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Abstract

Attack-Resilient Feedback
Control Systems: Secure State

Estimation under Sensor Attacks

Chanhwa Lee

Department of Electrical Engineering and Computer Science
College of Engineering

The Graduate School
Seoul National University

Recent advances in computer and communication technologies make control sys-

tems more connected thanks to the developments in networked actuation and

sensing devices. As this connectivity increases, the resulting large scale net-

worked control systems, or the cyber-physical systems (CPS), are exposed and

can be vulnerable to malicious attacks. In response to the crisis by the malicious

adversaries, this dissertation presents sophisticated control algorithms which are

more reliable even when some components of the feedback control systems are

corrupted. Focusing especially on sensor attacks, security related problems on

CPS are carefully analyzed and an attack-resilient state estimation scheme is pro-

posed. First, the notion of redundant observability is introduced that explains in

a unified manner existing security notions such as dynamic security index, attack

detectability, and observability under attacks. The redundant observability is a

key concept in this dissertation, and a system is said to be q-redundant observ-

able if it is observable even after eliminating any q measurements. It has been

shown that any q-sparse sensor attack is detectable if and only if the given linear
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time invariant (LTI) system is q-redundant observable. It is also equivalent to

the condition that the system is observable under ⌊q/2⌋-sparse sensor attacks.

Moreover, the dynamic security index, which is defined by the minimum number

of attacks to be undetectable, can be computed as q + 1. In addition, the re-

dundant detectability (or, asymptotic redundant observability), which is a weaker

notion than the redundant observability, is also introduced. While the redundant

observability does not care about the magnitudes of sensor attacks and does not

mind whether the attacks are disruptive or not, the redundant detectability only

deals with attacks that do not converge to zero as time goes on, so that it is more

practical in the sense that it can only detect and correct the attacks that are

actually harmful to the system. Next, a resilient state estimation scheme is pro-

posed under two assumptions: ⌊q/2⌋-sparsity of attack vector and q-redundant

detectability of the system. The proposed estimator consists of a bank of par-

tial observers operating based on Kalman detectability decomposition and a de-

coder exploiting error correction techniques. The partial observers are either con-

structed by Luenberger observers or Kalman filters. The Luenberger observer

guarantees the robustness with bounded disturbances/noises, while the Kalman

filter shows the suboptimality in the sense of minimum variance with Garussian

disturbances/noises. In terms of time complexity, an ℓ0 minimization problem in

the decoder alleviates the computational efforts by reducing the search space to

a finite set and by combining a detection algorithm to the optimization process.

On the other hand, in terms of space complexity, the required memory is linear

with the number of sensors by means of the decomposition used for constructing

a bank of partial observers. This resilient state estimation scheme proposed for

LTI systems, is further extended for a class of uniformly observable nonlinear sys-

tems. Based on the uniform observability decomposition, a high gain observer is

constructed for each single measurement to estimate the observable sub-state and

it constitutes the partial observer. Finally, the decoder solves a nonlinear error

correcting problem by collecting all the information from the high gain observers

and by exploiting redundancy.

Keywords: cyber-physical systems, attack resilience, analytical redundancy, se-

curity index, attack detection, secure state estimation

Student Number: 2012–30225

ii



사랑하는 가족에게 이 논문을 바칩니다.

iii





Contents

Abstract i

List of Figures ix

List of Algorithms xi

Notation and Symbols xiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objective and Contributions . . . . . . . . . . . . . . . . 5

1.3 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 8

2 Error Correction over Reals and its Extensions 11

2.1 Error Correction over Reals and Compressed Sensing . . . . . . . . 11

2.2 Extension to Stacked Vector Case . . . . . . . . . . . . . . . . . . . 16

2.2.1 Error Detectability and Error Correctability . . . . . . . . . 16

2.2.2 Error Detection and Correction Scheme for Noiseless Case . 20

2.2.3 Error Detection and Correction Scheme for Noisy Case . . . 23

3 On Redundant Observability 41

3.1 Redundant Observability . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Definition and Characterization . . . . . . . . . . . . . . . . 42

3.1.2 Relationship with Strong Observability . . . . . . . . . . . . 45

3.1.3 Redundant Unobservable Subspace . . . . . . . . . . . . . . 47

3.1.4 Asymptotic Redundant Observability . . . . . . . . . . . . . 49

v



3.2 Attack Detectability and Dynamic Security Index . . . . . . . . . . 56

3.3 Observability under Sparse Sensor Attacks . . . . . . . . . . . . . . 65

4 Attack-Resilient State Estimation for Linear Systems 69

4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Components of Attack-Resilient Estimator and Their Functions . . 73

4.2.1 Partial Observer: Kalman Detectability Decomposition . . . 73

4.2.2 Decoder: Error Correction for Stacked Vector . . . . . . . . 77

4.3 Design of Attack-Resilient State Estimator . . . . . . . . . . . . . . 78

4.3.1 Deterministic Estimator with Bounded Disturbance and Noise 79

4.3.2 Suboptimal Estimator with Gaussian Disturbance and Noise 85

4.4 Remarks on Proposed Attack-Resilient Estimator . . . . . . . . . . 93

4.4.1 Comparison with Fault Detection and Isolation . . . . . . . 93

4.4.2 Analysis of Time and Space Complexity . . . . . . . . . . . 95

4.5 Simulation Results: Three-Inertia System . . . . . . . . . . . . . . 96

5 Attack-Resilient State Estimation for Nonlinear Systems 101

5.1 Problem Formulation and Preliminaries . . . . . . . . . . . . . . . 102

5.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 102

5.1.2 Bi-Lipschitz Function and Lipschitz Left Inverse . . . . . . 103

5.1.3 Nonlinear Error Detectability and Error Correctability . . . 105

5.2 Uniformly Observable Nonlinear Systems for Any Input . . . . . . 108

5.2.1 Uniform Observability Decomposition . . . . . . . . . . . . 108

5.2.2 Design of High Gain Observer . . . . . . . . . . . . . . . . . 111

5.3 Redundant Observability for Nonlinear Systems . . . . . . . . . . . 112

5.4 Attack Detection and Resilient Estimation for Nonlinear Systems . 115

5.4.1 Detection of Sensor Attacks . . . . . . . . . . . . . . . . . . 115

5.4.2 Attack-Resilient State Estimation . . . . . . . . . . . . . . . 119

5.5 Simulation Results: Numerical Example . . . . . . . . . . . . . . . 121

6 Conclusion 125

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

vi



Bibliography 129

국문초록 141

vii





List of Figures

1.1 Configuration of the networked control system. . . . . . . . . . . . 2

1.2 Control connection of the controller-estimatior configuration. . . . 5

4.1 Total configuration of the feedback control system. . . . . . . . . . 70

4.2 Configuration of the plant P. . . . . . . . . . . . . . . . . . . . . . 71

4.3 Two scenarios of the measurement data attack. . . . . . . . . . . . 71

4.4 Configuration of the partial observer Oi. . . . . . . . . . . . . . . . 80

4.5 Configuration of the decoder D with bounded disturbance/noise. . 83

4.6 Configuration of the decoder D with Gaussian disturbance/noise. . 90

4.7 Three-inertia system. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.8 Block diagram of the observer-based state feedback integral control. 98

4.9 Plot of attack a1(t). . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.10 Plot of state θ1(t) and its estimate θ̂1(t). . . . . . . . . . . . . . . . 99

4.11 Plot of state θ̇2(t) and its estimate ˆ̇
θ2(t). . . . . . . . . . . . . . . . 99

4.12 Plot of reference signal θ3,ref(t) and output θ3(t). . . . . . . . . . . 99

5.1 Plot of attack a2(t). . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2 Plot of state x1(t) and its estimate x̂1(t). . . . . . . . . . . . . . . . 124

5.3 Plot of state x2(t) and its estimate x̂2(t). . . . . . . . . . . . . . . . 124

5.4 Plot of state x3(t) and its estimate x̂3(t). . . . . . . . . . . . . . . . 124

6.1 Configuration of the distributed sensor network and attack scenario.128

ix



x



List of Algorithms

2.1 Orthogonal matching pursuit . . . . . . . . . . . . . . . . . . . . . 15

2.2 Detection scheme based on χ2 test for a static error equation . . . 37

2.3 Correction scheme based on multiple hypothesis testing . . . . . . 39

4.1 Operation of the decoder with bounded disturbance/noise . . . . . 84

4.2 Operation of the decoder with Gaussian disturbance/noise . . . . . 91

xi



xii



Notation and Symbols
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{1, 2, · · · , p}
[p] \ Λ(= Λc) the complement of the set Λ with respect to the set [p], i.e.,

{i ∈ [p] : i /∈ Λ}
yi the i-th element of the vector y ∈ Cp

yΛ the vector in Cp obtained from y ∈ Cp by setting all yi’s such

that i ∈ Λc to zero
yπΛ the vector in C|Λ| obtained from y ∈ Cp by eliminating all

yi’s such that i ∈ Λc

supp(y) the support of the vector y ∈ Cp, i.e., {i ∈ [p] : yi ̸= 0}

∥y∥0 the ℓ0 norm of the vector y ∈ Cp, i.e., ∥y∥0 := |supp(y)|
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|yi|

⟨y, y′⟩ the inner product of two vectors y, y′ ∈ Cp, i.e., yHy′

∥y∥2 the 2-norm of the vector y ∈ Cp, i.e.,
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⟨y, y⟩ =

√
yHy

∥y∥∞ the infinity norm of the vector y ∈ Cp, i.e., max
i∈[p]
|yi|

ci,j the (i, j)-th element of the matrix C ∈ Rp×n
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2
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Γn
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Λn the index set
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i∈Λ

Γn
i

suppn(z) the n-stacked support of the n-stacked vector z =[
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Notation

• A vector z ∈ Cnp of length np can be split into p column vectors of length n,

i.e., z =
[
zn⊤1 zn⊤2 · · · zn⊤p

]⊤ ∈ Cnp, where zni ∈ Cn represents the i-th split

column vector of length n in z. Then we call z an n-stacked vector. With

the index set Γn
i defined above, it follows that zni = zπΓn

i
∈ Cn.

• A usual vector y ∈ Rp is said to be q-sparse if ∥y∥0 ≤ q. An n-stacked

vector z ∈ Rnp is said to be n-stacked q-sparse if ∥z∥0n ≤ q.

• With X ⊂ Rn, a function f : X → Rp is said to be Lipschitz on X if there
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Chapter 1

Introduction

1.1 Background

A Cyber-Physical System (CPS) is a system of collaborating computational

elements (cyber parts of CPS) controlling physical entities (physical parts of

CPS) [3, 43, 68]. Embedded computers and networks monitor and control the

physical processes, usually with feedback loops where physical processes affect

computations and vice versa. Compared with traditional embedded systems, CPS

emphasizes more on an intensive link between the computational and physical el-

ements, while embedded systems focus on the computational device only. Thus,

CPS is usually designed as a network of elements that interact with physical in-

puts and outputs rather than standalone devices. Recent advances in computer

and communication technologies have enabled CPS to be prevailing in many engi-

neering areas, such as aerospace, automotive, chemical processes, civil infrastruc-

ture, energy, healthcare, manufacturing, transportation, military, robotics, enter-

tainment, and consumer appliances.

In control system community, CPSs are regarded as unprecedented large-scale

complex networked control systems (NCS) [26, 98] which are operated over open

public networks thanks to increasing connectivity of Internet and recent advances

in networked actuation and sensing devices. (See Fig. 1.1.) Reliability of systems

under various circumstances is one of the main concerns for control engineers.

Robust and fault tolerant control methods are developed to cope with uncertain-

ties in the system model, external disturbances, and failures (or malfunctions)

1



2 Chap. 1. Introduction

Figure 1.1: Configuration of the networked control system.

in system components. However, new threats or vulnerabilities are reported re-

cently, as advances in computers and communications increase the connectivity

between systems whose components are often located remotely through open net-

works, which is prevalent in NCSs. Indeed, attacks on systems that involve feed-

back controllers took place in reality [18, 40, 79, 91, 94, 96, 97] and may lead to

catastrophic disruptions in critical infrastructure or cause loss of life [91,94]. For

example, the StuxNet worm virus on supervisory control and data acquisition

(SCADA) system in Iran nuclear facilities [40], breach at Maroochy Water Ser-

vices in Austrailia [79], power outage in Ukraine [96], and car hacking [97] are

reported. Therefore, attack-resilience of control systems under malicious attacks

has become one of the critical system design considerations and is actively stud-

ied [54,70].

From a control systematic perspective, many researchers focus on the system

theoretic properties of physical plants and try to enhance security of the system

by adopting and modifying advanced control techniques. Various engineering

methods are applied to increase security in physical layers of CPS, such as fault

detection and isolation [66], robust optimal control [1], estimation theory [12,
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42], network graph theory [85], game-theoretic approach [101], and cryptography

[36]. Especially, fault detection and isolation techniques [30] are very useful since

attacks are similar to faults and can be viewed as unexpected and unwanted

data injection to the system components like actuators and sensors. However,

the attack signals can be generated in a coordinated way so that they remain

stealthy [2,35,63,89,90] since adversaries may infiltrate into the system and inject

intentional false data, while the fault signals arise from non-colluding failures and

display abnormal behaviors. Consequently, we can regard malicious attacks as

a kind of intelligent faults. That is, by exploiting the system model knowledge

and data information, attack signals can be manipulated to deceive the target

system and remain undetectable. In fault detection and isolation area, model-

based residual generation techniques are developed using state estimation methods

[20] and “analytical redundancy” is a core element of those techniques [21, 25].

Unlike “physical redundancy” approaches such as [46] and [15], which actually

employ additional components and exclude outliers simply by a majority voting

logic, the analytical redundancy exploits the inherent redundancy contained in the

mathematical model of dynamical systems. In this dissertation, a sort of analytical

redundancy in measurements called redundant observability is introduced as a key

concept that explains in a unified manner existing security notions of control

systems under sensor attacks.

Fundamental limitations on security issues such as attack detectability (and

identifiability) conditions in consideration of actuator attacks as well as sensor

attacks, have been investigated in [66]. In order to assess vulnerability of CPS

focusing on sensor attacks, those limitations are quantified by the security index

[11, 28, 71] which is the minimum number of attacks to remain undetectable by

any type of anomaly detector. That is, the security index is closely related to

the notion of attack detectability. Undetectable sensor attacks for a static output

map are characterized in [28,39,45,71,81,82], while the security index concept is

generalized to a dynamical system under sensor attacks in [11].

Motivated by the considerable works in the field of compressed sensing, er-

ror correction, and sparse approximation [8–10, 14, 16, 17, 27, 58, 93], studies on

resilient state estimation under sparse sensor attacks, have been carried out re-
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cently [12, 19, 31, 51, 62, 75–77]. In [19], basic concepts regarding this problem

are introduced and the state reconstruction problem is formulated by an ℓ0 min-

imization problem which is NP-hard. By recasting the ℓ0 minimization problem

into a convex optimization problem, it solves the problem under additional re-

strictive assumptions, however, it can not guarantee real time estimation because

the algorithm provides initial state estimates only so that the information is de-

layed. Bounded noises, disturbances, and modeling errors are considered in [62]

and the state estimation error is analyzed, but an explicit error bound is not

given. Zero mean Gaussian white noises and disturbances rather than bounded

ones, are considered in [44, 51, 55] and Kalman filters are used to guarantee the

state estimation performance in a probabilistic manner. Reference [77] proposes

an event-triggered projected gradient descent algorithm which is a kind of itera-

tive greedy algorithm [93] with additional restrictive conditions. A satisfiability

modulo theory approach, which is a logic to find a healthy combination of sensors

by sequentially checking if it satisfies certain binary conditions, is adopted in [76]

and [75], but it relies on a heuristic idea for deciding search order from all possible

combinations. Authors in [12] prepare all possible candidates of observer combi-

nations to sort out healthy sensors, but the number of observers is fairly large.

On the other hand, a computationally efficient estimation scheme using median

operation is proposed for the system being observable with every sensor [31].

Although most control systems have nonlinearity in practice, all the above

studies are restricted to linear dynamical systems. An attempt to tackle the

resilient state estimation problem for nonlinear systems is firstly made in [78],

which is a direct extension of the results [76] on linear systems to a class of

nonlinear systems, called differentially flat systems. However, by assuming the

measurement output to be the “flat” output, the class of systems becomes limited;

for example, the given system should not have non-trivial zero dynamics [69]. On

the other hand, a secure state estimator is constructed in [29] for a special form of

nonlinear systems whose stacked outputs can be represented by a linear function

of the initial state and the attack vector.
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Figure 1.2: Controller-estimatior configuration of the control system under
sensor attacks.

1.2 Research Objective and Contributions

Sensors are one of the vulnerable points for security of control systems, and

thus, many researchers have studied security problems of the system where mea-

surements are compromised by adversaries [11,12,19,28,31,37,39,45,51,62,64,75–

77, 81]. In this dissertation, we consider sensor attacks on feedback control sys-

tems whose control connection is the controller-estimator configuration depicted

in Fig. 1.2. Note that the design of state feedback (K in Fig. 1.2) and the design

of observer (E in Fig. 1.2) can be carried out independently for linear time invari-

ant (LTI) systems because the separation principle holds for LTI systems. The

main objective of this dissertation is threefold: (i) to analyze the characteristics of

linear systems under sensor attacks, focusing on the property of state reconstruc-

tion, (ii) to design a secure and attack-resilient estimator which actually recovers

the state variable in this situation, and (iii) to extend the results on analysis and

design of resilient estimation for linear systems to a class of nonlinear systems.

For discrete-time LTI systems, we first conduct a theoretical analysis and then

present a scheme for resilient state estimation. The first part (Chapter 3) of this

dissertation deals with the theoretical developments of the relationship between

the notion of redundant observability and the fundamental limitations on secu-

rity of control systems under sensor attacks. As mentioned above, attacks have

something in common with faults, and a fault detection algorithm primarily uti-

lizes the analytical redundancy. Thus, one can infer that the attack detectability,

which directly gives the security index, is linked to the redundancy in some way.

It is shown in this dissertation that the redundant observability is the key element

and it determines the fundamental limitations of attack detectability. The redun-



6 Chap. 1. Introduction

dant observability is a sort of analytical redundancy in sensing measurements to

reconstruct the system states defined as follows. An LTI system is said to be

q-redundant observable if it remains observable even though any q measurement

outputs are eliminated. More specifically, it has been shown that any q-sparse

sensor attack is detectable if and only if the given LTI system is q-redundant ob-

servable, which is again equivalent to the condition that the system is observable

under any ⌊q/2⌋-sparse sensor attacks. In this case, the dynamic security index

can be directly obtained as q+1. However, the problem of calculating the security

index or the measurement redundancy involves combinatorial logic in nature, and

thus, it is NP-hard [28]. To mitigate this computational burden, we also sug-

gest a simple method to compute the dynamic security index by examining only

eigenvectors. Furthermore, the redundant detectability (or, asymptotic redundant

observability), which is a weaker notion than the redundant observability, is also

introduced. While the redundant observability does not care about the magni-

tudes of sensor attacks and does not mind whether the attacks are disruptive or

not, the redundant detectability only deals with attacks that do not converge to

zero as time goes on, so that it is more practical in the sense that it can only

detect and correct the attacks that are actually harmful to the system.

In the second part (Chapter 4) of this dissertation, we propose a resilient and

robust (or, suboptimal) state estimation scheme under three assumptions: ⌊q/2⌋-
sparsity of attack vector, boundedness (or, Gaussian distribution) of disturbances/

noises, and q-redundant detectability of the system. The proposed estimator con-

sists of a bank of partial observers operating based on the Kalman detectability

decomposition and a decoder that exploits error correction techniques. Compared

to the existing resilient estimation algorithms in [12, 19, 31, 44, 51, 55, 62, 75–77],

advantages of our scheme are as follows. Basically, the proposed scheme assumes

the q-redundant detectability that is a weaker notion than the q-redundant ob-

servability condition on which other existing resilient estimation algorithms are

based. First, it does not require any additional restrictive conditions other than q-

redundant detectability (compared with [19,31,75,77]). Second, an observer-based

algorithm makes it possible to estimate the current state, not the initial state or

delay information (compared with [19,62,76]). Third, the scheme for bounded dis-
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turbances/noises, is robust in the sense that a bound on estimation error is explic-

itly derived from system parameters (compared with [12, 19, 62, 75–77]), and the

scheme for Gaussian distributed disturbances/noises, is suboptimal in the sense

that it achieves the minimum variance or weighted least square error in more

general cases (compared with [44, 51, 55]). Fourth, in terms of time complexity,

an ℓ0 minimization problem in the decoder alleviates the computational efforts by

reducing the search space to a finite set and by combining a detection algorithm

to the optimization process (compared with other observe-based combinatorial

approach such as [12, 51]). Last, the required memory is linear with the number

of sensors by means of the decomposition used for constructing a bank of partial

observers, and hence, the space complexity is much smaller than that of [12, 51].

Overall, [75] seems to have similar advantages to ours, but it implicitly assumes a

certain exhaustive controllability condition for each combination of observers to

be transformed into the controllable canonical form.

In the third part (Chapter 5) of this dissertation, a dynamic observer-based

resilient state estimation scheme is extended to a class of nonlinear systems. There

are a few researches [29, 78] dealing with nonlinear systems for resilient state es-

timation. For example, authors in [78] first investigated nonlinear differentially

flat systems and developed a state estimation scheme under attacks. However, by

assuming the measurement output to be the “flat” output, the class of systems

becomes very limited because the system should admit a simple static form of

observers. In addition, [29] deals with a nonlinear system which has a special

structure so that its output can be trivially transformed into a linear function of

the initial state and the attack signal. We have presented a resilient estimation

algorithm for a class of nonlinear systems called uniformly observable nonlinear

systems, which are under much less restrictive class compared with previous re-

sults and are often studied in the field of control engineering for nonlinear sys-

tems. Assuming that there are enough number of sensors, we show how to coun-

teract the effect of limited number of sensor attacks. In particular, the notion of

redundant observability for linear systems is slightly modified for nonlinear sys-

tems. Like linear systems, the idea of the resilient estimator implementation is

to design partial observers for each output, which is for estimating the observable
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sub-state only, and then to process the partial information collected from each

sensor. For this, the “uniform observability decomposition” from [74], which is an

analogous concept of Kalman observability decomposition for linear systems, and

a high gain observer [24] are utilized to construct the final detector/estimator.

As a by-product of the high gain observer construction, we obtain an assignable

convergence rate of the estimation error that converges to zero.

1.3 Outline of the Dissertation

The following outlines this dissertation and briefly presents the contributions of

each chapter.

Chapter 2. Error Correction over Reals and its Extensions

The theoretical background of static error correcting problems for a stacked vector

case, is presented in this chapter. First, we review some brief backgrounds on

error correction techniques for a usual vector case and discuss connection between

error correction over reals and compressed sensing. Then, the techniques are

extended to the case of stacked vectors, which is an essential mathematical tool

in later chapters. This chapter establishes the basic concepts and provides a solid

foundation both for theoretical analysis and practical estimator design in attack-

resilient estimation. For theoretical studies, the notions of error detectability and

error correctability of the given coding matrix are introduced and characterized

by suggesting some equivalent conditions. In addition, for practical use, the error

detection and state reconstruction schemes are proposed both for bounded noises

and Gaussian distributed noises.

Chapter 3. On Redundant Observability

The notion of redundant observability is introduced that explains in a unified man-

ner existing security notions such as dynamic security index, attack detectability,

and observability under attacks. By following similar procedures used to derive

observability in linear system theory, e.g., the observability matrix rank test or

Popov-Belevitch-Hautus (PBH) test, we can obtain some equivalent conditions

for redundant observability. Moreover, it turns out that an observability matrix

behaves like a coding matrix examined in the static error correcting problem, and
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hence, its properties (e.g., redundant left invertibility, cospark, error detectability,

and error correctability) determine the resilience of control systems under sensor

attacks (e.g., redundant observability, dynamic security index, attack detectabil-

ity, and observability under attacks of the system). Furthermore, the redundant

detectability (or, asymptotic redundant observability), which is a weaker notion

than the redundant observability, is also introduced. As the name suggests, the

redundant detectability is a concept of redundant observability in an asymptotic

sense. That is, if one can recover the state variable asymptotically (in the limit)

even after removing any q sensors, the system is called q-redundant detectable.

Since the redundant detectability is a kind of asymptotic properties, it treats a

signal which converges to zero as a zero signal. Therefore, it only cares about

attacks that do not converge to zero as time goes on, while the redundant observ-

ability does not care about the magnitudes of sensor attacks. Thus, it is more

practical in the sense that it can only detect and correct the attacks that are

actually harmful to the system.

Chapter 4. Attack-Resilient State Estimation for Linear Systems

In this chapter, we have developed algorithms which estimate the state variable

of the control systems even under sparse sensor attacks. The proposed estimator

consists of a bank of partial observers operating based on Kalman detectability

(or, observability) decomposition and a decoder exploiting error correction tech-

niques. For bounded disturbances and noises, the partial observers are designed

by Luenberger observers and the decoder utilizes the error correction algorithm

with bounded noises. The proposed scheme is robust since it guarantees that the

estimation error bound is proportional to the noise level. For Gaussian distributed

disturbances and noises, the partial observers are constructed by Kalman filters

and the decoder operates based on the error correction algorithm with Gaussian

noises. The solution of the proposed algorithm is most likely to detect the attacks

and is suboptimal since it achieves the minimum variance or weighted least square

error for the selected set of sensors. In terms of time complexity, an ℓ0 minimiza-

tion problem in the decoder alleviates the computational efforts by reducing the

search space to a finite set and by combining a detection algorithm to the opti-

mization process. On the other hand, in terms of space complexity, the required
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memory is linear with the number of sensors by means of the decomposition used

for constructing a bank of partial observers.

Chapter 5. Attack-Resilient State Estimation for Nonlinear Systems

The resilient state estimation algorithm developed for linear systems in the previ-

ous chapters, are generalized to uniformly observable nonlinear systems. A high

gain observer, which becomes the partial observer whose error decreases to zero

exponentially, is constructed for each single output, and it provides the estimate

of the observable sub-state. An attack detection scheme, which decides the pres-

ence of attack by comparing the residual signal with a time-varying threshold, is

proposed. The required condition for this attack detection is less strong than the

condition for resilient state estimation, which is natural because the attack can

also be revealed/identified once the state is correctly estimated. It will be shown

that a detection alarm rings whenever “influential” sensor attacks are injected. If

the alarm does not ring then either there is no attack, or the attack is so small

that one cannot tell between the sensor attack and the measurement noise. More-

over, by employing the time-varying threshold, the proposed detection scheme

also takes into account the transient of the estimation error caused by dynamic

observers. Finally, the proposed attack detection algorithm enables resilient state

estimation by signaling that the current combination of sensor information is cor-

rupted or not.

Chapter 5. Conclusion

The major contributions of this dissertation is summarized and future research

directions are discussed.



Chapter 2

Error Correction over Reals and its
Extensions

This chapter provides some brief background on error correction techniques and

discuss connection between error correction over reals and compressed sensing.

Based on the results of error correcting problems with usual vectors, we extend

them to the stacked vector case which forms the foundation of this dissertation.

2.1 Error Correction over Reals and Compressed Sens-

ing

We consider an error correcting problem with real valued input and output

which is stated as follows: For the corrupted measurement

y = Cx+ e ∈ Rp (2.1.1)

where C ∈ Rp×n (p > n) has full column rank and e ∈ Rp is q-sparse (i.e.,

∥e∥0 ≤ q), is it possible to recover x exactly from the data y?

When a coding matrix C ∈ Rp×n has the property that ∥Cx∥0 > 2q for any

x ∈ Rn such that x ̸= 0n×1, it is well known [27, Section 3] that the input x is

uniquely recovered by the well-known ℓ0 minimization problem of

min
χ∈Rn

∥y − Cχ∥0.

11
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In other words, if cospark(C) > 2q, the input variable x can be recovered by the

ℓ0 minimization decoder D0 : y 7→ argmin
χ∈Rn

∥y − Cχ∥0, i.e.,

x = D0(y) = argmin
χ∈Rn

∥y − Cχ∥0.

In recent years, compressed sensing (CS) has attracted remarkable attraction

in areas of information theory, coding theory, computer science, statistics, and

electrical engineering [9, 14, 16]. CS is an efficient signal sensing protocol which

samples data at a lower rate than that of Shannon’s theorem suggests, and later

recovers the original signal from an incomplete set of measurements. The recon-

struction of a signal in CS, i.e., sparse signal recovery, is closely related to the error

correcting problem (2.1.1) as follows [9]. We can multiply a full row rank matrix

F ∈ R(p−n)×p, which annihilates the matrix C on the left, i.e., FC = O(p−n)×n,

to (2.1.1) and obtain

ȳ = F (Cx+ e) = Fe ∈ Rp−n. (2.1.2)

Here, F ∈ Rm×p (m = p − n < p) is called a sensing matrix and the error

correcting problem of (2.1.1) is transformed to the problem of reconstructing the

sparse vector e ∈ Rp from the observations ȳ = Fe ∈ Rm. In this situation, if any

subsets of 2q columns of F are linearly independent, the q-sparse error vector e

can be recovered by searching the sparsest vector ε ∈ Rp that explains ȳ = Fε.

That is, if spark(F ) > 2q (note that the spark of the matrix F is the minimal

number of columns from F that are linearly dependent), the error variable e can

be recovered by

e = argmin
ε∈Rp

∥ε∥0 subject to ȳ = Fε. (2.1.3)

Assuming that e is q sparse, the solvability conditions for (2.1.1) and (2.1.2)

are cospark(C) > 2q and spark(F ) > 2q, respectively. Actually, when the coding

matrix C and the sensing matrix F is related by FC = Om×n, we have that

cospark(C) = spark(F )
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which easily follows from

min
x∈Rn, x̸=0n×1

∥Cx∥0 ⇔ min
y∈Rp, y ̸=0p×1

∥y∥0 subject to Fy = 0m×1

because Fy = 0m×1 means that y is of the form Cx (i.e., y ∈ R(C)) where x is

nonzero since y ̸= 0p×1.

The ℓ0 minimization of (2.1.3) is a hard combinatorial problem. Hence, in the

field of CS, many researchers try to solve (2.1.2) with a computationally feasible

algorithm under some additional conditions. The notion of restricted isometry

property (RIP) introduced by [9], is a key concept in this matter and many suf-

ficient conditions guaranteeing the exact sparse signal recovery is expressed in

terms of RIP.

Definition 2.1.1. A sensing matrix F ∈ Rm×p is said to satisfy the restricted

isometry property of order k with the restricted isometry constant δk if δk is the

smallest constant such that

(1− δk)∥e∥22 ≤ ∥Fe∥22 ≤ (1 + δk)∥e∥22

holds for all k-sparse e (i.e., ∥e∥0 ≤ k). ♢

One way to reduce the computational effort of solving (2.1.3) is to recast

this ℓ0 minimization problem into a convex optimization which can be easily

implemented by linear programming techniques. By replacing ∥ · ∥0 in (2.1.3)

with its convex approximation ∥ · ∥1, we obtain a more tractable ℓ1 minimization

problem of

ê = argmin
ε∈Rp

∥ε∥1 subject to ȳ = Fε. (2.1.4)

The following theorem proved in [10] asserts that the solution of the ℓ1 minimiza-

tion problem (2.1.4) is that of the ℓ0 minimization problem (2.1.3) under some

RIP condition with a small enough restricted isometry constant. More precisely,

the convex relaxation is exact when δ2q <
√
2− 1 and e ∈ Σq.

Theorem 2.1.1. For the measurement ȳ = Fe ∈ Rm where F ∈ Rm×p satisfies
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the RIP of order 2q with the restricted isometry constant

δ2q <
√
2− 1

and ∥e∥0 ≤ q, it follows that

e = argmin
ε∈Rp

∥ε∥1 subject to ȳ = Fε. ♢

While the ℓ1 relaxation (2.1.4) is called basis pursuit, another approach called

matching pursuit [53,95] or greedy algorithm [93] is also developed. Greedy meth-

ods are a kind of iterative approximation and have attracted interest of many

researchers for practical benefits. Greedy search algorithms sequentially inves-

tigate the support of the sparse signal until a convergence criterion is met, or

obtain an improved estimate of the sparse signal at each iteration that attempts

to account for the mismatch to the measurements. Orthogonal matching pursuit

(OMP) [93] is one of the simple and effective greedy approaches and its algorithm

is presented in Algorithm 2.1 where f∗,j represents j-th column of F and F π
∗,Λi

denotes the matrix obtained from F by eliminating all j-th columns such that

j ∈ Λc
i . In each iteration of OMP, correlations between each column of F and the

modified measurements so called residual (r in Algorithm 2.1) are compared each

other and the most correlated column is chosen as an element of the support of

the sparse signal. The performance guarantees of OMP are similar to those of ℓ1
minimization (2.1.4) and [53, 95] have shown that OMP exactly recover e from

ȳ = Fe in a finite iteration with a small restricted isometry constant, stated as

follows.

