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Abstract

In orthogonal frequency division multiplexing (OFDM) systems, high peak-to-

average power ratio (PAPR) of OFDM signals is one of the most important problems.

The high PAPR of OFDM signals causes serious nonlinear distortions in process of

passing through high power amplifier (HPA). These distortions have a effect on in-

band distortion and out-of-band radiation, which result in bit error rate degradation of

received OFDM signals and interference in adjacent channel, respectively. In order to

solve the PAPR problem of OFDM signals, various PAPR reduction schemes have been

proposed.

This dissertation includes research results on a kind of the PAPR reduction schemes,

called the partial transmit sequence (PTS) for the OFDM systems. As a solution to the

PAPR problem in OFDM systems, the PTS scheme is a fairly suitable scheme due to

its PAPR reduction performance and distortionless characteristics. The PTS scheme

generates several candidate OFDM signals to represent an original OFDM signal and

selects one with the lowest PAPR among them for transmission. However, a serious

problem in the PTS scheme is high computational complexity, which is mainly required

to generate and process the candidate OFDM signals. In this dissertation, in an effort to

reduce its computational complexity, new PTS schemes are proposed using dominant

time-domain samples of OFDM signals. Dominant time-domain samples is a small

number of samples of OFDM signals used to estimate PAPRs of candidate OFDM

signals efficiently.

In the first part of this dissertation, low-complexity PTS schemes are proposed

using new selection methods of dominant time-domain samples. The proposed selection

methods of dominant time-domain samples are based on selection methods of candidate

samples in candidate OFDM signals. These methods select dominant time-domain

samples with reduced computational complexity. The dominant time-domain samples
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selected by the proposed methods are used to estimate PAPRs of candidate OFDM

signals with high accuracy. Therefore, the proposed low-complexity PTS schemes can

achieve the optimal PAPR reduction performance with considerably reduced computa-

tional complexity.

In the second part of this dissertation, improved PTS schemes are proposed to lower

the computational complexity of previous PTS schemes further while maintaining high

performance of PAPR reduction. Similar with the PTS schemes proposed in the previous

part of this dissertation, the improved PTS schemes utilize dominant time-domain

samples and candidate samples. However, they use more efficient methods, which select

the candidate samples by adaptive method or multi-stage method to select dominant

time-domain samples. Therefore, the improved PTS schemes reduce computational

complexity further while maintaining the optimal PAPR reduction performance.

The proposed PTS schemes in this dissertation use efficient methods to select

dominant time-domain samples and thus they reduce the computational complexity

considerably compared to previous PTS schemes. In addition, they achieve the optimal

PAPR reduction performance, which is equivalent to that of the conventional PTS

scheme with the low complexity. Due to the high performance and low complexity, they

are fully expected to be used in the practical implementation of OFDM systems.

keywords: Dominant time-domain samples, Orthogonal frequency division multiplex-

ing (OFDM), Partial transmit sequence (PTS), Peak-to-average power ratio (PAPR)

student number: 2012-20821
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Chapter 1

INTRODUCTION

1.1 Introduction

Since high data transmission is required in wireless communication systems, a multi-

carrier modulation (MCM) technique has recently attracted attention of wireless com-

munication systems. The main idea of an MCM system is to split a high-rate data

stream into several low-rate data streams and to modulate them by a set of parallel

sub-carriers that makes full use of the available bandwidth. When the channel intro-

duces inter-symbol interference (ISI), the MCM scheme does not require a complex

equalizer at the receiver. It is a useful property when dealing with high-rate data stream

in the time dispersive channel. From a time-domain perspective, this translates the

wide-band transmission system into a collection of parallel narrow-band transmission

systems, each operating at a lower data rate. From the frequency domain perspective, it

transforms the frequency selective channel, i.e., non-flat spectrum across the frequency

band of interest, into a collection of approximately flat sub-channels over which the

data are transmitted in parallel. Thus, the MCM scheme has become one of the choices

to combat the frequency selective fading channel.

Orthogonal frequency division multiplexing (OFDM) [1] is one of the most popular

types of MCM schemes and an enhanced extension of frequency division multiplexing
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(FDM). Since parallel sub-carriers have overlapped spectra, OFDM has high spectral

efficiency and easy adaptation to severe channel without complex time-domain equaliza-

tion. The wireless communication system using OFDM is robust against ISI and fading

caused by multi-path propagation as well as narrow-band co-channel interference. In

addition, the OFDM systems are efficient for hardware implementation because they

can use the fast Fourier transform (FFT) instead of the discrete Fourier transform (DFT).

Further, they have low sensitivity to time synchronization errors. Due to these valuable

advantages, OFDM has been adopted as one of the most popular modulation techniques

for wireless communications. OFDM has been used in the various applications, such as

digital audio broadcasting (DAB), digital video broadcasting (DVB), digital multimedia

broadcasting (DMB), wireless local area network (WLAN) IEEE 802.11 [2], long

term evolution (LTE), and LTE advanced 4G mobile phone standards. OFDM is also a

candidate for 5G cellular standard and military communication systems.

However, OFDM also has several disadvantages. The high peak-to-average power

ratio (PAPR) of OFDM signals is one of the most serious problems in OFDM systems.

Due to the nonlinear property of high power amplifier (HPA), the HPA output of OFDM

signals with high PAPR causes in-band distortion and out-of-band radiation, which

result in degradation of communication quality such as the bit error rate (BER). BER is

an important performance evaluation criterion in all communication systems including

OFDM systems in which high PAPR of the signal is a serious problem. Assuming that

other system conditions such as channels and encoding/decoding schemes except only

for PAPR reduction schemes are fixed in OFDM systems, BER is affected only by

an employed PAPR reduction scheme and the corresponding PAPR. Therefore, good

PAPR reduction performance means good BER performance, which evidently improves

performance of communication systems.

In order to solve the PAPR problem in OFDM systems, various PAPR reduction

schemes have been proposed [3, 4, 5, 6, 7, 8, 9, 10]. Clipping [3] is used to reduce

the peak power by clipping the OFDM signals to the threshold level but it causes

2



severe in-band distortion and out-of-band radiation. To reduce the distortions caused by

clipping, clipping and filtering (CAF) [4] is used, but filtering causes another distortion

and increases computational complexity. Companding [5] scales time-domain signals

nonlinearly such that signals with large amplitude are suppressed and signals with small

amplitude are expanded, but it also distorts the signals unavoidably. Tone reservation

(TR) [6] and active constellation extension (ACE) [7] change constellation points of

some sub-carriers to reduce the PAPR, but their drawbacks are data rate loss and

transmission power increase.

Selective mapping (SLM) [9] and partial transmit sequence (PTS) [10] schemes

can effectively reduce the PAPR of OFDM signals without causing signal distortion.

They require several inverse fast Fourier transform (IFFT) to generate candidate OFDM

signals among which a candidate OFDM signal with the lowest PAPR is selected

and then transmitted as the OFDM signal. In the OFDM system, since FFT and IFFT

operations to generate and process OFDM signals, account for a substantial part of

the overall computational complexity, IFFTs to generate candidate OFDM signals in

SLM and PTS schemes can place a significant burden on the system. In general, PTS

schemes require less IFFTs to generate several candidate OFDM signals compared to

SLM schemes.

The conventional PTS scheme has excellent PAPR reduction performance due to

the simple idea that the candidate OFDM signal with the lowest PAPR is selected for

transmission among candidate OFDM signals generated by the partition and phase

rotation of the original OFDM signal. However, because the conventional PTS scheme

requires lots of computational complexity, various low-complexity PTS schemes have

been proposed [13]–[24]. In the early times, one type of low-complexity PTS schemes

[13]–[16] were proposed to use simplified searches for the optimal OFDM signal, where

the signal with the lowest PAPR among many candidate OFDM signals is selected using

various combinatorial optimization algorithms instead of an exhaustive search. Another

low-complexity PTS scheme [17] was proposed to reduce the computational complexity

3



for the generation of candidate OFDM signals and to search for the transmitted OFDM

signal by utilizing the structural properties of FFT and IFFT. Recently, low-complexity

PTS schemes with better performance and efficiency using the artificial bee colony

algorithm [18], a greedy and genetic algorithm [19], and a modified chaos clonal

shuffled frog leaping algorithm [20] have been proposed. Low-complexity PTS schemes

utilizing pseudo-random sequences to generate the candidate OFDM signals have also

been proposed [21, 22].

The reduced-complexity PTS (RC-PTS) [23] was proposed to reduce the computa-

tional complexity by estimating the PAPRs of candidate OFDM signals based on only

the selected dominant time-domain samples and then to find the candidate OFDM signal

with the lowest estimated PAPR for transmission. Subsequently, improved reduced-

complexity PTS (IRC-PTS) schemes [24] were proposed to reduce the computational

complexity further and enhance the PAPR reduction performance of the RC-PTS. In

order to achieve these efficiency and performance enhancements, the IRC-PTS uses

different metrics to select the dominant time-domain samples.

1.2 Overview of Dissertation

The rest of the dissertation is organized as follows.

Chapter 2 introduces OFDM systems generally. First, OFDM and PAPR are briefly

reviewed. Secondly, mathematically approximated HPA models are introduced. In

addition, PAPR of OFDM signals is analyzed mathematically. Next, the various PAPR

reduction schemes are reviewed. Subsequently, the conventional PTS schemes for the

PAPR reduction are introduced. Finally, the previous low-complexity PTS schemes

using dominant time-domain samples are explained.

In Chapter 3, new PTS schemes are proposed to reduce computational complexity

using new efficient selection methods for dominant time-domain samples compared to

the previous PTS schemes using dominant time-domain samples. At first, methods to

4



select candidate samples for dominant time-domain samples are proposed. In addition,

new methods to select dominant time-domain samples based on the selected candidate

samples are proposed. Lastly, low-complexity PTS schemes using the new selection

method for dominant time-dominant samples are proposed in this chapter.

In Chapter 4, additional low-complexity PTS schemes are proposed to reduce

computational complexity further using more efficient selection methods for dominant

time-domain samples compared to RC-PTS and the PTS schemes proposed in Chapter 3.

Firstly, new methods to select candidate samples adaptively for dominant time-domain

samples are proposed. Also, efficient selection methods for dominant time-domain

samples using the adaptively selected candidate samples are proposed. Additionally,

multi-stage selection methods for dominant time-domain samples are proposed. Finally,

new PTS schemes using those selection methods for dominant time-dominant samples

are proposed in this chapter.

In Chapter 5, performances of the PTS schemes proposed in Chapters 3 and 4

are numerically analyzed. First, the computational complexity of the proposed PTS

schemes is considered and compared to those of the previously known PTS schemes.

In addition, the computational complexity of the proposed PTS schemes with specific

parameters is evaluated and compared to those of the previous PTS schemes while

maintaining the optimal PAPR reduction performance.

Finally, conclusions from researches of the dissertation are given in Chapter 6.
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Chapter 2

PRELIMINARIES

In this chapter, several definitions and fundamental ideas are presented to explain

the proposed PTS schemes. First, OFDM and PAPR are briefly reviewed and the

mathematical HPA models are introduced. Next, PAPR of OFDM signals are analyzed

and then the various PAPR reduction schemes are introduced. Also, the conventional

PTS schemes for the PAPR reduction are explained. Finally, the dominant time-domain

samples used to estimate PAPR are introduced and then the previous low-complexity

PTS schemes using dominant time-domain samples are explained.

2.1 OFDM and PAPR

In this section, OFDM systems and PAPR of the employed OFDM signals are briefly

reviewed. In OFDM systems, original data bits are usually modulated by phase shift

keying (PSK) or quadrature amplitude modulation (QAM). A serial block ofN symbols

is converted to a parallel block to generate a corresponding frequency-domain input

symbol vector X = [X0, X1, · · · , XN−1]T . A time-domain OFDM signal is generated

by adding N input symbols modulated onto the corresponding N orthogonal sub-
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carriers (sub-channels). The complex baseband OFDM signal xt is then obtained as

xt =
1√
N

N−1∑
k=0

Xke
j2πk∆ft, 0 ≤ t ≤ NT (2.1)

where j =
√
−1 , ∆f denotes the sub-carrier bandwidth, and NT denotes the period of

the OFDM signal in which time interval of each element is T . Note that the sub-carriers

of the OFDM signal satisfy the condition ∆f = 1/NT for the orthogonal relationship.

The PAPR of the original OFDM signal is defined as

PAPR =

max
0≤t≤NT

|xt|2

E
[
|xt|2

] (2.2)

where E [·] denotes the expectation. Let L denote the oversampling factor, which is an

integer larger than or equal to 1. For efficient approximation of xt and its PAPR, only

LN samples of xt, referred to as L-times oversampled OFDM signal vectors are consid-

ered. The L-times oversampled input symbol vector XL = [X0, X1, · · · , XLN−1]T is

obtained by padding consecutive (L− 1)N zeros [0, 0, · · · , 0]︸ ︷︷ ︸
(L−1)N

T to the middle or end of

the original input symbol vector. The L-times oversampled input symbol vector XL is

transformed to L-times oversampled OFDM signal vector xL = [x0, x1, · · · , xLN−1]T

of which an element xn is represented as

xn =
1√
LN

LN−1∑
k=0

Xke
j2πkn
LN , 0 ≤ n ≤ LN − 1. (2.3)

It is well known that the OFDM signal vector can be interpreted as the inverse

discrete Fourier transform (IDFT) of the input symbol vector. In OFDM systems,

OFDM signals are generated using IFFT, which reduces computational complexity of

the IDFT. Throughout the dissertation, we abuse the notations XL and xL as X and x,

respectively. The OFDM signal vector is also abused as the OFDM signal.

It is generally known that the PAPR of the original OFDM signal can be precisely

estimated from not the Nyquist-rate sampled OFDM signal with L = 1 but the over-

sampled OFDM signal with L = 4 [25]. The PAPR of the L-times oversampled OFDM

7



signals is calculated as

PAPR (x) =

LN−1
max
n=0

|xn|2

E
[
|xn|2

] . (2.4)

In general, OFDM signals have high PAPR values, which is one of the most important

problems in the OFDM systems. The serious problems are caused by OFDM signals

with high PAPR through a nonlinear HPA. If OFDM signals with high PAPR pass

through nonlinear band of a HPA, the output signals have distortions. Figure 2.1

represents an example of distortion caused by OFDM signals with high PAPR through

a nonlinear HPA. The distortions of signals are divided into two kinds of which one

is in-band distortion and the other is out-of-band radiation. The in-band distortion

and the out-of-band radiation cause BER increase and adjacent channel interference

respectively in communication systems.

To solve the PAPR problems in OFDM signals, various PAPR reduction schemes

have been proposed. In the latter sections of this chapter, representative PAPR reduction

schemes are introduced by classifying them into iterative scheme and probabilistic

scheme. PAPR reduction schemes cannot only reduce PAPRs of OFDM signals but also

reduce in-band distortion and out-of-band radiation to enhance communication quality

effectively in OFDM systems.

