인 업데이트와 입출력 동작을 병렬화시킨다.

본 논문은 제안하는 방식들을 EXT4/JBD2에 구현하고 이들을 낮은 지연시간

과 높은 병렬성을 가진 SSD기반에서 평가한다. 실험결과를 통해 최적화된 파일시

스템이 기존 파일시스템에 비해 성능이 향상되었음을 확인할 수 있었다.

93

주요어: 파일시스템, 운영체제, 고성능 저장장치, Solid-State Drive

학번: 2013-30241

94

	Abstract
	Chapter 1 Introduction
	1.1 Motivation .
	1.2 Approach and Contributions .
	1.3 Dissertation Structure .

	Chapter 2 Background
	2.1 High-performance Storage Devices
	2.2 Crash Consistency in File Systems
	2.3 Read and Write Operations in the Existing File Systems
	2.4 Journal I/O in the Journaling File Systems
	2.5 Recovery in the Journaling File Systems
	2.6 Existing Locking and I/O Parallelism in Journaling File Systems

	Chapter 3 Design and Implementation
	3.1 Optimizing File Systems for Low-latency Storage Devices
	3.1.1 Design .
	3.1.2 Implementation .

	iii
	3.2 Optimizing File Systems for Highly Parallel Storage Devices . . .
	3.2.1 Design .
	3.2.2 Implementation .

	Chapter 4 Evaluation
	4.1 Evaluating the Optimized File System for Low-latency Storage .
	4.1.1 Run-time Performance .
	4.1.2 Recovery Performance .
	4.1.3 Experimental Analysis .

	4.2 Evaluating the Optimized File System for Highly Parallel Storage
	4.2.1 Run-time Performance .
	4.2.2 Recovery Performance .
	4.2.3 Experimental Analysis .

	Chapter 5 Related Work
	5.1 Analysis and Evaluation of High-Performance storage
	5.2 Study of Journaling File Systems
	5.3 File and I/O System Optimizations for Low-latency Storage . . .
	5.4 Study of Scalability in Operating Systems
	5.5 File and I/O System Optimizations for Highly Parallel Storage .

	Chapter 6 Conculsion
	6.1 Summary .
	6.2 Future work .

	Abstract
	Chapter 1 Introduction
	1.1 Motivation .
	1.2 Approach and Contributions .
	1.3 Dissertation Structure .

	Chapter 2 Background
	2.1 High-performance Storage Devices
	2.2 Crash Consistency in File Systems
	2.3 Read and Write Operations in the Existing File Systems
	2.4 Journal I/O in the Journaling File Systems
	2.5 Recovery in the Journaling File Systems
	2.6 Existing Locking and I/O Parallelism in Journaling File Systems

	Chapter 3 Design and Implementation
	3.1 Optimizing File Systems for Low-latency Storage Devices
	3.1.1 Design .
	3.1.2 Implementation .

	iii
	3.2 Optimizing File Systems for Highly Parallel Storage Devices . . .
	3.2.1 Design .
	3.2.2 Implementation .

	Chapter 4 Evaluation
	4.1 Evaluating the Optimized File System for Low-latency Storage .
	4.1.1 Run-time Performance .
	4.1.2 Recovery Performance .
	4.1.3 Experimental Analysis .

	4.2 Evaluating the Optimized File System for Highly Parallel Storage
	4.2.1 Run-time Performance .
	4.2.2 Recovery Performance .
	4.2.3 Experimental Analysis .

	Chapter 5 Related Work
	5.1 Analysis and Evaluation of High-Performance storage
	5.2 Study of Journaling File Systems
	5.3 File and I/O System Optimizations for Low-latency Storage . . .
	5.4 Study of Scalability in Operating Systems
	5.5 File and I/O System Optimizations for Highly Parallel Storage .

	Chapter 6 Conculsion
	6.1 Summary .
	6.2 Future work .

<startpage>2
Abstract i
Chapter 1 Introduction 1
 1.1 Motivation . 1
 1.2 Approach and Contributions . 3
 1.3 Dissertation Structure . 4
Chapter 2 Background 6
 2.1 High-performance Storage Devices 6
 2.2 Crash Consistency in File Systems 7
 2.3 Read and Write Operations in the Existing File Systems 9
 2.4 Journal I/O in the Journaling File Systems 10
 2.5 Recovery in the Journaling File Systems 13
 2.6 Existing Locking and I/O Parallelism in Journaling File Systems 14
Chapter 3 Design and Implementation 24
 3.1 Optimizing File Systems for Low-latency Storage Devices 24
 3.1.1 Design . 24
 3.1.2 Implementation . 30
iii
 3.2 Optimizing File Systems for Highly Parallel Storage Devices . . . 33
 3.2.1 Design . 34
 3.2.2 Implementation . 39
Chapter 4 Evaluation 50
 4.1 Evaluating the Optimized File System for Low-latency Storage . 50
 4.1.1 Run-time Performance . 52
 4.1.2 Recovery Performance . 57
 4.1.3 Experimental Analysis . 59
 4.2 Evaluating the Optimized File System for Highly Parallel Storage 61
 4.2.1 Run-time Performance . 63
 4.2.2 Recovery Performance . 66
 4.2.3 Experimental Analysis . 67
Chapter 5 Related Work 69
 5.1 Analysis and Evaluation of High-Performance storage 69
 5.2 Study of Journaling File Systems 70
 5.3 File and I/O System Optimizations for Low-latency Storage . . . 72
 5.4 Study of Scalability in Operating Systems 75
 5.5 File and I/O System Optimizations for Highly Parallel Storage . 75
Chapter 6 Conculsion 78
 6.1 Summary . 78
 6.2 Future work . 79
</body><startpage>2
Abstract i
Chapter 1 Introduction 1
 1.1 Motivation . 1
 1.2 Approach and Contributions . 3
 1.3 Dissertation Structure . 4
Chapter 2 Background 6
 2.1 High-performance Storage Devices 6
 2.2 Crash Consistency in File Systems 7
 2.3 Read and Write Operations in the Existing File Systems 9
 2.4 Journal I/O in the Journaling File Systems 10
 2.5 Recovery in the Journaling File Systems 13
 2.6 Existing Locking and I/O Parallelism in Journaling File Systems 14
Chapter 3 Design and Implementation 24
 3.1 Optimizing File Systems for Low-latency Storage Devices 24
 3.1.1 Design . 24
 3.1.2 Implementation . 30
iii
 3.2 Optimizing File Systems for Highly Parallel Storage Devices . . . 33
 3.2.1 Design . 34
 3.2.2 Implementation . 39
Chapter 4 Evaluation 50
 4.1 Evaluating the Optimized File System for Low-latency Storage . 50
 4.1.1 Run-time Performance . 52
 4.1.2 Recovery Performance . 57
 4.1.3 Experimental Analysis . 59
 4.2 Evaluating the Optimized File System for Highly Parallel Storage 61
 4.2.1 Run-time Performance . 63
 4.2.2 Recovery Performance . 66
 4.2.3 Experimental Analysis . 67
Chapter 5 Related Work 69
 5.1 Analysis and Evaluation of High-Performance storage 69
 5.2 Study of Journaling File Systems 70
 5.3 File and I/O System Optimizations for Low-latency Storage . . . 72
 5.4 Study of Scalability in Operating Systems 75
 5.5 File and I/O System Optimizations for Highly Parallel Storage . 75
Chapter 6 Conculsion 78
 6.1 Summary . 78
 6.2 Future work . 79
</body>