Theorem 2.1.2. For the measurement ȳ = Fe ∈ Rm where F ∈ Rm×p satisfies

the RIP of order q+ 1 with the restricted isometry constant

δq+1 <
1

√
q+ 1

and ∥e∥0 ≤ q, OMP described in Algorithm 2.1 perfectly recovers e from ȳ = Fe

in q iteration. ♢
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Algorithm 2.1 Orthogonal matching pursuit
Input: measurement ȳ, sensing matrix F , sparsity q

Output: state estimate ê
Initialization: count i = 0, residual r0 = ȳ, support set Λ0 = ∅
1: while i < q do
2: i = i+ 1

3: Λi = Λi−1

⋃
argmax

j

|⟨f∗,j, ri−1⟩|
∥f∗,j∥2

4: êπΛi
= argmin

ε
∥ȳ − F π

∗,Λi
ε∥2 =

(
F π
∗,Λi

)†
ȳ

5: ri = ȳ − F π
∗,Λi

êπΛi

6: end while
7: ê = argmin

ε∈{e: supp(e)=Λq}
∥ȳ − Fε∥2

There are another algorithmic approach to sparse signal recovery called com-

binatorial algorithm. Since combinatorial approach identifies a subset of anoma-

lous elements by investigating all possible combinations [59], it is computation-

ally heavy. However, it does not require any additional assumption other than

spark(F ) > 2q, while ℓ0 minimization and OMP suppose that the sensing matrix

satisfy the RIP with a small enough restricted isometry constant. By the way,

if we have the freedom to construct and choose the sensing matrix F , which is

a common situation in the field of signal processing and information theory, one

can generate the sensing matrix by a random matrix in order to satisfy the RIP

condition. Authors in [4, 49] have shown that random matrices satisfy the RIP

condition with high probability if the elements are selected according to a Gaus-

sian, Bernoulli, or any sub-Gaussian distribution. However, it is not the case in

control engineering. Since the coding matrix C comes from the dynamical sys-

tem, the sensing matrix F which should satisfy FC = Om×n can not be generated

by any random matrix. Hence, the RIP condition may not be fulfilled for many

control engineering applications. Thus, we have tried to make the best use of the

combinatorial algorithm and ℓ0 minimization in this dissertation because it does

not require any additional restrictive condition like the RIP.
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2.2 Extension to Stacked Vector Case

In this section, the error correction techniques with a usual vector examined in

the previous section, is extended and tailored to the n-stacked vector case which

will be encountered frequently in the security problems on control systems. As

an extension of (2.1.1), we presume the measurement vector ẑ is composed of p

measurement data ẑni ∈ Rn for i ∈ [p] such that

ẑ =


ẑn1

ẑn2
...

ẑnp


and thus ẑ is an n-stacked vector. Given a coding matrix Φ ∈ Rnp×n, we want to

recover a vector x ∈ Rn from the n-stacked measurement vector ẑ given by

ẑ = Φx+ e ∈ Rnp (2.2.1)

in which the measurement ẑ is corrupted by an unknown vector e ∈ Rnp. Here, e

is the error vector that is sparse but the magnitude of non-zero elements can be

arbitrarily large. Later in this section, we will also take noises into account, and

then, the equation (2.2.1) finally has an additional noise vector v ∈ Rnp which

leads the measurement ẑ in the following form of

ẑ = Φx+ v + e ∈ Rnp (2.2.2)

where the n-stacked measurement ẑ is corrupted by the noise vector v as well as

the error vector e. The vector v represents noise and is assumed to have bounded

magnitude or follows a Gaussian distribution.

2.2.1 Error Detectability and Error Correctability

This section introduces the notions of error detectability and error correctabil-

ity when the measurement ẑ is noise-free as in (2.2.1). Because one should be able
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to detect the presence of error in order to reconstruct the original state vector x,

two concepts are closely related. We start this section by introducing the error

detectability, which is an essential prerequisite for error correctability.

Definition 2.2.1. For a coding matrix Φ ∈ Rnp×n, a non-zero error vector e ∈ Rnp

is said to be undetectable with respect to Φ if there are two different x and x′ in

Rn such that Φx+ e = Φx′. ♢

In other words, e ̸= 0np×1 is undetectable with respect to Φ if and only

if e = Φxe for some xe ̸= 0n×1. Furthermore, the next lemma indicates that

undetectable errors are such signals that are invisible through a residual signal.

Lemma 2.2.1. [45, Theorem 3.2] For the measurement ẑ = Φx + e where

Φ ∈ Rnp×n has full column rank and x ∈ Rn, let

r := ẑ − ΦΦ†ẑ :=
(
Inp×np − Φ(Φ⊤Φ)−1Φ⊤

)
ẑ. (2.2.3)

Then e = Φxe ∈ Rnp for some xe ∈ Rn if and only if r = 0np×1. In other words, e

is undetectable with respect to Φ if and only if r = 0np×1. ♢

Note that ΦΦ† in Lemma 2.2.1 is an orthogonal projection matrix. Therefore,

it projects ẑ onto the range space of Φ, R(Φ), and we have ẑ /∈ R(Φ) if and only

if ẑ ̸= ΦΦ†ẑ. By the way, Definition 2.2.1 identifies error detectability in respect

of the error vector e. As for the coding matrix Φ, this notion can also be defined

analogously with a q-sparsity constraint on e as follows.

Definition 2.2.2. A coding matrix Φ ∈ Rnp×n is said to be (n-stacked) q-error

detectable if, for all x, x′ ∈ Rn and e ∈ Σn
q such that Φx + e = Φx′, it holds that

x = x′. ♢

Therefore, the matrix Φ ∈ Rnp×n is not (n-stacked) q-error detectable if and

only if there are two different x and x′ in Rn, and e in Σn
q such that Φx + e =

Φx′, which corresponds with Definition 2.2.1. Or, when Φ is (n-stacked) q-error

detectable and e is (n-stacked) q-sparse, the measurement ẑ = Φx+ e lies in the

range space R(Φ) if and only if e = 0np×1. Now, more equivalent conditions which

characterize the error detectability of a coding matrix Φ, are given.
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Proposition 2.2.2. The followings are equivalent:

(i) The matrix Φ ∈ Rnp×n is (n-stacked) q-error detectable;

(ii) For every set Λ ⊂ [p] satisfying |Λ| ≥ p − q, ΦΛn (or, equivalently Φπ
Λn) has

full column rank;

(iii) For any x ∈ Rn where x ̸= 0n×1, ∥Φx∥0n > q;

(iv) For any x, x′ ∈ Rn where x ̸= x′, d0n(Φx,Φx′) > q. ♢

Proof. (i) ⇒ (ii): Suppose that (ii) does not hold, i.e., there exists an index set

Λ ⊂ [p] with |Λ| ≥ p − q and x ̸= 0n×1 such that ΦΛnx = 0np×1. Then it follows

that ∥e∥0n ≤ q where e := −Φx. Thus, Φx + e = Φ0n×1, and Φ is not q-error

detectable.

(ii)⇒ (iii): Suppose, for the sake of contradiction, that there exists x ̸= 0n×1 such

that ∥Φx∥0n ≤ q. Let Λ be the complement of suppn(Φx), i.e., Λ = (suppn(Φx))c.

Then it is obvious that |Λ| ≥ p − q and ΦΛnx = 0np×1. This contradicts the full

column rank condition of ΦΛn in (ii).

(iii) ⇒ (iv): Because x− x′ ̸= 0n×1, we have d0n(Φx,Φx
′) = ∥Φ(x− x′)∥0n > q.

(iv) ⇒ (i): We again prove it by contradiction. Suppose that Φ is not q-error

detectable. That is, there exist x, x′ ∈ Rn satisfying x ̸= x′, and e ∈ Σn
q such that

Φx + e = Φx′. It follows from x − x′ ̸= 0n×1 and e ∈ Σn
q that d0n(Φx

′,Φx) =

∥Φ(x′ − x)∥0n = ∥e∥0n ≤ q. Thus, (iv) fails.

Remark 2.2.1. In Proposition 2.2.2, the condition (ii) relates q-error detectabil-

ity to left invertibility of Φ ∈ Rnp×n. That is, Φ remains left invertible even if any

(n-stacked) q row blocks are eliminated. We may call this property q-redundant

left invertibility. In other words, one should remove at least (q + 1) row blocks

from Φ to break left invertibility, which has something to do with the sparsest

critical (q + 1)-tuple found in [81]. On the other hand, the condition (iii) es-

tablishes link between the error detectability and the cospark of a coding ma-

trix. More specifically, Φ is q-error detectable if and only if its cospark is larger

than q, i.e., cosparkn(Φ) > q. For a usual matrix C ∈ Rp×n, a similar claim

of the equivalence between (i) and (ii) is proved in [39, Theorem 1]. A similar

claim of the equivalence between (ii) and (iii) is also shown in [81, Theorem 3] for

C ∈ Rp×n. Proposition 2.2.2 generalizes those theorems to an (n-stacked) coding



2.2. Extension to Stacked Vector Case 19

matrix Φ ∈ Rnp×n. ♢

On top of the error detectability, the following notion of error correctability is

now introduced and characterized.

Definition 2.2.3. A coding matrix Φ ∈ Rnp×n is said to be (n-stacked) q-error

correctable if, for all x, x′ ∈ Rn and e, e′ ∈ Σn
q such that Φx+e = Φx′+e′, it holds

that x = x′. ♢

Therefore, when Φ is (n-stacked) q-error correctable, one should be able to

recover x (and thus, e as well) from the corrupted measurement ẑ = Φx+ e with

e ∈ Σn
q, because, in principle, one can exhaustively search for all x′ ∈ Rn and

e′ ∈ Σn
q such that ẑ = Φx′ + e′. In other words, if Φ is q-error correctable, then

the input x ∈ Rn can be uniquely determined from the measurement Φx+e ∈ Rnp

whenever the error e is q-sparse. Thus, when the input x and the measurement

ẑ are related by ẑ = Φx+ e with q-sparse error vector e, there is a decoding map

D : Rnp → Rn which can recover the input vector x ∈ Rn exactly if and only if the

matrix Φ ∈ Rnp×n is q-error correctable. This is not possible if Φ is not q-error

correctable because, with Φ not being q-error correctable, there exist x ̸= x′ ∈ Rn

and e, e′ ∈ Σn
q such that Φx+ e = Φx′ + e′.

Now, by the same arguments as in Proposition 2.2.2, one can easily obtain

the following equivalence between error correctability and error detectability.

Proposition 2.2.3. The followings are equivalent:

(i) The matrix Φ ∈ Rnp×n is (n-stacked) q-error correctable;

(ii) The matrix Φ ∈ Rnp×n is (n-stacked) 2q-error detectable;

(iii) For every set Λ ⊂ [p] satisfying |Λ| ≥ p− 2q, ΦΛn (or, equivalently Φπ
Λn) has

full column rank;

(iv) For any x ∈ Rn where x ̸= 0n×1, ∥Φx∥0n > 2q;

(v) For any x, x′ ∈ Rn where x ̸= x′, d0n(Φx,Φx′) > 2q. ♢

Proof. (i) ⇒ (ii): Assume that x, x′ ∈ Rn and e ∈ Σn
2q satisfying Φx + e = Φx′,

are given. Let e1 and e2 be such that e = e1 − e2 where e1, e2 ∈ Σn
q. Thus, we

have Φx + e1 = Φx′ + e2. Since Φ ∈ Rnp×n is q-error correctable, it follows that

x = x′.



20 Chap. 2. Error Correction over Reals and its Extensions

(ii)⇒ (i): Assume that x, x′ ∈ Rn and e, e′ ∈ Σn
q satisfying Φx+ e = Φx′+ e′, are

given. Then, we have Φx + e′′ = Φx′ where e′′ = e − e′ ∈ Σn
2q. Since Φ ∈ Rnp×n

is 2q-error detectable, it follows that x = x′.

(ii) ⇔ (iii) ⇔ (iv) ⇔ (v): It directly follows from Proposition 2.2.2.

Proposition 2.2.3 implies that one can detect twice the number of errors that

can be corrected and reconstructed. In other words, the error correctability re-

quires twice redundancy in measurements than the error detectability in respect

of the redundant left invertibility of a coding matrix.

2.2.2 Error Detection and Correction Scheme for Noiseless Case

Based on the concept of q-error detectability and correctability analyzed in

the previous section, we can implement a realizable scheme that actually detects

the presence of error and reconstructs the input variable. Those methods for the

noiseless measurement (2.2.1) are presented in this section. First, a detection

scheme utilizing the residual signal r generated by the discrepancy between the

actual measurements ẑ and the estimated measurements Φx̂ where x̂ = Φ†ẑ in

(2.2.3), is developed. The equivalence between Proposition 2.2.2.(i) and (iii) im-

plies that one can detect non-zero error e ∈ Rnp as long as ∥e∥0n < cosparkn(Φ).

Indeed, combining this result with Lemma 2.2.1, one can derive a detection cri-

terion of q-sparse error, which determines whether a q-sparse error compromises

the measurements or not. In other words, when ℓ0 norm of the error e is less than

the cospark of Φ, there exists a scheme that can check if e = 0np×1.

Lemma 2.2.4. For the measurement ẑ = Φx+ e where Φ ∈ Rnp×n is (n-stacked)

q-error detectable, x ∈ Rn, and e ∈ Σn
q, let r = ẑ − ΦΦ†ẑ. Then e = 0np×1 if

and only if r = 0np×1. Moreover, when e = 0np×1, the vector x is recovered by

x̂ := Φ†ẑ. ♢

Proof. Note that no q-sparse error e ̸= 0 can be represented by Φxe for some

xe ∈ Rn by Proposition 2.2.2.(iii). Therefore, the result directly follows from

Lemma 2.2.1.

In a similar way done in the field of CS, we can multiply an orthogonal full

row rank matrix Ψ ∈ R(n−1)p×np, which annihilates the matrix Φ on the left
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of (2.2.1) and obtain another error detection strategy with a slightly modified

residual signal.

Corollary 2.2.5. For the measurement ẑ = Φx+e where Φ ∈ Rnp×n is (n-stacked)

q-error detectable, x ∈ Rn, and e ∈ Σn
q, let r′ = Ψẑ where Ψ ∈ R(n−1)p×np is a

matrix such that ΨΦ = O(n−1)p×n and ΨΨ⊤ = I(n−1)p×(n−1)p. Then e = 0np×1 if

and only if r′ = 0(n−1)p×1. ♢

Proof. From
[
Ψ⊤ (Φ†)⊤

]⊤ [
Ψ⊤ Φ

]
= Inp×np, it directly follows that

[
Ψ⊤ Φ

] [
Ψ⊤ (Φ†)⊤

]⊤
= Ψ⊤Ψ+ΦΦ† = Inp×np.

Therefore, we have Ψ⊤Ψ = Inp×np−ΦΦ† which implies that Ψ⊤r′ = ẑ−ΦΦ†ẑ = r

and the proof is completed by Lemma 2.2.4.

Second, assuming that Φ is (n-stacked) q-error correctable, we will discuss the

problem of constructing a decoder that can actually correct (n-stacked) q-sparse

error e and recover the input vector x in the noiseless case of (2.2.1). That is,

we will find a map D : Rnp → Rn such that D(ẑ) = x where ẑ = Φx + e ∈ Rnp

and e ∈ Σn
q. The next lemma says that ℓ0 minimization introduced for a usual

vector error correction problem in Sction 2.1, provides a solution in this situation

as well, that is, it indeed works for our n-stacked vector case.

Lemma 2.2.6. For the measurement ẑ = Φx+ e ∈ Rnp with (n-stacked) q-error

correctable Φ ∈ Rnp×n, x ∈ Rn, and e ∈ Σn
q,

x = argmin
χ∈Rn

∥ẑ − Φχ∥0n (2.2.4)

i.e., the decoder D0n : ẑ 7→ argmin
χ∈Rn

∥ẑ − Φχ∥0n corrects q errors. ♢

Proof. If there exists x′ ̸= x that minimizes ∥ẑ−Φχ∥0n , then, with e′ := ẑ−Φx′,

we have that ẑ = Φx′+e′ = Φx+e and ∥e′∥0n ≤ ∥e∥0n ≤ q because e′ is a minimal

solution. This implies that Φ is not q-error correctable and thus completes the

proof by contradiction.
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Lemma 2.2.6 asserts that, in order to reconstruct x, one should investigate the

whole space Rn to solve (2.2.4). However, the search space in fact can be reduced

to a finite set defined by

Fp,r(ẑ) :=
{
x ∈ Rn : x = (ΦΛn)† ẑΛn where Λ ⊂ [p] and |Λ| = p− r

}
(2.2.5)

in which, r is any integer satisfying q ≤ r ≤ 2q. Note that |Fp,r(ẑ)| ≤
( p
p−r

)
=
(p
r

)
.

When it comes to solving (2.2.4), the following theorem claims that it is enough

to search over the finite set Fp,r(ẑ), not Rn. For this, one can choose r between q

and 2q to minimize
(p
r

)
.

Theorem 2.2.7. For the measurement ẑ = Φx+e ∈ Rnp with (n-stacked) q-error

correctable Φ ∈ Rnp×n, x ∈ Rn, and e ∈ Σn
q,

x = argmin
χ∈Fp,r(ẑ)

∥ẑ − Φχ∥0n (2.2.6)

where r is any integer satisfying q ≤ r ≤ 2q. ♢

Proof. It is enough to show that the vector x belongs to Fp,r(ẑ). Pick any subset

Λ ⊂ (suppn(e))c satisfying |Λ| = p − r. Because ΦΛn has full column rank by

Proposition 2.2.3.(iii), it follows that χ = (ΦΛn)† ẑΛn = (ΦΛn)†ΦΛnx = x. Hence,

x ∈ Fp,r(ẑ).

Remark 2.2.2. The ℓ0 minimization problem (2.2.4) over Rn is shown to be

NP-hard [58] in terms of time computational complexity. This means that the

algorithm may not be practically feasible since, in control systems, the compu-

tation should be done repeatedly in real-time. Thus, much research effort has

been devoted for a relaxation of (2.2.4) by imposing some additional conditions

(e.g., applications of basis pursuit and greedy algorithm in control systems as

in [19, 77]). It is emphasized that the algorithm proposed in Theorem 2.2.7 ac-

tually relieves the computational complexity, not by imposing additional condi-

tions, but by reducing the search space to a finite set. It is a kind of combina-

torial approach which tests only
(p
r

)
≤ pr (or

( p
p−r

)
≤ pp−r) candidates with the

freedom of selecting r between q and 2q, while a naive brute force search algo-
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rithm without any information on error correctability has no choice but to test

all
(p
1

)
+
(p
2

)
+ · · ·+

(p
p

)
≈ 2p combinations. In our case, the computational efforts

decrease drastically by selecting r = q when q ≪ p (or selecting r = 2q when

q ≈ p/2) for example. Compared to other combinatorial algorithms in [42,66,76],

Theorem 2.2.7 is more relaxed by introducing r that can varies between q and 2q.

♢

Finally, the following lemma presents a simple criterion to verify whether a

given vector x̂ ∈ Rn coincides with the original input x.

Lemma 2.2.8. For the measurement ẑ = Φx+ e ∈ Rnp with (n-stacked) q-error

correctable Φ ∈ Rnp×n, x ∈ Rn, and e ∈ Σn
q,

∥ẑ − Φx̂∥0n ≤ q if and only if x = x̂. ♢

Proof. (if): This is trivial because ∥ẑ − Φx̂∥0n = ∥e∥0n ≤ q.

(only if): Define ê := ẑ − Φx̂, then ẑ = Φx̂ + ê = Φx + e where e, ê ∈ Σn
q. Since

Φ is q-error correctable, it follows from Definition 2.2.3 that x = x̂.

2.2.3 Error Detection and Correction Scheme for Noisy Case

The previous section showed that the input vector x can be recovered precisely

from the noiseless measurements by an optimization problem when the measure-

ment is corrupted by sparse adversaries. However, the measurements are prone to

be contaminated by noises in most practical situations. For example, since almost

all sensors are not perfect to measure the actual outputs, they may suffer from

the quantization errors in digital control systems. In addition, external distur-

bances can be a source of noises and modeling errors may contribute to deviate

the measurements. In other words, consideration of the noise is inevitable be-

cause the sensor measurement is not perfect in practice. Moreover, consideration

of the noise is also required by the intrinsic property of the dynamic estimator.

It will be seen that the dynamic estimator will compute the state estimate that

asymptotically converges to the true state as time tends to infinity, but at any

finite time, there is small estimation error. This small estimation error will also
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be treated as the noise in Chapter 4. If the signal recovery method is sensitive

to the noise, the solution is not reliable in practical systems. Therefore, stable

error detection and signal recovery algorithm need to be devised in the presence

of noise.

2.2.3.1 Bounded Noise

Suppose that the measurement ẑ = Φx+ v+ e is given where Φ is (n-stacked)

q-error correctable, e is (n-stacked) q-sparse, and v ∈ Rnp satisfies

∥vni ∥2 ≤ vmax for all i ∈ [p]. (2.2.7)

First, let us now consider a detection scheme for the case when the bounded noise

v ∈ Rnp corrupts the measurements as in (2.2.2). For this, let

ρp,q(Φ) := min {σmin (ΦΛn) : Λ ⊂ [p], |Λ| = p− q}

= 1
/
max

{∥∥ (ΦΛn)†
∥∥
2
: Λ ⊂ [p], |Λ| = p− q

}
,

ηp,q(Φ) := max
{∥∥ΦΓn

i
(ΦΛn)†

∥∥
2
: i ∈ [p] \ Λ, Λ ⊂ [p], |Λ| = p− q

}
,

κdp,q(Φ) := (
√
p+ 1)

√
p− q/ρp,q(Φ),

κep,q(Φ) :=
(
ηp,q(Φ)

√
p− q+ 1

)
(
√
p+ 1).

The proposed method is inspired by the error detection scheme in Lemma 2.2.4,

and the following theorem says that one can “practically” detect the q-sparse error

in the noisy situation with the residual r given in (2.2.3).

Theorem 2.2.9. For the measurement ẑ = Φx + v + e where Φ ∈ Rnp×n is (n-

stacked) q-error detectable, x ∈ Rn, e ∈ Σn
q, and v ∈ Rnp satisfying ∥vni ∥2 ≤ vmax,

∀i ∈ [p], let x̂ = Φ†ẑ and r = ẑ − Φx̂. Then,

(i) e ̸= 0np×1 if

∥rni ∥2 = ∥ẑni − Φπ
Γn
i
x̂∥2 >

√
p vmax for some i ∈ [p],
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(ii) ∥eni ∥2 ≤ κep,q(Φ)vmax, ∀i ∈ [p], if

∥rni ∥2 = ∥ẑni − Φπ
Γn
i
x̂∥2 ≤

√
p vmax for all i ∈ [p].

In the case of (ii), ∥x̂− x∥2 ≤ κdp,q(Φ)vmax. ♢

Proof. (i): This can be shown by contraposition. If e = 0np×1, then we have, for

all i ∈ [p],

∥ẑni − Φπ
Γn
i
x̂∥2 = ∥Φπ

Γn
i
x+ vni − Φπ

Γn
i
(Φ†(Φx+ v))∥2 = ∥vni − Φπ

Γn
i
(Φ†v)∥2

≤ ∥(Inp×np − ΦΦ†)v∥2 ≤
√
p vmax,

which follows from the fact that ∥Inp×np − ΦΦ†∥2 ≤ 1.

(ii): Let Λ be a subset of (suppn(e))c satisfying |Λ| = p − q. Since √p vmax ≥
∥ẑni − Φπ

Γn
i
x̂∥2 for all i ∈ Λ from the assumption, we have

√
p(p− q)vmax ≥ ∥ẑΛn − ΦΛn x̂∥2 = ∥ΦΛnx+ vΛn − ΦΛn x̂∥2 = ∥ΦΛn(x− x̂) + vΛn∥2

≥ ∥ΦΛn(x− x̂)∥2 − ∥vΛn∥2,

which leads to the result that

∥ΦΛn(x− x̂)∥2 ≤ (
√
p+ 1)

√
p− qvmax.

Therefore, it is obtained that

∥x̂− x∥2 ≤ (
√
p+ 1)

√
p− qvmax/ρp,q(Φ) = κdp,q(Φ)vmax.

Now, for any i ∈ Λc, it follows again from the assumption that

√
p vmax ≥ ∥ẑni − Φπ

Γn
i
x̂∥2 = ∥Φπ

Γn
i
x+ vni + eni − Φπ

Γn
i
x̂∥2 = ∥Φπ

Γn
i
(x− x̂) + vni + eni ∥2

≥ −∥Φπ
Γn
i
(x− x̂)∥2 − vmax + ∥eni ∥2.
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Therefore,

∥eni ∥2 ≤ ∥Φπ
Γn
i
(x− x̂)∥2 +

√
pvmax + vmax = ∥ΦΓn

i
Φ†
ΛnΦΛn(x− x̂)∥2 + (

√
p+ 1)vmax

≤ ηp,q(Φ)(
√
p+ 1)

√
p− qvmax + (

√
p+ 1)vmax = κep,q(Φ)vmax,

∀i ∈ Λc.

Since ∥eni ∥2 = 0 for all i ∈ Λ, this completes the proof.

In fact, when the size of e is small, one cannot tell between the noise v and the

error e. The item (ii) in Theorem 2.2.9 reflects this fact and guarantees that the

estimation error is small and x̂ approximately estimates x.

Now, an algorithm for reconstructing x, which is robust to the noise, is pre-

sented.1 By robustness, we mean that the algorithm can recover the input x from

ẑ under sparse attack e and bounded noise v, with a guaranteed error bound that

is proportional to the noise level. We will first prove that any solution (χ∗, ε∗)

to the following relaxed ℓ0 minimization problem yields an approximation of x as

x̂ = χ∗:
min

χ∈Fp,r(ẑ), ε∈Rnp
∥ε∥0n

subject to ∥ẑni − Φπ
Γn
i
χ− εni ∥2 ≤ v′max,

∀i ∈ [p]

(2.2.8)

where r is any integer such that q ≤ r ≤ 2q and

v′max := ϑp,q,r(Φ)vmax

:= max
{
η′p,q,r(Φ)

√
p− r + 1,

√
p− r

}
vmax,

η′p,q,r(Φ) := max
Λ⊂[p]

|Λ|=p−q

min
Λ̄⊂Λ

|Λ̄|=p−r

max
i∈Λ\Λ̄

∥∥ΦΓn
i
(ΦΛ̄n)

† ∥∥
2
.

(2.2.9)

It will be clarified in the proof of Theorem 2.2.11 why v′max, not vmax, is used

in (2.2.8). The above optimization problem is not easily implementable because

there are two optimization variables χ and ε where the variable ε is searched over

Rnp under constraints. Hence, we present another optimization problem, which is

1Robust signal recovery has also been studied in the literature, but most of them require
additional conditions such as uniform uncertainty (or restricted isometry property) [8] or mutual
incoherence [17]. Roughly speaking, they are criteria to measure how close the given matrix is
to an orthogonal matrix. See [8] and [17].
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in more accessible form of:

x̂ = argmin
χ∈Fp,r(ẑ)

∣∣∣{i ∈ [p] : ∥ẑni − Φπ
Γn
i
χ∥2 > v′max

}∣∣∣ , (2.2.8′)

or

x̂ = argmax
χ∈Fp,r(ẑ)

∣∣∣{i ∈ [p] : ∥ẑni − Φπ
Γn
i
χ∥2 ≤ v′max

}∣∣∣ . (2.2.8′′)

When robustness of the given signal reconstruction scheme is analyzed, the

problem (2.2.8) is more useful than (2.2.8′) and (2.2.8′′) because the error vector

ê and the noise vector v̂ is directly determined from the solution x̂. However, note

that (2.2.8) has two optimization variables χ and ε, while (2.2.8′) and (2.2.8′′)

have only one optimization variable χ. Hence, in order to solve (2.2.8), one

should first minimize ∥ε∥0n for any given χ under the constraints. By denoting

that minimal solution for given χ as êχ, one then calculate the optimal solution x̂

minimizing ∥êχ∥0n among all χ ∈ Fp,r(ẑ). Consequently, when we implement the

algorithm, the unconstrained problem (2.2.8′) or (2.2.8′′) is preferable to (2.2.8)

since one can directly calculate the value of the objective function for any given χ

without additional optimization process. Actually, (2.2.8′) can be interpreted as a

relaxation of the problem (2.2.4). The following proposition shows the equivalence

of (2.2.8), (2.2.8′), and (2.2.8′′).

Proposition 2.2.10. For the measurement ẑ = Φx + e + v ∈ Rnp with (n-

stacked) q-error correctable Φ ∈ Rnp×n, x ∈ Rn, e ∈ Σn
q, and v ∈ Rnp such that

∥vni ∥2 ≤ vmax, ∀i ∈ [p], three optimization problems (2.2.8), (2.2.8′), and (2.2.8′′)

are equivalent (that is, a solution x̂ to one optimization problem is also a solution

to another optimization problem and vice versa). ♢

Proof. It is trivial that (2.2.8′) and (2.2.8′′) are equivalent. Therefore, we will

show that (2.2.8) and (2.2.8′) are equivalent. Let x̂ = χ∗ and ê = ε∗ be any

solution to (2.2.8), and let v̂ := ẑ−Φx̂− ê. Then, for any i ∈ [p], it automatically

holds that ∥v̂ni ∥2 ≤ v′max by the constraint in (2.2.8). Similarly, let x̂′ be the

solution to (2.2.8′). Define ê′nj := ẑnj − Φπ
Γn
j
x̂′ and v̂′nj := 0n×1 for j ∈

{
i ∈

[p] : ∥ẑni − Φπ
Γn
i
x̂′∥2 > v′max

}
, and define ê′nj := 0n×1 and v̂′nj := ẑnj − Φπ

Γn
j
x̂′ for

j ∈
{
i ∈ [p] : ∥ẑni −Φπ

Γn
i
x̂′∥2 ≤ v′max

}
. Then, (χ, ε) = (x̂′, ê′) satisfies the constraint
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in (2.2.8).

We claim that x̂ with ê, the solution of (2.2.8), is also a solution of (2.2.8′)

and vice versa. Indeed, directly from the above definition of ê′, it is obtained that

∣∣∣{i ∈ [p] : ∥ẑni − Φπ
Γn
i
x̂′∥2 > v′max

}∣∣∣ = ∥ê′∥0n . (2.2.10)

On the other hand, because ∥ẑni − Φπ
Γn
i
x̂ − êni ∥2 ≤ v′max for all i ∈ [p], it follows

that ∥ẑnj − Φπ
Γn
j
x̂∥2 ≤ v′max for any j ∈

(
suppn(ê)

)c. Thus, we have

∣∣∣{i ∈ [p] : ∥ẑni − Φπ
Γn
i
x̂∥2 > v′max

}∣∣∣ ≤ ∥ê∥0n . (2.2.11)

Since ê is the minimal solution of (2.2.8), it holds that

∥ê∥0n ≤ ∥ê′∥0n . (2.2.12)

Finally, because x̂′ is the solution of (2.2.8′), it follows that∣∣∣{i ∈ [p] : ∥ẑni − Φπ
Γn
i
x̂′∥2 > v′max

}∣∣∣ ≤ ∣∣∣{i ∈ [p] : ∥ẑni − Φπ
Γn
i
x̂∥2 > v′max

}∣∣∣ .
(2.2.13)

Combining (2.2.10), (2.2.11), (2.2.12), and (2.2.13) together results in

∥ê∥0n =
∣∣∣{i ∈ [p] : ∥ẑni − Φπ

Γn
i
x̂∥2 > v′max

}∣∣∣
=∥ê′∥0n =

∣∣∣{i ∈ [p] : ∥ẑni − Φπ
Γn
i
x̂′∥2 > v′max

}∣∣∣ .
Consequently, x̂ is a solution of (2.2.8′) and x̂′ is a solution of (2.2.8). This

concludes the claim.