2.2 High Power Amplifier Models

In this section, mathematical models are introduced to characterize nonlinear HPAs gen-

erally. If the number of sub-carrier is large enough, OFDM signals can be approximated

by a complex Gaussian process by central limit theorem. Therefore, by a Gaussian pro-

cess, OFDM signals may have very wide dynamic range. This characteristic of OFDM

signals may cause serious distortions, which is nonlinear in a practical implementation

since devices such as analog-to-digital converter (ADC), mixer, and HPA have a finite

dynamic range. Especially, HPA operating in its nonlinear regions produces AM/AM

and AM/PM distortions which are the amplitude and phase distortion, respectively and

8



Figure 2.1: An example of distortion caused by OFDM signals with high PAPR through

a nonlinear HPA.
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they generate in-band distortion and out-of-band radiation of OFDM signals. Note that

in-band distortion and the out-of-band radiation of signals cause BER increase and

adjacent channel interference respectively in communication systems.

Since modeling nonlinear characteristics of HPA is not easy, a simplified input-

output relation of nonlinear HPA for a baseband OFDM signal xt = |xt|eφxt is repre-

sented as

sout (t) = G [|xt|] ej(φxt+Φ[|xt|]) (2.5)

where the functions G (·) and Φ (·) denote the AM/AM and AM/PM distortions, re-

spectively. There are typically two models used for characterizing a nonlinear HPA. In

the model called traveling wave tube amplifier (TWTA) [26], an input-output relation

of nonlinear HPA for xt is represented by Saleh’s model as

G [|xt|] =
αG |xt|

1 + βG |xt|2
(2.6)

and

Φ|xt| =
αΦ |xt|2

1 + βΦ |xt|2
(2.7)

where the parameters αG, βG, αΦ, and βΦ determine the characteristics of TWTA.

On the other hand, the other model called solid state power amplifier (SSPA) [27]

is useful for low and medium power level of nonlinear HPAs such as GaAs FET based

amplifiers. In SSPA, an input-output relation for xt is modeled as

G [|xt|]] =
g0 |xt|[

1 +
(
|xt|
xsat

)2
p

] 1
2p

(2.8)

and Φ|xt| = 0, where g0 denotes a small signal gain, xsat denotes an input saturation

level, and p determines the smoothness of the transition from the linear region to the

saturation region. Note that AM/PM conversion is assumed to be very small and usually

negligible to be zero.
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2.3 Analysis of PAPR

In this section, PAPR of signals in OFDM systems is analyzed mathematically. In

addition, BER affected by PAPR of signals in OFDM systems is also introduced

analytically.

2.3.1 PAPR of OFDM Signal

An OFDM signal is sum of many independent complex signals modulated onto orthog-

onal sub-carriers with constant inter-carrier spacing of equal bandwidth. The PAPR of

the passband OFDM signal is defined as the ratio between the maximum power and the

average power of the signals as

PAPR (xt,PB) =

max
0≤t<Tu

|xPB (t)|2

Pav,PB
, 0 ≤ t < Tu. (2.9)

Pav,PB denotes the average power of the passband OFDM signal xt,PB and is represented

as

Pav,PB = E
[
|xt,PB|2

]
= σ2

PB

(2.10)

where σPB denotes the magnitude of xt,PB.

On the other hand, the PAPR of the baseband OFDM signal is defined as

PAPR (xt) =

max
0≤t<Tu

|xt|2

Pav
, 0 ≤ t < Tu (2.11)

where Pav denotes the average power of the baseband OFDM signal xt and is repre-

sented as

Pav = E
[
|xt|2

]
= E

[∣∣∣a〈l〉 (t)∣∣∣2]
= σ2.

(2.12)
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Note that

PAPR (xt,PB) ≈ 2PAPR (xt) . (2.13)

The relationship in (2.13) is easily derived from

max
0≤t<Tu

|xt,PB|2 ≈ max
0≤t<Tu

|xt|2 (2.14)

and

Pav,PB ≈
1

2
Pav. (2.15)

Since σ2 is a statistical mean, it does not vary in different OFDM blocks and the

average power of xt can be represented by the function of modulation order M in QAM

modulation as

P (M) =
M − 1

6
d2

min (2.16)

where dmin is the smallest distance between M -QAM symbols. Clearly, σ2 is constant

with the same value for all modulations by M -PSK.

In some analyses of PAPR, it is needed to define PAPR for the average power of a

given OFDM signal [28] as

PAPRG (xt) =

max
0≤t<Tu

|xt|2

Pav,G
, 0 ≤ t < Tu. (2.17)

Pav,G is calculated as

Pav,G =
1

Tu

∫ Tu

0
|xt|2 dt

=
1

N

N−1∑
k=0

|Xk|2
(2.18)

and it is the same as σ2 in the case of PSK modulation. In QAM modulation, Pav,G may

vary according to the distribution of Xk but comes close to σ2 as N increases. Since N

is usually large enough in OFDM systems, Pav,G in case of QAM modulation is also

approximately the same as σ2.
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In practical implementation of PAPR reduction scheme, PAPR for the baseband

discrete OFDM signal obtained by (2.3) should be calculated as

PAPR (xn) =

max
0≤t<Tu

|xn|2

Pav
, 0 ≤ n < LN. (2.19)

Nyquist sampled discrete OFDM signals do not represent the continuous time OFDM

signals exactly. Also, the PAPR of the discrete OFDM signals is usually smaller than

that of the continuous OFDM signals [29, 30]. Therefore, the discrete OFDM signals

should be oversampled to approximate the continuous OFDM signals. It is shown

that PAPR of the oversampled discrete OFDM signals can approximate that of the

continuous OFDM signals if the oversampling factor L is more than 4. The reason is an

error caused by sampling and an upper bound of the error is derived in [31] as∣∣∣∣ max
0≤t<Tu

|xt| − max
0≤t<Tu

|xn|
∣∣∣∣ ≤ N [cos−1

( π
2L

)
− 1
]
. (2.20)

For large N , the real and imaginary parts of the complex discrete OFDM signal

xn are approximately modeled as Gaussian random processes by central limit theorem.

Also, the amplitude of xn can be assumed to be Rayleigh distributed. Based on the

above approximations, the probability that the PAPR of OFDM signal xn with N

sub-carriers is higher than a threshold λ is represented by a complementary cumulative

distribution function (CCDF) as

Pr (PAPR (xn) > λ) = 1− (Pr (|xn| ≤ λ))N

≈ 1−
(

1− e−λ
)N

.
(2.21)

Various CCDFs of PAPR distributions of OFDM signals are represented in Figures

2.2, 2.3, and 2.4. Note that QAM modulation is used for the CCDFs. Figure 2.2 shows

CCDFs of PAPR distributions for OFDM signals with various signal lengthN . In Figure

2.2, it is shown that PAPRs of OFDM signals increase as N increases. In addition,

Figure 2.3 represents CCDFs of PAPR distributions for OFDM signals with various

modulation order M , respectively. From Figure 2.3, it is concluded that M does not
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Figure 2.2: CCDFs of PAPR distributions of OFDM signals with variousN for 16-QAM

and L = 1.

affect the PAPR distribution of OFDM signals. Also, Figure 2.4 also shows the CCDFs

of PAPR distributions for OFDM signals with various oversampling factor L. In Figure

2.4, it is noted that the PAPR distribution of OFDM signals with L = 4 is almost

identical to that with L = 16. Note that OFDM signals with L = 16 can be regarded as

the same as continuous OFDM signals. Therefore, it is generally known that OFDM

signals with L = 4 approximately represents continuous OFDM signals with high

accuracy.

In case that some PAPR reduction schemes are applied to the OFDM signals and

then the signals are distorted, the average power σ2 in (2.12) becomes different with
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Figure 2.3: CCDFs of PAPR distributions of OFDM signals with various M for N =

512 and L = 1.
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- CCDF for various J (N:512, M:16)
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Figure 2.4: CCDFs of PAPR distributions of OFDM signals with various L forN = 512

and 16-QAM.
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P (M) in (2.16). If σ2 becomes larger than P (M), P (M) is used as denominator to

calculate the PAPR of OFDM signals in (2.11) for fair comparison. On the other hand,

in case that σ2 becomes smaller than P (M), they can consider the shaping gain defined

as

γSG =
P (M)

σ2
. (2.22)

The PAPR reduction scheme with the shaping gain γSG larger than one can improve

BER performance by extending dmin for the same transmission power as the original

OFDM symbols.

2.3.2 PAPR and BER

As mentioned in the previous section, OFDM signals may have wide dynamic range.

It means that if the signals pass through HPAs with finite linear range, they may have

serious nonlinear distortions. These distortions affect degradation of BER performance

on received signals in OFDM systems. In order to solve this degradation problem of

BER in OFDM systems, PAPR reduction of OFDM signals is indeed required and

various PAPR reduction schemes have been proposed. PAPR reduction schemes can

lower PAPR of OFDM signals and it matches dynamic range of OFDM signals with

targeted linear range of HPAs. Thus, PAPR reduction of OFDM signals reduces the

signal distortions caused in nonlinear range of HPAs and therefore enhance the BER

performance.

Research in [28] explains relationship between PAPR and BER in OFDM systems.

Figure 2.5 shows relationship between them of OFDM signals with QPSK (M = 4)

modulation numerically. In this results, signal length N = 16 and N = 256 are set and

a probabilistic PAPR reduction scheme as introduced in Section 2.5 is used for PAPR

reduction of OFDM signals. In the probabilistic PAPR reduction scheme, U candidate

signals for representing original OFDM signals are used to reduce PAPR of them. As

number of candidate signals increases, PAPR reduction performance is improved but

computational complexity increases. In Figure 2.5, note that “No Scaling” means a case

17



Figure 2.5: BER of uncoded OFDM signals with QPSK modulation.

in which HPAs are not used and thus no distortion is caused by passing through HPAs.

Also, “No Reduction” denotes a case in which no PAPR reduction is operated. Results

in Figure 2.5 show that PAPR reduction schemes can enhance BER performance of

signals in OFDM systems.

2.4 Iterative PAPR Reduction Schemes

In this section, various iterative PAPR reduction schemes are reviewed. The iterative

schemes directly reduce peaks of OFDM signals. Therefore, they cause in-band distor-

tion and out-of-band radiation during peak reduction. To suppress the in-band distortion

and out-of-band radiation, several iterative processes are required.
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2.4.1 Clipping and Filtering

Clipping the OFDM signal is usually realized by soft envelope limiter defined as

x̄n =


xn, |xn| ≤ Ath

Athe
jθn , |xn| > Ath

(2.23)

where xn = |xn| ejθn and positive value Ath denotes the preset target threshold level.

Clipping scheme guarantees to reduce PAPR of the OFDM signal to the targeted

threshold level. However, it causes in-band distortion and out-of-band radiation by

distorting the OFDM signal nonlinearly. Note that the in-band distortion increases BER

of the received OFDM signals and the out-of-band radiation causes interference to the

signals in the neighboring channels.

To mitigate the interference in the adjacent channels, clipping and filtering (CAF)

scheme was proposed [4]. The CAF scheme is the iterative scheme where the clipped

signal x̄n is transformed to the frequency domain symbol X̄k by FFTing x̄n and X̄k’s

in out-of-band, that is, N ≤ n < LN are set to zero, which means the operation

of out-of-band radiation removal. Since out-of-band radiation removal causes peak

regrowth of the clipped OFDM signal, a clipping and filtering process is required to

be iterated until PAPR of the iteratively clipped and filtered OFDM signal meets the

targeted threshold level or the number of iterations reaches the predetermined maximum

number.

Therefore, the CAF scheme is quite a simple method but many FFT and IFFT

operations in the iterative process are needed to achieve the desired PAPR reduction

performance. Note that a FFT or IFFT operation requires a lot of complex additions

and multiplications. It means that the CAF have a problem of high computational

complexity, which is mainly caused by many FFT and IFFT operations.
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2.4.2 Tone Reservation

Tone reservation (TR) scheme reserves some tones for generating a PAPR reduction

signal instead of data transmission [6]. Let R = {i1, i2, · · ·, iW } denote the ordered

set of the positions of the reserved tones and Rc denote the complement set of R in

N = {0, 1, · · ·, N − 1} where W denotes the numbers of the reserved tones. In the TR

scheme, an input OFDM symbol Xk is expressed as

Xk = Ak + Ck

=


Ak, k ∈ Rc

Ck, k ∈ R

(2.24)

whereAk denotes the data symbol with 0 in the setR andCk denotes the peak reduction

symbol with 0 in the set Rc. Figure 2.6 illustrates input OFDM symbols, which are

generated by combining data symbols and peak reduction symbols in TR scheme.

Let xn, an, and cn be the time-domain signals obtained by IFFTing Xk, Ak, and Ck,

respectively. Since IFFT is a linear operation, the baseband discrete-time OFDM signal

xn corresponds to the summation of the data signal an and the PAPR reduction signal

cn, i.e., xn = an + cn.

Figure 2.6: Input OFDM symbols of TR scheme.

In the TR scheme, the PAPR of the input signal vector x is defined as

PAPR(x) =

max
0≤n≤N−1

|an + cn|2

E
[
|xn|2

] . (2.25)
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It should be noted that the denominator is not E
[
|xn + cn|2

]
but E

[
|xn|2

]
. The reason

is that if E
[
|xn + cn|2

]
is used as the denominator in the PAPR of the input signal

vector, the PAPR can be reduced simply by increasing the average power of cn.

Next, the generation method of peak reduction signals is introduced. Peak reduction

signals are iteratively generated as follows. Let p = [p0, p1, · · ·, pN−1]T be the time-

domain kernel signal vector, of which an element pn is defined as

pn =
1√
N

∑
k∈R

Pke
j2πkn
N (2.26)

where P = [P0, P1, · · ·, PN−1]T denotes peak reduction tone (PRT) vector where

Pk = 0 for k ∈ Rc. The kernel signal p is used to compute the PAPR reduction signal

vector c iteratively [6]. That is, the PAPR reduction signal vector cl at the lth iteration

is obtained as

cl =
l∑

i=1

αip(τi) (2.27)

where p(τi) denotes a circular shift of p by τi and αi denotes a complex scaling factor

computed according to the target threshold level γth and the maximum peak value at

the ith iteration. The circular shift τi is determined as

τi = arg max
0≤n≤LN−1

∣∣an + ci−1
n

∣∣ . (2.28)

Then, the OFDM signal in the TR scheme at the lth iteration can be represented as

x = a + cl. (2.29)

By the shift property of the Fourier transform, it is always the case that elements

of Q−1p(τi) and Cl = Q−1cl are zero in Rc, where Q−1 denotes the FFT matrix.

Therefore, the iteratively generated PAPR reduction signal vector does not affect the

data symbols. If the maximum number of iterations is reached or the desired peak power

is obtained, iteration stops. For simplicity, it is assumed that only one maximum peak

of the OFDM signal vectors is reduced in an iteration stage. Figure 2.7 shows a block

diagram of TR scheme.
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Figure 2.7: A block diagram of TR scheme.

The PAPR reduction performance of the TR scheme depends on the selection of

the PRT setR. However, this problem is known as NP-hard, because the kernel p must

be optimized over all possible discrete setsR. Thus, it cannot be solved for practical

values of N . To solve the problem, an efficient method is proposed for selecting a near

optimal PRT set [11].

As an efficient TR scheme, a multi-stage TR scheme was proposed to enhance data

rate compared to previous TR schemes [12]. The multi-stage TR scheme selects one of

several PRT sets adaptively according to the PAPR of the OFDM signal while the PRT

set is fixed for the conventional TR scheme. In fact, the multi-stage TR scheme utilizes

the conventional TR schemes in a sequential manner.