While the problem (2.2.8), (2.2.8′), or (2.2.8′′) need not have unique solution,

the following theorem establishes a robust estimation scheme which utilizes an

optimization problem over a finite set and presents an upper bound of ∥x̂ − x∥2
for any solution x̂ of (2.2.8), (2.2.8′), or (2.2.8′′) with a proportional constant

κcp,q,r(Φ) := (ϑp,q,r(Φ) + 1)
√
p− 2q/ρp,2q(Φ).
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Theorem 2.2.11. For the measurement ẑ = Φx+e+v ∈ Rnp with (n-stacked) q-

error correctable Φ ∈ Rnp×n, x ∈ Rn, e ∈ Σn
q, and v ∈ Rnp such that ∥vni ∥2 ≤ vmax,

∀i ∈ [p], it holds that

∥x̂− x∥2 ≤ κcp,q,r(Φ) vmax,

for any solution x̂ of the optimization problem (2.2.8), (2.2.8′), or (2.2.8′′). ♢

Proof. Let (x̂, ê) be a solution (χ∗, ε∗) of (2.2.8). Then, we first show that ∥ê∥0n ≤
q. Let Λ be a subset of (suppn(e))c satisfying |Λ| = p − q. Then, there always

exists a subset Λ̄ ⊂ Λ such that |Λ̄| = p− r and

max
i∈Λ\Λ̄

∥∥ΦΓn
i
(ΦΛ̄n)

† ∥∥
2
≤ η′p,q,r(Φ).

Let x̄ := (ΦΛ̄n)
† ẑΛ̄n , which belongs to Fp,r(ẑ). Then it follows that x̄ = x +

(ΦΛ̄n)
† vΛ̄n because ΦΛ̄n has full column rank and thus (ΦΛ̄n)

†ΦΛ̄n = In×n. With

x̄ at hand, let us define a noise vector v̄ := ẑΛn −ΦΛn x̄ ∈ Rnp and an error vector

ē := ẑ − Φx̄− v̄. Here, the vector v̄ can be decomposed as

v̄ = ΦΛnx+ vΛn − ΦΛn(x+ (ΦΛ̄n)
† vΛ̄n)

= v(Λ\Λ̄)n + vΛ̄n − (Φ(Λ\Λ̄)n +ΦΛ̄n) (ΦΛ̄n)
† vΛ̄n

= v(Λ\Λ̄)n − Φ(Λ\Λ̄)n (ΦΛ̄n)
† vΛ̄n + (Inp×np− ΦΛ̄n(ΦΛ̄n)†)vΛ̄n ,

and thus, it follows that

∥ẑni − Φπ
Γn
i
x̄− ēni ∥2 = ∥v̄ni ∥2

≤ max
{
η′p,q,r(Φ)

√
p− r + 1,

√
p− r

}
vmax = v′max,

∀i ∈ [p],

in which, we use the fact that ∥Inp×np−ΦΛ̄n(ΦΛ̄n)†∥2 ≤ 1 and ∥vΛ̄n∥2 ≤
√
p− r vmax.

From the construction, it is clear that x̄ and ē satisfy the constraint in (2.2.8), i.e.,

∥ẑni − Φπ
Γn
i
x̄ − ēni ∥2 ≤ v′max for all i ∈ [p]. Moreover, again from the construction,

∥ē∥0n ≤ q. Finally, noting that ê is the minimal solution of (2.2.8), we have that

∥ê∥0n ≤ ∥ē∥0n ≤ q.

Now, the solution (x̂, ê) of (2.2.8) yields the corresponding noise vector v̂ as

v̂ := ẑ − Φx̂ − ê, which satisfies ∥v̂ni ∥2 ≤ v′max for all i ∈ [p] by the constraint
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of (2.2.8). Therefore, we have two expressions for the measurement ẑ, that is,

ẑ = Φx+ v + e = Φx̂+ v̂ + ê, and we are interested in the difference x̃ := x̂− x.
Let ẽ := ê − e and ṽ := v̂ − v. Then, ∥ẽ∥0n ≤ 2q and ∥ṽni ∥2 ≤ v′max + vmax =

(ϑp,q,r(Φ) + 1) vmax for all i ∈ [p]. Let Λ̃ be any subset of (suppn(ẽ))c such that

|Λ̃| = p − 2q. Then, it follows from Φx̃ + ẽ = −ṽ that ΦΛ̃n x̃ = −ṽΛ̃n . Since ΦΛ̃n

has full column rank by Proposition 2.2.3.(iii), it follows that x̃ = −
(
ΦΛ̃n

)†
ṽΛ̃n .

Therefore, one can compute the bound of ∥x̃∥2 as

∥x̃∥2 ≤
∥∥ (ΦΛ̃n

)† ∥∥
2
∥ṽΛ̃n∥2 ≤ (ϑp,q,r(Φ)+1)

√
p− 2qvmax/ρp,2q(Φ) = κcp,q,r(Φ)vmax.

As in Lemma 2.2.8, a simple criterion to check if a given vector x̂ ∈ Rn is

close to the original x with noisy measurements, is also derived in the following

theorem.

Theorem 2.2.12. For the measurement ẑ = Φx+e+v ∈ Rnp with (n-stacked) q-

error correctable Φ ∈ Rnp×n, x ∈ Rn, e ∈ Σn
q, and v ∈ Rnp such that ∥vni ∥2 ≤ vmax,

∀i ∈ [p], it holds that

(i) ∥x̂− x∥2 ≤ κcp,q,r(Φ) vmax if x̂ satisfies∣∣∣{i ∈ [p] : ∥ẑni − Φπ
Γn
i
x̂∥2 > v′max

}∣∣∣ ≤ q,

(ii) ∥x̂− x∥2 > κc
′
p,q,r(Φ) vmax if x̂ satisfies∣∣∣{i ∈ [p] : ∥ẑni − Φπ

Γn
i
x̂∥2 > v′max

}∣∣∣ > q,

where κc
′
p,q,r(Φ) := (ϑp,q,r(Φ)− 1)/max

i∈[p]
∥ΦΓn

i
∥2. ♢

Proof. (i): With x̂ given, construct the error vector ê and the noise vector v̂ as

follows. For j ∈
{
i ∈ [p] : ∥ẑni − Φπ

Γn
i
x̂∥2 > v′max

}
, define ênj := ẑnj − Φπ

Γn
j
x̂ and

v̂nj := 0n×1. For j ∈
{
i ∈ [p] : ∥ẑni − Φπ

Γn
i
x̂∥2 ≤ v′max

}
, define ênj := 0n×1 and

v̂nj := ẑnj − Φπ
Γn
j
x̂. Then, we have two expressions for the measurement ẑ = Φx+

v+ e = Φx̂+ v̂+ ê, in which ∥v̂ni ∥2 ≤ v′max for all i ∈ [p] and ∥ê∥0n ≤ q. Therefore,

the same argument in the proof of Theorem 2.2.11 applies and concludes the
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claim.

(ii): This is shown by contradiction. Let ∥x̂ − x∥2 ≤ κc
′
p,q,r(Φ) vmax. Then, for

i ∈ (suppn(e))c,

∥ẑni − Φπ
Γn
i
x̂∥2 = ∥Φπ

Γn
i
(x− x̂) + vni ∥2 ≤

(
max
i∈[p]
∥ΦΓn

i
∥2
)
κc

′
p,q,r(Φ)vmax + vmax

= ϑp,q,r(Φ)vmax = v′max.

Therefore, we have
∣∣{i ∈ [p] : ∥ẑni − Φπ

Γn
i
x̂∥2 > v′max

}∣∣ ≤ q because ∥e∥0n ≤ q.

2.2.3.2 Gaussian Noise

Suppose that the measurement ẑ = Φx+v+e is given where Φ is (n-stacked) q-

error correctable, e is (n-stacked) q-sparse, and v ∈ Rnp is a Gaussian measurement

noise which is assumed that

v ∼ N(0np×1, P ) with P > 0. (2.2.14)

With this stochastic noise, we will first extend the results on bounded noise case to

the detection and estimation properties in probability. Then, more sophisticated

algorithm will further be developed by the statistical decision theory.

Recall that the assumption on the noise v in the previous section was (2.2.7).

Thus, from Gaussian distribution (2.2.14), the probability of satisfying the con-

dition (2.2.7) is calculated and defined as follows:

pv := Pr
(
∥vni ∥2 ≤ vmax,

∀ i ∈ [p]
)

=

∫
{v∈Rnp: ∥vni ∥2≤vmax,∀i∈[p]}

exp
(
−1

2v
⊤P−1v

)√
(2π)npdet(P )

dv.
(2.2.15)

Therefore, with this probability pv, Theorems 2.2.9, 2.2.11, and 2.2.12 lead to the

following corollaries of the detection and estimation in probability.

Corollary 2.2.13. For the measurement ẑ = Φx + v + e where Φ ∈ Rnp×n is

(n-stacked) q-error detectable, x ∈ Rn, e ∈ Σn
q, and v ∈ Rnp satisfying v ∼

N(0np×1, P ) with P > 0, let x̂ = Φ†ẑ and r = ẑ − Φx̂. Then,
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(i) Pr (e ̸= 0np×1) ≥ pv if

∥rni ∥2 = ∥ẑni − Φπ
Γn
i
x̂∥2 >

√
p vmax for some i ∈ [p],

(ii) Pr
(
∥eni ∥2 ≤ κep,q(Φ)vmax,

∀i ∈ [p]
)
≥ pv, if

∥rni ∥2 = ∥ẑni − Φπ
Γn
i
x̂∥2 ≤

√
p vmax for all i ∈ [p].

In the case of (ii), Pr
(
∥x̂− x∥2 ≤ κdp,q(Φ)vmax

)
≥ pv. ♢

Corollary 2.2.14. For the measurement ẑ = Φx+ e+ v ∈ Rnp with (n-stacked)

q-error correctable Φ ∈ Rnp×n, x ∈ Rn, e ∈ Σn
q, and v ∈ Rnp satisfying v ∼

N(0np×1, P ) with P > 0, it holds that

Pr
(
∥x̂− x∥2 ≤ κcp,q,r(Φ) vmax

)
≥ pv,

for any solution x̂ of the optimization problem (2.2.8), (2.2.8′), or (2.2.8′′). ♢

Corollary 2.2.15. For the measurement ẑ = Φx+ e+ v ∈ Rnp with (n-stacked)

q-error correctable Φ ∈ Rnp×n, x ∈ Rn, e ∈ Σn
q, and v ∈ Rnp satisfying v ∼

N(0np×1, P ) with P > 0, it holds that

(i) Pr
(
∥x̂− x∥2 ≤ κcp,q,r(Φ) vmax

)
≥ pv if x̂ satisfies∣∣∣{i ∈ [p] : ∥ẑni − Φπ

Γn
i
x̂∥2 > v′max

}∣∣∣ ≤ q,

(ii) Pr
(
∥x̂− x∥2 > κc

′
p,q,r(Φ) vmax

)
≥ pv if x̂ satisfies

∣∣∣{i ∈ [p] : ∥ẑni − Φπ
Γn
i
x̂∥2 > v′max

}∣∣∣ > q,

where κc
′
p,q,r(Φ) := (ϑp,q,r(Φ)− 1)/max

i∈[p]
∥ΦΓn

i
∥2. ♢

Putting these basic results with probability aside, more elaborate derivations

based on the statistical estimation and detection theory [32,33], is now presented.

First, the minimum variance unbiased estimator (MVUE) for the measurement

(2.2.2) with e = 0np×1 and v satisfying v ∼ N(0np×1, P ) is introduced as follows.



2.2. Extension to Stacked Vector Case 33

Lemma 2.2.16. [32, Theorem 4.2] For the measurement ẑ = Φx+v ∈ Rnp with

x ∈ Rn and v ∈ Rnp such that v ∼ N(0np×1, P ) for some P > 0, the minimum

variance unbiased estimator (MVUE) of x is

x̂MVUE =
(
Φ⊤P−1Φ

)−1
Φ⊤P−1ẑ (2.2.16)

and the corresponding covariance matrix of x̂MVUE is

Px̂MVUE
=
(
Φ⊤P−1Φ

)−1
(2.2.17)

which achieves the minimum covariance in the sense that Px̂MVUE
≤ Px̂ for any

type of estimator x̂. ♢

Note that Gauss-Markov Theorem [32, Theorem 6.1] gives the best linear

unbiased estimator (BLUE) for the measurement ẑ = Φx+v where v is a random

variable, whose probability density function (PDF) is not restricted to a Gaussian

distribution, with zero mean and covariance P . Since the BLUE is also the MVUE

for Gaussian data, the results of Lemma 2.2.16 also follows directly from Gauss-

Markov Theorem. A special case of Lemma 2.2.16 is considered in [83, Theorem

1] and [84, Theorem 1] for an information fusion scheme, and it can be easily

proved by the Lagrangian method [6].

Furthermore, it is not difficult to show that the MVUE of x in (2.2.16), is

also the weighted least squares estimator (WLSE) with a performance index J =

(ẑ − Φx)⊤ P−1 (ẑ − Φx), when the measurement is given by ẑ = Φx + v ∈ Rnp.

That is, we have

x̂WLSE := argmin
χ∈Rn

(ẑ − Φχ)⊤ P−1 (ẑ − Φχ)

=
(
Φ⊤P−1Φ

)−1
Φ⊤P−1ẑ = x̂MVUE,

which is summarized in the following lemma.

Lemma 2.2.17. [32, Section 8.4] For the solution (x̂WLSE, v̂) of the minimization

problem
min

χ∈Rn, v∈Rnp
v⊤P−1v subject to ẑ = Φχ+ v,
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it holds that

x̂WLSE =
(
Φ⊤P−1Φ

)−1
Φ⊤P−1ẑ. (2.2.18)

The optimal solution x̂WLSE is called the weighted least squares estimator (WLSE)

of x with weight P−1. ♢

For the measurement ẑ = Φx + v + e with a coding matrix Φ ∈ Rnp×n,

the input signal x and the error signal e can be seen as unknown deterministic

variables while the noise signal v can be considered as a random variable whose

distribution is N(0np×1, P ). With the estimate x̂ of x obtained by MVUE or

WLSE, we can calculate the estimated output Φx̂ and generate a residual signal

r which is a difference between the real measurement and the estimated output,

i.e., r := ẑ − Φx̂. Then the residual r becomes another random variable whose

distribution is also Gaussian. Finally, the mean and covariance of the Gaussian

distributed random variable r is given in the following theorem.

Theorem 2.2.18. For the measurement ẑ = Φx + v + e where Φ ∈ Rnp×n

has full column rank and v satisfies v ∼ N(0np×1, P ) with P > 0, let x̂ =(
Φ⊤P−1Φ

)−1
Φ⊤P−1ẑ =: Ψẑ and

r := ẑ − Φx̂ = (Inp×np − Φ(Φ⊤P−1Φ)−1Φ⊤P−1)ẑ

= (Inp×np − ΦΨ)ẑ.
(2.2.19)

Then, the residual r is Gaussian distributed with mean (Inp×np − ΦΨ)e and co-

variance (Inp×np − ΦΨ)P , i.e.,

r ∼ N
(
(Inp×np − Φ(Φ⊤P−1Φ)−1Φ⊤P−1)e, P − Φ(Φ⊤P−1Φ)−1Φ⊤

)
. (2.2.20)

Furthermore, e = Φxe ∈ Rnp for some xe ∈ Rn if and only if the mean of r,

E[r](= (Inp×np − ΦΨ)e), satisfies E[r] = 0np×1. In other words, e is undetectable

with respect to Φ if and only if E[r] = 0np×1. ♢



2.2. Extension to Stacked Vector Case 35

Proof. First, the mean of r is computed as follows.

E[r] = E[(Inp×np − Φ(Φ⊤P−1Φ)−1Φ⊤P−1)ẑ]

= (Inp×np − Φ(Φ⊤P−1Φ)−1Φ⊤P−1)E[Φx+ v + e]

= (Inp×np − Φ(Φ⊤P−1Φ)−1Φ⊤P−1)(Φx+ e)

= (Inp×np − Φ(Φ⊤P−1Φ)−1Φ⊤P−1)e = (Inp×np − ΦΨ)e

Second, because it easily follows that

r −E[r] = (Inp×np − Φ(Φ⊤P−1Φ)−1Φ⊤P−1)(ẑ − e)

= (Inp×np − Φ(Φ⊤P−1Φ)−1Φ⊤P−1)(Φx+ v)

= (Inp×np − Φ(Φ⊤P−1Φ)−1Φ⊤P−1)v = (Inp×np − ΦΨ)v,

the covariance matrix is calculated as

E[(r −E[r])(r −E[r])⊤] = E[(Inp×np − ΦΨ)vv⊤(Inp×np − ΦΨ)⊤]

= (Inp×np − ΦΨ)E[vv⊤](Inp×np − ΦΨ)⊤ = (Inp×np − ΦΨ)P (Inp×np − ΦΨ)⊤

= (Inp×np − Φ(Φ⊤P−1Φ)−1Φ⊤P−1)P (Inp×np − Φ(Φ⊤P−1Φ)−1Φ⊤P−1)⊤

= P − Φ(Φ⊤P−1Φ)−1Φ⊤ = (Inp×np − ΦΨ)P.

Moreover, note that

E[ẑ] = E[Φx+ v + e] = Φx+ e

and

E[r] = (Inp×np − Φ(Φ⊤P−1Φ)−1Φ⊤P−1)E[ẑ].

Since Φ(Φ⊤P−1Φ)−1Φ⊤P−1 is a projection matrix and it projects E[ẑ] onto

the range space of Φ, R(Φ), we have E[ẑ] = Φx + e /∈ R(Φ) if and only if

E[ẑ] ̸= Φ(Φ⊤P−1Φ)−1Φ⊤P−1E[ẑ]. This implies that e /∈ R(Φ) if and only if

(Inp×np − Φ(Φ⊤P−1Φ)−1Φ⊤P−1)E[ẑ] ̸= 0np×1. Note that Φ(Φ⊤P−1Φ)−1Φ⊤P−1

is not generally an orthogonal projection matrix since it is not symmetric, while

ΦΦ† = Φ(Φ⊤Φ)−1Φ⊤ in Lemma 2.2.1 is an orthogonal projection matrix. This

completes the proof.

Theorem 2.2.18 is nothing but a counterpart of Lemma 2.2.1 when Gaussian
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noise is taken into account. It clarifies the mean and covariance of the Gaussian

random variable r, and further, characterization of undetectable attacks with

statistical analysis is given. As we have done in Lemma 2.2.4, one can derive

a detection criterion of q-sparse errors, assuming that Φ ∈ Rnp×n is (n-stacked)

q-error detectable and e is actually (n-stacked) q-sparse. This detection strategy

is summarized in the following theorem.

Theorem 2.2.19. For the measurement ẑ = Φx + v + e where Φ ∈ Rnp×n is

(n-stacked) q-error detectable, x ∈ Rn, e ∈ Σn
q, and v ∈ Rnp satisfying v ∼

N(0np×1, P ) with P > 0, let r = (Inp×np − Φ(Φ⊤P−1Φ)−1Φ⊤P−1)ẑ. Then e =

0np×1 if and only if E[r] = 0np×1. Moreover, when e = 0np×1, the vector x is

recovered by the expectation value of x̂ = (Φ⊤P−1Φ)−1Φ⊤P−1ẑ, i.e., x = E[x̂].

♢

Proof. Note that no q-sparse error e ̸= 0 can be represented by Φxe for some

xe ∈ Rn by Proposition 2.2.2.(iii). Therefore, the result directly follows from

Theorem 2.2.18.

From the observation of Theorems 2.2.18 and 2.2.19, the problem of detect-

ing a non-zero (n-stacked) q-sparse error signal e with an (n-stacked) q-error de-

tectable coding matrix Φ ∈ Rnp×n, can be rephrased as: Given the residual signal

r which comes from the Gaussian distribution N(E[r], P − Φ(Φ⊤P−1Φ)−1Φ⊤),

determine if E[r] = 0np×1 or E[r] ̸= 0np×1. Therefore, the statistical decision

theory [33] is helpful in this situation. More precisely, the χ2 test for fault de-

tection [7,48] or Wald test for two-sided vector parameter [33, Chapter 6] can be

applied.

Among them, the χ2 test is widely used to enhance the security of control sys-

tems such as [47,50,56,57]. One can simply apply the χ2 test to detect the pres-

ence of error signals in the n-stacked measurement ẑ of (2.2.2) and its operating

scheme is summarized in Algorithm 2.2. Initially, the attack detection alarm indi-

cator f is set to 0, and then, the residual r is computed according to the equation

(2.2.19). Without any error signal (i.e., e = 0np×1), the residual r follows a Gaus-

sian distribution N(0, P − Φ(Φ⊤P−1Φ)−1Φ⊤) which is shown in (2.2.20). Now,

define the standardized residual ζ :=
(
P − Φ(Φ⊤P−1Φ)−1Φ⊤)

)− 1
2 r whose distri-
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Algorithm 2.2 Detection scheme based on χ2 test for a static error equation
Input: ẑ
Output: f
Initialization: f = 0

1: x̂MVUE = (Φ⊤P−1Φ)−1Φ⊤P−1ẑ

2: r = ẑ − Φx̂MVUE

3: ζ =
(
P − Φ(Φ⊤P−1Φ)−1Φ⊤)

)− 1
2 r

4: g = ζ⊤ζ

5: if g ≤ ∆TH then
6: f = 0

7: else if g > ∆TH then
8: f = 1

9: end if

bution becomes N(0np×1, Inp×np). Thus, the 2-norm of ζ denoted by g := ζ⊤ζ is

an observation from a random variable g which satisfies a χ2 distribution with np

degrees of freedom, i.e.,

g ∼ χ2
np.

This means that g can not be far away from 0. Finally, when g is greater than the

threshold ∆TH , the attack detection alarm is triggered by setting f = 1. Here,

∆TH is the predetermined threshold value and it decides the probability of false

alarm and the probability of error detection. For example, when the threshold

∆TH is chosen such that ∫ ∆TH

0
pg(x)dx = 1− δ,

where pg(x) denotes the PDF of the χ2
np distribution, the probability of false

alarm becomes δ. As the probability of false alarm δ gets smaller, the probability

of error detection also decreases, which implies that there is a trade-off between

the small false alarm and the high error detection ratio. Thus, one needs to choose

∆TH as a good compromise between these two conflicting requirements.

Now, a suboptimal state reconstruction algorithm is developed when the mea-

surement ẑ of (2.2.2) is corrupted by a Gaussian noise v ∼ N(0np×1, P ) and an
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(n-stacked) q-sparse error e where the coding matrix Φ is (n-stacked) q-error cor-

rectable. The algorithm is described in Algorithm 2.3 and it operates on the basis

of the multiple hypothesis testing [33, Section 3.8] in the field of statistical deci-

sion theory. Once the set of attack-free sensors, Λ∗ ⊂ [p], is identified, the input

state x can be recovered from the measurement ẑΛ∗ . To this end, the set of sensors

that is most likely to be attack-free, is identified. Specifically, we will first search

all subsets Λ’s of sensors whose cardinal number is p− q. Then, we compute the

MVUE (or WLSE) x̂Λ of each subset only with the measurement data from the

subset, assuming that the subset is attack-free. Recall that this is similar to the

procedure in (2.2.5). In Algorithm 2.3, P π
Λn,Λn denotes the matrix obtained from P

by eliminating all i-th rows and all j-th columns such that i ∈ (Λn)c and j ∈ (Λn)c.

Then, for each subset, the detection scheme in Algorithm 2.2 is applied. That is,

the residual rΛ, the standardized residual ζΛ, and its 2-norm gΛ are calculated

for each subset Λ. Finally, the optimal subset Λ∗ is decided by the maximum

likelihood (ML) decision rule with the values of gΛ’s.

For a detailed explanation, let

{
Λ1,Λ2, · · · ,Λ(pq)

}
be the set {Λ ⊂ [p] : |Λ| = p− q}. Now, we wish to distinguish between

(p
q

)
hypotheses, H1,H2, · · · ,H(pq), which are given as follows:

Hi : the set Λi is attack-free, i.e., enj = 0n×1 for all j ∈ Λi .

Let us denote g as a random variable such that

g ∼ χ2
n(p−q),

and pg as the PDF of the χ2
n(p−q) distribution. Moreover, gi represents a random

variable such that gΛi is a single observation from gi. Note that, if the sensors

indexed by Λi is attack-free, i.e., eπΛn
i
= 0n(p−q)×1, then the random variable gi

follows χ2
n(p−q) which can be derived from (2.2.20). The ML decision rule chooses

the hypothesis Hi∗ that maximizes the likelihood pgi

(
gΛi ;Hi

)
, which is the PDF
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Algorithm 2.3 Correction scheme based on multiple hypothesis testing
Input: ẑ
Output: x̂
Initialization: x̂ = (Φ⊤P−1Φ)−1Φ⊤P−1ẑ

1: for Λ ⊂ [p] satisfying |Λ| = p− q do

2: x̂Λ =
(
Φπ⊤
Λn (P π

Λn,Λn)−1Φπ
Λn

)−1
Φπ⊤
Λn (P π

Λn,Λn)−1ẑπΛn

3: rΛ = ẑπΛn − Φπ
Λn x̂Λ

4: ζΛ =
(
P π
Λn,Λn − Φπ

Λn(Φπ⊤
Λn (P π

Λn,Λn)−1Φπ
Λn)−1Φπ⊤

Λn )
)− 1

2
rΛ

5: gΛ = ζΛ
⊤
ζΛ

6: end for
7: Λ∗ = argmax

Λ⊂[p]
|Λ|=p−q

pg
(
gΛ
)

8: x̂ = x̂Λ
∗

of gi being equal to the observation gΛi under the condition that there is no error

signal in the measurements indexed by Λi. Therefore, we have

i∗ = argmax
i∈
[
(pq)

] pgi

(
gΛi ;Hi

)
= argmax

i∈
[
(pq)

] pg
(
gΛi
)

(2.2.21)

where the second equality comes from the fact that gi ∼ χ2
n(p−q) under the hy-

pothesis Hi. Therefore, from the index set Λi∗ corresponding to the ML hypoth-

esis Hi∗ , a suboptimal estimate of x becomes the MVUE (or WLSE) x̂Λi∗ of the

set Λi∗ .

Remark 2.2.3. Since the PDF of the χ2
n(p−q) distribution, pg, is not monoton-

ically decreasing for n(p − q) > 2, the ML rule of (2.2.21) generally does not

pick the index set which has the smallest gΛ. This is different from the case of

bounded noises studied in the previous section, where as small residual as possible

is desirable. The underlying philosophy of the ML rule (2.2.21) is that it does

not select an index set with abnormally small residuals. Although the set with

small residual may give a small state estimation error, it is likely to be injected

by an unwanted error signal e. Hence, adversaries who inject the error signal e

can suddenly change their signals to be harmful to the system at any time. ♢





Chapter 3

On Redundant Observability

Motivated by [21], which says that analytical redundancy is an essential technique

in fault detection and isolation, we introduce redundancy in measurements (i.e.,

redundant observability) and relate that concept to dynamic security index, attack

detectability, and observability under sensor attacks. It will soon be revealed that

an observability matrix behaves like a coding matrix examined in the previous

chapter, and hence, its properties (e.g., redundant left invertibility, cospark, error

detectability, and error correctability) determine the resilience of control systems

under sensor attacks (e.g., redundant observability, dynamic security index, at-

tack detectability, and observability under sensor attacks of the system), as sum-

marized in Proposition 3.3.1 which appears at the end of this chapter. Further-

more, the redundant detectability (or, asymptotic redundant observability), which

is a weaker notion than the redundant observability, is also introduced. While

the redundant observability does not care about the magnitudes of sensor attacks

and does not mind whether the attacks are disruptive or not, the redundant de-

tectability only deals with attacks that do not converge to zero as time goes on,

so that it is more practical in the sense that it can only detect and correct the

attacks that are actually harmful to the system.

41
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3.1 Redundant Observability

3.1.1 Definition and Characterization

Consider a discrete-time LTI system

P :

{
x(k + 1) = Ax(k)

ȳ(k) = y(k) + a(k) = Cx(k) + a(k)

(3.1.1a)

(3.1.1b)

where x ∈ Rn is the state variables, y ∈ Rp is the original sensor outputs, and

ȳ ∈ Rp is the measurement data under additional input signal a ∈ Rp. The

input signal a does not have to be an attack signal, but we implicitly suppose

that a is generated by an adversary and injected into the system for the purpose

of disrupting the system. There are total p sensors which measure the system

outputs and the i-th measurement data at time k is denoted by ȳi(k) = cix(k) +

ai(k) where ci is the i-th row of C. From a control theoretical viewpoint, the

notion of redundant observability is defined formally as follows.

Definition 3.1.1. The dynamical system (3.1.1) or the pair (A,C) is said to be

q-redundant observable1 if the pair (A,Cπ
Λ) is observable for any Λ ⊂ [p] satisfying

|Λ| ≥ p−q. That is, the system (3.1.1) is q-redundant observable if it is observable

after removing any q sensor outputs. ♢

One of the most popular and well-known method to determine the observabil-

ity of a given LTI system is to check the rank condition of the observability matrix,

i.e., the system is observable if and only if its observability matrix has full column

rank. Thus, we will generalize it to the redundant observability concept. In order

to derive necessary and sufficient conditions for the redundant observability, we

first rearrange the observability matrix G′(k) ∈ Rkp×n of the pair (A,C) which is

1The same concept was introduced in [77] with q-sparse observability notion, but we have
named this q-redundant observability because q-sparse observability was formerly defined in [87]
which concerns q-sparse initial values.
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defined by

G′(k) :=


C

CA
...

CAk−1

 . (3.1.2)

By simply exchanging its rows, we have a new observability matrix G(k) ∈ Rkp×n

as follows:

G(k) :=


G

(k)
1

G
(k)
2
...

G
(k)
p

 (3.1.3)

where G(k)
i is an observability matrix of the pair (A, ci) given by

G
(k)
i :=


ci

ciA
...

ciA
k−1

 . (3.1.4)

When k = n (the dimension of state variable x) in the equations above, we

conventionally drop the superscript (k) from the observability matrix, that is,

G′ = G′(n), G = G(n), and Gi = G
(n)
i .

With this new observability matrix G at hand, we can easily verify the follow-

ing equivalence between redundant observability of the pair (A,C) and error de-

tectability of its observability matrix G.

Proposition 3.1.1. The followings are equivalent:

(i) The pair (A,C) is q-redundant observable;

(ii) The observability matrix G is (n-stacked) q-error detectable;

(iii) For every set Λ ⊂ [p] satisfying |Λ| ≥ p − q, GΛn (or, equivalently Gπ
Λn) has

full column rank;

(iv) For any x ∈ Rn where x ̸= 0n×1, ∥Gx∥0n > q;
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(v) For any x, x′ ∈ Rn where x ̸= x′, d0n(Gx,Gx′) > q. ♢

Proof. (i)⇔ (iii): This can be verified from the fact that Gπ
Λn is the observability

matrix (after some row exchange operations) of the pair (A,Cπ
Λ). Let any index

set Λ ⊂ [p] satisfying |Λ| ≥ p − q be given. The observability matrix G′
Λ of the

pair (A,Cπ
Λ), which is defined by

G′
Λ :=


Cπ
Λ

Cπ
ΛA
...

Cπ
ΛA

n−1

 ,

is computed after several row exchange operations on Gπ
Λn . Since the row exchange

can not alter the rank of a matrix, it follows that rank(G′
Λ) = n if and only if

rank(Gπ
Λn) = n, and the proof is completed.

(ii) ⇔ (iii) ⇔ (iv) ⇔ (v): This is proved in Proposition 2.2.2.

Hence, it follows from Proposition 3.1.1 that the pair (A,C) is q-redundant

observable if and only if its observability matrix G is q-redundant left invertible

(or, equivalently cosparkn(G) > q). While Proposition 3.1.1 establishes powerful

criteria on the redundant observability which tests the observability matrix G, we

can also give another equivalent condition for the redundant obsevability based

on the Popov-Belevitch-Hautus (PBH) observability test. Recall that the pair

(A,C) is observable if and only if

rank

([
λIn×n −A

C

])
= n

for any eigenvalue λ of A. In other words, the pair (A,C) is not observable if and

only if there exists a non-zero eigenvector v such that[
λIn×n −A

C

]
v = 0(n+p)×1.

The following proposition suggests another necessary and sufficient condition for
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the redundant observability using the PBH test.

Proposition 3.1.2. The followings are equivalent:

(i) The pair (A,C) is q-redundant observable;

(ii) For any v ∈ V(A), ∥Cv∥0 > q. ♢

Proof. This can be proved by the contraposition of the statement. The pair (A,C)

is not q-redundant observable if and only if there exists an index set Λ ⊂ [p]

satisfying |Λ| ≥ p − q such that the pair (A,Cπ
Λ) is not observable. By the PBH

test, it is equivalent to the condition that there exists a non-zero eigenvector

v ∈ V(A) such that Av = λv and Cπ
Λv = 0 for an index set Λ ⊂ [p] satisfying

|Λ| ≥ p − q. Since v ∈ V(A) is an eigenvector of A, we can delete the first

condition Av = λv. Finally, it follows that there exists an index set Λ ⊂ [p]

satisfying |Λ| ≥ p − q such that Cπ
Λv = 0 for some v ∈ V(A), which means

∥Cv∥0 ≤ q for some v ∈ V(A).

3.1.2 Relationship with Strong Observability

In this section, we regard the additional input signal a of the system P in

(3.1.1) as an unknown input, and give a relationship between the q-redundant

observability and the strong observability. For this end, let us first consider an

LTI system of

P(A,O,C,D) :

{
x(k + 1) = Ax(k)

ȳ(k) = y(k) +Da(k) = Cx(k) +Da(k),

(3.1.5a)

(3.1.5b)

which is the same as (3.1.1) except the direct feedthrough matrix D. Note that

the system P(A,O,C,D) is said to be strongly observable if, for all initial condition

x(0) ∈ Rn and for every input function a(·), y(k) ≡ 0 implies x(0) = 0 [5],

[92, Chapter 7]. Accordingly, the weakly unobservable subspace of the system

P(A,O,C,D), denoted asW
(
P(A,O,C,D)

)
, is defined as the set of all initial condition

x(0) such that there exists an input function a(·) which makes y(k) ≡ 0. Hence,

it is trivial by the definitions that the system P(A,O,C,D) is strongly observable if

and only if the weakly unobservable subspace of the system P(A,O,C,D) is trivial,

i.e., W
(
P(A,O,C,D)

)
= {0}.
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Now, it is supposed for the system (3.1.1) that the additional input signal can

not be injected into all the sensors, but a part of them. We suppose that up to q

out of p measurement outputs can be compromised by the signal a. Therefore, a

formal condition on the sparsity of the input vector a can be given as follows.

Assumption 3.1.1. There exist at least p−q sensors which are not attacked for

all k ≥ 0, i.e., ∣∣∣{i ∈ [p] : ai(k) = 0, ∀k ≥ 0
}∣∣∣ ≥ p− q. ♢

Characterization of the observability of the system (3.1.1) with an unknown

signal a under Assumption 3.1.1, is the main subject of this section. In fact,

instead of imposing q-sparsity assumption on a (i.e., Assumption 3.1.1) in the

system (3.1.1), we can replace D with IΛc in (3.1.5b) without any assumption on

a(·) where I ∈ Rp×p is an identity matrix and Λ ⊂ [p] is any index set satisfying

|Λ| ≥ p − q (or, equivalently |Λc| ≤ q). In short, we consider the following LTI

system

PΛ :

{
x(k + 1) = Ax(k)

ȳ(k) = y(k) + IΛca(k) = Cx(k) + IΛca(k)

(3.1.6a)

(3.1.6b)

where IΛc is any q-sparse identity matrix with unknown Λ. With this system

in mind, the relationship between the redundant observability and the strong

observability is derived as follows.

Proposition 3.1.3. The followings are equivalent:

(i) The pair (A,C) is q-redundant observable;

(ii) For every set Λ ⊂ [p] satisfying |Λ| ≥ p − q, the dynamical system PΛ is

strongly observable;

(iii) For every set Λ ⊂ [p] satisfying |Λ| ≥ p−q, the weakly unobservable subspace

of the system PΛ is trivial, i.e., W
(
PΛ

)
= {0};

(iv) For every set Λ ⊂ [p] satisfying |Λ| ≥ p − q and for all F ∈ Rp×n, the pair

(A,C + IΛcF ) is observable. ♢

Proof. (i)⇒ (iv): First, pick any F ∈ Rp×n and any Λ ⊂ [p] satisfying |Λ| ≥ p−q.
We claim that

rank

([
λIn×n −A
C + IΛcF

])
= n
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for any eigenvalue λ of A. It is enough to show that (C + IΛcF )v ̸= 0 for any

eigenvector v of A by the PBH test. Since the pair (A,CΛ) is observable, CΛv ̸= 0

for any eigenvector v of A. By simple calculations on matrix, we easily have that

(C + IΛcF )v = (CΛ + CΛc + FΛc)v = CΛv + (C + F )Λcv ̸= 0.

Finally, it follows from the PBH test that the pair (A,C + IΛcF ) is observable.

(iv) ⇒ (i): Pick any Λ ⊂ [p] satisfying |Λ| ≥ p− q, and we claim that (A,CΛ) is

observable. Let F = −CΛc , we simply have

C + IΛcF = CΛ + CΛc + FΛc = CΛ + CΛc − CΛc = CΛ.

Thus, the claim is satisfied and the proof is completed from Definition 3.1.1.

(ii) ⇔ (iii) ⇔ (iv): This is proved in [92, Theorem 7.16].

Proposition 3.1.3 presents a clear relationship between the q-redundant ob-

servability and the strong observability. By characterizing the q-redundant ob-

servability in terms of the strong observability, we could relate the redundant ob-

servability concept to the dynamical system (3.1.1) under the unknown (attack)

signal a satisfying Assumption 3.1.1. In other words, Definition 3.1.1 itself has

nothing to do with the input signal a, but it turns out to be equivalent to the

observability with unknown input a by Proposition 3.1.3. Later on, this forms

the foundation of Section 3.3.

3.1.3 Redundant Unobservable Subspace

For an LTI system given by (3.1.1), the unobservable subspace is defined by the

set of initial conditions that produce identically zero output y(k) ≡ 0. (Note that

it is the original output y(k), not ȳ(k).) The unobservable subspace of the pair

(A,C), denoted as O(A,C), is equivalent to the null space of the observability

matrix G′ in (3.1.2), i.e.,

O(A,C) = N (G′).

This concept of unobservable subspace can be applied to the q-redundant observ-

ability and redundant unobservable subspace is defined as follows.
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Definition 3.1.2. The subspace spanned by the set of elements that belong to

any unobservable subspace of the pair (A,Cπ
Λ) for Λ ⊂ [p] satisfying |Λ| ≥ p− q,

is called the q-redundant unobservable subspace of the dynamical system (3.1.1)

or the pair (A,C). ♢

We denote the q-redundant unobservable subspace of the pair (A,C) asOq(A,C),

and it can be directly computed from Definition 3.1.2 as the sum of some unob-

servable subspaces.

Proposition 3.1.4. The q-redundant unobservable subspace of the pair (A,C),

Oq(A,C), can be computed by

Oq(A,C) =
∑
Λ⊂[p]

|Λ|=p−q

O(A,Cπ
Λ) =

∑
Λ⊂[p]

|Λ|=p−q

N (Gπ
Λn). ♢

Proof. It should be noted that the sum is conducted over |Λ| = p − q instead of

|Λ| ≥ p − q. This is possible because, for Λ1 ⊂ Λ2, it follows that N (Gπ
Λn
1
) ⊃

N (Gπ
Λn
2
).

Since each unobservable subspace N (Gπ
Λn) is A-invariant, i.e., x ∈ N (Gπ

Λn) implies

Ax ∈ N (Gπ
Λn), the sum of those subspaces is also A-invariant. Hence, the q-

redundant unobservable subspace Oq(A,C) is invariant under A.

Based on Proposition 3.1.4, the q-redundant observability can be characterized

in terms of the q-redundant unobservable subspace as follows.

Corollary 3.1.5. The followings are equivalent:

(i) The pair (A,C) is q-redundant observable;

(ii) The q-redundant unobservable subspace of the pair (A,C) is trivial, that is,

Oq(A,C) = {0}. ♢

Proof. From the following equivalence,

Oq(A,C) = {0} ⇔
∑
Λ⊂[p]

|Λ|=p−q

N (Gπ
Λn) = {0}

⇔ N (Gπ
Λn) = {0} , ∀Λ ⊂ [p] s.t. |Λ| = p− q,
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the proof is completed.

Furthermore, the quotient space of the unobservable subspace, Rn/O(A,C), is

sometimes called, with abuse of terminology, the observable subspace. Since the

quotient space Rn/O(A,C) is isomorphic to the orthogonal complement O(A,C)⊥

of O(A,C), the observable subspace of the pair (A,C) denoted as O(A,C), is

equivalent to the range space of the matrix G′⊤ where G′ is an observability

matrix given in (3.1.2), i.e., we have

O(A,C) = N (G′)⊥ = R(G′⊤).

By defining q-redundant observable subspace as the quotient space of the q–

redundant unobservable subspace, which is isomorphic to the orthogonal com-

plement of the q-redundant unobservable subspace, the following result on how to

calculate the redundant observable subspace is directly obtained from Proposition

3.1.4.

Proposition 3.1.6. The q-redundant observable subspace of the pair (A,C),

Oq(A,C), can be computed by

Oq(A,C) =

( ∑
Λ⊂[p]

|Λ|=p−q

N (Gπ
Λn)

)⊥

=
⋂

Λ⊂[p]
|Λ|=p−q

N (Gπ
Λn)⊥ =

⋂
Λ⊂[p]

|Λ|=p−q

R(Gπ
Λn

⊤). ♢

3.1.4 Asymptotic Redundant Observability (Redundant Detectabil-

ity)

In classical control theory, detectability2 (or, asymptotic observability) is a

slightly weaker notion than observability. The LTI system or the pair (A,C) is

said to be detectable if its unobservable subspace O(A,C) is contained in its stable

subspace Xs(A)
3. Therefore, we can naturally generalize the concept of redundant

2Please do not be confused by the notation of detectability with the error detectability or
the attack detectability. The detectability is sometimes called the asymptotic observability [80].

3For an LTI system, the stable subspace Xs(A) is defined as the subspace spanned by the
eigenvectors and generalized eigenvectors corresponding to the stable eigenvalues of A (e.g., with
negative real parts for continuous-time systems and located in the open unit disk for discrete-
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observability to the redundant detectability as follows.

Definition 3.1.3. The dynamical system (3.1.1) or the pair (A,C) is said to

be q-redundant detectable (or, asymptotically q-redundant observable) if the pair

(A,Cπ
Λ) is detectable for any Λ ⊂ [p] satisfying |Λ| ≥ p − q. That is, the system

(3.1.1) is q-redundant detectable if it is detectable after removing any q sensor

outputs. ♢

Proposition 3.1.7. The dynamical system (3.1.1) or the pair (A,C) is q-redundant

detectable if and only if its q-redundant unobservable subspace Oq(A,C) is con-

tained in its stable subspace Xs(A). ♢

Proof. From the following equivalence,

Oq(A,C) ⊂ Xs(A) ⇔
∑
Λ⊂[p]

|Λ|=p−q

N (Gπ
Λn) ⊂ Xs(A)

⇔ N (Gπ
Λn) ⊂ Xs(A),

∀Λ ⊂ [p] s.t. |Λ| = p− q,

the proof is completed.

With the observability matrix G(k) in (3.1.3), we can derive some equivalent

conditions for the redundant detectability in the following proposition, which is

a counterpart of Proposition 3.1.1.

Proposition 3.1.8. The followings are equivalent:

(i) The pair (A,C) is q-redundant detectable (or, asymptotically q-redundant

observable);

(ii) For every set Λ ⊂ [p] satisfying |Λ| ≥ p−q, N (GΛn) ⊂ Xs(A) (or, equivalently

N (Gπ
Λn) ⊂ Xs(A));

(iii) For any x /∈ Xs(A), ∥Gx∥0n > q. ♢

Proof. (i) ⇔ (ii): This easily follows from the facts that GΛn is the observability

matrix (after some row exchange operations) of the pair (A,CΛ) and the unob-

servable subspace of the pair (A,CΛ), O(A,CΛ), is the same as the null space of

time systems). Similarly, the unstable subspace Xu(A) is defined as the subspace spanned by
the eigenvectors and generalized eigenvectors corresponding to the unstable eigenvalues of A

(e.g., with non-negative real parts for continuous-time systems and located outside of the open
unit disk for discrete-time systems).
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the observability matrix GΛn , N (GΛn).

(ii) ⇒ (iii): Suppose, for the sake of contradiction, that there exists x /∈ Xs(A)

satisfying ∥Gx∥0n ≤ q. Let Λ be the complement of suppn (Gx), i.e., Λ =

(suppn (Gx))c. Then it is obvious that |Λ| ≥ p−q and GΛnx = 0np×1. Thus, there

exists x ∈ Rn such that x ∈ N (GΛn) and x /∈ Xs(A) so that N (GΛn) ̸⊂ Xs(A).

This contradicts the condition (ii).

(iii) ⇒ (ii): We again prove it by contradiction. Suppose that (ii) does not hold,

i.e., there exists an index set Λ ⊂ [p] with |Λ| ≥ p − q and x ∈ Rn satisfying

x ∈ N (GΛn) and x /∈ Xs(A). Then it follows from GΛnx = 0np×1 and |Λ| ≥ p− q

that ∥Gx∥0n ≤ q. Thus, (iii) fails because there exists x /∈ Xs(A) such that

∥Gx∥0n ≤ q.

Similar to the procedure in Proposition 3.1.2, the PBH detectability test pro-

duces the following result of characterizing the redundant detectability. Note that,

by the PBH detectability test, the pair (A,C) is detectable if and only if

rank

([
λIn×n −A

C

])
= n

for any unstable eigenvalue λ of A. In other words, the pair (A,C) is not de-

tectable if and only if there exists a non-zero eigenvector v of A corresponding to

the unstable eigenvalue λ such that[
λIn×n −A

C

]
v = 0(n+p)×1.

Proposition 3.1.9. The followings are equivalent:

(i) The pair (A,C) is q-redundant detectable (or, asymptotically q-redundant

observable);

(ii) For any v ∈ Vu(A), ∥Cv∥0 > q. ♢

Proof. This can be proved by the contraposition of the statement. The pair (A,C)

is not q-redundant detectable if and only if there exists an index set Λ ⊂ [p]

satisfying |Λ| ≥ p − q such that the pair (A,Cπ
Λ) is not detectable. By the PBH

test, it is equivalent to the condition that there exists a non-zero eigenvector
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v ∈ Vu(A) corresponding to the unstable eigenvalue λ such that Av = λv and

Cπ
Λv = 0 for an index set Λ ⊂ [p] satisfying |Λ| ≥ p − q. Since v ∈ Vu(A) is an

eigenvector of A, we can delete the first condition Av = λv. Finally, it follows

that there exists an index set Λ ⊂ [p] satisfying |Λ| ≥ p − q such that Cπ
Λv = 0

for some v ∈ Vu(A), which means ∥Cv∥0 ≤ q for some v ∈ Vu(A).

As done in Section 3.1.2, we can also give some equivalent conditions of the

redundant detectability in terms of the strong detectability. Note that the system

P(A,O,C,D) in (3.1.5) is said to be strongly detectable if, for all initial condition

x(0) ∈ Rn and for every input function a(·), y(k) ≡ 0 implies lim
k→∞

x(k) = 0 [92,

Chapter 7]. Accordingly, the controllable weakly unobservable subspace of the

system P(A,O,C,D), denoted as C
(
P(A,O,C,D)

)
, is defined as the set of all initial

condition x(0) such that there exists an input function a(·) which makes y(k) ≡ 0

and x(k) = 0 for some finite time k. It is shown in [92, Exercise 7.9] that the

system P(A,O,C,D) is strongly detectable if and only if the controllable weakly

unobservable subspace of the system P(A,O,C,D) is trivial, i.e., C
(
P(A,O,C,D)

)
=

{0}, and the system P(A,O,C,D) is of minimum phase4. Now, the relationship

between the redundant detectability and the strong detectability is derived as

follows.

4The minimum phaseness of multi-input-multi-output LTI system can be defined as follows
[92, Chapter 7]: Consider the system P(A,B,C,D) given by

P(A,B,C,D) :

{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k).

The system matrix SP(A,B,C,D)
(s) of the system P(A,B,C,D) is defined by

SP(A,B,C,D)
(s) :=

[
sI −A −B

C D

]
.

The invariant factors of the system matrix SP(A,B,C,D)
(s), the diagonal entries of the Simith

normal form of SP(A,B,C,D)
(s), are called the transmission polynomials of P(A,B,C,D). A trans-

mission polynomial is called non-trivial if it is not zero. The product of the non-trivial transmis-
sion polynomials of P(A,B,C,D) is called the zero polynomial of the system. Any complex root of
the zero polynomial is called a zero of the system P(A,B,C,D). The system P(A,B,C,D) is called
a minimum phase system if all zeros of the system are contained in the stable region (e.g., the
open unit disk for discrete-time systems).
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Proposition 3.1.10. The followings are equivalent:

(i) The pair (A,C) is q-redundant detectable (or, asymptotically q-redundant ob-

servable);

(ii) For every set Λ ⊂ [p] satisfying |Λ| ≥ p − q, the dynamical system PΛ is

strongly detectable;

(iii) For every set Λ ⊂ [p] satisfying |Λ| ≥ p − q, the controllable weakly unob-

servable subspace of the system PΛ is trivial, i.e., C
(
PΛ

)
= {0}, and the system

PΛ is of minimum phase;

(iv) For every set Λ ⊂ [p] satisfying |Λ| ≥ p − q and for all F ∈ Rp×n, the pair

(A,C + IΛcF ) is detectable. ♢

Proof. (i)⇒ (iv): First, pick any F ∈ Rp×n and any Λ ⊂ [p] satisfying |Λ| ≥ p−q.
Now, we claim that

rank

([
λIn×n −A
C + IΛcF

])
= n

for any unstable eigenvalue λ of A. It is enough to show that (C + IΛcF )v ̸= 0

for any eigenvector v of A corresponding to the unstable eigenvalue by the PBH

test. Since the pair (A,CΛ) is detectable, CΛv ̸= 0 for any eigenvector v of A

corresponding to the unstable eigenvalue. By simple calculations on matrix, we

easily have that

(C + IΛcF )v = (CΛ + CΛc + FΛc)v = CΛv + (C + F )Λcv ̸= 0.

Finally, it follows from the PBH test that the pair (A,C + IΛcF ) is detectable.

(iv) ⇒ (i): Pick any Λ ⊂ [p] satisfying |Λ| ≥ p− q, and we claim that (A,CΛ) is

detectable. Let F = −CΛc , it is obvious that

C + IΛcF = CΛ + CΛc + FΛc = CΛ + CΛc − CΛc = CΛ.

Thus, the claim is satisfied and the proof is completed from Definition 3.1.3.

(ii) ⇔ (iii) ⇔ (iv): This is shown in [92, Exercise 7.9].

Now, the undetectable subspace of an LTI system is discussed and the concept

is extended to the redundant undetectable subspace. The discussion below follows
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the contents of Section 3.1.3 as well. The undetectable subspace of the pair (A,C),

denoted by D(A,C), is obtained by the intersection of the unobservable subspace

O(A,C) and the unstable subspace Xu(A), i.e.,

D(A,C) := O(A,C) ∩ Xu(A) = N (G′) ∩ Xu(A)

where G′ is an observability matrix given in (3.1.2). This notion of undetectable

subspace can be applied to the q-redundant detectability and redundant unde-

tectable subspace is defined as follows.

Definition 3.1.4. The subspace spanned by the set of elements that belong to

any undetectable subspace of the pair (A,Cπ
Λ) for Λ ⊂ [p] satisfying |Λ| ≥ p− q,

is called the q-redundant undetectable subspace of the dynamical system (3.1.1) or

the pair (A,C). ♢

The q-redundant undetectable subspace of the pair (A,C) is denoted by

Dq(A,C), and it easily follows from Definition 3.1.4 that we can compute it as

the sum of some undetectable subspaces.

Proposition 3.1.11. The q-redundant undetectable subspace of the pair (A,C),

Dq(A,C), can be computed by

Dq(A,C) = Oq(A,C) ∩ Xu(A) =

( ∑
Λ⊂[p]

|Λ|=p−q

N (Gπ
Λn)

)
∩ Xu(A). ♢

Proof. The result easily follows from

Dq(A,C) =
∑
Λ⊂[p]

|Λ|=p−q

D(A,Cπ
Λ) =

∑
Λ⊂[p]

|Λ|=p−q

(
N (Gπ

Λn) ∩ Xu(A)
)

=

( ∑
Λ⊂[p]

|Λ|=p−q

N (Gπ
Λn)

)
∩ Xu(A),

where the sum is conducted over |Λ| = p − q instead of |Λ| ≥ p − q, as done in

the proof of Proposition 3.1.4.
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Since each undetectable subspace D(A,Cπ
Λ) is A-invariant, the sum of those sub-

spaces is also A-invariant. Therefore, the q-redundant undetectable subspace

Dq(A,C) is invariant under A.

Based on Proposition 3.1.11, the q-redundant detectability can be character-

ized in terms of the q-redundant undetectable subspace as follows.

Corollary 3.1.12. The followings are equivalent:

(i) The pair (A,C) is q-redundant detectable (or, asymptotically q-redundant

observable);

(ii) The q-redundant undetectable subspace of the pair (A,C) is trivial, that is,

Dq(A,C) = {0}. ♢

Proof. From the following equivalence,

Dq(A,C) = {0} ⇔
∑
Λ⊂[p]

|Λ|=p−q

D(A,Cπ
Λ) = {0}

⇔ D(A,Cπ
Λ) = {0} , ∀Λ ⊂ [p] s.t. |Λ| = p− q,

the proof is completed.

Moreover, the quotient space of the undetectable subspace, Rn/D(A,C), is

sometimes called, with abuse of terminology, the detectable subspace. Since the

quotient space Rn/D(A,C) is isomorphic to the orthogonal complement D(A,C)⊥

of D(A,C), the detectable subspace of the pair (A,C) denoted as D(A,C), be-

comes the sum of two subspaces R(G′⊤) and Xu(A)
⊥ as given in the following

equation of

D(A,C) = D(A,C)⊥ =
(
N (G′) ∩ Xu(A)

)⊥
= R(G′⊤) + Xu(A)

⊥.

Define q-redundant detectable subspace as the quotient space of the q-redundant

undetectable subspace, which is isomorphic to the orthogonal complement of the

q-redundant undetectable subspace. Then, the following proposition shows how

to compute the redundant detectable subspace, which is a direct consequence from

Propositions 3.1.6 and 3.1.11.



56 Chap. 3. On Redundant Observability

Proposition 3.1.13. The q-redundant detectable subspace of the pair (A,C),

Dq(A,C), can be computed by

Dq(A,C) = Oq(A,C) + Xu(A)
⊥ =

⋂
Λ⊂[p]

|Λ|=p−q

R(Gπ
Λn

⊤) + Xu(A)
⊥. ♢

3.2 Attack Detectability and Dynamic Security Index

Regarding attack detectability, undetectable attacks are introduced in [45] and

[39] for a static output map (3.1.1b) (without the dynamics part (3.1.1a)) with

applications to power systems. In short, for the static measurement ȳ = Cx +

a ∈ Rp, the attack vector a is undetectable if and only if a = Cxa for some

xa ∈ Rn. This is because the residual signal r := ȳ − CC†ȳ becomes 0p×1 if

and only if a ∈ R(C) by [45, Theorem 3.2]. We can generalize this concept to a

dynamical system (3.1.1) (both (3.1.1a) and (3.1.1b)). To this end, we first extend

the results on the static output map directly without considering the properties

of dynamics. This direct extension, which later is shown to be related to the

redundant observability, detects the presence of all types of attacks regardless

of their impact on dynamical systems. In other words, attacks which do not

have any disruptive influence on the system (e.g., attacks which vanish as time

goes on), are even detected. Just as we weakened the concept of observability to

that of the detectability, the result of direct extension will be slightly modified in

consideration of the dynamic properties. Hence, the modified extension, which is

closely associated with the redundant detectability, only concerns the disruptive

attacks which may be unstable and do not converge to zero as time goes on.

Now, the output measurements of the system (3.1.1) for a finite time period

k are collected and the stacked output sequence is computed as

ȳ[0:k−1] :=


ȳ
[0:k−1]
1

ȳ
[0:k−1]
2

...

ȳ
[0:k−1]
p

 =


G

(k)
1

G
(k)
2
...

G
(k)
p

x(0) +

a
[0:k−1]
1

a
[0:k−1]
2

...

a
[0:k−1]
p

 = G(k)x(0) + a[0:k−1] (3.2.1)
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where

ȳ
[0:k−1]
i :=


ȳi(0)

ȳi(1)
...

ȳi(k − 1)

 and ā
[0:k−1]
i :=


āi(0)

āi(1)
...

āi(k − 1)

 .

Note that, with k = n in (3.2.1), the situation is exactly the same as the noiseless

case in Section 2.2.1 and a[0:n−1] is (n-stacked) q-sparse by Assumption 3.1.1.

Thus, by comparing this finding with the results in Section 2.2.1, we can introduce

the notion of attack detectability of the system P as follows.

Definition 3.2.1. For a dynamical system (3.1.1), a non-trivial attack signal

a[0:n−1] ∈ Rnp is said to be undetectable with respect to the pair (A,C) if there

are two different x(0) and x′(0) in Rn such that Gx(0) + a[0:n−1] = Gx′(0). ♢

In other words, the non-trivial attack signal a[0:n−1] ̸= 0np×1 is undetectable

with respect to (A,C) if and only if a[0:n−1] = Gxa for some xa ̸= 0n×1. By the

way, Definition 3.2.1 identifies attack detectability in respect of the attack signal

a. As for the dynamical system (3.1.1), this notion can also be defined analogously

with the q-sparsity assumption on a (i.e., Assumption 3.1.1) as follows.

Definition 3.2.2. The dynamical system (3.1.1) or the pair (A,C) is said to

be q-attack detectable if, for all x(0), x′(0) ∈ Rn and a[0:n−1] ∈ Σn
q such that

Gx(0) + a[0:n−1] = Gx′(0), it holds that x(0) = x′(0). ♢

Furthermore, the direct comparison between Definitions 2.2.2 and 3.2.2 simply

leads to the following proposition.

Proposition 3.2.1. The followings are equivalent:

(i) The pair (A,C) is q-attack detectable;

(ii) The observability matrix G is (n-stacked) q-error detectable;

(iii) The pair (A,C) is q-redundant observable;

(iv) For every set Λ ⊂ [p] satisfying |Λ| ≥ p − q, GΛn (or, equivalently Gπ
Λn) has

full column rank;

(v) For any x ∈ Rn where x ̸= 0n×1, ∥Gx∥0n > q;

(vi) For any x, x′ ∈ Rn where x ̸= x′, d0n(Gx,Gx′) > q;

(vii) For any v ∈ V(A), ∥Cv∥0 > q. ♢
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As a tool for vulnerability analysis of a system, the security index quantifies

fundamental limitations on the attack detectability. For example, the static secu-

rity index, αs(C), of the output map (3.1.1b) is defined as the minimum number

of sensor attacks for adversaries to remain undetectable and is computed in [28]

by

αs(C) = min
x∈Rn, x̸=0n×1

∥Cx∥0 = cospark(C). (3.2.2)

Just as it is for the attack detectability, the concept of static security index can

also be extended to the dynamical system (3.1.1). That is, the dynamic security

index, αd(A,C), of the system (3.1.1) is defined by the minimum number of sensor

attacks for adversaries to remain undetectable in consideration of (3.1.1a) as well

as (3.1.1b). Since a non-zero a[0:n−1] in (3.2.1) is undetectable if and only if

a[0:n−1] = Gxa for some xa ̸= 0n×1 by Definition 3.2.1, the dynamic security index

can be computed by

αd(A,C) := min
a=Gx, x̸=0n×1

∥a∥0n = min
x∈Rn, x̸=0n×1

∥Gx∥0n = cosparkn(G). (3.2.3)

However, (3.2.3) is computationally intensive due to the combinatorial nature of

the ℓ0 optimization problem. Thus, another method to obtain the dynamic secu-

rity index, which requires less computational burden, is presented in the following

proposition.

Proposition 3.2.2. For αd(A,C) given in (3.2.3), it holds that

αd(A,C) = min
v∈V(A)

∥Cv∥0. (3.2.4)

♢

Proof. The equality can simply be inferred from Proposition 3.1.1.(iv) and Propo-

sition 3.1.2.(ii) (or, from Proposition 3.2.1.(v) and (vii)). However, a direct proof

is given for the readers’ convenience as follows. When Av = λv, one can trivially

check that

min
v∈V(A)

∥Cv∥0 = min
v∈V(A)

∥Gv∥0n
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since Giv =
[
civ λciv · · · λn−1civ

]⊤. Noting that

min
x∈Cn, x̸=0n×1

∥Gx∥0n = min
x∈Rn, x̸=0n×1

∥Gx∥0n

because G ∈ Rnp×n is a real matrix, it suffices to show that

min
v∈V(A)

∥Gv∥0n = min
x∈Cn, x̸=0n×1

∥Gx∥0n .

Now, we claim that there exists v∗ ∈ V(A) such that

∥Gv∗∥0n = min
x∈Cn, x̸=0n×1

∥Gx∥0n .

Let us denote the optimal value of the problem (3.2.3) by

α∗ := min
x∈Rn, x̸=0n×1

∥Gx∥0n .

By the equivalence between Proposition 3.2.1.(iv) and (v), there exists an index

set Λ ⊂ [p] satisfying |Λ| = p − α∗ such that the observability matrix Gπ
Λn does

not have full column rank but the observability matrix Gπ
(Λ∪{i})n has full column

rank for every i ∈ Λc. That is, the pair (A,Cπ
Λ) is not observable but the pair

(A,Cπ
Λ∪{i}) is observable for every i ∈ Λc. Applying the PBH observability test,

we conclude that there exist λ∗ ∈ C and v∗ ∈ V(A) such that

[
λ∗In×n −A

Cπ
Λ

]
v∗ =

[
0n×1

0(p−α∗)×1

]
and civ

∗ ̸= 0, ∀i ∈ Λc.

The claim easily follows by verifying that ∥Gv∗∥0n = α∗.

Remark 3.2.1. In [11], the dynamic security index is computed the same as

(3.2.4) by examining the system’s strong observability and the weakly unobserv-

able subspace. However, Proposition 3.2.2 has more meaning than the results

in [11] since it effectively relates the dynamic security index with the redundant

observability through the cospark of the observability matrix. Note that αd(A,C)

obtained by (3.2.4) has a computational advantage compared with (3.2.3). That
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is, (3.2.4) only investigates the minimum ℓ0 norm of Cv among V(A) ∋ v, while

(3.2.3) needs to examine the whole space Rn. Therefore, if the geometric multi-

plicity of each eigenvalue of A is one (e.g., A has n distinct eigenvalues), we need

to test at most n eigenvectors in order to compute (3.2.4) while the problem of

calculating (3.2.3) directly is computationally infeasible for large p, just like the

computation of αs(C) in (3.2.2) is NP-hard [28, Section III]. ♢

Now, we slightly modify Definition 3.2.2 in accordance with dynamic prop-

erties. Instead of restricting the time period as a finite time n, an asymptotic

property that holds in the limit as the time tends to infinity, is investigated, and

the notion of asymptotic attack detectability is given as follows.

Definition 3.2.3. For a dynamical system (3.1.1), a non-trivial attack signal a(·)
is said to be asymptotically undetectable with respect to the pair (A,C) if there

exist x(0) and x′(0) in Rn with

lim
k→∞

x(k) ̸= lim
k→∞

x′(k)

where x(k) = Ak−1x(0) and x′(k) = Ak−1x′(0), satisfying G(k)x(0) + a[0:k−1] =

G(k)x′(0) for all k ≥ 0. ♢

In other words, the signal a[0:k−1] ̸= 0kp×1 is asymptotically undetectable

with respect to (A,C) if and only if there exists xa satisfying lim
k→∞

Ak−1xa ̸= 0n×1

and a[0:k−1] = G(k)xa. By the way, Definition 3.2.3 identifies asymptotic attack

detectability in respect of the attack signal a. As for the dynamical system (3.1.1),

this notion can also be defined analogously with the q-sparsity assumption on a

(i.e., Assumption 3.1.1) as follows.

Definition 3.2.4. The dynamical system (3.1.1) or the pair (A,C) is said to be

asymptotically q-attack detectable if, for any x(0), x′(0) ∈ Rn and a[0:k−1] ∈ Σk
q

such that G(k)x(0) + a[0:k−1] = G(k)x′(0) for all k ≥ 0, it holds that

lim
k→∞

x(k) = lim
k→∞

x′(k)

where x(k) = Ak−1x(0) and x′(k) = Ak−1x′(0). ♢
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Just as the attack detectability is equivalent to the redundant observability

in Proposition 3.2.1, the asymptotic attack detectability can be characterized by

the redundant detectability as follows.

Proposition 3.2.3. The followings are equivalent:

(i) The pair (A,C) is asymptotically q-attack detectable;

(ii) The pair (A,C) is q-redundant detectable (or, asymptotically q-redundant

observable);

(iii) For every set Λ ⊂ [p] satisfying |Λ| ≥ p−q, N (GΛn) ⊂ Xs(A) (or, equivalently

N (Gπ
Λn) ⊂ Xs(A));

(iv) For any x /∈ Xs(A), ∥Gx∥0n > q;

(v) For any v ∈ Vu(A), ∥Cv∥0 > q. ♢

Proof. (i) ⇒ (ii): Pick any Λ ⊂ [p] satisfying |Λ| ≥ p− q, and we claim that

rank

([
λIn×n −A

CΛ

])
= n

for any unstable eigenvalue λ of A. It is enough to show that CΛv ̸= 0 for any

eigenvector v of A corresponding to the unstable eigenvalue by the PBH test.