Figure 2.8 shows a two-stage TR scheme where the first TR block TR1 is the

conventional TR scheme using R1 and γ1 as its PRT set and threshold level, respectively,

while the second TR block TR2 uses R2 and γ2. In this scheme, the peak of an OFDM

signal is initially reduced by TR1 using the threshold level γ1. After processing by TR1,

the OFDM signal is transmitted, if the PAPR of the processed OFDM signal is lower

than the target PAPR threshold level γ2. Otherwise, the OFDM signal must be processed

by TR2 for further reduction of PAPR. For the two-stage TR scheme, additional side
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information of 1-bit must be transmitted to indicate which TR block is used. Assume

a two-stage TR scheme where the first TR block TR1 is the conventional TR scheme

using R1 and γ1 as its PRT set and the target threshold level, respectively, while the

second TR block TR2 uses R2 and γ2.

Figure 2.8: A block diagram of multi-stage TR scheme.

The two PRT sets must be designed to satisfy the condition, R1 ⊂ R2. The peak

of an OFDM signal is initially reduced by TR1 using the target threshold level γ1 to

generate the peak reduced OFDM signal vector x1. After processing by TR1, x1 is

transmitted, if the PAPR of the processed OFDM signal is lower than the target PAPR

threshold level γ2. Otherwise, x1 must be processed by TR2 for further reduction of

PAPR. For the two-stage TR scheme, additional side information of 1-bit must be

transmitted to indicate which TR block was used.

The average tone reserved ratio (TRR) of the two-stage TR scheme is defined as

ρav = ρ1Pr (PAPR (x1,n) < γ2) + ρ2 (1− Pr (PAPR (x1,n) < γ2)) (2.30)

where ρ1 and ρ2 denote the TRR values of TR1 and TR2, respectively, and PAPR(x1,n)

denotes the PAPR of x1 after TR1 is applied.

Since ρ2 > ρ1, to minimize ρav, it is desirable to select the threshold level γ1 such

that Pr(PAPR(x1,n) < γ2) is quite high (≥ 0.9). Then, the two-stage TR scheme can
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reduce the PAPR level of OFDM signals below the target threshold level γ2 while

achieving an average TRR close to ρ1. In other words, it is possible to obtain the desired

peak power reduction with the smaller number of iterations than that of the conventional

TR for the same data rate and as a consequence, the proposed scheme can reduce the

computational complexity considerably.

2.4.3 Active Constellation Extension

Active constellation extension (ACE) scheme reduces the amplitude of peak signals by

extending sub-carriers located at exterior constellations to outer region to keep minimum

distance between symbols [7]. It is aimed to reduce PAPR by clipping without BER

performance degradation and out-of-band radiation. However, there are some transmit

power increase and additional complexity with this scheme.

Let CPRD = {C0, C1, ..., CLN−1} be the set of peak reduction data in frequency

domain and Cext represent allowable space of peak reduction data satisfying ACE

constraint. Then ACE minmax problem can be formulated as

min
C∈Cext

max |x̂n| (2.31)

where

x̂n = xn + cn

=
1√
N

LN−1∑
k=0

(Xk + Ck) e
j2πnk
LN .

(2.32)

For example, if we use soft envelope limiter in (2.23) to reduce signals of which

amplitude is larger than Ath, CPRD is the set of data given by IFFTing the clipping

noise cn and it is usually non-zero value for Ck, 0 ≤ k ≤ LN − 1. After applying

ACE constraint, the peak reduction data located at outward of exterior constellation

are projected to the position where the resulting OFDM symbols keep their minimum

distance and the others including peak reduction data in out-of-band are set to zero.

Consequently, CPRD becomes the subset of Cext.
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ACE uses non-bijective constellations to reduce the PAPR by appropriately en-

coding the data symbols. The idea is easily explained in the case of OFDM systems

with QPSK modulation in each sub-carrier. For an individual sub-carrier, there are

four possible constellation points, which lie in each quadrant in the complex plane and

are equidistant from the real and imaginary axes. Assuming that channel is affected

by additive white Gaussian noise (AWGN), the maximum-likelihood (ML) decision

regions are the four quadrants bounded by the axes and thus a received data symbol

is assigned according to the quadrant in which the symbol is observed. Since only

one of the four constellation points can be transmitted at a time, errors occur when

noise translates the received symbol into one of the other three quadrants. Any point

farther from the decision boundaries than the nominal constellation point (in the proper

quadrant) will offer increased margin, which guarantees a lower error rate. Therefore,

in ACE, modification of constellation points is allowed within the quarter-plane outside

of the nominal constellation point with no degradation of BER performance.

This principle of ACE is illustrated in Figure 2.9 where Figures 2.9(a) and (b) show

modifications of constellation points in QPSK (M = 4) and 16-QAM modulation,

respectively. In Figure 2.9(a), the shaded region represents the region of increased

margin for the data symbol in the four quadrants. In OFDM systems with ACE, the

effect of moving into the shaded region is to add additional symbols in the particular

sub-carriers to the original OFDM symbols. if adjusted intelligently, a combination of

these additional symbols can be used to partially cancel peaks of original time-domain

OFDM signals. In Figure 2.9(b), the shaded region represents corner-point extension

regions. Also, the dotted and arrowed lines represent the extension paths for side points.

The ACE idea can be applied to other PSK and QAM constellations as well, since

symbol points on the outer boundaries of the constellations have room for increased

margin without degrading BER for other symbols. In the case of BPSK, alteration

of the constellation point within the half-plane of equal or greater distance from the

decision boundary is acceptable. For square QAM constellations, interior points cannot
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be moved, side points can be extended only outward in one direction, and corner points

have the flexibility to be translated outward in two directions.

Some practical methods to solve this optimization problem are proposed in [7].

Projection onto convex set (POCS) method achieves optimal solution but converges

very slowly. Smart gradient project (SGP) method which uses gradient step size to

improve convergence speed is sub-optimal solution but faster than POCS.

Since ACE method uses degree of freedom of data located at exterior constellation

to reduce PAPR, it does not need any additional process at receiver which means that it

can be applied to the existing systems with minor modification at transmitter. Moreover,

there is no loss in data rate because it does not need any side information or extra tones.

Drawbacks of ACE are the increased signal power and the large computational com-

plexity due to iterative process. If it is possible to reduce the amount of peak regrowth

due to ACE constraint, ACE can achieve the same PAPR reduction performance as that

of the conventional ACE with the smaller number of iterations. One of the possible

scheme is to use peak cancelling instead of clipping. There will be no peak regrowth if

PRT set is constructed such that the peak reduction data after peak cancelling are in a

subset of Cext. However, it is impossible to find PRT set satisfying this condition before

peak cancelling. Instead, it can be suboptimal to allow PRT set to have valid value only

at the same indices as symbols located at exterior constellation.

2.5 Probabilistic PAPR Reduction Scheme: Selective Map-

ping

In this and the next section, probabilistic PAPR reduction schemes called selective

mapping (SLM) and partial transmit sequence (PTS) are introduced, respectively. The

probabilistic schemes generate multiple candidate OFDM signal vectors to represent

a OFDM signal vector. And then a candidate OFDM signal vector with the minimum

PAPR is selected among all the candidate OFDM signal vectors and transmitted as an
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(a) QPSK modulation

(b) 16-QAM modulation

Figure 2.9: Modified constellations of modulations in ACE scheme.
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OFDM signal vector. In the probabilistic schemes, high-complexity computation is

required to process the candidate OFDM signal vectors.

In the SLM scheme [9],U candidate symbol vectors X(u) =
[
X

(u)
0 , X

(u)
1 , · · · , X(u)

N−1

]T
,

1 ≤ u ≤ U are generated via component-wise vector multiplication of the input symbol

vector X and U phase rotation vectors P(u) =
[
P

(u)
0 , P

(u)
1 , · · · , P (u)

N−1

]T
. The nota-

tion X(u) = X ⊗ P(u) denotes component-wise multiplication of X and P(u), i.e.,

X
(u)
k = XkP

(u)
k , 0 ≤ k ≤ N − 1.

The phase rotation vector P(u) is generated by using the unit-magnitude complex

number, that is, P (u)
k = ejφ

u
k , where φuk ∈ [0, 2π). In general, binary or quaternary

elements are used for P (u)
k , that is, {±1} or {±1,±j}.

IFFT operation is performed for each of U candidate symbol vectors to generate U

candidate OFDM signal vectors as

x(u) = QHX(u)

= QH
(
X⊗P(u)

)
, 1 ≤ u ≤ U.

(2.33)

Then, the OFDM signal vector with the minimum PAPR among U candidate OFDM

signal vectors is selected and transmitted. The index uopt of the transmitted candidate

OFDM signal vector is obtained by

uopt = arg min
1≤u≤U

(
max

0≤n≤N−1
|xu,n|

)
. (2.34)

Therefore, x(uopt) is selected and then transmitted as the OFDM signal vector. Figure

2.10 represents process of the conventional SLM scheme. Clearly, as U increases, PAPR

reduction become large while the computational complexity becomes too high, mainly

due to U IFFTs. it should be noted that there is a saturation effect, that is, the additional

PAPR reduction gain decreases as U increases.

In order to recover the original input symbol vector in the receiver, the transmitter

must send the side information about the index u. Note that this side information causes

a slight increase in redundancy, which means date rate loss. Since the index information

is important, it must be encoded for error detection and correction. If the code rate is
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Figure 2.10: A block diagram of the conventional SLM scheme.

R and the SLM scheme using U phase rotation vectors is concerned, dlogM (U/R)e

symbols must be transmitted where dde denotes the smallest integer greater than or

equal to d.

In order to achieve a large PAPR reduction in the conventional SLM scheme, it has

to generate a sufficiently large number of candidate OFDM signal vectors, which cause

a high computational complexity because IFFT must be performed to generate each

candidate OFDM signal vector. Therefore, it is desirable to reduce the number of IFFTs

and avoid degradation of the PAPR reduction performance.

A new SLM scheme with low computational complexity is proposed in [32]. This

is a method for applying the SLM scheme to the intermediate stage of IFFT rather than

the first stage as in the previous subsection. In this scheme, the N point IFFT based

on decimation-in-time algorithm is partitioned into two parts, i.e., the first l stages and

the remaining n − l stages. To make candidate OFDM signal vectors, it multiplies

the different U phase rotation vectors, P(u), 1 ≤ u ≤ U , using the signal in the

intermediate lth stage of IFFT. Based on the proposed SLM scheme, the computational

complexity is reduced compared to the conventional SLM scheme, because it uses a

common IFFT upto l stages and then the SLM scheme is applied to the intermediate

stage IFFTed signals.

Since the proposed SLM scheme is performed using a stage-by-stage IFFT approach,
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its computational complexity can be reduced compared to the common IFFT operation

Ql−1
0 = Tl−1Tl−1· · ·T0. The output signal corresponding to the phase rotation vector

in the proposed SLM scheme x̃ can be expressed as

x̃ = Tn· · ·Tk+1P̃Tk· · ·T1A (2.35)

where P̃ is a 2n−l × 2n−l diagonal block matrix, i.e., each 2l × 2l subblock of P̃ is

either ±I2l . Here, I2l is the 2l × 2l identity matrix.

When the number of sub-carriers is N = 2n, the numbers of complex multiplica-

tions nmul and complex additions nadd of the conventional SLM scheme are given as

nmul = 2n−1nU and nadd = 2nnU , respectively, where U denotes the total number of

phase rotation vectors. If the phase rotation vectors are multiplied after the lth stage of

IFFT, the numbers of complex computations of the proposed SLM scheme are given as

nmul = 2n−1n+ 2n−1(n− l)(U − 1) and nadd = 2nn+ 2n(n− l)(U − 1).

The proposed SLM scheme has almost the same PAPR reduction performance as

that of the conventional SLM scheme for n − l = 5 and 16-QAM constellation. In

the case of n− l = 5, the proposed scheme reduces the computational complexity by

41∼51% as U increases from 4 to 16.

The modified SLM scheme [33] generates some of candidate OFDM signal vectors

using the other ones in the time-domain. Let x(i) and x(k) be the candidate OFDM

signal vectors, generated by the conventional SLM scheme as in (2.33). Based on linear

property of the Fourier transform, the linear combination of these two vectors can be

given as

x(i,k) = cix
(i) + ckx

(k)

= ciQ
(
X⊗P(i)

)
+ ckQ

(
X⊗P(k)

)
= Q

(
X⊗

(
ciP

(i) + ckP
(k)
)) (2.36)

where ci and ck are complex numbers. If each element of the vector ciP(i) + ckP
(k)

in (2.36) has a unit magnitude, ciP(i) + ckP
(k) can also be used as a phase rotation
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vector for the SLM scheme and x(i,k) can be considered as the corresponding candidate

OFDM signal vector. Therefore, if candidate OFDM signal vectors xi and xk are

prepared, another candidate OFDM signal vector x(i,k) can be obtained, which avoids

the need for IFFT. Note that the phase rotation vector ciP(i) + ckP
(k) is not statistically

independent of P(i) and P(k). The modified SLM scheme has the method, which make

each element of ciP(i) + ckP
(k) a unit magnitude, in the condition that each element

of the phase rotation vectors P(i) and P(k) has a unit magnitude. Clearly, the elements

of the vector ciP(i) + ckP
(k) have a unit magnitude if the following conditions are

satisfied:

1) Each element of Pi and Pk has a value in {+1,−1};

2) ci = ±1/
√

2 and ck = ±j/
√

2.

Since the two candidate OFDM signal vectors generated from the phase rotation

vectors ±(ciP
(i) + ckP

(k)) have the same PAPR, the modified SLM scheme consider

the case of ci = 1/
√

2 and ck = ±j/
√

2. Since |ci|2 = |ck|2 = 1/2, the average

power of ai,k is equal to half the sum of the average power of a(i) and a(k). Using

U binary phase rotation vectors, 2
(
U
2

)
additional phase rotation vectors are obtained,

where
(
U
2

)
= U(U − 1)/2. Thus, the total U2 phase rotation vectors are obtained as

{P(1),P(2), · · · ,P(u), 1√
2

(
P(1) ± jP(2)

)
, 1√

2

(
P(1) ± jP(3)

)
, · · ·, 1√

2

(
P(U−1) ± jP(u)

)
}.

By combining each pair among U candidate OFDM signal vectors x(u) obtained by

using U binary phase rotation vectors as above, a set S of U2 candidate OFDM signal

vectors are generated as

S = {x(u)|1 ≤ u ≤ U2}

= {x(u)|1 ≤ u ≤ U} ∪
{

1√
2

(
x(i) + jx(k)

)
,

1√
2

(
x(i) − jx(k)

)
|1 ≤ i < k ≤ U

}
(2.37)

where only U IFFTs and the additional summations of (U2 −U ) pairs of OFDM signal

vectors are needed. However, the computational complexity for the summations of

OFDM signal vectors is negligible compared with that of IFFT.
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The modified SLM scheme with U binary phase rotation vectors can be compared

with the conventional SLM scheme with U2 binary phase rotation vectors. These two

schemes show a similar PAPR reduction performance for a small U . However, as U

increases, the PAPR reduction performance of the modified scheme becomes worse than

that of the conventional SLM scheme with U2 binary phase rotation vectors, because

U2 phase rotation vectors of the modified scheme are statistically correlated.