Assume to the contrary that there exists an eigenvector v∗ of A corresponding to

the unstable eigenvalue λ∗ such that CΛv
∗ = 0. Thus, we have G(k)

Λk v
∗ = 0kp×1

because

G
(k)
i v∗ =


ci

ciA
...

ciA
k−1

 v∗ =


civ
∗

ciAv
∗

...

ciA
k−1v∗

 =


civ

∗

λ∗civ
∗

...

λ∗k−1civ
∗

 =


1

λ∗

...

λ∗k−1

 civ∗ = 0k×1

for all i ∈ Λ. Finally, it is obtained that G(k)v∗ is (k-stacked) q-sparse, i.e.,

G(k)v∗ ∈ Σk
q. Let x′(0) = x(0) + v∗ and a[0:k−1] = G(k)v∗ ∈ Σk

q. It follows that

G(k)x(0) + a[0:k−1] = G(k)(x(0) + v∗) = G(k)x′(0),
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which implies

lim
k→∞

Ak−1v∗ = 0n×1

due to the asymptotic q-attack detectability of the pair (A,C) and Definition

3.2.4. This contradicts the fact that v∗ is an eigenvector of A corresponding to

the unstable eigenvalue λ∗, which results in

lim
k→∞

Ak−1v∗ = lim
k→∞

λ∗k−1v∗ ̸= 0n×1.

(ii)⇒ (i): Suppose that (i) does not hold, i.e., the pair (A,C) is not asymptotically

q-attack detectable. Then, there exist xa ̸= 0n×1 and a[0:k−1] ∈ Σk
q such that

G(k)xa = a[0:k−1] for all k ≥ 0 with

lim
k→∞

Ak−1xa ̸= 0n×1.

Let Λ :=
(
suppk

(
a[0:k−1]

))c, and it is obvious that G(k)

Λk xa = 0kp×1 and |Λ| ≥ p−q.
In short, there exist Λ ⊂ [p] satisfying |Λ| ≥ p − q and xa ̸= 0n×1 such that

G
(k)

Λk xa = 0kp×1 for all k ≥ 0 and lim
k→∞

Ak−1xa ̸= 0n×1. With this index set Λ and

state vector xa at hand, think about the linear systemx(k + 1) = Ax(k)

yΛ(k) = CΛx(k)

for the pair (A,CΛ). Here, we can carry out the change of variable

[
z

w

]
= Tx to

obtain the Kalman observability decomposition5



[
z(k + 1)

w(k + 1)

]
= TAT−1Tx(k) =

[
Ao O

A21 Ao

][
z(k)

w(k)

]

yΛ(k) = CΛT
−1Tx(k) =

[
Co O

] [z(k)
w(k)

]
.

5The detailed procedure for the Kalman decomposition will be presented in Section 4.2.1.
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Let us denote

[
za

wa

]
:= Txa and it follows from G

(k)

Λk xa = 0kp×1 that


CΛ

CΛA
...

CΛA
k−1

xa =


CΛT

−1

CΛT
−1(TAT−1)

...

CΛT
−1(TAT−1)k−1

Txa =


Co O

CoAo O
...

CoA
k−1
o O


[
za

wa

]
= 0kp×1.

Since the pair (Ao, Co) is observable by the intrinsic property of the Kalman

observability decomposition, we must have za = 0. Furthermore, because T is a

nonsingular matrix and lim
k→∞

Ak−1xa ̸= 0n×1, it is easily obtained that

lim
k→∞

TAk−1xa = lim
k→∞

[
Ao O

A21 Ao

]k−1 [
0

wa

]
=

 0

lim
k→∞

Ak−1
o wa

 ̸= 0n×1.

Finally, Ak−1
o wa doe not converge to zero for some wa, which means that Ao is not

stable. Therefore, the pair (A,CΛ) is not detectable for some Λ ⊂ [p] satisfying

|Λ| ≥ p− q, and hence, the pair (A,C) is not q-redundant detectable.

(ii) ⇔ (iii) ⇔ (iv) ⇔ (v): This is proved in Propositions 3.1.8 and 3.1.9.

Note that the property of Proposition 3.2.1.(vii) determines the dynamic se-

curity index as computed in Proposition 3.2.2 by exploring ∥Cv∥0 for “all” eigen-

vector v’s of A. While the dynamic security index is defined as the minimum

number of “any” type of sensor attacks for adversaries to remain undetectable,

another useful index which quantifies practical risks of the attack by considering

its “disruptive” characteristics as well as the undetectable property, can be pro-

posed. Recall from Definition 3.2.3 that a non-trivial signal a(·) is asymptotically

undetectable if and only if there exists xa satisfying

lim
k→∞

Ak−1xa ̸= 0n×1

and a[0:k−1] = G(k)xa for all k ≥ 0. Since G(k)
i xa = 0k×1 for all k ≥ 0 is equivalent

to the condition Gixa = 0n×1, the asymptotic dynamic security index can be
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computed by

αa(A,C) := min
a=Gx, Ak−1x↛0n×1

∥a∥0n = min
x∈Rn, Ak−1x↛0n×1

∥Gx∥0n

= min
x/∈Xs(A)

∥Gx∥0n .
(3.2.5)

That is, the asymptotic dynamic security index, αa(A,C), of the system (3.1.1)

is defined by the minimum number of sensor attacks which remain undetectable

and does not converge to zero as time goes on. Please note that x ∈ Rn satisfying

Ak−1x ↛ 0n×1 means that x /∈ Xs(A). Similar to Proposition 3.2.2, it can be

computed from the eigenvectors of A corresponding to the “unstable” eigenvalues.

Proposition 3.2.4. For αa(A,C) given in (3.2.5), it holds that

αa(A,C) = min
v∈Vu(A)

∥Cv∥0. (3.2.6)

♢

Proof. The equality can simply be inferred from Proposition 3.1.8.(iii) and Propo-

sition 3.1.9.(ii) (or, from Proposition 3.2.3.(iv) and (v)) because x ∈ Rn satisfying

Ak−1x ↛ 0n×1 means that x /∈ Xs(A). However, a direct proof is given for the

readers’ convenience as follows. When Av = λv, one can trivially check that

min
v∈Vu(A)

∥Cv∥0 = min
v∈Vu(A)

∥Gv∥0n

since Giv =
[
civ λciv · · · λn−1civ

]⊤. Noting that

min
x∈Cn, Ak−1x↛0n×1

∥Gx∥0n = min
x∈Rn, Ak−1x↛0n×1

∥Gx∥0n

because G ∈ Rnp×n is a real matrix, it suffices to show that

min
v∈Vu(A)

∥Gv∥0n = min
x∈Cn, Ak−1x↛0n×1

∥Gx∥0n .

SinceAk−1v ↛ 0n×1 for any v ∈ Vu(A), we have Vu(A) ⊂
{
x ∈ Cn : Ak−1x↛ 0n×1

}
.
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Now, we claim that there exists v∗ ∈ Vu(A) such that

∥Gv∗∥0n = min
x∈Cn, Ak−1x↛0n×1

∥Gx∥0n .

Let us denote the optimal value of the problem (3.2.5) by

α∗ := min
x∈Rn, Ak−1x↛0n×1

∥Gx∥0n .

By the equivalence between Proposition 3.2.3.(iii) and (iv), there exists an index

set Λ ⊂ [p] satisfying |Λ| = p − α∗ such that N (GΛn), the null space of GΛn , is

not contained in Xs(A) but N (G(Λ∪{i})n), the null space of G(Λ∪{i})n , is contained

in Xs(A) for every i ∈ Λc. That is, the pair (A,Cπ
Λ) is not detectable but the pair

(A,Cπ
Λ∪{i}) is detectable for every i ∈ Λc. Applying the PBH detectability test,

we conclude that there exist unstable λ∗ ∈ C (i.e., |λ∗| ≥ 1) and v∗ ∈ Vu(A) such

that [
λ∗In×n −A

Cπ
Λ

]
v∗ =

[
0n×1

0(p−α∗)×1

]
and civ

∗ ̸= 0, ∀i ∈ Λc.

The claim easily follows by verifying that ∥Gv∗∥0n = α∗.

Note that the asymptotic dynamic security index investigates ∥Cv∥0 only for

“unstable” eigenvector v ∈ Vu(A) while the dynamic security index compares

∥Cv∥0 for “all” eigenvector v ∈ V(A).

3.3 Observability under Sparse Sensor Attacks

In order to analyze attack-resilience of state estimation, this section introduces

the observability notion of a control system under sensor attacks and gives some

equivalent conditions. Now, a notion of observability under q-sparse sensor attacks

is given as follows.

Definition 3.3.1. The dynamical system (3.1.1) or the pair (A,C) is said to be

observable under q-sparse sensor attacks if the initial state x(0) can be determined

from the output y over a finite number of sampling steps with any input signal a

satisfying Assumption 3.1.1. ♢
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The following proposition presents necessary and sufficient conditions for the

observability under q-sparse sensor attacks, and further, it finally summarizes the

relationship among newly introduced notions in this chapter.

Proposition 3.3.1. The followings are equivalent:

(i) The pair (A,C) is observable under q-sparse sensor attacks;

(ii) The observability matrix G is (n-stacked) q-error correctable;

(iii) The observability matrix G is (n-stacked) 2q-error detectable;

(iv) The pair (A,C) is 2q-redundant observable;

(v) The pair (A,C) is 2q-attack detectable;

(vi) For every set Λ ⊂ [p] satisfying |Λ| ≥ p− 2q, GΛn (or, equivalently Gπ
Λn) has

full column rank;

(vii) For any x ∈ Rn where x ̸= 0n×1, ∥Gx∥0n > 2q;

(viii) For any x, x′ ∈ Rn where x ̸= x′, d0n(Gx,Gx′) > 2q;

(ix) For any v ∈ V(A), ∥Cv∥0 > 2q. ♢

Proof. (i) ⇔ (ii): Note that the output sequence ȳ[0:n−1] is given by ȳ[0:n−1] =

Gx(0)+a[0:n−1] ∈ Rnp in (3.2.1) and a[0:n−1] ∈ Σn
q by Assumption 3.1.1, the result

directly follows from Definition 2.2.3 which says that G is (n-stacked) q-error

correctable if and only if x(0) can be reconstructed from the output measurements

ȳ[0:n−1].

(ii) ⇔ (iii) : This is proved in Proposition 2.2.3.

(iii) ⇔ (iv) ⇔ (v) ⇔ (vi) ⇔ (vii) ⇔ (viii) ⇔ (ix): This is proved in Proposition

3.2.1.

This proposition shows that newly introduced notions in this chapter are

closely related to each other. One can test the observability under attacks by

examining the well-known standard observability rank condition after eliminating

any 2q sensor outputs, which is eventually equivalent to q-error correctability of

the observability matrix G.

As we have slightly weakened the notion of observability to that of detectabil-

ity (or, asymptotic observability), the observability under q-sparse sensor attacks

can be modified in accordance with dynamic properties. Instead of restricting the

time period as a finite time n, an asymptotic property that holds in the limit as
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the time tends to infinity, is discussed. Finally, the notion of asymptotic observ-

ability under q-sparse sensor attacks is given as follows.

Definition 3.3.2. The dynamical system (3.1.1) or the pair (A,C) is said to

be detectable under q-sparse sensor attacks (or, asymptotically observable under

q-sparse sensor attacks) if the state variable x(k) can be recovered asymptotically

from the measurement output signal y with any sensor attack a satisfying As-

sumption 3.1.1. ♢

Finally, equivalent conditions for the detectability under q-sparse sensor at-

tacks is explained in terms of the asymptotic attack detectability and the redun-

dant detectability, as follows.

Proposition 3.3.2. The followings are equivalent:

(i) The pair (A,C) is detectable under q-sparse sensor attacks (or, asymptotically

observable under q-sparse sensor attacks);

(ii) The pair (A,C) is 2q-redundant detectable (or, asymptotically 2q-redundant

observable);

(iii) The pair (A,C) is asymptotically 2q-attack detectable;

(iv) For every set Λ ⊂ [p] satisfying |Λ| ≥ p − 2q, N (GΛn) ⊂ Xs(A) (or, equiva-

lently N (Gπ
Λn) ⊂ Xs(A));

(v) For any x /∈ Xs(A), ∥Gx∥0n > 2q;

(vi) For any v ∈ Vu(A), ∥Cv∥0 > 2q. ♢

Proof. (i) ⇒ (iii): Assume that x(0), x′(0) ∈ Rn and a′′[0:k−1] ∈ Σk
2q such that

G(k)x(0) + a′′[0:k−1] = G(k)x′(0) for all k ≥ 0, are given. Let a[0:k−1] and a′[0:k−1]

be such that a′′[0:k−1] = a[0:k−1] − a′[0:k−1] where a[0:k−1], a[0:k−1] ∈ Σk
q. Thus, we

have G(k)x(0) + a[0:k−1] = G(k)x′(0) + a′[0:k−1] for all k ≥ 0. Note that ȳ[0:k−1] :=

G(k)x(0)+a[0:k−1] is the measurement output signal of the system (3.1.1) with the

initial state x(0) and the attack signal a[0:k−1], and ȳ′[0:k−1] := G(k)x′(0)+a′[0:k−1]

is the measurement output signal of the system (3.1.1) with the initial state

x′(0) and the attack signal a′[0:k−1]. Since those two output signals ȳ[0:k−1] and

ȳ′[0:k−1] are equal, they should recover the same state variable asymptotically by

the definition of the detectability under q-sparse sensor attacks. Therefore, we
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have

lim
k→∞

x(k) = lim
k→∞

x′(k)

where x(k) = Ak−1x(0) and x′(k) = Ak−1x′(0). This is because if they are

different from each other, then their estimates can never be the same.

(iii) ⇒ (i): We first claim that the limit of the state variable x(k) of the system

(3.1.1), lim
k→∞

x(k), can be uniquely determined from the measurement ȳ[0:k−1] =

G(k)x(0) + a[0:k−1] whenever the attack signal a[0:k−1] satisfies Assumption 3.1.1.

Suppose that two output signals of the system (3.1.1), which are possibly gener-

ated by different initial states x(0), x′(0) ∈ Rn and attack signals a[0:k−1], a′[0:k−1] ∈
Σk
q, are given. Let those output signals be ȳ[0:k−1] := G(k)x(0) + a[0:k−1] and

ȳ′[0:k−1] := G(k)x′(0) + a′[0:k−1]. Assume that ȳ[0:k−1] = ȳ′[0:k−1] for all k ≥ 0.

Then, we have G(k)x(0) + a′′[0:k−1] = G(k)x′(0) where a′′[0:k−1] = a[0:k−1] −
a′′[0:k−1] ∈ Σk

2q for all k ≥ 0. Since the pair (A,C) is asymptotically 2q-attack

detectable, it follows that

lim
k→∞

x(k) = lim
k→∞

x′(k)

where x(k) = Ak−1x(0) and x′(k) = Ak−1x′(0). Thus, the claim is proved, that is,

lim
k→∞

x(k) can be uniquely determined from the measurement ȳ[0:k−1] = G(k)x(0)+

a[0:k−1]. Therefore, when the pair (A,C) is asymptotically 2q-attack detectable,

one should be able to recover lim
k→∞

x(k) from the measurement output signal

ȳ[0:k−1] = G(k)x(0) + a[0:k−1] with a[0:k−1] satisfying Assumption 3.1.1, because,

in principle, one can exhaustively search for all x′(0) ∈ Rn and a′[0:k−1] ∈ Σk
q

such that ȳ[0:k−1] = G(k)x′(0)+a′[0:k−1]. This completes the proof. Although this

proof does not give a concrete scheme to recover lim
k→∞

x(k), the design procedure

for state estimation is the main subject of the next chapter and the detailed

algorithm will be proposed there.

(ii) ⇔ (iii)⇔ (iv) ⇔ (v) ⇔ (vi) : This is proved in Proposition 3.2.3.



Chapter 4

Attack-Resilient State Estimation
under Sensor Attacks for Linear
Systems

Sensors are one of the vulnerable points for security of networked control systems,

and thus, security problems of control systems whose measurements are compro-

mised by adversaries are actively studied these days. In this chapter, it is sup-

posed that all sensor information of control systems is collected at one place and

we have developed an algorithm which estimates the state variable of the control

systems even under sparse sensor attacks. This attack-resilient state estimator is

required even when all distributed sensors send their measurement data to a sen-

sor fusion center (or, information fusion center) through communication networks.

Due to the insecure communication links, the measurement data in the networked

control systems may be corrupted by adversaries. In addition, the measurement

data can also be compromised by an attacker who physically tampers with the

sensor itself. The proposed estimator consists of a bank of partial observers op-

erating based on Kalman detectability (or, observability) decomposition and a

decoder exploiting error correction techniques. In terms of time complexity, an

ℓ0 minimization problem in the decoder alleviates the computational efforts by

reducing the search space to a finite set and by combining a detection algorithm

to the optimization process. On the other hand, in terms of space complexity, the

required memory is linear with the number of sensors by means of the decompo-

sition used for constructing a bank of partial observers.

69
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Figure 4.1: Total configuration of the feedback control system.

4.1 Problem Formulation

Overall configuration of the proposed control scheme is given in Fig. 4.1. The

plant and the attack model under consideration are presented and the problem

formulation is given in this section. We consider a discrete-time LTI plant given

by

P :

x(k + 1) = Ax(k) +Bu(k) + d(k)

y(k) = Cx(k) + n(k)
(4.1.1)

where x ∈ Rn is the state variables, u ∈ Rm is the control inputs, and y ∈ Rp is the

sensor outputs. The dynamics are disrupted by the process disturbance d ∈ Rn

and sensors are corrupted by the measurement noise n ∈ Rp. The block diagram

of the plant (4.1.1) is shown in Fig. 4.2. There are total p sensors which measure

the system outputs and the i-th sensor’s measurement at time k is denoted by

yi(k) = cix(k) + ni(k)

where ci is the i-th row of C. It is assumed that the pair (A,C) is detectable (or,

observable), but the pair (A, ci) is not necessarily detectable (or, observable).

Among various attack scenarios [89], we consider false data injection attacks

on sensors. That is, adversarial attackers can inject arbitrary inputs to some (not
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Figure 4.2: Configuration of the plant P.

(a) Sensor attack (b) Communication attack

Figure 4.3: Two scenarios of the measurement data attack.

all) sensors so that a part of measurements is compromised. Two scenarios are

possible as illustrated in Fig. 4.3: first, these additive inputs may be induced by

cyber or physical tampering with the sensors (Fig. 4.3a); second, adversaries may

penetrate into the communication network on the output side of the plant because

those communication links are not secure (Fig. 4.3b). In both cases, the attack

is characterized by the attack vector a as in

ȳ(k) = y(k) + a(k) (4.1.2)

where ȳ ∈ Rp denotes the sensor data on the controller’s side. Therefore, ȳ(k),

not y(k), is used for state estimation.

Here, it is assumed that the adversaries have a complete knowledge about the
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plant, but can compromise only a part of the sensors, not all of them. Assum-

ing that the attacker’s resources are limited, we suppose that up to q out of p

measurement outputs can be compromised. Therefore, a formal condition on the

sparsity of the attack vector a can be given as follows.

Assumption 4.1.1. There exist at least p−q sensors which are not attacked for

all k ≥ 0, i.e., ∣∣∣{i ∈ [p] : ai(k) = 0, ∀k ≥ 0
}∣∣∣ ≥ p− q. ♢

This assumption tells more than ∥a(k)∥0 ≤ q for all k ≥ 0, in the sense that

the compromised sensor channels are not altered for all time. In practice, this

may not be the case. However, from the point of view of malicious attackers, it

takes quite a long time and much effort to infiltrate into a new sensor. Thus,

without loss of generality, it can be assumed that the attack channels remain the

same in the long term although it is not revealed to the controller which channels

are attacked. Hence, if the change of the compromised channels is not so frequent

(that they do not change during the transient period of the algorithms to be

presented), then the proposed attack detection and state estimation algorithms

are still applicable.

The final goal of this chapter is to control (e.g., stabilizing or reference track-

ing) the plant P with an elaborate state estimator E and a state feedback control

law1 K. Since the separation principle holds for LTI systems, the state feedback

controller K can be selected independently assuming that state estimation is suc-

cessfully conducted. Therefore, the primary objective of this paper is to design

an estimator E which detects the attacked sensors and estimates the state x(k)

of the given system P under Assumption 4.1.1. To this end, we construct an

attack-resilient estimator E which is composed of p partial observers2 Oi’s and a

decoder D as shown in Fig. 4.1 (i.e., the shaded block in Fig. 4.1). Additionally,

the decoder D also provides a fault count signal f which may corresponds to the

1The configuration in Fig. 4.1 is one example of various control schemes. The controller K
may also be composed of both a feedforward controller and a feedback controller, which utilize
state information.

2In this chapter, the terms “observer” and “estimator” are used to indicate the block of Oi’s
and E in Fig. 4.1, respectively. That is, two terminologies should be distinguished.
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estimated number of attacked sensors so that the system can detect the attacks

and counteract it in a timely fashion (e.g., giving an attack notification alarm

when f > 0 and initiating a new attack identification process when f > q).

4.2 Components of Attack-Resilient State Estimator and

Their Functions

In this section, we introduce two main components of the attack-resilient

state estimator E : the partial observers Oi’s and the decoder D. (See Fig. 4.1.)

Then, the basic mechanism on how these components are operating is briefly

explained. More precisely, first, the partial observersOi’s are designed by applying

the Kalman detectability (or, observability) decomposition to each sensor output.

Second, the previously developed error correction technique in Section 2.2 tailored

into this specific problem is then implemented in order to recover the original state

variable x and it constitutes the decoder D. By combining the partial observers

Oi’s and the decoder D, the final estimator E is obtained. One key part of the

proposed estimator is to construct partial observers by means of the Kalman

decomposition. This idea originates from the field of observer design for switched

systems [67,86], and it turns out later on that it substantially reduces the number

of observers in the final estimator.

4.2.1 Partial Observer: Kalman Detectability Decomposition with

Single Sensor

Motivation of the idea to design partial observers Oi’s, begins with the fact

that, for conventional observers for the system (4.1.1) and the output (4.1.2)

which has the form of

x̂(k + 1) = Ax̂(k) +Bu(k) + L(ȳ(k)− Cx̂(k))

= Ax̂(k) +Bu(k) + L(Cx(k) + n(k) + a(k)− Cx̂(k)),
(4.2.1)

the effect of any single non-zero component of a(k) ∈ Rp (which is the attack to

one sensor channel) may affect all component of x̂ (because of L). However, if we
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employ individual observer to each sensor, then the attack to particular sensor

affects only the observer corresponding to the attacked sensor, and we can still

maintain a few healthy information processed by the other observers. Of course,

each observer may not estimate the full state x in general since the full state x

may not be detectable (or, observable) from the output information of one single

sensor. Therefore, we introduce the partial observer which estimates only the

detectable (or, observable) portion of the full state x.

With only one measurement yi(k) of the plant (4.1.1), a single-output system

is obtained as follows:

Pi :

x(k + 1) = Ax(k) +Bu(k) + d(k)

yi(k) = cix(k) + ni(k).
(4.2.2)

The observability matrix of (4.2.2) which is given by Gi in (3.1.4), is used to

divide n-dimensional state space Rn into two subspaces: unobservable subspace

O(A, ci) and its orthogonal complement O(A, ci)⊥. As seen in Section 3.1.3, the

null space of Gi, N (Gi), which is A-invariant, becomes the unobservable subspace

O(A, ci), and further, the orthogonal complement O(A, ci)⊥ of O(A, ci), which is

isomorphic to the quotient space Rn/O(A, ci), is denoted by O(A, ci). It easily

follows from linear algebra that O(A, ci) = O(A, ci)⊥ = N (Gi)
⊥ = R(G⊤

i ). Up

to now, we have examined the observability decomposition of the state space Rn.

In order to obtain the detectability decomposition, the unobservable subspace is

further divided into two subspace: undetectable subspace

D(A, ci) := O(A, ci) ∩ Xu(A) = N (Gi) ∩ Xu(A)

and its orthogonal complement O(A, ci) ∩ D(A, ci)⊥. Here, Xu(A) denotes the

unstable subspace of A which is defined by the subspace spanned by the eigen-

vectors and generalized eigenvectors corresponding to the unstable eigenvalues of

A. Note that D(A, ci) is also A-invariant because both N (Gi) and Xu(A) are

invariant under A. Finally, the n-dimensional state space Rn is divided into three

subspaces: O(A, ci), O(A, ci) ∩ D(A, ci)⊥, and D(A, ci).

To derive a transformation matrix, first, let νi be the dimension of observable
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subspaceO(A, ci), i.e., νi := dim(O(A, ci)) = rank(Gi), and µi−νi be the dimension

of the subspace O(A, ci) ∩ D(A, ci)⊥, i.e., µi := νi + dim(O(A, ci) ∩ D(A, ci)⊥).
Then the dimension of the undetectable subspace D(A, ci) is n−µi. The matrices

Zo
i ∈ Rn×νi , Zd

i ∈ Rn×(µi−νi), and Wi ∈ Rn×(n−µi) are selected such that their

columns are orthonormal bases of O(A, ci), O(A, ci) ∩ D(A, ci)⊥, and D(A, ci),
respectively. Note that the matrix

[
Zo
i Zd

i Wi

]
is orthogonal, i.e.,

[
Zo
i Zd

i Wi

]⊤ [
Zo
i Zd

i Wi

]
= In×n,

and we have

Zo
i
⊤AZd

i = Oνi×(µi−νi), Zo
i
⊤AWi = Oνi×(n−µi), Zd

i
⊤
AWi = O(µi−νi)×(n−µi)

ciZ
d
i = 01×(µi−νi), and ciWi = 01×(n−µi),

from the construction of Zo
i , Z

d
i , and Wi.

Now, we make the change of state variables as defined by the transformation
zoi

zdi

wi

 =


Zo
i
⊤

Zd
i
⊤

W⊤
i

x. (4.2.3)

In terms of this new state, the original single-output system (4.2.2) can be written

in the decomposed form of

P ′
i :




zoi (k + 1)

zdi (k + 1)

wi(k + 1)

 =


Zo
i
⊤AZo

i Oνi×(µi−νi) Oνi×(n−µi)

Zd
i
⊤
AZo

i Zd
i
⊤
AZd

i O(µi−νi)×(n−µi)

W⊤
i AZ

o
i W⊤

i AZ
d
i W⊤

i AWi



zoi (k)

zdi (k)

wi(k)



+


Zo
i
⊤B

Zd
i
⊤
B

W⊤
i B

u(k) +

Zo
i
⊤

Zd
i
⊤

W⊤
i

 d(k)

yi(k) =
[
ciZ

o
i 01×(µi−νi) 01×(n−µi)

]
zoi (k)

zdi (k)

wi(k)

+ ni(k).

(4.2.4)
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Finally, by the Kalman detectability decomposition, the state x is decom-

posed into the detectable sub-state

[
zoi

zdi

]
∈ Rµi and the undetectable sub-state

wi ∈ Rn−µi with the similarity transformation (4.2.3). Or, by the Kalman observ-

ability decomposition, the state x is decomposed into the observable sub-state

zoi ∈ Rνi and the unobservable sub-state

[
zdi

wi

]
∈ Rn−νi with the same similarity

transformation (4.2.3).

Based-on the decomposed form of (4.2.4), one can construct an observer which

can asymptotically estimate the detectable sub-state

[
zoi

zdi

]
∈ Rµi since the pair

([
Zo
i
⊤AZo

i Oνi×(µi−νi)

Zd
i
⊤
AZo

i Zd
i
⊤
AZd

i

]
,
[
ciZ

o
i 01×(µi−νi)

])

is detectable. Of course, one can design an observer which can recover the observ-

able sub-state zoi ∈ Rνi since the pair
(
Zo
i
⊤AZo

i , ciZ
o
i

)
is observable. Let Zi and

zi be
[
Zo
i Zd

i

]
and

[
zoi

zdi

]
, respectively, when the detectability decomposition is in

one’s mind. Otherwise, let Zi and zi be Zo
i and zoi , respectively, when the observ-

ability decomposition is taken into consideration. By dropping the undetectable

sub-state wi (or, unobservable sub-state

[
zdi

wi

]
) from (4.2.4), the detectable (or,

observable) quotient subsystem of (4.2.4) is obtained as

Pd
i :

 zi(k + 1) = Sizi(k) + Z⊤
i Bu(k) + Z⊤

i d(k)

yi(k) = tizi(k) + ni(k)
(4.2.5)

where Si := Z⊤
i AZi and ti := ciZi.

Since the pair (Si, ti) is detectable (or, observable), one can design an observer

which can successfully estimate the detectable (or, observable) portion zi of the

full state x ∈ Rn. Consequently, the main function of each partial observer Oi

is to provide the estimates ẑi for the detectable sub-state zi =

[
zoi

zdi

]
∈ Rµi (or,

observable sub-state zi = zoi ∈ Rνi). Although we do not specify the type of
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observers in this section, the details on how to construct such an observer will be

discussed in Section 4.3.

4.2.2 Decoder: Error Correction for Stacked Vector

This section discusses the basic functions of the decoder and presents how

the decoder operates. Recall that each partial observer Oi provides the estimates

ẑi for the detectable sub-state

[
zoi

zdi

]
∈ Rµi (or, observable sub-state zoi ∈ Rνi).

The decoder collects all the data ẑi’s from the partial observers Oi’s and performs

the error correction techniques developed in Section 2.2. In order to apply those

techniques into the state estimation problem of (4.1.1), first, this problem should

be formulated in the form of (2.2.2). To this end, the following equivalence

Z⊤
i x = zi,

∀i ∈ [p], (4.2.6)

which is a direct consequence of (4.2.3), is used. With the state estimation error

defined by

z̃i := ẑi − zi,

one can divide z̃i into two parts, vi and ei, so that

z̃i = vi + ei,

where ei is affected only by the attack ai while vi is induced by all other sources

such as the initial estimation error, disturbance d, and noise ni. Details on com-

puting vi and ei will be given in Section 4.3. Appending n−µi (or, n−νi) zero row

vectors, 01×n, to each Z⊤
i in (4.2.6) and stacking them all, we have the following

equation of 
Zn
1
⊤

...

Zn
p
⊤

x(k) =

zn1(k)

...

znp(k)

 =


ẑn1(k)

...

ẑnp(k)

−

z̃n1(k)

...

z̃np(k)

 (4.2.7)
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where

Zn
i
⊤ :=

[
Zi

⊤

O(n−µi)×n

]
, zni (k) :=

[
zi(k)

0(n−µi)×1

]
,

ẑni (k) :=

[
ẑi(k)

0(n−µi)×1

]
, z̃ni (k) :=

[
z̃i(k)

0(n−µi)×1

]
.

(4.2.8)

This augmentation of zeros is to match the size of each matrix so that it agrees

with the n-stacked vector considered in Section 2.2. Finally, (4.2.7) is written in

a compact form as

ẑ(k) = Φx(k) + z̃(k) = Φx(k) + v(k) + e(k) ∈ Rnp (4.2.9)

where the coding matrix

Φ :=


Zn
1
⊤

...

Zn
p
⊤

 (4.2.10)

is composed of the similarity transformation matrices Zi’s and zero elements. It

is also supposed that additional zero elements are also appended to vi(k)’s and

ei(k)’s as in (4.2.8). Due to the q-sparsity assumption on a (i.e., Assumption 4.1.1)

and the fact that ei only depends on ai, it is obvious that e ∈ Rnp is n-stacked

q-sparse. Therefore, the equation (4.2.9) directly matches the error correcting

problem of (2.2.2). In conclusion, we can apply those techniques developed in

Section 2.2 according to the characteristics of the noise signal v(k), and the results

are presented in the next section.

4.3 Design of Attack-Resilient State Estimator

In this section, we have detailed the design of the attack-resilient state estima-

tor E . Control systems are classified into two groups according to the property of

the disturbance d and the noise n: bounded disturbance/noise case and Gaussian

disturbance/noise case. For each case, a suitable form of observer is adopted for

the partial observer Oi, and an appropriate error correction method is applied for

a particular context in the decoder D. First, when we have bounded disturbance



4.3. Design of Attack-Resilient State Estimator 79

and noise, the partial observer can be designed by a Luenberger observer and the

decoder exploits the error correcting method for the bounded noise case developed

in Section 2.2.3.1. Second, when systems suffer from the Gaussian disturbance

and noise, one can construct a Kalman filter which serves as the partial observer

and the decoder operates based on the error correcting method for the Gaussian

noise developed in Section 2.2.3.2.

However, such an attack-resilient estimator design is not possible all the time.

The system (4.1.1) should satisfy a certain class of observability and it is shown

in Section 3.3 that the redundant detectability is an equivalent condition for the

system to be asymptotically observable under sensor attacks. Thus, the following

assumption of redundant detectability is made.

Assumption 4.3.1. The pair (A,C) is 2q-redundant detectable (or, asymptot-

ically 2q-redundant observable). Equivalently, the dynamical system (4.1.1) is

detectable under q-sparse sensor attacks (or, asymptotically observable under q-

sparse sensor attacks). ♢

4.3.1 Deterministic Estimator with Bounded Disturbance and Noise

In this section, both the disturbance d and the noise ni of the system (4.2.5)

are supposed to be uniformly bounded as follows.

Assumption 4.3.2. The process disturbance d and each measurement noise ni
are uniformly bounded, i.e.,

∥d(k)∥2 ≤ dmax, ∥ni(k)∥2 ≤ nmax,
∀k ≥ 0, ∀i ∈ [p]. ♢

First, the partial observer Oi is designed by a Luenberger observer for the

detectable subsystem (4.2.5) which is in the following form of

Oi : ẑi(k + 1) = Siẑi(k) + Z⊤
i Bu(k) + Li (ȳi(k)− tiẑi(k))

=: Fiẑi(k) + Z⊤
i Bu(k) + Li(yi(k) + ai(k))

(4.3.1)

where the injection gain Li is chosen so that Fi := Si −Liti is Schur stable. Here,

note that ȳi(k) is injected instead of yi(k) by the attack model (4.1.2). Once we
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(a) Original block diagram

(b) Conceptually divided block diagram

Figure 4.4: Configuration of the partial observer Oi.

consider the following systems of

Oy
i : gi(k + 1) = Figi(k) + Z⊤

i Bu(k) + Liyi(k)

Oa
i : ei(k + 1) = Fiei(k) + Liai(k)

(4.3.2a)

(4.3.2b)

where gi(0) = ẑi(0) and ei(0) = 0µi×1, it is easy to check that ẑi = gi+ ei. Fig. 4.4

depicts the relationship between the observers (4.3.1) and (4.3.2). Now, define

the attack-free estimation error vi := gi − zi, and it trivially follows that

vi(k + 1) = Fivi(k) + Lini(k)− Z⊤
i d(k). (4.3.3)

The final state estimation error defined by z̃i := ẑi − zi, satisfies

z̃i(k) = vi(k) + ei(k), (4.3.4)
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and its dynamic equation is governed by

Fi : z̃i(k+1) = Fiz̃i(k) + Lini(k)− Z⊤
i d(k) + Liai(k). (4.3.5)

The dynamics (4.3.3) and (4.3.2b) with initial conditions vi(0) = z̃i(0) and ei(0) =

0µi×1, ensure that

vi(k) := F k
i z̃i(0) +

k−1∑
j=0

F k−1−j
i

(
Lini(j)− Z⊤

i d(j)
)
,

ei(k) :=
k−1∑
j=0

F k−1−j
i Liai(j).

(4.3.6a)

(4.3.6b)

Here, the attack induced estimation error vector ei(k) may have arbitrary values.

For all k ≥ 0 and i ∈ [p], there exist ηF ≥ 1 and 0 < β < 1 such that

∥F k
i ∥2 ≤ ηFβk since Fi is Schur stable. In addition, for some ηL and ηZ , it holds

that ∥F k
i Li∥2 ≤ ηLβk and ∥F k

i Z
⊤
i ∥2 ≤ ηZβk. Then, one can easily show that

∥vi(k)∥2 ≤ ηF ∥z̃i(0)∥2βk + wmax ≤ vmax(k) (4.3.7)

where
wmax :=

ηLnmax + ηZdmax

1− β
,

vmax(k) := max
i∈[p]

{
ηF ∥z̃i(0)∥2βk + wmax

}
.

As k increases, vmax(k) converges to wmax.

Then, the decoder collects all the data ẑi’s from the partial observers Oi’s and

the problem of estimating x(k) is formulated in the form of (4.2.9) as we have

seen in the previous section. Since (4.2.9) exactly matches with (2.2.2) where

the static error correcting problem is considered, one can directly apply the error

correction technique developed in Section 2.2.3.1 into (4.2.9). Theorems 2.2.11

and 2.2.12 are mainly employed so as to recover x(k). However, before applying

them, one should check that three conditions on those theorems are satisfied for

the given system (4.1.1): boundedness of v(k), q-sparsity of e(k), and q-error

correctability of Φ. The first two conditions are easily satisfied by Assumptions



82 Chap. 4. Attack-Resilient State Estimation for Linear Systems

4.3.2 and 4.1.1. That is, the noise vector vi(k) is bounded by vmax(k) for all i ∈ [p]

by (4.3.7), which is induced from Assumption 4.3.2. Since the error vector ei(k)

depends only on the attack element ai(j) for 0 ≤ j ≤ k − 1 by (4.3.6b) and a(j)

is q-sparse according to Assumption 4.1.1, the vector e(k) is (n-stacked) q-sparse.

The last condition, the q-error correctability of Φ, is actually fulfilled by the 2q-

redundant detectability of the system (4.1.1) (i.e., Assumption 4.3.1), as asserted

in the following proposition. Therefore, all three conditions on Theorems 2.2.11

and 2.2.12 hold.

Proposition 4.3.1. The followings are equivalent:

(i) The pair (A,C) is 2q-redundant detectable (or, asymptotically 2q-redundant

observable);

(iii) The matrix Φ ∈ Rnp×n given in (4.2.10) is (n-stacked) q-error correctable. ♢

Proof. Pick any Λ ⊂ [p] satisfying |Λ| ≥ p− 2q, and we claim N (GΛn) ⊂ Xs(A) if

and only if N (ΦΛn) = {0}. This can be shown by the following equivalences

N (GΛn) ⊂ Xs(A) ⇔ N (GΛn) ∩ Xu(A) = {0}

⇔

(⋂
i∈Λ
N (Gi)

)
∩ Xu(A) = {0}

⇔
⋂
i∈Λ

(N (Gi) ∩ Xu(A)) = {0}

⇔
⋂
i∈Λ

(
O(A, ci) ∩ Xu(A)

)
= {0}

⇔
⋂
i∈Λ
D(A, ci) = {0}

⇔
⋂
i∈Λ
R(Wi) = {0}

⇔
⋂
i∈Λ
N

([
Zo
i
⊤

Zd
i
⊤

])
= {0}

⇔
⋂
i∈Λ
N (Z⊤

i ) = {0}

⇔ N (ΦΛn) = {0} ,

where the structure of Φ and its elements Zi
⊤’s from the Kalman detectability
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Figure 4.5: Configuration of the decoder D with bounded disturbance/noise.

decomposition, are used.

The decoder’s configuration is sketched in Fig. 4.5 and its operation is de-

scribed in Algorithm 4.1. Initially, an attack-free index set Λ, a state estimate

x̂, and a fault count signal f , are set to [p], Φ†ẑ, and 0, respectively. With

the incoming data ẑi and information of x̂, each selector module Si compares

∥ẑi − Z⊤
i x̂∥2 with v′max given in (2.2.9), and provides the on-off signal based

on the value of ∥ẑi − Z⊤
i x̂∥2. The signal is “on” if ∥ẑi − Z⊤

i x̂∥2 ≤ v′max, and

“off” otherwise. The new index set Λ+ corresponding to “on” signals, more pre-

cisely, Λ+ :=
{
i ∈ [p] : ∥ẑi − Z⊤

i x̂∥2 ≤ v′max

}
, is obtained and the index generator

I counts the number of “off” signals which becomes the new fault count signal

f+, that is, f+ := p − |Λ+|. Now, Λ and f are updated to new Λ+ and f+,

respectively. There are two cases according to the fault count signal f : first,

when f ≤ q, the switch s is placed on the calculator C’s side and C computes the

state estimates x̂ by (ΦΛn)† ẑΛn ; second, if f > q, the switch s is placed on the

minimizer M’s side and M solves the optimization problem (2.2.8′) to generate

x̂opt which becomes the state estimates x̂.

During the operation of the decoder, the monitoring scheme that the selector

S and the switch s perform, is running on the basis of Theorem 2.2.12, while the
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Algorithm 4.1 Operation of the decoder with bounded disturbance/noise
Input: ẑ1, ẑ2, · · · , ẑp
Output: x̂, f
Initialization: Λ = [p], x̂ = Φ†ẑ, f = 0

1: while system (4.1.1) is running do
2: each selector Si compares ∥ẑi − Z⊤

i x̂∥2 with v′max

3: index generator I collects i’s s.t. ∥ẑi−Z⊤
i x̂∥2 ≤ v′max and updates Λ and f

4: by Λ=
{
i ∈ [p] : ∥ẑi − Z⊤

i x̂∥2 ≤ v′max

}
and f=p− |Λ|

5: if f ≤ q then
6: switch s selects the line from C
7: Calculator C computes x̂ = (ΦΛn)† ẑΛn

8: else if f > q then
9: switch s selects the line fromM

10: minimizerM solves (2.2.8′) and produces x̂ = x̂opt

11: end if
12: end while

calculator C and the minimizer M has its roots on Theorems 2.2.9 and 2.2.11,

respectively. If f ≤ q, the successful state estimation is ensured by Theorem

2.2.12.(i). More specifically, we have ∥x̂ − x∥2 ≤ κcp,q,r(Φ)vmax. In this case,

the index set Λ is assumed to be attack-free, and hence, the calculator C can

recover the original state x approximately by x̂ = (ΦΛn)† ẑΛn , which is attributed

to Theorem 2.2.9. On the other hand, if f > q, the state estimates x̂ is not close

enough to the original states x by Theorem 2.2.12.(ii). Hence, the algorithm goes

to the minimizer step (i.e., the switch s chooses the minimizerM’s side) to figure

out new healthy sensors and the state estimates x̂ by x̂opt. Furthermore, Theorem

2.2.11 guarantees that ∥x̂−x∥2 ≤ κcp,q,r(Φ)vmax. These results are summarized in

the following theorem.

Theorem 4.3.2. Under Assumptions 4.3.2, 4.1.1, and 4.3.1, the estimator E
equipped with the observers Oi’s given by (4.3.1) and the decoder D employing

Algorithm 1, guarantees that

∥x̂(k)− x(k)∥2 ≤ κcp,q,r(Φ) vmax(k),
∀k ≥ 0.
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Furthermore, for any δ > 0, there exists T (δ) > 0 such that

∥x̂(k)− x(k)∥2 ≤ κcp,q,r(Φ) wmax + δ, ∀k ≥ T (δ). ♢

4.3.2 Suboptimal Estimator with Gaussian Disturbance and Noise

Gaussian process disturbance d(k) and measurement noise n(k) are consid-

ered in this section, and a suboptimal estimator is developed. We first design

a decentralized Kalman filter with each single sensor output. This decentralized

Kalman filter constitutes the partial observer Oi. Then, an information fusion

scheme collects all the information on state estimates and error covariance matri-

ces from the decentralized Kalman filter, as the decoder D does in the previous

section. Now, the information fusion scheme selects a subset of sensors which is

most likely to be attack-free by the ML decision rule. Finally, it computes the

optimal (i.e., in the sense of MVUE or WLSE) estimates only with those sensors

which are identified as the most likely to be attack-free. To this end, stochastic

assumptions on the disturbance d(k), the noise n(k), and the initial state x(0) of

the system (4.1.1) are formally stated as follows.

Assumption 4.3.3. The disturbance d(k) and measurement noise n(k) are in-

dependent and identically distributed (i.i.d.) white Gaussian process with zero

mean and covariance matrices Q and R, respectively, i.e.,

d(k) ∼ N(0, Q),

n(k) ∼ N(0, R),

E[d(k)] = 0, E[d(k)d⊤(t)] = Qδkt,

E[n(k)] = 0, E[n(k)n⊤(t)] = Rδkt,

E[n(k)d⊤(t)] = 0,

where δkt is the Kronecker delta function. Furthermore, the initial state x(0) is

a Gaussian distributed random variable with mean x̄0 and covariance matrix P0
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independent of d(k) and n(k), i.e.,

x(0) ∼ N(x̄0, P0),

E[x(0)] = x̄0, E[(x(0)− x̄0)(x(0)− x̄0)⊤] = P0. ♢

With the covariance matrix R of the measurement noise n(k) partitioned as

R =


R1 R12 · · · R1p

R21 R2 · · · R2p

...
...

. . .
...

Rp1 Rp2 · · · Rp

 ,

the assumption above can also be written for each measurement noise ni(k) for

i ∈ [p], as follows:

ni(k) ∼ N(0, Ri),

E[ni(k)] = 0, E[ni(k)n
⊤
i (t)] = Riδkt,

E[ni(k)n
⊤
j (t)] = Rijδkt, if i ̸= j,

E[ni(k)d
⊤(t)] = 0.

First, the partial observer Oi is designed by a Kalman filter for the detectable

subsystem (4.2.5) with the attack model (4.1.2). To this end, let ẑi(k|k−1) be the

estimate of zi(k) based on observations from ȳ(0) to ȳ(k − 1). Similarly, ẑi(k|k)
is the estimate of zi(k) after we process the measurement ȳ(k) at time k. Then,

the Kalman filter has the following form of

Oi : ẑi(k + 1|k + 1)

= Siẑi(k|k) + Z⊤
i Bu(k) +Ki(k + 1)

(
ȳi(k + 1)− ti

(
Siẑi(k|k) + Z⊤

i Bu(k)
))

= (I −Ki(k + 1)ti)
(
Siẑi(k|k) + Z⊤

i Bu(k)
)
+Ki(k + 1)ȳi(k + 1)

= (I −Ki(k + 1)ti)
(
Siẑi(k|k) + Z⊤

i Bu(k)
)
+Ki(k + 1)(yi(k + 1) + ai(k + 1))

(4.3.8)
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where

ẑi(k + 1|k + 1) = ẑi(k + 1|k) +K(k + 1) (ȳi(k + 1)− tiẑi(k + 1|k))

ẑi(k + 1|k) = Siẑi(k|k) + Z⊤
i Bu(k)

Ki(k + 1) = Pi(k + 1|k)t⊤i
(
tiPi(k + 1|k)t⊤i +Ri

)−1

Pi(k + 1|k) = SiPi(k|k)S⊤
i + Z⊤

i QZi

Pi(k + 1|k + 1) = (I −Ki(k + 1)ti)Pi(k + 1|k)

(4.3.9a)

(4.3.9b)

(4.3.9c)

(4.3.9d)

(4.3.9e)

with

ẑi(0| − 1) = Z⊤
i x̄0, Pi(0| − 1) = Z⊤

i P0Zi.

Here, note that ȳi(k) is injected instead of yi(k) by the attack model (4.1.2). As

we have done in the previous section, Oi can be divided into two parts with the

following definitions of

gi(k + 1|k) := Sigi(k|k) + Z⊤
i Bu(k),

ei(k + 1|k) := Siei(k|k),

gi(k + 1|k + 1) := gi(k + 1|k) +K(k + 1) (yi(k + 1)− tigi(k + 1|k)) ,

ei(k + 1|k + 1) := ei(k + 1|k) +K(k + 1) (ai(k + 1)− tiei(k + 1|k)) .

By setting the initial conditions as gi(0|− 1) = ẑi(0|− 1) = Z⊤
i x̄0 and ei(0|− 1) =

0µi×1, it easily follows from (4.3.9a) and (4.3.9b) that

ẑi(k + 1|k) = gi(k + 1|k) + ei(k + 1|k),

ẑi(k + 1|k + 1) = gi(k + 1|k + 1) + ei(k + 1|k + 1).

Finally, Oi in (4.3.8) is divided into Oy
i and Oa

i , as follows:

Oy
i : gi(k + 1|k + 1) = (I −Ki(k + 1)ti)

(
Sigi(k|k) + Z⊤

i Bu(k)
)

+Ki(k + 1)yi(k + 1),

Oa
i : ei(k + 1|k + 1) = (I −Ki(k + 1)ti)Siei(k|k) +Ki(k + 1)ai(k + 1).

(4.3.10a)

(4.3.10b)
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Now, define the attack-free estimation error

vi(k + 1|k) := gi(k + 1|k)− zi(k + 1)

vi(k + 1|k + 1) := gi(k + 1|k + 1)− zi(k + 1)

and we have that

vi(k + 1|k) =
(
Sigi(k|k) + Z⊤

i Bu(k)
)
−
(
Sizi(k) + Z⊤

i Bu(k) + Z⊤
i d(k)

)
= Sivi(k|k)− Z⊤

i d(k)

vi(k + 1|k + 1) = (I −Ki(k + 1)ti)vi(k + 1|k) +Ki(k + 1)ni(k + 1)

= (I −Ki(k + 1)ti)Sivi(k|k) +Ki(k + 1)ni(k + 1)

− (I −Ki(k + 1)ti)Z
⊤
i d(k).

(4.3.11a)

(4.3.11b)

(4.3.11c)

The final state estimation error defined by

z̃i(k|k) := ẑi(k|k)− zi(k),

satisfies

z̃i(k|k) = vi(k|k) + ei(k|k), (4.3.12)

and, from (4.3.10b) and (4.3.11c), its dynamic equation is governed by

Fi : z̃i(k + 1|k + 1) = (I −Ki(k + 1)ti)Siz̃i(k|k) +Ki(k + 1)ni(k + 1)

− (I −Ki(k + 1)ti)Z
⊤
i d(k) +Ki(k + 1)ai(k + 1).

(4.3.13)

Recall that, in conventional Kalman filter theory, the term Pi(k|k) is used to

denote the covariance of the estimation error of ẑi(k|k) when there is no attack.

Since ẑi(k|k) with ai(k) ≡ 0 is the same as gi(k|k) by its construction, Pi(k|k) can

be thought of as

Pi(k|k) = E[(gi(k|k)− zi(k))(gi(k|k)− zi(k))⊤] = E[vi(k|k)v⊤i (k|k)].

and equations (4.3.9d) and (4.3.9e) ensures that the covariance matrix Pi(k|k) is
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in the following recursive form:

Li : Pi(k + 1|k + 1) = (I −Ki(k + 1)ti)(SiPi(k|k)S⊤
i + Z⊤

i QZi) (4.3.14)

where the initial value Pi(0|0) can be calculated by substituting Pi(0| − 1) =

Z⊤
i P0Zi for (4.3.9e) and (4.3.9c). The errors vi(k|k) and vj(k|k) for i ̸= j may be

correlated, and thus, by using (4.3.11c), the error cross-covariance between vi(k|k)
and vj(k|k) can be computed recursively. From the recursive form of (4.3.11c),

note that vi(k|k) is a linear combination of elements in

{vi(0|0), d(0), · · · , d(k − 1), ni(0), · · · , ni(k)}.

Note that, from Assumption 4.3.3, (i) ni(k + 1) and d(k) are orthogonal, (ii)

vi(k|k) and d(k) are orthogonal, and (iii) vi(k|k) and nj(k + 1) are orthogonal.

Using these facts, one can derive the recursive form of the error cross covariance

between vi(k|k) and vj(k|k) as follows:

Lij : Pij(k + 1|k + 1) = E[vi(k + 1|k + 1)v⊤j (k + 1|k + 1)]

= (I −Ki(k + 1)ti)
(
SiE[vi(k|k)v⊤j (k|k)]S⊤

j + Z⊤
i QZj

)
(I −Kj(k + 1)tj)

⊤

+Ki(k + 1)E[ni(k + 1)n⊤j (k + 1)]K⊤
j (k + 1)

= (I −Ki(k + 1)ti)
(
SiPij(k|k)S⊤

j + Z⊤
i QZj

)
(I −Kj(k + 1)tj)

⊤

+Ki(k + 1)RijK
⊤
j (k + 1).

(4.3.15)

The initial value Pij(0|0) can be calculated by Pij(0| − 1) = Z⊤
i P0Zj and the

recursive form of

Pij(k + 1|k + 1) = E[vi(k + 1|k + 1)v⊤j (k + 1|k + 1)]

= (I −Ki(k + 1)ti)E[vi(k + 1|k)v⊤j (k + 1|k)](I −Kj(k + 1)tj)
⊤

+Ki(k + 1)E[ni(k + 1)n⊤j (k + 1)]K⊤
j (k + 1)

= (I −Ki(k + 1)ti)Pij(k + 1|k)(I −Kj(k + 1)tj)
⊤ +Ki(k + 1)RijK

⊤
j (k + 1),

where the second equality is obtained by (4.3.11b) and the orthogonal properties

mentioned above.
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Figure 4.6: Configuration of the decoder D with Gaussian disturbance/noise.

In summary, by (4.3.10b), the attack induced estimation error vector ei(k|k)
may have arbitrary values if ai(k) ̸≡ 0, while ei(k|k) = 0 when ai(k) ≡ 0. On

the other hand, by (4.3.10a), the estimate without any attack, gi(k|k), is an

unbiased estimate and its error, vi(k|k), is Gaussian distributed with zero mean

and covariance matrix Pi(k|k). Finally, with

v(k|k)=


v1(k|k)
v2(k|k)

...

vp(k|k)

 and P (k|k)=


P1(k|k) P12(k|k) · · · P1p(k|k)
P21(k|k) P2(k|k) · · · P2p(k|k)

...
...

. . .
...

Pp1(k|k) Pp2(k|k) · · · Pp(k|k)

, (4.3.16)

which can be recursively computed by (4.3.14) and (4.3.15), we have

v(k|k) ∼ N (0µ×1, P (k|k)) ,

where µ :=
∑p

i=1 µi.

For notational simplicity, ẑi(k|k), vi(k|k), ei(k|k), and P (k|k) are denoted by

ẑi(k), vi(k), ei(k), and P (k), respectively. Then, all the data ẑi’s from the partial

observersOi’s in (4.3.8) are collected by the decoderD and the problem of estimat-
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Algorithm 4.2 Operation of the decoder with Gaussian disturbance/noise
Input: ẑ1, ẑ2, · · · , ẑp, P1, P12, · · · , Pp(p−1), Pp

Output: Λ∗, x̂, g, f
Initialization: Λ∗ = [p], x̂ = Ψẑ, g = 0, f = 0

1: while system (4.1.1) is running do
2: x̂ = ΨΛ∗ ẑπΛ∗

3: r = ẑπΛ∗ − Φπ
Λ∗ x̂

4: ζ = (P π
Λ∗ − Φπ

Λ∗ΨΛ∗P π
Λ∗)

− 1
2 r

5: g = ζ⊤ζ

6: if g ≤ ∆Λ∗
TH then

7: f = 0

8: else if g > ∆Λ∗
TH then

9: f = 1

10: for Λ ⊂ [p] satisfying |Λ| = p− q do
11: x̂Λ = ΨΛẑ

π
Λ

12: rΛ = ẑπΛ − Φπ
Λx̂

Λ

13: ζΛ = (P π
Λ − Φπ

ΛΨΛP
π
Λ )

− 1
2 rΛ

14: gΛ = ζΛ
⊤
ζΛ

15: end for
16: Λ∗ = argmax

Λ⊂[p]
|Λ|=p−q

pgΛ

(
gΛ
)

17: end if
18: end while

ing x(k) is formulated in the form of (4.2.9) as we have seen in Section 4.2.2. Some

differences from the previous section, are that the noise v is a Gaussian distributed

random variable, not bounded by a certain value, and we do not append any addi-

tional zeros. Furthermore, the Kalman filter which constitutes the partial observer

Oi, also updates and provides the covariance matrix P of v. More specifically,

the error covariance matrix Pi of vi is computed by Li in (4.3.14), and the error

cross covariance Pij of vi and vj is obtained by Lij in (4.3.15). Since (4.2.9) exactly

matches with (2.2.2) where the static error correcting problem with a Gaussian

noise is considered, one can directly apply the error correction technique developed

in Section 2.2.3.2 into (4.2.9). The decoder’s configuration is sketched in Fig. 4.6
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and its operation is described in Algorithm 4.2. Before explaining the operation of

the decoder, let Ψ denote (Φ′⊤P−1Φ′)−1Φ′⊤P−1 where P is given in (4.3.16) and

Φ′ := [Z1 Z2 · · · Zp]
⊤ ∈ Rµ×n is Φ in (4.2.10) without any additional zeros. Fur-

thermore, the notation for sub-matrix is slightly abused for simplicity. For exam-

ple, P π
Λ , Φπ

Λ, and ΨΛ denote P π
Λ̄,Λ̄

, Φ′π
Λ̄, and

(
Φ′π⊤

Λ̄ (P π
Λ̄,Λ̄

)−1Φ′π
Λ̄

)−1
Φ′π⊤

Λ̄ (P π
Λ̄,Λ̄

)−1,

respectively, where Λ̄ :=
⋃

j∈Λ

{∑j−1
k=1 µk + 1,

∑j−1
k=1 µk + 2, · · · ,

∑j
k=1 µk

}
. Recall

that P π
Λ̄,Λ̄

denotes the matrix obtained from P by eliminating all i-th rows and all

j-th columns such that i ∈ Λ̄c and j ∈ Λ̄c.

Actually, we have the measurement in the form of ẑ = Φ′x+v+e ∈ Rµ where

Φ′ ∈ Rµ×n is (µi-stacked) q-error correctable, e ∈ Rµ is (µi-stacked) q-sparse, and

v ∈ Rµ satisfies v ∼ N(0µ×1, P ). Algorithm 4.2 can be seen as a combination

of the attack detection scheme (i.e., Algorithm 2.2) in the selected index set of

sensors and the state reconstruction scheme (i.e., Algorithm 2.3) when any attack

is detected in the selected index set of sensors. Initially, an attack-free index

set Λ∗, a state estimate x̂, a standardized residual’s norm g, and a fault alarm

signal f , are set to [p], Ψẑ, 0, and 0, respectively. The algorithm continually

checks if there is any attack in the index set Λ∗. That is, for the given index set

Λ∗, the algorithm basically calculates the MVUE (or WLSE) x̂ = ΨΛ∗ ẑπΛ∗ , the

residual r = ẑπΛ∗ − Φπ
Λ∗ x̂, the standardized residual ζ = (P π

Λ∗ − Φπ
Λ∗ΨΛ∗P π

Λ∗)
− 1

2 r,

and its 2-norm g = ζ⊤ζ only with the measurement and covariance data from the

subset Λ∗. Recall from Theorem 2.2.18 that if ei = 0µi×1 for all i ∈ Λ∗, we have

r ∼ N(0µΛ∗×1, P
π
Λ∗ − Φπ

Λ∗ΨΛ∗P π
Λ∗) where µΛ∗ :=

∑
i∈Λ∗ µi, and thus, g ∼ χ2

µΛ∗ .

Therefore, g is used to detect the presence of attack in Λ∗ by the χ2 test. We

compare g with the threshold ∆Λ∗
TH which is designed before running the algorithm

and determines the probability of false alarm and the probability of detection. If

g ≤ ∆Λ∗
TH , the index set Λ∗ is declared to be attack-free by setting f = 0 and

the algorithm just maintains the selected optimal index set Λ∗. Otherwise, when

g is greater than the threshold ∆Λ∗
TH , the attack detection alarm is triggered by

setting f = 1 and the algorithm starts the process of searching new attack-free

index set.

In order to find a new attack-free index set and consequently to recover the

state x from the new index set, we search all subsets Λ’s in [p] whose cardinal
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number is p− q. To this end, let

{
Λ1,Λ2, · · · ,Λ(pq)

}
be the set {Λ ⊂ [p] : |Λ| = p− q}. For each subset Λi where i ∈

[(p
q

)]
, the com-

puting module Ci calculates the MVUE (or WLSE) x̂Λi = ΨΛi
ẑπΛi

, the residual

rΛi = ẑπΛi
−Φπ

Λi
x̂Λi , the standardized residual ζΛi =

(
P π
Λi
− Φπ

Λi
ΨΛi

P π
Λi

)− 1
2
rΛi , and

its 2-norm gΛi = ζΛi
⊤
ζΛi only with the measurement and covariance data from

the subset Λi. Then, the selector S chooses the optimal index set Λ∗ by the ML

decision rule studied in Section 2.2.3.2. Let us denote gi as a random variable

such that gΛi is a single observation from gi and gΛi
as a random variable such

that

gΛi
∼ χ2

µΛi

where µΛi
:=
∑

j∈Λi
µj. Note that, if the sensors indexed by Λi is attack-free,

then the random variable gi as well as gΛi
follows the χ2 distribution with µΛi

degrees of freedom. The ML decision rule choose the optimal index set Λ∗ that

maximize the likelihood pgΛi

(
gΛi
)
, which is the probability density function of

gi being equal to the observation gΛi under the condition that there is no attack

signal in the measurements indexed by Λi. Therefore, we have

Λ∗ = argmax
Λ⊂[p]

|Λ|=p−q

pgΛ

(
gΛ
)
,

and the MVUE (or WLSE) of the newly selected optimal index set Λ∗, x̂Λ∗ ,

becomes the final suboptimal estimate of x.

4.4 Remarks on Proposed Attack-Resilient Estimator

4.4.1 Comparison with Fault Detection and Isolation

From a system theoretical point of view, faults and attacks are basically the

same except the fact that the attacks may be undetectable because they are de-

vised in a coordinated way by malicious adversaries while the faults can not col-
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lude with each other so that they are mostly assumed to show abnormal behav-

ior. The estimator E can be interpreted as an advanced type of observer-based

fault detection and isolation scheme under sparse sensor attacks. Unlike faults,

attacks may be undetectable through any type of detector because they are de-

signed craftily by adversaries. However, the sparsity assumption excludes the

existence of undetectable attacks in our situation because undetectable attacks

must compromise at least a certain number of sensors, which was quantified as

the (asymptotic) dynamic security index.

In the case of all (A, ci)’s are observable (i.e., the system (4.1.1) is (p−1)-

redundant observable), the partial observer Oi in (4.3.1) becomes the full order

state observer as follows:

O′
i : x̂i(k+1) = Ax̂i(k) +Bu(k) + Li(ȳi(k)−cix̂i(k)). (4.3.1′)

A bank of observers O′
i ’s is nothing but the dedicated observer scheme (DOS)

and the ℓ0 minimizer M with r = p − 1 decides the final state estimates x̂ by a

majority voting logic among all x̂i’s for i ∈ [p] [13]. However, if ai is treated as a

mere fault, we do not even need the majority voting logic. More specifically, DOS

normally detects or isolates the faults based on the output error signal ỹi, which

is used as a residual, of the following system

F ′
i :

 x̃i(k + 1) = (A− Lici)x̃i(k) + Lini(k)− d(k) + Liai(k),

ỹi(k) = cix̂i(k)− ȳ(k) = cix̃i(k)− ni(k)− ai(k)
(4.3.5′)

where x̃i := x̂i − x. Note that ai is not generated in a coordinated way because it

is considered as a simple fault. Without loss of generality, we can assume that the

fault signal ai may not be a zero dynamics signal of F ′
i , and thus, it is detectable

through the residual ỹi. Therefore, by excluding the sensor information which has

a large residual ỹi, one can detect and identify the faults.

The generalized observer scheme (GOS) [21] is a variation of DOS and it also

utilizes a bank of observers. Contrary to DOS, the i-th observer of GOS is driven

by all outputs except the i-th sensor, and thus, it allows to detect and isolate only

a single fault. Therefore, GOS is suitable for the system which is 1-redundant
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observable. Actually, the ℓ0 minimizer M with r = 1 works similarly to GOS.

However, if the fault acts like an attack, 1-redundant observability guarantees the

fault to be detectable, but it is not enough to ensure a single sensor attack to be

correctable (or identified) by Proposition 3.3.1. Consequently, GOS works well

for a single “fault,” but not for a single “attack.”

4.4.2 Analysis of Time and Space Complexity

As we have seen in Remark 2.2.2, the NP-hardness of the ℓ0 minimization

problem in the decoder D could be mitigated by reducing the search space to a

finite set without imposing additional conditions other than 2q-redundant observ-

ability. On top of reducing search space to a finite set, the proposed algorithm

further alleviates the computational efforts by combining a detection algorithm

to the optimization process. This advantage in terms of time complexity is sum-

marized in the following remark.