2.6 Conventional PTS Scheme

In the conventional PTS scheme [10], an oversampled input symbol vector X is parti-

tioned into V disjoint sub-blocks Xv = [Xv,0, Xv,1, · · · , Xv,LN−1]T , 0 ≤ v ≤ V − 1,

satisfying the condition such that

X =
V−1∑
v=0

Xv. (2.38)

By applying IFFT to each sub-block, the sub-signal vectors xv = [xv,0, xv,1, · · · , xv,LN−1]T ,

0 ≤ v ≤ V − 1 are generated. In order to generate the candidate OFDM signals,

each sub-signal vector is multiplied by the phase rotating factor bv = ejφv , where

φv ∈ [0, 2π) for v = 0, 1, · · · , V − 1. The phase rotating factor is usually an element

of the finite set given as bv ∈ {ej2πl/W | l = 0, 1, · · · ,W − 1}, where W is the

alphabet size of the phase rotating factors. The phase rotating vectors which gener-

ate the candidate OFDM signals are represented by b(u) =
[
b
(u)
0 , b

(u)
1 , · · · , b(u)

V−1

]
,

u = 0, 1, · · · , U − 1, where U denotes the number of candidate OFDM signals to be

generated. With the u-th phase rotating vector, the u-th candidate OFDM signal x(u) is

generated as

x(u) =
[
x

(u)
0 , x

(u)
1 , · · · , x(u)

LN−1

]T
=

V−1∑
v=0

b(u)
v xv, u = 0, 1, · · · , U − 1.

(2.39)
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Because all of the first phase rotating factors b(0)
v , 0 ≤ v ≤ V − 1 are usually set to one,

U = W V−1 candidate OFDM signals are generated in the conventional PTS scheme.

Finally, the optimal OFDM signal x(uopt) with the minimum PAPR value among U

candidate OFDM signals is selected for the transmission, where uopt denotes the index

of the optimal candidate OFDM signal, that is,

uopt = arg
U−1
min
u=0

PAPR(x(u)). (2.40)

The block diagram of the conventional PTS scheme is given in Figure 2.11.

Figure 2.11: A block diagram of the conventional PTS scheme.

Although the conventional PTS scheme can achieve a considerable PAPR reduction

with a simple method, there are several disadvantages. High computational complex-

ity is the main disadvantage of the conventional PTS scheme, where most of the

computational complexity comes from the generation and PAPR calculation of U can-

didate OFDM signals. In the following section, recently proposed low-complexity PTS

schemes [23, 24] are introduced; these mainly reduce the computational complexity

required for the calculation of the PAPR of the candidate OFDM signals after IFFTs.

These low-complexity PTS schemes have the same idea that only a few dominant

time-domain samples of candidate OFDM signals are used for the PAPR calculation

instead of all of the time-domain samples. They reduce the computational complexity
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considerably while maintaining identical PAPR reduction performance compared to

those of the conventional PTS scheme.

2.7 Low-Complexity PTS Schemes Using Dominant Time-

Domain Samples

In this section, previously proposed low-complexity PTS schemes [23, 24] are intro-

duced. These low-complexity PTS schemes reduce computational complexity compared

to the conventional PTS scheme while maintaining high PAPR reduction performance.

At first, dominant time-domain samples to reduce computational complexity of PTS

schemes are introduced. Then, several low-complexity PTS schemes using dominant

time-domain samples are reviewed.

2.7.1 Dominant Time-Domain Samples

The conventional PTS scheme has the optimal PAPR reduction performance but its

computational complexity is too high for it to be used for practical implementation

in OFDM systems. One of major parts in its high computational complexity is PAPR

computation of candidate OFDM signal vectors. To compute PAPRs of all candidate

OFDM signal vectors, a lot of complex multiplications are required. The other major

parts of computation in the conventional PTS scheme is generation of candidate OFDM

signal vectors. For generation of U = V W−1 candidate OFDM signal vectors, V IFFT

operations are required to generate V sub-block vectors. Note that IFFT operations

requires considerable computation of complex multiplications and additions.

Table 2.1 shows numbers of complex multiplication representing computational

complexity at the two major stages in the conventional PTS scheme for general param-

eters N , L, V , W , and U , which denotes OFDM signal vector length, oversampling

factor, number of sub-block vectors, alphabet size of phase rotating factors, and num-

ber of candidate OFDM signal vectors, respectively. Note that V , W , and U have
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relationship that U = W V−1.

Table 2.1: General computational complexity of two major stages in the conventional

PTS scheme

Stages
Generation of candidate signals Selection of OFDM signal

(including IFFTs) (without IFFTs)

Number of
LNV

2 log2 LN LNU = LNV W−1

complex multiplications

In addition, Table 2.2 shows numbers of complex multiplication representing nu-

merical computational complexity at the two major stages in the conventional PTS

scheme for several specific parameters. Note that as V increases, relative computational

complexity required for selection of OFDM signal increases and is higher that that

required for generation of candidate OFDM signal. Assuming that other parameters

are fixed, high V means high U , which enhances PAPR reduction performance but

increases computational complexity. Therefore, in order to reduce computational com-

plexity while maintaining high performance of PAPR reduction, it is important to lower

computational complexity for selection of OFDM signal.

Recently proposed low-complexity PTS schemes [23, 24] mainly reduce the com-

putational complexity required for the selection of OFDM signals. These PTS schemes

have similar property that partial time-domain samples of candidate OFDM signals are

used to estimate their PAPRs instead of all the time-domain samples. The small number

of selected time-domain samples are referred to as dominant time-domain samples. If

only the dominant time-domain sample are used to estimate PAPRs of candidate OFDM

signals instead of calculating PAPRs of all the time-domain samples, the computational

complexity for selection of transmitted OFDM signals is reduced considerably and

therefore those in previous PTS schemes are reduced. Figure 2.12 illustrates dominant
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Table 2.2: Computational complexity of two major stages in the conventional PTS

scheme for specific parameters

(a) W = 2

Parameters Number of complex multiplications

N V
Generation of candidate signals Selection of OFDM signal

(including IFFTs) (without IFFTs)

256 4 20480 (71.43%) 8192 (28.57%)

256 6 30720 (48.39%) 32768 (51.61%)

256 8 40960 (23.81%) 131072 (76.19%)

1024 4 98304 (75.00%) 32768 (25.00%)

1024 6 147456 (52.94%) 131072 (47.54%)

1024 8 196608 (27.27%) 524288 (72.73%)

(b) W = 4

Parameters Number of complex multiplications

N V
Generation of candidate signals Selection of OFDM signal

(including IFFTs) (without IFFTs)

256 4 20480 (71.43%) 8192 (28.57%)

256 6 30720 (48.39%) 32768 (51.61%)

256 8 40960 (23.81%) 131072 (76.19%)

1024 4 98304 (75.00%) 32768 (25.00%)

1024 6 147456 (52.94%) 131072 (47.54%)

1024 8 196608 (27.27%) 524288 (72.73%)
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time-domain samples used to estimate PAPRs of candidate OFDM signals in PTS

schemes.

Figure 2.12: Dominant time-domain samples used in low-complexity PTS schemes.

2.7.2 Low-Complexity PTS Schemes Using Dominant Time-Domain Sam-

ples

The RC-PTS [23] is the first low-complexity PTS scheme, which utilizes only a few

time-domain samples, referred to as dominant time-domain samples to estimate the peak

power and the corresponding PAPR of each candidate OFDM signal. In the RC-PTS,

the dominant time-domain samples are selected using a metric Qn given by

Qn =
V−1∑
v=0

|xv,n|2. (2.41)

For an index n, if Qn is larger than or equal to a preset threshold γQ, the time-domain

sample xn is selected as the dominant time-domain sample. The index set of the

dominant time-domain samples is denoted as

SQ(γQ) = {n | Qn ≥ γQ, 0 ≤ n ≤ LN − 1}. (2.42)
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Among all of the time-domain samples, only the dominant time-domain samples with

indices in SQ(γQ) are used to estimate the PAPR of each candidate OFDM signal.

Then, in the RC-PTS, the OFDM signal x(uopt) selected for transmission is the candidate

OFDM signal with the index uopt, which is given as

uopt = arg
U−1
min
u=0

max
n∈SQ(γQ)

∣∣∣∣∣
V−1∑
v=0

b(u)
v xv,n

∣∣∣∣∣
2

. (2.43)

Although the RC-PTS utilizes the same U candidate OFDM signals, the computational

complexity for calculating the PAPR of each candidate OFDM signal is much less than

that of the conventional PTS scheme and previous PTS schemes, which do not utilize

dominant time-domain samples. Therefore, it is clear that the RC-PTS significantly

reduces the computational complexity compared to the conventional PTS scheme.

After the RC-PTS, the IRC-PTS [24] was proposed to reduce computational com-

plexity further compared to the conventional PTS schemes and the RC-PTS. Although

the IRC-PTS uses dominant time-domain samples in a manner similar to the RC-PTS,

it uses more efficient selection methods for dominant time-domain samples. In the

IRC-PTS, the dominant time-domain samples are selected using metrics Yn and An

given by

Yn =

V−1∑
v=0

|xv,n| (2.44)

and

An =

∣∣∣∣∣
V−1∑
v=0

(|Re{xv,n}|+ j |Im{xv,n}|)

∣∣∣∣∣ . (2.45)

respectively. Similar to the RC-PTS, IRC-PTS reduces the computational complexity

to calculate the PAPR of each candidate OFDM signal compared to the conventional

PTS scheme and previous PTS schemes not utilizing dominant time-domain samples.

Moreover, the computational complexity of the IRC-PTS for estimating the PAPR

of candidate OFDM signals is less than even that of the RC-PTS. Therefore, the

IRC-PTS reduces the computational complexity compared to the conventional PTS

scheme, previous PTS scheme, and the RC-PTS. Block diagrams of the RC-PTS and

the IRC-PTS scheme are shown in Figures 2.13 and 2.14, respectively.
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Figure 2.13: A block diagram of RC-PTS.

Figure 2.14: A block diagram of IRC-PTS.
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Chapter 3

LOW-COMPLEXITY PTS SCHEMES WITH NEW SE-

LECTION METHODS OF DOMINANT TIME-DOMAIN

SAMPLES

In this chapter, new PTS schemes with efficient selection methods for dominant time-

domain samples are proposed. At first, some notations are introduced for easy under-

standing of the PTS schemes proposed in this dissertation. Subsequently, new selection

methods of candidate samples are proposed to determine the dominant time-domain

samples efficiently. Finally, new low-complexity PTS schemes are proposed based

on the proposed selection methods of candidate samples for dominant time-domain

samples.

3.1 Notations

For easy understanding of the proposed PTS schemes in this chapter and the next chapter,

notations for several sub-planes of a two-dimensional complex plane are defined. Ten

sub-planes Di, 0 ≤ i ≤ 9 are defined in Figure 3.1. These sub-planes are utilized to

select the candidate samples to estimate the maximum power Mn of samples for all

candidate OFDM signals for index n. In addition, four unions of two 45◦ sub-planes
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Ei, 0 ≤ i ≤ 3 are defined in Figure 3.2, where we count the number of the sub-samples

xv,n, 0 ≤ v ≤ V − 1 in each union Ei for the n-th time-domain sample.

If sub-sample xv,n is located on Di or Ei, it is denoted as xv,n ∈ Di or xv,n ∈ Ei,

respectively. For an integer j, 0 ≤ j ≤ 7, D(j)
i or E(j)

i denotes the jπ/4 rotated sub-

plane of Di or Ei, respectively. For all sub-samples xv,n, 1 ≤ v ≤ V −1, except for the

first sub-sample x0,n at n, and the sub-planes Ei, 0 ≤ v ≤ 3, the index set for which

the sub-samples are located on Ei is represented as

Vn(Ei) = {v | xv,n ∈ Ei, 1 ≤ v ≤ V − 1}. (3.1)

Subsequently, Vn(Ei) is utilized to count the number of sub-samples in sub-plane Ei.

3.2 Selection Methods of Candidate Samples for Dominant

Time-Domain Samples

In the conventional PTS scheme, Mn denotes the maximum power of the samples

among all of the candidate OFDM signals for an index n, which is represented as

Mn =
U−1
max
u=0

∣∣∣x(u)
n

∣∣∣2
=

U−1
max
u=0

∣∣∣∣∣
V−1∑
v=0

b(u)
v xv,n

∣∣∣∣∣
2

, n = 0, 1, · · · , LN − 1

(3.2)

and let M = [M0,M1, · · · ,MLN−1]. In other words,Mn indicates the maximum value

of the powers obtained from the n-th samples of the U candidate OFDM signals. This

implies that the greater Mn indicates a higher probability that the peak power of the

candidate OFDM signals occurs at the n-th sample. Therefore, Mn is the proper metric

to select the dominant time-domain samples, which is used to estimate the PAPRs of

the candidate OFDM signals.

For a preset threshold γM , the index set of the dominant time-domain samples is

obtained as

SM (γM ) = {n |Mn > γM , 0 ≤ n ≤ LN − 1}. (3.3)
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(a) 45◦ sub-plane D0 (b) 90◦ sub-plane D1 (c) 90◦ sub-plane D2

(d) 135◦ sub-plane D3 (e) 135◦ sub-plane D4 (f) 135◦ sub-plane D5

(g) 180◦ sub-plane D6 (h) 180◦ sub-plane D7 (i) 180◦ sub-plane D8

(j) 180◦ sub-plane D9

Figure 3.1: Sub-planes of complex plane.
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(a) E0 (b) E1

(c) E2 (d) E3

Figure 3.2: Unions of two 45◦ sub-planes of complex plane.
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Instead of using all time-domain samples, by only using the dominant time-domain

samples with indices in SM (γM ), the PAPRs of all candidate OFDM signal vectors

can be estimated. However, full search over all candidate samples must be performed

to find Mn, which requires U = W V−1 searches. Note that if γM = 0, SM (γM ) is

identical to the index set of all time-domain samples, which is used to calculate the

PAPR of each candidate OFDM signal in the conventional PTS scheme.

Thus, in this section, we propose new methods to estimate Mn with significantly

less computational complexity, where Mn is estimated based on only a few candidate

samples multiplied by properly selected phase rotating vectors instead of samples

of all candidate signals for index n. In order to select the candidate samples, all of

the sub-samples except for the first sub-sample x0,n of the n-th time-domain sample,

xv,n, 1 ≤ v ≤ V − 1 are rotated to a finite number of the selected sub-planes in which

x0,n’s are located. These methods will be more clearly explained by using examples as

follows.

As the first example, suppose that the first sub-sample x0,n at n is located on

the 45◦ sub-plane D0 and the other sub-samples xv,n, 1 ≤ v ≤ V − 1 are located

as shown in Figure 3.3(a). In addition, suppose that V = 4 and W = 2 are set to

generate candidate OFDM signals. In the proposed method, four searches are required

to select the candidate samples to estimate Mn, as shown in Figures 3.3(b)–(e), which

correspond to Di, 6 ≤ i ≤ 9, respectively based on the suppositions set above.