Remark 4.4.1. By virtue of the alarm signal f , we can reduce the computa-

tional effort significantly. For the attack-resilient state estimation problem, most

computational burden originates from the process of solving optimization prob-

lem for the decoder in Luenberger observer (or, ML decision rule with combina-

torial number of candidates for the decoder in Kalman filter). However, the pro-

posed decoder relieves the computational effort by combining the attack detec-

tion mechanism to the optimization process (or, the ML decision rule in Kalman

filter). Hence, it only requires to solve the minimization problem (or, conduct the

ML decision in Kalman filter) for a very short time interval when the attacker

first attempt to inject false data so that the decoder has f > q (or, f = 1 for

Kalman filter) at that instant. During normal operation when f ≤ q (or, f = 0

for Kalman filter) is guaranteed, the estimator works as if there is no attack. Fur-

thermore, the computational burden to solve the ℓ0 minimization problem could

also be reduced as explained in Remark 2.2.2. That is, the proposed algorithm

to solve the ℓ0 optimization actually relieves the computational complexity by

reducing the search space to a finite set. ♢

Conventional observers which do not take attacks at all, e.g., a full order
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Luenberger observer such as (4.2.1), requires n dimension. The cost to pay for

attack-resilience is more dimension for total observer dynamics. The proposed

estimator requires
∑p

i=1 µi ≤ np dimension, which is in general larger than n,

where µi is the detectability index of the pair (A, ci). Nevertheless, we would

like to point out that the required dimension is still much smaller than that of

the other observer-based resilient estimators. That is, the required memory for

the proposed estimator is linear with the number of sensors by constructing the

estimator with a bank of partial observers. However, the other observer-based

resilient estimators such as [66] and [12], requires n
(p
q

)
dimension because they

run
(p
q

)
observers and each observer requires n dimension. This advantage in

terms of space complexity is summarized in the following remark.

Remark 4.4.2. The idea of constructing the estimator E with the partial ob-

servers Oi’s and the decoder D, which is originally proposed in [42], dramatically

reduces the number of the state estimator. Other observer-based resilient state

estimators such as [66] and [12], usually consist of all possible combinations of

estimator candidates. Thus, they need to run
(p
q

)
estimators so that the required

memory size is n
(p
q

)
for each time step. On the other hand, with the help of

Kalman detectability decomposition, the total memory size of the proposed par-

tial observers,
∑p

i=1 µi, is not greater than np because the size of each partial

observer Oi is only µi ≤ n for all i ∈ [p]. Hence, the proposed estimator is scalable

in terms of memory space complexity, that is, it requires a linear space complexity

with the number of sensors p. ♢

4.5 Simulation Results: Three-Inertia System

In order to verify the effectiveness of the proposed scheme, simulations with

a three-inertia system are conducted in this section. The configuration of the

three-inertia system is described in Fig. 4.7 and its dynamics can be represented

by a continuous-time state-space equation

Pc :

 ẋ(t) = Acx(t) +Bcu(t) + d(t)

y(t) = Ccx(t) + n(t)
(4.5.1)
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Figure 4.7: Three-inertia system.

with the matrices

Ac =



0 1 0 0 0 0

−k1
J1
− b1

J1
k1
J1

0 0 0

0 0 0 1 0 0
k1
J2

0 −k1+k2
J2

− b2
J2

k2
J2

0

0 0 0 0 0 1

0 0 k2
J3

0 −k2
J3
− b3

J3


,

Bc =



0

1
J1

0

0

0

0


, Cc =



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

1 0 −1 0 0 0

0 0 1 0 −1 0


,

where J1 = J2 = J3 = 0.01 kg·m2, b1 = b2 = b3 = 0.007 N/(rad/s), and k1 = k2 =

1.37 N/rad. Here, the state variables are [θ1 θ̇1 θ2 θ̇2 θ3 θ̇3]
⊤ and the output

measurements are y := [θ1 θ2 θ3 θ1−θ2 θ2−θ3]⊤ . On top of the absolute

angular position of each inertia, θi’s, two more measurements which represent the

relative angle of adjacent inertias are added to exploit the redundancy of sensors.

In addition, the plant is corrupted by the uniformly bounded process disturbance

d and measurement noise n with dmax = nmax = 0.001. To conduct a discrete-time

simulation, the zero-order hold equivalent model of (4.5.1) is considered, that is,



98 Chap. 4. Attack-Resilient State Estimation for Linear Systems

-

Figure 4.8: Block diagram of the observer-based state feedback integral con-
trol scheme.

the system matrices of the discrete-time system (4.1.1) are given by

A := eAcTs , B :=
(∫ Ts

0
eAcτdτ

)
Bc, C := Cc (4.5.2)

where Ts := 1ms denotes the sampling time. Note that the pair (A,C) in (4.5.2) is

2-redundant detectable, which implies that one can correct 1-sparse attack signal

and its dynamic security index becomes 3. The control objective is to make the

output θ3 follow the step reference θ3,ref . To this end, an observer-based feedback

integral control scheme, as illustrated in [60, Section 6-7] and also in Fig. 4.8, is

adopted. First, the state feedback gains K and KI are chosen as

K := −[2.32 0.25 −2.47 0.04 1.70 0.12], KI := 0.002

as if the state x is available. Then, instead of using the conventional Luenberger

observer, the proposed estimator E provides the estimate x̂ of x. The injection

gain Li of partial observer (4.3.1) in E is arbitrarily chosen such that Fi = Si−Liti

is Schur stable.

Attack signals are illustrated in Fig. 4.9, which describes that adversaries

launch a measurement data injection attack at t = 2sec so that the first sensor

is compromised. Figures 4.10 and 4.11 show state trajectories θ1(t), θ̇2(t), and

their estimates. It demonstrates the attack-resilient property of our estimation

algorithm. Finally, Fig. 4.12 shows a good reference tracking performance of the

proposed control scheme.
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Figure 4.9: Plot of attack a1(t).
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Figure 4.10: Plot of state θ1(t) and its estimate θ̂1(t).
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Figure 4.11: Plot of state θ̇2(t) and its estimate ˆ̇
θ2(t).
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Figure 4.12: Plot of reference signal θ3,ref(t) and output θ3(t).





Chapter 5

Attack-Resilient State Estimation
under Sensor Attacks for Uniformly
Observable Nonlinear Systems

Although most control systems have nonlinearity in practice, most of the previous

studies on attack-resilient state estimation are restricted to linear dynamical sys-

tems. In this chapter, we have extended the results on resilient state estimation

for linear systems developed in the previous chapter to a class of nonlinear sys-

tems called uniformly observable nonlinear systems. Similar to the case of linear

systems, it is assumed that the system has sensor redundancy while adversaries

can corrupt a subset of sensors with possibly unbounded signals. We design the

partial observer by a high gain observer for each measurement output so that only

observable portion of system state is obtained. Then, a nonlinear error correcting

problem is solved by collecting all the information from those partial observers and

by exploiting redundancy. A computationally efficient on-line monitoring scheme

is presented for attack detection, and an algorithm for resilient state estimation

is provided based on the attack detection scheme.

101
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5.1 Problem Formulation and Preliminaries

5.1.1 Problem Formulation

We consider a smooth continuous-time nonlinear system given by

P :

 ẋ(t) = f(x(t)) + g(x(t))u(t)

y(t) = h(x(t))
(5.1.1)

where x ∈ Rn is the state variables, u ∈ R is the control inputs, and y ∈ Rp is the

sensor outputs. It is assumed that the state and the input of system (5.1.1) are

bounded. More specifically, u(t) ∈ U for all t ≥ 0 where U is a compact set, and

x(t) ∈ X := {x ∈ Rn : ∥x∥∞ ≤Mx} for t ≥ 0, with a constant Mx > 0. There are

total p sensors to measure (a smooth function of) the state and the i-th sensor’s

measurement at time t is denoted by

yi(t) = hi(x(t)).

Sensors themselves or the communication links in the measurement networks are

vulnerable to malicious attacks and the measurement data injection attack can

be represented by

ȳ(t) = y(t) + a(t) = h(x(t)) + a(t), (5.1.2)

where ȳ ∈ Rp denotes the sensor data on the controller’s side. Thus, ȳ(t), not

y(t), is used for state estimation. For each sensor output, the attack model is

written as

ȳi(t) = yi(t) + ai(t) = hi(x(t)) + ai(t), i ∈ [p].

The attack signal ai(t) is not assumed to be a bounded signal, and a craftily

designed ai(t) can corrupt yi(t) so that ȳi(t) may have arbitrary value. This fact

makes it difficult to detect whether there is an attack or not, and even more

difficult to estimate the state x from the measured outputs.

Instead of imposing any restrictions on the attack signal a(t) itself, we assume

q-sparsity on the set of attack signals a ∈ Rp. This is motivated by the rationale
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that the attack resource is limited so that only a portion of the sensors are com-

promised. Therefore, we suppose that up to q out of p measurement outputs can

be compromised and a formal condition on the sparsity of the attack vector a can

be given as follows.

Assumption 5.1.1. There exist at least p−q sensors which are not attacked for

all t ≥ 0, i.e., ∣∣∣{i ∈ [p] : ai(t) = 0, ∀t ≥ 0
}∣∣∣ ≥ p− q. ♢

Based on this sparsity assumption, two problems are of interest in this chapter.

The first one is real-time detection of sensor attacks only from the information of

the system model (5.1.1), the input u, and the output ȳ up to time t. The second

problem is to generate a state estimate x̂(t) that converges to the true state x(t)

in spite of the attack satisfying Assumption 5.1.1. Similar to the linear systems, it

will be seen that the detection of q-sparse sensor attack is solved if system (5.1.1)

satisfies q-redundant observability, which basically implies observability of (5.1.1)

even when any q sensors out of p sensors are removed. Moreover, to solve the

resilient state estimation problem, we will ask stronger condition 2q-redundant

observability for system (5.1.1). One of the difficulties in studying observability

for nonlinear systems is that, unlike linear systems, a nonlinear system can be

both observable and unobservable depending on the input signal u(t) in general.

Hence, we will introduce a notion of uniform observability for any inputs in Section

5.2, which enables us to design nonlinear observers in most cases. Accordingly,

the notion of redundant observability for nonlinear systems is slightly modified

from that for linear systems.

5.1.2 Bi-Lipschitz Function and Lipschitz Left Inverse

The notion of bi-Lipschitz function and its left inverse will be actively used

in this chapter. With X ⊂ Rn, a fucntion ϕ : X → Rp is Lipschitz on X if there

exists a constant L such that

∥ϕ(x)− ϕ(x′)∥∞ ≤ L∥x− x′∥∞, ∀x, x′ ∈ X.
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The infimum of such L is indicated as Lip(ϕ). It is bi-Lipschitz onX if, in addition,

there exists a positive constant L such that

L∥x− x′∥∞ ≤ ∥ϕ(x)− ϕ(x′)∥∞, ∀x, x′ ∈ X.

The supremum of such L is indicated as Lip(ϕ). For a given bi-Lipschitz function

ϕ : X → Rp, a function ψ : Rp → X is called a Lipschitz-extended left inverse of ϕ

if it is Lipschitz on Rp and satisfies ψ(ϕ(x)) = x for all x ∈ X. It is obvious that

a bi-Lipschitz map is injective, and so, its inverse exists on its image Y := ϕ(X)

and the inverse is also Lipschitz on Y . However, it should be noted that the

Lipschitz-extended left inverse ψ is defined on the whole codomain Rp and its

image ψ(Rp) is X ⊂ Rn.

A differentiable function ϕ : X → Rp is called an immersion if its Jacobian

matrix has full column rank for every x ∈ X. It is well-known that a continuously

differentiable function is Lipschitz on any compact subset. Likewise, the following

lemma claims that an injective function becomes bi-Lipschitz on every compact

set if it is an immersion.

Lemma 5.1.1. Let X be an open subset of Rn and ϕ : X → Rp be a continuously

differentiable function. If ϕ is an injective immersion, then the restriction ϕ|K :

K → Rp is bi-Lipschitz for every compact subset K ⊂ X. ♢

Proof. Note that ϕ is Lipschitz on K because it is continuously differentiable.

Thus, it is enough to show

inf
x ̸=x′

x,x′∈K

∥ϕ(x)− ϕ(x′)∥∞
∥x− x′∥∞

> 0.

Suppose, for the sake of contradiction, there exist sequences {xi}∞i=1 and {x′i}∞i=1

in K such that xi ̸= x′i and

lim
i→∞

∥ϕ(xi)− ϕ(x′i)∥∞
∥xi − x′i∥∞

= 0. (5.1.3)

By Bolzano-Weierstrass theorem, without loss of generality (by taking any con-

vergent subsequence if necessary), we may assume that {xi}∞i=1 and {x′i}∞i=1 con-
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verge to some points x∞ and x′∞ in K, respectively. If x∞ ̸= x′∞, it turns out

ϕ(x∞) = ϕ(x′∞) and it contradicts injectivity of ϕ. If x∞ = x′∞, by continuous

differentiability of ϕ, it is derived that

lim
i→∞

∥ϕ(xi)− ϕ(x′i)−Dϕ(x∞) · (xi − x′i)∥∞
∥xi − x′i∥∞

= 0, (5.1.4)

where Dϕ(x∞) denotes Jacobian matrix of ϕ at x∞. Hence, it follows from (5.1.4)

together with (5.1.3) that

lim
i→∞

∥Dϕ(x∞) · (xi − x′i)∥∞
∥xi − x′i∥∞

= 0,

which contradicts the fact that Dϕ(x∞) has full column rank.

For example, if X = [−1, 1] × [−1, 1] ⊂ R2 and ϕ(x) = Tx with a matrix

T ∈ R3×2 of full column rank, then ϕ is an injective immersion and thus it is a

bi-Lipschitz function on X. One of its Lipschitz-extended left inverses is given

by ψ(y) = sat(T †y, 1) where T † ∈ R2×3 is the pseudoinverse of T and sat(·, 1)
denotes the component-wise saturation function with the saturation level 1.

5.1.3 Nonlinear Error Detectability and Error Correctability

In this section, we extend the notions of error detectability and error cor-

rectability studied in Section 2.2.1 to a nonlinear coding function. Suppose that a

nonlinear coding function Φ : X → Rnp is defined by Φ = (Φ1,Φ2, · · · ,Φp) where

Φi : X → Rn for i ∈ [p]. We consider a problem of reconstructing the state vector

x ∈ X from the n-stacked measurements ẑ given by

ẑ = Φ(x) + e ∈ Rnp (5.1.5)

where ẑ is corrupted by an unknown n-stacked q-sparse vector e ∈ Σn
q. First, the

notion of error detectability of the coding function Φ, is investigated. Similar to

Definition 2.2.2, we can define the error detectability as follows. Please recall that

the function Φπ
Λn denotes the canonical projection of the function Φ by eliminating

all Φi’s such that i ∈ Λc.
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Definition 5.1.1. A coding function Φ : X → Rnp is said to be (n-stacked)

q-error detectable if, for all x, x′ ∈ X and e ∈ Σn
q such that Φ(x) + e = Φ(x′),

it holds that x = x′. Furthermore, the function Φ is said to be infinitesimally

(n-stacked) q-error detectable if its Jacobian matrix DΦ(x) is (n-stacked) q-error

detectable for all x ∈ X. Finally, the function Φ is said to be strongly (n-stacked)

q-error detectable if it is both (n-stacked) q-error detectable and infinitesimally

(n-stacked) q-error detectable. ♢

In Definition 5.1.1, the infinitesimal property of the error detectability when

there is an infinitely small change in the variable x, is also considered. Similar to

the result of Proposition 2.2.2, we can also characterize those error detectability

concepts introduced in Definition 5.1.1, as follows.

Proposition 5.1.2. The followings are equivalent:

(i) The function Φ : X → Rnp is (n-stacked) q-error detectable;

(ii) For every set Λ ⊂ [p] satisfying |Λ| ≥ p− q, Φπ
Λn is injective (or, one-to-one);

(iii) For any x, x′ ∈ X where x ̸= x′, d0n(Φ(x),Φ(x′)) > q. ♢

Proof. (i) ⇒ (ii): Suppose that (ii) does not hold, i.e., there exists an index set

Λ ⊂ [p] with |Λ| ≥ p− q and x ̸= x′ such that Φπ
Λn(x) = Φπ

Λn(x′). Then it follows

that ∥e∥0n ≤ q where e := Φ(x′) − Φ(x). Thus, Φ(x) + e = Φ(x′), and Φ is not

q-error detectable.

(ii) ⇒ (iii): Suppose, for the sake of contradiction, that there exists x ̸= x′ such

that d0n(Φ(x),Φ(x
′)) ≤ q. Let Λ be the complement of suppn(Φ(x′)−Φ(x)), i.e.,

Λ = (suppn(Φ(x′)− Φ(x)))c. Then it is obvious that |Λ| ≥ p − q and Φπ
Λn(x) =

Φπ
Λn(x′). This contradicts the injectivity condition of Φπ

Λn in (ii).

(iii) ⇒ (i): We again prove it by contradiction. Suppose that Φ is not q-error

detectable. That is, there exist x, x′ ∈ X satisfying x ̸= x′, and e ∈ Σn
q such that

Φ(x) + e = Φ(x′). It follows from x ̸= x′ and e ∈ Σn
q that d0n(Φ(x

′),Φ(x)) =

∥Φ(x′)− Φ(x)∥0n = ∥e∥0n ≤ q. Thus, (iii) fails.

Proposition 5.1.3. The followings are equivalent:

(i) The function Φ : X → Rnp is infinitesimally (n-stacked) q-error detectable;

(ii) For every set Λ ⊂ [p] satisfying |Λ| ≥ p−q, the Jacobian matrix DΦπ
Λn(x) has
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full column rank for all x ∈ X;

(iii) For every set Λ ⊂ [p] satisfying |Λ| ≥ p− q, Φπ
Λn is an immersion. ♢

Proof. It directly follows from the definition of the immersion and Proposition

2.2.2.

Proposition 5.1.4. The followings are equivalent:

(i) The function Φ : X → Rnp is strongly (n-stacked) q-error detectable;

(ii) For every set Λ ⊂ [p] satisfying |Λ| ≥ p− q, Φπ
Λn is an injective immersion. ♢

Similarly, the notion of error correctability is also introduced and characterized

in the subsequent paragraphs. Note that they are slight variations from Definition

2.2.3 and Proposition 2.2.3.

Definition 5.1.2. A coding function Φ : X → Rnp is said to be (n-stacked) q-

error correctable if, for all x, x′ ∈ X and e, e′ ∈ Σn
q such that Φ(x)+e = Φ(x′)+e′,

it holds that x = x′. Furthermore, the function Φ is said to be infinitesimally

(n-stacked) q-error correctable if its Jacobian matrix DΦ(x) is (n-stacked) q-error

correctable for all x ∈ X. Finally, the function Φ is said to be strongly (n-stacked)

q-error correctable if it is both (n-stacked) q-error correctable and infinitesimally

(n-stacked) q-error correctable. ♢

Proposition 5.1.5. The followings are equivalent:

(i) The function Φ : X → Rnp is (n-stacked) q-error correctable;

(ii) The function Φ : X → Rnp is (n-stacked) 2q-error detectable;

(iii) For every set Λ ⊂ [p] satisfying |Λ| ≥ p−2q, Φπ
Λn is injective (or, one-to-one);

(iv) For any x, x′ ∈ X where x ̸= x′, d0n(Φ(x),Φ(x′)) > 2q. ♢

Proof. (i)⇒ (ii): Assume that x, x′ ∈ X and e ∈ Σn
2q satisfying Φ(x)+e = Φ(x′),

are given. Let e1 and e2 be such that e = e1 − e2 where e1, e2 ∈ Σn
q. Thus, we

have Φ(x) + e1 = Φ(x′) + e2. Since Φ : X → Rnp is q-error correctable, it follows

that x = x′.

(ii) ⇒ (i): Assume that x, x′ ∈ X and e, e′ ∈ Σn
q satisfying Φ(x) + e = Φ(x′) + e′,

are given. Then, we have Φ(x) + e′′ = Φ(x′) where e′′ = e − e′ ∈ Σn
2q. Since

Φ : X → Rnp is 2q-error detectable, it follows that x = x′.

(ii) ⇔ (iii) ⇔ (iv): It directly follows from Proposition 5.1.2.
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Proposition 5.1.6. The followings are equivalent:

(i) The function Φ : X → Rnp is infinitesimally (n-stacked) q-error correctable;

(ii) The function Φ : X → Rnp is infinitesimally (n-stacked) 2q-error detectable;

(iii) For every set Λ ⊂ [p] satisfying |Λ| ≥ p − 2q, the Jacobian matrix DΦπ
Λn(x)

has full column rank for all x ∈ X;

(iv) For every set Λ ⊂ [p] satisfying |Λ| ≥ p− 2q, Φπ
Λn is an immersion. ♢

Proof. It directly follows from the definition of the immersion and Proposition

2.2.3.

Proposition 5.1.7. The followings are equivalent:

(i) The function Φ : X → Rnp is strongly (n-stacked) q-error correctable;

(ii) The function Φ : X → Rnp is strongly (n-stacked) 2q-error detectable;

(iii) For every set Λ ⊂ [p] satisfying |Λ| ≥ p− 2q, Φπ
Λn is an injective immersion.

♢

5.2 Uniformly Observable Nonlinear Systems for Any

Input

5.2.1 Uniform Observability Decomposition

The basic idea of constructing the partial observer is the same as that of linear

systems presented in Section 4.2.1. That is, we design p nonlinear observers to

each individual system with the single measurement ȳi given by

P i :

 ẋ(t) = f(x(t)) + g(x(t))u(t)

ȳi(t) = hi(x(t)) + ai(t),
(5.2.1)

for all i ∈ [p]. Because there is no guarantee that the state x is observable from the

single output ȳi, each observer cannot recover the full state x in general. Instead,

each observer can recover observable portion of the state only. By observable

portion, we mean the observable sub-state in a special coordinate. For linear sys-

tems, this sub-state corresponds to the observable subsystem in the well-known

Kalman observabiliy decomposition, i.e., the state zi = zoi ∈ Rνi in (4.2.5) is the
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observable sub-state. For nonlinear systems, we assume that the observable sub-

system is uniformly observable for any input [22, 24, 88]. While general nonlinear

systems can be both observable and unobservable depending on the input signal

u(t), a uniformly observable nonlinear system is observable for every inputs. In

other words, it is observable uniformly in inputs and one can design a nonlinear

observer for a class of uniformly observable nonlinear systems. The following as-

sumption asks uniform observability of the observable portion of the individual

system (5.2.1) with a single output ȳi.

Assumption 5.2.1. For each i ∈ [p], there exist a natural number νi ≤ n and a

diffeomorphism Ti : Rn → Rνi × Rn−νi such that, by

[
zi

wi

]
:= Ti(x) with zi ∈ Rνi

and wi ∈ Rn−νi , the system (5.2.1) is transformed into the form

żi = Fi(zi) + Gi(zi)u

ẇi = F ′
i (zi, wi) + G ′

i (zi, wi)u

ȳi = yi + ai = Hi(zi) + ai

(5.2.2a)

(5.2.2b)

(5.2.2c)

where the zi-subsystem (5.2.2a) with the attack-free output yi := Hi(zi) in (5.2.2c)

is uniformly observable on Rνi , i.e., the νi-dimensional subsystem (5.2.2a) and

(5.2.2c) takes the form

żi =


żi,1

żi,2
...

żi,νi

 =


zi,2
...

zi,νi

αi(zi)

+


βi,1(zi,1)

βi,2(zi,1, zi,2)
...

βi,νi(zi,1, · · · , zi,νi)

u

ȳi = yi + ai = zi,1 + ai.

(5.2.3a)

(5.2.3b)

Moreover, the functions αi : Rνi → R and βi,j : Rj → R for j ∈ [νi], are globally

Lipschitz. ♢
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Remark 5.2.1. The first νi component of the diffeomorphism Ti is given by

zi =



zi,1

zi,2

zi,3
...

zi,νi


=



hi(x)

Lfhi(x)

L2
fhi(x)

...

Lνi−1
f hi(x)


=: Φi(x) (5.2.4)

which is easily verified by comparing (5.2.1) and (5.2.3) with u ≡ 0. Here,

Lfhi(x) =
∂hi
∂x

f(x) is the Lie derivative of hi along the vector field f and the

notation Lk
fhi(x) represents the repetition of the calculation as

Lk
fhi(x) = LfL

k−1
f hi(x) =

∂(Lk−1
f hi)

∂x
f(x). ♢

Remark 5.2.2. The sub-state zi corresponds to the observable sub-state from

the output yi while wi corresponds to the unobservable sub-state. This is obvious

from the structure of (5.2.3) and (5.2.2b). Therefore, the system (5.2.2), which

is decomposed into the observable subsystem (5.2.2a) and the unobservable sub-

system (5.2.2b) by the diffeomorphism Ti, is called uniform observability decom-

position [74]. For linear systems, Assumption 5.2.1 always holds as we have seen

in Section 4.2.1 that the Kalman observability decomposition is always possible.

On the other hand, the triangular structure of βi = [βi,1, · · · , βi,νi ]⊤ is a necessary

and sufficient condition for uniform observability of zi-subsystem (5.2.3) (see [24]

for the proof of this statement). ♢

Remark 5.2.3. Asking global Lipschitz properties for αi and βi,j for j ∈ [νi], is not

a restriction thanks to boundedness of x(t). Indeed, noting that x(t) ∈ X, find a

constant Mz,i such that ∥zi∥∞ = ∥Φi(x)∥∞ ≤ Mz,i for all x ∈ X. Then, one can

modify αi and βi,j outside the set Z i := {zi : ∥zi∥∞ ≤Mz,i} so that αi and βi,j are

globally Lipschitz while they remain the same in Z i. In theory, this modification

is always possible by Kirszbraun’s Lipschitz extension theorem [72, p. 21]. That

is, for a function f : X → R which is Lipschitz on X, a Lipschitz extension is
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given by

f(x) := inf
y∈X

(f(y) + Lip(f)∥x− y∥∞)

where Lip(f) is a Lipschitz constant of f on X. For a vector-valued function f ,

this extension is applied to each component. However, in practice, one can employ

a simpler way. For example, αi(zi) is replaced by

αi(zi) = αi(sat(zi,Mz,i)) (5.2.5)

where sat is the component-wise saturation function, i.e., for zi ∈ Rνi ,

sat(zi,M) :=


sat(zi,1,M)

...

sat(zi,νi ,M)

 ∈ Rνi ,

where, for zi,j ∈ R,

sat(zi,j,M) :=


M, zi,j > M,

zi,j, |zi,j| ≤M,

−M, zi,j < −M.

See [73, Section 3.3] for more details. ♢

5.2.2 Design of High Gain Observer

For each i ∈ [p], a high gain observer only for the observable subsystem (5.2.3)

is constructed by

˙̂zi =


˙̂zi,1
˙̂zi,2
...
˙̂zi,νi

 =


ẑi,2
...

ẑi,νi

αi(ẑi)

+


βi,1(ẑi,1)

βi,2(ẑi,1, ẑi,2)
...

βi,νi(ẑi,1, · · · , ẑi,νi)

u+ P−1
i C⊤

i (ȳi − Ciẑi) (5.2.6)

where ẑi is the state estimate of zi, the matrix Ci has the form of

Ci :=
[
1 0 · · · 0

]
∈ R1×νi ,
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and Pi = Pi(θi) ∈ Rνi×νi is the unique positive definite solution of

0 = −θiPi −AT
i Pi − PiAi + CT

i Ci. (5.2.7)

In (5.2.7), θi is a constant to be determined, and the matrix Ai is given by

Ai :=



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0


∈ Rνi×νi .

We suppose the initial condition ẑi(0) of the high gain observer (5.2.6) is set such

that ∥ẑi(0)∥∞ ≤ Mz,i. Finally, the parameter θi is determined by the following

lemma. In practice, θi is often taken by a sufficiently large number from simula-

tions.

Lemma 5.2.1. [24, Theorem 3], [73, Lemma 3.2.2] Consider the system (5.2.3)

where the functions αi and βi,j are globally Lipschitz and the attack signal ai is

identically zero, i.e., ai ≡ 0. Let the observer be given by (5.2.6). Then, there

exists a positive constant θ∗i ≥ 1 such that, for any θi ≥ θ∗i , the observer (5.2.6)

guarantees

∥ẑi(t)− zi(t)∥∞ ≤ ηi(θi)e−
θi
4
t∥ẑi(0)− zi(0)∥∞. (5.2.8)

for t ≥ 0 with some function ηi(θi). Moreover, for a fixed time τ > 0,

ηi(θi)e
− θi

4
τ → 0 as θi →∞. ♢

5.3 Redundant Observability for Uniformly Observable

Nonlinear Systems

Recall that we have appended additional n − νi zeros to the observable sub-

state zi in (4.2.8) so that the size of those sub-states from different sensors matches

each other. We follow the same procedure for nonlinear systems, too. That is,
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additional zeros are augmented to (5.2.4) so that it becomes n dimensional, which

is written by

zni :=

[
zi

0(n−νi)×1

]
=

[
Φi(x)

0(n−νi)×1

]
=: Φ′

i(x) ∈ Rn. (5.3.1)

It is also supposed that additional zero elements are also appended to ẑi’s of the

high gain observer (5.2.6) just like (5.3.1). Now, let us collect all zi’s for i ∈ [p]

and stack them at once by

z :=


zn1
...

znp

 =


Φ′
1(x)
...

Φ′
p(x)

 =: Φ(x) ∈ Rnp, (5.3.2)

which is defined on X. The estimates ẑi’s obtained from (5.2.6) for all i ∈ [p], are

also collected and form a stacked vector of

ẑ :=


ẑn1
...

ẑnp

 ∈ Rnp (5.3.3)

where ẑni is augmented with additional zeros to ẑi. Note that the state estimate

ẑ converges to the real state z by Lemma 5.2.1 when there is no attack. In order

to recover the state x from the collection of estimates ẑ, the function Φ : X →
Φ(X) ⊂ Rnp should have injectivity so that it has a left inverse Φ−1, defined at

least on its image Φ(X). Furthermore, let the estimate of x be the left inverse of ẑ

if ẑ = z. On top of injectivity, we require the mapping Φ be an immersion in order

to ensure bi-Lipschitzness (which will be used later) on the domain X. Asking Φ

to be an injective immersion is in fact an extension of linear case since Jacobian of

Φ corresponds to the observability matrix, which has full column rank. Moreover,

since up to q estimates among all ẑi’s might be compromised, we require some

redundancy in the map Φ that the map remains as an injective immersion even

if any q components Φ′
i are eliminated from Φ. The following definition precisely

states this requirement and it coincides with the strong error detectability of Φ



114 Chap. 5. Attack-Resilient State Estimation for Nonlinear Systems

in Proposition 5.1.4.

Definition 5.3.1. The dynamical system (5.1.1) is said to be q-redundant ob-

servable if, for the mapping Φ : X → Rnp in (5.3.2), the function Φπ
Λn : X → Rn|Λ|

is an injective immersion for any Λ ⊂ [p] satisfying |Λ| ≥ p− q. ♢

In Definition 5.3.1, the function Φπ
Λn denotes the canonical projection of the

function Φ by eliminating all Φ′
i’s such that i ∈ Λc. In term of the definition

above, 0-redundant observability can be regarded as conventional observability

of the system (5.1.1). More specifically, the system (5.1.1) is said to be strongly

differentially observable if the mapping Φ is an injective immersion [23, Definition

I.2.4.2].

Now, it is noted that, although q-redundant observability of (5.1.1) guarantees

existence of a left inverse (Φπ
Λn)

−1 of Φπ
Λn where Λ ⊂ [p] satisfying |Λ| ≥ p − q,

the inverse (Φπ
Λn)

−1 is defined only on the image Φπ
Λn(X). While it is true that

zπΛn(t) ∈ Φπ
Λn(X) ⊂ Rn|Λ|, there is no guarantee that the estimate ẑπΛn(t), that

converges to zπΛn(t), belongs to Φπ
Λn(X). In order to use the left inverse of Φπ

Λn on

the whole space Rn|Λ|, let us define the Lipschitz-extended left inverse of Φπ
Λn as

ΨΛ : Rn|Λ| → X

zΛ 7→ sat
(
(Φπ

Λn)−1(zΛ), Mx

) (5.3.4)

in which, (Φπ
Λn)−1 is a Lipschitz extension of (Φπ

Λn)−1 from Φπ
Λn(X) to Rn|Λ| (please

refer to Remark 5.2.3), and the saturation function is employed in order to map

the image of (Φπ
Λn)−1 into the set X. Indeed, this function ΨΛ is globally Lipschitz

on Rn|Λ| because Φπ
Λn is bi-Lipschitz on X by Lemma 5.1.1, and so, a left inverse

of Φπ
Λn exists on Φπ

Λn(X) which is Lipschitz on Φπ
Λn(X). It is then extended to

be globally Lipschitz on Rn|Λ|, and the saturation function in the end preserves

Lipschitz property. With the global Lipschitz inverse function ΨΛ at hand, let

the estimate of x(t) be

x̂Λ(t) := ΨΛ(ẑπΛn(t)) ∈ X.