In the case of V = 4 and W = 2, 8 (= W V−1) searches are required to estimate

the real maximum power Mn of the n-th time-domain sample. However, it is verified

through simulation that only four searches such as Figure 3.3(b)–(e) are good enough

to find Mn with high probability. Therefore, by using the proposed method to select

candidate samples for dominant time-domain samples, the computational complexity

to search for a proper signal for transmitting among all candidate OFDM signals is

remarkably reduced while keeping almost the same search performance as that of

the conventional PTS scheme. Through extensive simulation which counts how many
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(a) Four sub-samples of the n-th time-

domain sample xn

(b) The first search to estimate Mn in

the proposed method

(c) The second search to estimate Mn

in the proposed method

(d) The third search to estimate Mn in

the proposed method

(e) The fourth search to estimate Mn

in the proposed method

Figure 3.3: The first example of n-th time-domain sample xn for V = 4 and W = 2 in

the proposed method to select candidate samples for dominant time-domain samples.
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results are matched with Mn by performing searches as in Figure 3.3(b)–(e), the result

is that they are matched with the probability 0.997. Note that any number of searches

between 1 and 8 by choosing the same number of 180◦ sub-planes are performed and

there is a trade-off between the search performance and the computational complexity.

As the second example, suppose that the first sub-sample x0,n at n is located on

the 45◦ sub-plane D0 and the other sub-samples xv,n, 1 ≤ v ≤ V − 1 are located as

shown in Figure 3.4(a). In addition, suppose that V = 4 and W = 4 are set to generate

candidate OFDM signals. Note that W differs in the first and second examples. In the

proposed method, two searches are used to select the candidate samples to estimate

Mn, as shown in Figures 3.4(b) and (c), which correspond to D1 and D2, respectively

based on the above settings.

In the case of W = 4 such as the condition in Figure 3.4(a), only two searches are

performed among U = W V−1 = 64 searches to estimate Mn of the n-th time-domain

sample. It means that in case of W = 4, even more computational complexity reduction

is achieved than in that of W = 4 by using the proposed selection method. Numerical

analysis shows that Mn is obtained with the probability 0.903 by two searches in the

proposed method with W = 4. Note that for the case of W = 4 using quaternary phase

rotation factors 1, j,−1,−j, each sub-plane covers 90◦ sub-planes and the number of

searches can be determined by considering the trade-off between the search performance

and the computational complexity.

From Figures 3.3 and 3.4, the proposed method to select candidate samples for time-

domain samples is explained for the cases of W = 2 and W = 4. Note that the number

of searches is determined by considering W , V , and the trade-off between the search

performance and the computational complexity. In detail, among total U = W V−1

searches, a proper number of 360◦/W sub-planes containing x0,n in the complex plane

are selected for determining candidate samples to estimate Mn of the n-th time-domain

sample.

An index set of U candidate signals is denoted as ZU = {0, 1, · · · , U − 1}. By

46



(a) Four sub-samples of the n-th time-domain

sample xn

(b) The first search to estimate Mn in the pro-

posed method

(c) The second search to estimate Mn in the pro-

posed method

Figure 3.4: The second example of n-th time-domain sample xn for V = 4 and W = 4

in the proposed method to select candidate samples for dominant time-domain samples.
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using the selection method such as Figures 3.3 and 3.4, the powers of C (= 4 or

2) candidate samples at n is calculated for estimation of Mn after determining the

candidate samples, which are denoted as x(Kn(0))
n , x

(Kn(1))
n , · · · , x(Kn(C−1))

n , where

Kn(i) ∈ ZU is the index of the candidate samples with the rotated sub-samples located

on the sub-plane of x0,n. Therefore, a new metric Pn to estimate Mn is proposed as

Pn =
C−1
max
c=0

∣∣∣x(Kn(c))
n

∣∣∣2 . (3.4)

Let SP (γp) be the index set of dominant time-domain samples obtained by using Pn

such as

SP (γp) = {n | Pn > γp, 0 ≤ n ≤ LN − 1} (3.5)

where γP is a preset threshold. Then, only the samples with the indices in SP (γP ) are

used to estimate the PAPR of each candidate OFDM signal. Given that Pn is a good

approximation of Mn and a proper metric to select the dominant time-domain samples,

a substantial reduction of computational complexity can be achieved with excellent

estimation performance.

Now, we evaluate the estimation error of Mn by using Pn through the normalized

mean square error (NMSE) defined by

NMSE(Pn) =
1

LN

LN−1∑
n=0

(Pn −Mn)2

E[Pn]E[Mn]
. (3.6)

Table 3.2 compares the NMSE for the cases of using Pn or Qn when C = 4 (for

W = 2) or 2 (for W = 4), L = 4, and N = 1024 for various number of sub-blocks

V . The NMSE for Pn case is much lower than that for Qn case regardless of V , which

means that Pn approximates Mn more closely compared to Qn.

The generalized procedures of the proposed methods to select candidate samples

for dominant time-domain samples for arbitrary V and W are summarized as follows:

U0) Candidate sub-planes corresponding to candidate samples used to estimate Mn

and then select dominant time-dominant samples can be all the 360◦/W sub-

planes containing x0,n in the complex plane for 0≤n≤LN − 1.
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Table 3.1: NMSE for estimating Mn by using Pn or Qn when N = 1024 and L = 4

Number of sub-blocks (V )
W = 2 and C = 4 W = 4 and C = 2

Pn Qn Pn Qn

4 1.4× 10−5 5.4× 10−3 1.0× 10−4 6.7× 10−3

6 4.0× 10−5 6.9× 10−3 1.4× 10−4 8.2× 10−3

8 6.6× 10−5 7.8× 10−3 1.6× 10−4 9.1× 10−3

U1) Among the candidate sub-planes, select C sub-planes for the proposed selection

method such that the boundaries of them are located as far as possible in terms of

relative angle at each n.

U2) By using the selectedC sub-planes, find the set {Kn(0),Kn(1), · · · ,Kn(C−1)}

and calculate Pn by using (3.4) at each n.

U3) Construct SP (γp) by using (3.5).

Note that the number of sub-blocks V clearly affects the number of sub-planes C

used for the proposed selection method. As V increases, C also increases to keep the

search performance. C should be determined by considering the trade-off between the

estimation performance and the computational complexity mostly through simulation.

Through exhaust search of simulation, it is concluded that selection methods of

candidate samples with C = 4 and C = 2 have the lowest complexity while achieving

the optimal estimation performance for Mn in case of W = 2 and W = 4 with

V = 4, 6, 8, respectively. Note that the selection method is different for different value

of W . Table ?? represents the summarized the selection methods to select candidate

samples to calculate Pn as an estimation of Mn for dominant time-domain samples

with the lowest computational complexity and the optimal estimation performance.

Note that C = 2 and C = 4 searches is used to select sub-planes and the corresponding
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candidate samples.

Table 3.2: Low-complexity selection methods of candidate samples for dominant time-

domain samples

W Number of selected sub-planes (C) Selected sub-planes

2 4 D
(j)
6 , D(j)

7 , D(j)
8 , and D(j)

9

4 2 D
(j)
1 and D(j)

2

3.3 Proposed Low-Complexity PTS Schemes

In this section, new low-complexity PTS schemes with the proposed selection methods

for dominant time-domain samples in the previous section are proposed. The proposed

PTS scheme, called LC-PTS uses dominant time-domain samples to estimate the PAPR

of each candidate OFDM signal.

In LC-PTS, the OFDM signal x(uopt) selected for transmission is the candidate

OFDM signal with index uopt given by

uopt = arg
U−1
min
u=0

max
n∈SA(γA)

∣∣∣∣∣
V−1∑
v=0

b(u)
v xv,n

∣∣∣∣∣
2

. (3.7)

LC-PTS can be summarized with the following steps:

1) Generate candidate OFDM signals x(u), u = 0, 1, · · · , U − 1.

2) DecideKn(c)’s and then calculate the correspondingPn’s for all n = 0, 1, · · · , LN−

1.

3) Based on γP and Pn, obtain SP (γP ).

4) Among all of the time-domain samples, only the DTDSs with indices in SP (γP )

are used to estimate the PAPR of each candidate OFDM signal.
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5) Among the candidate OFDM signals, one with the minimum estimated PAPR

indexed by uopt is selected and then transmitted as the OFDM signal x(uopt).

LC-PTS reduces computational complexity considerably while achieving the op-

timal PAPR reduction performance. A block diagram of the proposed PTS scheme is

shown in Figure 3.5.

Figure 3.5: A block diagram of LC-PTS.
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Chapter 4

IMPROVED PTS SCHEMES WITH ADAPTIVE SE-

LECTION METHODS OF DOMINANT TIME-DOMAIN

SAMPLES

In this chpater, three efficient PTS schemes with adaptive selection methods for dom-

inant time-domain samples are proposed. First, the adaptive selection methods of

candidate samples are proposed to estimate the dominant time-domain samples effi-

ciently. In addition, a multi-stage selection method for dominant time-domain samples is

proposed to reduce the computational complexity further. Finally, the new PTS schemes

are proposed based on the proposed selection methods of the dominant time-domain

samples.

4.1 Adaptive Selection Methods of Candidate Samples for

Dominant Time-Domain Samples

In this section, two adaptive selection methods of candidate samples for dominant time-

domain samples are proposed, referred to here as A1-SM and A2-SM. The detailed

procedures of A1-SM and A2-SM are described as follows. First, we assume that the

first sub-sample x0,n at n is located on D(j)
0 . Note that the number of searches for
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candidate samples at each n in A1-SM and A2-SM can differ, whereas this value is

fixed in the LC-PTS proposed in Chapter 3

4.1.1 A1-SM with W = 2

A1-SM can be described with the following three steps:

i) For each n, compute the cardinalities of the index sets,
∣∣∣Vn(E

(j)
i )
∣∣∣ , 1 ≤ i ≤ 3

in which sub-samples are located on E(j)
i , 1 ≤ i ≤ 3.

ii) Based on
∣∣∣Vn(E

(j)
i )
∣∣∣, we adaptively select the sub-planes, where all of the

sub-samples can be located on one sub-plane by 180◦ phase rotation of some of

sub-samples among the eight cases presented as below. Note that we disregard the

existence of the sub-samples in E(j)
0 and the corresponding

∣∣∣Vn(E
(j)
0 )
∣∣∣ because

the first sub-sample x0,n is located on D(j)
0 , which is already included in E(j)

0 .

iii) Select each candidate sample obtained by all rotated sub-samples in each selected

sub-plane among U candidate samples for each n.

There are eight cases for selection of candidate samples by sub-planes D(j)
i accord-

ing to
∣∣∣Vn(E

(j)
i )
∣∣∣ as follows.

C1-1)
∣∣∣Vn(E

(j)
1 )
∣∣∣ = 0,

∣∣∣Vn(E
(j)
2 )
∣∣∣ = 0, and

∣∣∣Vn(E
(j)
3 )
∣∣∣ = 0;

One candidate sample is selected, where all of the rotated sub-samples are located

on the 45◦ sub-plane D(j)
0 .

C1-2)
∣∣∣Vn(E

(j)
1 )
∣∣∣ = 0,

∣∣∣Vn(E
(j)
2 )
∣∣∣ = 0, and

∣∣∣Vn(E
(j)
3 )
∣∣∣ ≥ 1;

One candidate sample is selected, where all of the rotated sub-samples are located

on the 90◦ sub-plane D(j)
2 .

C1-3)
∣∣∣Vn(E

(j)
1 )
∣∣∣ ≥ 1,

∣∣∣Vn(E
(j)
2 )
∣∣∣ = 0, and

∣∣∣Vn(E
(j)
3 )
∣∣∣ = 0;

One candidate sample is selected, where all of the rotated sub-samples are located

on the 90◦ sub-plane D(j)
1 .
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C1-4)
∣∣∣Vn(E

(j)
1 )
∣∣∣ ≥ 1,

∣∣∣Vn(E
(j)
2 )
∣∣∣ = 0, and

∣∣∣Vn(E
(j)
3 )
∣∣∣ ≥ 1;

One candidate sample is selected, where all of the rotated sub-samples are located

on the 135◦ sub-plane D(j)
5 .

C1-5)
∣∣∣Vn(E

(j)
1 )
∣∣∣ = 0,

∣∣∣Vn(E
(j)
2 )
∣∣∣ ≥ 1, and

∣∣∣Vn(E
(j)
3 )
∣∣∣ = 0;

Two candidate samples are selected, where all of the rotated sub-samples are

located on the 135◦ sub-planes D(j)
3 and D(j)

4 , respectively.

C1-6)
∣∣∣Vn(E

(j)
1 )
∣∣∣ = 0,

∣∣∣Vn(E
(j)
2 )
∣∣∣ ≥ 1, and

∣∣∣Vn(E
(j)
3 )
∣∣∣ ≥ 1;

One candidate sample is selected, where all of the rotated sub-samples are located

on the 135◦ sub-plane D(j)
4 .

C1-7)
∣∣∣Vn(E

(j)
1 )
∣∣∣ ≥ 1,

∣∣∣Vn(E
(j)
2 )
∣∣∣ ≥ 1, and

∣∣∣Vn(E
(j)
3 )
∣∣∣ = 0;

One candidate sample is selected, where all of the rotated sub-samples are located

on the 135◦ sub-plane D(j)
3 .

C1-8)
∣∣∣Vn(E

(j)
1 )
∣∣∣ ≥ 1,

∣∣∣Vn(E
(j)
2 )
∣∣∣ ≥ 1, and

∣∣∣Vn(E
(j)
3 )
∣∣∣ ≥ 1;

Four candidate samples are selected, where all of the rotated sub-samples are

located on the 180◦ sub-planes D(j)
i , 6 ≤ i ≤ 9, respectively.

4.1.2 A1-SM with W = 4

Similar to the previous case, for each n, compute the sum of the cardinalities of the index

sets of which sub-samples are located on E(j)
1 and E(j)

3 ,
∣∣∣Vn(E

(j)
1 )
∣∣∣ +

∣∣∣Vn(E
(j)
3 )
∣∣∣.

Note that we disregard the existence of sub-samples in E(j)
0 and E(j)

2 , as well as the

corresponding
∣∣∣Vn(E

(j)
0 )
∣∣∣ and

∣∣∣Vn(E
(j)
2 )
∣∣∣ for W = 4 because the first sub-sample

x0,n is located on D(j)
0 , which can cover E(j)

0 and E(j)
2 by itself and its phase rotation

in multiples of π/2. Next, based on
∣∣∣Vn(E

(j)
1 )
∣∣∣ +

∣∣∣Vn(E
(j)
3 )
∣∣∣, we adaptively select

one or two sub-planes and the corresponding candidate samples in the following two

cases.
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C2-1)
∣∣∣Vn(E

(j)
1 )
∣∣∣+
∣∣∣Vn(E

(j)
3 )
∣∣∣ = 0;

One candidate sample is selected, where all of the rotated sub-samples are located

on the 45◦ sub-plane D(j)
0 .

C2-2)
∣∣∣Vn(E

(j)
1 )
∣∣∣+
∣∣∣Vn(E

(j)
3 )
∣∣∣ ≥ 1;

Two candidate samples are selected, where all of the rotated sub-samples are

located on the 90◦ sub-planes D(j)
1 and D(j)

2 , respectively.

4.1.3 A2-SM with W = 2

A2-SM considers the additional sub-planes shown in Figure 3.1, possibly including all

of the rotated sub-samples compared to A1-SM. For each n, compute the cardinalities

of the index sets,
∣∣∣Vn(E

(j)
i )
∣∣∣ , 1 ≤ i ≤ 3 for which sub-samples are located on

E
(j)
i , 1 ≤ i ≤ 3. Next, based on

∣∣∣Vn(E
(j)
i )
∣∣∣ , 1 ≤ i ≤ 3, we adaptively select the

sub-planes and the corresponding candidate samples in the following eight cases.

C3-1)
∣∣∣Vn(E

(j)
1 )
∣∣∣ = 0,

∣∣∣Vn(E
(j)
2 )
∣∣∣ = 0, and

∣∣∣Vn(E
(j)
3 )
∣∣∣ = 0;

One candidate sample is selected, where all of the rotated sub-samples are located

on the 45◦ sub-plane D(j)
0 .

C3-2)
∣∣∣Vn(E

(j)
1 )
∣∣∣ = 0,

∣∣∣Vn(E
(j)
2 )
∣∣∣ = 0, and

∣∣∣Vn(E
(j)
3 )
∣∣∣ ≥ 1;

One candidate sample is selected, where all of the rotated sub-samples are located

on the 90◦ sub-plane D(j)
2 .

C3-3)
∣∣∣Vn(E

(j)
1 )
∣∣∣ ≥ 1,

∣∣∣Vn(E
(j)
2 )
∣∣∣ = 0, and

∣∣∣Vn(E
(j)
3 )
∣∣∣ = 0;

One candidate sample is selected, where all of the rotated sub-samples are located

on the 90◦ sub-plane D(j)
1 .

C3-4)
∣∣∣Vn(E

(j)
1 )
∣∣∣ ≥ 1,

∣∣∣Vn(E
(j)
2 )
∣∣∣ = 0, and

∣∣∣Vn(E
(j)
3 )
∣∣∣ ≥ 1;

Three candidate samples are selected, where all of the rotated sub-samples are

located on the sub-planes D(j)
5 , D(j)

6 , and D(j)
7 , respectively.
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C3-5)
∣∣∣Vn(E

(j)
1 )
∣∣∣ = 0,

∣∣∣Vn(E
(j)
2 )
∣∣∣ ≥ 1, and

∣∣∣Vn(E
(j)
3 )
∣∣∣ = 0;

Two candidate samples are selected, where all of the rotated sub-samples are

located on the 135◦ sub-planes D(j)
3 and D(j)

4 , respectively.

C3-6)
∣∣∣Vn(E

(j)
1 )
∣∣∣ = 0,

∣∣∣Vn(E
(j)
2 )
∣∣∣ ≥ 1, and

∣∣∣Vn(E
(j)
3 )
∣∣∣ ≥ 1;

Three candidate samples are selected, where all of the rotated sub-samples are

located on the sub-planes D(j)
4 , D(j)

6 , and D(j)
9 , respectively.

C3-7)
∣∣∣Vn(E

(j)
1 )
∣∣∣ ≥ 1,

∣∣∣Vn(E
(j)
2 )
∣∣∣ ≥ 1, and

∣∣∣Vn(E
(j)
3 )
∣∣∣ = 0;

Three candidate samples are selected, where all of the rotated sub-samples are

located on the sub-planes D(j)
3 , D(j)

7 , and D(j)
8 , respectively.

C3-8)
∣∣∣Vn(E

(j)
1 )
∣∣∣ ≥ 1,

∣∣∣Vn(E
(j)
2 )
∣∣∣ ≥ 1, and

∣∣∣Vn(E
(j)
3 )
∣∣∣ ≥ 1;

Four candidate samples are selected, where all of the rotated sub-samples are

located on the 180◦ sub-planes D(j)
i , 6 ≤ i ≤ 9, respectively.

It is easy to check that A2-SM selects the candidate samples as the dominant

time-domain samples more than that by A1-SM, but it is still less compared to that

by LC-PTS. The results of numerical analysis show that A2-SM selects dominant

time-domain samples more precisely than A1-SM, but it is nearly identical to that by

LC-PTS. Moreover, it is important to note that A2-SM can be used only for the case

of W = 2. For W = 4, it is impossible to select the candidate samples as dominant

time-domain samples more than that by A1-SM and less than that by LC-PTS by using

an adaptive selection method, that is, A2-SM. For W = 4, if we selects the candidate

samples as dominant time-domain samples more than that by A1-SM but not adaptively,

the candidate samples selected by the selection method becomes the same as that by

LC-PTS. The reason for the problem is that sub-planes on which candidate samples is

selected by A1-SM is very narrow while that by LC-PTS is wider than A1-SM but still

narrow. It means that for W = 4, there is no sub-planes on which candidate samples

is selected by A2-SM. Therefore, it is concluded that for W = 4, it is impossible to
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select the candidate samples as dominant time-domain samples by the method similar

to A2-SM with W = 2 and thus A2-SM is available only for the case of W = 2.

As an example, suppose that the first sub-sample x0,n at n is located on the 45◦

sub-plane D0 and the other sub-samples xv,n, 1 ≤ v ≤ V − 1 are located as shown

in Figure 4.1(a). Note that x1,n and x2,n are located on E3 and x3,n is located on E0.

Then it is easy to check that Vn(E1) = {1, 2}, Vn(E2) = ∅, and Vn(E3) = ∅. In the

LC-PTS, four searches are required to select the candidate samples to estimate Mn, as

shown in Figures 4.1(b)–(e), which correspond to Di, 6 ≤ i ≤ 9, respectively. Note that

the estimated value of Mn, Pn is used to select dominant time-domain samples as in

(3.4) and (3.5). However, in A1-SM or A2-SM, the only one search is needed to select

one candidate sample to estimate Mn as shown in Figure 4.1(f), which corresponds

to D1. Thus, the proposed selection methods can reduce the search complexity by

one quarter when selecting candidate samples to estimate Mn compared to that by the

LC-PTS.

As an additional example, suppose that the first sub-sample x0,n at n is located on

the 45◦ sub-plane D0 and the other sub-samples xv,n, 1 ≤ v ≤ V − 1 are located as

shown in Figure 4.2(a). Note that x1,n and x2,n are located on E2 and x3,n is located

on E0. Then it is easy to check that Vn(E1) = ∅, Vn(E2) = {1, 2}, and Vn(E3) = ∅.

With LC-PTS, four searches are required to select candidate samples to estimate Mn, as

shown in Figures 4.2(b)–(e), which correspond to Di, 6 ≤ i ≤ 9, respectively. On the

other hand, in A1-SM or A2-SM, two searches are needed to select candidate samples

to estimate Mn, as shown in Figures 4.2(f) and (g), which correspond to D3 and D4,

respectively. Thus, the proposed selection methods can reduce the search complexity by

half when selecting candidate samples to estimate Mn, compared to that by LC-PTS.

One additional example is considered in Figure 4.3 to explain a different selection

case of the proposed selection methods for candidate samples. Suppose that the first

sub-sample x0,n at n is located on the 45◦ sub-plane D0 and the other sub-samples

xv,n, 1 ≤ v ≤ V − 1 are located as shown in Figure 4.3(a). Note that x1,n is located on
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(a) Four sub-samples of the n-th time-

domain sample xn

(b) The first search to estimate Mn in

the LC-PTS

(c) The second search to estimate Mn

in the LC-PTS

(d) The third search to estimate Mn in

the LC-PTS

(e) The fourth search to estimate Mn

in the LC-PTS

(f) One search of A1-SM or A2-SM to

estimate Mn

Figure 4.1: The first example of n-th time-domain sample xn for V = 4 and W = 2.

58



(a) Four sub-samples of the n-th

time-domain sample xn

(b) The first search to estimate

Mn in the LC-PTS

(c) The second search to estimate

Mn in the LC-PTS

(d) The third search to estimate

Mn in the LC-PTS

(e) The fourth search to estimate

Mn in the LC-PTS

(f) The first search of A1-SM or

A2-SM to estimate Mn

(g) The second search of A1-SM

or A2-SM to estimate Mn

Figure 4.2: The second example of n-th time-domain sample xn for V = 4 and W = 2.
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E1 and x2,n and x3,n are located on E3. Then, it is easy to check that Vn(E1) = {1},

Vn(E2) = ∅, and Vn(E3) = {2, 3}. In LC-PTS, four searches are required to select

candidate samples to estimate Mn, as shown in Figures 4.3(b)–(e), corresponding to

Di, 6 ≤ i ≤ 9, respectively. However, in A1-SM, only one search is needed to select

one candidate sample to estimate Mn, as shown in Figure 4.3(f), corresponding to D5.

In A2-SM, three searches are needed to select candidate samples to estimate Mn, as

shown in Figures 4.3(g)–(i), corresponding to Di, 5 ≤ i ≤ 7, respectively. Note that

the candidate rotation set of A2-SM includes that of A1-SM in this example. Thus,

A1-SM and A2-SM can reduce the search complexity by one quarter and three quarters,

respectively, when selecting candidate samples to estimate Mn, as compared to that by

LC-PTS.

The three examples described above imply that A1-SM and A2-SM reduce the

number of searches required for selection of the candidate samples compared to that

by LC-PTS. Let Cn be the number of searches for the candidate samples at n. In order

to show how effectively A1-SM and A2-SM reduce the number of searches for the

candidate samples, Table 4.1 shows a probability distribution for cases in which A1-SM

and A2-SM use Cn searches to select the candidate samples at n. Without a loss of

generality, we assume that the first sub-sample x0,n at n is located on D(j)
0 . Also, it is

assumed that the length of the oversampled input symbol vector and the corresponding

OFDM signal vector LN is large enough such that law of large numbers can be

applied. The results in Table 4.1 are obtained by both computing the mathematical

representations in Table 4.1(a) and conducting numerical analysis in Table 4.1(b) and

we can verify that these two results are identical. It is straightforward to check that the

probability of Cn is dependent only on the number of sub-blocks, V . Note that Cn takes

value 1, 2, or 4 in A1-SM with W = 2 and value 1, 2, 3, or 4 in A2-SM with W = 2,

respectively. On the other hand, in A1-SM with W = 4, Cn takes value 1 or 2. The

next section shows how the mathematical representations of the probability distribution

of Cn for n are formulated in detail.
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(a) Four sub-samples of the n-th

time-domain sample xn

(b) The first search to estimate

Mn in the LC-PTS

(c) The second search to estimate

Mn in the LC-PTS

(d) The third search to estimate

Mn in the LC-PTS

(e) The fourth search to estimate

Mn in the LC-PTS

(f) One search of A1-SM to esti-

mate Mn

(g) The first search of A2-SM to

estimate Mn

(h) The second search of A2-SM

to estimate Mn

(i) The third search of A2-SM to

estimate Mn

Figure 4.3: The third example of n-th time-domain sample xn for V = 4 and W = 2.
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Table 4.1: Probability distribution of Cn

(a) Mathematical representations

Cn
Probability of Cn

A1-SM with W = 2 A1-SM with W = 2 A1-SM with W = 2

1
3
(

3
4

)V−1 −

4
(

1
2

)V−3
+ 2
(

1
4

)V−1

(
1
2

)V−2 −
(

1
4

)V−1 (
1
2

)V−1

2
(

1
2

)V−1 −
(

1
4

)V−1 (
1
2

)V−1 −
(

1
4

)V−1
1−

(
1
2

)V−1

3 0
3
(

3
4

)V−1 −

3
(

1
2

)V−2
+ 3
(

1
4

)V−1 0

4
1− 3

(
3
4

)V−1
+

3
(

1
2

)V−1 −
(

1
4

)V−1

1− 3
(

3
4

)V−1
+

3
(

1
2

)V−1 −
(

1
4

)V−1 0

(b) Simulation results

V Cn
Probability of Cn

A1-SM with W = 2 A1-SM with W = 2 A1-SM with W = 2

4

1 0.7968 0.2344 0.125

2 0.1094 0.1094 0.875

3 0 0.5624 0

4 0.0938 0.0938 0

8

1 0.3693 0.0156 0.0078

2 0.0078 0.0078 0.9922

3 0 0.3537 0

4 0.6229 0.6229 0
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The proposed selection methods A1-SM and A2-SM for candidate samples are

summarized in Tables 4.2 and 4.3, respectively. Note that we disregard
∣∣∣Vn(E

(j)
0 )
∣∣∣

when assessing the conditions for A1-SM and A2-SM and ignore
∣∣∣Vn(E

(j)
1 )
∣∣∣ when

checking the conditions for A1-SM with W = 4.

Table 4.2: Selection method of A1-SM

(a) W = 2

Cases
Conditions Selection methods∣∣∣Vn(E

(j)
1 )
∣∣∣ ∣∣∣Vn(E

(j)
2 )
∣∣∣ ∣∣∣Vn(E

(j)
3 )
∣∣∣ Selected sub-planes Number of searches

C1-1 0 0 0 D
(j)
0 1

C1-2 0 0 ≥ 1 D
(j)
2 1

C1-3 ≥ 1 0 0 D
(j)
1 1

C1-4 ≥ 1 0 ≥ 1 D
(j)
5 1

C1-5 0 ≥ 1 0 D
(j)
3 , D(j)

4 2

C1-6 0 ≥ 1 ≥ 1 D
(j)
4 1

C1-7 ≥ 1 ≥ 1 0 D
(j)
3 1

C1-8 ≥ 1 ≥ 1 ≥ 1 D
(j)
6 , D(j)

7 , D(j)
8 , D(j)

9 4

(b) W = 4

Cases
Conditions Selection methods∣∣∣Vn(E
(j)
1 )
∣∣∣+
∣∣∣Vn(E

(j)
3 )
∣∣∣ Selected sub-planes Number of searches

C2-1 0 D
(j)
0 1

C2-2 ≥ 1 D
(j)
1 , D(j)

2 2

After A1-SM or A2-SM, Mn is estimated to select the dominant time-domain

samples. Let Sn be the maximum power of the candidate samples selected by A1-SM
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Table 4.3: Selection method of A2-SM with W = 2

Cases
Conditions Selection methods∣∣∣Vn(E

(j)
1 )
∣∣∣ ∣∣∣Vn(E

(j)
2 )
∣∣∣ ∣∣∣Vn(E

(j)
3 )
∣∣∣ Selected sub-planes Number of searches

C3-1 0 0 0 D
(j)
0 1

C3-2 0 0 ≥ 1 D
(j)
2 1

C3-3 ≥ 1 0 0 D
(j)
1 1

C3-4 ≥ 1 0 ≥ 1 D
(j)
5 , D(j)

6 , D(j)
7 3

C3-5 0 ≥ 1 0 D
(j)
3 and D(j)

4 2

C3-6 0 ≥ 1 ≥ 1 D
(j)
4 , D(j)

6 , D(j)
9 3

C3-7 ≥ 1 ≥ 1 0 D
(j)
3 , D(j)

7 , D(j)
8 3

C3-8 ≥ 1 ≥ 1 ≥ 1 D
(j)
6 , D(j)

7 , D(j)
8 , D(j)

9 4
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or A2-SM, which is considered to be the estimated value of Mn. Table 4.4 shows how

accurately Sn can estimate Mn in LC-PTS, A1-SM, and A2-SM, where OFDM signals

with N = 256, 1024, 16-QAM, L = 4, and W = 2 are considered. For the evaluation,

the estimation error rate of Mn is defined as the ratio of the number of samples with an

estimation error of Mn to the total number of time-domain samples. In Table 4.4, the

accuracy of the estimation of Mn by A2-SM is better than that by A1-SM and nearly

identical to that by LC-PTS.