Remark 5.3.1. For simple construction of Lipschitz extension (Φπ
Λn)−1 in prac-

tice, one may want to employ a method using saturation functions as in (5.2.5).
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Let Mz := max
i∈[p]

Mz,i, and ZΛ := {zΛ ∈ Rn|Λ| : ∥zΛ∥∞ ≤ Mz} which contains

Φ(X) by construction. If there is a smooth function Φ′
Λn
−1 defined on ZΛ such

that Φ′
Λn
−1(zΛ) = (Φπ

Λn)−1(zΛ) for all zΛ ∈ Φ(X), then a Lipschitz extension

(Φπ
Λn)−1 is easily obtained by

(Φπ
Λn)−1(zΛ) = Φ′

Λn
−1

(sat(zΛ, Mz))). (5.3.5)

♢

Suppose that system (5.1.1) is q-redundant observable. Since up to q sensors

are compromised, there is at least one index set Λ∗ ⊂ [p] with |Λ∗| = p− q such

that Λ∗ ⊂ (supp(a(t)))c for all t ≥ 0. In this case, we have

∥x̂Λ∗
(t)− x(t)∥∞ = ∥ΨΛ∗

(ẑπΛ∗n(t))−ΨΛ∗
(zπΛ∗n(t))∥∞

≤ Lip(ΨΛ∗
)max
i∈Λ∗

{
2Mz,iηi(θi)e

− θi
4
t
}

which follows from Lemma 5.2.1, and thus, x(t) is asymptotically recovered by

x̂Λ
∗
(t). However, since the set Λ∗ is not known, let us discuss how to find Λ∗ such

that Λ∗ ⊂ (supp(a(t)))c for all t ≥ 0, in the subsequent sections.

5.4 Attack Detection and Resilient State Estimation for

Uniformly Observable Nonlinear Systems

5.4.1 Detection of Sensor Attacks

The state estimation error defined by z̃(t) := ẑ(t)− z(t) satisfies

z̃(t) = ẑ(t)− Φ(x(t)) = v(t) + e(t) ∈ Rnp (5.4.1)

where the vector v is the transient estimation error caused by the high gain

observers and the vector e represents the error caused by injected sensor attack.

The situation of (5.4.1) is similar to that of (4.3.4) and (4.3.12) for linear systems.

If there is no attack, we have e(t) ≡ 0 and vi(t) = ẑi(t)−Φi(x(t)) ∈ Rνi converges

to zero as in (5.2.8) of Lemma 5.2.1 for all i ∈ [p]. Under the q-sparsity assumption
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on a (i.e., Assumption 5.1.1), with the unknown attack-free index set

Λ :=
{
i ∈ [p] : ai(t) = 0, ∀t ≥ 0

}
,

it follows that eΛn(t) ≡ 0, and thus, the vector z̃Λn(t) = ẑΛn(t)−ΦΛn(x(t)) = vΛn(t)

goes to zero. On the other hand, the vector e([p]\Λ)n(t) may not be zero and the

estimation error z̃([p]\Λ)n(t) = ẑ([p]\Λ)n(t) − z([p]\Λ)n(t) = v([p]\Λ)n(t) + e([p]\Λ)n(t)

may not converge to zero. Finally, we can conclude that

∥v(t)∥∞ ≤ vmax(t) := max
i∈[p]

{
2Mz,iηi(θi)e

− θi
4
t
}
,

∥e(t)∥0n ≤ q,

(5.4.2)

by Lemma 5.2.1 and Assumption 5.1.1. As t increases, vmax(t) converges to zero.

Now, we present a detection mechanism for “influential” attacks. For this end,

note that idX denotes the identity function on the set X and let

κn,d|Λ|,q(Φ
π
Λn) :=

Lip(idRn|Λ| − Φπ
Λn ◦ΨΛ) + 1

min
{
Lip(Φπ

Λ̄n) : Λ̄ ⊂ Λ, |Λ̄| = |Λ| − q
} ,

κn,e|Λ|,q(Φ
π
Λn) :=

(
Lip(idRn|Λ|−Φπ

Λn◦ΨΛ) + 1
)1+ Lip(Φπ

Λn)

min
{
Lip(Φπ

Λ̄n) : Λ̄⊂Λ, |Λ̄|= |Λ|−q
}
.

The following theorem can be seen as a nonlinear counterpart of Theorem 2.2.9.

Theorem 5.4.1. Under Assumptions 5.1.1 and 5.2.1, suppose that the system

(5.1.1) is 2q-redundant observable. For a given Λ ⊂ [p] with |Λ| = p − q, let

x̂Λ(t) := ΨΛ(ẑπΛn(t)) and rΛ(t) := ẑπΛn(t)− Φπ
Λn(x̂Λ(t)). Then, it holds that

(i) eπΛn(t) ̸= 0, if

∥∥rΛ(t)∥∥∞ =
∥∥ẑπΛn(t)− Φπ

Λn(x̂Λ(t))
∥∥
∞ > Lip

(
idRn(p−q) − Φπ

Λn ◦ΨΛ
)
vmax(t),

(5.4.3)

(ii) ∥eπΛn(t)∥∞ ≤ κn,e|Λ|,q(Φ
π
Λn)vmax(t), if

∥∥rΛ(t)∥∥∞ =
∥∥ẑπΛn(t)− Φπ

Λn(x̂Λ(t))
∥∥
∞ ≤ Lip

(
idRn(p−q) − Φπ

Λn ◦ΨΛ
)
vmax(t).
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In the case of (ii), ∥x̂Λ(t)− x(t)∥∞ ≤ κn,d|Λ|,q(Φ
π
Λn)vmax(t). ♢

Proof. (i): It follows that

∥ẑπΛn − Φπ
Λn(ΨΛ(ẑπΛn))∥∞

= ∥ẑπΛn − Φπ
Λn(ΨΛ(ẑπΛn))− (Φπ

Λn(x)− Φπ
Λn(ΨΛ(Φπ

Λn(x))))∥∞

= ∥(idRn(p−q) − Φπ
Λn ◦ΨΛ)(ẑπΛn)− (idRn(p−q) − Φπ

Λn ◦ΨΛ)(Φπ
Λn(x))∥∞

≤ Lip(idRn(p−q) − Φπ
Λn ◦ΨΛ)∥ẑπΛn − Φπ

Λn(x)∥∞

= Lip(idRn(p−q) − Φπ
Λn ◦ΨΛ)∥vπΛn + eπΛn∥∞.

Hence, if eπΛn(t) = 0, then

∥ẑπΛn − Φπ
Λn(ΨΛ(ẑπΛn))∥∞ ≤ Lip(idRn(p−q) − Φπ

Λn ◦ΨΛ)∥vπΛn(t)∥∞

≤ Lip(idRn(p−q) − Φπ
Λn ◦ΨΛ)vmax(t).

This proves the claim.

(ii): Since eπΛn is (n-stacked) q-sparse, i.e., ∥eπΛn∥0n ≤ q where |Λ| = p − q, there

is an index set Λ̄ ⊂ Λ such that |Λ̄| = p− 2q and eπ
Λ̄n = 0. Then, it follows from

(5.4.1) that ẑπ
Λ̄n = Φπ

Λ̄n(x) + vπ
Λ̄n and we have

∥ẑπΛn − Φπ
Λn(ΨΛ(ẑπΛn))∥∞ ≥ ∥ẑπΛ̄n − Φπ

Λ̄n(Ψ
Λ(ẑπΛn))∥∞

= ∥Φπ
Λ̄n(x) + vπΛ̄n − Φπ

Λ̄n(x̂
Λ)∥∞

≥ Lip(Φπ
Λ̄n)∥x− x̂Λ∥∞ − ∥vπΛ̄n∥∞

≥ Lip(Φπ
Λ̄n)∥x− x̂Λ∥∞ − vmax.

Therefore, from the assumption, we obtain

Lip(idRn(p−q) − Φπ
Λn ◦ΨΛ)vmax ≥ Lip(Φπ

Λ̄n)∥x̂Λ − x∥∞ − vmax.

From 2q-redundant observability, it follows that Lip(Φπ
Λ̄n) > 0 for any Λ̄ such that

|Λ̄| = p− 2q since Φπ
Λ̄n is bi-Lipschitz on X by Lemma 5.1.1. Therefore, we have

∥x̂Λ − x∥∞ ≤
Lip(idRn(p−q) − Φπ

Λn ◦ΨΛ) + 1

Lip(Φπ
Λ̄n)

vmax.
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On the other hand, it is also easily obtained that

Lip(idRn(p−q) − Φπ
Λn ◦ΨΛ)vmax ≥ ∥ẑπΛn − Φπ

Λn(ΨΛ(ẑπΛn))∥∞

= ∥Φπ
Λn(x) + vπΛn + eπΛn − Φπ

Λn(ΨΛ(ẑπΛn))∥∞

≥ −∥Φπ
Λn(x)− Φπ

Λn(x̂Λ)∥∞ − vmax + ∥eπΛn∥∞

≥ −Lip(Φπ
Λn)∥x− x̂Λ∥∞ − vmax + ∥eπΛn∥∞.

Hence,

∥eπΛn∥∞ ≤
(
Lip(idRn(p−q) − Φπ

Λn ◦ΨΛ) + 1
)(

1 +
Lip(Φπ

Λn)

Lip(Φπ
Λ̄n)

)
vmax.

This completes the proof.

If Λ in Theorem 5.4.1 is replaced by [p] and the condition |Λ̄| = p− 2q in the

proof is replaced by the condition |Λ̄| = p− q, we can easily derive the following

corollary.

Corollary 5.4.2. Under Assumptions 5.1.1 and 5.2.1, suppose that the system

(5.1.1) is q-redundant observable. Let x̂(t) := Ψ(ẑ(t)) and r(t) := ẑ(t)−Φ(x̂(t)).

Then, it holds that

(i) e(t) ̸= 0, if

∥r(t)∥∞ = ∥ẑ(t)− Φ(x̂(t))∥∞ > Lip(idRnp − Φ ◦Ψ)vmax(t), (5.4.4)

(ii) ∥e(t)∥∞ ≤ κn,ep,q(Φ)vmax(t), if

∥r(t)∥∞ = ∥ẑ(t)− Φ(x̂(t))∥∞ ≤ Lip(idRnp − Φ ◦Ψ)vmax(t).

In the case of (ii), ∥x̂(t)− x(t)∥∞ ≤ κn,dp,q(Φ)vmax(t). ♢

Inequality (5.4.4) is the key to the detection of sensor attack. It is noted that

both sides of (5.4.4) can be readily evaluated since all the quantities are available

at all time t ≥ 0. By checking (5.4.4), one can detect sensor attack. Of course,

violation of (5.4.4) does not necessarily imply no sensor attack. However, even

when there is an attack, its effect on the state estimation is limited as seen in
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the theorem since vmax(t) converges to zero as t increases by (5.4.2). This case

happens when the size of error e is so small that the distinction between the

transient error v and the error e caused by attack is not possible.

Remark 5.4.1. Since vmax(t) tends to zero as time goes to infinity by (5.4.2), one

may want to replace vmax(t) in Theorem 5.4.1 and Corollary 5.4.2 with v̄max(t) :=

max{vmax(t), δ} where δ is a small positive constant. This is because there is

measurement noise in practice and one does not want the detection by (5.4.3) or

(5.4.4) to be corrupted by noise when t is large so that vmax(t) is very small. The

value of δ is chosen such that the effect of the measurement noise on estimation

error is less than δ. ♢

5.4.2 Attack-Resilient State Estimation

Note that Theorem 5.4.1 explains the detection of sensor attack for a given

subset Λ ⊂ [p], while Corollary 5.4.2 detects for the whole set [p]. Thus, the

same discussion on (5.4.4) also applies to (5.4.3). When (5.4.3) is violated, we

suppose that there is no influential attack on ȳi for i ∈ Λ, and the state estimates

ẑi for i ∈ Λ are trustful. By repeating (5.4.3) with all subsets Λ ⊂ [p] satisfying

|Λ| = p − q, one can always find trustful set of sensors since at most q sensors

are compromised. This is the main idea of the resilient state estimation scheme

presented in this section.

In practice where the proposed estimator is implemented in a digital computer,

the inequality (5.4.3) for attack detection is checked at every sampling instant.

Hence, one idea to estimate the state x(t) under q-sparse sensor attack is to

prepare all different
( p
p−q

)
index sets Λ ⊂ [p] such that |Λ| = p−q, and test (5.4.3)

for all of them during each sampling period. Then, one can always find at least

one index set Λ∗ that violates (5.4.3), which implies that there is no influential

attack on ȳi for i ∈ Λ∗. Therefore, the true state x(t) is estimated by x̂(t) =

ΨΛ∗
(ẑπΛ∗n(t)) with the estimation error discussed in Theorem 5.4.1. However, in

order to monitor any changes of influential attacks, one should keep testing (5.4.3)

at every sampling instant with all index sets Λ ⊂ [p] satisfying |Λ| = p− q, which

is computationally heavy. This burden may be relieved by introducing a simple
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switching algorithm as in the following theorem with a proportional constant

κn,cp,q(Φ) :=
max

{
Lip
(
idRn(p−q) − Φπ

Λn ◦ΨΛ
)
: |Λ| = p− q

}
+ 1

min
{
Lip(Φπ

Λ̄n) : |Λ̄| = p− 2q
} .

Theorem 5.4.3. Under Assumptions 5.1.1 and 5.2.1, suppose that system (5.1.1)

is 2q-redundant observable. Define the index sets Λi ⊂ [p] for i = 1, 2, · · · ,
(p
q

)
such that {

Λ1,Λ2, · · · ,Λ(pq)
}

is the same as the set {Λ ⊂ [p] : |Λ| = p− q}. Let x̂Λi(t) := ΨΛi(ẑπΛn
i
(t)) and

rΛi(t) := ẑπΛn
i
(t) − Φπ

Λn
i
(x̂Λi(t)). Consider a switching signal σ(t) generated from

σ(0) = 1 by the update rule

σ(t+)←
(
σ(t) mod

(
p

p− q

))
+ 1

whenever

∥rΛσ(t)(t)∥∞ > Lip
(
idRn(p−q) − Φπ

Λn
σ(t)
◦ΨΛσ(t)

)
vmax(t). (5.4.5)

Then, the state estimate for x(t) is given by

x̂(t) = x̂Λσ(t)(t)

which has the property

∥x̂(t)− x(t)∥∞ ≤ κn,cp,q(Φ)vmax(t)

for all t ≥ 0 except at the switching times of σ(t). ♢

Proof. According to Assumption 5.1.1, the signal e(t) is q-sparse for all t and

there exists a natural number m ≤
( p
p−q

)
such that eΛm(t) is identically zero. It

implies that the inequality

∥rΛm(t)∥∞ ≤ Lip(idRn(p−q) − Φπ
Λn
m
◦ΨΛm)vmax(t)
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holds for every t ≥ 0. Therefore, according to the update rule of σ, there will

be at most
( p
p−q

)
− 1 times of consecutive switching of σ(t) at the same time

t until (5.4.5) is violated. (Note that σ does not necessarily become the same

as m.) Then, the proof is completed from the upper bound of the estimation

error in Theorem 5.4.1, by considering that the set Λ ⊂ [p] with |Λ| = p − q is

arbitrary.

Update of the switching signal σ in Theorem 5.4.3 is understood as follows.

Whenever the value of σ(t) is updated at time t, the condition (5.4.5) is checked

again at the same time t with the updated σ(t+) until the inequality is violated

(i.e., consecutive update can occur). This repeated update does not occur in-

finitely as shown in the proof. In practice, since the estimator is implemented

by digital computer, a few sampling delay will occur by the consecutive updates

and, during this delay, the state estimation is corrupted, which can be seen in the

simulation results in the next section.

5.5 Simulation Results: Numerical Example

We consider a numerical example of the system (5.1.1) given as

ẋ =


ẋ1

ẋ2

ẋ3

 =


−2x1 − x32
−x2

−x2 cosx2 + sinx2 − x3

+


1 + 3x22

1

cosx2

u =: f(x) + g(x)u

ȳ =


ȳ1

ȳ2

ȳ3

ȳ4

 =


x1 + x2 − x32 − sinx2 + x3

x1 + sinx2 − x32 − x3
−x1 + x32 + x2

−x2 − sinx2 + x3

+


a1

a2

a3

a4

 =: h(x) + a

where u(t) = 0.25 sin(0.2πt)−0.1, for which it is verified that the state x remains

in X = {x ∈ R3 : ∥x∥∞ ≤ 0.5} with sufficiently small initial conditions. To make

the situation more realistic, on top of the attack signal ai, a Gaussian distributed

noise ni of zero mean with the power spectral density of 10−8 is additionally

introduced to corrupt the sensor measurement ȳi. For this system, the function
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Table 5.1: Left inverse functions of ΦΛi
, i = 1, 2, 3, 4

Λ1 = {2, 3, 4}
Φ−1

{2,3,4} : R5 → R3

 z3,1 + z3,2 + (2z3,1 + z3,2)
3

2z3,1 + z3,2

−2z2,1 − z2,2 + sin(2z3,1 + z3,2)


Λ2 = {1, 3, 4}

Φ−1
{1,3,4} : R5 → R3

 −z1,1 − z1,2 + (2z3,1 + z3,2)
3

2z3,1 + z3,2
1
2 (2z1,1 + z1,2 + z4,1) + sin(2z3,1 + z3,2)


Λ3 = {1, 2, 4}

Φ−1
{1,2,4} : R5 → R3

 −z1,1 − z1,2 + (−2z2,1 − z2,2 − z4,1)3

−2z2,1 − z2,2 − z4,1
−2z2,1 − z2,2 + sin(−2z2,1 − z2,2 − z4,1)


Λ4 = {1, 2, 3}

Φ−1
{1,2,3} : R6 → R3

 −z1,1 − z1.2 + (2z3,1 + z3,2)
3

2z3,1 + z3,2

−2z2,1 − z2,2 + sin(2z3,1 + z3,2)



Φ : X → R7 in (5.2.4) and (5.3.2) is computed by

Φ(x) =


Φ1(x)

Φ2(x)

Φ3(x)

Φ4(x)

=



h1(x)

Lfh1(x)

h2(x)

Lfh2(x)

h3(x)

Lfh3(x)

h4(x)


=



x1 + x2 − x32 − sinx2 + x3

−2x1+sinx2−x2+2x32−x3
x1 + sinx2 − x32 − x3
−2x1 − sinx2 + 2x32 + x3

−x1 + x32 + x2

2x1 − x2 − 2x32

−x2 − sinx2 + x3


=:



z1,1

z1,2

z2,1

z2,2

z3,1

z3,2

z4,1


=: z

where additional zeros in (5.3.1) are excluded for simplicity. Accordingly, the

notation in this simulation section is slightly abused by eliminating the additional

zeros. It can be seen that each Φi transforms the system into uniformly observable

subsystem with respect to ȳi, and the stack of all observable parts z remains in

the set Z := {z ∈ R7 : ∥z∥∞ ≤ 2}. One can also ensure that the above system is

2-redundant observable by verifying that ΦΛ̄n is an injective immersion for every

|Λ̄| = 2.

Since the system is 2-redundant observable, resilient state estimation is pos-

sible under up to 1-sparse attack. Therefore, let us suppose an attack scenario
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depicted in Fig. 5.1. A square wave a2 is injected to the second sensor at t = 4sec.

Partial observers for individual uniformly observable subsystems are designed with

θi = 16 for i ∈ [4], which yields vmax(t) = 168e−4t. For the recovery of state x, we

choose four left inverse functions Φ−1
Λi

for each i = 1, · · · , 4, where Λi = [4]− {i},
as in Table 5.1. With these functions, as in (5.3.4) and (5.3.5), Lipschitz-extended

left inverse of ΦΛi
is obtained by

ΨΛi : RNi → X

zΛi 7→ sat(Φ−1
Λi

(sat(zΛi , 2)), 0.5)

for each i, where zΛi is a stacked vector of zj,k’s for all j ∈ Λi and Ni is the

dimension of zΛi . It is noted that the Lipschitz constant of ΨΛi on RNi is less than

or equal to the Lipschitz constant of Φ−1
Λi

on ZΛi = {zΛi ∈ RNi : ∥zΛi∥∞ ≤ 2}
due to the two saturation functions, and the Lipschitz constant of Φ is greater

than or equal to the Lipschitz constant of ΦΛi
. Hence, for simplicity, we take a

conservative bound for the right hand side of the condition (5.4.5) as

Lip
(
idRNσ − ΦΛσ ◦ΨΛσ

)
≤ 1 + Lip(Φ)×max

i∈[4]

{
Lip(Φ−1

Λi
|ZΛi )

}
≤ 1 + 7× 770.

By this simplification, the upper bound of the estimation error in Theorem 5.4.3 is

increased, but it will be seen in the simulations that this does not sacrifice much

after a sufficiently long time because the exponential term in vmax dominantly

converges to zero. For the simulation, v̄max(t) is used instead of vmax(t) with

δ = 0.05 due to the presence of measurement noise (see Remark 5.4.1).

An attack signal is illustrated in Fig. 5.1, which depicts that adversaries inject

the attack at t = 4sec so that the second sensor is compromised. Therefore, the

switching signal σ(t) jumps from 1 to 2 at t = 4sec, that is, it changes the selected

index set from Λ1 = {1, 2, 3} to Λ2 = {1, 3, 4} immediately after the attack is

detected. As a result, Figures 5.2, 5.3, and 5.4 show state trajectories x1(t),

x2(t), x3(t), and their estimates. They demonstrate the attack-resilient property

of our estimation algorithm. For a short period of time after the adversaries start

to attack, the state estimates have sharp peak by the attack vector, but it is

restored soon by the proposed observation scheme.
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Figure 5.1: Plot of attack a2(t).
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Figure 5.2: Plot of state x1(t) and its estimate x̂1(t).
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Figure 5.3: Plot of state x2(t) and its estimate x̂2(t).
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Figure 5.4: Plot of state x3(t) and its estimate x̂3(t).



Chapter 6

Conclusion

This chapter summarizes the main results of this dissertation that have been

addressed so far, and provides the future issues.

6.1 Summary

This dissertation is concerned with security of control systems under sensor

attacks. Specifically, for linear systems, the notion of redundant detectability (or,

asymptotic redundant observability) is introduced that explains in a unified man-

ner existing security notions such as dynamic security index, attack detectability,

and observability under attacks when only disruptive sensor attacks are taken into

account. Indeed, equivalent conditions between the redundant detectability and

the existing security related notions are derived and presented. Then, by utilizing

a bank of partial observers based on Kalman detectability decomposition and a

decoder exploiting the redundant detectability, a practical and efficient estimator

design algorithm is proposed to enhance the resilience of control systems in the

presence of sensor attacks as well as process disturbances and measurement noises.

The main assumption on the attack signal is q-sparsity while both of bounded

and Gaussian distributed disturbances/noises are considered: A Luenberger ob-

server is used for the bounded case; A Kalman filter is designed for the Gaussian

distributed case. The proposed state estimation scheme substantially improves

computational efficiency with much less required memory compared to those of

the existing results. In addition, the linear resilient state estimation algorithm

125
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is also generalized for a class of nonlinear systems called uniformly observable

nonlinear systems. Partial observers are designed by a high gain observer and a

nonlinear error correcting problem is solved.

A theoretical analysis to examine the security problems on CPSs under sen-

sor attacks, is conducted in Chapter 3. It has been shown that the measurement

redundancy for the left invertibility of the observability matrix determines the

redundant observability of a given LTI system. Furthermore, the redundant de-

tectability, which is a weaker notion than the redundant observability, is intro-

duced and it is closely related to the security problems of control systems under

disruptive sensor attacks, i.e., when the attack signal which does not converge to

zero, is considered, the redundant detectability plays a key role in security related

problems. To summarize, 2q-redundant detectability implies that the numbers of

detectable and correctable sensor attacks are 2q and q, respectively. In addition,

the dynamic security index, the minimum number of sensor attacks to remain un-

detectable, is 2q+1 and a simple method to compute the index utilizing unstable

eigenvectors only, is also suggested.

In Chapter 4, assuming that the measurement data injection attack is q-sparse

and the disturbances/noises are bounded (or, Gaussian distributed), an attack-

resilient and robust (or, suboptimal) state estimation scheme based on a bank

of partial observers has been proposed under 2q-redundant detectability. By re-

ducing the search space to a finite set in the optimization process and combining

the attack monitoring mechanism to the error correction algorithm, we can miti-

gate the NP-hardness of ℓ0 minimization problem in terms of time computational

complexity. Furthermore, with the help of the Kalman detectability decomposi-

tion used to construct the partial observers, the proposed estimator is scalable

in terms of memory space complexity. For bounded disturbances/noises, a Lu-

enburger observer is designed for the partial observer, and the estimation error

bound is explicitly given by the bounds on disturbances/noises, which guarantees

the robustness of the proposed estimator. Lastly, the estimator equipped with the

Kalman filter based information fusion scheme, identifies the attack-free sensors

based-on the maximum likelihood decision rule and computes the minimum vari-

ance unbiased estimator so that the final estimate turns out to be suboptimal.
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In Chapter 5, we have proposed a solution to the resilient state estimation

problem for uniformly observable nonlinear systems with redundant sensors. A

switching algorithm that makes use of the detection algorithm of sensor attacks, is

designed to search for a combination of uncompromised sensors successfully and to

generate correct estimates which are insensitive to sparse malicious attacks. The

uniform observability decomposition which is an analogous concept of Kalman

observability decomposition for linear systems, is utilized to design a high gain

observer for each single output and it estimates the observable portion of system

state. Then, a nonlinear error correcting problem is solved by collecting all the

information from those partial observers and by exploiting redundancy. Finally,

a computationally efficient on-line monitoring scheme is presented for attack de-

tection, and an algorithm for resilient state estimation is provided based on the

attack detection scheme.

6.2 Future Works

One of the key future research related to the study of this dissertation is

to develop a distributed attack-resilient estimator. Due to the universal use of

sensor networks, there is an increasing need to estimate the state of dynamical

systems through geographically dispersed sensors. Distributed estimation is to

estimate the state of dynamical systems via information exchange with its neigh-

bors [34,38,52,61,65]. Each sensor node assumes no information about the global

structure and measurement data, but can access its own measurements and lo-

cal information through its neighbors. Assuming that there is no centralized de-

vice to monitor the measurement data of all sensors, a distributed state estima-

tion scheme needs to be developed when some of sensors are corrupted by adver-

saries. Related results include [85] and [66], but they assume that all nodes re-

quire some global information, such as complete knowledge of the network topol-

ogy. One of the main assumptions of the centralized resilient estimation algo-

rithm is redundancy of measurements called 2q-redundant observability. The re-

dundancy concept extends to the notion of network robustness for arbitrary di-

rected graphs [41,99,100]. That is, network robustness is a fundamental property
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Figure 6.1: Configuration of the distributed sensor network and attack sce-
nario.

for formulating the redundancy concept of direct information exchange between

nodes in a network and for analyzing the behavior of distributed algorithms that

use only local information.

The configuration of the distributed state estimation problem is depicted in

Fig. 6.1. Note that sensor nodes labeled si’s, which measure the sensing outputs

yi’s, are geographically dispersed and connected to nearby nodes through network

communication characterized by the graph G = (V ,E) where V = [p]. In addition

to sensing, these sensor nodes are equipped with computing devices that can

implement data fusion protocols. In this situation, an iterative algorithm based

on robust graphs which updates the state estimate and the unobservable subspace

at each time step relying solely on information obtained from neighbors, needs to

be developed and it is an interesting research direction.
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국문초록

외부 공격으로부터 자율 복원 가능한 제어 시스템 :
센서 공격에 안전한 상태 추정 기법

Attack-Resilient Feedback Control Systems:
Secure State Estimation under Sensor Attacks

최근 컴퓨터와 네트워크 통신을 통해서 실제 시스템을 관리 및 운용하고 제어

하게 되면서, 외부로부터의 악의적인 공격이 보다 쉽게 제어 시스템에 접근할 수

있게 되었다. 이런 외부와의 연결에서 기인한 제어 시스템의 공격은 국가 기반

시설을 파괴하거나 심지어 사람의 생명을 앗아갈 수도 있으며, 이는 기존의 제어

공학에서는 고려하지 않았던 새로운 형태의 문제이다. 이에 본 논문에서는 외부로

부터 공격이 가해지더라도, 시스템이 자율적으로 복원하여 정상 동작할 수 있도록

하는제어기법을고안하고,이를제어이론적관점에서고찰한다. 특히,제어시스

템의 일부 센서에 외부 공격으로부터 악의적인 입력이 가해지는 상황에서 시스템

의 상태 변수를 잘 추정하는 관측기를 설계하는 방법을 제안한다. 먼저 이론적 분

석을 진행하며, 여기서의 핵심은 중복 관측 가능성 (redundant observability)이란

개념이다. 시불변 선형 시스템에서 임의의 q개 센서를 제외하더라도 여전히 상태

변수를 추정할 수 있으면, 그 시스템이 q 중복 관측 가능하다고 한다. 이러한 중복

관측 가능성의 개념은 센서 공격에 노출된 제어 시스템의 안전과 관계된 많은 문

제를한번에설명할수있다. 즉, q중복관측가능한시스템은,어떤 q개의센서가

공격받더라도, 이를검출할수있으며, ⌊q/2⌋개의센서가공격받는다면, 어떤센서

가 공격받았는지 정확하게 확인할 수 있다. 시스템에 들키지 않고 (undetectable)

주입할 수 있는 최소한의 센서 공격의 개수를 동적 안전 지표 (dynamic security

index)라 정의할 수 있으며, 이 경우 동적 안전 지표는 q + 1이 된다. 또한 중복

관측 가능성은 점근 중복 관측 가능성 (asymptotic redundant observability)의 개

념으로확장될수있는데,이는시간이지남에따라 0에수렴하는신호는 0과같이

취급하게 되어, 실질적으로 0에 수렴하지 않는 공격 신호에만 관심을 갖고 다루게

된다. 즉,시스템을파괴할수있는영향력을지닌공격신호만검출하고,확인하기

때문에 조금 더 실용적인 개념이라 할 수 있다. 그 다음으로, 센서 공격에도 자율
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복원 가능한 관측기 설계 기법을 제안한다. 제안된 관측기는, 칼만 점근 관측 가

능성 분해 (Kalman detectability decomposition)를 활용하여 각각 개별 센서에서

점근 관측 가능 부분 상태 변수 (detectable sub-state)를 추정하는 부분 관측기와,

모든부분관측기로부터정보를취합하여중복성 (redundancy)에기반한오류정정

문제를풀어서전체상태변수를복원하는해독기로구성된다. 희박성 (sparsity)을

지닌 센서 공격 신호 외에, 유한한 (bounded) 외란과 잡음이 들어오는 경우, 부분

관측기는 루엔버거 관측기 (Luenberger observer)로 구성되며, 이는 외란에 대한

강인성 (robustness)을 보장하고, 정규 분포를 갖는 외란과 잡음이 들어오는 경우

에는, 부분 관측기를 칼만 필터 (Kalman filter)로 설계하여, 오차의 분산을 최소화

할 수 있다. 본 논문에서 제시된 상태 추정 알고리즘은 최적화 문제를 유한 집합에

서 계산하고 최적화 문제에 검출 기법을 함께 적용하여 기존의 결과에 비해 시간

복잡도 (time complexity)를낮춰서계산시간을줄일수있었으며,칼만점근관측

가능성 분해를 활용한 부분 관측기 설계를 통해 공간 복잡도 (space complexity)를

센서 개수에 대한 선형으로 획기적으로 줄여서 메모리 공간을 절약하였다. 또한,

선형 시스템에 대해 개발된 중복 관측 가능성의 개념과 자율 복원 상태 추정 기법

을 제어 입력 값에 의존하지 않는 균등 관측 가능 (uniformly observable) 비선형

시스템으로확장한다. 선형시스템의칼만관측가능성분해에대응하는균등관측

가능성 분해 (uniform observability decomposition)를 활용하여, 비선형 시스템의

개별 센서에 대해 관측 가능 부분 상태 변수 (observable sub-state)를 추정하는 부

분관측기를고이득관측기 (high gain observer)로구성하고, 해독기는이것들로부

터 모은 정보를 활용하여 중복성에 기반한 비선형 오류 정정 문제를 풀어서 상태

변수를 추정한다. 이를 위하여, 공격 검출 기법을 활용해서 센서들의 부분 집합 중

에서 공격이 검출되지 않는 부분 집합을 찾고, 이렇게 찾은 부분 집합의 센서들이

제공하는 상태 변수 추정값으로부터 최종적으로 상태 변수를 계산한다.

주요어 : 사이버 물리 시스템, 공격에 대한 자율 복원성, 해석적 중복성, 안전 지표,

공격 검출, 안전한 상태 추정
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