Table 4.4: Accuracy performance for estimation of Mn for 16-QAM, L = 4, and

W = 2

(a) V = 4

Estimation methods
Estimation error rate of samples

N = 256 N = 1024

Pn (LC-SM) 0.26% 0.26%

Sn (A1-SM) 9.68% 9.68%

Sn (A2-SM) 0.26% 0.26%

(b) V = 8

Estimation methods
Estimation error rate of samples

N = 256 N = 1024

Pn (LC-SM) 5.88% 5.89%

Sn (A1-SM) 9.50% 9.50%

Sn (A2-SM) 5.89% 5.89%

After Mn is estimated as Sn for each n, the dominant time-domain samples are

selected using Sn as the metric. The index set of the dominant time-domain samples
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obtained using Sn is denoted as

SS(γS) = {n | Sn ≥ γS , 0 ≤ n ≤ LN − 1} (4.1)

where γS is a preset threshold. Then, only the samples with indices in SS(γS) are

used to estimate the PAPR of each candidate OFDM signal. Since Sn is an accurate

approximation of Mn, the selection method of the time-domain samples can achieve

considerable reduction of the computational complexity to determine the PAPR of the

candidate OFDM signals.

4.2 Mathematical Representations for Probability Distribu-

tion of Cn

Without a loss of generality, we assume that the first sub-sample x0,n at n is located on

D
(j)
0 . In addition, we assume that the length of the oversampled input symbol vector and

the corresponding OFDM signal vector, LN , is large enough such that the law of large

numbers applies. In this case, according to the law of large numbers, all Pr(xv,n ∈ Ei)’

values are approximately equal, that is, Pr(xv,n ∈ Ei) ≈ 1/8 for 0 ≤ v ≤ V − 1 and

0 ≤ n ≤ LN − 1. Let x be a random variable of complex values uniformly distributed

on a two-dimensional complex plane.

The probabilities of all cases of the proposed selection methods are represented as

follows. Note that the probabilities of the cases in A1-SM and A2-SM with W = 2 are

the same as;

Pr (C1-1) = Pr (C3-1)

=

7∑
j=0

Pr
(
x ∈ D(j)

0

) [
Pr
(
x ∈ E(j)

0

)]V−1
(4.2)

=

(
1

4

)V−1
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Pr (C1-2) = Pr (C3-2)

=
7∑
j=0

Pr
(
x ∈ D(j)

0

)[[
Pr
(
x ∈ E(j)

0 ∪ E
(j)
1

)]V−1

−
[
Pr
(
x ∈ E(j)

0

)]V−1
]

(4.3)

=

(
1

2

)V−1

−
(

1

4

)V−1

Pr (C1-3) = Pr (C3-3)

=
7∑
j=0

Pr
(
x ∈ D(j)

0

)[[
Pr
(
x ∈ E(j)

0 ∪ E
(j)
3

)]V−1

−
[
Pr
(
x ∈ E(j)

0

)]V−1
]

(4.4)

=

(
1

2

)V−1

−
(

1

4

)V−1

Pr (C1-4) = Pr (C3-4)

=
7∑
j=0

Pr
(
x ∈ D(j)

0

)[V−1∑
i=2

[
Pr
(
x ∈

(
E

(j)
2

)c)]V−i−1

[
i−1∑
k=1

(
i

k

)[
Pr
(
x ∈ E(j)

1

)]k−1 [
Pr
(
x ∈ E(j)

3

)]i−k+1
]]

(4.5)

=

(
3

4

)V−1

− 2

(
1

2

)V−3

+

(
1

4

)V−1

Pr (C1-5) = Pr (C3-5)

=
7∑
j=0

Pr
(
x ∈ D(j)

0

)[V−1∑
i=1

(
V − 1

i

)[
Pr
(
x ∈ E(j)

2

)]i
[
Pr
(
x ∈ E(j)

0

)]V−i−1
]

(4.6)

=

(
1

2

)V−1

+

(
1

4

)V−1
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Pr (C1-6) = Pr (C3-6)

=
7∑
j=0

Pr
(
x ∈ D(j)

0

)[V−1∑
i=2

[
Pr
(
x ∈

(
E

(j)
1

)c)]V−i−1

[
i−1∑
k=1

(
i

k

)[
Pr
(
x ∈ E(j)

2

)]k−1 [
Pr
(
x ∈ E(j)

3

)]i−k+1
]]

(4.7)

=

(
3

4

)V−1

− 2

(
1

2

)V−3

+

(
1

4

)V−1

Pr (C1-7) = Pr (C3-7)

=
7∑
j=0

Pr
(
x ∈ D(j)

0

)[V−1∑
i=2

[
Pr
(
x ∈

(
E

(j)
3

)c)]V−i−1

[
i−1∑
k=1

(
i

k

)[
Pr
(
x ∈ E(j)

1

)]k−1 [
Pr
(
x ∈ E(j)

2

)]i−k+1
]]

(4.8)

=

(
3

4

)V−1

− 2

(
1

2

)V−3

+

(
1

4

)V−1

Pr (C1-8) = Pr (C3-8)

= 1− [Pr (C1-1) + Pr (C1-2) + Pr (C1-3) + Pr (C1-4)

+ Pr (C1-5) + Pr (C1-6) + Pr (C1-7)] (4.9)

=

(
3

4

)V−1

− 2

(
1

2

)V−3

+

(
1

4

)V−1

Pr (C2-1) =

7∑
j=0

Pr
(
x ∈ D(j)

0

) [
Pr
(
x ∈ E(j)

0 ∪ E
(j)
2

)]V−1

=

(
1

2

)V−1

(4.10)

Pr (C2-2) = 1− Pr (C2-1)

= 1−
(

1

2

)V−1

(4.11)

Based on the probabilities of all cases of the proposed selection methods of the

candidate selection methods, the probabilities of Cn are represented as follows.
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4.2.1 A1-SM with W = 2

In A1-SM with W = 2, the probabilities of Cn are derived as follows:

Pr (Cn = 1) = Pr (C1-1) + Pr (C1-2) + Pr (C1-3) + Pr (C1-4)

+ Pr (C1-6) + Pr (C1-7) (4.12)

= 3

(
3

4

)V−1

− 4

(
1

2

)V−3

+ 2

(
1

4

)V−1

+ Pr (C1-4)

Pr (Cn = 2) = Pr (C1-5)

=

(
1

2

)V−1

−
(

1

4

)V−1

(4.13)

Pr (Cn = 4) = Pr (C1-8)

= 1− 3

(
3

4

)V−1

+ 3

(
1

2

)V−1

−
(

1

4

)V−1

(4.14)

4.2.2 A1-SM with W = 4

In A1-SM with W = 4, the probabilities of Cn are derived as follows:

Pr (Cn = 1) = Pr (C2-1)

=

(
1

2

)V−1

(4.15)

Pr (Cn = 2) = Pr (C2-2)

= 1−
(

1

2

)V−1

(4.16)

4.2.3 A2-SM with W = 2

In A2-SM with W = 2, the probabilities of Cn are derived as follows:

Pr (Cn = 1) = Pr (C3-1) + Pr (C3-2) + Pr (C3-3)

=

(
1

2

)V−2

−
(

1

4

)V−1

(4.17)
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Pr (Cn = 2) = Pr (C3-5)

=

(
1

2

)V−1

−
(

1

4

)V−1

(4.18)

Pr (Cn = 3) = Pr (C3-4) + Pr (C3-6) + Pr (C3-7)

= 3

(
3

4

)V−1

− 3

(
1

2

)V−2

+ 3

(
1

4

)V−1

(4.19)

Pr (Cn = 4) = Pr (C3-8)

= 1− 3

(
3

4

)V−1

+ 3

(
1

2

)V−1

−
(

1

4

)V−1

(4.20)

4.3 Multi-Stage Selection Method of Dominant Time-Domain

Samples

In this section, a more advanced multi-stage selection method (M-SM) is proposed for

the selection of the dominant time-domain samples. M-SM has two stages, with the

first stage using the selection method A1-SM or A2-SM for the candidate samples in

the previous section and the second stage using the selection method of the candidate

samples proposed in the LC-PTS. In the first stage of M-SM, a larger set of dominant

time-domain samples is selected among all samples using the selection method A1-SM

or A2-SM. Note that the dominant time-domain samples selected in the first stage are

only a fraction of all samples but much larger than the number of dominant time-domain

samples selected in the second stage. After the first stage, the second set of dominant

time-domain samples is selected among the first set of dominant time-domain samples

using the selection method of the LC-PTS in the second stage.

In M-SM, the index set of the dominant time-domain samples in the first stage is

defined as

S1(βT ) = {n | Sn ≥ βT , 0 ≤ n ≤ LN − 1} (4.21)
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where βT is a preset threshold of the first stage. Note that S1(βT ) is obtained by using

Sn. In addition, the index set of the dominant time-domain samples in the second stage

is represented by ST (γT ), which is obtained as

ST (γT ) = {n | Pn ≥ γT , n ∈ S1(βT )} (4.22)

where γT is a preset threshold of the second stage. It is easy to verify whether ST (γT )

is obtained by using Pn in (3.4) among only the samples whose index set is S1(βT ).

With M-SM, the second set of dominant time-domain samples required to estimate

Mn precisely is reduced further compared to that by A1-SM or A2-SM in the previous

section. Therefore, M-SM can lower the computational complexity of PTS schemes

further using the dominant time-domain samples while maintaining the optimal PAPR

reduction performance.

4.4 Proposed PTS Schemes with Adaptive Selection Meth-

ods for Dominant Time-Domain Samples

In this section, two types of PTS schemes with adaptive selection methods for dominant

time-domain samples are proposed. The first type of PTS scheme, called A-PTS, are

based on the selection methods A1-SM and A2-SM. On the other hand, the other type

of PTS scheme, called M-PTS, is based on the selection method M-SM. All of the

proposed PTS schemes use dominant time-domain samples to determine the PAPR of

each candidate OFDM signal. However, A-PTS uses dominant time-domain samples

whose index set is SS(γS) in (4.1), while M-PTS uses the dominant time-domain

samples whose index set is ST (γT ) in (4.22).

In A-PTS, the OFDM signal x(uopt) selected for transmission is the candidate OFDM

signal with index uopt,A given by

uopt,S = arg
U−1
min
u=0

max
n∈SS(γS)

∣∣∣∣∣
V−1∑
v=0

b(u)
v xv,n

∣∣∣∣∣
2

. (4.23)
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On the other hand, the OFDM signal x(uopt) selected for transmission in M-PTS is the

candidate OFDM signal with index uopt,T given by

uopt,T = arg
U−1
min
u=0

max
n∈ST (γT )

∣∣∣∣∣
V−1∑
v=0

b(u)
v xv,n

∣∣∣∣∣
2

. (4.24)

Block diagrams of the proposed PTS schemes are shown in Figure 4.4. Figure 4.4(a)

illustrates A-PTS while Figure 4.4(b) shows M-PTS.
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(a) A-PTS

(b) M-PTS

Figure 4.4: Block diagrams of the proposed PTS schemes with adaptive selection

methods for dominant time-domain samples.
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Chapter 5

PERFORMANCE ANALYSIS

In this chapter, the performances of the proposed PTS schemes, LC-PTS, A-PTS, and

M-PTS, are numerically analyzed. First, the computational complexity of the proposed

PTS schemes is considered and compared to those of the previously known PTS

schemes. In addition, the computational complexity of the proposed PTS schemes with

specific parameters is evaluated and compared to those of the previous PTS schemes

while maintaining the optimal PAPR reduction performance.

5.1 Computational Complexity

This section compares the computational complexity of the conventional PTS scheme,

RC-PTS [23], and the proposed PTS schemes. For comparison, the ratio pγ is defined

as the ratio between the number of selected dominant time-domain samples and the

number of total time-domain samples, that is,

pγ =
Nγ

LN
(5.1)

for A-PTS. Moreover, for the first stage of M-PTS, the ratio pβ is defined as the ratio

between the number of selected dominant time-domain samples in the first selection
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stage and the number of total time-domain samples given by

pβ =
Nβ

LN
. (5.2)

Note that for the second stage of M-PTS, pγ is also the ratio between the number of

selected dominant time-domain samples in the second selection stage and the number

of total time-domain samples as given by (5.1).

Table 5.1 compares the computational complexity after IFFT of the conventional

PTS, RC-PTS, LC-PTS, IRC-PTS and the proposed PTS schemes using the parameters

N , L, V , and W . The parameter pγ or pβ (Nγ or Nβ) is used to represent the com-

putational complexity of the PTS schemes using the dominant time-domain samples.

Additionally, the variables C and Cn, 0 ≤ n ≤ LN − 1 are used to express the number

of searches for the candidate samples at each n in the LC-PTS and in the proposed PTS

schemes, respectively. Note that the computational complexity required to check the

conditions of the proposed selection methods for the candidate samples is very low and

thus it can be ignored. For the specific parameter, the computational complexity of the

PTS schemes is described in the next section.

Table 5.1: Computational complexity after IFFT in PTS schemes

PTS schemes Number of complex multiplications

Conventional PTS [10] LNU

RC-PTS [23] LNV + pγLNU = LNV +NγU

IRC-PTS [24] 1.25LNV + pγLNU = 1.25LNV +NγU

LC-PTS LNC + pγLNU = LNC +NγU

A-PTS
∑LN−1

n=0 Cn + pγLNU =
∑LN−1

n=0 Cn +NγU

M-PTS
∑LN−1

n=0 Cn + pβLNC + pγLNU =
∑LN−1

n=0 Cn +NβC +NγU
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5.2 Simulation Results

This section compares the PAPR reduction performance of the conventional PTS, RC-

PTS, LC-PTS, and the proposed PTS schemes. As explained in Chapter 1, BER is

affected only by the PAPR in condition that other system conditions except only for

the PAPR of OFDM signals are fixed in OFDM systems. It means that the PAPR

reduction performance is directly connected to BER performance and improvement of

communication quality in OFDM systems.

Figures 5.1 and 5.2 compare the PAPR reduction performance of the conventional

PTS, RC-PTS, IRC-PTS, LC-PTS, A-PTS, and M-PTS in cases with 16-QAM, L = 4,

V = 8, and W = 2, where N = 256 and 1024 are considered, respectively. Note that

IRC-PTS is simulated by using the scheme Proposed(Y) [24]. For a fair comparison,Nγ

and the corresponding pγ (Nβ and the corresponding pβ) are set in each PTS scheme

except for the conventional PTS schemes, such that they achieve the optimal PAPR

reduction performance with their respective minimum values of Nγ and pγ (Nβ and

the corresponding pβ), which is identical to that by the conventional PTS. Note that

the respective minimum values of Nγ and pγ in those PTS schemes for the optimal

PAPR reduction performance are obtained by exhaustive searches. Therefore, those

PTS schemes achieve the optimal PAPR reduction performance, but their required Nγ

and pγ differ.

ForN = 256 as shown in Figure 5.1, theNγ’s for RC-PTS, IRC-PTS, LC-PTS, and

A-PTS are 56, 36, 15, and 51, respectively. Therefore, the corresponding pγ’s are 0.055,

0.035, 0.015, and 0.05. Furthermore, Nβ and Nγ of M-PTS are 51 and 15, respectively,

where the corresponding values of pβ and pγ are 0.05 and 0.015, when N = 256, as

shown in Figure 5.1.

For N = 1024 as shown in Figure 5.2, the Nγ’s for RC-PTS, IRC-PTS, LC-PTS

and A-PTS are 102, 45, 16, and 164, respectively. Therefore, the corresponding pγ’s

are 0.025, 0.011, 0.004, and 0.04. In addition, Nβ and Nγ of M-PTS are 143 and 16,

where the corresponding values of pβ and pγ are 0.035 and 0.004, respectively when
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Figure 5.1: PAPR reduction performance of PTS schemes for N = 256, 16-QAM,

L = 4, V = 4, and W = 2.
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Figure 5.2: PAPR reduction performance of PTS schemes for N = 1024, 16-QAM,

L = 4, V = 4, and W = 2.
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N = 1024 as shown in Figure 5.2.

Tables 5.2 and 5.3 compare the computational complexity of those PTS schemes

for cases of 16-QAM, L = 4, V = 4, and W = 2, where N = 256 and 1024 as shown

in Figures 5.1 and 5.2, respectively. As indicated in Figures 5.1 and 5.2, Nγ and the

corresponding pγ (Nβ and the corresponding pβ) are set in each PTS scheme except for

the conventional PTS scheme in Tables 5.2 and 5.3 respectively such that they achieve

the optimal PAPR reduction performance with their minimum values of Nγ and pγ (Nβ

and the corresponding pβ), identical to that of the conventional PTS.

Table 5.2: Computational complexity after IFFT in PTS schemes for N = 256, 16-

QAM, L = 4, V = 4, and W = 2

PTS schemes

Number of

complex

multiplications

Conventional PTS 8192 (100%)

RC-PTS [23] (Nγ = 56, pγ = 0.055) 4216 (55.5%)

IRC-PTS [24] (Nγ = 36, pγ = 0.035) 5328 (65.0%)

LC-PTS (Nγ = 15, pγ = 0.015) 4216 (51.5%)

A-PTS (Nγ = 51, pγ = 0.05) 1821 (22.2%)

M-PTS ([Nβ, Nγ ] = [51, 15], [pβ, pγ ] = [0.05, 0.015]) 1737 (21.2%)

In Table 5.2, the computational complexity of those PTS schemes is compared

for cases of N = 256, 16-QAM, L = 4, V = 4, and W = 2 as shown in Figure

5.1. Compared to the conventional PTS, A-PTS and M-PTS show much lower and the

lowest computational complexity of 22.2% and 21.2%, respectively, while achieving

the identical PAPR value of 8.7dB when CCDF = 10−4, which means the optimal
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Table 5.3: Computational complexity after IFFT in PTS schemes for N = 1024,

16-QAM, L = 4, V = 4, and W = 2

PTS schemes

Number of

complex

multiplications

Conventional PTS 32768 (100%)

RC-PTS [23] (Nγ = 102, pγ = 0.025) 17200 (52.5%)

IRC-PTS [24] (Nγ = 45, pγ = 0.011) 20840 (63.6%)

LC-PTS (Nγ = 16, pγ = 0.004) 16512 (50.4%)

A-PTS (Nγ = 164, pγ = 0.04) 6964 (21.3%)

M-PTS ([Nβ, Nγ ] = [143, 16], [pβ, pγ ] = [0.035, 0.004]) 6352 (19.4%)

PAPR reduction performance for cases of N = 256, as shown in Figure 5.1. Also,

LC-PTS shows considerably low computational complexity of 51.5% while maintaining

the optimal PAPR reduction performance. On the other hand, RC-PTS and IRC-PTS

show higher computational complexity of 55.5% and 65.0% with the optimal PAPR

reduction performance, respectively compared to the proposed PTS schemes.

Additionally, Table 5.3 compares the computational complexity of those PTS

schemes for cases of N = 1024, 16-QAM, L = 4, V = 4, and W = 2 as shown in

Figure 5.2. Compared to the conventional PTS, A-PTS and M-PTS show much lower

and the lowest computational complexity of 21.3% and 19.4%, respectively, while

maintaining an identical PAPR value of 9.5dB when CCDF = 10−4, which represents

the optimal PAPR reduction performance for N = 1024 as shown in Figure ??. In

addition, LC-PTS shows reduced computational complexity of 50.4% while achieving

the optimal PAPR reduction performance. On the other hand, RC-PTS and IRC-PTS
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show corresponding computational complexity of 52.5% and 63.6% with the optimal

PAPR reduction performance, respectively compared to the proposed PTS schemes.

Figures 5.3 and 5.4 compare the PAPR reduction performance of the conventional

PTS, RC-PTS, IRC-PTS, LC-PTS, and A2-PTS for cases of 16-QAM, L = 4, V = 8,

and W = 2, where N = 256 and N = 1024 are considered, respectively. For a fair

comparison as in Figures 5.3 and 5.4, Nγ and the corresponding pγ are set in each PTS

scheme except for the conventional PTS scheme, such that they achieve the optimal

PAPR reduction performance with their respective minimum values of Nγ and pγ .

Note that the conventional PTS scheme also achieves the optimal PAPR reduction

performance. For N = 1024, those PTS schemes achieve the optimal PAPR reduction

performance but their required Nγ and pγ differ. However, for N = 256, RC-PTS

and IRC-PTS cannot achieve the optimal PAPR reduction performance with even high

values of Nγ (= 512) and pγ (= 0.5), while the other PTS schemes do achieve this

level of performance given their differently required values of Nγ and pγ .

For N = 256 as shown in Figure 5.3, the Nγ’s of the RC-PTS, IRC-PTS, LC-PTS,

and A2-PTS are 512, 225, 225, and 512, respectively. Hence, the corresponding pγ’s

are 0.5, 0.5, 0.22, and 0.22. Moreover, for N = 1024 as shown in Figure 5.4, the Nγ’s

of RC-PTS, IRC-PTS, LC-PTS, and A2-PTS are 1730, 1311, 348, and 348, respectively.

Therefore, the corresponding pγ’s are 0.42, 0.32, 0.085, and 0.085.

Tables 5.4 and 5.5 compare the computational complexity of those PTS schemes

for cases of 16-QAM, L = 4, V = 8, and W = 2, where N = 256 and 1024 as shown

in Figures 5.1 and 5.2, respectively. As indicated in Figures 5.1 and 5.2 similar to case

of V = 4, Nγ and the corresponding pγ are set differently in each PTS scheme, except

for the conventional PTS schemes in Tables 5.4 and 5.5.

In Table 5.4, the computational complexity of those PTS schemes is compared

for cases of N = 256, 16-QAM, L = 4, V = 8, and W = 2 as shown in Figure

5.3. Compared to the conventional PTS, LC-PTS and A2-PTS show much lower

and the lowest computational complexity of 25.1% and 24.8%, respectively while
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Figure 5.3: PAPR reduction performance of PTS schemes for N = 256, 16-QAM,

L = 4, V = 8, and W = 2.

Table 5.4: Computational complexity after IFFT in PTS schemes for N = 256, 16-

QAM, L = 4, V = 8, and W = 2

PTS schemes Number of complex multiplications

Conventional PTS 131072 (100%)

RC-PTS [23] (Nγ = 512, pγ = 0.5) 73728 (56.3%)

IRC-PTS [24] (Nγ = 512, pγ = 0.5) 75776 (57.8%)

LC-PTS (Nγ = 225, pγ = 0.22) 32896 (25.1%)

A2-PTS (Nγ = 225, pγ = 0.22) 32470 (24.8%)
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Figure 5.4: PAPR reduction performance of PTS schemes for N = 1024, 16-QAM,

L = 4, V = 8, and W = 2.

Table 5.5: Computational complexity after IFFT in PTS Schemes for N = 1024,

16-QAM, L = 4, V = 8, and W = 2

PTS schemes Number of complex multiplications

Conventional PTS 524288 (100%)

RC-PTS [23] (Nγ = 1720, pγ = 0.42) 252928 (48.2%)

IRC-PTS [24] (Nγ = 1311, pγ = 0.32) 208768 (39.8%)

LC-PTS (Nγ = 348, pγ = 0.085) 60928 (11.6%)

A2-PTS (Nγ = 348, pγ = 0.085) 59225 (11.3%)
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achieving the identical PAPR of 7.5dB at CCDF = 10−4, which represents the optimal

PAPR reduction performance for cases of N = 256, as shown in Figure 5.3. On

the other hand, RC-PTS and IRC-PTS show computational complexity of 56.3% and

57.8%, respectively. Note that RC-PTS and IRC-PTS cannot achieve the optimal PAPR

reduction performance with even higher computational complexity compared to the

proposed PTS schemes.

In addition, Table 5.5 compares the computational complexity of those PTS schemes

for cases of N = 1024, 16-QAM, L = 4, V = 8, and W = 2 as shown in Figure 5.4.

Compared to the conventional PTS, LC-PTS and A2-PTS shows much lower and the

lowest computational complexity of 11.6% and 11.3%, respectively while achieving the

identical PAPR value of 8.4dB when CCDF = 10−4, which shows the optimal PAPR

reduction performance for cases with N = 1024 as shown in Figure 5.4. On the other

hand, RC-PTS and IRC-PTS show corresponding computational complexity of 48.2%

and 39.8% with the optimal PAPR reduction performance, respectively compared to

the proposed PTS schemes.
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Chapter 6

CONCLUSIONS

In this dissertation, we reviewed OFDM systems and the PAPR characteristics of OFDM

signals. To overcome the PAPR problem of OFDM systems, many PAPR reduction

schemes have been proposed. PTS schemes are a kind of solutions among them and

have efficient characteristics and high PAPR reduction performance. However, high

computational complexity is one of the most significant drawbacks of the PTS schemes.

In order to reduce computational complexity of the PTS schemes, several modified

PTS schemes have been proposed but their computational complexities are still high.

The PTS schemes proposed in this dissertation lower computational complexity of the

previous PTS schemes considerably while maintaining the optimal PAPR reduction

performance.

In Chapter 3, LC-PTS is proposed to reduce the computational complexity. The

computational complexity for calculating PAPRs of candidate OFDM signals is reduced

by selecting dominant time-domain samples using new method to select candidate

samples for estimating maximum power of time-domain samples. Based on the pro-

posed selection method for candidate samples and the corresponding selection method

for dominant time-domain samples, LC-PTS is proposed to reduce computational

complexity while maintaining the optimal PAPR reduction performance.

In Chapter 4, in order to reduce the computational complexity of the previous PTS
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schemes further, additional three low-complexity PTS schemes are proposed. Although

the proposed PTS schemes use dominant time-domain samples similar to the previous

low-complexity PTS schemes, more efficient selection methods for the dominant time-

domain samples are proposed. A1-SM and A2-SM are new methods to select candidate

samples adaptively for estimating maximum power of time-domain samples and then

selecting dominant time-dominant samples. Also, M-SM is a multi-stage method to

select dominant time-domain samples. A1-SM, A2-SM, and M-SM can reduce the

computational complexity required for calculating the PAPRs of candidate OFDM

signals considerably compared to the previous PTS schemes. Based on A1-SM, A2-

SM, and M-SM, new PTS schemes A-PTS and M-PTS are proposed for performance

enhancement in terms of computational complexity and PAPR reduction.

In Chapter 5, the performances of the proposed PTS schemes, LC-PTS, A-PTS,

and M-PTS, are numerically analyzed in terms of computational complexity and PAPR

reduction. The proposed PTS schemes can reduce the computational complexity consid-

erably while achieving optimal PAPR reduction performance. Therefore, the proposed

PTS schemes are promisingly expected to be used as the PAPR reduction scheme of the

OFDM signals in the practical implementation of OFDM systems.
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초록

직교주파수분할다중화 (OFDM) 시스템에서 직교주파수분할다중화 신호의 높

은 최대전력대평균전력비 (PAPR)는 해결하여야 가장 중요한 문제들 중 하나이다.

직교주파수분할다중화신호의높은최대전력대평균전력비는신호가고출력증폭기

(HPA)를통과할때심각한비선형왜곡을발생시킨다.이러한왜곡들은대역내왜곡

과대역외신호를발생시키는데,이들은각각수신된신호의비트오류율 (BER)성능

열화와 인접 채널 간섭에 영향을 미친다. 직교주파수분할다중화 신호의 최대전력

대평균전력비 문제를 해결하기 위해 다양한 최대전력대평균전력비 감소 기법들이

제안되어왔다.

본 논문은 직교주파수분할다중화 시스템의 최대전력대평균전력비 감소 기법

중 하나인 부분전송수열 (PTS) 기법 연구에 관한 내용이다. 부분전송수열 기법은

높은최대전력대평균전력비감소성능과신호왜곡이없는특성때문에직교주파수

분할다중화 시스템의 최대전력대평균전력비 문제에 대한 해결책으로 매우 적합한

기법이다.부분전송수열기법은기존직교주파수분할다중화신호를표현할수있는

여러 개의 후보 신호들을 발생시키고, 이들 중 가장 낮은 최대전력대평균전력비를

갖는 신호를 전송 신호로 선택한다. 그러나 부분전송수열 기법을 사용하는데 있어

서,후보신호들을발생시키고처리하는데필요한높은계산복잡도는심각한문제

가될수있다.본논문에서는,부분전송수열기법의계산복잡도를감소시키기위해

시간영역의큰샘플들을선별하여활용하는새로운부분전송수열기법들을제안한

다. 시간 영역의 큰 샘플들은 후보 신호들의 최대전력대평균전력비를 효율적으로

추정하기위해사용되는직교주파수분할다중화신호의소수샘플들을의미한다.
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첫번째로 본 논문에서는, 시간 영역의 큰 샘플의 새로운 선별 방법들을 사용하

는저복잡도부분전송수열기법들을제안한다.제안된선별방법들은후보신호들의

후보샘플들의선택방법들을기반으로한다.후보샘플들의선택방법들은감소된

복잡도로 시간 영역의 큰 샘플들을 선별할 수 있다. 이 방법들로 선별된 시간 영역

의 큰 샘플들은 높은 추정 성능으로 후보 신호들의 최대전력대평균전력비를 추정

하는데 사용된다. 따라서 제안된 저복잡도 부분전송수열 기법들은 상당히 감소된

계산복잡도로도최적의최대전력대평균전력비감소성능을달성할수있다.

다음으로 본 논문에서는, 높은 최대전력대평균전력비 감소 성능을 유지하면서

계산복잡도를더줄이기위해,개선된부분전송수열기법을제안한다.이부분전송

수열 기법들은 첫번째로 제안된 기법들과 유사하게 시간 영역의 큰 샘플들과 후보

샘플들을 활용한다. 그러나 개선된 부분전송수열 기법들은 더 효율적인 선별 방법

들을사용하는데,이들은시간영역의큰샘플들을선별하기위해적응방법또는다

단계 방법을 사용하여 후보 샘플들을 선택한다. 따라서 이 부분전송수열 기법들은

최적의 최대전력대평균전력비 감소 성능을 유지하면서 계산 복잡도를 추가적으로

감소시킬수있다.

본논문에서제안된부분전송수열기법들은시간영역의큰샘플들을선별하기

위해효율적인선택방법을사용한다.제안된부분전송수열기법들은기존의부분전

송수열 기법들과 비교하여 최적의 최대전력대평균전력비 감소 성능을 달성하면서

계산 복잡도를 상당히 감소시킨다. 따라서 제안된 부분전송수열 기법들은 높은 성

능과낮은복잡도의장점으로인해실제구현되는직교주파수분할다중화시스템에

사용가능할것으로기대된다.

주요어:부분전송수열,직교주파수분할다중화,최대전력대평균전비

학번: 2012-20821
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